
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

Wirtschaftsinformatik 2022 Proceedings Track 11: Design Science Research:
Development & Modeling of IS

Jan 17th, 12:00 AM

Advanced Auditing of Run-Time Conflicts in Declarative Process Advanced Auditing of Run-Time Conflicts in Declarative Process

Models using Time Series Clustering Models using Time Series Clustering

Carl Corea
Universität Koblenz-Landau, Germany, ccorea@uni-koblenz.de

Rana Mansour
Universität Koblenz-Landau, Germany, ranamansour@uni-koblenz.de

Patrick Delfmann
Universität Koblenz-Landau, Germany, delfmann@ercis.de

Follow this and additional works at: https://aisel.aisnet.org/wi2022

Recommended Citation Recommended Citation
Corea, Carl; Mansour, Rana; and Delfmann, Patrick, "Advanced Auditing of Run-Time Conflicts in
Declarative Process Models using Time Series Clustering" (2022). Wirtschaftsinformatik 2022
Proceedings. 4.
https://aisel.aisnet.org/wi2022/design_science/design_science/4

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted
for inclusion in Wirtschaftsinformatik 2022 Proceedings by an authorized administrator of AIS Electronic Library
(AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/
https://aisel.aisnet.org/wi2022
https://aisel.aisnet.org/wi2022/design_science
https://aisel.aisnet.org/wi2022/design_science
https://aisel.aisnet.org/wi2022?utm_source=aisel.aisnet.org%2Fwi2022%2Fdesign_science%2Fdesign_science%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/wi2022/design_science/design_science/4?utm_source=aisel.aisnet.org%2Fwi2022%2Fdesign_science%2Fdesign_science%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Advanced Auditing of Run-Time Conflicts in Declarative
Process Models using Time Series Clustering

Carl Corea, Rana Mansour, and Patrick Delfmann

University of Koblenz-Landau, Institute for IS Research, Koblenz, Germany
{ccorea,ranamansour,delfmann}@uni-koblenz.de

Abstract. We present a novel approach for auditing conflicts between declarative
constraints that arise during process execution, i.e., relative to observed traces.
As a main advantage, taking a post-execution perspective allows to consider all
observed traces and their interrelations, and to assess conflicts from a global per-
spective. Our approach allows to classify and prioritize conflicts as a basis for
re-modelling, e.g., which conflicts are an outlier, and which require an urgent
change to the model. Also, our approach provides means for quantitative root-
cause analysis, i.e., prioritizing which rules need to be changed. We implement our
approach and show that it can be applied in settings of industrial scale by means
of runtime experiments with real-life data-sets.

Keywords: Inconsistency Measurement, Declarative Process Models, Time Series
Clustering

1 Introduction

In theory, declarative process models, i.e., sets of constraints, can be used to reason about
ongoing process instances. To this aim, during process execution ("at run-time"), the
constraints of a declarative process model are evaluated against traces, i.e., sequences of
company activities. Unfortunately, in this setting, it can occur easily that traces activate
a set of contradictory constraints. For example, consider the constraints in M0, with

M0 = {RESPONSE(a, c),NOTRESPONSE(b, c)}

This declarative process model consists of two constraints: RESPONSE(a, c) indicates
that if an activity a occurs, it must be eventually followed by an activity c. Vice versa,
NOTRESPONSE(b, c) indicates that if activity b occurs, it must never be followed by
activity c. Note that M0 is not inconsistent, as there can be many traces that satisfy the
constraints. For example, a trace "acb" follows both constraint specifications. However,
if we observe a sequence ab, we run into a run-time conflict [1]. In this case, both
constraints are triggered, i.e., activated, by the trace, but the two constraints are in logical
conflict: The first constraint demands that activity c "should" follow, where the second
demands that c "should not". This cannot hold at the same time. In such cases, there
can be no possible continuation of the trace s.t. the rules in M0 are all satisfied, and the
declarative process model cannot be used for any meaningful reasoning anymore, e.g.,
to govern what activities should follow next.

17th International Conference on Wirtschaftsinformatik
February 2022, Nürnberg, Germany

If (two or more) constraints become conflicting in regard to observed traces, compa-
nies may need to re-model the set of constraints, such that it can handle the occurring
traces correctly. Deciding how to actually re-model can however be a complex task, as
companies may encounter thousands of interrelated traces daily. As an example, consider
the declarative process model M1 and the three traces shown in Figure 1.

Process Model M1:

RESPONSE(a,c)

NOTRESPONSE(b,c)

RESPONSE(c,z)

NOTRESPONSE(y,z) 

Occuring Traces t1-t3, and corresponding run-time conflicts

NOTRESPONSE(b,c) 
RESPONSE(a,c)

RESPONSE(c,z)

NOTRESPONSE(y,z) 

Trace t1 = ab

Process instance p1

NOTRESPONSE(b,c) 
RESPONSE(a,c)

RESPONSE(c,z)

NOTRESPONSE(y,z) 

t2 = dxab

p2

NOTRESPONSE(b,c) 
RESPONSE(a,c)

RESPONSE(c,z)

NOTRESPONSE(y,z) 

t3 = yab

p3M1

Figure 1. Exemplary run-time conflicts for a sequence of process instances ρ1 − ρ3.

