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Abstract. Data science projects can become very complex, due to the complexity 

of their content, but also due to the nature and composition of their stakeholders. 

There are several approaches to remedy this, e.g., canvases, which support idea-

tion and common understanding. However, previous approaches are limited to 

single details or abstract too much, so that it is difficult to carry out entire projects 

successfully based on them. This paper describes one part of the design process, 

namely the derivation of the underlying ontology, of a new canvas that integrates 

both the overall project and detail steps. The ontology is mainly derived from 

CRISP-DM, literature review and project work. 
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1 Introduction 

With the advent of powerful local and cloud hardware, open source software, and even 

online collaboration tools for big data projects, e.g., Google Colab, data science (DS) 

should be within reach for all the interested. However, machine learning (ML) and ar-

tificial intelligence (AI) are still elusive topics for many companies and individuals. 

These information systems (IS) topics, nevertheless, are not only important drivers for 

the optimization of existing products and business processes, but also for the (digital) 

transformation and foundation of companies. So far-reaching, in fact, that data has been 

called a new commodity [1]. In order to take part in data science (DS), organizations 

start their own data-driven projects and due to the complexity of these projects they 

“need clear and structured guidance at the beginning of the innovation process to for-

mulate and communicate business ideas with data” [2]. Therefore, standard processes 

have been suggested [3], maturity models have been developed [4], and competency 

profiles have also been proposed [5]. Yet, there is no generally accepted definition of 

DS and the discipline’s practice. A major obstacle in the projects is the high spread of 

data literacy among the stakeholders, which hinders the process of value generation [6]. 

One approach to make the entry and execution of complex projects easier are canvases, 

such as the Business Model Canvas [7]. Canvases are boundary objects to facilitate 

teamwork and generate common understanding of complex topics. For the overarching 

field of DS, several canvas approaches have been proposed in recent years, for example 

the ‘Machine Learning Canvas’ [8], the ‘Key Activity Canvas’ [9], or the ’Data Value 



Map’ [10]. These tools offer support in various phases of a DS project. Most approaches 

focus on identifying potential before project start. However, it remains unclear how to 

get from this ideation to concrete tasks in the course of the project. The challenge is 

that most approaches are structured in such a way that they either address a specific 

part, e.g., ideation, thus ignoring the overall project, or they look at the overall project 

very generically, e.g., project justification and budgeting, so that the necessary level of 

detail is not achieved. Accordingly, an approach that integrates the standard process, 

i.e., CRISP-DM [3], is missing. Therefore, the question underlying this research project 

is “What does a joint working tool, i.e., canvas, need to look like that supports teams 

during initial and subsequent tasks of ML projects in line with standard data science 

processes?” The goal is to design a canvas for DS projects, especially suitable for small 

organizations. The contribution of this research project is in combining both an inte-

grative view of the overall project and an appropriate level of detail in the individual 

sections, thus addressing the dichotomy between holistic and compact. This paper pre-

sents the derivation of the design requirements and the development of the underlying 

ontology to facilitate the design process of a canvas. 

2 Related Work and Methodology 

The approach of using a canvas to facilitate the development of ML or AI solutions has 

been prominent in IS research in recent years. At its core, most contributions try to 

support (parts of) the process from data exploration and ideation to a concrete business 

value. Four categories of such canvases with different thematic foci, namely ML/DS, 

(AI) Project, Data Value, and Data Source, have been identified in prior work [11], as 

shown in Table 1. 

