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Abstract. Proposing air cargo palletizing solutions requires an assessment by a 
physics engine of whether a solution is physically stable, which can take up a 
disproportionate amount of computation and, thus, produce a bottleneck in the 
optimization pipeline. This problem can be tackled by replacing the physics 
engine with a data-driven model that learns to map proposed packing pattern 
solutions directly to its stability value. We develop a prototype of such a data-
driven model and find that this approach yields practicable results and does so 
multiple orders of magnitudes faster than a commonly used physics engine. 

Keywords: machine learning, data science, data-driven physics, air cargo 
palletizing, static stability simulation 

1 Introduction 

In air cargo palletizing, items must be arranged within a given volume of space, either 
on top of a pallet or within a container. To maximize load factor and priority of cargo 
operations, researchers make use of optimization methods such as genetic algorithms 
(GA) to find optimal arrangements (packing patterns). From a research perspective, the 
challenge to find practicable if not optimal packing patterns is known as the pallet 
loading problem (PLP) or container loading problem (CLP). It defines a np-hard and 
highly complex problem space. To tackle the problem space, information systems (IS) 
deploy exact or approximative algorithms, e.g. placement heuristics, and improvement 
heuristics to find good solutions [1, 2]. GAs are one of the most important heuristics 
and frequently act as optimization heuristics [3–5]. 

Practical packing patterns need to satisfy a variety of further constraints. This work 
considers in particular the physical constraints of stability [1, 6, 7]. Previous works 
distinguish between static and dynamic stability. A packing pattern is statically stable 
if the items are not displaced while being loaded onto unit load devices (ULD). A 
packing pattern is dynamically stable if items are not displaced while the ULD is 
intentionally being moved during transport, e.g. during a flight [1]. ULDs are 
standardized pallets and containers that are used for transporting cargo in aircrafts and 
vary in size, volume, weight, and shape. One way to find out if a proposed packing 



pattern solution is viable with respect to stability, is to simulate the physical behavior 
of the proposed pattern with a physics engine [7, 8]. 

Physical simulations are costly to employ and require substantial amounts of 
computing power. Especially when embedded in time-sensitive applications such as 
optimization pipelines (e.g., heuristic search processes using GA and considering 
numerous constraints [5, 9]), or combined problems such as vehicle routing and 
container loading problems (3L-CVRP) [10], this negatively impacts overall systems 
performance [5, 6, 11]. Due to the number of simulations during optimization, 
simulations act as a bottleneck. It is therefore desirable to circumvent this bottleneck to 
speed up the process of finding packing patterns that satisfy all constraints without 
losing the flexibility and adaptability of physical simulations to varying problem cases. 

Therefore, to tackle the previously mentioned challenge, we employ a machine 
learning (ML) approach. ML is a subfield of artificial intelligence that deals with 
creating models whose behavior is extracted from data rather than being explicitly 
defined by the programmer [12]. Neural networks (NN) are a ML model class that map 
features to target predictions by applying a series of non-linear functions. The NN 
parameters are fitted to a given training dataset by minimizing the average loss between 
prediction and target values, such that the model optimally maps input features to 
targets [12]. Holden et al. [13] and Wiewel et al. [14] among others, have demonstrated 
the feasibility of employing a data-driven model to gain a significant speed-up over 
regular physics engines. The authors first project a physical state into a lower-
dimensional “latent space” and then predict the next latent vector using a NN. These 
models propose ways to perform simulations using data-driven physics, but none have, 
to the best of our knowledge, yet been applied to the problem of simulating packing 
pattern stability. Applying a data-driven physics model to the assessment of air cargo 
stability can speed up the optimization pipeline and allow for more computational 
resources to be allocated to finding better packing patterns with respect to utilized 
volume in short time windows.  

The goal of this study is to illustrate the design and demonstration of a prototype 
data-driven model that predicts the stability of packing patterns in the context of air 
cargo palletizing. This work considers static stability, but a similar approach can also 
be applied to dynamic stability. On a conceptual level, this work treats the costly 
interplay between physical validation of interim solutions in a GA’s fitness function 
and its speed-up using ML. 

After presenting related work, we provide a description of our approach, which is 
based on the cross-industry standard process for data mining (CRISP-DM) framework, 
a common iterative methodology for data science projects that consists of six phases. 
Furthermore, we present our results, followed by a discussion, and conclusion of this 
work. 



