
Association for Information Systems Association for Information Systems 

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL) 

Wirtschaftsinformatik 2022 Proceedings Track 3: Digital Education & Capabilities 

Jan 17th, 12:00 AM 

Game Development Based Approach for Learning to Program: A Game Development Based Approach for Learning to Program: A 

Systematic Literature Review Systematic Literature Review 

Nikolaj Bewer 
University of Potsdam, Germany, nbewer@uni-potsdam.de 

Margarita Gladkaya 
University of Potsdam, Germany, gladkaya@uni-potsdam.de 

Follow this and additional works at: https://aisel.aisnet.org/wi2022 

Recommended Citation Recommended Citation 
Bewer, Nikolaj and Gladkaya, Margarita, "Game Development Based Approach for Learning to Program: A 
Systematic Literature Review" (2022). Wirtschaftsinformatik 2022 Proceedings. 3. 
https://aisel.aisnet.org/wi2022/digital_education/digital_education/3 

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted 
for inclusion in Wirtschaftsinformatik 2022 Proceedings by an authorized administrator of AIS Electronic Library 
(AISeL). For more information, please contact elibrary@aisnet.org. 

https://aisel.aisnet.org/
https://aisel.aisnet.org/wi2022
https://aisel.aisnet.org/wi2022/digital_education
https://aisel.aisnet.org/wi2022?utm_source=aisel.aisnet.org%2Fwi2022%2Fdigital_education%2Fdigital_education%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/wi2022/digital_education/digital_education/3?utm_source=aisel.aisnet.org%2Fwi2022%2Fdigital_education%2Fdigital_education%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Game Development Based Approach for Learning to
Program: A Systematic Literature Review

Nikolaj Bewer1,3 and Margarita Gladkaya2,3

1 codary, Berlin, Germany
{n.bewer}@codary.org

2 Weizenbaum Institute for the Networked Society, Digital Technologies and Well-being,
Berlin, Germany

3 University of Potsdam, Chair of Social Media and Society, Potsdam, Germany
{gladkaya,nikolaj.bewer}@uni-potsdam.de

Abstract. Digitalization is advancing rapidly around the globe. Sufficient train-
ing in programming, computer science, and IT should be provided to ensure that
upcoming generations do not just experience digitalization but rather actively
participate in the process. One emergent educational approach aimed to lower
educational barriers and increase the engagement of children and teenagers in
programming is game development based learning (GDBL). In this study, we
conduct a systematic literature review of empirical papers applying GDBL within
programming and computer science courses. The attributes and learning outcomes
of GDBL courses for various educational settings are reported and discussed. The
results suggest that GDBL in computer science and programming education is an
effective approach. We conclude with implications for future research and practice.

Keywords: GDBL, game development based learning, programming, review

1 Introduction

Digitalization is advancing at a rapid pace around the globe. It is evident from the
unprecedentedly high number of smartphone users worldwide [1]. People’s communi-
cation, information consumption and processing are steadily shifting into the digital
realm [2]. Indeed, many processes that used to happen offline in an analog form are
getting digitalized, with new jobs emerging in such areas. Not surprisingly, more and
more vacancies with IT skills as a requirement open up [3]. For example, economists and
business administrators must process, clean up and analyze the ever-increasing amounts
of data. Marketers must deeply understand search engine optimization and be able to
drive digital campaigns on social media. Graphic designers are often expected to have at
least basic website software skills. Hence, elemental-level knowledge of the processes
behind algorithms, websites, and apps is increasingly in demand, with such requirements
going above and beyond purely technical professions.

In order to not only experience digitalization but to actively shape it, the new genera-
tion needs to receive adequate training in the areas of programming and computer science
(CS) from an early age. However, the contemporary institutions of formal education
risk falling short of the modern age expectations. Instilling the interest in programming

17th International Conference on Wirtschaftsinformatik
February 2022, Nürnberg, Germany



and computer science in young children and teenagers with no prior knowledge is chal-
lenging [4–6]. At the same time, university instructors struggle to maintain students’
engagement in programming courses and battle low completion rates and low enrollment
rates at Science, Technology, Engineering, and Math – STEM degree programs [7–9].

Against this backdrop, novel educational methods relying on games or incorporating
elements of the game design emerge [10, 11]. The present paper focuses on game
development based learning (GDBL). This game-based method uniquely mobilizes
students’ enthusiasm about video games for educational purposes [11] allowing for
hands-on learning. In application to CS and programming, the method started to gain
scholarly attention in the mid 2000s [10, 11]. The first synthesis of the GDBL research
was published in 2012 [11]. Still, the scientific evidence on GDBL application and
effects remains fragmented. We conduct a systematic literature review of GDBL use for
teaching programming. The review incorporates novel findings from the last decade of
research in a scientific discussion and generates new insights into the effects of GDBL.
With our review, we set out to answer the following research questions: (1) What are the
attributes of GDBL-based programming courses? (2) What are the outcomes of learning
a programming language through the GDBL educational approach?

