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Abstract. Implicit feedback collaborative filtering recommender systems suffer 

from exposure bias that corrupts performance and creates filter bubbles and echo 

chambers. Our study aims to provide a practical method that does not inherit any 

exposure bias from the data given the information about the user, the choice, and 

the choice set associated with each observation. We validated the model’s 

functionality and capability to reduce bias and compared it to baseline mitigation 

strategies by simulation. Our model inherited little to no bias, while the other 

approaches failed to mitigate all bias. To the best of our knowledge, we are first 

to identify a feasible approach to tackle exposure bias in recommender systems 

that does not require arbitrary parameter choices or large model extensions. With 

our findings, we encourage the recommender systems community to move away 

from rating-matrix-based towards discrete-choice-based models. 

Keywords: recommender systems, implicit feedback, exposure bias, feedback 

loop, discrete choice 

1 Introduction 

Recommender systems support users’ decisions from what movies to watch over what 

items to buy to what to learn next. The industry leaders rely dramatically on 

recommender systems: Gomez-Uribe et al. (2015) [1] revealed that recommendations 

contribute to almost 80% of watch time on Netflix. However, what items the system 

exposes the users to can significantly affect system performance. Collaborative filtering 

recommender systems operating on implicit feedback (as navigation patterns) rather 

than explicit feedback (as user-specified ratings) are known to suffer from exposure 

bias. Exposure bias happens as users are only exposed to specific items so that 

unobserved interactions do not always represent negative preference [2]. As users are 

more likely to engage with a few top recommended items [3], the system’s 

recommendations can bias their behavior. Once the system infers biased knowledge 

from these observations, it propagates this bias into its recommendations. For example, 

if a user is overexposed to a particular item not among their top preferences, they will 

likely still engage with it. Based on the high engagement rate, the system will 
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overestimate the item’s popularity and keep frequently recommending the item, even if 

more relevant items enter the domain. A feedback loop of exposure, choice, and 

inference emerges. Such feedback loops further affect user behavior and amplify pre-

existing system biases [4]. The causes of exposure bias include an unfair policy of the 

previous recommender system [5], new items entering the domain, or even the user’s 

socio-demographic background [6]. In addition to the definition by Chen et al. (2020) 

[2], we define exposure bias as any systematic shift in the observed choice behavior 

due to altering exposure. 

Past studies have proven the occurrence of exposure bias and corresponding 

feedback loops in recommender systems and analyzed their effects. As the need to 

reduce bias in information systems has moved into the spotlight in recent years [7], 

researchers have proposed various mitigation strategies [8–13]. However, these 

approaches are either heuristic, demand large model extensions, or require arbitrary 

choices of parameters and estimators that can affect performance if chosen incorrectly 

[2]. Other approaches have only considered a single-user setting [14]. To our 

knowledge, the recommender systems community lacks models that are naturally 

resistant to exposure bias. Also, the proposed methods assume no available information 

about what items a user has been exposed to but not engaged with. Most methods 

estimate exposure while this information could be retrieved by the system and provided 

to the model directly. The benefit of providing such information is still unknown.  

This study aims to provide a feasible method that does not inherit any exposure bias 

from the data given the information about the user, the choice, and the choice set 

associated with each observation. We hypothesize that a variant of collaborative 

competitive filtering [15] is resistant against exposure bias without any loss of accuracy 

compared to baseline collaborative filtering algorithms on implicit feedback data. This 

paper is structured as follows: First, we present the method, elaborate on our design 

choices, and discuss why the training algorithm should consider the entire choice set. 

Then, we evaluate our prototype and compare it to baseline models and existing bias 

mitigation strategies. Our approach differs from past studies because it does not rely on 

arbitrary parameter choices, large model extensions, or heuristics and takes advantage 

of the full information about the decision process in a multi-user setting. On systems 

with sufficient implicit choice data, our approach prevents items from falsely claiming 

dominance through over-exposure. It is easier to implement than other bias mitigation 

strategies and utilizes more information than current techniques to improve accuracy. 

