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Stochastic modelling for financial bubbles  
and policy
John  Fry1*

Abstract: In this paper, we draw upon the close relationship between statistical 
physics and mathematical finance to develop a suite of models for financial 
bubbles and crashes. By modifying previous approaches, we are able to derive 
novel analytical formulae for evaluation problems and for the expected timing of 
future change points. In particular, we help to explain why previous approaches 
have systematically overstated the timing of changes in market regime. The 
list of potential empirical applications is deep and wide ranging, and includes 
contemporary housing bubbles, the Eurozone crisis and the Crash of 2008.

Subjects: Behavioral Sciences; Economics, Finance, Business & Industry; Mathematics & 
Statistics 

Keywords: econophysics; bubbles; crashes; expected crash-time

1. Introduction
Work by Bachelier and by Black–Scholes–Merton hints at close links between mathematical finance 
and statistical physics, and there is a fascinating history of joint work straddling the two areas 
(Weatherall, 2013). This has led to the development of a field called econophysics which has seen the 
large-scale application of tools and techniques from statistical physics to model financial and economic 
phenomena (Bouchaud & Potters, 2003; Voit, 2005). At the core of this approach is the development of 
complex systems theory whereby system-level behaviour becomes dominated by the interaction by a 
multitude of microscopic components (Sornette, 2003). The resultant system-level behaviour is also 
much richer than the individual components when viewed in isolation. This simple observation means 
that conventional macroeconomic models based on microfoundations are thus liable to miss important 
features of the real world. As far as finance is concerned, a key ingredient to the story is that 
developments in complex systems theory have also occurred alongside notable increases in computing 
power and the growth of many very large and readily accessible financial databases.
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This new field of econophysics has much to offer. In several ways, econophysics techniques may 
be viewed as potentially more informative than conventional economic approaches (Buchanan, 
2013). In particular, econophysics may also offer novel insights into market stability and regulation 
which is what most interests us here. Here, further links between “econophysics” and mainstream 
economic models such as Zeira (1999) are also of interest.

In thermodynamics, a phase transition occurs when there is a singularity in the free energy or one 
of its derivatives in some thermodynamic system (Yeomans, 1992). Typically, one sees a visibly sharp 
change in the properties of the system such as a transformation from liquid to gas. However, phase 
transition behaviour has been recorded in a vast range of physical and human systems, including 
finance (Sornette, 2003). This analogy between financial crashes and phase transitions in critical 
phenomena in statistical physics is now well established (Johansen, Ledoit, & Sornette, 2000; Sornette, 
2003) and has recently been explicitly linked (Fry, 2012, 2014). As a consequence, many papers 
discuss the sometimes controversial subject of log-periodic precursors to financial crashes (Bree, 
Challet, & Perrano, 2013; Chang & Feigenbaum, 2006, 2008; Feigenbaum, 2001a, 2001b; Zhou & 
Sornette, 2008, 2009). For recent reviews of the relevant literature, see (Geraskin & Fantazzini, 2013; 
Sornette, Woodard, Wanfeng Yan, & Zhou, 2013). Clearly, financial bubbles and crashes are too 
important a subject to ignore and the academic literature has begun to recognize the importance of 
the area. Despite their origins being firmly based in statistical physics, log-periodic models have also 
begun to appear in several well-respected mainstream finance journals in recent years (Bree & 
Joseph, 2013; Geraskin & Fantazzini, 2013; Jiang et al., 2010; Kurz-Kim, 2012; Lin, Ren, & Sornette, 
2014; Lin & Sornette, 2013).

Financial markets operate by balancing risk and return (Markowitz, 1971). As discussed in Fry 
(2012, 2014), there is a sense in which the prevailing class of log-periodic models omits a crucial 
second-order related to market overconfidence. Interestingly, there is thus a sense in which the 
academic literature reflects wider popular failings prior to the 2008 crisis (Peston & Knight, 2012). 
Here, by using a better “physical” model, which makes the link between finance and phase-
transition behaviour more explicit, we can also extend the range of possible financial and economic 
applications.

Bubbles and anti-bubbles (Zhou & Sornette, 2005) are a core theme explored by log-periodic and 
related models although a wide range of alternative applications are possible (Fry, 2014). Recent 
advances include modelling unpredictable market shocks (Fry, 2012) and the development of ele-
mentary technical trading strategies (Fry, 2014). Here we explore further links between an eco-
nomic model for informational overshooting in Zeira (1999) and develop a suite of related univariate 
and multivariate models. This ability to fit multivariate models to data is significant. Multivariate 
models enable the simultaneous modelling of multiple markets. This is important as previous work 
has often studied different types of financial markets (Guo, Zhou, Cheng, & Sornette, 2011; Sornette 
& Cauwels, 2014; Zhou & Sornette, 2004) or multiple regional markets (Adila, 2014). Multivariate 
models also allow for a more systematic approach for studying contagion (McNeil, Frey, & 
Embrechts, 2005; Sornette & Cauwels, 2006). The inherently practically minded nature of our ap-
proach is reinforced by the empirical estimates for the level of over-pricing and the level of under-
pricing that we are able to provide.