Twenty two empirical studies – describing the application and effects of teaching
a programming language through GDBL – were included in the review and analyzed
along the following categories: (1) educational setting; (2) the type of programming
language; (3) the type of games to be developed and modified; and (4) learning outcomes.
The results contribute to the academic research into GDBL as an educational method
and offer valuable insights for practitioners. First, we identify specific attributes and
differences between GDBL courses taught at the school and higher education levels.
Thereby, our synthesis of the papers introduces interested teachers and university in-
structors to the appropriate tools for a given education level: programming languages,
integrated development environments (IDEs), and other materials necessary for the
GDBL application within their courses. Second, we provide a nuanced perspective on
the reported effects of GDBL programming courses by accounting for the study design
and data analysis methods. Third, we formulate methodological recommendations and
point out avenues for future research.

2 Game-Related Educational Methods

Several game-based educational approaches can be identified in the academic literature.
The most common terms are game based learning (GBL), serious games, game develop-
ment based learning (GDBL), and gamification. Some of these approaches are related,
others are distinct.

GBL refers to the educational procedure that imparts knowledge by allowing learners
to play games [10]. In this approach, instructors convey knowledge subtly through the
game, pursuing the goal of motivating participants who are hard to engage with conserva-
tive learning methods. The GBL method is sometimes referred to as "edutainment" [10],
owing to the idea of making the learning process more entertaining. Serious games refer
to a subset within the GBL methods. Here, the games designed for particular learning
objectives are used [10, 12].



Compared to other approaches, gamification is relatively new [10] and refers to the
application of game design philosophy and game elements to real-life environments [13].
Thereby, without playing actual games, a game-like experience gets created to increase
motivation, engagement, and performance [13].

Within GDBL, the learning occurs in the process of game development. The game is
not a full-fledged educational product; it is to be built or modified by learners [11]. Similar
to other game-related approaches, GDBL introduces the fun factor to the educational
context [14]. However, by enabling the necessary hands-on experience, GDBL stands
out as it best reflects the practical nature of programming and computer science courses.
For instance, this game-related method is often described in studies about software
engineering education [10]. Against this background, the GDBL method has become the
focus of the present study.

To the best of our knowledge, there are two other literature reviews on game-related
learning methods [10, 11]. The study by Wu and Wang [11] was published in 2012 and,
therefore, does not cover recent technological and methodological developments in the
research domain. Souza et al. [10] have reviewed papers about GDBL and other game-
related methods in application to a very specific subject (i.e., software engineering).
In the face of rapid digitalization, this paper improves over the previous works by
considering a broader scope of the GDBL applications for teaching programming and
incorporating the most recent studies in the review.

3 Methodology: Systematic Literature Review Procedures

The systematic literature review was conducted following the guidelines outlined by
Webster and Watson [15] and vom Brocke et al. [16]. We provide a detailed description of
the literature search below, ensuring transparency of procedures and results’ replicability.
We begin with presenting the search strategy, keywords, and searched databases. Next,
the inclusion and exclusion criteria are discussed.

3.1 Database Search

An initial, non-systematic literature search was conducted to determine the scope of
the systematic review. As a result, we identified three concepts focal for the present
study: (1) computer science, (2) knowledge transfer, and (3) GDBL. These concepts and
associated keywords determined the comprehensive search formula. "Computer science"
was supplemented by "programming." Knowledge transfer was broken down into "educa-
tion," "teaching," "learning," and "e-learning." Lastly, "GDBL" was additionally written
out as "game development based learning" and also captured with "game development."
Furthermore, we used "wildcards" (asterisks which are typically placed at the end of a
word stem) in order to account for possible suffixes and endings that a word might have.

The searched databases were Scopus, IEEEXplore, ACM Digital Library, EBSCO,
and ERIC. The keywords had to be mentioned in the abstract. No constraints on the
publication period were applied. Although the initial literature search revealed that the
term GDBL was first coined in 2012 by Wu and Wang [11], the research on game
development for learning purposes goes back in time.



3.2 Eligibility Criteria

The database searches yielded 168 records. Then, in a step-by-step process, some studies
were sorted out, as not fulfilling the eligibility criteria; and some studies were added.
The process is illustrated with Figure 1.

Figure 1. Flow diagram for the paper inclusion process

First, 38 articles that we could not access (including any of their versions, e.g.,
pre-prints) were excluded, reducing the number of records to 130. In the following step,
15 duplicates were removed. Then, articles written in the non-English language were
sorted out: one – in Portuguese and one – in Spanish.

Next, full texts of 113 remaining studies were analyzed and subjected to pre-
established inclusion criteria. First, the GDBL educational method had to be applied.
Hence, we excluded the papers concerning games and video games in a general sense,
as well as the game based learning and serious games methods. Second, articles examin-
ing the use of GDBL outside the educational context (i.e., school, college, university,
holiday camp with a focus on education) were excluded. Third, we were interested in
schoolchildren and students as course participants. Thus, papers focusing on teachers
and university instructors were sorted out. Fourth, the type of study was considered. Only
empirical academic works were qualified as eligible for the review. If the paper merely
described some GDBL setup without presenting any results of its application, the article
was excluded. Fifth, the course or material to be taught had to be programming-related:
computer science, programming skills, and programming concepts. The papers had to
fulfill all five eligibility criteria. As a result, the number of records went down to 18.