2 Research Approach 

In our interdisciplinary research project KUPPEL, we explore and design new learning 

environments. Specifically, our research project aims to provide students with learning 

resources and assign learning peers in an online learning environment. The first analysis 

of our partners' existing learning environments revealed that they are currently only 

incorporating implicit feedback. As implicit feedback is prone to exposure bias [2], we 

conducted a literature review according to Webster and Watson (2002) [16] to obtain 

an overview of current bias mitigation approaches. For this, we searched AISEL, 



EBSCOHost, ScienceDirect, SpringerLink, and Google Scholar databases using the 

following search string: “recommender system” AND “implicit feedback” AND 

“exposure bias” The main results of our literature review are summarized in Section 3. 

It is important to note that Section 3 is not the central focus of this paper and does not 

aim at systematically covering the entire scientific discourse but rather serves as an 

argumentative starting point for developing a new prototype. All bias mitigation 

strategies we encountered rely on large model extensions or arbitrary choices of 

heuristics and parameters that – if chosen incorrectly – can greatly affect performance 

[2]. Introducing explicit feedback to the system could result in selection bias and would 

therefore not have solved the issue. This observation inspired us to develop a prototype 

that we hypothesized was resistant against exposure bias, and that does not rely on any 

arbitrary settings. This development process was carried out in an iterative approach 

and was improved by frequent evaluation cycles. Finally, we compared our prototype 

to baseline bias mitigation strategies. In this paper, we report on the prototype and the 

results from that evaluation cycle as we deem the findings relevant for research on 

exposure bias in recommender systems. 

3 Related Work 

Past research has shown how bias can corrupt the performance of recommender 

systems[4]. It can create filter bubbles [16], echo chambers [17] and lead to false 

consensus effect [18]. In particular, the exposure bias defined in the previous section 

can lead to the miscalibration of recommendations for groups of users who are less 

interested in the popular items [19]. Moreover, it affects other parties involved in the 

recommender systems, for example, content providers. An amplification of popularity 

of some items and a severe underexposure to alternatives can decrease providers' 

reputation [20], consequently disincentivizing new providers from entering the market. 

Chen et al. (2020) [2] summarized the biases related to recommender systems: 

selection bias, conformity bias, exposure bias, position bias, inductive bias, popularity 

bias, and unfairness. For each form of bias, they provide an overview of past research 

on its occurrence, effects, and mitigation strategies. Research on bias in recommender 

systems has also focused on the relationship between bias and the user-model feedback 

loop. Mansoury et al. (2020) [4] show how bias amplifies through the user-model 

feedback loop. They conclude that bias can shift the users’ tastes over time, homogenize 

recommendations, and therefore neglect the preferences of minority groups. This shift 

might cause concept drift, making the model unsuitable for the evolved data [21]. 

Moreover, with a lack of diversity of item exposure and unreliable non-positive data, 

exposure bias can affect the overall quality of the recommendations long-term. For 

instance, the resulting imbalance of the 1inherent audience size can exacerbate 

popularity bias [22]. 

Common practices for exposure bias mitigation are heuristic weights [8], [12], [13], 

sophisticated sampling [9], [10] or exposure-based models [11]. An approach for bias 

mitigation, similar to the one presented in this paper, has been considered by Çapan et 

al. (2019) [14], who apply a multinomial logit model to estimate the choice probability 



of a single user among a set of items to reduce exposure bias. However, to our 

knowledge, only the authors’ follow-up paper [23] has been peer-reviewed. In 

comparison, our model proposes a significant expansion to the method and its 

evaluation. The authors of [14] and [23] claim that their model can extend to a multi-

user setting but do not provide further details. Most importantly, their approach implies 

exposing the user to every available item at least once, which is impossible in many 

applied settings. It remains ambiguous whether an extension to a multi-user approach 

where not every user interacts with every item also prevents exposure bias. Lastly, the 

authors do not compare their approach to existing bias mitigation strategies. Instead, 

our approach is naturally suited for a multi-user setting, and we compare proneness 

against exposure bias to alternative approaches. We are, to the best of our knowledge, 

the first to propose this approach in the context of exposure bias. To differentiate our 

results from previous work, Table 1 details the weaknesses of the research discussed 

above. 

