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Abstract. Most of Germany’s existing wind and solar plants have been losing 

their subsidies after 20 years of operation since 2020. Without support schemes, 

the challenges for the renewable operators are the intermittent generation and the 

fluctuating power prices. Consequently, lower-than-expected revenues and high 

revenue variability make it more difficult for the renewable operators to be active 

on power markets. Therefore, the renewable operators have to be profit effective 

as well as cope with the high variability of their revenue. This paper proposes a 

deep reinforcement learning (DRL) based model to adjust the renewable 

operators’ short-term energy supply using a battery storage strategy. The 

simulative empirical evaluation shows that the renewable operators can be 

profitable on the market and improve their revenue stability using the proposed 

DRL based battery storage strategy.  

Keywords: deep reinforcement learning, battery storage system, renewable 

generation, maximizing profit, revenue variability 

1 Introduction 

As sustainable and environmentally friendly sources of electricity, renewable energy 

generators have the potential to replace power generation from conventional power 

plants using fossil fuels. In Germany, a significant growth of wind and solar power 

plant installation has been observed, supported by fixed feed-in tariffs guaranteed for 

20 years. Nonetheless, with the reform of the Renewable Energy Act taking effect in 

2017, it was made compulsory for large facilities to enter into the so-called “direct 

marketing”: operators must sell their power directly on the wholesale electricity market 

without the guaranteed fixed price [1]. Furthermore, most of Germany’s existing wind 

and solar stations are losing their subsidies successively after 20 years of operation [2].  

Renewable operators without support schemes are directly exposed to market risks. 

Unlike conventional energy sources, wind and solar power fluctuate with the weather 

and are non-dispatchable. Consequently, revenues of renewable operators can vary 

considerably [3]. On the wholesale power market, power prices change relatively 



 

 

quickly throughout the day due to the fluctuating demand and supply patterns and the 

lack of storage possibilities [4]. Meanwhile, the increasing penetration of renewable 

generation (RG) pushes more expensive conventional generation down the merit order, 

and even decreases the price [5]. Very low and even negative wholesale prices can 

result in lower-than-expected revenues, and the high revenue variability makes it more 

difficult for renewable operators to be active on long-term forward power markets [6]. 

Thus, the renewable operators must generate strategies to be profitable on power 

markets and to dampen the revenue variability. 

Battery storage systems (BSSs) provide means to make RG dispatchable and become 

an enabling technology for RG regarding various services in the power system [7]. By 

charging the battery at lower prices and discharging it at higher prices, the renewable 

operators can shift their energy sales from times when demand is low and supply is 

high to times with better revenue opportunities. Hence, they can increase their profit or 

avoid large variability in revenues. Recent research has proposed deep reinforcement 

learning (DRL) based solutions to allow for more short-term flexibility in the market 

through investor-owned BSS for energy arbitrage (EA) [8–10]. EA in this context 

means buying electricity at lower prices and selling it later at higher prices. In literature, 

it has become common to refer to this as arbitrage. However, an important characteristic 

of arbitrage is that no risk is associated which is not the case for these strategies, since 

it is uncertain whether the price spreads at the spot market will be sufficient to cover 

storage cycling costs. We therefore choose to name it energy arbitrage. As an effective 

data mining technology, DRL algorithms can fully explore and utilize the fluctuation 

patterns in the historical datasets to generate optimized strategy [8]. However, the joint 

operation of the renewable generators and BSS causes huge initial investment costs due 

to the high battery prices. As is indicated in [11], a dynamic sizing of the storage 

capacity might be more profitable if the storage operator is modeled as an independent 

market entity and offers storage service to the renewable operator. Additionally, most 

researchers only consider maximizing the profit of the system owner. Only few 

researchers have addressed the problem of revenue variability reduction. In line with 

the requirements, our paper therefore addresses the following research question:  

“How can a DRL model be applied to maximize the profit as well as reduce the variability of a 

renewable operator’s revenue using a BSS service in the context of intermittent renewable 

generation?” 

