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Airborne particulatematter (PM) has been associatedwith cardiovascular and respiratorymorbidity andmortal-
ity, and there is someevidence that spatially varyingmetals found in PMmay contribute to adverse health effects.
We developed spatially refined models for PM trace elements using ordinary least squares land use regression
(OLS-LUR) and machine leaning random forest land-use regression (RF-LUR).
Two-week integrated measurements of PM1.0 (median aerodiameter < 1.0 μm) were collected at 50 sampling
sites during fall (2010), winter (2011), and summer (2011) in the Halifax Regional Municipality, Nova Scotia,
Canada. PM1.0 filters were analyzed for metals and trace elements using inductively coupled plasma-mass spec-
trometry. OLS- and RF-LUR models were developed for approximately 30 PM1.0 trace elements in each season.
Model predictors included industrial, commercial, and institutional/ government/ military land use, roadways,
shipping, other transportation sources, and wind rose information.
RF generated more accurate models than OLS for most trace elements based on 5-fold cross validation. On aver-
age, summer models had the highest cross validation R2 (OLS-LUR = 0.40, RF-LUR = 0.46), while fall had the
lowest (OLS-LUR= 0.27, RF-LUR= 0.31). Many OLS-LUR models displayed overprediction in the final exposure
surface. In contrast, RF-LUR models did not exhibit overpredictions. Taking overpredictions and cross validation
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performances into account, OLS-LUR performed better than RF-LUR in roughly 20% of the seasonal trace element
models. RF-LUR models provided more interpretable predictors in most cases. Seasonal predictors varied, likely
due to differences in seasonal distribution of trace elements related to source activity, and meteorology.
Crown Copyright © 2021 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
PM trace elements
Machine learning
1. Introduction

Exposure to airborne particulate matter (PM) has been associated
with cardiovascular and respiratory morbidity and mortality (Cohen
et al., 2017; Hoek et al., 2013; Raaschou-Nielsen et al., 2013), and grow-
ing evidence suggests that metals may play a causal role in PM-related
health impacts (Cakmak et al., 2014; Chen et al., 2020a, 2020b; Fang
et al., 2017; Ostro et al., 2015). PM-related trace elements, including
metals, display greater spatial heterogeneity compared with PM2.5

mass (Jeong et al., 2011; Song et al., 2001). Therefore, spatially-
resolved information is required to accurately assess exposure to PM-
related metals in health studies.

Land-use regression (LUR)models have beenwidely used to charac-
terize local-scale spatial variability in urban air pollution (Brauer et al.,
2003; Hoek et al., 2008; Jerrett et al., 2007; Mukerjee et al., 2009;
Ryan and Lemasters, 2007; Vienneau et al., 2010), and have been iden-
tified as the preferred method for estimating exposure to spatially het-
erogeneous pollutants (Health Effects Institute, 2010). LURmodels have
been used to estimate both gaseous pollutants (Bertazzon et al., 2015;
Madsen et al., 2011; Su et al., 2010; Wheeler et al., 2008) and PM
(Chen et al., 2010; Henderson et al., 2007; Rivera et al., 2012).

The LUR approach has also been applied to characterize the spatial
distribution of trace elements associated with PM2.5. De Hoogh et al.
(2013) developed LUR models for eight elements associated with
PM2.5 in over fifteen European cities. LUR models have also been devel-
oped for PM2.5 components in cities in the USA, Australia, and Taiwan
(Brokamp et al., 2017; Dirgawati et al., 2016; Hsu et al., 2018; Ito et al.,
2016; Li et al., 2016; Tripathy et al., 2019). We developed seasonal
LUR models for PM1.0 trace elements in Calgary, Alberta, Canada
(Zhang et al., 2015), an inland city in the Canadian prairies with a
large natural gas industry. However, few studies examine seasonal var-
iations in spatial distributions and most explore only a limited number
of elements.

Themajority of LURmodels have been developed using the ordinary
least squares (OLS)method. Despite screening for variance inflation and
variable heteroscedasticity, OLS-LUR models are prone to overpredic-
tion of ambient concentrations due to relatively small number of sam-
ples included in air pollution studies (Brokamp et al., 2017; De Hoogh
et al., 2013). These challenges are more pronounced in LUR models for
trace elements (Brokamp et al., 2017), whose concentrations can vary
by orders of magnitude within an urban area. Machine learning has
emerged as useful tools for addressing these issues and modelling the
spatial distribution of urban air pollution (Brokamp et al., 2017; Chen
et al., 2020; Chen et al., 2010; Liu et al., 2020; Requia et al., 2019;
Weichenthal et al., 2016).

In particular, the random forest (RF) machine learning approach has
performed well against traditional LUR modelling methods in compari-
son studies (Brokamp et al., 2017; Chen et al., 2019; Chen et al., 2020a,
2020b; Kerckhoffs et al., 2021; Liu et al., 2020; Ren et al., 2020). RF is an
ensemble machine learning method that can overcome overfitting is-
sues associated with a small number of samples and a large number of
potential predictors (Breiman, 2001). This approach is particularly
well-suited for examining the large number of collinear predictors con-
sidered for predicting spatial variation in trace elements. However,
there has been a limited number of studies comparing OLS and RF
modelling methods in the context of PM trace elements (Brokamp
et al., 2017).

