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Abstract. Information Systems play a central role in the energy sector for 

achieving climate targets. With increasing digitization and data availability in the 

energy sector, data-driven machine learning (ML) approaches emerged, showing 

high potential. So far, research has focused on optimizing ML approaches’ 

prediction performance. However, this is a one-sided perspective. ML 

approaches require large computation times and capacities leading to high energy 

consumption. With the goal of sustainable energy systems, research on ML 

approaches should be extended to include the application’s energy consumption. 

ML solutions must be designed in such a way that the resulting savings in energy 

(and emissions) are greater than the energy consumption caused using the ML 

solution. To address this need, we develop the Sustainable Machine Learning 

Balance Sheet as a framework allowing to holistically evaluate and develop 

sustainable ML solutions which we validated in a case study and through expert 

interviews. 

Keywords: Machine Learning, Sustainability, Green IS, Data-driven 

Approaches, Energy Informatics. 

1 Introduction 

The ambitious climate targets until 2030 require an expansion of renewable energies to 

reduce harmful emissions in the long term and ensure a sustainable energy supply [1]. 

In addition to the historically established efforts with a strong focus on efficiency 

improvements, the challenges of volatile energy supply from renewable sources must 

likewise be faced [2–4]. This results in a more complex energy supply and demand 

management, which is intensified by cross-sector and cross-energy source solutions in 

the context of integrated energy systems to ensure a low-emission energy supply [5]. 
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To enable the management of energy flows and infrastructure, the use of Information 

Systems (IS) becomes increasingly important [6, 7]. The concept of Green IS, 

understood as the planning, implementation, and management of IS to support 

sustainable action [8], and Green IT to ensure the sustainable and efficient use of 

information and communication technology [9] are central concepts that bundle 

corresponding work. 

In particular, the use of data-driven approaches in a wide range of applications from 

anomaly detection analysis in energy consumption to the determination of annual 

energy consumption in buildings stands out and shows high potential compared to 

conventional, often engineering-based approaches [10, 11]. So far, work on data-driven 

solutions, mainly Machine Learning (ML), has been driven by the goal of achieving the 

highest possible quality of results, e.g., correctly identified consumers in energy 

consumption or prediction accuracy in energy consumption forecasts [12, 13]. 

However, this one-sided perspective ignores important aspects, as the focus is solely 

on the result and the preceding necessary steps are neglected. Data-driven approaches 

require significant computation times and capacities leading to high energy 

consumption [14]. The energy consumption of data-driven approaches has only been 

investigated in the research domain of computer science from a mostly non-application-

oriented perspective [15]. With the goal of sustainable energy supply and at the same 

time increasing application of data-driven solutions due to the rising complexities of 

management between energy supply and energy demand, the research of data-driven 

solutions should be extended to include the component of energy consumption of the 

actual application. Data-driven solutions should be designed in such a way that the 

resulting savings in energy and emissions are greater than the energy consumption and 

emissions caused by the data-driven solution. This study therefore analyzes the 

following guiding research question: 

How can a framework be designed that holistically quantifies the sustainability 

impact of data-driven solutions by considering both the energy consumption caused by 

data-driven solutions and the savings achieved? 

To this end, we introduce the Sustainable Machine Learning Balance Sheet 

(SMLBS) following a design science research approach and input from expert 

interviews in the AI research domain. The SMLBS allows deriving a holistic evaluation 

by considering all ecological effects in the form of a balance sheet, indicating the net 

sustainability impact of data-driven solutions. With the development of the SMLBS, 

we contribute to literature by being the first to demonstrate the consideration of energy 

consumption of data-driven solutions in energy applications. Furthermore, we provide 

a framework that enables future researchers and practitioners to perform a use case-

specific and holistic analysis of their data-driven solutions. Using the SMLBS, data-

driven solutions can be evaluated in terms of both energy consumption and emissions 

so that computing times can also be optimized for demand-side management and 

adaptation to the availability of renewable energy. We further highlight new 

perspectives for future research on data-driven approaches and ways to address both 

opportunities and challenges in equal measure so that energy informatics can contribute 

an important part to achieving climate goals. 