Subsequently, we performed forward and backward literature searches that yielded
four additional studies satisfying all inclusion criteria (see Figure 1). A total of 22 studies
met the criteria and comprised the pool of review articles.

4 Results

In the following, the synthesis of information from the 22 articles is presented. We
provide a general overview over the research stream of GDBL for learning to program
and then delve into specific characteristics of studies: attributes of GDBL course-setups
and learning outcomes.

The earliest article is dated 2008. Most articles (86%) were published after 2012,
with almost a quarter – in 2020 and 2021. Hence, the application of GDBL for learning to
program increasingly attracts scholarly attention. Judging by sample characteristics, the
research evidence comes from eight different countries. More than one-third of studies
(8) recruited participants from the USA. Other sample populations are from Brazil (3
papers), Greece (3), Canada (2), Poland (2), Austria (2), Croatia (1), Thailand (1), and
the UK (1). This might indicate a higher interest in the GDBL approach to teaching
programming and computer science in North American, South American and European
countries.

Most articles (14) present quantitative study designs: five one-time surveys were
dominated by pre- and post-surveys of learners, e.g., [17–19]. Among the 14 quantitative
studies, there are three experimental studies [5, 20, 21], where GDBL represents one of
the experimental conditions compared with the conventional learning (control group).
Only (2) papers describe qualitative methods [4, 22], i.e., interviews. The remaining (6)
adopt a mixed-methods design. Predominantly, GDBL courses were organized offline,
with only three studies reporting procedures that took place online [6, 23, 24].

4.1 Educational Setting

Studies under the review present various educational levels at which GDBL programming
courses are taught. The educational levels range from middle school [20, 24] through
high school [6, 17], to higher education [18, 25]. School systems differ from country to
country. Hence, to facilitate comparisons, we combined the papers describing GDBL
application at the middle and high school levels in one group. Besides, the middle school
level is represented by only two papers [20, 24]. Various educational levels have distinct
characteristics, and thus we can refer to them as different educational settings. Hereafter,
we differentiate between school, university, and summer camp settings.

School Setting The articles targeting the school setting are characterized by smaller
and younger samples and shorter course duration. Specifically, the participants are
between 11 and 18 years old, with on average 30% fewer participants than at university
courses. A course goes on for a few weeks [23, 26] or months [6, 22] and rarer for a
full semester [17]. Importantly, schoolchildren typically have no previous experience
in computer science and have not been introduced to programming prior to taking



the GDBL course [4–6, 9, 22, 23, 26]. As Garneli et al. [20, p.36] put it, "Introducing
programming to young children is a very challenging process." This is reflected in the
GDBL scholars’ choices of programming languages for the courses discussed below.

University Setting In the university setting, the average age of participants is expectedly
higher and ranges from 18 to 29. In addition, the average duration of courses is longer –
typically one semester [8,18,27,28]. The average participants’ number is also noticeably
higher. Participants of university GDBL-courses are more likely to have some prior
experience in programming [7–9, 27–29]. However, the hurdle of making computer
science and programming more accessible to novice learners from outside traditional
computer science programs remains [18].

Summer Camps Setting GDBL courses at game development summer camps are
described in two studies [19, 30]. Participants of these studies were schoolchildren – 4th
and 5th graders in [19], 9th and 10th graders in [30] – invited to residential summer
camps with a view to increasing their interest in science, technology, engineering, and
math (STEM) disciplines. Due to the specific intensive learning schedule in the summer
camp setting, we did not merge the summer camp and the school educational setting in
one category.

4.2 Programming Languages

Next, we focus on programming languages and integrated development environments
(IDEs) used to develop and modify games. Multiple programming languages, frame-
works, and methods facilitating GDBL were identified from the articles under review.
We divided the languages, IDEs, and frameworks into three groups by their complexity.

Some studies describe applying such frameworks (e.g., Construct2) that do not
require the use of any programming language [6, 19, 27]. Specifically, participants did
not program via writing code but via "manipulating graphical elements according to the
programming logic to be used (events, conditions, actions, etc.)" [23, p.2]. The learning
experience was aimed at developing "a programming logic" [23] and applying it to game
creation. Such frameworks make up the first group that we refer to as Code-free.

Second group, block-based programming languages and programming applications
(e.g., Blockly [31], Scratch [26, 32, 33], GameSalad [7, 8], and Alice [34]) work with
a drag-and-drop mechanism. Block-based programming languages consist of individ-
ual blocks that can be effortlessly connected and disconnected to create programs and
functions. While having all the basic programming concepts, such as loops, variables,
conditional statements, functions and comparison operators, these programming lan-
guages are characterized by lower complexity. Designed to be particularly visual and
child-friendly, block-based coding comes with little to no text, which prevents syntactic
errors and makes the programming languages suitable for novices [5].