We perform a case study under real market prices by simulating a solar park and a wind 

farm that use a BSS service agent to increase profits and counteract revenue variability.    

2 Related Works 

To schedule short-term energy supply with BSS, conventional programming methods 

mainly include mixed integer linear programming (MILP), and dynamic programming 

(DP) [12, 13]. In [12], the authors propose a storage bidding strategy that includes price 

and quantity bids based on stochastic price forecasts using a probability density 

function. The optimization problem is reformulated into a MILP and solved using a 



 

 

standard LP solver. In [13], a control algorithm based on DP using weather and 

consumption predictions is proposed for a renewable energy system coupled with an 

energy storage system, to limit the grid power ramp-rate and to optimize energy trading 

for the system owner. However, these methods often have large computational costs 

and rely on very accurate forecasts which are not available for power markets [14]. 

Moreover, the potentially high dimensionality of the state space makes these methods 

unsuitable for applications in power system [15].  

Considering the random nature of RG and market prices, as well as the time-coupled 

feature of the battery state of charge (SoC), this problem can be modelled and solved 

through DRL [10]. By providing the observation of the environment as input for an 

artificial neural network (ANN), DRL can solve many real-world problems with 

continuous and high-dimensional data [14]. Recently, many papers studied the 

application of DRL in energy supply scheduling with BSS, which shows promising 

results [8-10]. In [8], a data-driven controller using DRL is proposed to increase a wind 

power producer’s revenue given uncertain wind power generation and electricity prices. 

The simulation results of the case study conducted on a wind farm show that the 

uncertainties can be effectively handled and high revenues for the power producer can 

be ensured. In [9], the authors propose a DRL based method to optimize the control 

policy for battery charging and discharging with the purpose of maximizing the profit 

considering an accurate battery degradation model. The empirical results based on the 

historical U.K. wholesale market prices show the effectiveness and the economic 

advantage compared to a model based on MILP. In [10], a DRL based agent is proposed 

for investor-owned PV-BSS to maximize the profit by providing stacked services in 

power systems. The proposed method is tested using real market data.  

It is worth mentioning that different measures are used to control the violation of 

battery charging and discharging constraints in these studies. In [9], actions of the agent 

are discretized as relative values regarding the maximum charging and discharging 

power of the current battery capacity, whereas in [10] they are continuous coefficients 

regarding the energy management unit. The authors also propose a safety control 

algorithm in [10] to ensure that the operating constraints of the battery are strictly 

satisfied by always regulating invalid charging and discharging values into the safety 

range. In [8], actions are concrete amounts, and the penalty fee is calculated in the 

reward function for violation of constraints. Using absolute values lacks flexibility in 

practice and applicability in systems with intermittent RG. The accompanying control 

algorithm is more suitable for stacked services in [10] but could be complex for 

renewable operators in our case. Therefore, we make an adaptive design by using 

discrete relative values for the action space and by considering a penalty term in the 

reward function for violation of the charging and discharging constraints. 

3 Methodology 

In this section, we first describe the background of reinforcement learning (RL) and 

deep Q-network (DQN), then present the framework of the proposed DRL based model, 

and finally introduce the measure we use to estimate the revenue variability.  



 

 

3.1 RL background and DQN 

RL is framing of problems in which an agent learns its optimal behavior in regard to a 

given objective through numerous trial-and-error interactions with a dynamic 

environment. Generally, RL problems are described as Markov decision process 

(MDP), which is modelled as a four-tuple < 𝑆, 𝐴, 𝑝𝑎, 𝑟𝑎 > [17], where: 

• 𝑆 is a set of states, which contains agent’s observation from the environment, 

• 𝐴 is a set of actions the agent can take, 

• 𝑝𝑎(𝑠, 𝑠′) =  𝑝𝑟(𝑠𝑡+1 =  𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)  is the probability that action 𝑎 in state 𝑠 

at time 𝑡 will lead to state 𝑠′ at time 𝑡 + 1, 

• 𝑟𝑎(𝑠, 𝑠′) is the immediate reward passed from the environment to the agent by taking 

action 𝑎 and changing the state 𝑠 to state 𝑠′.  

