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Abstract. In obtaining low-cost goods, the indirect expenses associated with 

sourcing suppliers can be substantial compared to the potential advantages of 

lower direct purchase costs. We addressed this problem as an "exploration" vs. 

"exploitation" trade-off. The proposed methodology uses a Bayesian technique 

to learn a stochastically optimal sourcing strategy from quotation data directly. 

We illustrate our approach using real quotation data for the procurement of 

electronic resistors (n=201,187). Rather than making optimal predictions, we 

concentrate on making optimal decisions. In doing so, we offered a significant 

improvement in purchase and procurement process costs. Our model is also more 

robust to prediction errors. 

Keywords: prescriptive analytics, procurement, process costs. 

1 Introduction 

Employees in organizations often spend a considerable amount of time on tasks with 

uncertain outcomes. A particular context where such a problem exists is supplier search 

in procurement. In procurement, a purchasing agent must search for the best supplier 

source for the company. To find the best supplier, the purchasing agent must first survey 

the supplier market and obtain a price quotation from each supplier for the specific 

purchase. However, the problem for the purchasing manager is that procurement prices 

are unknown before identifying, approaching, and negotiating with a supplier. In 

addition, the cost of acquiring a price quotation is spent ex-ante. On the other hand, the 

potential cost reductions associated with receiving a lower-priced quotation are 

contingent on the unknown price and are only discovered ex-post. To summarize, 

finding a better supplier quotation is often not guaranteed. 

Another significant aspect of supplier search is that identifying a supplier source 

takes hours of investigation, supplier verification, and evaluation. Hence, procurement 

done exclusively and extensively by humans makes supplier search time-consuming. 

While the primary aim of every purchasing manager is to minimize direct purchase 

costs, any savings from acquiring goods at a lower price therefore must be balanced 

against increased procurement process costs [3, 4]. Traditionally, purchasing managers 

utilize a curated list of a few vendors to acquire quotations or limit the number of 



 

  

obtained quotations, especially for low-cost items. However, a fixed limit may not be 

optimal. 

The trade-off between learning new information and using the learned information 

is often called the "exploration" vs. "exploitation" dilemma [6]. This trade-off is the 

main question of research on optimal stopping, reinforcement learning, and bandit 

algorithms [6–8]. Ideas from this type of research have been successfully adapted to 

business problems such as optimal pricing experiments [9, 10], order release decisions 

[11], production scheduling [12, 13], or inventory management [14, 15] – each area 

developing unique solutions for the specific settings in these applications. 

The "exploration" vs. "exploitation" dilemma is also present in procurement. In 

addition, there is the problem of the relatively high exploration cost of obtaining price 

quotations from the supplier. Supplier search in procurement can therefore be reframed 

as a problem of optimal stopping. An analytics solution that solves this problem can 

help purchasing managers decide how many resources (e.g., person-hours) should be 

allocated to a specific procurement task. By doing so, we recognize that much of 

procurement involves certain work steps that cannot be further automated and that 

targeted resource allocation is required. Such analytics problems can be seen as 

prescriptive analytics problems [16, 17]. To the best of our knowledge, no previous 

study has considered procurement automation a problem of optimal stopping. The 

purpose of this study is to address this problem. Therefore, we ask the following 

research question: How can we help procurement managers to balance direct purchase 

and overall procurement process costs? 

To answer this research question, we investigated a practice-motivated problem in 

procurement. More specifically, we examined the problem of obtaining low-cost goods 

electronic resistors, where the indirect costs related to selecting suppliers (procurement 

process costs) are often substantial in proportion to the benefits of lower direct 

purchasing costs. Electronic resistors can be found in every electronic device (e.g., 

washing machines, lighting systems). With prices typically ranging between a few cents 

and up to a few euros, resistors are relatively cheap compared to the devices they are 

used in. Resistors come in various materials (e.g., carbon, ceramic), types (e.g., axial, 

surface mounted), and sizes. Purchase departments must therefore manage a sizeable 

quantity of different items, often from separate suppliers. The study grew out of a 

continuing collaboration with a German SME (small and medium-sized businesses) 

whose management identified the need to improve management and control of sourcing 

and procurement processes. 