Table 1. Canvas artifacts with different foci 

Focus Year Source Canvas Artifact 

ML/DS 2018 [12] The ML Canvas (Big Data MBA Version) 

ML/DS 2018 [12] Hypothesis Development Canvas v1.1 

ML/DS 2019 [8] Machine Learning Canvas v0.4 

ML/DS 2020 [9] Key Activity Canvas 

ML/DS 2020 [13] ML Lifecycle Canvas 

(AI) Project 2017 [14] Digitalization Canvas 

(AI) Project 2018 [15] AI Canvas 

(AI) Project 2018 [16] AI Canvas 

(AI) Project 2019 [17] AI Project Canvas 

(AI) Project 2020 [18] AI performance canvas (prototype) 

(AI) Project 2020 [19] Canvas for the use of AI 

(AI) Project 2021 [20] Enterprise AI Canvas 

Data Value 2016 [21] Data Canvas: Data-Need Fit 

Data Value 2017 [10] Data Value Map 

Data Value 2019 [6] Data Innovation Board 

Data Value 2020 [2] Data Product Canvas 

Data Source 2019 [22] Data Collection Map 

Data Source 2019 [23] Data Insight Generator 



All of these practice and scientific artifacts are intended as initial tools for generating 

ideas and/or as a communication platform at the beginning of DS projects. Although 

many of the approaches include parts of standard processes, such as the ‘Data Prepara-

tion’ phase, there is no explicit alignment between canvas and project progress, i.e., 

subsequent tasks after project initiation. 

The literature review preceding this work posed the research question ‘Which canvas 

models, that address ML or AI implementation, are available, and which contents do 

they cover?’ The answering of the latter resulted in a catalog of 163 fields with 287 

(non-exclusive) questions categorized in a total of 11 categories and 39 subgroups. On 

the one hand this catalog with its categories is a good starting point for DS projects, on 

the other hand it also shows that there are still areas that are underrepresented, such as 

the connection between data preparation and modeling. Thus, the review is not only 

suitable as a basis for the following design part of an own canvas, but also shows where 

a new content focus must be set. 

The methodological approach of this research follows the design-science paradigm, 

which at its core seeks to create useful (IS) artifacts through creative problem-solving 

techniques, thereby enhancing the scientific corpus and practical utility [24]. Since de-

sign science is meant to solve an observed (organizational) problem [25], we formulate 

the problem statement in two parts: (1) Existing canvases and process models are not 

aligned, which makes it hard for organizations to use them coherently and (2) existing 

canvases either only focus on parts of the whole project or lack a level of detail, when 

they take an abstract view on the whole project, which makes it difficult to get to suc-

cessful solutions. Wirth and Hipp have already addressed this dilemma between de-

tailed (exhaustiveness) and generic (parsimony) process descriptions [3]. We therefore 

propose the design requirements for the artifact: The canvas should be exhaustive, in 

order to address the whole project, and provide the right level of detail in order to be 

useful, while at the same time the canvas should be kept as simple as possible to provide 

ease-of-use and common understanding. Optionally, as the canvas might be too com-

plex for a paper based version and workshop, a digital tool could be the preferred solu-

tion [26], which would demand the inclusion of user-centered design. 

Since various stakeholders, e.g., data scientists, managers, domain experts, and IT 

specialists, are usually involved in DS projects and the project itself deals with complex 

topics, two main issues, namely collaboration/communication and structuring of tasks, 

have to be managed. Avdiji et al. (2018) propose IS “design principles for tools that 

both support collaboration and are tailored for specific ill-structured problems” [26]. 

These principles include “(1) framing the ill-structured problem by developing an on-

tology, (2) representing the ontology into a shared visualization, and (3) instantiating 

the visualization in a way that supports shared prototyping of the solution” [22]. We 

build upon these guidelines in the design process. In the following the derivation of the 

ontology is being described. 



3 Developing the Ontology 

The first step in the design of the future artifact, is the development of an ontology. In 

computer science an ontology is a representation of entities and the relationship be-

tween these entities in a specific subject area. It can be understood as reference model 

[27] and helps reducing “conceptual and lexical confusion by providing a unifying 

framework within an organization” [26], thereby sharpening problem understanding.  