In the example, there were 2 different types of conflicts, namely RESPONSE(a, c)
vs. NOTRESPONSE(b, c) (denoted I1), and RESPONSE(a, c), RESPONSE(c, z) vs. RE-
SPONSE(y, z) (denoted I2). However, we see that the number of times that the conflicts
occurred differs (e.g., I1 occurs more often than I2). This could be an important insight
for re-modelling, e.g., conflicts that occur more often may be more severe. Vice versa,
specific conflicts that only occur a few times may be considered as outliers. Here, meth-
ods are needed that assess the severity of occurring run-time conflicts (R1). Assessing
the severity of run-time conflicts however does not only relate to "simply" counting
the number of times that a specific conflict occurred, but also requires to consider
when it occurred. For example, problems occurring increasingly in recent times may
be more severe than problems that decreased over time. Here, methods are needed that
can incorporate this time aspect when assessing the severity of run-time conflicts (R2).
Furthermore, in the example, we see that the constraint RESPONSE(a, c) contributes to
both I1 and I2. This is an important insight, as it allows to pin-point the actual causes of
the run-time conflicts, e.g., as a basis for re-modelling. Here, methods are needed that
support companies in assessing which individual rules are highly problematic from a
global perspective (over all traces) (R3).

To address the above requirements, we present a novel approach for auditing run-time
conflicts from a post-execution perspective. In particular:

• We propose an auditing approach for classifying observed run-time conflicts relative
to a set of traces, which allows to decide whether the conflicts induced by the traces
were outliers or require a change to the declarative process model (R1).

• Within this approach, we propose a method for identifying similar conflicts using
time-series clustering (R2). This allows to pin-point which (groups of) constraints
need to be actually changed (R3).

This work is structured as follows. We present preliminaries in Section 2. Our
underlying research method is presented in Section 3. Then, our approach is presented
in Section 4 and demonstrated in Section 5. We conclude in Section 6.

2 Preliminaries

2.1 Declarative Process Models and Sequences

Declarative process models can be used to confine the allowed company behavior. The
intuition is that any behavior within the bounds of the constraints is allowed. As opposed
to traditional (imperative) process models, this allows for a high degree of flexibility.

Definition 1 (Declarative Process Model). A declarative process model is a tuple
M = (A,T,C), where A is a set of tasks, T is a set of constraint types, and C is the set
of constraints, which instantiate the template elements in T with activities in A.1

In this work, we consider the declarative modelling language Declare [2]. Declare
comes with a set of "standard" templates, i.e., predicates, which can be used to define
constraints for company activities. In this work, we will use the templates shown in
Table 1:

Table 1. Declare template types considered in this work.

Template Description Activation
RESPONSE(a,b) "If a occurs, it must be eventually followed by b" a

NOTRESPONSE(a,b) "If a occurs, it must not be followed by b" a
EXISTENCE(a) "a must occur in the trace (somewhere/at least once)" -

We acknowledge there are many other types of Declare templates, e.g., related to
cardinalities, but refer the reader to [3] for an overview of further Declare templates.
Due to space limitations, we omit a detailed discussion of Declare syntax and semantics
and refer the reader to [3].

As motivated in Section 1, declarative process models are evaluated against traces,
i.e., sequences of activities. For this, we define a trace as a sequence of activities
t = 〈a1, ..., an〉, where every ai refers to an activity of a declarative process model.

Definition 2 (Process Instance (Evaluation)). Given a declarative process model M
and a trace ti, we define a process instance evaluation as a pair ρi = (ti,M).

We will refer to a process instance evaluation as a "process instance", for readability.
Importantly, the trace ti can activate certain constraints in the process model M , namely
if the activation of a constraint is explicitly mentioned in the trace. For example, recall the
constraint RESPONSE(a, b) with the activation a (cf. Table 1), then any trace containing
a activates this constraint (In other words, if a occurs in the trace, then this constraint is
"active", i.e., it is "waiting" for b to occur in order to be satisfied).

Finally, we do not only consider single traces, but rather consider multiple traces
from an auditing perspective. For this, we consider a sequence of process instances,
which is constructed by matching the individual traces with a shared declarative model.
We assume the traces in the sequence to have a partial order, e.g., ordered by the first or
average timestamp of the activities of the traces2.

1 For readability, we will denote declarative process models as a set of constraints (C), cf. M1
2 Note that there is no total order between traces, as there is no restriction on when the individual

activities in a trace can occur.