We investigated a significant issue within supply chain automation, a classic 

research problem [2, 18–20]. We were particularly interested in algorithmic 

characteristics that balance decreasing direct purchase costs with increasing process 

expenses. For this, we calculated the expected discount of searching for a lower-cost 

supplier offer based on the current best available offer. We also studied a Bayesian 

strategy for improving machine-learning estimates based on actual supplier 

price quotations. Our proposed technique considers model uncertainty and its impact 

on decision-making to generate sound prescriptive predictions. Our study contributes 

to the information systems literature by proposing a novel prescriptive machine 

learning method with impactful implications for supply chain practitioners. 



 

  

2 Related Literature 

To date, several studies have investigated procurement automation. The first step that 

can be automated is supplier discovery (e.g., by mining online news documents) and 

the collection of price offers [21, 22]. After suppliers have been identified, the best 

supplier has to be selected among a pool of candidates, for which different multi-criteria 

decision-making techniques exist, when selection criteria can be explicitly stated ([23–

25], [26, 27], [28], [29]). Alternatively, historical data could be used to infer those 

selection criteria automatically [30, 31]. Another body of research helped purchasing 

managers determine the optimal ordering frequency/quantity ([32, 33], [29]). 

Automation in supplier negotiation is also a topic ([34], [35], [36], [22]).  
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[21] X    Text and link mining techniques can be 

effectively used for discovering suppliers from 

online news documents. 

[22] X    If chatbots collect supplier offers, they must also 

signal the usage of AI for screening; otherwise, 

chatbots achieve more expensive purchase 

prices than humans. 

[23]  X   Use selection criteria of purchasing managers in 

a Fuzzy analytic hierarchy process.  

[24]  X   Extensive list of 14 supplier selection criteria. 

Develop MS Excel macro for fuzzy AHP.  

[25]  X   For supplier selection on electronic markets, 

online mined supplier judgments can be used. 

[26]  X  X Considering dependence between selection 

criteria by combining ANP, TOPSIS and LP. 

[27]  X   Long-term supplier selection. Considering 

dependence between selection criteria and 

linguistic uncertainty in judgment. 

[28]  X   A visualization of the Pareto front can be used to 

reduce the number of manual supplier 

comparisons to be made. 

[29]  X  X Combine supplier selection and optimal order 

dispatching. 
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[30]  X   Machine learn selection criteria from past data. 

[31]  X   Hybrid approach. Machine learn selection 

criteria from past data and efficiency analysis. 

[32]    X Stochastic inventory problem with capital 

constraints 

[33]    X Purchasing seasonal products with capital 

constraints. 

[37]    X How to use Bayesian updating for ordering 

quantity decisions where the provider's future 

output is stochastic with unknown parameters 

(i.e., supply stock uncertainty) 

[38]   X  Automate supplier negotiation by learning 

acceptable thresholds for accepting offers 

[35]  X X  Predict the supplier's counteroffer reaction to the 

purchaser's offer in a selection/negotiation 

process. 

[36]   X  Pairwise prediction of supplier's counteroffer 

and delivery/return/payment policy 

Overall, these studies highlight successful applications of automation in procurement. 

However, such studies remain narrow in focus, dealing only with replacing tasks 

typically done by humans. Surprisingly, the question of determining how much supplier 

search should be optimally conducted has not been addressed before. This is 

problematic because, currently, supplier quotations can only be evaluated after an 

exhaustive examination of the procurement market. Our contribution is therefore 

directed at a data-driven predictive evaluation of supplier quotations. 