Third group of languages and frameworks used for GDBL is comprised of the text-
based programming languages such as Java [30, 35], C++ [9], C [9], and Assembly [28].
These programming languages are more abstract and machine-oriented, which makes



them relatively the most complex. The relative language complexity is accompanied
by a high degree of flexibility, which is why the text-based languages are used by
professional developers. Nevertheless, Assembly, C++ and Java are typically considered
low-level programming languages or even machine code and therefore often taught in
early introductory computer science courses at universities [28].

Not surprisingly, code-free and block-based programming applications are particu-
larly common in studies targeting younger learners (middle and high school, younger
learners at the summer camp [19]). Learners of older age (university students), on the
other hand, are predominantly taught text-based and sometimes block-based program-
ming languages in GDBL classes. Table 1 groups the studies by the educational setting
and the type of programming language. The total number of studies per a language-
setting combination is provided in brackets. Note that one study by Haselberger et al. [4]
uses both a block-based and a text-based programming language and hence appears
twice in Table 1.

Table 1. Grouping by educational setting and the type of programming language

Code-Free Block-Based Text-Based

School 2 [6, 23] 7* [4, 5, 17, 20, 22, 24, 26] 2* [4, 35]
University 1 [27] 4 [7, 8, 18, 32] 5 [9, 21, 25, 28, 29]
Summer Camp 1 [19] 0 1 [30]

Overall 4 out of 22 11 out of 22 8 out of 22
Note: The first number in each cell is the count of papers with a given type
of programming language and educational setting; * [4] use both a block-
based and a text-based programming language.

4.3 Games

The core of all GDBL courses is mobilizing young people’s interests involving computer
or mobile games [11]. Table 1 demonstrates that some language types are more common
for particular educational settings. In turn, a programming language can determine the
games to be programmed or modified within the course. Here again, a dividing line
between the school and university setting can be seen.

The studies conducted with schoolchildren predominantly, but not exclusively, rely
on block-based programming environments such as Scratch, GameSalad, and Construct2,
as we have shown in the above subsection. This has an impact on the games. Specifically,
simple jump ’n’ run games [5,6,17] are often developed. Other games are Escape House
and a recycling game (where a park has to be kept clean) [24, 26]. These games are
simple and particularly visual with a lot of graphic interaction, where a player’s skill is
not the main focus.

In GDBL programming courses within the university setup, text-based program-
ming languages are used most often. The game development frameworks are more
technically-demanding when compared to the school setting: Arduino, a programmable
mini-computer, Java ME, and Alice [9, 25, 27–29]. Despite their complex setup and



operation, these tools allow creating more sophisticated programs. In most cases, stu-
dents re-develop and modify so-called arcade games: Tetris, Pac-man, Space Invaders,
or Snake [9, 25, 27–29]. These games witnessed extreme popularity in the 1970s and
1980s and are characterized by a plain graphical interface that is all about players’ skills
and dexterity. The simplicity of the arcade games allows class participants to program
their games from scratch rather than modify single missions or graphical features.

When reviewing the games at the summer camp level, we notice the following.
Younger learners – 4th and 5th graders – created very visual and simple games with
the code-free Kodu Game Lab framework [19]. Namely, participants had to create an
alien world, fill it with different rocks, and program a Rover (game object) to inspect
each rock. Older participants of the [30] study – 9th, 10th graders – were invited to work
within the Greenfoot IDE and write Java programs. Participants were asked, for example,
to program various Little Red Riding Hood scenarios. Focusing on the game-play, i.e.,
a game’s plot, course instructors aimed to demonstrate that "fun games can be created
with modest visual assets" [30, p.56].

Thus, the games too (not only programming language types) differ fundamentally
with the educational setting that serves as a proxy for learners’ age and prior knowledge.
Our review shows that the combination of such games’ characteristics as graphics and
game-play illustrate the differences the best. Simpler games – more common for the
school setting – are visually richer and offer easy game-play (see [17, 24]). When more
complexity is introduced in a GDBL-class – more typical for the university setting – the
developed games are less visual and more focused on the game-play (see [9, 25, 29]).

4.4 Learning Outcomes of GDBL

Most outcomes investigated in the 22 studies can be subsumed under assessment of
computing skills and perceptions of computer science and programming.

The assessment of computing skills covers, among others, programming skills
(see e.g., [7, 21, 24]), knowledge of computer science (CS) and programming con-
cepts [22, 30, 35], and problem solving skills [8]. Table 2 provides an overview. Measur-
ing the outcomes listed in Table 2, authors investigated whether teaching programming
languages with the game development based method improves students’ skills and
comprehension of various concepts. Note that such constructs as programming knowl-
edge can be measured differently and with multiple dimensions, e.g., knowledge of
loops structure, conditional structure, variables, etc. [26]. When the results on different
dimensions were distinct, we reported mixed results, "+/-" in Tables 2 and 3.