An RL agent interacts with its environment in a sequence of discrete time steps. At each 

time step 𝑡, the agent observes the current state, 𝑠𝑡 ∈ 𝑆 , and on that basis chooses an 

action, 𝑎𝑡 ∈ 𝐴(𝑠) , that it communicates to the environment. One step later, the agent 

receives a numerical reward, 𝑟𝑡+1 ∈ 𝑅 , which implies how good or bad that action 

was. The environment then changes to a new state, 𝑆𝑡+1. This process continues to a 

finite time step 𝑇 and thus causes a sequence of experiences of the whole episode. The 

goal of the agent is to maximize the cumulative discounted reward 𝐺 =  ∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 , 

where 𝛾 ∈ [0,1] is the discount rate to trade off the immediate and long-run rewards. 

As a classic RL algorithm, Q-Learning was developed in 1989 [18]. As suggested 

by its name, the agent updates the action-value function 𝑄(𝑠, 𝑎) recursively: 

 𝑄(𝑠𝑡 , 𝑎𝑡)  ←  𝑄(𝑠𝑡 , 𝑎𝑡) +  𝛼 [𝑟𝑡 +  𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (1) 

where 𝛼 ∈ [0,1] is the learning rate. The updating continues until 𝑄(𝑠, 𝑎) converges to 

the optimal value 𝑄∗(𝑠, 𝑎). Thereby a lookup table of the Q-values for each state-action 

pair is defined, and the agent chooses the action based on the Q-values at each time step 

of a given state. 

Although the standard Q-Learning guarantees convergence, it suffers severely from 

the so-called curse of dimensionality. To overcome the limitation of tabular Q-

Learning, the DQN algorithm was developed [19]. As a combination of deep learning 

and RL, DQN uses an ANN to approximate the Q-value, which takes the continuous 

state as input and generates the Q-value for each discrete action. The agent interacts 

with the environment by choosing the  action based on the output of the ANN and stores 

the past experiences in a large memory. To train the ANN, samples of a fixed size are 

chosen randomly in each iteration to perform the update of 𝜃𝑖  at iteration 𝑖  by 

minimizing the following loss function between the predicted Q-value and the target: 

 𝐿𝑖(𝜃𝑖) =  𝔼(𝑠,𝑎,𝑟,𝑠′) [(𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃𝑖
−) − 𝑄(𝑠, 𝑎; 𝜃𝑖))2] (2) 

where 𝜃𝑖
− are the target network parameters that are only updated every 𝐶 steps.  



 

 

3.2 Framework of the Proposed Model 

In this section, we detail the proposed DRL based model, the overall framework of 

which is presented in Figure 1. The key elements of the model are illustrated in the 

following: 

 

 

Figure 1.Overall Framework of the Proposed DRL based Model 

Agent. The agent learns the optimized policy and decides charging or discharging 

actions to adjust the energy supply on the market. It uses an ANN taking the state as 

input to output the Q-values of each state-action pair. The reward from the environment 

is used to approximate the target Q-value for training the parameters of the ANN. 

Environment. The environment is made up of (1) the generation system and the 

forecasting system of the renewable operator, which provide the forecasts of RG and 

market prices, (2) the BSS service provider, a separate market entity which charges the 

renewable operator for the battery charging and discharging and updates the real-time 

battery SoC, and (3) the wholesale market, which determines the actual power prices.  

State Space. The state at time step 𝑡 is defined as 𝑠𝑡 = (𝑔𝑓𝑜𝑟𝑒(𝑡) , 𝑝𝑓𝑜𝑟𝑒(𝑡), 𝑆𝑜𝐶(𝑡 −
1)), where 𝑔𝑓𝑜𝑟𝑒  , 𝑝𝑓𝑜𝑟𝑒 are forecasted RG and price, and  𝑆𝑜𝐶(𝑡 − 1)) ∈ [0,1] is the 

SoC at the end of 𝑡 − 1. In the actual operation, the 𝑆𝑜𝐶  must satisfy the capacity 

constraint 𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶(𝑡)  ≤  𝑆𝑜𝐶𝑚𝑎𝑥  to ensure that the stored energy in the battery 

is always within the permitted range. The agent has no impact on 𝑔𝑓𝑜𝑟𝑒   and 𝑝𝑓𝑜𝑟𝑒 , and 

is supposed to learn the fluctuation patterns as well as the implicit interrelationship 

between them if they exist. The 𝑆𝑜𝐶 is explicitly changeable by the agent.  