3 Theoretical Background 

3.1 Problem Setup 

A purchasing manager seeks to purchase 𝐾 different goods 𝑘 ∈ 1, … , 𝐾. The problem 

is now to find among a set of 𝑆𝑘 different suppliers the cheapest offer 𝑝𝑠,𝑘with 𝑠 ∈ 𝑆𝑘 

that provide the good 𝑘. However, for new products, suppliers are unknown and 



 

  

difficult to discover. Getting a quotation from a supplier is time-consuming due to 

explaining product characteristics and negotiating prices. Hence, the purchase manager 

must determine how many suppliers 𝑆𝑘
′ , 𝑆𝑘

′ ≔ {𝑠, 𝑠 ∈ 1, … , 𝑠∗: 𝑖 ∈ 𝑆𝑘}, to contact and 

at which index 𝑠∗ to stop. This is a multiobjective problem: min
𝑆𝑘

′  
[min
s∈Sk

′
𝑝𝑠,𝑘 , |𝑆𝑘

′ |]. We 

study data-driven approaches supporting purchase managers in determining an optimal 

stopping point 𝑠∗. 

3.2 Static Stopping Rule: Estimating Reference Price 

A simple approach to the above-described problem is the estimation of a reference price 

�̂�𝑘, i.e., a preferred buying price, for example, the average market price. This is an 

approximate version of the 𝜀-constraint method [39] to multiobjective optimization  and 

can be written as min
𝑆𝑘

′  
 |𝑆𝑘

′ | 𝑠. 𝑡. 𝑝𝑠,𝑘 ≤ �̂�𝑘. The reference price for new items can be 

estimated using historic quotation data by linking product characteristics with the 

average of all quotation data. This linkage can be found using machine learning. 

Machine-learning methods are special cases of optimization problems, which are 

optimized according to a cost function. Hence, an initial design challenge is quantifying 

a suitable cost function. To find a suitable cost function, we have chosen to examine 

the economic consequences of a possibly erroneous forecast. Based on the predicted 

reference price �̂�𝑘  and the supplier's offer 𝑝𝑠,𝑘 the purchasing manager can make three 

decisions. S/he may, firstly, buy directly, or, secondly, reduce/increase negation efforts, 

or thirdly, temporarily defer the offer in order to search for a lower quotation from 

another supplier. We can then assess the decision's impact on various market states, 

analyzing the economic consequences of prediction errors. We assume there will 

always be suppliers that provide prices above and below the reference price. Using this 

setup, three possible cases of prediction errors (�̂� ≠ 𝜇) exist: 

1.  �̂� ≤ 𝜇, 𝑝𝑠 ≤ 𝜇: Some attractive suppliers will be wrongly rejected 𝑊𝑅 ≔

⋃ min
𝑠

{𝑝𝑠,𝑘 , 𝑠 ∈ 𝑆𝑘 ∶  𝑝𝑠,𝑘 > �̂�𝑘}𝐾
𝑘 . Increases process cost proportional to |𝑊𝑅|, 

lowers purchase cost. If the estimate is too low, no suppliers are discovered. 

2.  𝑝𝑠 > 𝜇,  �̂� ≤ 𝜇: These suppliers are correctly rejected 

3. 𝑝𝑠 > 𝜇, �̂� > 𝜇: Some suppliers will be wrongly accepted 𝑊𝐴 ≔ ⋃ min
𝑠

{𝑝𝑠,𝑘, 𝑠 ∈𝐾
𝑘

𝑆𝑘 ∶  𝑝𝑠,𝑘 < �̂�𝑘 & 𝑝𝑠,𝑘 > 𝜇𝑘}. Decreases process costs, increases purchase cost. 

The analysis shows that if purchase costs are an issue, the purchaser should choose a 

prediction technology that undervalues the market price (case 1.). On the other hand, 

overestimating the purchase price (case 3.) can increase the purchase but decreases the 

process cost. Therefore, a purchase manager must determine which performance 

indicator best balances the competing goals of exploration (finding a better deal) and 

process efficiency (reducing process costs and higher procurement speed). Sections 3.3 

and 3.4 discuss a possible solution. 



 

  

3.3 Dynamic Stopping Rule: without Updating 

The primary difference between a static method and a dynamic approach is that the 

static approach is more likely to inadvertently stop searching even when it is 

advantageous or not stop searching even when the expected value of the search is low.  