Table 1. Summary of selected work 

Publication 

Heuristic or 

arbitrary design 

Large model 

extension 

Single-user 

Setting 

Saito et al. (2020) [8] ×   

Carraro & Bridge (2020) [9] ×   

Ding et al. (2019) [10]  ×  

Liang et al. (2015) [11] × ×  

Pan & Scholz (2009) [12] ×   

Pan et al. (2008) [13] × ×  

Çapan et al. (2019) [14]   × 

Our work    

 

4 Prototype  

We assume a system in that a user iteratively receives a choice set out of which they 

can pick exactly one item for a total of 𝑛users and 𝑛items. Let 𝑂 be a set of 𝑚 observations 

of past interactions, where each observation is a 3-tuple (𝑖, 𝑗, 𝐶) ∈ 𝑂 of a user 𝑖 and 

their choice 𝑗 out of a choice set 𝐶. For example, if user 5 was presented items 1, 2, and 

4, and chose item 2, then 𝑂 would contain the observation (5, 2, {1,2,4}). Traditional 

methods would only record that user 5 picked item 2. We constructed a model to 

estimate which item should be recommended to which user. We designed our prototype 

to combine the advantages of classic matrix factorization and the approach of Çapan et 

al. (2019) [14]. Our prototype can also independently be seen as a version of 

collaborative competitive filtering [15]. Therefore, our work may be interpreted as 

building on collaborative competitive filtering to show that it provides a practical, 

exposure bias-free recommendation method, which is the aim of our research. 

For our prototype, we defined four major requirements. It should not inherit any bias 

induced by past recommendations (req. 1), be accurate (req 2.), be scalable as the 



number of users, items, and observations increases (req. 3), and incorporate observed 

user-, item- or context-specific attributes (req. 4). First, we describe our method, and 

then we discuss how it meets each requirement. For the recommendation phase, we 

employed a matrix-factorization model that stores latent parameters 𝑢𝑖 ∈ ℝ𝑘 for each 

user 𝑖 and 𝑣𝑗 ∈ ℝ𝑘 for each item 𝑗 for some 𝑘 ∈ ℕ to estimate the perceived utility 𝜇𝑖𝑗 

for user 𝑖 and item 𝑗 as 

𝜇𝑖𝑗 = 𝑢𝑖
⊤𝑣𝑗 . 

The system recommends the highest utility items to each user. To fit the matrix 

factorization model, we embedded it into a multinomial logit model that estimates the 

probability of user 𝑖 choosing item 𝑗 from the choice set 𝐶 as 

 
𝑃𝑖𝑗𝐶 =

𝑒𝜇𝑖𝑗

∑ 𝑒
𝜇𝑖𝑗′

𝑗′∈𝐶  
, (1) 

providing a likelihood function over the observed choices given the matrix factorization 

model’s parameters. The distribution of 𝑃𝑖𝑗𝐶  is common in the discrete-choice literature, 

which assumes a deterministic utility component 𝜈𝑖𝑗  and an overall perceived utility  