2 Theoretical Background 

2.1 Stability Constraints in Air Cargo 

Stability is imposed to preserve the (partly) stacked cargo on ULDs from collapsing 
[15]. A layout is statically stable, if the loaded items can “withstand the gravity force 
acceleration over them” [16], considering situations in which the cargo is loaded, and 
gravitational acceleration is applied. Dynamic stability describes the stability of cargo, 
in which the ULD is being moved the way it might be during transportation (e.g., during 
a flight). Both constraints originate from physical conditions, which are common for 
many practical optimization problems [17]. 

Among other approaches, physical simulations provide a realistic approximation of 
a packing pattern’s stability. Especially the highly complex case of air cargo, with on 
the one hand high item heterogeneity [18] and on the other hand strict aviation safety 
regulations [5], requires accurate stability estimations. Moreover, desired high loading 
factors and strict time windows are requirements faced in practical operations [11]. 
Compared to other approaches, physical simulations ensure enough precision to get 
realistic physical feedback, as physical simulations build up a virtual image with 
physical laws similar to those in a real-world context (e.g. gravity, friction, collisions), 
providing sufficient interfaces and runtime performance to be used in heuristic search 
processes. The core of physics engines are dynamic simulations, which represent a 
physical system within a mathematical model, usually ordinary differential equations, 
and numerically solve it in a computer program [19]. Middleware applications that 
integrate dynamic simulations into other applications are called physics engines [8]. 
Recent articles demonstrate successful applications of physical simulations for static 
stability assessments in pallet loading contexts [6, 11]. 

However, physical simulations are costly to employ and require substantial amounts 
of computing power. As to be expected, increased quality of the computed solutions 
and considering more realistic physical assessments come at the expense of bad runtime 
performance [11]. Especially when embedded in time-sensitive applications such as 
games or optimization pipelines (e.g., heuristic search processes), this negatively 
impacts overall systems performance, since the simulation is executed for every 
potential solution candidate. In the case of optimizations, a long fitness evaluation per 
solution candidate results in longer overall runtimes per generation, resulting in fewer 
generations for the same time frame, and ultimately, a lower overall solution quality [6, 
11]. For GA in general, “minimizing the number of fitness function calls is very 
important, if a call is expensive” [17]. 

Approaches of physical simulations within both PLP and CLP contexts can be 
classified into the categories (1) stand-alone and (2) integrated. The first category 
describes approaches that utilize physics engines to train or develop a model, which is 
deployed in an optimization algorithm. The latter represents approaches that directly 
call the simulation from within an optimization pipeline. 

Examples for stand-alone approaches can be found in Martínez et al. [20], Ramos et 
al. [21], and Ramos et al. [7]. Approximations of the physical outcome are primarily 
captured in linear or mechanical models [20]. The authors use physics engines for 



verification purposes. The research of Ramos et al. [7] resulted in a stand-alone 
simulation software prototype (StableCargo) for evaluating the dynamic stability of 
container cargo. They benchmarked their physics engine-based standalone tool against 
a high precision engineering simulator and analytical solutions. They modelled 
different forces and velocities, which represent movements during transportation. Their 
tool provides an analytical approximation and high precision solutions. However, no 
report was made about the integration of their tool into an optimization pipeline. 

In the study by Ramos et al. [21], a linear regression on dynamic stability scores, 
which were evaluated using physics engines, revealed a number of metrics and two 
performance indicators.  

To the best of our knowledge, no works exist that employ ML-based physics 
prediction for the problem of static stability assessments. 

2.2 Data-driven physics 

In the context of this article, “data-driven physics” refers to the simulation of a physical 
system using models that learn the transition function between physical states from data 
of actual transitions. Predictions require fewer computations than the equivalent 
computations in a regular physics engine, resulting in a reduction in runtime [13]. 

Ajay et al. [22] present a variety of possible ways in which learned models can be 
integrated with analytical models (such as regular physics engines) to achieve different 
goals, including a reduction in the simulation runtime. The authors distinguished 
between “data-driven models” and “data-augmented models”. Data-driven models 
replace regular physics engines by learning the transition function whereas data-
augmented models use learned models on top of analytical physics engines to minimize 
the discrepancy between the simulation and the real-world. Holden et al. [13] projected 
a physical state (a vector of all of an object’s vertex positions) into a lower-dimensional 
linear space using principal component analysis (PCA) and then perform the 
simulations in this subspace using a learned model. Any trained model of this kind is 
restricted to the physical objects it was trained on. It can thus be regarded as a trade-off 
between flexibility, i.e., it can deal with any kind of object, and speed. 