To achieve a more targeted resource allocation, the dynamic stopping rule changes the 

stopping point depending on the probability of sourcing a lower price. The reasoning 

behind algorithm 1 is quite intuitive. The algorithm computes in line 3) the expected 

value from searching for lower prices than the current best price. That is, it computes 

for every possible future 𝑝𝑠+1 price the probability 𝑓(𝑝𝑠+1) of obtaining this price from 

the next supplier. If that price is higher than 𝑝𝑏𝑒𝑠𝑡,𝑠 the purchaser prefers not to buy; 

otherwise, the saving is calculated. 

Algorithm 1. 

Initialize s=1 

1. Obtain 𝑝𝑠 

2. Set 𝑝𝑏𝑒𝑠𝑡,𝑠 = 𝑚𝑖𝑛{𝑝𝑗|𝑗 = 1, … , 𝑠} 

3. If ∑ |𝑚𝑖𝑛(𝑝𝑠+1 − 𝑝𝑏𝑒𝑠𝑡,𝑠, 0)|𝑓(𝑝𝑠+1)𝑝𝑠+1
> 𝑐 : 

set s= 𝑠 + 1 and iterate from 1. Else stop and choose offer 𝑝𝑏𝑒𝑠𝑡,𝑠. 

However, the algorithm does not incorporate new information in its current form. 

3.4 Dynamic Stopping Rule: with Updating 

Now we address the problem of updating the learning algorithm with new data. 

Updating is important because prediction errors can impair economic outcomes, and 

algorithm 1 does not update the recommendations in such cases. This also may not be 

a good use of available data since, regardless of how accurate the prediction algorithm 

is, on average, the purchase manager needs to source at least one offer before s/he can 

make any purchase. The sourced offer could contain valuable information that is 

otherwise unaccounted for. In addition, individual data series for specific items might 

be relatively brief, making prediction harder. The static approach's prediction accuracy 

now hinges on how much predictive power comparable items in the data set provided. 

On the other hand, the Bayesian approach that we suggest also incorporates new data 

obtained during supplier search, thus potentially resolving the previously stated issue. 

In concrete, Bayesian updating allows one to sequentially learn from new quotation 

data as supplier offers are collected. Our second proposed algorithm uses updating: 

Algorithm 2. 

Initialize s=1 

1. Obtain 𝑝𝑠 

2. Update 𝑓(𝑝𝑠+1|𝑝𝑠, 𝑝𝑠−1, … , 𝑝1) 

3. Set 𝑝𝑏𝑒𝑠𝑡,𝑠 = min{𝑝𝑗|𝑗 = 1, … , 𝑠} 

4. If ∑ |𝑚𝑖𝑛(𝑝𝑠+1 − 𝑝𝑏𝑒𝑠𝑡,𝑠, 0)|𝑓(𝑝𝑠+1|𝑝𝑠, 𝑝𝑠−1, … , 𝑝1)𝑝𝑠+1
> 𝑐: 

set 𝑠 = 𝑠 + 1 and iterate from 1. Else stop and choose offer 𝑝𝑏𝑒𝑠𝑡,𝑠. 



 

  

A particular feature of our approach is that 𝑓(𝑝𝑠+1|𝑝𝑠, 𝑝𝑠−1, … , 𝑝1) is conditioned on 

the quotation history at every step, which means that all available information is 

considered. That also means that an initially deficient estimate could be corrected. The 

core of our approach is the calculation of the density forecast that incorporates 

parameter uncertainty using prior knowledge regarding the parameter and is updated 

sequentially: 𝑓(𝑝𝑠+1|𝑝𝑠, … , 𝑝1) = ∫ 𝑓(𝑝𝑠+1|𝜃, 𝑝𝑠, … , 𝑝1)𝜋(𝜃|𝑝𝑠, … , 𝑝1). The so-called 

posterior can be calculated using the Bayes theorem 𝜋(𝜃|𝑝𝑠 , … , 𝑝1) =
𝑓(𝑝𝑠, … , 𝑝1|𝜃)𝜋(𝜃)

∫ 𝑓(𝑝𝑠, … , 𝑝1|𝜃)𝜋(𝜃)
. All that is needed is a likelihood function 𝑓(𝑝𝑠, … , 𝑝1|𝜃) and a prior 

function 𝜋(𝜃).  For background on Bayesian methods, see [40, 41]. Our concrete 

implementation is described in Section 4.4. 