2 Theoretical Background 

2.1 The Potential of Green IT, Green IS, and Data-driven Approaches 

IS contribute a large part to successful sustainable transformations in society and 

organizations [8, 16]. At the same time, the ever-increasing usage of IS is fueling 

research into energy-efficient IT to ensure sustainable and efficient use of information 

and communication technology. To this end, IS concerned with efficiency gains and 

energy-efficient IT coined the terms Green IS and Green IT. Energy Informatics as a 

subfield of Green IS research focuses on reducing energy consumption by using 

information and communication technology [17]. Both, Green IS and Energy 

Informatics accordingly come into focus of current research and applications in 

practice. A critical success factor for IS in energy applications is transparency about 

historical, current, and future energy flows and related measures. Consequently, data 

collected by sensors and IS are highly important to optimize decisions for managing 

and controlling energy supply and demand to minimize overall energy consumption 

and reduce emissions [4]. With the increasing amount of data, data-driven approaches 

have become more relevant in research for a wide range of applications in the energy 

sector. Examples are forecasting future energy consumption, detecting anomalies in 

energy consumption curves, and leveraging efficiency or flexibility potentials. 

Most data-driven applications use methods from the area of Artificial Intelligence 

(AI) or, more precisely, ML. Such applications are bundled into AI systems [18] with 

their components and functionalities. In this context, the fundamental goal of an AI 

system is the value-adding transformation (data processing) of incoming data from data 

sources to outgoing data in the form of actions by an agent [18]. An ML algorithm that 

enables the actual application is the central component of an AI system in addition to 

data sources (e.g., sensors), a processing module to preprocess the incoming data, and 

an agent to execute actions. 

ML algorithms can be classified as either supervised, unsupervised, or reinforcement 

learning techniques. Supervised ML algorithms learn a function that maps an input to 

an output, thus requiring labeled training data. Examples are applications of energy 

consumption prediction in energy consumption [19]. In unsupervised learning, there 

are no known target values in advance, and one tries to detect patterns in the available 

data [20]. Unsupervised learning can, for example, be used for anomaly detection in 

energy consumption if no labels are available (often expensive and time-consuming to 

generate) [11]. In reinforcement learning, an agent independently learns a strategy to 

maximize rewards and, therefore, often serves the purpose of optimization. 

Optimization tasks, e.g., in energy management or the optimization of bidding 

strategies of prosumers in local energy markets, can be addressed by reinforcement 

learning [21, 22]. 

ML shows high potential in the energy sector and surpasses approaches of the 

engineering discipline, which are often based on physical laws. For example, [10] 

achieved accuracy advantages of almost 50% in determining the annual energy 

consumption of residential buildings for energy performance certificates using data-

driven methods compared to the engineering-based approach currently still required by 



law. Research on ML has also been successful in predicting future energy consumption, 

energy prices, or detecting anomalies and individual devices in energy consumption, as 

well as reinforcement approaches for energy management [11, 23–26]. 

Research on ML has been motivated by prediction performance. A single focus on 

performance evaluation measures, however, falls short when assessing the potential and 

value from a holistic perspective. Therefore, the achieved energy or emission savings 

and the energy necessary to run an often computation-intensive ML algorithm should 

be included when holistically assessing ML applications. 

Approaches to quantifying energy and emission savings or efficiency increases are 

to the best of the authors’ knowledge not yet the focus of IS research and mainly stem 

from engineering domains dealing with more technical problems. Interdisciplinary 

research and an extension of the scope of development goals are important to develop 

and operate sustainable ML applications. 

2.2 Quantifying Machine Learning’s Energy Consumption  

Due to the large amount of data needed to train ML algorithms, powerful computer 

systems are required [14, 15]. With their powerful equipment and the additional 

components, such as Graphic Processing Units (GPU), these computer systems have an 

increased energy demand [27]. The high energy demand is already discussed and 

pointed out in some research groups [15, 28]. Measuring energy consumption is a 

growing part of computer science research, but as mentioned, still not yet established 

in IS research and not considered in real-world applications. 

