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Identification of centroids of Mohammed V 
airport arrivals. 

 
 

Introduction 

The Air Traffic Management (ATM) market is projected to grow from an estimated USD 14.1 billion in 
2018 to 18.8 billion by 2025. This growth can be attributed toincreasing airport investments and 
modernization of ATM infrastructure. 

In 2018, Moroccan airports received more than 22,534,000 passengers, according to the National Office 
of Airports (ONDA) which represents 10 percent more than in 2017. The Agadir airport recorded an 
increase of 25 percent in passengers; Marrakech 21 percent; Fez 17 percent; Ouarzazate 37 percent; 
Essaouira 25 percent; and Dakhla 20 percent and even though Mohammed V International Airport in 
Casablanca has known only an increase by 4 percent from 2017 but it handled 43 percent of Moroccan 
international air traffic in 2018, receiving 9,732,044 passengers which makes it the busiest airport of 
Morocco. Increasing air travel has led to an increase in commercial air traffic and since commercial air 
traffic has been higher and has greater frequency than tactical air traffic. This in turn leads to the 
increasing need for ATM systems to cope with the increasing commercial air traffic and one of its 
strategies is aircraft trajectory data by using analysis models. 

Models for predicting aircraft motion are an important component of modern aeronautical systems. In 
this given paper, we developed a method to analyze aircraft’s motion and evaluate its efficiency in 
terminal airspace, the controlled airspace surrounding a given airport. The method fits the model based 
on a historical dataset of radar-based position measurements of aircraft landings and takeoffs at that 
airport. We find that the model generates realistic trajectories, provides accurate predictions allowing 
to control the performance of the system. 

This paper presents a characterization of air traffic performance based on aircraft tracking data recorded 
by surveillance systems. We use unsupervised learning and apply a flight trajectory clustering 
framework to identify traffic patterns at the terminal for destination Mohammed V International 

Airport. 

 

 

 

Methodology 

The data-driven approach for air traffic performance characterization is based on three steps: 

First, data is exposed to a data pre-processing which allows to clean, filter and stucture the 
flight tracking dataset. Moreover, a trajectory clustering framework is applied to this data, 
given as result identified air traffic patterns at the terminal airspace as clusters. For each 
cluster, a nominal route is calculated. A detailed description of each step is provided next. 

A. Data Description : 

The raw dataset contains flight tracks from 7 days of august of 2018 obtained through the FlightRadar24 
flight tracking service (FlightRadar24, 2019). FlightRadar24 is one of the various online flight tracking 
services made available after the introduction of new surveillance technologies in ATM, such as 
Automatic Dependent Surveillance - Broadcast (ADS-B). FlightRadar24 relies on a huge network of 
crowdsourced ADS-B receivers around the world that pick-up flight information (flight ID, aircraft 
position etc) broadcasted by the aircraft’s ADS-B transponder and send this information to their servers 
to provide opensource live flight tracking. The raw datasets report one-minute updates of aircraft state, 
including flight ID, latitude, longitude, altitude, speed, origin airport, destination airport and aircraft 
type. Flight trajectories were then segmented according to the different flight phases. To extract the 



terminal area departure phase, we considered the trajectory information between the destination airport 
and the terminal area boundary, which was modeled as a circle of 40 nm radius with its center at the 

destination airport aka MohammedV.  

      B.     Resampling 

Data resampling is then performed to transform each time-series into a high dimensional feature vector 
of fixed dimension and enable the assessment of similarity between flight trajectories using standard 
Euclidean distance. The resampling approach normalizes the time stamps for each trajectory, divides it 
into a fixed number of equally sized time blocks and linearly interpolates the spatial position for the 
fixed number of normalized time stamps. The result is a feature vector of 2D spatial position evenly 
spaced in time.  

       C.    Clustering at spatial scale:  

The idea behind this framework is to identify spatial patterns of aircraft movement. Actualy, clustering 
is an unsupervised learning method that aims to identify groups of similar observations in a dataset 
without prior knowledge about the existence of these groups or about how the observations are 
distributed among them. 

 In this context, the goal is to find groups of similar trajectories in the spatial dimension. We define a 
group of spatially similar trajectories as a trajectory pattern. 

This process requires then a data representation, a similarity/distance function and a clustering method. 
First of all , the portion of the trajectory associated with the airspace region of interest is extracted. In 
this case, to extract the terminal area phase, it was defined as the trajectory information between the 
airport runway threshold and the terminal area boundary, which was modeled as a circle of 40-mile 
radius with its center at the airport. The filtered flight trajectories are characterized by time-series of 
different lengths, depending on the time spent in the airspace volume. 

DBSCAN algorithm : 

The final requirement in the clustering methodology is the method for grouping similar observations. A 
density-based clustering algorithm – Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) (Ester et al., 1996) – is used for flight trajectory clustering. As the name of the algorithm 
suggests, this method is suitable for datasets with noise. In flight trajectory datasets, the standard routes 
and adaptions produce the core underlying patterns, yet abnormal trajectories can also occur for a 
variety of reasons and can be considered as noise. DBSCAN enables the identification of the core 
trajectory patterns in the presence of abnormal trajectory profiles. Other advantages of DBSCAN include 
the ability to discover non-convex clusters and no need to set the number of clusters a priori. DBSCAN 
relies on two input parameters in order to cluster the data space: 

MinPts: a minimum number of points (observations); 

ε: a distance threshold. 