Definition 3 (Sequence of Process Instances). For a declarative model M and se-
quence of traces t1, ..., tn, we define a sequence of process instances as an n-tuple
P = ((t1,M), ...(tn,M)) = (ρ1, ..., ρn).

2.2 (Run-Time) Conflicts and Inconsistency Measurement

Run-Time Conflicts. The focus of this paper is on logical conflicts between con-
straints that can occur at run-time. As an example, consider again the model M0 =
{RESPONSE(a, c),NOTRESPONSE(b, c)}. A run-time conflict can occur forM0 relative
to specific traces (here, whenever a sequence ab occurs in a trace). If ab occurs in the
trace, there can be no possible continuation of the trace such that all constraints in M0

can be satisfied. To define this notion of run-time conflict, we build on RV-LTL seman-
tics [4,5], which is a multi-valued logic for runtime verification of declarative constraints
in regard to a given trace. Following [5], the RV-LTL semantics of a constraint γ, relative
to a trace t, denoted [t |= γ]RV , can thus have one of four values:

1. > (γ is permanently satisfied by t for any possible continuation of t)
2. ⊥ (γ is permanently violated by t for any possible continuation of t)
3. >P (γ is possibly satisfied, i.e., γ is currently satisfied, but could become violated

from a continuation of t)
4. ⊥P (γ is possibly violated, i.e., γ is currently violated, but could become satisfied

from a continuation of t)

For example, for a trace ti = a, we have that [ti |= EXISTENCE(a)]RV = >, as
this constraint is permanently satisfied for any continuation of ti . Likewise, [ti |=
RESPONSE(a,b)]RV =⊥P , as it is possibly violated (this can only be healed if b occurs).

Recalling M0 , if a trace contains the sequence ab, we thus have that all constraints
in M0 are possibly violated, and there can be no possible continuation s.t. all constraints
in M0 leave this state (except to being permanently violated).

Definition 4 (Run-Time Conflict). Given a declarative process model M = (A,T,C)
and a trace t, a run-time conflict is a set of constraints I ⊆ C, s.t.

1. ∀ci ∈ I : ([t |= ci]RV =⊥P or ci is activated by a constraint cj ∈ I).
2. There can be no possible continuation of t s.t. all ci ∈ I become satisfied.

In other words, a run-time conflict affects a set of constraints and is induced by a trace. It
triggers a situation s.t. we can have no further continuation of the trace where all affected
constraints can become satisfied. This notion was also introduced as a fifth RV-LTL
truth value ⊥c in [4] (cf. conflicting sets). A run-time conflict I is called a minimal
run-time conflict, iff there is no I ′ ⊂ I s.t. I ′ is also a run-time conflict. For a trace ti
and declarative process model M , we denote the set of all minimal run-time conflict of
M relative to ti as MINti(M). For readability, for any process instance ρi = (ti,M),
we write MIN(ρi) to denote the same as MINti(M).

Example 1. We recall M2 = {RESPONSE(a, c),NOTRESPONSE(b, c)} and consider
the traces t4 = a and t5 = ab. Then we have

MINt4(M2) = {∅} MINt5(M2) = {{RESPONSE(a, c),NOTRESPONSE(b, c)}}

In regard to t4, NOTRESPONSE(b, c) is not in a possibly violated state. However, in
regard to t5, it is not possible that both constraints in M2 ever become > or >P again
(either they both stay possibly violated, or one will become permanently violated).

Inconsistency Measurement. The introduced notion of minimal run-time conflicts
allows to quantify the "severity" of a conflict, e.g., counting how often certain problems
occurred. This notion of quantifying the degree of a conflict has been established by the
scientific field of inconsistency measurement [6], which studies means for assessing the
degree of inconsistency, or conflict, in knowledge representation formalisms. Here, there
can be two perspectives, namely a) counting on the level of run-time conflicts, and b)
counting on a constraint-level [7].

For a), the level of run-time conflicts, given a process instance ρi = (ti,M), the
overall number of conflicts that occurred is I# = |MIN(ρi)|. Note that every distinct
run-time conflict can occur only once in every process instance.

For b), the level of constraints, given a single process instance ρi = (ti,M) and a
constraint γ ∈M , we denote C# as the number of minimal run-time conflicts in ρi that
γ is a part of. To clarify, C#(ρi, γ) = |{I ∈ MIN(ρi) | γ ∈ I}|.
Example 2. We recall the model M1 and traces t1 − t3 from Figure 1. Then we have
I#(ρ1) = 1 (# of inc. in process instance ρ1) C#(ρ1,RESPONSE(a, c)) = 1

I#(ρ2) = 1 C#(ρ1,RESPONSE(c, z)) = 0

I#(ρ3) = 2 ...

2.3 Related Work and Contributions

Handling logical conflicts in declarative process models has gained recent momentum
and brought forward a series of approaches for design-time handling [3, 8, 9] or run-time
handling [1,4]. From the requirements R1 - R3, we however see that such approaches do
not suffice when considering multiple process instances, as they cannot consider different
traces and their interrelations. Therefore, it is important to devise auditing approaches.