To quantify a computer system's energy consumption, one needs to define the scope 

of energy consumption measurement, such as at which point the energy consumption 

is measured and which components are included [29]. The most obvious is to measure 

the consumption of the system's individual components with additional hardware 

sensors [15]. This procedure will lead to the most accurate data but also requires a great 

deal of effort. Effort and expenses arise from additional sensors and extra wiring, which 

must be installed into the computer system, respectively, at the selected components 

[30]. An easier way is to use embedded sensors of the respective components, if 

available [15]. Alternatively, it is possible to measure the energy consumption of the 

whole computer system at the power supply, but with the drawback of more inaccurate 

quantification. In addition, the periphery in a data center or external components for 

computational performance or data storage / management can be included in the 

quantification to provide a holistic picture of the analyzed system’s energy 

consumption.  

To obtain measurement data in practice, two possibilities are presented in literature: 

first, the just mentioned use of sensors to measure the actual consumption [31], second 

the data from already existing measurements of a similar system with the same 

application purpose and transfer its results to their setup [32]. To date, the use of 

embedded sensors as measuring technology for energy consumption is widely used. 

Besides the limitation of available technologies, which speaks for a not yet intensely 

researched area [15], a recent literature review shows that energy consumption is not 



yet considered in the development of ML applications but should not be underestimated 

[33]. 

3 Methodology and Study Design 

In this study, we structured our research following the design science in information 

systems research framework combining behavioral science and design science 

paradigms [34]. According to Gregor and Hevner [35] we contribute an invention to 

existing solutions in practice and research. We argue that the SMLBS forms a new 

solution for new problems becoming increasingly important. Despite growing steadily, 

the number of ML applications in energy informatics research is still relatively new and 

poorly established due to the often one-sided and not holistic research perspective. On 

the solution maturity side, there are no approaches that bridge the gap between the 

energy / emission savings and the energy demand / emissions of ML applications to the 

best of our knowledge. Therefore, we are the first to present this perspective on ML 

services in energy informatics research. In a first step, we derive potentials of ML 

approaches and existing solutions to quantify ML’s energy consumption from the 

knowledge base conducting a semi-structured literature review and expert interviews 

(AI research experts – mostly in manufacturing-energy applications). We searched in 

the databases Google Scholar, Scopus, and AIS eLibrary with the keywords “AI”, 

“ML”, and “energy consumption”. Expert interviews were conducted in a semi-

structured manner with few predetermined questions and the possibility to 

spontaneously explore relevant parts in more depth. To ensure a high fit with the 

application domain, we consulted the experts before the initial introduction of the 

SMLBS to derive design and applicability criteria. Further interviews were conducted 

afterwards to review the results and correct design errors. The corresponding results 

were in part already presented in Section 2 and will be further elaborated in Section 4. 

In a second step, after several iterations of designing the SMLBS, we demonstrate, 

apply, and validate the SMLBS with a case study of AI-based anomaly detection in 

energy consumption (Section 5) and discuss the case study’s results (Section 6). We 

communicate our results with this paper enabling practitioners and researchers to 

evaluate and design sustainable ML services. 

4 The Sustainable Machine Learning Balance Sheet 

To derive the necessary design and applicability requirements we conducted semi-

structured expert interviews with practitioners from the AI research domain. The 

predetermined questions included the extent of AI use in the company, relevant KPIs 

in its design, implementation, and evaluation, as well as the interoperability of 

individual AI algorithms. Due to the semi-structured interview approach, we 

subsequently explored topics of particular interest to the individual experts regarding 

design and applicability requirements. To this end, the SMLBS should fulfill (1) 

applicability to different use cases, (2) applicability to different target variables, and (3) 

applicability to relevant subsystems. Additionally, acceptance criteria extracted from 



expert interviews are a simple understanding of the SMLBS and interdisciplinary use. 