𝜋𝑖𝑗  =  𝜈𝑖𝑗  + 𝜖𝑖𝑗 

for iid. Gumbel-distributed variables 𝜖𝑖𝑗 [24]. Then, the probability that 𝑗 has the 

highest perceived utility for user 𝑖 among all items in 𝐶 equals 

𝑃(𝜋𝑖𝑗 ≥  𝜋𝑖𝑗′   ∀𝑗′ ∈ 𝐶) =
𝑒𝜈𝑖𝑗

∑ 𝑒
𝜈𝑖𝑗′

𝑗′∈𝐶

 , 

which equation (1) is derived from [24]. We define a batch gradient descent rule to 

adjust the parameters and minimize the negative-logarithmic-likelihood function of the 

multinomial logit model, which serves as a cost function. Let 𝑈 and 𝑉 be matrices with 

row vectors 𝑢𝑖 and 𝑣𝑗 respectively. By writing the minimization problem as 

min
𝑈,𝑉

− ln ( ∏ 𝑃𝑖𝑗𝐶

(𝑖,𝑗,𝐶)∈𝑂

) = min
𝑈,𝑉

− ∑ ln (𝑃𝑖𝑗𝐶)
(𝑖,𝑗,𝐶)∈𝑂

 

= min
𝑈,𝑉

∑ ln ( ∑ 𝑒
𝑢𝑖

⊤𝑣
𝑗′

𝑗′∈𝐶

) −𝑢𝑖
⊤𝑣𝑗

(𝑖,𝑗,𝐶)∈𝑂

, 

one obtains the following update-rules for each for the 𝑙-th coefficients of the user 

vectors 𝑢𝑖 or item vectors 𝑣𝑗 with 𝑙 ≤ 𝑘: 

𝑢𝑖𝑙 → 𝑢𝑖𝑙 + 𝛼 ∑ 𝑣𝑗𝑙 −
∑ 𝑣𝑗′𝑙𝑒

𝜇
𝑖𝑗′

𝑗′∈𝐶

∑ 𝑒
𝜇𝑖𝑗′

𝑗′∈𝐶{(𝑖∗,𝑗,𝐶)∈𝑂| 𝑖∗=𝑖}

  

 



𝑣𝑗𝑙 → 𝑣𝑗𝑘 + 𝛼 ∑ 𝑢𝑖𝑙𝛿𝑗=𝑗∗ −
𝑢𝑖𝑘𝑒𝜇𝑖𝑗

∑ 𝑒
𝜇𝑖𝑗′

𝑗′∈𝐶{(𝑖,𝑗∗,𝐶)∈𝑂| 𝑗∈𝐶}

 , 

where 𝛼 denotes a learning-rate factor and 𝛿(⋅) the indicator function. To prevent 

overfitting, we added an L2-regularization term with a regularization factor 𝜆 and 

adjusted the update rule to 

𝑢𝑖𝑙 →
(1 − 𝜆)

𝑛users

𝑢𝑖𝑙 + 𝛼 ∑ 𝑣𝑗𝑙 −
∑ 𝑣𝑗′𝑙𝑒

𝜇
𝑖𝑗′

𝑗′∈𝐶

∑ 𝑒
𝜇𝑖𝑗′

𝑗′∈𝐶{(𝑖∗,𝑗,𝐶)∈𝑂| 𝑖=𝑖∗}

 

  𝑣𝑗𝑙 →
(1 − 𝜆)

𝑛item𝑠

𝑣𝑗𝑙 + 𝛼 ∑ 𝑢𝑖𝑙𝛿𝑗=𝑗∗ −
𝑢𝑖𝑙𝑒𝜇𝑖𝑗

∑ 𝑒
𝜇𝑖𝑗′

𝑗′∈𝐶{(𝑖,𝑗∗,𝐶)∈𝑂| 𝑗∈𝐶}

 . 

We validated our implementation of the gradient descent algorithm by comparing it to 

the numerically approximated gradient. To break the symmetry between the latent 

dimensions, the initial parameters follow a uniform distribution over the 𝜖-sphere for a 

positive hyperparameter 𝜖. This fixes the variance of 𝜇𝑖𝑗 independently of 𝑘. If we 

intuitively drew the entries of 𝑈 and 𝑉 as, for example, independent Gaussians, then 

Var(𝜇𝑖𝑗) would increase in 𝑘. We also implemented optimization through mini-batch 

gradient descent. Optionally, a bias term can be added by increasing 𝑘 by one and fixing 

all 𝑢𝑖,𝑘 to 1 during training. The choice of 𝑘 is determined by cross-validation. 

