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Abstract. Recent demonstrations of AR showcase engaging spatial features 
while avoiding text input. However, this is not due to descending relevance but 
rather because no satisfactory solution to text input in a comprehensive AR 
system is available yet. Any novel technological device requires rethinking the 
way we interact with it, including text input. With its variety of sensors, AR 
devices offer numerous possibilities for uni- and multimodal interaction. 
However, it is essential to evaluate the actual problem space before suggesting 
solutions. In our design science research project, we aim to create design 
knowledge about the learnability and performance of AR keyboards. Based on 
transfer of learning theory and HCI literature on virtual keyboards, we propose 
meta requirements and initial design principles that serve as basis for developing 
a multimodal AR keyboard prototype. 

Keywords: Augmented Reality, Multimodal Interaction, Keyboard Input, 
Transfer of Learning, Design Science Research 

1 Introduction 

In future, Augmented Reality (AR) devices will be ubiquitous in our everyday life 
assisting users in various use-cases [1–3]. While the industry is waiting for lightweight, 
powerful, and unobtrusive AR glasses to emerge, several aspects of the next generation 
devices already ask for new ideas and improvements today [4]. One important aspect 
is text input [5]. With every new device category, researchers were exploring adequate 
ways for users to enter text into the computer (e.g., smartphones [6], smartwatches [7, 
8], Smart-TVs [9], or smart speakers [10]) as previous methods often did not perform 
sufficiently. This pattern holds true for AR and poses a major user experience (UX) 
design challenge for the already complex transition from traditional systems to this next 
generation platform [11]. Text input will prevail because speech recognition is not 
suitable in many use cases, like in noisy environments or when entering confidential 
information [4, 12, 13]. Especially for expert users, it is highly important that a system 
facilitates a performant, learnable, portable, non-fatiguing, and unobtrusive way of text 
input [11]. Yet, the main representative of state-of-the-art AR headsets, Microsoft’s 
HoloLens 2, does not provide a fast, reliable, and user-friendly keyboard. The gesture-
based mid-air keyboard lacks haptic feedback, touch-typing capabilities, and visually 
blocks most of the field of view. However, equipped with various sensors, AR devices 



open up a plentitude of input modalities that application designers may leverage when 
developing user-centered AR systems, e.g., gaze-, gesture-, or contextual input. 

Previous work has made attempts to create text entry techniques with the goal of 
finding a tailored solution for the AR and VR context [11, 14–21]. However, new 
approaches often struggle to both perform well and be learnt quickly [11]. Typing 
speed, accuracy, and learning rate are common metrics for measuring the successful 
application of new text input techniques and are the foundation of user acceptance [11]. 
Moreover, several approaches rely on external hardware, e.g., trackers, controllers, or 
keyboards, limiting the mobility which is essential for ubiquitous AR [19, 22, 23]. Thus, 
we argue that there is a need for the IS and HCI community to address and research this 
issue in order for user-centered AR to succeed. As prior approaches often struggled, the 
underlying design issues and requirements must be analyzed before suggesting novel 
modes of text entry. Accordingly, this research endeavor pursues the overall objective 
of investigating how AR keyboards need to be designed. In particular, we examine the 
following research questions (RQs): How to design a mobile virtual keyboard for AR 
systems to increase text entry performance? (RQ1) and How to design a mobile virtual 
keyboard for AR systems to increase learnability? (RQ2) 

To address the RQs, we commenced a design science research (DSR) project to 
thoroughly examine the theoretical knowledge base and practical challenge, instantiate 
and evaluate a design artifact, and, eventually, produce design knowledge [24]. Our 
research is grounded in transfer of learning (ToL) theory and informed by prior HCI 
research on virtual keyboards. In this paper, we focus on the first three steps of the first 
design cycle to derive meta requirements and design principles from relevant issues and 
present a first version of the artifact featuring touch-typing and multimodal input. 

2 Theoretical Background 

Virtual Keyboards for Augmented Reality. Although consumer-ready AR 
headsets that are lightweight, small, affordable, and have long-lasting battery life are 
not yet available, many companies experiment with AR devices such as intermediate 
smartphone-based solutions or more capable headsets like the Microsoft HoloLens 2 to 
develop future use cases [25, 26]. In their review, Dube et al. provide a comprehensive 
overview of text entry techniques in VR [11]. Their suggested input categories and most 
of the accompanying issues, such as haptic feedback, new layout acceptance, low 
performance frustration, and physical demand, also apply to AR. The review separates 
physical from virtual techniques and the regular qwerty keyboard layout (according to 
the first row of characters on the English keyboard) from other approaches outlining 
that non-qwerty layouts tend to perform worse and require longer training periods [11]. 
This issue is attributed to a network effect, as most users are familiar with qwerty 
layouts [27]. Overall, they conclude that, next to speed and accuracy, a well-designed 
keyboard needs to pay attention to haptic feedback, comfort, physical and cognitive 
demand, and potential frustration due to low performance [11]. 