As the name of the second outcomes’ group suggests, the perceptions include
learners’ perception of computer science discipline [4, 19], attitudes towards program-
ming [7, 8, 32], perceived usefulness [25] and helpfulness of new knowledge [9]. Other
related outcomes are enjoyment [18], interest [29, 30, 35], and motivation to go on with
learning [5, 6], as well as experiences of IT roles, i.e., software developer, multimedia
designer, programmer [27].

Note that summer camps as an educational setting served a specific purpose of
making computer science and STEM disciplines more accessible for young children in
general. Hence, both studies on GDBL courses at summer camps appear only in Table 3,



Table 2. Assessment of computing skills

Authors/Year SD ES Outcome Effect

[8] Dekhane et al. 2013 qnt* Uni Problem solving skills +
[7] Dekhane and Xu 2012 qnt Uni Programming skills +
[21] Poolsawas and Niranatlamphong 2017 qnt* Uni Programming skills +

[35] Doerschuk et al. 2013 qnt* Sch Computing concepts +
[20] Garneli et al. 2015 qnt* Sch Change in programming habits +/-
[24] Holenko Dlab and Hoic-Bozic 2021 qnt* Sch Programming skills +
[22] Johnson 2017 qlt Sch Programming concepts +/-
[5] Papadakis 2020 qnt* Sch Programming skills +
[17] Seaborn et al. 2012 qnt* Sch CS concepts comprehension +
[26] Seralidou and Douligeris 2020 mix Sch Programming knowledge +/-

[30] Al-Bow et al. 2008 qnt Cmp Programming concepts +
Note: ES = Educational Setting, Uni = University, Sch = School, Cmp = Summer Camp; SD =
Study Design, qnt = Quantitative, * = Significance Testing Performed, qlt = Qualitative, mix =
Mixed-Methods Design; +/- = Mixed Results

listing outcomes related to students’ interests and perceptions. The differences between
the school and the university setting are expectedly not that salient when it comes to
the examined outcomes. Table 2 and Table 3 demonstrate that the investigated learning
outcomes within various educational settings – skills-related and perceptions-related
respectively – are mostly comparable. Not surprisingly, such outcomes as interest in
a certain career path or experience with particular IT roles or jobs are only observed
within the university setting, as there learners are closer to entering the job market.
In general, instilling knowledge in schoolchildren and students, as well as building a
positive attitude towards the subject of computer science and programming, appears to
be the ultimate value and criteria of the educational method’s success.

The majority of identified outcomes are positive, and only a few are mixed. For
instance, Collier et al. [18, p.157] report that "although the majority [of students] believed
the game programming experience enhanced their learning overall, another majority
reported that the project itself was not enjoyable." Yet, Fowler and Khosmood [19, p.5]
report that their learners perceive the GDBL course as an "enjoyable hardship." These
quotes illustrate well the current state of research on GDBL. First, the mixed effects
are owed to the various dimensions of the studied constructs and the complexity of the
GDBL as a phenomenon. While ratings of some learning aspects are high, others may
receive lower scores. Second, we observe that same constructs, e.g., learning enjoyment,
can be operationalized with a measurement item [18] or examined with an open-ended
question [19]. As a result, the comparison and integration of studies in the extant body
of literature, even exploring the same outcomes, is complicated. This issue is especially
pronounced in case of perceptions of computer science and programming summarized
in Table 3. Third, many papers, even employing quantitative design, only report the
results of descriptive data analysis (e.g., bar charts and frequency tables). At the same
time, we observe that most authors administer pre- and post-treatment surveys of course
participants and report frequencies obtained from both time periods. Lastly, a common



Table 3. Perceptions of computer science and programming

Authors/Year SD ES Outcome Effect

[18] Collier and Kawash 2014 qnt Uni Own learning assessment +/-
[8] Dekhane et al. 2013 qnt Uni Attitudes towards computing +
[7] Dekhane and Xu 2012 qnt Uni Attitudes towards computing +
[25] Duch and Jaworski 2018 qnt Uni Perceived knowledge usefulness +
[27] Frydenberg 2015 mix Uni Experiencing IT roles +/-
[9] Perenc et al. 2019 qnt Uni Perceived knowledge helpfulness +
[32] Bittencourt et al. 2015 qnt Uni Perception of block-based language +
[29] Kurkovsky 2009 mix Uni Interest in CS career +

[23] da Silva and da Silva Aranha 2015 qnt Sch Learning engagement +
[6] da Silva and da Silva Aranha 2016 qnt Sch Learning motivation +
[35] Doerschuk et al. 2013 qnt Sch Interest in CS +
[4] Haselberger et al. 2020 qlt Sch Perception of CS +
[22] Johnson 2017 qlt Sch Challenging learning -
[5] Papadakis 2020 qnt* Sch Learning motivation +

[30] Al-Bow et al. 2008 qnt Cmp Interest in technology +
[19] Fowler and Khosmood 2018 mix* Cmp Perception of CS +/-
Note: ES = Educational Setting, Uni = University, Sch = School, Cmp = Summer Camp; SD =
Study Design, qnt = Quantitative, * = Significance Testing Performed, qlt = Qualitative, mix =
Mixed-Methods Design; +/- = Mixed Results

limitation of articles under review is that the data are obtained from one course iteration,
e.g., one semester, and hence from a small participants’ number (see, for instance, [27]).
Only four studies have sample sizes larger than a hundred [9, 18, 24, 25]. Small sample
sizes might also be the reason why we do not see more results of statistical testing.