The empirical analyses in this paper are interesting and important in their own right. Firstly, we 
apply our model to London property prices. Recently, there has been intense media speculation over 
whether or not there is currently a bubble in London property prices. The potential policy ramifications 
are obvious as the economic impact of house-price crashes can be particularly severe (Black, Fraser, 
& Hoesli, 2006; Hott & Monnin, 2008). Secondly, we analyse the effect of unpredictable market 
shocks on Greek government bond yields that occurred as part of the recent Eurozone crisis. Thirdly, 
we are able to show that the 2008 crash was preceded by both a speculative bubble in the US stock 
market and a detectable decline in lending quality amongst major financial institutions.
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The layout of this paper is as follows. Section 2 introduces a univariate model for bubbles and anti-
bubbles – here termed endogenous shocks. By slightly modifying the formulation of our model, we 
can derive novel analytical formulae for valuation and for the expected changepoint time. Further, 
our model is able to generate a plausible mechanism to explain why similar methods have 
systematically overestimated the timing of future changepoints (Voit, 2005). Section 3 develops a 
model for unpredictable market shocks. These unpredictable shocks may be either endogenous or 
exogenous in nature. Section 4 then shows how the models in Sections 2 and 3 can be applied to bond 
yields and interest rates. Section 5 discusses an extension of the basic model to multivariate bubbles 
and anti-bubbles. Some sample empirical applications are discussed in Section 6. Section 7 concludes.

2. Endogenous shocks: bubbles and anti-bubbles
Markets work by balancing risk and return. The level of risk and return remains stable even in the face 
of technological innovation or an influx of new investors (Zeira, 1999). These assumptions do not rely 
on complicated mathematics and avoid dubious assumptions such as the “riskless hedge” of the 
Black–Scholes model (Bouchaud & Potters, 2003). Our model makes several observable predictions 
for market crashes. Inter alia speculation-induced crashes are preceded by an unsustainable super-
exponential growth coupled with a detectable increase in market overconfidence.

Let Pt denote the price of an asset at time t and let Xt = log Pt. The set up of the model is as 
follows:

Assumption 1 (Intrinsic Rate of Return) The intrinsic rate of return is assumed constant and equal 
to �:

Assumption 2 (Intrinsic Level of Risk) The intrinsic level of risk is assumed constant and equal  
to �2:

As in Johansen et al. (2000) our starting point is the equation

where P1(t) satisfies

where Wt is a Wiener process and j(t) is a jump process satisfying

When a crash occurs �% is automatically wiped off the value of the asset. Prior to a crash, P(t) = P1(t) 
and Xt = log(P(t)) satisfies

where v = − ln[(1 − 𝜅)] > 0.1 Assumptions 1 and 2 show that crashes are outliers and can, in prin-
ciple, be predicted based on anomalous behaviour in the drift and volatility in Equation (6). In a bub-
ble regime, a representative investor is compensated for the crash risk by an increased rate of return 
with 𝜇(t) > 𝜇 the long-term rate of return. This is accompanied by a decrease in the volatility func-
tion �2(t) – a result which at first glance may appear counterintuitive but, in fact, represents market 
overconfidence (Fry, 2012, 2014).

(1)E[Xt+Δ − Xt|Xt] = �Δ + o(Δ)

(2)Var[Xt+Δ − Xt|Xt] = �
2Δ + o(Δ)

(3)P(t) = P
1
(t) (1 − �)j(t)

(4)dP
1
(t) =

[
�(t) + �

2(t)∕2
]
P
1
(t)dt + �(t) P

1
(t)dW

t

(5)j(t) =

{
0 before the crash

1 after the crash

(6)dXt = �(t) dt + �(t)dWt − vdj(t)
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Suppose that a crash has not occurred by time t. In this case, we have that

where h(t) is the hazard rate. Hence, it follows from (1) and (7) that

Equation (9) thus returns the first-order model – namely that the rate of return must increase in or-
der to compensate a representative investor for the risk of a crash.