In this study, we developed the first spatially refined estimates of
PM1.0 metals and trace elements for a Canadian port city using
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simultaneous sampling of 33 PM1.0 trace elements collected at 50 sites
during 3 seasons. Our second objective was to assess and compare the
strengths and limitations of OLS and RF approaches over a large set
(80 pairs) of seasonal models. Lastly, we aimed to identify seasonal pat-
terns of PM1.0 trace elements in a port city using novel shipping,
transportation, and meteorological predictors. This will support
research to elucidate potential health impacts of air pollution, and the
role of metals in mediating adverse health outcomes.

2. Methods

2.1. Study area

The Halifax Regional Municipality (HRM) is home to Eastern
Canada's largest seaport. Seaport emissions (including ships and on-
land equipment) are a major source of PM (Ault et al., 2009; Bailey
and Solomon, 2004; Kuwayama et al., 2013; Lack et al., 2011) and
have been associated with various health effects (Perez et al., 2009;
Tian et al., 2013). HRM has relatively low levels of ambient air pollution
compared to other Canadian cities (Environment and Climate Change
Canada, 2018). However, as a result of shipping activities, the port
area is characterized by higher pollution levels than the surrounding
residential areas. Ambient concentrations of PM-elements associated
with ship emissions, such as Ni and V (Agrawal et al., 2008; Celo and
Dabek, 2011; Jeong et al., 2011; Lee and Hopke, 2006; Zhao et al.,
2013), can be high compared with typical Canadian urban areas
(Jeong et al., 2011).

HRM has a population of 390,328 (Statistics Canada, 2012) with 76%
of thepopulation living in the urban areawithin 6 kmof theHalifaxHar-
bour. HRM is characterized by various industrial and commercial emit-
ters; marine shipping and related emissions in the port area; fishing
service industries, mining, and forestry operations; as well as a wide
range of institutional/ government/ military land use including 3 Cana-
dian Armed Forces facilities and 6 post secondary institutions (DMTI
Spatial, 2013; Government of Canada, 2018).

2.2. Sample collection and analysis

Airmonitoring campaignswere conducted at 47 sites in fall (October
20–November 3, 2010), andwinter (January 5–19, 2011), and at 53 sites
in summer (August 11–25, 2011). Optimal sampling sites were
identified using a location-allocation model based on land-use, trans-
portation infrastructure and the distribution of at-risk populations
(Kanaroglou et al., 2005). In addition, 10–12 sites were chosen using a
combination of local knowledge and optimal spatial coverage to reduce
the impacts of spatial autocorrelation. Two-week integrated PM1.0 mass
measurements were collected using Harvard Cascade impactors with
37 mm Teflon filters at a flow rate of 5 L/min. Thirty-six trace elements
were analyzed from the PM1.0 samples using inductively coupled
plasma-mass spectrometry (ICP-MS). Trace elements are listed in sec-
tion A1 of the online supplement.

Invalid data due to power loss or equipment malfunction were re-
moved from the analysis. Pollutant data from 38 fall, 30 winter, and
36 summer sites were used in LUR analyses; 17 sites provided valid
data in all three seasons, 37 sites provided valid data in at least two sea-
sons, and 13 sites provided data in only one season (Fig. 1). Quality as-
surance, blank correction protocols, and definitions of detection limits
(DL) are described in further detail in section A1 in the online supple-
ment.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Sampling sites used in seasonal LUR model development.
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We conducted RF and OLS modelling for all elements with at least
50% of the seasonal measurements greater than DL—i.e., 31 trace ele-
ments in summer, 25 in fall and 29 in winter.
2.3. Land-use variables

We considered a broad suite of novel and traditional predictors.
These predictors included industrial and commercial point sources,
land transportation networks, population density, shipping, and land-
use zoning. Point (e.g., industrial facilities) and line sources (e.g., road
networks)were used to generate both buffer and distance to source var-
iables, while area sources (e.g., zoning) were used to create buffer vari-
ables. Buffer sizes ranged from 50 m to 10 km except for industrial
3

facilities, which ranged from 50 m to 30 km (see Table A in the online
supplement for a full list).

Industrial facilities (N = 55 facilities) were obtained through
Environment Canada's 2010 National Pollutant Release Inventory
(NPRI). Subcategories were created for industrial facilities based on size
(e.g., large, medium, and small emitters) and type of emissions
(e.g., PM2.5 emitters, metal emitters, possible metal emitters). Facilities
that were possible metal emitters were identified based on their North
American Industry Classification System (NAICS) code combined
with emissions characterizations for those industries reported in the liter-
ature (Environment Canada and Health Canada, 1993; Environment
Canada and Health Canada, 1994a; Environment Canada and Health
Canada, 1994b; Environment Canada and Health Canada, 1994c;
Environment Canada and Health Canada, 2001; European Commission,
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2000; Fishbein, 1981; Lockeretz, 1974), as described in Zhang et al.
(2015).