Fulton et al. [23] also made use of PCA and a non-linear autoencoder to model the 
deformation of non-rigid bodies. Importantly, simulations of deformations are run in a 
low-dimensional non-linear latent space, which allows for quite complicated 
deformation dynamics to be learned. The simulation from one latent state to the next is 
not modeled using a NN but is instead performed by explicitly solving the equations of 
motion within this learned latent space. Wiewel et al. [14] used a convolutional NN and 
a long short-term memory (LSTM) network to encode a sequence of past states of a 
physical system of fluids to predict the next latent state, which, at the end of the 
sequence, can then be decoded into the next physical state. A predicted sequence of 
latent states can also be used to predict subsequent latent states. 

The general idea of Wiewel et al. [14] is similar to that of Holden et al. [13] in that 
the learned transition function is applied to lower-dimensional, abstract states rather 
than concrete states describing the actual physical positions of items the way regular 
physics engines do. All data-driven physics models proposed ways of learning to 



simulate physical systems, but none have, to the best of our knowledge, yet been applied 
to the problem of simulating air cargo stability within optimization pipelines using GA, 
which is the focus of this study. 

3 Methodology & Outcome 

3.1 Approach 

This research builds on the previous research by Lee et al. [5, 9] and Mazur et al. [11, 
24] and utilizes the packing patterns calculated by the GA-based optimization pipeline
[5], which considers numerous constraints, as well as the derived and defined metrics
for stability calculation using physical simulations [11].  The ML approach used here
can be seen as a significant enhancement of the existing physical simulation approach
of Mazur et al. [11] as an integrative part of the GA-based optimization pipeline for
stability assessment of generated packing patterns. As benchmark instances, we use the
synthetic but realistic datasets of Brandt and Nickel [18], which are, to the best of our
knowledge, both the first and only benchmark instances for air cargo palletization.

For our research we followed the CRISP-DM framework [25], which consists of six 
phases: (1) business understanding, (2) data understanding, (3) data preparation, (4) 
modeling, (5) evaluation and (6) deployment. The phase of data preparation included 
data generation and collection by having the GA propose packing patterns and 
simulating them in the PyBullet physics engine [26], which, in turn, yields the 
simulation data on which a data-driven model can be trained. Most of the data 
preparation, generation and modeling were conducted in the Jupyter Lab computational 
environment; primarily using the software library pandas. All models discussed in this 
work were implemented with TensorFlow (specifically TensorFlow.Keras’s 
subclassing API) using the Python programming language. Deployment can also 
include the integration of the model into the existing system. Because of our goal to 
develop a prototype, a deployment is not part of the results. 

3.2 Business Understanding 

The underlying business domain of the addressed problem is air cargo palletizing, a 
highly constraint and complex type of both PLP and CLP [18]. Because of high item 
heterogeneity with respect to shapes and sizes, physics engines are employed to 
evaluate stability. Physics engines can deal with any kind and (computationally 
feasible) number of objects in their domain (e.g. rigid bodies) [8, 26]. 

3.3 Data Understanding 

We impose several assumptions about the cargo and ULDs: all packing items are rigid 
bodies, uniformly dense, cuboidal and do not contain dangerous or fragile goods that 
warrant special treatment. Each simulation consists of a single ULD. Each ULD in turn 
consists of a variable number of packing items (though the number of items remains 



the same over the course of a single simulation). The number of items for a given 
simulation depends on the specific packing pattern proposed by the utilized GA [5]. 

To model the simulation of packing items inside a ULD, appropriate features must 
be picked. Possible features include item positions over time, item orientations over 
time, item shapes, item masses and the ULD shape. An item’s position is described by 
a vector (𝑥, 𝑦, 𝑧) that points to the center of the item at the start of the simulation, i.e., 
the position as proposed by the GA before any physical simulations have been applied. 
The shape of an item is defined by a vector (𝑤, ℎ, 𝑑), corresponding to the half-extents 
of the box, i.e., the orthogonal distance from an item’s faces to its center point. Half-
extents are a common way to encode axis-aligned bounding boxes for collision 
detection in physics engines. This also simplifies the application of the dataset to both 
physics engines and machine learning models. A packing item’s shape is assumed to 
be constant over the course of a simulation since items are rigid bodies, such that they 
cannot deform because of collisions, falling on the floor, or a heavy item weighing 
down on it. The models described here consider positional and shape features of items 
since those are most relevant to static stability. Packing item masses are not explicitly 
modeled and instead assumed to be proportional to the item’s volume (uniform 
density). 