Second-order condition. This condition stipulates that in order for a bubble to develop a rapid 
growth in prices is not sufficient in isolation. The perceived price risk must also diminish. From 
Equations (2) and (8), it follows that

Equation (10) thus describes a collective market overconfidence that arises as a result of the bubble 
and leads to an underestimation of the true long-term level of volatility. We note that from a math-
ematical perspective Equation (10) holds some wider significance (Fry, 2012) since it satisfies a 
phase-transition condition delineating between random and deterministic behaviour in prices:

Post-crash increase in volatility. Further to the above Discussion, Equation (10) also predicts that 
volatility increases after the crash – in line with the predictions of several related models (see e.g. 
Sornette & Helmstetter, 2003). Before the market crashes, in the bubble regime, we have that

whilst after the crash

Equations (9) and (10) show that specification of the hazard function h(t) completes the model. In 
contrast to previous work Fry (2012, 2014) here we follow (Zeira, 1999) in assuming that the time of 
the crash follows a uniform U[0, T] distribution. This gives

In order that the volatility function, �2(t) remains positive we need that

Thus, from Equation (15), our model remains valid only in the region 0≤t≤T.

Expected crash time. Unlike previous approaches, (Fry, 2012, 2014) assuming h(t) has the from 
given by Equation (14) means that we can estimate the time when a crash is most likely. Suppose 
that a crash has not occurred by time Tend. We have that the time of the crash is distributed according 
to U(T

end
, t

c
). This suggests that

(7)E[j (t + Δ) − j(t)] = Δh(t) + o(Δ)

(8)Var[j (t + Δ) − j(t)] = Δh(t) + o(Δ)

(9)�(t) − vh(t) = �; �(t) = � + vh(t)

(10)�
2(t) + v2h(t) = �

2; �
2(t) = �

2 − v2h(t)

(11)min
t

�
2(t) = 0

(12)�̃�
2 = Var(Xt+Δ|Xt) = Δ[𝜎2 − v2h(t)] + o(Δ)

(13)Var(Xt+Δ|Xt) = Δ[�̃�2 + v2h(t)] + o(Δ)

(14)h(t) =
f (t)

1 − F(t)
= (T − t)−1

(15)�
2 −

v2

T − t
; tc = T −

v2

�
2

(16)Expected Crash Time =
tc + Tend

2
< tc
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Equation (16) may thus help to explain why a range of previous approaches have systematically 
overestimated the time of the crash (Voit, 2005).

As laid out above, our model can be used to empirically test for the presence of bubbles in a given 
price series. However, our model also enables us to estimate the speculative bubble component 
present within observed prices. Under fundamental price dynamics with v = 0

where �̃� = 𝜇 + 𝜎
2∕2. In empirical work, we can use Equation (17) to estimate fundamental value 

— an approach which recreates the widespread phenomenology of approximate exponential growth 
in economic time series (Campbell, Lo, & MacKinlay, 1997). Define

Under a speculative bubble, with v > 0, we have that

Hence, it follows from (19) that

Equations (17)–(20) lead to the following estimate of the speculative bubble component defined as 
the “average distance” between fundamental and bubble prices:

As defined Equation (21) gives a fraction in (0, 1). In Fry (2010), a similar approach gave a value of 
0.202 for UK house prices over the years 2002–2007 suggesting that the bubble accounted for 
around 20% of observed prices – closely matching a subsequent fall in UK house prices of around 
20% in 2008–2009.

An anti-bubble represents the mirror image of a speculative bubble (Yan et al., 2012). Just as 
speculative bubbles result in dramatic price rises anti-bubbles can result in dramatic price falls. Anti-
bubbles can be modelled by replacing v with −v in the above. In the case of an anti-bubble, analogous 
reasoning leads to an estimate of the level of under-pricing. Define

It follows that

(17)PF(t): = E(P(t)) = P(0)e
�̃�t

(18)H(t): = ∫
t

0

h(u) du = ln

(
T

T − t

)

(19)X
t
∼N (X

0
+ �t + vH (t), �2t − v2H(t))

(20)P
B
(t): = E(P(t)) = P(0)e

�̃�t+

(
v −

v
2

2

)
H(t)

= P
F
(t)

(
T

T − t

)v −
v
2

2

(21)

Bubble Component = 1 −
1

T ∫
T

0

P
F
(t)

P
B
(t)
dt

= 1 +
T

T

�
v −

v
2

2
+ 1

�
⎡
⎢⎢⎣

�
1 −

T

T

�v −
v
2

2
+1

− 1
⎤⎥⎥⎦

P
AB
(t): = E(P(t)) = P(0)e

�̃�t−

(
v +

v
2

2

)
H(t)

= P
F
(t)

(
T − t

T

)v +
v
2

2

(22)

Anti-bubble Component = 1 −
1

T ∫
T

0

P
F
(t)

P
AB
(t)
dt

= 1 +
T

T(1 − v − v
2

2
)

⎡⎢⎢⎣

�
1 −

T

T

�1− v − v
2

2

− 1
⎤⎥⎥⎦



Page 6 of 15

Fry, Cogent Economics & Finance (2015), 3: 1002152
http://dx.doi.org/10.1080/23322039.2014.1002152

Similarly, (22) should yield a fraction in (−1, 0). E.g. a value of −0.1 would suggest that prices are 
undervalued by roughly 10%.