The multinomial logit cost function supposedly prevents the model from inheriting 

bias (req. 1), as it considers which items are included in the choice set and which are 

not. It acknowledges which alternative was chosen over another and which were 

observed but not picked. Because items that occur over-proportionally often are also 

more often decided against by a user, we expect this model no longer favors frequently 

recommended items. We purposely decided against using a simpler logistic matrix 

factorization model to maximize 

∏ ∏
(𝑒𝜇𝑖𝑗)

𝛿
𝑗=𝑗′

1 + 𝑒
𝜇𝑖𝑗′

𝑗′∈𝐶(𝑖,𝑗,𝐶)∈𝑂 

. 

Such an approach would falsely ignore the dependence of the decisions to pick one item 

and not to pick another corresponding to the same observation. For example, assume a 

user 𝑖 and five items 1, … , 5 with utility  

𝜇𝑖1 > 𝜇𝑖2 > 𝜇𝑖3 > 𝜇𝑖4 > 𝜇𝑖5. 

If we successively present the user with the choice sets {1, 2}, {2, 3}, {3, 4} and {3, 5}, 

they will pick item 2 for 50 % and item 3 for 66% of the opportunity to do so. Due to 

the biased exposure, a logistic matrix factorization model would ignore the clear 

decision hierarchy and consider item 3 more relevant than item 2. On the other hand, 

our model would decrease its cost function if it assigned a higher relevance to item 2 

than to item 3. More advanced discrete choice models may as well be considered [24]. 

The matrix factorization component allows incorporating observed features (req. 2) as 



a user’s age or an item’s price by replacing specific components of the latent vectors 

with observed variables. As matrix factorization techniques are well established in the 

recommender systems domain, we expected the model to produce accurate 

recommendations (req. 3). It only accurately estimates the true values of 𝑈 and 𝑉 –if 

there are any– up to linear transformations under that the scalar product is invariant. 

We report accuracy in Subsection 5.2. Scalability in memory space (req. 4) is ensured 

by the embedded matrix factorization model as its parameter space scales linearly in 

each component, i.e., with 𝒪(𝑘(𝑛𝑢𝑠𝑒𝑟𝑠 + 𝑛𝑖𝑡𝑒𝑚𝑠)) and the training data size scales with 

𝒪(𝑚𝐶̅), where 𝐶̅ denotes the mean choice set size. Training the model through batch 

gradient descent requires a duration of order 𝒪(𝑚𝑘𝐶̅ ). However, mini-batch gradient 

descent decreases the computational cost significantly. More advanced gradient-based 

algorithms may accelerate convergence further. 

5 Simulation and Evaluation 

5.1 Simulation 

We validated the model’s functionality and its capability to reduce bias by simulation. 

For comparison, we employed a k-nearest-neighbors (KNN), logistic matrix 

factorization (MF), exposure-based matrix factorization (EXMF) [11] and weighted 

matrix factorization (WMF) [13] model. EXMF and WMF are both designed to 

mitigate exposure bias. The EXMF approach explicitly models exposure, while the 

WMF approach reweighs the impact of unobserved user-item interactions. The 

simulation was repeated for each model and can be structured into four steps: 

1. Setup: Initially, we chose 𝑘 = 3 and generated latent vectors 𝑣𝑗 ∈ ℝ𝑘 for 25 items 

and 𝑣𝑗 ∈ ℝ𝑘 for 5000 users. The choice of 𝑘 was large enough to incorporate a bias 

variable, and the number of items ensured that no user compared all items. 

Simultaneously, both parameters were picked small to save computational resources. 

