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Abstract. Digital technologies, particularly the internet, led to unprecedented
opportunities to freely inform oneself, debate, and share thoughts. However, the
reduced level of control through traditional gatekeepers such as journalists also
led to a surge in problematic (e.g., fake news), straight-up abusive, and hateful
content (e.g., hate speech). Being under ethical and often legal pressures, many
operators of platforms respond to the onslaught of abusive user-generated con-
tent by introducing automated, machine learning-enabled moderation tools. Even
though meant to protect online audiences, such systems have massive implications
regarding free speech, algorithmic fairness, and algorithmic transparency. We set
forth to present a large-scale survey experiment that aims at illuminating how the
degree of transparency influences the commenter’s acceptance of the machine-
made decision, dependent on its outcome. With the presented study design, we
seek to determine the necessary amount of transparency needed for automated
comment moderation to be accepted by commenters.

Keywords: Community Management, Machine Learning, Content Moderation,
Algorithmic Transparency, Freedom of Expression

1 Introduction and Motivation

Imagine posting a critical comment towards the latest political news report. It is late,
the day at work was hard, and all your frustration seeks its way out through this post.
A few hours later, you wake up surrounded by the police, taking you to prison. An
autonomously working machine learning (ML) system classified your post as subversive
and hateful, and an automatically informed follow-up system determined you to be too
dangerous to be allowed to remain free.

So far, this story is a dystopian idea, threatening but not real for most people. However,
the increasingly sophisticated censorship in China [1, 2] and recent developments such
as the planned introduction of filtering regulations in India [3] or the EU [4] fuel such
visions. Even though this sounds like a malevolent plot to restrict freedom rights, such
actions are not unfounded. While the internet is an unprecedented opportunity for free
communication and democratizes the voicing of individual opinions, it also gave rise
to phenomena such as misinformation [5–7], cyberbullying [8, 9], and what is often
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subsumed as hate speech (e.g., insults, racism, or sexism) [10–13]. As especially the
latter is often prohibited by law, operators of such discussion and debate opportunities
(e.g., online news discussion boards, comment sections in media websites) are obliged
to filter user-generated content [14]. With most discussion opportunities being free
of charge and moderation traditionally being a cumbersome manual task (and hence
economically prohibitive), the majority of outlets is left with two options: Giving up
these opportunities (e.g., closing the discussion section in an online newspaper) [15–17]
or resorting to automated moderation [15, 18–20].

Both approaches have apparent implications for the right and the ability to exercise
free speech. In the first case, the respective opportunity is lost entirely; however, in
the second case of automated moderation, the exact implications are less clear and
bring back the idea of the initial story1. Furthermore, if customers reject algorithmic
comment moderation, newspapers which utilize such systems might be at risk of losing
parts of their current and future audience and thus, both exposure and monetary benefits
generated by them. While people acknowledge and welcome the assistance of automation
in many areas of life [21], their attitude towards algorithms controlling their utterances
and opinions is less clear [22]; this holds even true for less critical instances such as joke
recommenders [23]. One common line of thought that is assumed to limit acceptance of
algorithms in general and machine moderation, in particular, is their black-box nature that
makes decisions opaque [24–26]. This perception is well-grounded in several existing
biases that can be hidden by black-box models [27, 28] and has also been acknowledged
by legislators through the introduction of legal action requiring operators of ML-based
systems to provide insights into the decision-making [29–31]. Yet, there exist few
studies (e.g., Brunk et al. [32]) that assess whether additional transparency mitigates
negative attitudes to algorithmic decisions and the degree of transparency that would be
required. Hence, the goal of this study-in-progress is to compare commenters’ reactions
to different degrees of transparency w.r.t. algorithmic moderation decisions, given either
an acceptance or rejection decision of the posted comment by the machine moderator.
To fulfill this research objective, we plan to conduct a large-scale survey experiment as
detailed in the following.