We conceptualized the SMLBS based on these criteria before reconsulting the experts 

and iteratively shaping the SMLBS. 

(1) With the SMLBS, we pursue the goal of use case-specific investigations of the 

net energy savings caused by data-driven solutions, considering both the achieved 

savings and corresponding energy consumption. This necessitates the balancing act 

between a generic framework, which serves its purpose for different applications, and 

a detailed procedure description, which provides further helpful use case-specific 

information, but at the same time restricts the application of deviating use cases. 

Different applications in the energy sector of supervised, unsupervised, reinforcement, 

or hybrid learning should be representable with the framework.  

(2) Also, the SMLBS should allow for investigation under different target variables. 

For example, next to the mentioned energy consumption, efficiency improvements, 

energy flexibility, or emission reductions are useful target variables. Defining energy 

consumption as target variable for a load shifting use case in demand-side management 

would not achieve any benefit under these conditions. However, if emissions caused 

(e.g., CO2 emissions) are a target variable, then load shifting can achieve significant 

savings in times with a higher share of renewable energy in the electricity mix. 

Moreover – if quantifiable –, social and governance impacts are also possible target 

variables to holistically depict sustainability [36]. Consequently, as in other 

optimization problems, the use case-specific definition of target variables is of central 

importance. Henceforth, we speak of energy savings for simplicity. All other target 

variables could be inserted as well. 

(3) When determining the energy savings and the required energy consumption for 

the data-driven services, the SMLBS should also be restrictable to the relevant 

subsystems, e.g., which energy flows are considered, and which are not. Particularly in 

the case of complex applications that may be linked to other data-driven applications, 

it is important to define the system boundaries so that the savings can be correctly 

quantified and allocated. The same applies to the quantification of the ML service’s 

energy consumption. For example, it must be weighed up whether the energy 

consumption of a higher-level data management system should also be used for the 

specific investigation. This allows correctly comparing different variants of (data-

driven) services without distortions and to develop / select the optimal solution. 

 

These requirements make up the strategic boundaries within which we developed 

the initial version of the SMLBS before reconsulting the experts. Figure 1 depicts the 

final version of the SMLBS after the second interviews based on the balance sheet 

known from external accounting. It, however, contrasts savings and consumption of 

ML algorithms instead of assets and liabilities. The requirements are depicted at the 

top. The left-hand side describes the ML energy demand. It covers all steps within the 

relevant subsystem as defined in requirement (3), from the initial model setup and 

training to the energy consumption after deployment. Quantification methods for 

energy consumption during training and in operation have been discussed in Section 

2.2. For instance, by implementing sensors or using measurements of similar systems. 

The right side covers all realized savings. We further divide the realized savings into 



direct savings (improvements in the target variable) and indirect savings (secondary 

objectives, e.g., explainability / trust, transparency). To this end, direct savings are 

easily quantified, as the value for the target variable is usually known before ML 

deployment. Under the assumption of fixed exogenous variables, the difference in the 

measured or calculated target variable gives the savings. Else, exogenous influences 

must first be extracted from the calculation.  

Indirect savings are not as easily quantified because there is possibly no known 

benchmark. Nonetheless, there are several empirically observed effects. For instance, 

the application of explainable AI techniques could lead to further insights into energy-

intensive processes which allow deriving implications for higher energy efficiency. 

These savings achieved through downstream activities must be budgeted accordingly - 

for example, with the application of conversion factors. Holistically evaluating the 

effect of ML applications thus requires the ex-ante determination of relevant key figures 

which can then be compared to later figures after the introduction of the ML application. 

The difference between the two sides of the SMLBS then results in net energy 

savings or additional energy consumption, here schematically depicted on the left side 

as sustainable surplus. Note, that opposing effects may arise in similar applications due 

to the indirect rebound effect known from energy retrofitting, when an increase in 

energy efficiency may lead to fewer energy savings than expected [37]. For example, 

if a human user is involved in a process, their behavior may change over time and affect 

the amount of savings [38]. Consequently, iterative cycles and continuous monitoring 

with the SMLBS are necessary to ensure long-term sustainable outcomes. 