4 Empirical Application 

We evaluated five different approaches to determine the stopping point, namely: 

 Heuristic I. Only control the process cost by limiting the number of requests for 

quotation. We set 𝑠∗ = 3, a value typically found at public institutions. 

 Static. Control the purchase cost by estimating �̂�𝑘 (see Section 3.2). Stop if at the 

first quote that undercuts the reference price �̂�𝑘. 

 Dynamic w/o updating. Calculate the expected gain from searching for a lower 

price given the current best offer without learning from supplier quotes (see 

Section 3.3). 

 Dynamic with updating. As w/o updating, includes supplier quotes in subsequent 

calculations of expected gain from searching (see Section 3.4). 

 Heuristic II. Controlling purchase costs by considering many suppliers. 

The approaches "heuristic I" and "heuristic II" serve as benchmark cases for controlling 

process and direct purchase costs.  

For the empirical application, we used two data sets. A simulated data set, in which 

we introduce various kinds of biases in the prediction, to study the robustness of the 

different approaches. Finally, we employ the algorithm on the real-world data set that 

motivated our research. 

4.1 Simulated Data and Scenarios 

The simulated data set is generated by randomly drawing 𝜇𝑘 and 𝜎𝑘
2 from a uniform 

distribution. Both parameters constitute the true population parameters. We then 

simulate supplier offers by randomly drawing from a Gamma distribution parametrized 

with the true parameters. We then compared several scenarios with the prediction 

technology. For these, we draw the �̂�𝑘~𝐺𝑎𝑚𝑚𝑎(
(𝜇𝑘𝜏)2

𝜀
,

𝜀

𝜇𝑘𝜏
) and 

𝜎𝑘
2̂~𝐺𝑎𝑚𝑚𝑎(

(𝜎𝑘
2𝜏)2

𝜀
,

𝜀

𝜎𝑘
2𝜏

). That means we assume that the prediction technology is of 

the same quality for both predicted variables. Because of the properties of the gamma 

distribution 𝐸(�̂�𝑘) =  𝜇𝑘𝜏 and 𝑉𝑎𝑟(�̂�𝑘) = 𝜀. The results are for 𝜎𝑘
2̂ analogous. The 



 

  

parameter 𝜀 controls the accuracy, or noise, of the prediction technology. The parameter 

𝜏 controls the systematic direction of bias of the prediction technology. We then specify 

the following scenarios:  

- Low error: 𝜀=0.05, 𝜏 = 1 

- High error: 𝜀=0.20, 𝜏 = 1 

- Overestimation: 𝜀=0.05, 𝜏 = 1.2 

- Underestimation: 𝜀=0.05, 𝜏 = 0.8 

4.2 Real Data Case Study 

The case study is from an industrial procurement setting. In concrete, we study 

procurement of electrical resistors for a large producer of domestic electrical 

equipment. The data was extracted from suppliers' quotations using text mining. 

Resistors are inexpensive, costing from a few cents to about 3-5€. Specialized resistors 

might cost up to €15. Resistors are characterized by different attributes, such as nominal 

resistance, size, and product quality characteristics. We leverage these attributes to 

learn the resistor price from its characteristics. The raw data set comprises 201,187 

price quotes from suppliers for about 2,400 resistors. Regarding the number of supplier 

quotations for a specific resistor: the 25th percentile is 18, while the 50th percentile is 

53. The study spans the years 2014 through 2019. We improved the comparability of 

the quotes by adjusting the pricing for 2019. We calculated the average and variance of 

supplier prices for each resistor type. Using this information, we built two random 

forests on the training data to forecast each resistor type's average market price and 

variance. The testing data set includes resistor properties and a collection of offers from 

numerous vendors. In concrete, we evaluate using 800 unique new resistors. 