Data encoding. Each example’s features can be described by two vectors: a position 
vector 𝑝 (which will also be referred to as the “state” of the physical system at some 
timestep) and a shape vector 𝑠. Both vectors belong to a packing pattern with 𝑛 items 
thus consist of 3𝑛 entries each: 3 positional coordinates in the positions vector, and 3 
dimensions in the shape vector for each item. The order of items is based on the packing 
order as proposed by the GA. 

𝑝 = (𝑥!, 𝑦!, 𝑧!, 𝑥", 𝑦", 𝑧", … , 𝑥#, 𝑦#, 𝑧#)  (1) 

𝑠 = (𝑤!, ℎ!, 𝑑!, 𝑤", ℎ", 𝑑", … , 𝑤#, ℎ#, 𝑑#) (2) 

𝑥 = concatenate(p, s)	 (3) 

where the 𝑦-entries of 𝑝 refer to the spatial y-coordinates of the items and not the 
example’s target value (stability label). The final vector 𝑥 concatenates both features.  

The distinction between position and shape can be removed by modeling all vertices 
of every single item rather than center positions and half-extents. Since each item is 
assumed to be cuboidal, each item has 8 vertices à 3 coordinates, resulting in 24 entries 
per item. For a complete packing pattern, the input vector contains 24𝑛 entries (where 
𝑛 is the number of items in that packing pattern). Rather than explicitly modeling this 
vector, a transformed, more abstract, lower-dimensional vector can be used (e.g., by 
applying a dimensionality reduction method such as PCA [13] or an autoencoder [23, 
27]). 

3.4 Data Generation and Preparation 

The data needed to learn the behavior of physical systems can be obtained by executing 
a regular physics engine or scientific simulation tool and storing the item positions (and 



possible orientations) at each timestep, and information about the simulation’s set-up 
such as the item shapes. The PyBullet physics engine was used to simulate the physical 
behavior of a packing pattern whose initial positions are proposed by the utilized GA-
based optimization pipeline [5]. The target (stability label) for each simulation, i.e. the 
value that describes whether the simulation determined that the packing pattern inside 
a single ULD is stable or unstable, is described by the amount of Euclidean distance 
between initial and final item position and measures the item’s spatial displacement 
[11]. If any distance is greater than a predetermined threshold, the pattern is classified 
as unstable (0), and stable (1) otherwise. A comparison of the current stability metrics 
in PLP and CLP, as well as the derivation and definition of the stability metrics used in 
this paper, can be found in Mazur et al. [11]. 

One problem of this setup was the varying length of the input vector, which depends 
on the number of packing items in the packing pattern. In a multilayer perceptron (feed 
forward NN), each input vector must have the same size. The approach used here is to 
set a maximum number of items, 𝑛$%&, and always assume that each packing pattern 
has exactly this number of items. If a pattern has fewer packing items, the remaining, 
unused vector entries (i.e., the positional and shape coordinates corresponding to the 
“missing” items) are simply set to zero, representing dimensionless, massless items that 
do not affect other items’ positions. 

To stabilize training, we standardized the data before fitting the model such that each 
feature had a mean of 0 and standard deviation of 1. Other scaling methods 
(normalization, minmax scaling) were also tried, but standardization performed best. 
The data was subsequently partitioned into training (60%), validation (20%) and test 
sets (20%). The full dataset consisted of 42,784 examples (of which 25,670 have been 
designated training examples), each of which corresponded to a simulation. An average 
simulation from this dataset contained 4.34 items whose positions are tracked over 
460.74 timesteps of 1/80 s each. 