Action Space. To deal with the intermittent nature of RG, the action is discretized as 

𝑎𝑡  ∈ {−1, −0.8, −0.6, −0.4, −0.2, 0, 0.2, 0.4, 0.6, 0.8, 1}. It specifies the percentage of 

the maximal allowable charging power 𝑐𝑚𝑎𝑥(𝑡) =  min (𝑔𝑓𝑜𝑟𝑒(𝑡)𝜂𝑐ℎ, 𝑒𝑢𝑝(𝑡)), if 𝑎𝑡 <



 

 

0, or the percentage of the maximal allowable discharging power 𝑑𝑚𝑎𝑥(𝑡) =  𝑒𝑑𝑛(𝑡), 

if 𝑎𝑡 > 0.  𝑎𝑡 = 0 means neither charge nor discharge. 𝑒𝑢𝑝(𝑡) = (𝑆𝑜𝐶𝑚𝑎𝑥 − 𝑆𝑜𝐶(𝑡 −

1)) ∙ 𝑈 and 𝑒𝑑𝑛(𝑡) = (𝑆𝑜𝐶(𝑡 − 1) −  𝑆𝑜𝐶𝑚𝑖𝑛 ) ∙ 𝑈 specify the available upward and 

downward energy to reach the maximal or the minimal energy level of the battery, 

where 𝑈  is the nominal battery energy capacity and 𝜂𝑐ℎ  is the charging efficiency. 

Additionally, the actual charging and discharging power is also restricted by the 

maximal charging and discharging rate 𝑅𝑐ℎ/ 𝑅𝑑𝑖𝑠. Therefore, the actual charging power 

into the battery 𝑒𝑖𝑛(𝑡) and the discharging power from the battery 𝑒𝑜𝑢𝑡(𝑡) are defined 

by 𝑒𝑖𝑛(𝑡) = min(𝑅𝑐ℎ , |𝑎𝑡| ∗ 𝑐𝑚𝑎𝑥(𝑡)) , if 𝑎𝑡 < 0, and 𝑒𝑜𝑢𝑡(𝑡) = min (𝑅𝑑𝑖𝑠 , 𝑎𝑡 ∗

𝑑𝑚𝑎𝑥(𝑡)), if 𝑎𝑡 > 0. Note that at least one of the variables 𝑒𝑖𝑛(𝑡) and 𝑒𝑜𝑢𝑡(𝑡) is 0 at 

any time 𝑡 regarding the choice of 𝑎𝑡 to ensure that the battery will not be charged and 

discharged at the same time. Specifically, if the forecasted generation 𝑔𝑓𝑜𝑟𝑒(𝑡) is 0.8 

MWh, the available upward energy of the battery 𝑒𝑢𝑝(𝑡) is 2 MWh, and the agent 

chooses action -0.2, then the actual charging power into the battery is 𝑒𝑖𝑛(𝑡) =
min(𝑅𝑐ℎ , 0.2 ∗ min (0.8 ∙ 𝜂𝑐ℎ , 2)) MWh. Thereby, the energy supply on the market  

𝑒𝑠𝑢𝑝𝑝𝑙𝑦(𝑡) is adjusted by (3). 

  𝑒𝑠𝑢𝑝𝑝𝑙𝑦(𝑡) =  𝑔𝑓𝑜𝑟𝑒(𝑡) − 𝑒𝑖𝑛(𝑡) 𝜂𝑐ℎ⁄ +  𝑒𝑜𝑢𝑡(𝑡)𝜂𝑑𝑖𝑠 (3) 

where 𝜂𝑑𝑖𝑠 is the discharging efficiency, and the transition of the 𝑆𝑜𝐶 is defined by (4). 

 𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡 − 1) +
−𝑒𝑖𝑛(𝑡) 𝜂𝑐ℎ⁄ + 𝑒𝑜𝑢𝑡(𝑡)𝜂𝑑𝑖𝑠 

𝑈
 (4) 

The proposed action space ensures that the charging and discharging power is always 

within the permitted range. Compared to methods using external controlling systems 

and models which artificially exclude invalid actions before the decision making, the 

proposed agent is more self-ruling and learns the policy more autonomously.  

Reward. Based on the objective of maximizing the profit as well as reducing the 

variability of a renewable operator’s revenue by adjusting the energy supply at times 

when there is inverse correlation between generation and prices, we define the 

immediate reward 𝑟𝑡 as (5). 

 𝑟𝑡 = 𝑝𝑎𝑐𝑡(𝑡) ∙ 𝑒𝛿(𝑡) − 𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ∙ |𝑒𝛿(𝑡)| − 𝑃(𝑡) ( 5)  

where 𝑝𝑎𝑐𝑡(𝑡) is the actual power price given by the market, 𝑒𝛿(𝑡) = − 𝑒𝑖𝑛(𝑡) 𝜂𝑐ℎ⁄ +
 𝑒𝑜𝑢𝑡(𝑡)𝜂𝑑𝑖𝑠  defines the difference of  𝑒𝑠𝑢𝑝𝑝𝑙𝑦(𝑡) − 𝑔𝑓𝑜𝑟𝑒(𝑡), 𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦  is the service 

cost for charging and discharging the battery with 1 MWh energy, and 𝑃(𝑡) is the 

penalty for invalid charging or discharging actions.   

The renewable operator’s revenue of selling RG on the market without optimization 

is  𝑝𝑎𝑐𝑡(𝑡) ∙ 𝑔𝑓𝑜𝑟𝑒(𝑡) , while the optimized revenue using the DQN strategy is  

𝑝𝑎𝑐𝑡(𝑡) ∙ 𝑒𝑠𝑢𝑝𝑝𝑙𝑦(𝑡). We use 𝑝𝑎𝑐𝑡(𝑡) ∙ 𝑒𝛿(𝑡) instead of 𝑝𝑎𝑐𝑡(𝑡) ∙ 𝑒𝑠𝑢𝑝𝑝𝑙𝑦(𝑡) to calculate 

the profits or losses arising from the charging or discharging actions, since the former 

doesn’t contain 𝑔𝑓𝑜𝑟𝑒(𝑡). Using the fluctuating generation in the reward function can 



 

 

result in high reward variability and thus have negative influence on the learning 

performance.   𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ∙ |𝑒𝛿(𝑡)| defines the service cost for charging or discharging the 

battery with |𝑒𝛿(𝑡)|. In contrast to the papers that only consider the revenue in the 

reward function, we define the penalty in this paper by (6). 

 𝑃(𝑡) = 𝑃𝐹 ∙ (𝑝𝑒𝑛 𝑐ℎ(𝑡)  ∥  𝑝𝑒𝑛 𝑑𝑖𝑠(𝑡) ) (6) 

where 𝑃𝐹 is the penalty factor, which determines the size of the penalty term, and its 

appropriate value depends on the relative size of the revenue. If 𝑃𝐹 is set too low, the 

penalty doesn’t have sufficient effect on the learning behavior; if too high, the penalty 

will prevent accurate learning from the monetary reward. 𝑝𝑒𝑛 𝑐ℎ(𝑡) and 𝑝𝑒𝑛 𝑑𝑖𝑠(𝑡) are 

boolean variables in (7) and (8). 