In a previous work [10], those authors proposed a measure Σ#, which can count the
number of run-time conflicts that a constraint γ is part of, over a sequence of process
instancesP . While that measure allows to determine how often certain problems occurred
relative to a set of traces, that approach cannot consider when the problems occurred (as
it simply considers a sum). Therefore, in this work, we incorporate the time distribution
of when conflicts occurred, to provide a more fine-grained analysis.

A further limitation of the work in [10] is that there is no visualization of the
insights. As pointed out in a recent agenda-setting contribution on post-execution auditing
approaches by PUFAHL AND REHSE [11], this is however an important aspect to "provide
actual value for business users and allow to initiate actions based on the results" [11,
p.27]. The proposed approach is therefore designed to be extendable by a visualization
method. Such a visualization should encode the conflict analysis (including time aspect)
and helps companies to determine a cutoff as to which constraints actually require
re-modelling, and which constraints should be kept as-is. While this is not in the scope
of this report, many existing results from time series clustering visualization indicate
that heatmaps are highly suitable in the context of our approach [12–14].

2.4 Considered Time Series and Time Series Clustering

Considered Time Series. In essence, we are interested in how conflicts develop over
time. Here, we consider two perspectives: a) how different (types of) conflicts occurred
over time, and b) how individual constraints were involved in these conflicts, over time.
To capture both of these distributions, we consider them as time series. In general, a time
series is a sequence of values T = 〈v1, ..., vn〉 ∈ Rn [12].

As an example, consider Figure 1. A conflict (type) that occurred in all process
instances was I1 = {RESPONSE(a, c),NOTRESPONSE(b, c)}. So, for perspective a)
(conflict type level), we could use 〈1, 1, 1〉 to denote that I1 occurred in all process in-
stances. For perspective b) (constraint-level), considering the constraint RESPONSE(a, c),
we could use 〈1, 1, 2〉 to denote how many conflicts this constraint was part of in the
individual process instances. In other words, we consider the individual process in-
stances as time points. We consider two types of series, namely conflict-level time series
T IP ∈ {0, 1}n and constraint-level time series T γP ∈ Nn, where n is the length. For a
process instances P , every vi of these time series is defined as follows

Every vi ∈ T IP =

{
1 if I ∈ MIN(P)
0 otherwise Every vi ∈ T γP = C#(ρi, γ)

To clarify, conflict-level series encode how a run-time conflict I occurred over time,
and constraint-level series encode how many conflicts a constraint γ was part of over
time (cf. the above examples T I1PFigure 1

= 〈1, 1, 1〉 and T RESPONSE(a,b)
PFigure 1

= 〈1, 1, 2〉).

Time Series Clustering. To identify conflicts or constraints that behaved similarly, we
try to identify similar time series. To this aim, we apply time series clustering [15],
which is a data mining technique for grouping similar time series from a multivariate
time series. The intuition is that the individual time series are to be partitioned into
m non-overlapping clusters, where the time series in a cluster are "similar", and the
distance to other clusters is maximized. Here, determining when two times series are
considered "similar" is performed by means of a similarity measure sim : T×T → R∞≥0,
that denotes the distance between two time series as a non-negative real value. As an
exemplary similarity measure, consider the euclidean distance [16]. Assuming two time
series C and Q, the euclidean distance is defined via sim(C,Q) =

√∑n
i=1(ci − qi)2.

This similarity measure computes the distance between two time series C and Q by
pair-wise comparing the absolute distance between each time point in the two series.
While our approach can be used with any similarity measure (cf. [15] for an overview),
we continue our discussion based on the euclidean distance measure.

3 Methodological Considerations: Design Science Research

The main aim of this work is to develop an approach for auditing run-time conflicts
between constraints. Following [17], the main aim of this work is therefore a goal of
design, i.e., to develop an artifact capable of solving specific and relevant problems. Due
to this design-oriented focus, we therefore follow a design-science research approach,

as this approach is widely acknowleded as a suitable method for works with a primary
focus on the design and development of artifacts [18–21].

Following [22], artifacts can be subdivided into constructs, models, methods and
instantiations. Constructs describe the language and terminology used to formalize infor-
mation, while models use this terminology to represent problems [23]. Methods describe
a problem-solving process [23]. Instantiations are aggregates of the above artifact types,
e.g. an implemented tool using constructs and allowing to apply a method [23]. The
focus of this work is on the development of constructs, methods and instantiations. Con-
structs, e.g. formal definitions of conflicts, will be specified as a basis for developing new
methods for auditing conflicts. These methods will then be implemented, i.e. instantiated.