 

 

Figure 1. Sustainable Machine Learning Balance Sheet 

                                          

                                       
               
                               
                           
          

                                        
                            
                                          

                             
           

                               
                                  
          

                                      
                            
               
                        

                   

                                 
         

                                          

                                         
                   
                      
                 
                

                    

                                      
                                     

                           

                                   
                            
                        

 
  

 
  
  
  
  
 
  
  
  

  
  

  
  

  
 

 
  

 
  
  
  
  
 
  
  
  

  
  

  
  

  
  



 We can now verify the consideration of the desired requirements stated above. (1) It 

becomes clear that the SMLBS does not restrict use cases since the design is use case-

agnostic. (2) Despite depicting energy consumption in Figure 1, the target variable is 

not necessarily fixed. One might just as well list all efficiency gains, flexibility gains, 

or emission reductions, to name a few. (3) The balance sheet does not require the 

consideration of all impacts from either laterally linked ML applications or hierarchical 

data-management systems. This allows for a restriction to the relevant subsystem. 

Additionally, due to the similarity to the widely established balance sheet, the SMLBS 

is easy to understand and use, fulfilling the acceptance criteria. 

 

After having defined the SMLBS, which consoles the foundations for the 

investigation of ML applications, we arrange the application of the SMLBS in two 

cases. For this purpose, we follow the four-phase model developed by [18] that supports 

developers and project managers in realizing AI systems. The authors define the phases 

of planning, experimentation, implementation, and operation & optimization over the 

life cycle of an AI system. The phases are run sequentially or iteratively (cf. Figure 2 

– grey arrows). From the four-phase model, we derive two application scenarios for the 

SMLBS, illustrated in Figure 2. On the one hand, the SMLBS can be applied in a pre-

implementation phase comprising the steps of planning and experimentation. On the 

other hand, the SMLBS can be used in a post-implementation phase referring to the 

operation & optimization phase according to [18]. In the pre-implementation phase, the 

focus is on the design and conception of the AI system, which allows many options to 

be considered in terms of energy demand and energy savings. For example, different 

ML algorithms or training variants (e.g., online training) can be tested and compared to 

achieve an optimal energy demand and energy savings ratio. The evaluation of energy 

savings is often limited in this phase, as they must be collected conceptually since 

planning and experimentation usually do not occur in a productive environment. In the 

post-implementation phase, the energy demand and energy savings of existing AI 

systems can be recorded and empirically investigated. The results allow to modify and 

improve the AI system design. Of course, depending on the modularity of the AI 

system, the modification possibilities are smaller than in the pre-implementation phase, 

where greenfield development is possible. If the results are not satisfactory, iterative 

loops can be triggered on previous phases, analogous to the classical design science 

research process according to [39]. Here, the iteration loops can be triggered by both 

the net energy savings resulting from the SMLBS and prediction accuracy. Also, a 

multi-objective optimization problem can be defined for the design of an AI system that 

considers the sustainable surplus resulting from the SMLBS and the prediction 

accuracy.  

 



 

Figure 2. Application of the SMLBS in a pre- and post-implementation phase in the four-phase 

model of Kaymakci et al. [18] for AI system design 

5 Validation – An Anomaly Detection Case Study in Energy 

Consumption 

For demonstration purposes, the SMLBS is applied in an anomaly detection case study 

in the pre-implementation phase, allowing us to quantify energy savings and energy 

demand conceptually. For this purpose, a conceptually developed AI system according 

to [18] detects anomalies in the energy consumption of an open access dataset from 

Qatar University (QUD) [40]. Energy consumption is the target variable for our case 

study. The system boundary is set for the achieved direct savings by the power meter 

alone. For the energy demand, energy consumption for the initial training, retraining, 

and prediction is considered by quantifying the Central Processing Units’(CPU)’s and 

GPU’s consumption.  