Transfer of Learning. Depending on the prior knowledge, the teaching method, and 
the learning target, existent knowledge can have a positive or negative impact on 



learning [28]. Hajian summarizes four theories in the field of the transfer of learning 
[29]. There are several aspects that increase the likelihood of successful learning 
transfer from one context to another. For instance, transfer is more likely to be 
successful if the learning target and context are similar to the knowledge origin [28, 
29]. The theory of low and high road transfer describes two related mechanisms of how 
transfer can occur [28]: Comparable to the two systems of thinking, low road transfer 
triggers intuitive responses of a well-known concept in a slightly different context [28, 
30]. In contrast, high road transfer requires “mindful abstraction from the context of 
learning or application and a deliberate search for connections” [28, p. 8]. Low and high 
road transfer can be exploited by the concepts of hugging and bridging [28]. By 
applying hugging, the prior skill should be well-trained and tightly linked to the 
learning target. Bridging encourages the learner to actively abstract knowledge from 
the first context to apply it in the latter. Overall, these insights impact design decisions 
for the development, teaching, and evaluation of the artifact as a leading theory. 

Multimodal Interaction. Multimodal interaction is natural to humans [13]. When 
we give directions to a foreigner for example, we use spoken language and articulate 
by using our hands. Research distinguishes parallel and sequential multimodality, 
depending on the simultaneous or successive application of at least two modes of 
interaction [13]. In general, multimodality has several advantages e.g., regarding user 
preference, flexibility, and reliability [13]. Furthermore, multimodal interaction was 
already applied in AR to improve user experience [31–33]. However, the area of 
combining multiple non-voice interaction modes is rather unexplored to date [13, 33]. 

3 Method & First Activities in Design Science Research Cycle 1 

To tackle the proposed RQs, we initialized a DSR project following the framework of 
Kuechler and Vaishnavi [34]. By means of creating a virtual keyboard artifact 
specifically for AR systems, we aim for knowledge gain to inform both research and 
practice. DSR offers the adequate research paradigm by providing structured, 
comprehensive, and iterative frameworks for the construction and observation of a 
previously non-existent artifact. Within this article, we will present the results of the 
first three activities of the first design cycle. Based on reviewing relevant literature from 
the HCI domain (particularly research on virtual keyboards for VR and AR systems), 
we identified issues (I) (awareness of problem). Next, taking the issues, virtual 
keyboard design knowledge, and ToL theories into account, we have derived meta 
requirements (MR) and proposed initial design principles (DP) as depicted in Fig. 1 
(suggestion). The MRs and DPs are then used to implement a situated software artifact 
(development) for evaluation [35]. Overall, we plan to employ two full design cycles. 
In the following, we describe the already conducted activities in more detail: 
Problem Awareness & Suggestion. Across literature on virtual keyboards, several 
issues were already pointed out that need to be taken into consideration [11]. Depending 
on the keyboard design, directly mapping more than the 26 letters of the English 
alphabet to 10 fingers or few buttons on a controller is a challenge (I1). Hence, previous 
research with direct mappings was limited to digits [18], finger combinations 



(“chords”) [36], or overloading fingers with multiple characters [20]. Yet, solving this 
issue by capturing multiple touch regions on each finger might lead to complex and 
ambiguous gesture recognition (I2) [18]. Therefore, we suggest a multimodal approach 
(MR1). Using two adequate input modalities results in enough combinations to capture 
all letters without the necessity to assign multiple touch regions per finger or choosing 
low performing chorded keyboards [11]. More specifically, parallel multimodal 
interaction can increase entry performance as input combinations can occur 
simultaneously (MR2). Interacting via two simple modalities may also require less 
cognitive effort than one complex mode [13]. This motivates the first suggested DP: 
Provide the Augmented Reality Keyboard (ARKB) with parallel multimodal input in 
order to quickly access the full alphabet while ensuring mobility. (DP1)  

