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ABSTRACT 
The useful navigation guidance is favorable to considerably reducing navigation time. The navigation problems involved with 

multiple destinations are formulated as the Directed Steiner Tree (DST) problems over directed graphs. In this paper, we propose 

a deep learning (to be exact, graph neural networks) based approach to tackle the DST problem in a supervised manner. 

Experiments are conducted to evaluate the proposed approach, and the results suggest that our approach can effectively solve 

the DST problems. In particular, the accuracy of the network model can reach 95.04% or even higher.  

 

Keywords: Navigation guidance, directed Steiner Tree, graph neural network. 

 

INTRODUCTION 

The processes of navigation are omnipresent in modern society. Since most people are reluctant to spend enormous time on the 

way to the destinations, providing practical navigation guidance is desirable. Good guidance can save substantial time. Therefore 

it could benefit people by certain occupations, such as delivery men or Uber drivers to whom time cost is crucial. Speedy finishing 

orders bring more orders and income consequently. On the other hand, excessive steering would incur delay or even retreat in 

the process of navigation. Furthermore, Uber drivers might not prefer to take an order when seeing the route is tortuous. In terms 

of the Web, an appropriate path is beneficial for both surfers and website owners by reducing the searching time to retrieve 

information and promoting the advertisement of websites, respectively.  

 

Providing effective navigation guidance is a challenging task due to the scale and complexity of applications in reality (e.g., city 

maps and websites) (Yen & Wan, 2010). Worse still, such a task can be further complicated by the diversity and multiplicity of 

destinations. It is straightforward to use those shortest path algorithms (e.g., Dijkstra algorithm (Dijkstra, 1959)) to acquire the 

optimal paths for single destination problems, yet the problems become tricky with multiple destinations involved. Basically, 

randomly exploring multiple destinations could be cumbersome. The major issue then is how to find optimal paths for reaching 

multiple destinations with minimum navigation time. Therefore, this paper focuses on an approach to analyze the problem as the 

Directed Steiner Tree (DST) problem (Charikar et al., 1999), an NP-hard combinatorial optimization (CO) problem (Karp, 1972). 

Recently, deep learning has been proved to be suited for solving various CO problems (Bengio et al., 2021; Mazyavkina et al., 

2021; Vesselinova et al., 2020). In general, NP-hard problems on graphs can be formulated as sequential decision-making tasks 

due to their highly structured property (Joshi et al., 2019), and deep learning can automatically detect useful patterns in the data. 

Hence, deep learning-based approaches are good candidates to be adopted for approximately solving those CO problems.  

 

In this paper, we propose a deep learning-based approach to solve DST problems. Then the solutions can be served as optimal 

navigation guidance. The core of our model is Graph Attention Network (GAT) that proposed by Veličković et al. (2017). We 

demonstrate our approach through simulations, and the experiments indicate that the approach can effectively address DST 

problems and efficiently generate optimal navigation guidance.  

 

The remainder of this paper is organized as follows. A survey of related work is given in section 2. A problem modeling is 

introduced in section 3. Subsequently, the deep learning (neural graph networks, to be exact) based approach is described in 

section 4. The numerical experiments are conducted in section 5 to evaluate the performance of the proposed approach. Finally, 

the paper concludes with a summary in section 6. 

 

LITERATURE REVIEW 

Navigation and Guidance 

In a broad sense, navigation can refer to any study that involves the determination of position and direction (Hofmann-Wellenhof 

et al., 2003). Most literature on navigation studied position systems of vehicles with multi-sensors  (Syed et al., 2008; Jost et al., 

2014; Wang et al., 2020; Rose et al., 2014; Jiang et al., 2017; Vu et al., 2012), or navigation in networking (Win et al., 2011), 

whereas the direction aspect is the thing that draws our attention.  

 

Some studies focus on navigation for people. Niu et al. (2019) fuse the information of two foot-mounted systems to achieve 

more robust and reliable performance; Renaudin et al. (2017) conduct an original transdisciplinary study of the underlying 

reasons about no universal solution of a navigation system; Mancini et al. (2015) propose a safe point-to-point navigation for 

impaired people owing to high-detailed road graphs; Patil et al. (2011) present a novel approach to guide agents towards desired 

goals using navigation fields. Besides humankind, navigation for mobile robots is one of the popular fields. Shi et al. (2007) 
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developed a novel fuzzy behavioral scheme for navigating an unmanned helicopter in cluttered 3-D spaces; Gabriely and Rimon 

(2008) introduce a notion of competitiveness suitable for online mobile robot navigation in general planar environments; Liu et 

al. (2021) present a self-improving lifelong learning framework for a mobile robot navigating in different environments that 

improves a mobile robot's navigation behavior purely based on its own experience. 