Land-use zoning information was also obtained from Desktop
Mapping Technologies Incorporated 2013.2a (DMTI) (DMTI, 2013).
Land-use categories included industrial, commercial, institutional/
government, residential, parks/ open space, and ocean. Novel land-
use information about military, fish or farming industry, ferry,
coast, and shipyard/ wharf land-use, were obtained from the STAR
survey (Millward and Spinney, 2011).

Commercial facilities data were obtained from DMTI. Novel com-
mercial source predictors were generated for gas stations; industrial
and commercial machine shops; and primary metal industries; as well
as welding repair; stone products, ceramic and clay, glass products,
and concrete and brick; and wood and lumber product facilities.

Road network data containing expressways, primary highways,
major roads, and local roads were obtained from DMTI. Novel transpor-
tation predictors relating to railroads, truck routes, bus routes, bus stops,
and road junctions were developed using information obtained from
the Halifax regional Space Time Activity Research (STAR) survey
(Millward and Spinney, 2011).

Population counts at the dissemination block (DB) level were ob-
tained from Halifax Census data (Statistics Canada, 2008). Population
density within each buffer was calculated by taking the sum of popula-
tion counts from relevant DBs based on the proportion and divided by
the buffer area.

Predictor variables were calculated as distance variables, circular
buffer variables, and wind rose buffer variables. Distance variables,
e.g., distance to the nearest point source or distance to the nearest
major roadway, were determined as the Euclidean distance between
each sampling site and the attribute of interest (i.e. the nearest indus-
trial facility ormajor roadway). Circular buffer variableswere calculated
using the quantity of the attribute of interest (i.e. the number of points
of interest or facilities, sum of road segment lengths, or total area of a
zoning type within the circular buffer), divided by the area of the circu-
lar buffer. In addition to traditional circular buffers, wind rose buffers
were created to capture the impact of seasonal wind directions and
wind speeds on pollutant dispersion from potential sources. Both circu-
lar andwind rose variables are described in further detail by Zhang et al.
(2015). Section A2 in the online supplement further describes the wind
speeds and directions for the three seasons. A total of 1572 potential
predictor variables were created for each season. A full list of potential
predictors is provided in Table A in the online supplement.

In order to facilitate clear presentation of our results and discussion,
subcategories of model predictors were grouped under the following
source categories:

Road Networks: expressways, highways, major and minor roads,
and truck routes.
Other Traffic Indicators: bus routes, bus stops, and road junctions.
Railroads: railroad land-use.
Industrial: industrial point sources and industrial land-use.
Commercial: commercial point sources, commercial and fish/farm
industry services land-use.
Institutional/Government/Military: institutional & government,
and military land-use.
MarineRelated: shipyard orwharf land-use, areas of ocean, distance
to coast, and distance to ferry port.
Population/Residential: population density and residential land-use.
Parks/Open Space: park and open space land-use.

2.4. OLS-LUR model development

From an initial pool of 1572 variables, we initially screened out po-
tential predictors without discernible spatial variation in the study
area. Then we compared highly correlated (Pearson correlation ≥0.60)
variables within the same subcategory, and retained those with smaller
4

buffer sizes because smaller buffers may be able to capture more local-
ized spatial variation in the final model surfaces. This screening
narrowed the pool of potential predictors to less than 200 (179 to 195
variables depending on the season). The next phase of screening com-
pared the remaining variables across subcategories to trace element
concentrations. For each pair of correlated potential predictors, the var-
iable that was less correlated with the trace element of interest was
eliminated. The correlation threshold used to identify highly correlated
predictors across subcategories varied to arrive at a unique set of 30 po-
tential predictors for each PM1.0 trace element per season to ensure a
reasonable computational time for the OLS regression model develop-
ment.

We followed the methods used in Zhang et al. (2015) for OLS
regression model development. Using the all subsets regression
method, models with all possible combinations of 3 to 6 predictors

(i.e., ∑6
i¼3C 30, ið Þ ¼ 498 771 models per element season) were gener-

ated with the log-transformed (base e) trace element concentration as
the dependent variable and a corresponding unique set of 30 predictors
as the independent variables. Models with poor interpretability
(e.g., source variables inversely associated with pollutant concentra-
tions) were eliminated. We then assigned three rankings to each
model for goodness of fit based on the adjusted coefficient of determi-
nation (adj-R2), Akaike information criterion (AIC), and Mallows' CP
(CP). An overall ranking for each model was calculated as the average
of the three goodness of fit rankings. We then selected the top 200
ranked models and eliminated those with highly collinear variables
(i.e., maximum variance inflation factor (VIF > 5)), and poor model re-
siduals (i.e., 1.6 ≥ Durbin-Watson statistic ≥ 2.4, Shapiro-Wilk statis-
tic ≤ 0.05, Cramér–von Mises criterion ≤ 0.05, Anderson–Darling
statistic ≤ 0.05, and Pearson's chi-squared statistic ≤ 0.05). We used
the Global Moran's I to evaluate the spatial autocorrelation of residuals
in the top-ranked model(s), and eliminated models with spatial auto-
correlation. The remaining top-ranked model was chosen as the final
OLS-LUR model.