3.5 Modeling 

Figure 1. Approaches to modeling static stability 

There are several ways to model stability predictions. The most straightforward 
approach is to directly map the packing pattern’s stability label, i.e., to classify a pattern 
as either stable (1) or unstable (0) (“classification”, as demonstrated in Figure 1a). 
Alternatively, the initial positions can be mapped to the final state of the physical 



system (“regression of the final state”) to which the same stability assessment 
(assess_stability) is then applied as in the case of using a regular physics engine (as 
demonstrated in Figure 1b). Finally, the positions at any given timestep 𝑡 and the 
packing item shapes can be mapped to the positions at the subsequent timestep 𝑡 + 1 
(“regression of the next state”, as demonstrated in Figure 1c). The last model comes 
closest to what a regular physics engine would do by modeling intermediate steps. All 
models are depicted in Figure 1. In the following, each model is described in more 
detailed. 

Stability classification. Model (a) requires a dataset of initial positions, shapes and 
the stability label of the corresponding physical system as determined by the physics 
engine. As baseline, we fitted a logistic regression (LR) model to the data. LR applies 
the logistic function to an affine transformation of the input features, thereby mapping 
each example to a value between 0 and 1, which can be interpreted as the predicted 
probability of the example being statically stable: 𝑦>(() 	= 𝑃@("example (𝑖) is statically 
stable"). Then, a NN was fitted to the same data with the goal of improving upon this 
baseline accuracy. The number of units per layer (which depends on the input vector 
size and therefore on 𝑛$%&), the number of layers, and which activation functions to 
use were gradually increased to find the architecture that yielded the highest validation 
accuracy. Ultimately, the exponential linear unit (ELU) activation function for all layers 
except for the last worked best. The last layer is a sigmoid function mapping the output 
of an affine transformation to the interval {0,1} that corresponds to the probability of 
the pattern being stable. The final sigmoid layer can be interpreted as a LR classifier 
that is applied, not to the raw input features, but to learned, non-linear features returned 
by the previous NN layers [12]. 

Final state regression. Regression is a different approach to solving this problem. 
This model predicts final spatial positions of the bodies in the simulation, i.e., the state 
in which the positions no longer or only negligibly change. It performs the computation 
that provide an approximation of actual physical simulation of the system, but without 
explicitly modeling the intermediate steps. Final positions can be passed to stability 
assessment (assess_stability), which then returns the stability label. From these 
predicted stability labels and the actual stability labels (the targets provided by the 
physics engine), the accuracy can be computed and compared to those of the 
classification models. Varying packing patterns can require different numbers of 
timesteps to reach the final state from the initial state. In the following, 𝑇(𝑖)	denotes 
the timestep of the 𝑖-th example’s final state (where the initial state has timestep 0) but 
is abbreviated to 𝑇 for all examples for simplicity. The total number of transitions in 
this sequence is 𝑇, and the total number of states is 𝑇 + 1. Furthermore, rather than 
directly predicting the full final state 𝑝*, the regression model is trained to predict the 
difference vector to the initial state 𝛿, where 𝛿D = f(p+, s): 

𝑝̂* 	= p+ + 𝛿D (4) 

Next state regression (transition model). The second regression model attempts to 
learn transition functions between states. The inputs are the positions and shapes at 
some timestep 𝑡, which are then mapped to the positions at the subsequent timestep 𝑡 +



1. This “next state regression” can be applied to each newly predicted state until the
final state (when positions no longer or only minimally change) is reached (see Figure
2). The regression models predict the next state in an iterative (right, also see Figure
1c) or recurrent (left) fashion. The architecture of the “model” module and the shape
vector are the same across all timesteps. In the recurrent model, a “hidden state” is
transmitted from one timestep to the next.

This approach makes use of the model as a transition function between physical 
states to predict the full sequence of future states. As with model (b), this model does 
not predict the full state, but just the difference between the input positions and target 
positions, 𝛿,-!: 

𝑝̂,-! 	= p, + 𝛿D,-! (5) 

where 𝛿D,-! 	= f(p, , 𝑠). Holden et al. [13] and Wiewel et al. [14] propose that training 
not on single transitions but rather on a “window” of transitions 
{(𝑝, , 𝑝,-!), (𝑝,-!, 𝑝,-"), … , (𝑝,-./!, 𝑝,-.)} for some window size 𝑤, or even the full 
simulation sequence, makes training more effective and stable. A sequence of state 
vectors constitutes a trajectory through state space. Using a loss function ensures that 
not only predicted single-timestep transitions are close to target transitions but that the 
trajectory is close to the target trajectory.  