  𝑝𝑒𝑛 𝑐ℎ(𝑡) = {
1, 𝑖𝑓 𝑎𝑡 < 0 𝑎𝑛𝑑 𝑔𝑓𝑜𝑟𝑒(𝑡) = 0 𝑜𝑟 𝑒𝑢𝑝(𝑡) = 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

 𝑝𝑒𝑛 𝑑𝑖𝑠(𝑡) = {
1, 𝑖𝑓𝑎𝑡 > 0 𝑎𝑛𝑑 𝑒𝑑𝑛(𝑡) = 0 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8)  

The reward serves as a numerical signal for the agent to learn the optimal strategy. 

However, the agent cannot get effective feedback regarding the chosen action by only 

considering revenue as the reward. In other words, the reward would be zero if the agent 

decided to charge at times when there is no RG or no storage space in the battery, or to 

discharge at times when there is no stored energy in the battery, which significantly 

affects the learning performance. Therefore, we design the penalty to give the agent an 

explicit negative reward signal at times when the agent chooses invalid actions.  

3.3 Evaluation Measure of Revenue Variability 

The Value at Risk (VaR) and the Conditional Value at Risk (CVaR) are measures to 

evaluate the potential loss of investment portfolios [16]. For a given confidence level 

𝛽, and the probability distribution function of losses over a certain time horizon 𝐹(𝑥), 

the 𝛽 − 𝑉𝑎𝑅 = 𝐹𝑥
−1(1 − 𝛽) defines the lowest value of the 𝛽 largest losses, whereas 

the 𝛽 − 𝐶𝑉𝑎𝑅 = ∫ 𝐹𝑥
−1(1 − 𝛽)𝑑𝑥

𝑉𝑎𝑅

−∞
 defines the conditional expectation of losses 

beyond 𝛽. In other words, the CVaR is the average value of the 𝛽 largest losses and is 

therefore higher but more robust than the VaR, which only represents a single value. In 

this paper, we use the CVaR as a measure for estimating the revenue variability rather 

than simply using the variance, since it only measures the negative deviations from the 

mean revenue rather than also punishing the positive deviations. 

4 Case Study 

The performance of the proposed DRL based model is validated by simulating a virtual 

solar park with a 1 MW installed capacity using empirical market prices. To compare 

the results of different generation technologies, a virtual wind farm with a 1 MW 



 

 

installed capacity is simulated. We assume that the BSS is provided as a service, which 

is not exclusively used for the described use case but can be accessed temporarily by 

the solar park and the wind farm operator. 

4.1 Data and Model Implementation 

We use the hourly price from the German day-ahead wholesale electricity market as 

actual price [20] and generate price forecasts by adding Gaussian noise to the actual 

value. For the predicted generation, we use the data generated from [21-23]. We use 

data from 2018 and 2019 for the training and testing procedure, respectively. We use a 

BSS with 3 MWh nominal energy capacity. Table 1 shows other technical parameters 

of the battery. 

Table 1. Technical parameters of the battery 

Parameter  Value  Parameter  Value  

𝑆𝑜𝐶𝑚𝑎𝑥   0.9 𝑆𝑜𝐶𝑚𝑖𝑛   0.1 

𝑅𝑐ℎ/𝑅𝑑𝑖𝑠  0.45 𝜂𝑐ℎ/𝜂𝑑𝑖𝑠  0.9 

 

The proposed DRL model is developed using Keras-RL. Table 2 details the training 

parameters including the deep neural network model architecture. In this paper, 

 𝐶𝑏𝑎𝑡𝑡𝑒𝑟𝑦  is set to 10 €/MWh. In other words, the cyclic cost for charging and 

discharging the battery with 1 MWh is 20 €. We discuss this in section 5. For the value 

of 𝑃𝐹, we tested 0, 30, and 50 based on our exemplary case. With 𝑃𝐹 = 0, the agent 

failed to learn how to avoid invalid actions, and with 𝑃𝐹 = 50, the agent only gets 

slight revenue as he acts too conservatively to avoid invalid actions. We finally set 𝑃𝐹 

to be 30, thus the penalty has sufficient effect on the learning behavior and the agent 

can achieve higher revenue.  