       D.   Results: 

In the final step, the nominal routes are identified as a reference that could be used to measure both 
temporal or spacial efficiency. 

 

Case study : Mohammed V Arrivals 

In the last years, there is more talks about whatso-called “Big Data Analytics” since there is an increasing 
availability of data with new technologies (ADS-B: open-source flight tracking data “Flight Aware, 
FlightRadar24”) and as a consequence to it, opportunities to leverage the available system data for 
improved decision-making. 
 

In our case, since the international airport of Mohammed V is known as the busiest airport of Morocco, 
we thought of a solution that will lighten the workload of its air traffic controllers by detecting the 
optimal arrival routes that pilots should follow. By this, we have provided a data that represents 7 days 



of collecting from FLIGHTRADAR24, from 23/07/2019 to 30/07/2019 focused on Mohammed V 
Arrivals. Those information were regrouped within an R program file called "track_data" where it was 
separated by indicators. We can see in figure 1 that it was the first flight collected starting from 2pm. It 
includes each position (longitude and latitude) it took during his flight inside the TMA until his landing. 
Aside from that, you find the heading, speed, equipment, registration, origin, destination, identification 
(IATA/ICAO), Squawk code. 

 

 



 

 

Figure 1 : Pieces of the collected Data of Mohammed V Arrivals 

 

As it appears, when we move to another flight, the indicator changes but stay the same for the 
same flight and positions, time parameters keep on changing. Finally, for the last flight tracked 
on a week, it’s the 423 one. This means that Mohammed V reaches only 423 per week. It is 
considerate as a big number in Moroccan but in comparison with some others international 
airports such as Guarulhos, Brazil that reaches twice the number of its traffic, it appears that the 
number is quite small. But in the other hand, Guarulhos has two operational runways where it is 
possible to do simultaneous departure and arrival which increase regulation facilities. 
Mohammed V has indeed two runways, but one of them is operational, the second is usually used 
as a taxiway. 

After analyzing the data, it was possible to visualize the information within multiple steps: 

 

 



a. Trajectory visualization 

In order to visualize things in R and to, specifically, be able to plot same data, it is advised to use the 
package leaflet. You create a Leaflet map with these basic steps. Starting by creating a map widget by 
calling leaflet(), then adding layers (i.e., features) to the map by using layer functions (e.g. addTiles, 
addMarkers, addPolygons, addPolylines) to modify the map widget. Repeat step 2 as desired. Finaly, 
print the map widget to display it. 

In this case, information are taken from track_data to print the trajectory of each flight all in once. 

b. Resampling: 

"Path resampling" process consist of a linear interpolation of the position made so that all paths can be 
described by a fixed-length vector. 

INPUTS: 

o track_data -> data frame with FR24 data 
o NPOINTS -> indicates the desired vector size. For example, if NPOINTS =30, we will have 30 

observations (lat, lon) describing the trajectory from terminal area entrance to airport arrival 
(40 nm). Since the FR24 data collection frequency is 1 min and the duration of flights in the 
terminal area is on the order of 30 minutes, NPOINTS = 30 is a reasonable resampling rate. 
 
 
 
 

 

Figure 2 : Piece of the resampling coding 

 

c. Clustering: 

The process of clustering is based on DBSCAN Algorithm. After resampling trajectories, they are now 
ready to be compared. We apply to them the DBSCAN algorithm, and wait to see how much clusters 
these trajectories has been separated from each others. In order to guess the number of the clusters, 
the easy way is to visualize them. 



 

Figure 3 :  Rcode for clustering 

 

Figure 4: ploting and visualizating clusters. 

 

It appears that there are four different colors which means four clusters, each one oriented toward 
a direction. This only mean that there are basically four ways to reach the airport of Mohammed V that 
the aircraft could take. 

d. Centroids: 

After the clusters of trajectories are identified, a nominal route is determined for each cluster by 
solving a 1-median problem, in other words, a representative trajectory for each cluster is obtained by 
calculating the “center” of the cluster. For each nominal route associated with a cluster, an unimpeded 
flight time is calculated as the 10th percentile of the distribution of flight times observed for the members 
of the cluster. The nominal routes are defined as the reference ideal trajectories with which actual 
trajectories are compared in order to characterize performance, those nominal routes are known as 
centroids. 

As of fact, four centroids are clearly distinct and represents the ideal trajectories. 

 



 

Figure 5 : visualization of centroids 

 

 
Conclusion 

In this article, we used a data-driven approach for characterization of the Casablanca, Morocco airspace 
structure and air traffic operational performance from aircraft tracking data recorded by surveillance 
systems. Unsupervised learning is performed associated with a flight trajectory clustering analysis to 
automatically identify spatial traffic patterns in terminal airspace of Mohammed V, Casablanca airspace. 
Based on the as-flown route structure learned, quantitative metrics could be developed to describe the 
structural efficiency of the airspace and the operational efficiency of the traffic flows. For this, actual 
flight trajectories can be projected onto reference nominal trajectories in space and time. The results 
allowed above can permit a cross-route comparisons of air traffic flow efficiency across the terminal 
phase of the flight as well as for the other phases. An interactive data analytics tool is also created to 
output performance statistics and air traffic visualizations.  
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