2.5. RF-LUR model development

We followed the general procedure described inGenuer et al. (2010)
for finding a small number of variables sufficient for a good prediction of
the dependent variable.With an initial pool of 1572 potential predictors
and log-transformed (base e) trace element concentrations as the de-
pendent variables, the mean and standard deviation of variable impor-
tance (VI) was calculated for each variable after 50 random forest runs
(ntree = 2000, mtry = default for regression); then ranked from
highest to lowest mean VI. Next, themean of the VI standard deviations
was used as a threshold for variable elimination—variables with a VI
standard deviation higher than the thresholdwere retained since higher
standard deviations indicate true variables (Genuer et al., 2010). Then a
sequential variable introduction was used to create the final RF-LUR
starting with the highest ranked variable (based onmean VI). Only var-
iables that significantly decreased the out-of-bag (OOB) error of the
model were retained as per Genuer et al. (2010). Final model surfaces,

pseudo-R2 1−mse
Var yð Þ

� �
(Liaw andWiener, 2001), and predictor importance

were calculated as an average of five random forest runs. The spatial au-
tocorrelation of residuals was also assessed on the final model.

2.6. Cross validation and model evaluation

We used 5-fold cross validation (CV) to assess model accuracy and
compare OLS- and RF-LUR models. Sample points were randomly di-
vided into five groups—one group was held out as the test group
while the remaining four groups were used to train a model with the
final OLS-LUR and RF-LUR variables. Groups were rotated to allow
each group a chance to be the test group. The mean and standard devi-
ation (n=5) of the root mean squared error (RMSE) was calculated, as
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well as the out-of-fold (OOF) RMSE, which is the RMSE calculated by
combining all five test groups. We also plotted the OOF predicted con-
centrations against the sampled (measured) concentrations and com-
pared the R2 (CV R2) and slope (CV slope) of the best-fit line. The
difference in CV results were not significant when they are within 10%
of the OLS-LUR values.

Model overprediction compared to the measured data was defined
as follows:

• Large area with elevated concentrations - greater than 5% of the study
areawith an estimated concentration greater than themean sampling
concentration plus 3 standard deviations; or

• Unrealistic maximum concentration - the maximum estimated con-
centration was greater than 5 times the maximum sampled concen-
tration (i.e. Estimated Max

Measured Max>5).

2.7. Statistical and spatial analyses

ArcMap 10.3 (ESRI 2004 and 2012) was used to generate 1572
potential predictors; as well as creating the final OLS-LUR 20 m by
20 m model surfaces, and visualization of the RF-LUR model surface.
WindRose PRO3 (Enviroware srl, 2016) was used to generate wind
rose-shaped buffers based on wind directions and speeds measured at
the Environment Canada weather station at Stanfield International
Airport in HRM for each sampling period (online supplement fig. A).

SAS 9.4 (SAS, 2013) was used for OLS-LUR variable selection, model
development and model evaluations. SAS 9.2 (SAS, 2008) was used for
ANOVA analyses to assess seasonal concentration differences. Spatial
autocorrelation for OLS-LUR and RF-LUR models was evaluated in R
3.4 (R-Project, 2017), using packages spdep (Bivand and Wong, 2018)
and ape (Paradis and Ape, 2019), respectively. The R randomForest
package (Liaw andWiener, 2001) was used to generate RF-LUR models
and the final 5 m by 5 m exposure surfaces. Five-fold cross validation of
OLS- and RF-LUR was conducted using R 3.4. ArcMap (ESRI 2004 and
2012) was used to generate all map figures. Microsoft Excel, 2016
(Microsoft, 2016) was used to create all other figures.

3. Results

3.1. Sampled PM1.0-elemental concentrations

Descriptive statistics for seasonal sampling results are provided in
Table B in the online supplement. There were significant differences in
seasonal concentrations for most of the PM1.0 elements. Trace element
concentrations were mostly higher in summer or winter versus fall.
Trace elements with the highest degree of spatial variability were Cu,
Mn, and Th, which had coefficients of variation (CoV) ≥ 90% across all
three seasons. Na, Se, and Tl showed the least spatial variability, with
CoV ≤ 20% in all three seasons. Spatial variability for most elements
was highest in winter or fall.