In addition to the second-by-second energy consumption, the QUD contains a label 

called “micro-moments” that classifies the energy consumption into five classes, which 

allows identifying states such as a significantly too high energy consumption. Thus, we 

can formulate a supervised ML problem and identify conditions with too high energy 

consumption with the AI system, with the underlying assumption that the labels of the 

different classes in energy consumption can only be determined retrospectively. The 

approach early detects anomalous behavior and allows countermeasures to come back 

to normal energy consumption, resulting in energy savings. To test the SMLBS, we 

divide the data collected over a period of three months into a training and test part and 

create a balanced training dataset to avoid training bias. A linear support vector 

classifier (LinearSVC) model then learns to predict the energy consumption class which 

we determined by using cross-validation of different models such as a random forest 

classifier or a multinomial naïve Bayes classifier. After the initial training of the 

LinearSVC model, we predict the class of high energy consumption and retrain the 

model once an hour.  

To calculate the net energy savings according to the SMLBS, the resulting energy 

savings are calculated by taking the difference between the energy consumption 

classified as too high and the energy consumption in a normal state. The assumption is 

that if we detect too high energy consumption at an early stage, we can initiate 

countermeasures and reduce energy consumption to a normal state. The difference 



between the actual too high energy consumption and the reduced state consequently 

results in energy savings. The energy consumption for initial training of the LinearSVC 

model, retraining, and anomaly detection is obtained by applying the python package 

“pyJoules” [41]. The package measures the energy consumption of the CPU (Intel Core 

i5-6300U) cores, cache, integrated GPU, and the RAM (16 GB) of the computer used 

for deploying our service. The deployed service gets the energy consumption in a 

specific time and generates a prediction of the energy consumption class.  

In the case study, there were savings in energy consumption of 0.36 kWh over the 

test period of three days and eight hours (cf. Figure 3). This corresponds to a share of 

13% in energy savings of the application represented by the QUD. For our service we 

measured an energy consumption of 0.09 kWh for the AI system which is far less than 

the savings resulting in net energy savings of 0.26 kWh. To better understand the 

results, we have approximated the energy consumption of a conventional notebook (15 

W) and a RaspberryPi 3 (2 W) for the respective period, which is presented in Figure 3 

[42, 43]. The conventional notebook's consumption of 1.19 kWh is clearly above the 

measured values and above the achieved savings. Consequently, the application of a 

notebook would not be sustainable for our case study. The consumption of the 

RaspberryPi 3 with 0.16 kWh is just above the measured consumption and would 

achieve net savings. For our case study, we conclude that under the specifications and 

system boundaries defined at the beginning, the use of ML makes sense and the savings 

achieved exceed the consumption of the ML application. Using an ML algorithm on 

the hardware of a notebook, in contrast to a RaspberryPi 3, is not recommended because 

the consumption clearly exceeds the savings. 

 

 

Figure 3. Representation of energy consumption savings and demand over the period of three 

days and eight hours 

    

    

    

    

    

    

    

    

    

    

    

    

      
          

       

        
             

      

            
          
           
        

            
          
             

  
  
  
  
 
 
  
 
 
 
 
 
  
  
  
  
  
  
  

 
 



6 Discussion 

Our presented case study allows us to validate and discuss the SMLBS with findings 

from the conducted expert interviews. In doing so, we first derive and discuss practical 

implications before we list limitations and prospects for further research. With our case 

study we show that the overall outcome in terms of sustainability is highly use case-

specific. Depending on data availability, model complexity, retraining necessities, etc. 

the degree of sustainability and net energy savings may vary. In fact, when considering 

non-energy-intensive processes, continuous retraining may outweigh the benefits 

gained from the AI application. This clearly shows the need for the SMLBS, as trivial 

guidelines may easily fail, and sustainability projects may otherwise actually be 

counterproductive. The SMLBS then provides the quantitative decision support to settle 

on alternative approaches, e.g., less calculation-intensive AI applications, rule-based 

systems, or longer retraining cycles. Furthermore, the comparison with conventional 

notebooks and RaspberryPis as running hardware showed that small computers have 

an advantage. In practice, this means that when developing AI systems, computing 

capacity should be shared across multiple applications and should not be oversized.  