2 Research Background

In practice, companies like Facebook, Google, or Twitter employ their own algorithms to
moderate user-generated content [18]. However, these algorithms are often proprietary
and not open source. Researchers, also mainly utilizing ML to detect hate speech, provide
insights into their models [12, 33–39]. Nevertheless, even presupposing a reasonable
good classification, the application of automated ML algorithms in content moderation
leaves three political issues according to Gorwa et al. [18]: transparency, fairness, and
depoliticization. In this study, we aim to evaluate the effects of increasing levels of
transparency on the user’s acceptance of an (automated) ML-based moderation system.
Thus, we will not focus on the areas of fairness and depoliticization. To tackle the

1 The factor of legally enforced automated content moderation leading to over-moderation and
the introduction of more political biases further boosts such concerns [14, 18].



transparency problems, approaches like [40] try to make complex ML models (i.e., neural
models) interpretable by including surrogate models such as Local Interpretable Model-
agnostic Explanations [41] or SHapley Additive exPlanations [42]. These surrogate
models try to open up the ML black-box not by explaining the underlying algorithms but
by representing the importance of different input features (i.e., words). By understanding
the input-output relationship, the ML process should become more transparent.

As recent legislation such as the GDPR [29,43,44] and rulings of the German Federal
Supreme Court (demanding more transparency in comment moderation and the blocking
of user accounts) [45] indicate, an increase in transparency seems especially needed.
There already exists some research within the topics of moderation transparency. For
example, Jhaver et al. [46], and Juneja et al. [47] investigate the effects of transparency
during moderation feedback on future user behavior on the Reddit network. Furthermore,
Wang [48] studies the changes in the opinion of users on news articles that are moderated
automatically. Brunk et al. [32] conducted a first study linking increased transparency
to an increase in trust and finally to a higher probability of acceptance. By utilizing
the decision output of a functioning moderation system (www.moderat.nrw) instead
of manual annotation, we will vary the degree of feedback transparency. Through this,
we determine if an increasing amount of feedback also leads to increasing perceived
transparency on the commenter’s end and if this, in turn, leads to a higher acceptance
of the decision made by the machine. In addition, we vary the made decision, to see, if
the decision output, being acceptance or rejection of the comment, changes the user’s
acceptance of such a system. To deal with this more complex study design, we aim at
recruiting a sufficiently large number of study participants from the German-speaking
population, as the comments within the dataset are in German, via a Crowdsourcing-
Platform.

3 Study Design

3.1 Hypotheses Building

Building upon this content creation and moderation background, we first need to evaluate,
if the acceptance of an automated moderation system depends on the transparency of
the system itself or the match between the commenter’s opinion about the comment in
question and the moderation results of this comment, meaning, we have to evaluate if
potential issues with automated moderation lie within the automated or the moderation
part of the process. Thus, we need to differentiate between the moderation decision
itself and the potential automation. Besides that, research suggests that machine-made
decision-making processes should be more transparent to increase the acceptance of
the resulting decisions. Exemplary, Yeomans et al. [23] pointed out that to overcome
the algorithm aversion, recommender systems need to be understood by their human
counterparts. However, as stated by Burton et al. (2020) [49], increased transparency
“often comes as a trade-off with the performance of the algorithm”. Previous studies have
already tried to show if transparency increases the acceptance of recommender system
decisions [50] and automatic comment moderation [32] with mixed but promising first
results and a call for more research into the field. Consequently, our first hypothesis is

www.moderat.nrw


H1: The acceptance of an automated moderation decision depends on the fit between
the expected moderation decision of the commenter and the actual moderation decision
(H1a) and the perceived transparency of the moderation decision (H1b). For those two
influences on the decision acceptance, we have to look deeper into both, the fit of the
result expected by the commenter and the actual result of the moderation decision, as
well as the degree of transparency of decision presentation.