Regarding procedural approaches in Design Science research (DSR), there have been
various proposals, cf. e.g. [20, 21, 24, 25]. Following [25], a design-science approach
can typically be divided into the phases of problem awareness, suggestion, development,
demonstration and conclusion. In the previous sections, we have presented our research
problem and solution suggestion, i.e., we suggest to adapt and extend results from the
field of inconsistency measurement to support companies in the scope of auditing, in
particular in regard to the identified requirements R1-R3. In the following sections,
we will present, develop and demonstrate a concrete approach that can satisfy these
requirements. The result of this work–an artifact–is then to be seen as a first increment
of multiple design science research cycles: In a future work, we will evaluate the artifact
developed in this work, e.g., by means of experiments with domain experts. Then, that
feedback will be used to iteratively refine the artifact.

4 Advanced Auditing of Run-Time Conflicts

In this section, we present our approach for auditing run-time conflicts.

4.1 Approach Overview

The goal of our proposed approach is to analyze run-time conflicts observed in a series
of process instances P . Our approach is divided into three steps, shown in Figure 2.

Sequence of  
Process Instances

P Detect
Inconsistencies

Quantify
Inconsistencies

Time Series
Clustering

Visualize
Inconsistencies

List of  
Inconsisencies

Measures 
(over time series) Clusters Heatmap 

Visualization

Step 1 Step 2 Step 3 (not part of this work)

Figure 2. Approach Overview.

Step 1: Detecting Conflicts. Our approach takes as input a series of process in-
stances P . As a first step, we then compute the run-time conflicts for every process
instance in P . The result of step 1 is a list of all run-time conflicts.

Step 2: Quantifying Conflicts. In this step, we analyze how often certain conflicts
occurred. This is performed from two perspectives (cf. Section 2.4): For every distinct

conflict type Ii, we compute a corresponding time series distribution T IiP , that represents
in which process instances the conflict Ii occurred in. For every constraint c, we compute
a time series T cP , which encodes how many run-time conflicts c was part of over the
individual process instances.

Step 3: Time Series Clustering. Next, we cluster the time series computed in step
2. This allows to identify conflicts or constraints that behaved similarly over time.

Outlook: Explaining Conflicts. The previous results should then be visualized to
supports modellers in understanding run-time conflicts (not part of this work).

In the following, we detail the individual steps of our approach.

4.2 Step 1: Detecting Conflicts

To compute run-time conflicts in process instances, we exploit the previously introduced
notions of reactive constraints [26] and reactive entailment graphs [7]. Importantly, this
work focuses on run-time conflicts regarding the constraint types in Table 1 (see below).

For declarative constraints, works such as [3, 26] coined the concepts of activation
and reaction, e.g., for RESPONSE(a, b), a can be seen as the activation, and b as the
corresponding reaction. For any constraint c, we therefore denote α(c) as the activation
of c and ω(c) as the reaction (also referred to as reactive constraint pair [26]). An
overview of activations and reactions in Declare can be found in [3]. The activation- and
reaction relations in a declarative process model can then be represented as a directed
graph, also referred to as a reactive entailment graph [7].

Definition 5 (Reactive Entailment Graph, [7]). Given a declarative model M =
(A,T,C), its reactive entailment graph (REG) is defined as a graph G(M) = (N,E, τ).
N is a set of nodes corresponding to the activities, with N ∈ A ∪ A (in two forms,
with and without overline symbol, see below discussion). E is the set of directed edges
between elements in N , where there is an edge (s, t) in E iff for any c ∈ C : s = α(c)
and t = ω(c). τ is a function τ : E → T that assigns a template type from T to individual
edges as an edge type.

Example 3. We recall the declarative process model M1 from Figure 1. This yields the
following reactive entailment graph, shown in Figure 3:

ab

c c z

y z

RESPONSE

RESPONSE

NOTRESPONSE

NOTRESPONSE

Figure 3. Reactive Entailment Graph (REG) for M1.

An important detail is that we include two "forms" of nodes (with and without
overline symbol), explained as follows. For the constraints RESPONSE(a, c) and NOTRE-
SPONSE(b, c), the reaction is c in both cases. However, the nature of the reaction differs.
The RESPONSE constraint is of demanding nature (the reaction should occur), and

the NOTRESPONSE constraint is of prohibiting nature (the reaction should not occur).
The REG can capture these deontic semantics, where the overlined version of a node
corresponds to a prohibition, and vice versa. Based on these two forms of nodes, it can
only occur that there is a run-time conflict due to an opposing demand and prohibition,
if there exists a pair of nodes n and n.

Corollary 1. If there is no pair of nodes n and n in REG, there can be no run-time
conflict wrt. the introduced constraints (cf. Table 1)3.

The REG can then also be used to compute actual run-time conflicts. Importantly,
run-time conflicts always arise relative to specific traces. Here, for any trace t, it is easy
to observe that any constraint that can never by activated via t cannot be part of that
run-time conflict (e.g., for a trace t = ab, the constraint NOTRESPONSE(y, z) from
M1 cannot be part of the conflict, as y does not occur in the trace, and the constraint
cannot be activated by other constraints). This means we can filter out nodes and edges
from the REG that correspond to such constraints, allowing for a faster computation of
run-time conflicts. To compute the run-time conflicts of a model M w.r.t. a trace t, we
thus propose the following algorithm.