4.3 Evaluation Strategy 

For evaluation, we replicate the purchase process. For each resistor 𝑘 ∈ 1, … , 𝐾 in the 

testing data, we predict �̂�𝑘 and 𝜎𝑘
2̂. This information is utilized to evaluate sequentially 

each of the 𝑆𝑘 offers from simulated (4.1) and real (4.2) suppliers. Each approach for 

determining a stopping point is tested using identical pricing quotations. Therefore, the 

entire solution space is spanned by a 𝐾 × 𝑆 grid. Each approach is assessed on its ability 

to efficiently explore the solution space in terms of achieved purchase costs and 

procurement process costs. Procurement process costs are approximated by the total 

number of examined quotes and requests made.  

4.4 Implementation and Software Used 

We now describe the details of how Bayesian updating was implemented. For modeling 

purchase prices, the gamma distribution is often used [42–44]. The Gamma distribution 

is flexible and can take many forms depending on the parameter values [43]. Hence, in 

the case of our application, we assume that prices 𝑝𝑖𝑘  follow a Gamma-distribution. In 

particular, we assume that each type of item, indexed 𝑘, has its own price distribution, 



 

  

not necessarily unique, parametrized by 𝑠𝑘 and 𝑎𝑘. To model the heterogeneity of prices 

for different items that may be quite different shaped and scaled, we reparametrize 𝑎𝑘 =
𝜇𝑘

2

𝜎𝑘
2 and 𝑠𝑘 =

𝜇𝑘

𝜎𝑘
2. This allows modeling parameter uncertainty in terms of expected value 

𝜇𝑘 and variance 𝜎𝑘
2. We estimate these two parameters for each resistor type. Consistent 

with the Bayesian paradigm, we assume that the purchase manager can encode prior 

information about the likely values of the parameters. We define the priors 𝜋1(𝜇𝑘) and 

𝜋2(𝜎𝑘
2) in such a way that their modes correspond to 𝜇�̂� and 𝜎𝑘

2̂. We prefer this 

specification, as it puts much weight on the initial estimates. The prior on 𝜎𝑘
2 is assumed 

to be 𝐺𝑎𝑚𝑚𝑎(
𝜎𝑘

2̂

 𝜔−1
, 𝜔). We view 𝜔 as an additional hyper parameter that governs the 

weight of the prior. We settled for 𝜔 = 3 using a manual search. The prior on 𝜇𝑘 is 

assumed to follow a PERT distribution [45]. The PERT is a flexible distribution as it is 

based on a reparametrized beta model. In addition, the PERT distribution has the 

advantage that its domain is bounded on the positive scale, in contrast, e.g., to a normal 

distribution. We prefer PERT for the price distribution because its domain can be 

bounded on a closed interval. This interval is set to (0,15] according to the typical range 

of quotes. In principle, other forms of priors are also possible. For example, we could 

have modeled the prior directly using a Beta distribution. Yet, we settled on the PERT 

distribution because it can be easily parameterized using only the minimum, maximum, 

and most likely value. The typical domain of resistor prices defines the minimum and 

maximum. The most likely value is set to the estimate of the average price 𝜇�̂�. On the 

other hand, for the variance, we restrict the domain on values larger than zero and put 

a higher probability mass on 𝜎𝑘
2̂. Regarding the upper bound on the domain of the prior 

on 𝜎𝑘
2, we have more uncertainty. Hence, we chose Gamma distribution as prior for 𝜎𝑘

2.  

All computer code was written in R. For computing the posterior, we used 300 ×
100 Monte Carlo grid approximation for 𝜇 and 𝜎2. The PERT distribution we took 

from the mc2d package [46], machine learning was done with mlr and ranger [47, 48], 

and the future package for parallel computations [49]. The stopping threshold 𝑐 was set 

to a percentage value of five percent of the estimated product price (relative threshold).  

5 Results 

The results regarding purchase and process costs are depicted in Table 2 and Table 3. 