Therefore, the second hypothesis is meant to evaluate the commenter’s tendencies
towards the moderation in general. For that, we expect if a comment is more extreme
(both in regards to being completely uncritical to completely critical) people might
inherently understand potential moderation results. However, if their view differs from
the actual moderation result this might change. Therefore, the second hypothesis is meant
to evaluate their acceptance of moderation results both in matching and mismatching
result situations. This leads lead us to the second hypothesis H2: The fit between the
expected moderation result of the commenter and the actual moderation result is higher
for more extreme comments (i.e., comments that are non-critical or highly critical).

In addition, to get a more detailed understanding of how much transparency may be
required, we aim at differentiating between different forms of algorithm feedback, an
approach, which, e.g., has already been done for different types of transparency mech-
anisms for privacy decision making on smartphones [51]. We differentiate the degree
of feedback into the three nuances, no explanation for the decision made, naming the
classification result (e.g., "Threat" or "Insult"), and word highlighting within the user’s
comment. We expect naming the classification result to be perceived as more transparent
than no explanation and word highlighting to be perceived as more transparent, both
than no explanation and or only naming the classification result. This leads to our third
hypothesis H3: The perceived transparency of the moderation decision is higher the
more additional information is given. The resulting research model is depicted in Fig. 1.
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Figure 1. Resulting research model.

3.2 Survey Experiment

To assess our hypotheses, we plan to conduct an online experiment. Due to the most
likely non-normality distribution of our data (especially w.r.t. the treatment), we will
employ structural equation modeling (SEM) using partial least squares (PLS) for data
analysis [52,53]. PLS-SEM is well accepted in IS research for these types of studies [54].

In our experiment, we will assess the hypotheses w.r.t. additional explanations in
the case of ML-based content moderation. We will simulate a real-life situation with a
news article and four existing comments (mentioning that comments are moderated with
regards to the terms of use) and will present participants a specific comment (comments



can either be completely non-critical, borderline, slightly critical, and completely critical).
To acquire a generally accepted view on the criticality of different comments, we rely
on an existing dataset of comments with their corresponding criticality [55]. Next,
participants are asked to report their expected result of the moderation. This expected
moderation result will later be used to calculate the expected result-result fit. Afterwards,
the participant will need to copy and paste the comment into a text field (i.e., simulating
the comment process) and, as a result, will be presented with the moderation outcome.
This outcome will then differ on three treatment options: (1) The text is shown as being
accepted or rejected by the automated comment moderation system. (2) The text is shown
as being accepted or rejected with an explanation that an algorithm has either detected a
terms of use-violation and has been classified by the algorithm accordingly (naming the
classification result) or as not having detected any issues. (3) The text is shown as being
accepted or rejected with an explanation that an algorithm has either detected a terms
of use-violation highlighting the critical words of the comment (word highlighting) or
as not having detected any issues whilst still providing the word highlighting. After the
treatment, we will conduct a manipulation check and assess the endogenous variables.

4 Concluding Discussion and Way Forward

For our study, we suggest a research model which shall be used to determine how
increased transparency during ML-based moderation affects the acceptance of automated
moderation systems. Further, we aim to show if this acceptance differs if the output
of the automated moderation system varies from the user’s own judgment. The results
could further show how the utilization of ML-algorithms is generally perceived if the
freedom of expression is concerned. We will continue this research project in the coming
months and are looking forward to presenting the results.

As newspapers and similar outlets in which opinions are shared (e.g., social me-
dia, forums, etc.) are faced with an increased amount of work in order to keep their
comment sections clean, one solution could be the use of ML-algorithms to reduce
moderation effort. However, if their readers do not accept the automated moderation
of their comments, the newspaper risks losing market share and thus profit. Therefore,
this study could have numerous implications for practitioners. If the readers fully accept
ML-algorithms, they could successfully be utilized to detect and moderate hate speech,
cyberbullying, and other forms of digital aggression to ensure a free and civilized dis-
course. Our study could suggest the needed amount of transparency necessary to still
utilize ML-algorithms without the risk of alienating the readers. However, it could lead
to further implications if users tend to always reject automated moderation that differs
from their own expectations, regardless of the level of transparency.
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