We chose the high number of users so that the model's parameters would converge 

as many users imply many observations. The first two components of each vector 

were uniformly distributed over the 2-dimensional unit circle. The third component 

of each user vector 𝑢𝑖,3 was set to 1, and the corresponding component of each item 

vector 𝑣𝑗,3 was drawn uniformly from (0,1) to obtain an item-wise bias term. We 

then divided the items into two disjoint subsets 𝐼𝐴 and 𝐼𝐵 of size 10 and 15 

respectively and separated the users into ten disjoint subsets 𝑁1, … , 𝑁10 of 500 users 

each. We declared one randomly picked item 𝑖bias from 𝐼𝐴 the “promoted item” that 

users were later disproportionately often exposed to. Also, we uniformly drew a 

probability 𝑝bias ∈ (0.2, 0.8) that determined the degree of unfair exposure. 

2. All users made unbiased choices on 𝐼𝐵: Each user was then provided with a random 

choice set of three items from 𝐼𝐵 and picked one item according to the distribution 

defined in equation (1). We repeated this process four times for a total of five 

observations per user. For each user, picked items were excluded from the following 



choice sets. Based on these unbiased observations, users later received 

recommendations from 𝐼𝐴. Overall, we observed five choices per user on 𝐼𝐵. 

3. Users from 𝑁1 made biased choices on 𝐼𝐴: As in step 2, each user from 𝑁1 iteratively 

made choices on three random choice sets of three items according to equation (1). 

However, the probability that a choice set contained the item 𝑖bias was set to 𝑝bias if 

they had not yet picked 𝑖bias. As in step 2, any item the user picked was excluded 

from the following subsets. Last, we trained the model on all data from steps 2 and 

3. The overexposure to the promoted item inserted exposure bias into the feedback 

loop. 

4. Users from 𝑁2, … , 𝑁10 received recommendations on 𝐼𝐴: For nine periods, users 

received recommendations by the model and made choices as in step 3. Step 2 was 

considered period 1. Period 2 to 10 contained three stages:  

(a) Benchmarking on 𝐼𝐴 and 𝑁𝑖: At the beginning of Period 𝑖, we measured the 

model’s accuracy as the normalized discounted cumulative gain (nDCG) [25] of 

the estimated user preferences and the true user preferences for the items from 𝐼𝐴 

on 𝑁𝑖 with a discount factor based on the logarithm of base 2. The nDCG serves 

as a measure for how well an estimated ranking matches the corresponding true 

ranking, returning positive values up to one. It emphasizes accurately estimating 

the ranks of the highest preference items, making it a popular choice for 

evaluating recommender systems. We also measured the difference between the 

estimated preference rank of the item 𝑖Bias and its true preference rank on 𝐼𝐴 for 

each user from 𝑁𝑖 to obtain a measure for the model’s bias towards the promoted 

item. These measures served as an estimate of the model’s performance after 

period 𝑖 − 1. 

(b) Users from 𝑁𝑖 received recommendations on 𝐼𝐴: The model recommended three 

items to each user from 𝑁𝑖 and each user picked an item according to equation 

(1). This process was repeated twice following the procedure from step 3 so that 

each user made three choices in total.  

(c) Retraining the model: The model was retrained on all available data. 

The observations in step 4 showed how the exposure bias inserted in step 3 affects 

the system's recommendations. We repeated the simulation for 100 iterations and 

averaged the results to control for outliers. Every iteration was initialized on a different 

random seed. The seeds were stored to ensure reproducibility. 

All four models chosen for comparison received a rating matrix 𝑅 ∈  ℝ𝑛users×𝑛items 

with its entries set to 1 if the corresponding user-item choice had been observed and 0 

otherwise. Except for the KNN model, all models only considered entries for which 

observations were possible; in period 𝑖, all observations for users from 𝑁𝑖+1, … , 𝑁10 on 

𝐼𝐴 were ignored as these had to be negative. This method ensured that the matrix 

factorization component did not falsely underestimate the relevance of items from 𝐼𝐴. 