We also tested if the differences between the approaches are significant. For this, we 

used a paired t-test because all approaches are evaluated on identical simulated/real 

records and are thus dependent. We find that the average purchase cost for the Bayesian 

method is significantly higher than for the method w/o (without) updating in both noise 

scenarios, 𝑡(999) ≥ 6.87, p<0.01. Also, in the case of overestimation, the Bayesian 

method is significantly more costly than the method w/o updating, 𝑡(999) ≥ 17.55,
𝑝 ≤ 0.01, whereas in the case of underestimation, the Bayesian method is significantly 

less costly, |𝑡(999)| ≥ 6.4, 𝑝 ≤ 0.01. For all the first three scenarios, the Bayesian 

method yields significantly fewer requests than the distributional method, |𝑡(999)| ≥
24, p < 0.01, but for the case of overestimation, the Bayesian method needs more 



 

  

number of requests 𝑡(999) = 15.5, p < 0.01. Between high error and the 

underestimation scenarios, there is a significant difference in terms of costs for the 

Bayesian method, 𝑡(999) ≥ 2.46, 𝑝 < 0.05. There is no significant difference in costs 

for the Bayesian method across the remaining simulated scenarios, 𝑡(999) ≤ 1.5, 𝑝 >
0.1, except that the low error scenario is significantly higher than the high error scenario 

|𝑡(999)| ≥ 2.33, 𝑝 < 0.05.  

Table 2. Average purchase cost (K_simulated=1,000, K_real_data=800) 

Table 3. Average number of requests (K_simulated=1,000, K_real_data=800) 

Dataset & 

Scenario 

Heuristic I Static Dynamic Dynamic 

with 

updating 

Heuristic II 

Simulated      

Low error 3 2.171 

(72%) 

3.494 

(116%) 

3.378 

(113%) 

10 

High error 3 2.950 

(98%) 

4.193 

(140%) 

3.250 

(108%) 

10 

Underestimate 3 4.342 

(145%) 

6.311 

(210%) 

3.403 

(113%) 

10 

Overestimate 3 1.405 

(47%) 

2.204 

(73%) 

3.277 

(109%) 

10 

Real data      

Random Forest 3 11.20 

(373%) 

10.98 

(366%) 

3.887 

(130%) 

17.186 

(573%) 

For the number of requests comparing the Bayesian method, there is a statistically 

significant difference, |𝑡(999)| ≥ 4.22, 𝑝 < 0.05, except for high error vs. 

overestimate, |𝑡(999)| ≤ 0.77, 𝑝 > 0.1. We also calculated the mean percentage error 

Dataset & 

Scenario 

Heuristic I Static Dynamic  Dynamic 

with 

updating 

Heuristic 

II 

Simulated      

Low error 1.957 1.977 

(101%) 

1.894 

(96%) 

1.894 

(100%) 

1.548 

(82%) 

High error 1.957 1.962 

(100%) 

1.796 

(92%) 

1.912 

(106%) 

1.548 

(81%) 

Underestimate 1.957 1.773  

(91%) 

1.621 

(91%) 

1.894 

(117%) 

1.548 

(82%) 

Overestimate 1.957 2.184 

(112%) 

1.992 

(91%) 

1.904 

(96%) 

1.548 

(81%) 

Real data      

Random Forest 2.840 2.518 

(89%) 

2.520 

(100%) 

2.736 

(109%) 

2.421 

(88%) 



 

  

(MAPE) on all studied settings for reference: For low error 10%, for high error 21%, 

for underestimate 22%, for overestimate 20%, for random forest 36%. We also tried 

but did not report other random forests and a neural network whose hyperparameters 

were tuned on a validation set using MAPE, absolute error, and loss functions that 

penalize for under-/overestimation. However, predictions turned out to be similar. 

6 Discussion 

6.1 Results 

We found empirically that the static technique has lower purchase costs but higher 

process costs. The reason is that the static method terminates earlier than heuristic I, 

hence the purchase price is higher. Process costs are also higher for the real data case, 

presumably because the random forest underestimated the price average. The simulated 

results for the underestimating scenario support this. The dynamic rule outperforms the 

static rule in terms of purchasing costs, not process costs. The dynamic rule without 

updating has lower procurement costs but slightly higher process costs than heuristic I. 

So, the dynamic rule keeps searching when there are large expected savings.  