 

It is significant to recommend an appropriate path, i.e., guidance, for navigation. This is because not only distinct paths might 

enormously differ in time, but also a poor path would cause troubles (e.g., collision). Votion and Cao (2019) develop navigation 

algorithms for cooperative unmanned vehicles in cost-map environments. Loizou (2017) maps an obstacle-cluttered environment 

to a trivial domain, reducing the navigation task to connecting the images of the initial and destination configurations by a straight 

line. Devaurs et al. (2016) develop sampling-based algorithms for path planning in cost space, efficiently solving high-

dimensional search space. Muralidharan and Mostofi (2019) focus on a general path planning problem of a robot on a graph with 

edge costs, where each node has a Boolean value denoting success or failure with a given probability. 

 

Combinatorial Optimization (CO) and Graph Neural Network (GNN) 

This study aims at investigating the optimal navigation guidance in general graph structure (Gross & Yellen, 2006) environments, 

e.g., city maps and websites. Yen and Wan (2010) report positive results that support the use of the web navigation guidance for 

one destination web page. However, the information of interest was often scattered on several web pages. It is, therefore, 

desirable that the optimal navigation guidance could handle the destinations with diversity and multiplicity. Thus, the navigation 

problem can be formulated as a Directed Steiner Tree (DST) problem (Karp, 1972). Deep learning algorithms have been used to 

approximate for solving CO problems (Smith, 1999; Bengio et al., 2021). Besides, owing to the graph structure, Graph Neural 

Networks (GNN), deep learning-based methods for graph data, are more suitable for solving them.  

 

Khalil et al. (2017) first consider the graph structure and encode problem instances using a graph embedding model (Dai et al., 

2016). Nowak et al. (2017) train a Graph Neural Network (GNN) in a non-autoregressive and supervised manner to output a 

TSP tour (Wu et al., 2016). Joshi et al. (2019) leverage different Graph Convolution Networks (Bresson & Laurent, 2017) and 

improve the performance on top of Nowak et al.’s work. Kool et al. (2021) further integrate Joshi et al.’s model with dynamic 

programming (DP) to Solve Vehicle Routing Problems (VRP). Cappart et al. (2021a) train a GAT-based model to learn a policy 

for Markov decision process (MDP) problems using reinforcement learning and constraint programming. 

 

Along with those work mainly on TSP and VRP, Barrett et al. (2020) utilize the framework of Dai et al. on the Maximum Clique 

(MC) problem. Li et al. (2018) integrate a GCN with a guided tree-search in a supervised setting for Maximal Independent Set 

(MIS), Minimum Vertex Cover (MVC), and MC problems. From the perspective of approximation ratio, Sato et al. (2019) first 

theoretically demonstrate approximation ratios of using GNN for MVC. For more surveys of machine learning for combinatorial 

optimization in general, please refer to (Bengio et al., 2021; Mazyavkina et al., 2021; Vesselinova et al., 2020; Cappart et al., 

2021b). 

 

To our knowledge, this work is the first to train Graph Neural Network (GNN) models with the goal of solving DST problems. 

The closest work to ours might be Joshi et al. (2019) and Li et al. (2018), both using GNN models to solve different CO problems 

by supervised learning, but their models are not suited for solving our problems.  

 

PROBLEM DESCRIPTION AND MODELLING 

The structure of a map is represented as a directed graph, where each node denotes a site (e.g., a building, a recreation facility, 

or a residential spot), and each arc represents a road (i.e., path, arc, or edge).  

 

Graph Structure and Traversal 

The graph ( , , )G V E w=  is defined as follows: 

Nodes: 1 2{ , ,... }nV v v v= , where vi denotes a site or a web page, i=1,2,…,n; 

Arcs (Arcs): { [ , ] ( , ) |E e v v or i jij i j= = A road or a hyperlink exists from node i  to node }j ; 

Weights: 𝑤:𝐸 → 𝑅+ is the edge-associated weight that reflects the road length or loading time of a web page. 

 

In the above definition of G, the length of 𝑒𝑖𝑗 is the same as 𝑒𝑗𝑖 only if it is a bidirectional road, as far as the web is concerned, 

the loading time will vary as it is related to the size of the next desired page. Traffic and network condition are not considered in 

this paper.   

 

A simple example with identical weights in Figure 1 is presented to illustrate the traversal process. The preferences of navigation 

can be diversified that there could be multiple destination nodes, especially equal or greater than 3. As shown in Figure 1, it is 

non-trivial to determine an optimal path from the root node A to the destination nodes G, J, and K.  
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Figure 1: Single source to multiple destinations. 

 

Steiner Problem in Directed Graph 

The Directed Steiner Tree (DST) problem is defined as follows: Given a directed graph ( , , )G V E w=  with n nodes and m arcs, 

a node r called root and a set X of k nodes called terminals (destinations) and non-negative weights w associated with arcs, the 

DST problem is to find a minimum cost directed tree rooted at r spanning all destinations. 