In research and practice, there is often a prioritization of a single evaluation criterion 

when implementing an ML application, e.g., accuracy, explainability, or economics. 

However, multi-objective optimization provides solutions which are closer to the 

desired business strategy as pointed out by the interviewed experts. The SMLBS allows 

for the additional consideration of overall sustainability, which previously could only 

be partially considered. For instance, the SMLBS can also be used to evaluate whether 

a transparent and by design explainable ML algorithm (e.g., QLattice [12]) offers 

advantages in terms of both accuracy and energy consumption compared to sequentially 

applied post-hoc techniques (e.g., SHAP values [44]) in XAI applications. It is also 

possible to consider the higher energy consumption of energy-intensive applications 

(e.g., large server farms) and the resulting costs due to CO2 prices, which means that 

energy consumption can be quantified directly in economic considerations as an 

important aspect in practice as mentioned by several experts interviewed. 

The SMLBS provides extension and integration potential due to its (technology) 

agnostic and general approach. It can be considered as a meta model which may 

integrate already existing frameworks and tools. For instance, data-driven approaches 

may be incorporated by building upon the CRISP DM [45] and [18]. 

Our study disposes of some limitations. First, we validated the SMLBS with a highly 

specific case study and semi-structured expert interviews which mostly stem from a 

manufacturing background. Also, the expert interviews led to some corrections of early 

design flaws, indicating the relevance to consult practitioners. Further structured 

interviews with practitioners from other domains appear fruitful. Second, we designed 

the SMLBS highly model-agnostic. Despite the aforementioned advantages, this 

provides little guidance during application / implementation. Third, the energy savings 

might be hard to quantify, or the ML application only represents a support process of a 

Green IS application. Fourth, the SMLBS falls short of providing benchmarks or 

alternatives with better or worse ratios of energy demand and savings of ML 

applications.  



These limitations give rise to further research potential. Further validation of the 

applicability of the SMLBS through alternative case studies and application in other 

fields such as energy-intensive industries is advisable. Thereby, further guidelines and 

quantification recommendations for energy savings and consumption could be obtained 

allowing for a wide-spread application. Additionally, future research might focus on 

deriving more specific details for highly used adaptations overcoming the generic 

nature of the SMLBS. For practical application developing an “SMLBS-as-a-Service” 

which can be deployed with ML models/data-driven solutions (for instance in an open 

access code repository) is advisable in future research projects. Last, upcoming studies 

could attempt to find application-agnostic benchmarks or values for good to very good 

ratios of energy demand and savings. 

7 Conclusion 

In our study, we pursued the goal of developing a framework that allows a holistic use 

case-specific investigation of data-driven solutions regarding a target variable (e.g., 

energy consumption) and quantifies the achieved savings. We, therefore, introduced 

the Sustainable Machine Learning Balance Sheet (SMLBS) that allows considering all 

relevant effects of data-driven solutions in the form of a balance sheet, indicating the 

net impact in the target variable (e.g., sustainability) of data-driven solutions. In 

addition, we provide ways to apply the SMLBS in the development of data-driven 

solutions, which we rank based on the four-phase model for the development of AI 

systems according to [18]. With our developed artefacts, we contribute an important 

framework to the under-researched consideration of energy consumption aspects of 

data-driven solutions. 

By applying the SMLBS in a case study of anomaly detection regarding energy 

consumption, we could show that for the analyzed case, the energy consumption of an 

ML application does not exceed the achieved energy consumption savings and is 

therefore suitable from a sustainability perspective. Based on the case study and 

conducted expert interviews, we could also derive first practical implications. For 

example, the hardware of an AI system has a decisive influence on energy consumption. 

Thus, it is recommended not to over-dimension the computing capacity when designing 

AI systems to avoid unnecessarily high energy consumption. Although our work has 

some limitations and prospects for further research, we made an important contribution 

to the design of AI systems in energy-related applications to realize the full potential of 

data-driven applications to achieve climate goals. 
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