The KNN model relied on cosine-similarity. Our implementation of the EXMF model 

contained a logistic component as the target variables were binary and not normally 

distributed. We deemed this adaptation necessary as violating the EXMF model’s 

assumptions might give it an unfair disadvantage. Instead of the m-step from Liang et 

al. (2015) [11], we optimized the model by mini-batch gradient descent. Exposure was 



encoded via item popularity, as the authors suggest. The WMF model downweighed 

the negative observations proportionally to propensity scores 𝜃𝑖𝑗 in period 𝑙 with 

𝜃𝑖𝑗 =
2

500𝑙
∑ 𝑅𝑚𝑗 .

𝑛users

𝑚=1

 

This way, the zero-entries of the rating matrix weighed less during training if there were 

few positive entries. As stated earlier, the choice for the propensity factors remains 

arbitrary. All models used a latent dimension 𝑘 of 3, where the last user coefficient was 

set to 1 to obtain a bias term. 

Hyperparameters were selected to maximize the mean nDCG over all periods of five 

iterations of the simulation. Different seeds to those that the simulation was later run 

on were used to prevent overfitting. Table 2 lists the selected hyperparameters. The 

matrix-factorization-based models used a different learning rate and several learning 

epochs for period 1 than for periods 2-10, as only fine-tuning was required during the 

later periods. Mini-batch size was set to 32 for all models. For the EXMF model, we 

initialized 𝑝𝑖𝑗  at 0.8, 𝛼1 as 2 and 𝛼2 as 3. 

Table 2. Hyperparameters 

Model 

 Period 1 Periods 2-10  
𝑛𝑛𝑒𝑖𝑔ℎ 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 𝛼 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 𝛼 𝜆 

KNN  100 -  - - - - 

MF  -  10  3 2 1 0 

EXMF -  10  3 2 1 3 

WMF  -  15  3 5 1 1 

Our model  -  10  3 2 1 3 

5.2 Evaluation 

Fig. 1 shows that our model inherited little to no bias towards the promoted item while 

the other models overestimated its relevance. Each line represents the mean difference 

of the estimated rank and the true rank of the unfairly promoted item by the period of 

the corresponding model over all iterations. On the last sub-iteration, our model 

overestimated the promoted item by an average of 0.01 in rank, compared to 1.57 to 

2.81 for the other models. Bias in the other models was the highest on the second sub-

iteration, from where it decreased until it stagnated.  



 

Figure 1. Bias by model 

Our model also consistently yielded a higher nDCG, as fig. 2 shows. Each line 

represents the mean nDCG by the period of the corresponding model over all iterations. 

On the last sub-iteration, our model achieved 92% nDCG on average compared to 89% 

to 90%, corresponding to a 20% to 25% smaller error. For comparison, a model 

recommending random items would have achieved an expected nDCG of about 80%. 

Among the competing methods, the KNN and MF achieved the highest accuracy. 

However, WMF overestimated the promoted item by 0.9 ranks less than  

 

Figure 2. Accuracy by model 



logistic matrix factorization. Our implementation of EXMF performed worse both in 

accuracy and bias than MF. 

6 Discussion 

We found that our approach did not inherit any exposure bias from the data while all 

comparative models overestimated the promoted item’s true relevance. Despite its 

resistance against bias, our model performed most accurately. 

We attribute our model’s high bias resistance to its ability to consider an alternative 

preferred over the promoted item. The other models were incapable of considering this 

information as they relied on a rating matrix where unobserved interactions could not 

be distinguished from observed negative ones. Also, as in the example given in Section 

4, the other models cannot consider any decision hierarchy. For these reasons, we 

assume the WMF model could not eliminate all bias from the system. The EXMF model 

may have also had issues adapting to the varying exposure probability from period to 

period. The fact that our model includes more information may also have contributed 

to its higher accuracy. On top of their weaknesses discussed above, the EXMF and 

WMF model’s low accuracy may result from their additional probabilistic components. 