Against this methodological backdrop, we conclude by highlighting the results
obtained within experimental designs [5, 20, 21]. In all experiments, GDBL-class repre-
sented experimental condition. Students in control condition received traditional teaching
instructions. Test scores [5, 20, 21] and course deliverables, i.e., post test’ projects, were
used to assess students’ achievements [20]. The studies [5, 21] demonstrate effectiveness
of the GDBL educational method. Garneli et al. [20] present more nuanced results. The
control group "mostly experimented with more complex programming curricula [con-
ditionals, variables, operators, and sequence primitives], while the game development
group improved in all the primitive categories [loops, coordination/synchronization/event
handlers, sensing, and sequence primitives" [20]. Statistically significant difference was
additionally found in the control group as they used more variables and operators and
made more errors in comparison with the video game development groups.

5 Discussion

School teachers face the challenge of making programming more accessible to novices
without any prior computing experience [4–6, 9, 22, 23, 26]. Participants of university



GDBL-courses are more likely to have some related knowledge [7–9, 27–29]. Yet,
instructors at higher education institutions battle the skeptical, dismissive attitude of
students [32], declining enrollment rates at STEM disciplines and high drop-out rates at
programming courses [7–9]. Adoption of GDBL is considered as a way to lower entry
barriers and increase students’ engagement. Game development makes lectures less
theoretical, more application-oriented, and engaging for students [28].

This paper answers two research questions concerning the GDBL approach. To an-
swer the first question "What are the attributes of GDBL-based programming courses?",
we focused on the characteristics of game development set-ups described in empirical
studies. As a result, the following key attributes were identified: (1) educational setting,
(2) type of programming language, (3) games to be developed or modified. We conclude
that the way of implementing GDBL depends on the education level.

Schoolchildren mostly work with block-based programming environments, such as
Blockly [31], Scratch [26, 32, 33], GameSalad [7, 8], and Alice [34]. As a result, they
develop and modify small visual games and missions. Much of the computing power
is taken up by game development frameworks. The visual and playful components tie
together young learners’ interests with computer science [29].

At the Higher Education level, GDBL-based programming courses employ higher-
level text-based programming languages such as Java [30, 35], C++ [9], C [9], and
Assembly [28]. The setup and application of the tools for game development are more
complex. On the other hand, study participants get the opportunity to program their
games from scratch and with more sophisticated game-play. Tetris, Pac-man, Space
Invaders, and Snake (different arcade games) are often re-developed [9, 25, 27–29].

Interestingly, only three out of 22 papers under review arranged online game devel-
opment based learning classes. Most schools and universities continue to offer in-class
courses. The COVID-19 pandemic, however, forces instructors to create digital educa-
tional content and to convert their teaching to digital in order to continue the provision
of educational services. Hence, there is a need for more evidence on online GDBL
programming and computer science courses.

To address the second research question "What are the outcomes of learning a
programming language through the GDBL educational approach?," we reviewed the
results of reviewed articles. Our review gives a positive picture of learning to program
with the GDBL educational approach. While all studies show at least some positive
effect [18,20,22,26,27], a majority of papers reports exclusively positive ones [5,8,23,28].
The positive effects manifested in higher test scored of the GDBL experimental groups
compared to conventional learning groups [5, 21] strengthen the argument that GDBL is
an effective educational method.

All investigated learning outcomes can be subsumed under computing skills (e.g.,
problem solving [8], programming skills [24], comprehension of computer science
concepts [17]) and perceptions of computer science and programming (students’ inter-
est [29], motivation [6], and attitudes [8]). Within different educational settings (summer
camp, school, university), teachers aim to open up the world of programming to young
people in a sustainable way – in that learners are not deterred by technical or theoret-
ical hurdles but are picked up where their interests lie [11]. Hence, regardless of the
educational setting, comparable learning outcomes are investigated.



The reviewed articles present qualitative, quantitative, and mixed-methods designs,
but quantitative surveys and descriptive analyses prevail. Only three papers conducted
experiments [5, 20, 21]. Two papers relied on qualitative interviews with schoolchildren
for deeper insights into the advantages of game development based learning [4, 22].
GDBL represents a complex phenomenon involving teaching staff, students, and game
development frameworks. Hence, after almost two decades of research into GDBL for
programming and computer science education – summarized in [11] (published in 2012)
and this paper – there is still a need for empirical evidence. Collecting sufficient data
at multiple time points (for tracking within-person changes in knowledge, skills, and
perceptions towards programming) for the application of appropriate statistical analyses
represents a perspective avenue for future research. Experimental studies into the effects
of GDBL, compared to traditional teaching instructions, are needed most as they allow
for causal inference. Lastly, changes in technology use [29] drive changes in game-
related interests of students (from the popularity of computer games to mobile games)
and consequently affect the choice of game development frameworks [5]. Thus, advances
in the technology for gaming translate into potentials for GDBL research.