3.2. Model performances

3.2.1. Model R2s
OLS- and RF-LUR model pairs were developed for PM1.0 trace

elements in summer (N = 30), fall (N = 23) and winter (N = 27).
Examples of OLS- and RF-LUR surfaces are shown for Ba and Ni in
Figs. 3 and 4, respectively. In addition, six RF-LUR models were devel-
oped (summer Pb; fall Ca, Mg and Tl; winter As and Sr) for which the
OLS-LUR method was unable to identify a final model. Our results
focus on the 80 matched pairs of OLS- and RF-LUR models. In general,
both OLS- and RF-LURmodels performed better in summer and winter,
compared to fall. Tables C\\H in the online supplement showmodel R2s
and pseudo-R2s, along with model predictors listed in order from the
highest partial-R2 or VI to the lowest for all seasonal models. Pseudo-
R2 values for RF-LUR models are not directly comparable to R2 values
5

for OLS-LUR models; however, they showed a moderate relationship
(Pearson correlation = 0.52). Spatial autocorrelation of OLS- and RF-
LUR residuals was minimal ranging between −0.29 to 0.35
and − 0.18 to 0.13, respectively.

3.2.2. Model cross validation
Five-fold cross validation results showed RF-LUR had higher preci-

sion and accuracy compared to OLS-LUR for most trace elements.
Fig. 2a-c shows OOF CV R2 and CV slope deviance from the perfect CV
slope of 1 (i.e., 1 – CV slope) for OLS- and RF-LUR models (mean RMSE
and OOF RMSE values are listed in tables C\\H of the online supple-
ments alongside final model predictors). A greater number of RF-LUR
models outperform their OLS-LUR counterpart in all CV performance
metrics, with the exception of fall OOF RMSE. Model CV performance
for individual elements varied across seasons, and no trace element con-
sistently achieved higher precision and/or accuracy across all seasons
when modelled strictly by RF-LUR or OLS-LUR.

The mean CV R2 was 0.34 and 0.39 for all OLS-LUR and RF-LUR, re-
spectively. Seasonally, summer models exhibited the highest CV R2

(OLS-LUR = 0.40, RF-LUR = 0.46) while fall models had the lowest
(OLS-LUR = 0.27, RF-LUR = 0.31). A few trace-elements (summer Ni
and V; winter Co) showed high CV R2s (≥ 0.70) for both RF-LUR and
OLS-LUR models, but the majority of trace elements had lower CV R2s
(≤ 0.50) for both model types. Similarly, CV slope deviance showed bet-
ter performance from RF-LUR (0.61) compared to OLS-LUR (0.65). Sea-
sonally, summer had the lowest deviance (OLS-LUR = 0.60, RF-LUR =
0.54) and fall had the highest (OLS-LUR = 0.73, RF-LUR = 0.69).

3.2.3. Model overpredictions
Over one-third of the final OLS-LUR maps displayed overprediction

(47% in summer, 41% in fall, and 37% in winter). There were no consis-
tent spatial patterns or specific locations that were more prone to OLS-
LUR overprediction. Overpredictions were not associated with the
skewness or kurtosis of the measured or log-transformed concentra-
tions. Many overpredicted surfaces exhibit large areas with elevated
concentrations and an unrealistic maximum concentration. In some
cases, model surfaces had maximum concentrations that were greater
than 100 times the maximum sampling concentration: summer Ag, Al,
Mn, P, Sb, and Ti; winter Sb, Si, Sn, Th, and Ti; fall Ag, B, Ni, P, and Sn.
Examples of overpredicted surfaces are shown in Figs. 3a (Ba) and 4a
(Ni).

In marked contrast, RF-LUR models did not exhibit overpredictions
compared with the measured data (see Figs. 3b (Ba) and 4b (Ni) for ex-
ample). All RF-LUR estimates were within the range of measured sea-
sonal minimum and maximum concentrations. In most cases RF-LUR
models present were biased low for the highest observations and high
for the lowest observations, which echoes findings reported by Reid
et al. (Reid et al., 2015).

3.3. Model predictors

Themost commonmodel predictor categories showed variability by
season. In summer and winter models, for both OLS- and RF-LUR
methods, commercial, road networks and industrial predictors were
most common. For fall models, the most common categories in OLS-
LURmodels were road networks, commercial, and a tie between indus-
trial and institutional predictors; in RF-LURmodels they were road net-
works, commercial, and industrial. We observed seasonal differences in
final OLS- and RF-LURmodel predictors for most trace elements. In gen-
eral, RF-LUR models incorporated a larger number of predictors than
OLS-LURmodels; however, OLS-LUR included amore diverse set of pre-
dictors from different categories.

The summer sampling periodwas characterized by relatively consis-
tent prevailing wind direction and speeds. Winter wind direction
showed greater variability, but wind speeds were relatively stable. As
the transition season between summer and winter, fall wind directions
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oscillated between the prevailing wind directions characteristic of sum-
mer (southwest) andwinter (northwest). The contribution ofwind rose
variables varied seasonally. Wind rose variables contributed to almost
0
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all RF-LUR models (summer: 97%, fall: 96%, winter: 89%) while contri-
butions for OLS-LUR models varied by season (summer: 97%, fall: 59%,
and winter 56%).
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4. Discussion

Wedeveloped seasonal models for PM1.0 trace elements based on fall,
summer and winter air monitoring in the Halifax Regional Municipality,
Nova Scotia, Canada. The study compared traditional (OLS) and machine
learning (RF) approaches for developing spatially refinedmodels.We also
examined an extensive suite of predictors including a variety of novel
port-related sources, commercial and transportation predictors, and
wind rose predictors to incorporate meteorological information.