Four scenarios of introducing noise and bias in simulation predictions were utilized 

to assess the dynamic method's ability to correct for forecast errors. The rule with 

updating reduces process costs in all circumstances except overestimation. In the case 

of overestimating dynamic without updating is too pessimistic about potential savings, 

while in the case of underestimation, no updating is too optimistic, similarly to the static 

rule. The rule with updating is more robust, suggesting that Bayesian updating corrected 

the initial faulty forecast. That presumably explains why the rule with updating works 

better in the real data case. The dynamic rule with updating appears to be robust to any 

prediction bias in the simulated data for purchase costs, as indicated by the non-

significant t-tests. This observation suggests that the direction of bias is unimportant 

for the dynamic approach with updating, although it appears essential for the static and 

dynamic rule without updating. We find it expected that overall differences between 

the scenarios for the Bayesian method are non-significant for purchase costs but 

significantly different in terms of process costs. It shows that the Bayesian method is 

robust towards deficient predictions that enter as an argument; such deficient forecasts 

are then corrected by exploring more supplier offers. The method w/o updating has 

lower purchase costs in the case of underestimation, although this comes at higher 

process costs. That finding implies that the dynamic stopping rule w/o updating is not 

recommendable. In the simulated scenario, the distribution of received quotes belongs 

precisely to the same family of statistical distributions used to calculate the dynamic 

stopping rule. In contrast, in the real data application, we used the Gamma distribution 

to approximate the real distribution of prices. Despite being an approximation, our 

approach also extends to the real data case. Estimating distribution parameters using 

machine learning works, despite low predictive accuracy, as indicated by the high 

MAPE for the random forest. Nevertheless, the dynamic stopping rule with updating 

benefits from information included in obtained supplier quotes.  



 

  

6.2 Limitations 

Our method applies to many procurement situations but is based on explicit 

assumptions: a) Obtaining a new request for quotation is costly, and b) an offer can be 

deferred at no additional cost. In concrete, a) is plausible because of all the search-

related costs incurred from scouring the market for the best alternative [50]. 

Assumption b) requires supplier quotations to be valid for a certain period (e.g., if 

suppliers submit a binding price quotation). This may not apply to some types of 

products: e.g., seasonal products, temporary discounts, commodities. A workaround is 

to gradually increase the termination criterion to reflect the effect of delaying. 

In sum, these assumptions put weak limits on the applicability of our approach. Even 

so, some reservations should be made. The supplier's strategic behavior is currently 

being disregarded (e.g., concerning supplied price offers). This study assumed that the 

supplier's final best offer is the decision input, ignoring any bargaining premium. 

However, in practice, a purchase manager should consider negotiation strategies [34, 

35, 51]. We did not model price changes, which are essential for real-time spot market 

purchases (e.g., energy), but can be neglected if prices are temporarily stable. Also, 

purchasing for immediate production needs limits the ability to delay purchases. 

Purchasing can also be subjected to additional objectives when considering supplier 

properties (e.g., lead times, quality). Scalarizing [52] and constructing a joint 

probability function of these properties may be a way to address this issue. Finally, we 

did not investigate purchase costs (delivery, logistic, and storage costs) as they are 

conceptually different from the general procurement process. 

6.3 Implications for Practice and Research 

The findings are significant for purchasing managers since both the w/o updating and 

the Bayesian method offer several advantages. First, these techniques can be used to 

increase average procurement speed while also reducing average costs. As a result, the 

strategy keeps control over both purchase and process costs. Second, the techniques 

justify prioritizing specific procurement projects. In concrete, it provides managers with 

a tool for communicating when procurement efforts should be expanded or when they 

can be halted or reallocated between projects depending on the expected value of further 

searches. Third, procurement managers can make more precise statements about the 

value their department contributes to the organization's bottom line using the proposed 

technique. Finally, the approach can also be used to track and direct the efforts of the 

procurement department and the efforts of individual staff members. Purchasing 

managers can use our algorithms as a self-service-analytics solution (SSA) [53] within 

standard procurement software solutions [2]. Future research could focus on optimally 

incorporating our proposed solution in an SSA concerning socio-technic design 

characteristics. For instance, it is unknown whether purchasing managers view the 

algorithmic solution positively or whether they would follow the algorithmic 

recommendations at all. 
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