We believe that our synthesis of the papers on programming with GDBL will in-
troduce interested teachers and university instructors to appropriate tools for a given
education level: programming languages, integrated development environments and
other materials necessary for game-development in the class. Informing interested par-
ties about recent developments in teaching programming and computer science and
equipping them with the tools that have been applied in practice represent crucial steps
for delivering more accessible training to new generations of students.

6 Conclusion

As digitalization advances, young people face new challenges. Day-to-day activities [2]
and especially new requirements posed by the job market [3] increasingly demand
expertise in the area of programming and computer science. The accessible and sufficient
training in corresponding areas is of immense importance. As a result, novel game-based
educational approaches and, in particular, game development based learning [11] have
emerged and are applied in STEM disciplines. The GDBL approach allows instructors to
engage learners by meeting them where their interests lie, namely, computer and mobile
games [36]. We conducted a systematic literature review [15, 16] of studies applying the
GDBL approach within programming courses and investigating its learning outcomes.
Our results based on 22 research papers suggest that the use of GDBL in computer
science education is an effective educational approach. Nevertheless, there exist a need
for more research evidence and methodological rigor.

7 Acknowledgements

This work has been funded by the Federal Ministry of Education and Research of
Germany (BMBF) under grant no. 16DII127 ("Deutsches Internet-Institut").



References

1. Statista: Number of smartphone users from 2016 to 2021 (2021), https:
//www.statista.com/statistics/330695/number-of-smartphone-use
rs-worldwide/

2. Koetsier, J.: Global Online Content Consumption Doubled In 2020 (2020),
https://www.forbes.com/sites/johnkoetsier/2020/09/26/global-o
nline-content-consumption-doubled-in-2020/?sh=2a82336c2fde

3. Curtarelli, M., Gualtieri, V., Shater Jannati, M., Donlevy, V.: ICT for work: Digital skills in
the workplace (2014)

4. Haselberger, D., Motschnig, R., Comber, O., Mayer, H., Hörbe, M.: Experiential Factors
Supporting Pupils’ Perceived Competence In Coding - An Evaluative Qualitative Content
Analysis. In: 2020 IEEE Frontiers in Education Conference (FIE). pp. 1–9 (2020)

5. Papadakis, S.: Evaluating a game-development approach to teach introductory programming
concepts in secondary education. International Journal of Technology Enhanced Learning
12(2), 127–145 (2020)

6. Da Silva, T.R., Da Silva Aranha, E.H.: An empirical study of online K-12 education for pro-
gramming games. Proceedings - IEEE 16th International Conference on Advanced Learning
Technologies, ICALT 2016 pp. 255–259 (2016)

7. Dekhane, S., Xu, X.: Engaging students in computing using GameSalad: a pilot study. Journal
of Computing Sciences in Colleges 28(2), 117–123 (2012)

8. Dekhane, S., Xu, X., Tsoi, M.Y.: Mobile app development to increase student engagement
and problem solving skills. Journal of Information Systems Education 24(4), 299–308 (2013)

9. Perenc, I., Jaworski, T., Duch, P.: Teaching programming using dedicated Arduino Educational
Board. Computer Applications in Engineering Education 27(4), 943–954 (2019)

10. Maurício, R.d.A., Veado, L., Moreira, R.T., Figueiredo, E., Costa, H.: A systematic mapping
study on game-related methods for software engineering education. Information and software
technology 95, 201–218 (2018)

11. Wu, B., Wang, A.I.: A guideline for game development-based learning: a literature review.
International Journal of Computer Games Technology 2012 (2012)

12. Alhammad, M.M., Moreno, A.M.: Gamification in software engineering education: A
systematic mapping. Journal of Systems and Software 141, 131–150 (2018), https:
//doi.org/10.1016/j.jss.2018.03.065

13. Pedreira, O., García, F., Brisaboa, N., Piattini, M.: Gamification in software engineering–a
systematic mapping. Information and software technology 57, 157–168 (2015)

14. Krusche, S., Reichart, B., Tolstoi, P., Bruegge, B.: Experiences from an experiential learning
course on games development. In: Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. pp. 582–587 (2016)

15. Webster, J., Watson, R.T.: Analyzing the Past to Prepare for the Future: Writing a Literature
Review. MIS Quarterly 26(2), xiii—-xxiii (2002)

16. vom Brocke, J., Simons, A., Niehaves, B., Niehaves, B., Reimer, K., Plattfaut, R., Cleven, A.:
Reconstructing the giant: On the importance of rigour in documenting the literature search
process (2009)