 

In fact, the DST problem has been widely studied in the literature, whereas no polynomial approximation algorithm achieves a 

constant ratio contrary to the undirected version (Watel & Weisser, 2016). One of the renowned heuristic methods for DST 

problem is proposed by Charikar et al. (1999), a greedy non-trivial algorithm achieving 𝑙(𝑙 − 1)𝑘
1

𝑙  factor based on Zelikovsky’s 

𝑙-restricted Steiner tree (Zelikovsky, 1997), where n is the number of nodes in the graph, k is the number of destinations, and l 

denotes every leaf node being at most l edges away from the root node. Due to the high time complexity of Charikar et al.’s 

algorithm, Hsieh et al. (2006) developed a faster approximation algorithm for directed Steiner trees based on it. Takahashi and 

Matsuyama (1980) proposed a straightforward greedy approach to find the shortest destination from the “selected tree.” Since 

Charikar et al.’s algorithm, the state-of-the-art polynomial-time approximation algorithm for the DST problem is presented by 

Grandoni et al. (2019). Linear programming-based methods are also widely applied to DST problems, such as (Rothvoß, 2011). 

For the exact solution of the DST problem, the directed version of the original Dreyfus-Wagner algorithm (Dreyfus & Wagner, 

1972), a dynamic programming algorithm, can be used to obtain it in exponential time. 

 

DEEP LEARNING APPROACH 

Both the approximation and exact algorithms have intrinsic limitations. Takahashi-Matsuyama algorithm (Takahashi & 

Matsuyama, 1980) is fast, but the performance (solution quality) is not satisfactory sometimes; the performance of the Charikar 

algorithm (Charikar et al., 1999) is acceptable but at the sacrifice of time and space. Even though the approximation ratio of the 

Grandoni algorithm (Grandoni et al., 2019) is the best to date, its computation time of it remains an issue.  

 

In light of two essential requirements for real-time and minimum cost, we propose a deep learning approach based on Graph 

Attention Network to provide navigation guidance for multi-destination problems. The guidance data (i.e., optimal paths) is 

generated from the directed variant of the Dreyfus-Wagner algorithm (Dreyfus & Wagner, 1972). Then path information as well 

as graph information, including node features and edges, are fed into the neural network model to train. The output of each node 

denotes the probabilities of nodes that belong to the optimal path. After adequate training, the neural network can provide 

identical navigation guidance paths with those generated by the Dreyfus-Wagner algorithm given unseen destination sets, which 

reflects good generalization.  

 

In terms of neural network architecture, since the graph is a type of non-Euclidean structure data, unlike image, video, text, etc. 

those can be represented in the Euclidean space, it is challenging and unsuitable to adopt Multilayer Perceptron (MLP) or 

convolution neural networks (CNNs) (LeCun & Bengio, 1995). Recently, many studies have extended deep learning on graph 

data called graph neural networks (GNNs) and proposed various network architectures exclusively for graphs (Wu et al., 2020). 

Among them, we do not take spectral-based convolutional graph neural networks (ConvGNNs) into consideration, owing to their 

undirected and fixed graph scope (Wu et al., 2020). Graph Attention Network (GAT) (Velickovic et al., 2017), one of the spatial-

based ConvGNNs, is suitable for our problem. GAT assumes contributions of neighbor nodes to the central node are neither 

identical like GraphSage (Hamilton et al., 2017) nor pre-determined like GCN (Kipf & Welling, 2016). In fact, it accords with 

the logic of the aforementioned directed Dreyfus-Wagner algorithm. Each neighbor node has a disparate impact on the central 

node as the weight of edges is different when finding the shortest path. Furthermore, to emphasize the influence of weights, a 

GAT layer is accompanied by a linear layer that is fed in node features only. Then their outputs are passed through a Batch 

Normalization layer and followed by the ReLU activation function. We construct several layers to repeat such a process, 
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guarantee enough parameters and make it fully trained. Since our problem is a binary node classification problem that nodes 

within the guidance are labeled as 1 while others 0, the final output layer should apply a sigmoid function to bound it in the 

interval [0, 1]. The whole neural network architecture is presented as follows (Figure 2). 

 

 
Figure 2: The model architecture. 

 

To sum up, we feed the paths generated from an exact solution of the Directed Steiner Tree problem as well as corresponding 

graph data into GAT networks to pre-train, thus achieving real-time and minimum cost navigation guidance to suggest. Please 

refer to Section 5.2 for more details about the proposed model. 