4.1. Intraurban airborne trace element concentrations

Distributions ofmeasured PM1.0 trace elements differed significantly
between seasons. Trace element concentrationswere typically higher in
summer or winter, and most trace elements displayed greater spatial
variability in winter or fall. Elevated concentrations for some elements
in winter may have been due to winter fuel consumption patterns
(Statistics Canada, 2017), as well as weather conditions favourable for
particle buildup (i.e., reduced mixing height) (Masiol et al., 2020).

Some trace elements exhibited a higher degree of spatial variability
(e.g., Ba, Cu, K, Mn, Ni, Th), suggesting substantial contributions from
local sources. Others showed minimal spatial variability(e.g., Na, Se,
and Tl), suggesting dominant contributions from regional sources via
long-range transport. These results are consistent with Na being associ-
ated with marine aerosols and Se being associated with coal-fired
power generation in the northeast United States (Gibson et al., 2013;
Jeong et al., 2011).

4.2. OLS-LUR and RF-LUR model performance

OLS- and RF-LURmodels explained a good portion of the spatial var-
iability ofmost PM1.0 trace elements across three seasons. Inmost cases,
the RF pseudo-R2 was lower than the OLS R2 by 0.05 to 0.30, which is
consistent with Brokamp et al. (2017). However, evenwith the very ex-
tensive suite of predictors we considered it was not adequate for
7

predicting some trace elements, raising the question of whether these
elements can be modelled accurately using LUR models alone.

OLS-LURmodels significantly overpredicted ambient concentrations
formany trace elements. Overpredictionswere not related to the highly
skewed distributions of many trace elements or poor CV results. This
suggests non-linear relationships may exist between land-use predic-
tors and concentrations. OLS-LUR overprediction is not novel to this
study and has been documented in Brokamp et al. (2017) and Chen
et al. (2020a, 2020b). Brokamp et al. (2017) developed RF models to
address overpredictions at their sampling sites, which is the same ap-
proach as this study. Chen et al. (2020a, 2020b) truncated overpredicted
values, which can result in a loss of spatial distribution gradient/
information resulting in areas with no variation, especially when
overprediction occurs to large regions.

RF-LUR models developed in this study had lower pseudo-R2 than
the RF-LUR models developed for 11 PM2.5 related metals in
Cincinnati, OH (Brokamp et al., 2017). The differences in RF-LUR perfor-
mances may be due to differences in location, the PM size fraction
(PM2.5 vs. PM1.0), or the highly skewed concentration distributions
found in HRM compared with the Cincinnati study.

This study compared OLS and RFmethods across 80 pairs of models,
far exceeding the number of comparisons in many recent studies
(Brokamp et al., 2017; Chen et al., 2019). As shown in Fig. 2, RF-LUR
out-performed OLS-LUR in themajority of model pairs in every CVmet-
ric (mean RMSE, OOF RMSE, CV R2 and CV slope), consistent with other
studies' findings. However, each CV metric had 12–44% of model pairs
with better OLS performance (5–18% after excluding overprediction
models), and 12–21% of model pairs with not significant differences
(< 10%) between the twomethods. For model pairs with not significant
differences, the simpler and more direct method (OLS) could be pre-
ferred because the more complex method (RF) did not yield significant
improvement in prediction accuracy and precision (Weichenthal et al.,
2016). Including pairs in which OLS models performed similarly or bet-
ter compared to RF, OLS was the optimal LURmethod for 20–30% of the
seasonal trace element models, which is consistent with the results of



Fig. 3. a: Ba OLS-LUR exposure surfaces in three seasons (left to right: summer, fall, winter). The black areas indicate estimates higher than themaximummeasured concentration for that
season (not overprediction). Overprediction occurs in the winter surface where the maximum predicted concentration is 8.80 ng/m3.
b: Ba RF-LUR exposure surfaces in three seasons (left to right: summer, fall, winter). The maximum on the colour scale aligns with the maximum observed concentration for that season.
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Brokamp et al. (2017). Thus, from a model performance perspective, RF
produced more accurate models for trace air pollution elements. The
traditional OLS-LUR can be a viable complementary model because
they are simpler and can be, in some cases, equally or more accurate.
However, further research in different geographic locations, with vary-
ing sources and trace element distributions, is needed to determine
underwhich conditions OLS- versus RFmodels can provide accurate es-
timates for trace metals.

4.3. Model predictors and interpretation

RF methods provided more interpretable LUR models in most cases,
which supports the findings in Ren et al. (2020). RF-LUR models incor-
porated multiple collinear predictors and drew from a smaller number
of variable categories than OLS-LUR models. These results were consis-
tent with the different fundamental principles behind each modelling
method. In general, RF-LUR models incorporated predictors from a
8

narrower set of categories and/or subcategories, which makes these
models more interpretable. In contrast, OLS-LUR models may have ex-
cluded relevant but related source predictors in the same category
from constituting the same model, while incorporating combinations
of non-collinear proxy predictors from other categories.