17. Seaborn, K., Seif El-Nasr, M., Milam, D., Yung, D.: Programming, PWNed: Using Digital
Game Development to Enhance Learners’ Competency and Self-Efficacy in a High School
Computing Science Course. In: Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education. pp. 93–98. SIGCSE ’12, Association for Computing Machinery,
New York, NY, USA (2012), https://doi.org/10.1145/2157136.2157169

18. Collier, R., Kawash, J.: Lessons learned and recommended strategies for game development
components in a computer literacy course. In: SIGCSE 2014 - Proceedings of the 45th ACM
Technical Symposium on Computer Science Education. pp. 157–162 (2014)

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.forbes.com/sites/johnkoetsier/2020/09/26/global-online-content-consumption-doubled-in-2020/?sh=2a82336c2fde
https://www.forbes.com/sites/johnkoetsier/2020/09/26/global-online-content-consumption-doubled-in-2020/?sh=2a82336c2fde
https://doi.org/10.1016/j.jss.2018.03.065
https://doi.org/10.1016/j.jss.2018.03.065
https://doi.org/10.1145/2157136.2157169


19. Fowler, A., Khosmood, F.: The Potential of Young Learners Making Games: An Exploratory
Study. In: 2018 IEEE Games, Entertainment, Media Conference (GEM). pp. 1–9 (2018)

20. Garneli, V., Giannakos, M.N., Chorianopoulos, K., Jaccheri, L.: Serious Game Development
as a Creative Learning Experience: Lessons Learnt. In: 2015 IEEE/ACM 4th International
Workshop on Games and Software Engineering. pp. 36–42 (2015)

21. Poolsawas, B., Niranatlamphong, W.: Using a game development platform to improve ad-
vanced programming skills. Journal of Reviews on Global Economics 6, 328–334 (2017)

22. Johnson, C.: Learning Basic Programming Concepts with Game Maker. In: International
Journal of Computer Science Education in Schools, v1 n2 May 2017 (2017)

23. Da Silva, T.R., Da Silva Aranha, E.H.: Online game-based programming learning for high
school students - A case study. Proceedings - Frontiers in Education Conference, FIE 2015
(2015)

24. Holenko Dlab, M., Hoic-Bozic, N.: Effectiveness of game development-based learning for
acquiring programming skills in lower secondary education in Croatia. Education and Infor-
mation Technologies (2021)

25. Duch, P., Jaworski, T.: Enriching computer science programming classes with arduino game
development. In: Proceedings - 2018 11th International Conference on Human System Inter-
action, HSI 2018. pp. 148–154 (2018)

26. Seralidou, E., Douligeris, C.: Learning programming by creating games through the use of
structured activities in secondary education in Greece. Education and Information Technolo-
gies 26(1), 859–898 (2021), https://doi.org/10.1007/s10639-020-10255-8

27. Frydenberg, M.: Achieving digital literacy through game development: an authentic learning
experience. Interactive Technology and Smart Education 12(4), 256–269 (2015)

28. Kawash, J., Collier, R.: Using video game development to engage undergraduate students of
assembly language programming. In: SIGITE 2013 - Proceedings of the 2013 ACM SIGITE
Annual Conference on Information Technology Education. pp. 71–76 (2013)

29. Kurkovsky, S.: Can mobile game development foster student interest in computer science? In:
2009 International IEEE Consumer Electronics Society’s Games Innovations Conference. pp.
92–100 (2009)

30. Al-Bow, M., Austin, D., Edgington, J., Fajardo, R., Fishburn, J., Lara, C., Leutenegger,
S., Meyer, S.: Using Greenfoot and Games to Teach Rising 9th and 10th Grade Novice
Programmers. In: Proceedings of the 2008 ACM SIGGRAPH Symposium on Video Games.
pp. 55–59. Sandbox ’08, Association for Computing Machinery, New York, NY, USA (2008),
https://doi.org/10.1145/1401843.1401853

31. Fraser, N.: Google blockly-a visual programming editor (2014)
32. Bittencourt, R.A., dos Santos, D.M.B., Rodrigues, C.A., Batista, W.P., Chalegre, H.S.: Learn-

ing programming with peer support, games, challenges and scratch. In: 2015 IEEE Frontiers
in Education Conference (FIE). pp. 1–9 (2015)

33. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Others: Scratch: programming for all.
Communications of the ACM 52(11), 60–67 (2009)

34. Cooper, S., Dann, W., Pausch, R.: Alice: a 3-D tool for introductory programming concepts.
Journal of computing sciences in colleges 15(5), 107–116 (2000)

35. Doerschuk, P., Juarez, V., Liu, J., Vincent, D., Doss, K., Mann, J.: Introducing programming
concepts through video game creation. In: 2013 IEEE Frontiers in Education Conference
(FIE). pp. 523–529 (2013)

36. Statista: Share of 13- to 18-year-olds who play video games every day in the United States as
of April 2019, by platform (2019)

https://doi.org/10.1007/s10639-020-10255-8
https://doi.org/10.1145/1401843.1401853

	Game Development Based Approach for Learning to Program: A Systematic Literature Review
	Recommended Citation

	Game Development Based Approach for Learning to Program: A Systematic Literature Review