Table 2. Summary of DRL model parameters 

Item Value Parameter Value 

No. of hidden layers 2 𝛼 0.005 

No. of nodes in each layer 32 𝛾 0.99 

Activation function ReLU 𝐶 500 

Optimizer Adam 𝑇 168 

  𝜀_𝑚𝑖𝑛 0.2 

4.2 Model Performance 

During the training procedure, we generate 5 different random seeds for both operators. 

For each seed we train the DQN agent for 5000 episodes. The convergence process of 

the mean episode return for both operators is shown in Figure 2. The episode return 

refers to the sum of rewards over one episode, and the mean episode return in the Y-

Axis refers to the simple moving average of the episode return over each 100 episodes. 

The mean and the standard deviation of the mean episode return over the 5 seeds are 



 

 

illustrated through the solid lines and the shaded areas, respectively. It can be observed 

that the value for the solar park converges to -570 after 3590 episodes, and the value 

for the wind farm converges to -130 after 3500 episodes. Both values converge to a 

negative number, since the exploration rate 𝜀_𝑚𝑖𝑛  is set to 0.2. There is a 20% 

probability that the agent randomly chooses non-optimal or invalid actions after the 

convergence, which are either not profitable for the renewable operator and cause 

negative profit or invalid charging and discharging choices and cause penalty.     

 

Figure 2. The mean episode return in training ensures convergence for both (a) the solar park 

and (b) the wind farm. 

 

Figure 3. The cumulative revenue in testing days with DQN strategy is higher for both (a) the 

solar park and (b) the wind farm.  

The cumulative revenue over the testing period of 2019 for both operators are shown 

in Figure 3. We compare the profits that the renewable operator generates when using 

a BSS service (with DQN strategy) with the profits that he generated while directly 

selling all renewable generation on the market (without DQN strategy). It can be clearly 

observed that both operators achieve higher revenue with the proposed model than 

selling the RG without the DQN strategy. For the solar park, the renewable operator 

can get a yearly revenue of about 46 k € with the DQN strategy after subtracting the 

cost of the BSS, achieving an improvement of 772 € compared to the revenue of about 

45 k € without the optimization of the DQN strategy. For the wind farm, the renewable 

operator earns a yearly revenue of 58 k € with the proposed DQN strategy after 

subtracting the cost of the BSS, achieving an improvement of 981 € compared to the 

revenue of 57 k € without the DQN strategy.    



 

 

4.3 Comparison of Agent Behavior  

To assess the usage of the BSS for different operators, we analyze the charging and 

discharging amount in the testing period. During the whole year of 2019, the total 

charging amount is 48 MWh, and discharging amount is 43 MWh for the solar park. 

As for the wind farm, the proposed strategy results in a total charging amount of 52 

MWh, and a total discharging amount of 45 MWh. The difference between the charging 

and discharging amount is caused by the 10% charging and discharging loss. Figure 4 

shows the distribution of the total discharging amount in each month, which indicates 

the difference in agent behavior for two operators. It can be observed that in the summer 

the agent discharges more for the solar park, and in the winter this amount is higher for 

the wind farm.  

 

Figure 4. Comparison of the total discharging amount in each month in 2019 

To perform a more granular comparison and analyze the difference of the agent 

behavior described above, we visualize the actions chosen by the agent for both 

operators under different summer and winter RG and price data over one week. The 

charging and discharging results are shown in Figure 5. The actual power prices are 

scaled into the interval of [0,1.5] for better visualization.  

 

Figure 5. The charging/discharging results over one week for the solar park and the wind farm 

in (a) summer and (b) winter. (Grey bar: SOC; Green bar: charging (-) / discharging (+) actions; 

The curves with the right axis represents price and generation) 

It can be observed that the agent behaves differently for the two operators. For the solar 

park, the agent is more active in summer due to the significant inverse correlation 

between generation and prices. Significant lower-than-average prices occur, for 



 

 

instance, in hours 48-72 and 132-144 during the summer week when solar power 

generation is high, while relatively consistent trends of the generation and prices 

movement can be observed in hours 0-96 in the winter week. For the wind farm, the 

agent is active in both summer and winter. However, we observe a larger fluctuation of 

the wind power generation during the winter. Significant inverse correlation between 

generation and prices can be observed in winter as well, e.g., in hours 0-24 and 96-168 

during the winter.  