Inaccurate estimates of exposure may affect their output and the resulting nDCG. As 

our model does not require any additional components to model exposure as the EXMF 

and WMF models do, we found our model easier to implement.  

Our findings are subject to key limitations. We only validated and compared our 

model through a simulation that fulfilled the model’s assumptions. Therefore, we 

cannot derive any prospects on its performance on real-world data. We expect our 

model to work well as the underlying principles have been a common choice in the 

recommender systems and discrete choice domain, but further experiments on real-

world data are required. Also, in real-world applications, users often choose between 

more than three alternatives. They might then select the first item of interest before 

comparing the entire set available. Future research needs to investigate the effect of 

larger choice sets on model performance. The multinomial choice model we employed 

has been criticized for its so-called assumption of independence of irrelevant 

alternatives [24]. More advanced discrete choice models that do not make this 

assumption may be more appropriate. In this study, we chose the simpler multinomial 

logit model as it sufficed to prove the concept. As the two bias mitigation approaches 

tested for comparison rely on arbitrary initialization parameters or estimators, other 

choices for these components might have been more successful. However, the reliance 

on arbitrary parameter choices has been the main point of criticism about these 

methods. The poor performance of the EXMF model should be investigated. However, 

as our model showed almost no bias, we do not expect a revised EXMF model to 

perform better. The EXMF model also cannot be expected to perform more accurately 

in the simulation as it does not model the underlying assumptions as precisely. 

Several extensions to our approach are possible. For example, by setting a specific 

component of the user vectors to an observed attribute as the users’ age, the effect of 

this attribute on preference can be directly observed via the corresponding components 



of the item vectors. Such procedure is common in the discrete choice literature and 

would render the model’s output interpretable as is desired in modern AI-enabled 

systems [7]. Also, other models as neural networks can replace the scalar product to 

allow for more complex interactions of the user and item vectors. Finally, researchers 

need to evaluate our model’s performance on real-world data. For implementation 

appropriate choice sets will need to be defined. In real-world applications, a choice set 

may correspond to the items shown on the user’s screen. Items that the user cannot 

observe because they e.g., require browsing to the next page of search results, should 

be excluded. 

Our findings imply that the recommender systems community should move away 

from models that rely on rating matrices as these cannot capture the full information 

about the users’ decision process. Accordingly, researchers should focus less on 

mitigating exposure bias in these models. Instead, we need to investigate how discrete 

choices should be modeled for a recommendation. Comparing the various discrete 

choice models [24] in a recommendation setting is mandatory. We also require efficient 

and accurate mechanisms to identify the choice set a user encountered prior to their 

choice. Our approach allows practitioners to avoid exposure bias in implicit feedback 

collaborative filtering systems like e-commerce, digital entertainment [26], or online 

learning environments [27]. For implementation, systems must begin tracking and 

storing all information about users’ decision processes. Because companies already 

possess large treasures of user behavior that lack choice set data, implementing our 

model requires measures to reconstruct the choice sets associated with past choices. 

7 Conclusion 

In this study, we identified a method that does not inherit any exposure bias given full 

information about the users, the choices, and the choice sets associated with previous 

observations. We showed by simulation that this method is resistant against exposure 

bias without any disadvantage in accuracy compared to baseline collaborative filtering 

algorithms and other bias mitigation strategies. To the best of our knowledge, our 

approach is the first to tackle exposure bias in a multi-user setting that does not require 

any arbitrary parameter choices or large model extensions. Moreover, we have 

illustrated that the choice set presented to a user can play a crucial role in providing 

accurate, unbiased recommendations. We conclude that current systems need to start 

monitoring which items a user encountered in their decision process. With our findings, 

we encourage the recommender systems community to move away from rating-matrix-

based towards discrete-choice-based models. 
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