Establishing non-qwerty keyboard layouts comes with further issues. Complex and 
new techniques can lead to a higher mental load (I3) while the training poses an 
increased entry barrier (I4) [11]. This decreased learnability can be ascribed to the 
dissimilarity between traditional text input and the new technique which complicates 
transfer of learning [29]. While there might be layouts that could be easier to learn and 
master for beginners, most users have prior typing experience with the qwerty layout 
and alternatives show low performance (I5) [11]. Therefore, it is imperative to reuse 
and build on prior knowledge as much as possible. On the one hand, the goal is to 
exploit low road transfer (i.e., hugging) with a similar design and by addressing 
internalized intuitive knowledge (MR3). On the other hand, high road transfer is 
exploited (i.e., bridging) by actively pointing out the differences and how to foster them 
to abstract knowledge (MR4). New non-qwerty layouts could even imply effects of 
negative transfer [28]. Consequently, we suggest the following DP: Provide the ARKB 
with interactions based on transferable prior knowledge to increase learnability. (DP2) 

Some entry techniques like gaze-based interaction have an inherent performance cap 
resulting from the required dwelling time that separates intended fixation from 
unintentional triggers during the search for characters (so-called Midas Touch effect) 
(I6) [37]. Having to wait for the system can lead to user frustration [11]. Therefore, the 
system’s recognition rate should be faster than users’ entry speeds (MR5). Moreover, 
the event triggers for each character should be time independent (MR6), i.e., not 
requiring two subsequent actions or waiting times. Non-haptic techniques inherit the 
same issue of a typically lower input performance compared to haptic techniques (I7), 
thus, the system should provide haptic feedback (MR7) [5, 11, 36]. Especially for 

Figure 1. Derived Issues, suggested MRs and DPs for the ARKB artifact development 



independent AR glasses, stationary tracking devices hinder mobile usability (I8) [22]. 
The same issue arises for hardware input devices such as controllers [15], wrist-cameras 
[18], or gloves [20] that block or limit the users’ hands, need to be picked up, and stored 
(I9). Hence, the AR device should also be independent from external trackers or input 
devices (MR8). Finally, the device should be unobtrusive to keep the hands free when 
no text entry is performed (MR9). Thus, we suggest the third DP: Provide the ARKB 
with fast, haptic, independent, and unobtrusive mechanics to reduce obstacles for 
learnability and performance. (DP3) In conclusion, DP1 ensures the feasibility, DP2 
the learnability, and DP3 the (final) performance of the approach. 
Development. For the instantiation of the three DPs, we suggest a gaze- and gesture-
based virtual ARKB artifact. The layout should be qwerty to be in line with DP2 and 
the similarity required by hugging. Moreover, each finger is responsible for the same 
character set like in regular touch typing. For instance, the left pinky is assigned to q, 
a, and z and the left middle finger to e, d, and c. The respective key is “pressed” by 
pinching thumb to finger. To account for the characters t or g, both index and middle 
fingers are pressed simultaneously. This movement is highly trained [18] and, thus, 
likely to transfer. In this case, the thumb provides a form of haptic sensation. 
Furthermore, the regular qwerty layout for the characters is divided into three layers 
(qwe, asd, yxc) [20]. The selection of the different layers is handled by gazing at one 
of three virtual areas projected by the AR device. The artifact is implemented in Unity 
for deployment on a Microsoft HoloLens 21. The HoloLens has eye-tracking and hand-
tracking capabilities without the need for an additional device to comply with DP3. 
Based on suggestions from Yi et al., we analyze the relative speed between thumb and 
each finger to detect a “key press” [14]. Then, the area the user is currently gazing at is 
queried which selects the correct character. 

4 Concluding Note & Future Research 

In this research-in-progress, we contribute to the knowledge base by deriving MRs and 
initial DPs from prior research on virtual keyboards for AR and ToL theory to 
implement a multimodal AR keyboard artifact. Further, the current state of the artifact 
indicates that it is able to recognize both finger taps and gaze-selection solely based on 
the integrated sensors of a HoloLens 2 at a sufficient rate to provide fast text input. The 
final implementation of the artifact will then be evaluated in a lab experiment in which 
we will measure common features, e.g., typing speed over time (evaluation) [11]. 
Based on the obtained findings, we will then be able to draw conclusions regarding the 
feasibility of the prototype system and applicability of the DPs including the 
implications of ToL for virtual AR keyboard designs (conclusion). In a subsequent 
design cycle, we want to instantiate the DPs in another artifact for generalization from 
an artefactual contribution towards a nascent design theory [35]. Additionally, further 
investigations will be made by integrating predictive text and revision capabilities [11, 
38]. Hence, fast and enjoyable typing in AR might just be one gaze and tap away. 

 
1 A preview video of the artifact is available here: https://youtu.be/Aw93rxjk1iU 
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