Additionally, we can observe that the charging and discharging timing are consistent 

with the fluctuation pattern of generation and prices for both operators as well as in 

both seasons, which shows that the well-trained agent can fully explore and exploit the 

interrelationship between RG and market prices to generate optimized strategies. 

4.4 Evaluation of Revenue Variability   

In this paper, we use the 90%-CVaR of negative deviations in daily revenue obtained 

with and without the optimization of the proposed DQN strategy to evaluate the revenue 

variability. Figure 6 shows the comparison for both operators in 2019. 

 

Figure 6. The 90%-CVaR with DQN strategy for (a) the solar park in summer is effectively 

decreased, for (b) the wind farm is barely reduced except for June. 

Without the optimization of the proposed DQN strategy, higher CVaR values are 

observed for January, March, April, June and December for the wind farm, and in April 

and June for the solar park. This is consistent with the analysis in 4.3 that the inverse 

correlation between RG and prices are higher in summer for the solar park and occurs 

in both summer and winter for the wind farm. A closer look at the values shows that 

the proposed DQN strategy can significantly reduce the CVaR in April and June for the 

solar park. However, the CVaR for the wind farm is barely reduced through the DQN 

strategy except for June. The results indicate that the revenue variability in the summer 

months can be effectively reduced by coping with the inverse correlation between 

generation and prices, while the proposed DQN strategy only have limited effect on 

reduction of revenue variability for the wind farm in the winter.   



 

 

5 Discussion 

Looking back at the simulation results in 4.2 and 4.4, the proposed strategy can reduce 

the revenue variability for the solar park but only has limited impact for the wind farm. 

This difference might be explained by different causes of the revenue variability for   

two generation technologies. Apparently, the large inverse correlation between solar 

power generation and market prices causes a high CVaR over the summer for the solar 

park, while the considerable fluctuation of wind power generation has a stronger impact 

on the revenue variability of the wind farm. The proposed model aims to reduce the 

negative deviation in daily revenue by adjusting the energy supply at times when there 

is inverse correlation between generation and prices, and thus has the desired effect for 

the solar power generator but a limited effect in the wind power operator.  

Additionally, the cyclic costs of 20€/MWh are set quite low in view of today's 

storage costs, which could be potentially uneconomical for the service provider. 

However, according to [24], costs for battery storage are expected to fall to 100 - 200 

€/kWh depending on the technology until 2030. Assuming a cyclic lifetime of 10.000 

[25], cyclic costs of 20€/MWh could become feasible. Meanwhile, we assume that the 

market price spread in the future will increase due to rising shares of intermittent RG, 

and a higher cyclic cost could be more profitable for both parties.  Future works could 

also go into more detail regarding the opportunity costs of the BSS and whether it would 

always be available for the service requests of the renewable operator.    

6 Conclusion and Future Works 

In this paper, we apply DRL to maximize the profit of operators of intermittent 

renewable generation capacity as well as to reduce the variability of their revenue using 

a BSS service. We model the BSS service provider as a separate market entity, which 

charges the renewable operator for using the BSS. In the proposed DRL model, we 

define the action space as discrete relative values regarding to the maximal available 

charging and discharging power and design the penalty in the reward function to cope 

with the intermittent RG. We use CVaR in daily revenue to estimate the revenue 

variability. The evaluation results using empirical market prices show that it is 

economically viable to use a BSS service for a simulated wind farm and solar park. The 

proposed model can effectively improve the revenue stability for the solar park by 

coping with the inverse correlation of generation and market prices but has limited 

impact on reducing the negative deviation in daily revenue for the wind farm. Our 

findings also indicate that the negative deviations in daily revenue for the solar park 

and the wind farm are caused by different mechanisms. Future works should focus on 

the impact of the fluctuations of wind power generation and go into more detail on the 

opportunity costs of the BSS. 
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