Discussions onmodel predictor comparisonswith other PM trace el-
ement studies (Brokamp et al., 2017; Chen et al., 2020a, 2020b; De
Hoogh et al., 2013; Dirgawati et al., 2016; Ito et al., 2016; Li et al.,
2016; Zhang et al., 2015) can be found in section C of the online supple-
ment; as well as other LUR studies that incorporated meteorology
(Abernethy et al., 2013; Mavko et al., 2008; Zhang et al., 2015).

4.3.1. Marine transportation and other oil combustion sources
As the busiest port on Canada's east coast, marine vessel emissions

and other residual fuel oil combustion sources were expected to contrib-
ute significantly to HRM's PM1.0. Elements associated with residual
fuel oil (RFO) combustion were Ni and V (Agrawal et al., 2008;



Fig. 4. a: Ni OLS-LUR exposure surfaces in three seasons (left to right: summer, fall, winter). The black areas indicate estimates higher than themaximummeasured concentration for that
season (not overprediction). Overprediction occurs in the summer and fall surfaces where the maximum predicted concentrations are 199 ng/m3 and 3.28 × 1038 ng/m3, respectively.
b: Ni RF-LUR exposure surfaces in three seasons (left to right: summer, fall, winter). The maximum on the colour scale aligns with the maximum observed concentration for that season.
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Celo andDabek, 2011; Jeong et al., 2011; Lee andHopke, 2006; Zhao et al.,
2013). Ni and V concentrationswere highest inwinter. Ni spatial variabil-
ity (CoV) was highest in winter, while V spatial variability was highest in
summer. Higher spatial variability in winter is consistent with known in-
landRFO combustion activities inwinter (e.g., institutional heating plants,
residential heating, and national military defense facilities).

RF-LUR exposure surfaces for these marker species (Ni shown in
Fig. 4) were more readily interpretable compared to OLS-LUR due to
the alignment of predictors with known source locations and emission
patterns for marine transportation and industrial/institutional oil com-
bustion sources across the seasons. Summer surfaces for Ni, V and S
showed higher concentrations near the harbour and downwind of the
harbour (i.e., Dartmouth side of HRM by westerly prevailing winds),
consistent with ship emissions from vessel traffic in the harbour as
well as local point sources with oil combustion emissions (i.e., oil refin-
ery, power generation facility) (Anastasopolos et al., 2021; Environment
9

and Climate Change Canada (ECCC), 2020). For fall and winter, Ni and S
RF-LUR maps (winter only for V) differed from the summer as higher
concentrations were observed in the more densely developed urban
center of HRM. This is consistent with oil combustion used for institu-
tional space heating in this region (i.e., universities, hospitals, and mili-
tary facilities) and seasonal decrease in ship traffic in colder months
(Anastasopolos et al., 2021; Environment and Climate Change Canada
(ECCC), 2020).

In general, marine related and industrial variables were important
predictors for elements associated with oil combustion (Ni and V).
Among the marine related variables, shipyard/ wharf predictors were
influential in summer Ni models; while winter models included
ocean/coast variables, with a commensurate decrease in contributions
from shipyard/wharf predictors. This may reflect near-harbour indus-
trial sources such as power generation (i.e., electricity for residential
space heating; (Statistics Canada, 2011)), as well as larger seasonal
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contribution from non-marine predictors such as institutional land-use,
which may act as indicators of RFO combustion for institutional space
heating in winter.

4.3.2. Road and rail transportation sources
Road and railroad transportation predictors had significant contribu-

tions to traffic-related PM1.0 trace metals (e.g., Ag, Ba, and Cd) in all
three seasons. Ba is a meaningful source marker for brake wear-
related road and rail traffic emissions (e.g., particles generated by
wear of organo-metallic friction brake pads or resuspended from the
road or rail surface (Gildemeister et al., 2007; Harrison et al., 2011;
Lee and Hopke, 2006)), including in finer size fractions such as PM1.0

(Kwak et al., 2013). OLS-LUR generated PM1.0-Ba exposure surfaces
that were readily interpretable and strongly consistent with the city's
transportation network (shown in Fig. 3a). By comparison, the RF-LUR
models were less interpretable selecting multiple commercial land use
predictors alongwith some roadway predictors.While commercial pre-
dictors were likely suitable proxies for nearby transportation activities,
the resulting RF-LUR surfaces did not readily delineate the transporta-
tion network where source activity was occurring. Smaller buffer sizes
of road predictors may have been selected in winter (versus summer
and fall) OLS- and RF-LUR models due to damp conditions reducing Ba
dispersion away from the line sources (i.e., reduced brake dust disper-
sion and resuspension from damp road surfaces and greater PM wash-
out by precipitation).