The field of DS encompasses a wide range of disciplines and skills, e.g. computer 

science, programming, statistics, or data management. In order to make this complex 

term more tangible, attempts have already been made to develop an ontology for DS, 

e.g., the Data Science Ontology [28]. This ontology indexes various concepts from the 

DS discipline as well as annotations of commonly used software libraries. However, 

the relationship between the elements is not evident from the index. The context and 

usefulness of the integrated software libraries can only be understood with appropriate 

prior knowledge. “Its long-term objective is to improve the efficiency and transparency 

of collaborative, data-driven science.”1 However, this publicly available ontology does 

not lay claim to completeness, rather it is a living and editable online document. We 

must therefore use other references. 

 

Figure 1. Process and references for the development of the ontology 

For this reason, we integrate three main sources to initialize the entities in our ontology 

(Figure 1). We use selected entities from these sources and then build the relationships 

between these entities. First of all, we utilize the CRISP-DM process stages (I) [3], as 

they are fundamental to DS. These stages include the entities ‘Business Understanding’, 

‘Data Understanding’, ‘Data Preparation’, ‘Modeling’, ‘Evaluation’, and ‘Deployment’ 

Then we integrate two sources from prior work, namely the results of the aforemen-

tioned literature review regarding ML canvases (II) [11], and an item list of topics and 

questions, which is a part of project work regarding the development of a DS process 

model (III) [29]. Our approach ensures, that on the one hand the ontology is built on a 

tested scientific artifact, as CRISP-DM can be seen as a fundamental basis for DS pro-

jects, and on the other hand, both a content focus on DS and ML as well as actuality 

are taken into account. Additionally, we consider enhancements of the standard process, 

such as CRISP-ML(Q), which integrates quality assurance in ML projects [30]. 

Exemplarily, we describe the main path of the ontology (Figure 2), which was taken 

from CRISP-DM (blue): ‘Business Understanding’ enables ‘Data Understanding’, 

‘Data Understanding’ in turn supports ‘Business Understanding’ and is simultaneously 

the basis for ‘Data Preparation’. ‘Modeling’ requires ‘Data Preparation’ and is assessed 

                                                           
1 https://www.datascienceontology.org/about 
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by the ‘Evaluation’, which in turn influences the ‘Deployment’, and recursively updates 

the ‘Business Understanding’. The ontology is structured in such a way that the main 

entities are composed of sub-elements, e.g. (shaded), ‘Business Understanding’ is com-

posed of ‘Business Key Performance Indicators’ (KPI), which in turn are derived from 

‘Customer‘, ‘Financial‘, ‘Product‘, ‘Organizational‘, and ‘Technological Understand-

ing’. The interlinking of the sub-elements results in a web structure, which reflects the 

iterative nature of DS projects, and CRISP-DM respectively. Another central aspect of 

DS projects is captured in the ontology, namely the paths between ‘Data Quality’ and 

‘Model Training’ (red). Extent and kind of the entire data preparation is substantially 

dependent on the selection and programming of an appropriate ML/AI algorithm, vice 

versa. The estimator selection in turn affects the model training and tuning. Therefore, 

depending on project maturity, different entities have to be incorporated. The ontology 

in Figure 2 represents an interim result and contribution of our research. It provides a 

holistic overview of a DS project. 
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Figure 2. Simplified view of the ontology of a data science project 

4 Conclusion and Future Research 

In this article we call for the design of a new canvas for DS projects that is both holistic 

and compact, as previous approaches either address only partial aspects or are too ge-

neric. The artifact should support (small) organizations not only in generating ideas, 

but also in supporting the overall project. The design of the canvas is to be done in three 

steps, defining the ontology, designing a shared visualization and initializing the can-

vas. In this paper, the derivation of the ontology is presented as an intermediate result 

and contribution of our research. Future research consequently involves finalizing the 

design process, integrating principles of user-centered design [31], and evaluating the 

artifact. The evaluation is to be done essentially through qualitative methods, e.g., 

workshops and case studies, as is common in design science projects, and refers mainly 

to plausibility, usability, and perceived usefulness of the artifact. 
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