Figure 2. Recurrent (left) and iterative (right) regression model 

A recurrent NN could achieve greater accuracy by allowing information to be passed 
across timesteps and thereby providing information about the past trajectory, which in 
turn informs the future trajectory. Recurrent NNs are frequently applied to sequential 
data [12] and could therefore be an appropriate model to address the problem of 
simulating physical states over a sequence of timesteps [13, 14]. A recurrent 
architecture where the output from the previous timestep,	𝑡 − 1, is fed into the model 
as the input of the current timestep, 𝑡, is commonly used in the natural language 
processing domain [28]. In this setting, a decoder network maps a “thought vector” that 
encodes the information of an input sequence (e.g., a sentence in language A) to an 
output sequence (e.g. a sentence in language B). A similar architecture is used in the 



data-driven physics domain by Navrátil et al. [29]. Similarly, in this approach, a 
concrete packing pattern vector 𝑝, is mapped to the corresponding, subsequent 
simulation sequence (𝑝,-!, 𝑝,-", … , 𝑝*	). 

As Ajay et al. [22] point out, a recurrent architecture can also help alleviate the 
problem of compounding errors. As soon as the “next state regression” model has 
predicted a new state, this new state can then be used to predict the subsequent state. 
On the other hand, errors occurring at any point in the simulation will accumulate, 
possibly resulting in a wrong final state. There is no mechanism to ensure that not just 
each individual transition is as close to the real transition, but that the trajectory is also 
as close to the full target trajectory. Computing the loss over a window of transitions or 
even the full sequence and adding recurrent connections between timesteps can help 
soften this problem. 

All recurrent NNs implemented in this project are based on the LSTM network, 
which is generally better at storing information over long timespans by selectively 
remembering and forgetting old information (e.g. from previous timesteps) and keeping 
and discarding new information (e.g. from the current timestep) [30]. The iterative 
“next state regression” models implemented in this project only consider a fixed 
number of 5 time units. The initial state always happens at time unit 0 and the final state 
at time unit 4. The intermediate states are evenly spaced between them. Table 1 
provides an overview about the models presented.  

Table 1. NN models 

Model Activation Activation 
(last layer) 

Input Target Loss 
function 

Classifier ELU sigmoid (𝑝+, 𝑠) y BCE 
Classifier ELU sigmoid (𝑝+, 𝑠) y BCE 
Classifier ELU sigmoid (𝑝+, 𝑠) y BCE 

Final state regressor ELU none (𝑝+, 𝑠) 𝑝* MSE 
Next state regressor ELU none (𝑝, , 𝑠) 𝑝,-! MSE 

3.6 Evaluation 

To evaluate the runtime of the physics engine and models, 10,000 simulations were 
randomly sampled from those containing no more than  𝑛$%& packing items. For each 
𝑛$%& ∈ {3, 8, 12}, all 10,000 simulations were run 𝑛01#2 = 5 times for the physics 
engine and 𝑛01#2=1,000 times for the NNs and LR. The mean and standard deviation 
of the runtime (in ms) are reported in Table 2 (𝑛$%& = 8) and Table 3 (𝑛$%& = 12). 

From among those models for which data is available, the NN classifier achieves the 
highest accuracy for all 𝑛$%&. Due to its very small size, the LR model, which for the 
purpose of this study acts as benchmark, is by far the fastest. However, the NN also 
demonstrates a significant speed-up over the physics engine, which performs worst in 
terms of runtime. The physics engine achieves an accuracy of 100% since it generated 
the training targets. The trade-off between accuracy and runtime can inform a decision 
about which configuration is most appropriate for a given scenario. 



The column 𝑛01#2 refers to the number of times all 10,000 simulations were run to 
evaluate the mean and standard deviation of the simulation (or prediction) runtime. 
Accuracy was computed on the test dataset on which none of the models had been 
trained. 

Table 2. Runtime and performance evaluation for 𝑛!"# = 8. 

𝑛!"# = 8 Runtime per simulation (ms) 

Model 𝒏𝒓𝒖𝒏𝒔 #Params. Accuracy Mean Std. dev. 

Physics Engine 5 - 1 1.23 ∗ 10( 3.00 ∗ 10) 
Classifier (LR) 1,000 49 0.7975 4.56 ∗ 10*+) 1.50 ∗ 10*+) 
Classifier (NN) 1,000 5,953 0.9051 4.04 ∗ 10*( 1.77 ∗ 10*( 

Table 3. Runtime and performance evaluation for 𝑛!"# = 12. 