4.3.3. Commercial and industry sources
Commercial variables were strong predictors of PM1.0 trace

elements in HRM in both OLS- and RF-LUR models, suggesting influ-
ences by smaller, spatially distributed localized sources, rather than
large single-location industrial facilities. In some cases, these predic-
tors may also be proxies for other sources of trace elements that we
were unable to capture. The contribution of commercial variables is
equivalent to industrial and institutional/government/military vari-
ables combined.

Industrial variables (e.g., facilities reported to NPRI and industrial
land-use zoning) were important predictors of airborne trace elements
in HRM including for known marker species of oil combustion (Ni and
V) as discussed previously in Section 4.3.2.

4.3.4. Biomass combustion sources
The LUR model predictors of intraurban PM1.0-K were consistent

with biomass combustion source activity (e.g., woodburning for
space heating/aesthetics, agricultural woodburning or crop burn-
ing, etc.; (Austin et al., 2012; Gibson et al., 2015; Jeong et al.,
2011; Masri et al., 2015)) in all three seasons. In the winter OLS-
LUR model the top predictor was “fishing & agricultural services”,
consistent with woodburning sources (i.e., farms with crop burn-
ing, wood burning for space heating, farming waste disposal, fish
smoking operations). This predictor was also selected by the RF-
LUR model.

Other predictor categories in the fall and winter OLS- and RF-LUR
models were smaller roadways, thereby a proxy for residential areas
where woodburning is used for supplemental winter space heating in
some homes (Statistics Canada, 2011). In the summer OLS- and RF-
LUR models, parks/open space land use predictors were selected,
consistent with locations of seasonal outdoor or agricultural burning
activity.

Both OLS- and RF-LUR methods selected predictors and generated
PM1.0-K exposure surfaces that were interpretable and consistent with
biomass combustion source activity. The RF-LUR model, by virtue of
its ability to incorporate collinear predictors, selected a greater range
of predictors (e.g., parks/open space in summer models, minor roads
inwinter) and thus theRFmapsmay be preferred for this sourcemarker
element.
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4.4. Seasonal differences

Seasonal differences in predictors may be attributable to differences
in seasonal distribution of trace elements' source activity, andmeteorol-
ogy. As discussed in depth in the previous section, seasonal differences
in model predictors were consistent with seasonal differences in the
distribution of trace elements across the study area, as well as differ-
ences in source activity—i.e., household heating, traffic patterns, indus-
trial emissions and outdoor industries (shipping, mining, farming/
fishing, etc.).

The inclusion of wind rose predictors in themajority of models sug-
gests thatmeteorology—particularly the influence ofwinddirection and
speed on airmass trajectories fromknownupwind source regions—may
have played a role in the seasonal differences.

Urban environments have complex land-use where it may be
difficult to isolate sources that are co-located or close in proximity.
For instance, military facilities (institutional land-use) in HRM in-
cludes a naval base located in the port area (marine related). Military
facilities also use RFO for winter space heating, thus they report
emissions to the NPRI (industrial point source). This could partially
explain some of the seasonal differences seen in source predictor
categories—where a shift in the seasonal sources may appear as un-
related differences in source categories. In this study, we used na-
tional databases without any alternations (i.e., without removing
institutions such as military facilities, hospitals and universities
from NPRI facilities data).

4.5. Limitations

Low ambient pollutant concentrations posed challenges in
modelling some trace elements. Three elements (Cl, Cr, and Hg)
were excluded from the study because more than half of the mea-
surements for those elements were below detection in all three sea-
sons. Including elements with only RF-LUR models, eleven elements
were modelled in two seasons, and one (Be) was modelled in only
one season, due to the high percentage of below DL values in the
other seasons. This approach limited seasonal comparisons for
some elements. However, we prioritized providing one or two sea-
sonal models over modelling only elements with higher concentra-
tions in all three seasons.

We were unable to conduct external validation (EV) to compare
and evaluate model robustness in this study. To our knowledge,
this is the first study to measure, characterize and model spatial dis-
tribution of PM1.0 trace elements in HRM. No previous studies
modelling PM trace elements in other cities were able to obtain alter-
nate data to conduct EV, though many commonly modelled criteria
pollutants have more data to support EV (Chen et al., 2019). More
future studies are needed to characterize and model PM trace
elements.

5. Conclusions

We developed 80 seasonal models for PM1.0 trace elements
in Halifax Regional Municipality—the largest port on Canada's east
coast—based on concurrent monitoring at 50 sites across HRM in fall,
summer and winter. To our knowledge, this was the first study to com-
pare traditional (OLS) and machine learning (RF) approaches for char-
acterizing the spatial distribution of airborne elements associated with
PM1.0. Our results demonstrate that RF-LUR were more accurate in
most cases; however, in some cases (20–30%) OLS-LUR can be equally
or more accurate. This study also identified novel marine industry,
transportation, commercial, and meteorological predictors. Our results
provide detailed information regarding seasonal and spatial distribution
of PM1.0 trace elements that will support health studies investigating
the long-term impacts of exposure to metals associated with airborne
pollutants.
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