1. Relative to trace t, filter out all constraints γ that can never be activated via t.
2. For the remaining constraints, construct the REG.
3. Iterate through all pairs of nodes n, n:

(a) For each pair (n, n), (recursively) search for all direct paths from any node to n
(denoted as a set of paths P), and search for all direct paths to n (denoted P ′).

(b) Every combination P × P ′ pertains to a run-time conflict

Algorithm 1. Proposed algorithm for computing run-time conflicts of a model M wrt. a trace t.

Example 4. We recall M1 and trace t1 = ab. Our proposed algorithm then performs
as follows. First (1.), we filter out the constraints from M1 that can never be activated
via t1. Here, we can consequently drop NOTRESPONSE(y, z). Then (2.), the REG is
computed for the remaining constraints, shown in Figure 4:

b c a c z
RESPONSE RESPONSENOTRESPONSE

Figure 4. Filtered REG for M1 w.r.t. t1.

For the computed graph, we then iterate through all pairs of nodes n, n (3.). In this
case, these are the nodes c and c. For this pair, we then search for all direct paths to c, or

3 We acknowledge there can be other constraint combinations that lead to "dead-ends" in process
execution, e.g., if an activity x is expected a certain number of times but there is a constraint
limiting the number of occurrences too strictly, however, this is beyond the scope of this report -
Corollary 1 is meant to show the relation between the REG and conflicts arising due to opposite
deontic "demands".

to c, respectively. This can be performed by a simple recursive breadth-first search [27].
In result, we obtain the following sets of paths (3a.):

P (paths to c): = {a→ c} P ′ (paths to c): = {b→ c}

Last, via algorithm step 3b.), every combination in P ×P ′ pertains to a run-time conflict
of M1 w.r.t. t1. The graph paths can then be transformed back into constraints, i.e., for
an edge e = (α, ω) in the graph, the corresponding Declare constraint is τ(e)(α, ω).
In result, we have found a set of minimal run-time conflicts, here: MINt1(M1) =
{{RESPONSE(a, c),NOTRESPONSE(b, c)}}.

As mentioned, if other constraint types as in this work are considered, there can be other
types of run-time conflicts, however, we leave this discussion for future work.

4.3 Step 2: Quantifying Conflicts and Computing Time Series

We continue our discussion based on the example from Figure 1. Assume that for all
process instances, we have computed the set of run-time conflicts:

MINt1(M1) = {I1}, MINt2(M1) = {I1}, MINt3(M1) = {I1, I2}
with I1 = {RESPONSE(a, c),NOTRESPONSE(b, c)}

I2 = {RESPONSE(a, c),RESPONSE(c, z),NOTRESPONSE(y, z)}

We can then quantitatively assess the occurred conflicts (cf. also Example 2), and encode
this information as time-series, both on a conflict-type level and on a constraint-level (cf.
Section 2.4). In the example, denoting P1 = ρ1, ..., ρ3, this yields the following time
series, shown in Figure 5.

T I1
P1

= 〈1, 1, 1〉

T I2
P1

= 〈0, 0, 1〉

(a) Conflict-Level Time Series

T
RESPONSE(a,c)
P1

= 〈1, 1, 2〉 T
NOTRESPONSE(b,c)
P1

= 〈1, 1, 1〉

T
RESPONSE(c,z)
P1

= 〈0, 0, 1〉 T
NOTRESPONSE(y,z)
P1

= 〈0, 0, 1〉

(b) Constraint-Level Time Series

Figure 5. Example of the considered types of time-series.

On a conflict-type level, the time-series convey at what points in time the conflicts
I1 and I2 occurred at. This can be useful for identifying conflicts that occur frequently
(such as I1), or assess whether a conflict was an outlier.

Likewise, the constraint-level time series allow to identify constraints that contribute
largely to the occurring conflicts. This can be an important driver for re-modelling. For
example, from the shown time-series, it can be seen that RESPONSE(a, c) is highly
problematic and therefore represents a good candidate for re-modelling.

When dealing with large numbers constraints, comparing the time series manually
may become unfeasible. Therefore, our approach implements time series clustering in
Step 3, to identify groups of highly problematic conflicts and constraints.

4.4 Step 3: Time Series Clustering

Several time series clustering approaches have been proposed in literature (cf. [15]).
However, many of these approaches require a predefined number of clusters (set by the
user). As the number of clusters is not known in our setting, we therefore use hierarchical
clustering, as this method is highly suitable for the problem of clustering a set of time
series without knowledge of the number of clusters [12, 15]. The hierarchical clustering
algorithm proceeds as follows: For a set of time series D = {T1, ..., Tn}, each time
series is initialized in an own cluster. First, the distances between between each pair
of time series are computed. Then, the two time series (i.e., clusters) with the smallest
distance are grouped into one cluster. This is performed iteratively, until the distance
between two clusters exceeds a given cutoff value, in which case clustering is stopped.