𝑛!"# = 12 Runtime per simulation (ms) 

Model 𝒏𝒓𝒖𝒏𝒔 #Params. Accuracy Mean Std. dev. 

Physics Engine 5 - 1 1.27 ∗ 10( 7.87 ∗ 10) 
Classifier (LR) 1,000 73 0.8129 5.76 ∗ 10*+) 3.05 ∗ 10*+) 
Classifier (NN) 1,000 5,329 0.9054 2.56 ∗ 10*( 4.10 ∗ 10*, 

4 Discussion and Future Research 

The developed models provide a proof-of-concept that a data-driven physics model can 
predict air cargo static stability labels obtained by a physics engine with around 90% 
accuracy, doing so many orders of magnitudes faster than a regular physics engine. This 
alleviates bottlenecks in the packing pattern optimization pipeline and allows more 
computational resources to be allocated to the search for better packing patterns by the 
applied GA [5, 6, 11] when the ML approach is integrated into the optimization system. 

Despite its satisfying accuracy, the approach should only be considered in relation 
to the physics engine, which is itself an approximated representation of reality. Such a 
layered abstraction can lead to an additive reduction in accuracy compared to reality. 
The consequence would be wrong predictions in the stability assessment, so that 
practical constraints are no longer met and aviation safety may be negatively affected.  

However, predicting air cargo stability instead of running the numerical simulation 
of a physics engine can be a starting point for further studies and improvements. A 
combination of both physics engine and data-driven model can provide a trade-off 
between speed and accuracy, which, in conclusion impacts aviation safety, that might 
be better than either one alone. Since a simulation must be run for each loading step of 
the packing pattern, most simulations concern partially loaded patterns, which can be 
replaced by stability predictions. To ensure that only those packing patterns are 
accepted that are statically stable, the system can then switch over to the physics engine 



to validate the static stability of the full packing pattern. Furthermore, the stability of 
each loading step of the final packing pattern in the last iteration can also be validated 
to guarantee correctness (at least with respect to the correctness of the physics engine). 

The work presented in this study is a proof-of-concept and contains several 
limitations. Firstly, even though it was suggested above to use a data-driven physics 
model for partially loaded packing patterns to reduce the overall runtime of the 
optimization pipeline, the models described in this study were only trained on full 
packing patterns (though, ranging from a scope of 1 to 17 packing items per pattern). 
Since the implemented models can deal with packing patterns of a wide range of 
numbers of packing items, a model is likely to deal with partially loaded packing 
patterns. Further, all simulation data and classification targets used for this work are 
based on data generated by a physics engine. Physics engines are not, however, perfect 
reflections of the real world. To obtain higher-quality data, the simulation data could 
instead be generated by high-performance scientific simulators, which have greater 
accuracy than physics engines, as demonstrated in the context of air cargo load planning 
by Martinez-Franco and Álvarez-Martínez [8] or directly from the real world data. 
Finally, the masked representation of packing patterns with fewer items might lead to 
lower accuracy than is theoretically achievable and puts an upper limit to the number 
of items the model can handle.  

In future research, completely different approaches can be explored, such as graph 
NNs, relational representations between items, or probabilistically modeling the 
transition function the way it is commonly done in reinforcement learning to model the 
environment’s dynamics [31]. 

5 Conclusion 

This study presents how to design a data-driven model that can predict the static 
stability of air cargo packing patterns with significant speed-up over regular physics 
engines and with enough accuracy to take a large step closer towards operational value. 
The speed-up can also have a positive effect on time savings in the operational 
processes of air cargo palletizing, which is characterized by enormous time pressure, 
especially in the area of transfer and build-up of the packages [18]. Near-time 
calculation of packing patterns with packages already on site for physical build-up is 
the first step towards the automation of an area that is currently heavily dominated by 
manual processes [5, 9]. This work also presents ways in which to combine a data-
driven physics model with a regular physics engine to take advantage of the best 
properties of both approaches. We present an approach to cope with the runtime-
intensive complexity of physical validation during evolutionary optimization processes 
and contribute to the body of knowledge on how to employ data-driven ML techniques 
and GAs from a practical viewpoint. Finally, this work proposes a variety of routes of 
possible future research on how to improve upon the model to further increase accuracy 
and reduce runtime, such as alternate ways of encoding the dataset, representing the 
input vector, generating a higher-quality dataset, augmenting the dataset, and laying out 
a more sophisticated NN architecture. 
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