 

EXPERIMENT RESULTS AND DISCUSSION 

In this section, numerical experiments are conducted to assess the performance of the proposed deep learning approach for 

navigation guidance in various scenarios. For node classification problems, the common metric is accuracy. However, the class 

distribution of the dataset for navigation guidance problems is uneven, i.e., the number of nodes on the optimal paths is relatively 

small. Besides, if one node is misclassified in the graph, either making the path impassable or superfluous, the path result is not 

acceptable. Hence, a more rigorous metric is required as misclassification of even one node would influence the guidance path. 

Therefore, instead of from the perspective of a single node, we define that for each data sample that it is classified as correct 

only if all nodes in the graph are labeled correctly. The metric referred to as “path accuracy” is the rate of the number of correct 

data samples against the total number of data sets.  

 

Graph Generation 

The graph, represented by ( , , )G V E w=  as described in section 3.1, is generated from the following procedure: 

(1) Set the number of nodes | |n V= . 

(2) Randomly generate outdegree and point-to-neighbors for each node. The distribution of outdegree can follow power law to 

satisfy characteristics of certain graphs, e.g., the web (Broder et al., 2000; Pennock et al., 2002), BA graphs (Albert & 

Barabási, 2002), or random graph theory (Erdős & Rényi, 2011).  

(3) Randomly assign the weights of edges from a Gaussian distribution. 

(4) Randomly select k destinations that can be reached from the root node r. 

 

After the graph generation is complete, the directed Dreyfus-Wagner algorithm (Dreyfus & Wagner, 1972) can be used to 

generate optimal paths according to pairs of root nodes and destinations.  

 

Neural Network Configuration 

Based on the network architecture described in section 4, there are a total of 12 layers of GAT and Linear including input layer 

and output layer, followed by Batch Normalization (BN) and ReLU sequentially except the output layer. Thus, there are 11 BN 

layers and 11 ReLU functions in total, as well as 1 sigmoid function at the final output layer. For each GAT layer, the hidden 

channel and head are 128 and 4, adding up to 512 parameters. In the training stage, we set batch size as 32, chose Adagrad as 

the optimizer, and the learning rate as 0.01. Adagrad is suited for uneven distribution problems, and these hyperparameters are 

obtained through trials and experience. The loss function is binary cross-entropy. All experiments are carried out with a single 

GPU NVIDIA Tesla P100-PCIE 16G and programmed in Python. 

 

Experiments 

We first study on a fixed graph, i.e., the graph scale, node features, edge connection, and edge weights are pinned down, and 

explore the influence of destination number on metric path accuracy. The initial node number and the destination number are 

100 and 3, respectively. 

 

To start with, we set destination number k as a constant number 3 as initial. Randomly select three destinations in the fixed graph 

except for the root node, and generate corresponding optimal paths. Totally we generate 40000 such data samples and split them 

as training dataset (70%) and test dataset (30%). The training dataset is approximately 18% of all permutations of 3 destinations, 



Yen & Luo 

 
The 21st International Conference on Electronic Business, Nanjing, China, December 3-7, 2021 

308 

i.e. 𝐶3
99 = 156849. It is reasonable that more training data would make the neural network learn better, but we found 18% of all 

possible permutations is enough to train a workable model. The loss and path accuracy curves are as follows. See the figures 

below.  

 

 
Figure 3: Path accuracy of the test set and training loss. 

 

 
Figure 4: Path accuracy of training and test set. 

 

As shown in Figures 3 and 4, the training loss drops to almost 0.0000, and the accuracy of the training set reaches 99.99% 

respectively after enough epochs. It implicates that the neural network has made full use of the training dataset. For the 

generalization, the path accuracy, the metric we pay attention to, of the test dataset is around 95.04% finally.  

 

Then, we try to add nodes to a graph to imitate the growing process of the graph, e.g., new web pages are created in a website or 

road segments are expanding. As revealed by our experiments, the adding step of from 10% to 50% of the original number of 

nodes does not affect re-training and even boosts the former final path accuracy. In the case of 20%, the eventual path accuracy 

increases to 96.7% when the total node of a graph increases to 200. We can expand it to the scale of 1000 smoothly, and the final 

path accuracy is 98.10%.  

 

Table 1: Experiment results when the graphs are growing. 

Situation Scale n Destination k Path Accuracy 

The Basic Graph 100 3 95.04% 

Addition 200 3 96.7% 

Addition 1000 3 98.10% 
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CONCLUSION 

In this paper, we introduce a deep learning-based approach for approximately solving the Directed Steiner Tree problems using 

Graph Attention Networks via a supervised and no-autoregressive manner.  Our approach trains a network model to predict the 

probability of each node whether it belongs to the optimal solution. A rigorous metric beyond node classification accuracy, path 

accuracy, is adopted to evaluate the performances. The experiment results show that our approach can effectively solve the DST 

problems with good scalability, and it implies the potential to utilize Graph Neural Networks to solve Combinatorial 

Optimization problems over directed graphs.  
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