4.5 Outlook: Explaining Conflicts

To explain the results from steps 1-3, the results should be visualized. While a concrete
visualiszation technique is beyond the scope of this work, we show an example how the
results from steps 1-3 could be visualized via heatmaps, shown in Figure 6.

1 1 1

0 0 1

t1 t2 t3

- I1

- I2

Traces

1 1 2

1 1 1

0 0 1

0 0 1

t1 t2 t3

- RESPONSE(A,C)

- NOTRESPONSE(B,C)

- RESPONSE(A,C)

- NOTRESPONSE(B,C)

- max

- min

(a) Conflict-type heatmap

1 1 1

0 0 1

t1 t2 t3

- I1

- I2

Traces

1 1 2

1 1 1

0 0 1

0 0 1

t1 t2 t3

- RESPONSE(A,C)

- NOTRESPONSE(B,C)

- RESPONSE(C,Z)

- NOTRESPONSE(Y,Z)

- max

- min

(b) Constraint-level heatmap

Figure 6. Resulting heatmap visualizations for the data from Figure 1.

The x-axis is the time axis (e.g., every process instance). For the conflict-type
heatmaps, every point on the y-axis is a distinct conflict type that occurred. For the con-
straint heatmaps, every point on the y-axis corresponds to an individual constraint. The
heatmaps convey all insights generated by our approach, i.e., the respective quantitative
time series, as well as the computed clusters (clusters are separated with a white line; the
results of the hierarchical clustering (hierarchies) are indicated with black lines).

Heatmaps allow users to classify how conflicts behaved over time. For example,
based on drift type patterns [12], shown in Figure 7, the conflict-type heatmaps allow to
identify outliers, or to identify if certain conflicts increased over time. Also, seasonal
effects or recurring patterns can be detected.

IT-Projektmanagement
Prof. Dr. Patrick Delfmann

1
Wintersemester 2017/2018Prof. Dr. Patrick Delfmann Wintersemester 2017/2018

Figure 7. Exemplary drift pattern types (Adapted from [12]).

5 Tool Support and Demonstration

We implemented our approach as a proof-of-concept4. Our tool takes as input an event
log (set of traces) and a declarative process model (Declare) and can then perform all
the steps of our approach. For demonstration, we performed runtime experiments with
the real-life data sets of the Business Process Intelligence (BPI) challenge. Here, we
considered the data-sets of 2017-2020, cf. Table 2.

For every data-set, we mined a set of Declare constraints, using the miner from [3].
The mined constraint sets can be found online5. Then, for each mined set and the
corresponding log, we applied our approach to compute clusters.

Table 2 shows the runtimes needed to apply our tool to the considered data-sets. As
can be seen, even for logs of industrial complexity, e.g. BPI 19, with over 250.000 traces,
the tool could perform all introduced steps of our approach in less than 80 minutes.

Table 2. Runtime results for the considered BPI data sets

Data-set # of Rules # of Cases Run-time # of Run-Time Conflicts
BPI’17 50 31.509 6270s 31.509 (100%)
BPI’18 84 43.809 4542s 0 (0%)
BPI’19 51 251.734 4560s 434 (0.17%)
BPI’20 330 10.500 1620s 323 (3.07%)

6 Conclusion

In this paper, we presented an approach for auditing run-time conflicts in declarative
processes by means of time series clustering. The clusters allow experts to understand
how different conflicts behaved over time, and provide means for quantitative root-cause
analysis, as a basis for identify similar groups of (highly) problematic constraints. Our
demonstration shows that our approach can be applied to real-life data-sets in a feasible
runtime.

A limitation of our approach is that we assume some form of order of traces. While
it is possible to have a partial order of traces (e.g., by starting timestamp), no relation
is known between elements of different traces. In our tool, we try to counteract this
problem by sorting the traces by average time stamp. In this sense, some concept of
"earlier" and "later" traces can be assumed. Also, our approach could be easily extended
to calculate conflicts by day, which could yield a time series over absolute scales. A
further limitation of our approach is that we consider a trace as the smallest unit of
time. In this sense, the causes of run-time conflicts cannot be matched to sub-parts of
traces. While our approach can already compute the causes of problems as a set, being
able to identify a concrete subtrace may be useful in the scope of drill-down analysis
(cf. [12]). In future work, we therefore plan to extend our approach with growing window
techniques, to consider time-units of more fine-grained granularity.

As a following work, we will extend our approach as shown in Figure 2 and devise/e-
valuate a concrete visualization technique. Based on the suggestions in [14], we intend
to use heatmaps as a visualization technique.

4 https://bit.ly/3xVjY2N
5 https://bit.ly/365Vs4C

https://bit.ly/3xVjY2N
https://bit.ly/365Vs4C

References

1. Maggi, F.M., Montali, M., Westergaard, M., Van Der Aalst, W.M.: Monitoring business con-
straints with linear temporal logic: An approach based on colored automata. In: International
Conference on Business Process Management (BPM 2011). pp. 132–147. Springer (2011)

2. Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: Full support for loosely-structured
processes. In: 11th IEEE international enterprise distributed object computing conference
(EDOC 2007). pp. 287–287. IEEE (2007)

3. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redun-
dancies in declarative process models. Inf. Systems 64, 425–446 (2017)

4. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.: Runtime verification of
ltl-based declarative process models. In: International Conference on Runtime Verification
(RV 2011). pp. 131–146. Springer (2011)

5. Bauer, A., Leucker, M., Schallhart, C.: Comparing ltl semantics for runtime verification.
Journal of Logic and Computation 20(3), 651–674 (2010)

6. Thimm, M.: Inconsistency measurement. In: International Conference on Scalable Uncertainty
Management. pp. 9–23. Springer (2019)

7. Corea, C., Delfmann, P.: Quasi-inconsistency in declarative process models. In: Business
Process Management Forum, Vienna, Austria, September 1-6, 2019. Lecture Notes in Business
Information Processing, vol. 360, pp. 20–35. Springer (2019)

8. Corea, C., Nagel, S., Mendling, J., Delfmann, P.: Interactive and minimal repair of declar-
ative process models. In: Proceedings of the BPM Forum 2021 co-located with the 19th
International Conference on Business Process Management (BPM 2021). Rome (2021)

9. Corea, C., Deisen, M., Delfmann, P.: Resolving inconsistencies in declarative process models
based on culpability measurement. In: 15. Internationale Tagung Wirtschaftsinformatik (WI
2019). Siegen (2019)

10. Corea, C., Thimm, M., Delfmann, P.: Measuring inconsistency over sequences of business
rule cases. In: Proceedings of the 18th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2021). Hanoi (2021)

11. Pufahl, L., Rehse, J.R.: Conformance checking with regulations–a research agenda. In: 11th
Int. Workshop on Enterprise Modeling and Information Systems Architectures (2021)

12. Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A.: Comprehensive process drift
detection with visual analytics. In: International Conference on Conceptual Modeling. pp.
119–135. Springer (2019)

13. Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A.: Visual drift detection for se-
quence data analysis of business processes. IEEE Transactions on Visualization and Computer
Graphics (2021)

14. Ware, C.: Information visualization: perception for design. Elsevier (2004)
15. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering–a decade review.

Information Systems 53, 16–38 (2015)
16. Batista, G.E., Keogh, E.J., Tataw, O.M., De Souza, V.M.: Cid: an efficient complexity-invariant

distance for time series. Data Mining and Knowledge Discovery 28(3), 634–669 (2014)
17. Becker, J., Holten, R., Knackstedt, R., Niehaves, B.: Forschungsmethodische positionierung in

der wirtschaftsinformatik: epistemologische, ontologische und linguistische leitfragen. Tech.
rep., Westfälische Wilhelms-Universität Münster (2003)

18. Baskerville, R., Lyytinen, K., Sambamurthy, V., Straub, D.: A response to the design-oriented
information systems research memorandum. European journal of information systems 20(1),
11–15 (2011)

19. Gericke, A., Robert, W.: Entwicklung eines bezugsrahmens fuer konstruktionsforschung und
artefaktkonstruktion in der gestaltungsorientierten wirtschaftsinformatik. In: Wissenschafts-
theorie und gestaltungsorientierte Wirtschaftsinformatik, pp. 195–210. Springer (2009)

20. Vaishnavi, V., Kuechler, W., Petter, S.: Design science research in information systems.
January 20, 2004 (2004)

21. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research.
MIS quarterly pp. 75–105 (2004)

22. March, S.T., Smith, G.F.: Design and natural science research on information technology.
Decision support systems 15(4), 251–266 (1995)

23. Winter, R.: Design science research in europe. European Journal of Information Systems
17(5), 470–475 (2008)

24. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research
methodology for information systems research. Journal of management information systems
24(3), 45–77 (2007)

25. Kuechler, B., Vaishnavi, V.: On theory development in design science research: anatomy of a
research project. European Journal of Information Systems 17(5), 489–504 (2008)

26. Cecconi, A., Di Ciccio, C., De Giacomo, G., Mendling, J.: Interestingness of traces in
declarative process mining: The janus ltlpf approach. In: International Conference on Business
Process Management. pp. 121–138. Springer (2018)

27. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT press (2009)

	Advanced Auditing of Run-Time Conflicts in Declarative Process Models using Time Series Clustering
	Recommended Citation

	Advanced Auditing of Run-Time Conflicts in Declarative Process Models using Time Series Clustering