3. Unpredictable market shocks
Suppose that the market is exposed to an unpredictable shock. The timing of the shock is assumed 
to be completely unpredictable. If the shock is exogenous in nature then its affect is merely transi-
tory (Sornette & Helmstetter, 2003). In contrast, the after-effects of an endogenous shock are po-
tentially much longer lasting.

The shock occurs at time 0 and results in an initial decrease in drift by the amount �0 and an initial 
increase in volatility by the amount �20. As an arbitrage opportunity has to be eliminated, the market 
recovers at the random time t0 — the drift increases by �0 and volatility decreases by �20. The time t0 
of the market recovery is a random variable with hazard function h(t). Since the effect of an 
exogenous shock is transitory it follows that in this case h�(t) > 0, since as time progresses a market 
rebound becomes increasingly likely. Also, since the shock is assumed to happen at t = 0 it follows 
that we must also have h(0) = 0:

The price dynamics prior to the market recovery are described by the following equation

where j(t) satisfies

where i =
√
−1 and �(⋅) denotes Dirac’s delta function. When a recovery happens, the effect is an 

increase in drift and a decrease in the variance, hence the introduction of i =
√
−1. Prior to the  

recovery we have that

Thus, from Equation (1) it follows that

Equation (54) shows that the shock reduces the level of return. The risk (variance) associated with 
Equation (24) is

This gives

Similarly, it follows from (2) that

(23)h�(t) > 0; h(0) = 0

(24)dXt = �(t)dt + �(t)dWt + dj(t)

(25)dj(t) = �0�(t − t0)dt + i�0�(t − t0)dWt

(26)E[Xt+Δ − Xt|Xt] = (�(t) + �0h(t))Δ + o(Δ)

(27)�(t) = � − �0h(t)

(28)Var
(
Xt+Δ − Xt|Xt

)
= Var

[
�(t)

(
Wt+Δ −Wt

)]
+ Var

[
j(t + Δ)|j(t) = 0]

(29)Var
(
Xt+Δ − Xt|Xt

)
= �

2(t)Δ + Var[E(j(t + Δ)|j(t) = 0)]

(30)+ E[ Var(j(t + Δ)|j(t) = 0)] + o(Δ)

(31)Var
(
Xt+Δ − Xt|Xt

)
=
(
�
2(t) +

(
�
2
0 − �

2
0

)
h(t)

)
Δ + o(Δ)

(32)�
2(t) +

(
�
2
o − �

2
0

)
h(t) = �

2; �
2(t) = �

2 +
(
�
2
0 − �

2
0

)
h(t)
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If �20≥�20 the shock affects volatility more than it does the drift. The shock thus results in an increase 
in market volatility alongside a decrease in drift. If �20≤�20 the shock actually results in a reduction in 
volatility. However, irrespective of the effect upon market volatility the shock decreases the rate of 
return so is still likely to remain bad news for investors. If �20 = �

2
0 market volatility remains 

unaffected.

In empirical work, we choose

Not only does h(t) in (33) satisfy (23) but the special case � = 0.5 in (43) recreates both the empirical 
power-law reported in Sornette, Malevergne, and Muzy (2003) and related phenomenology in 
Sornette and Helmstetter (2003). Equation (33) also provides a natural empirical test for the presence 
of an exogenous/endogenous shock (see below).

From (33), it follows that

where � = �(�20 − �
2
0). The case � = 0 corresponds to the case of an efficient market where price 

changes are completely unpredictable and we are left with the classical random walk or Black–
Scholes model:

The link with statistical physics gives two main cases of interest.

Endogenous shock. If 𝛽 < 0 and 𝛼 < 0 then �2(t) increases without bound. This represents the 
fundamental uncertainty related to an endogenous shock (Fry, 2014).

Exogenous shock. If 𝛽 < 0 and 𝛼 > 0 the market recovery becomes the inevitable phase transition 
between random and deterministic behaviour with

This suggests that

4. Shocks to bond yields
It is easy to show that an anti-bubble in the price of the underlying asset leads to a bubble in the 
corresponding Bond yields (Fry, 2014). Following the standard approach, (Hillier, Ross, Westerfeld, 
Jaffe, & Jordan, 2010) write

where y(t) is the yield, T is the maturity date, M is the constant value of the bond at maturity, and 
P(t) is the price of the underlying asset. It follows that X(t) = ln P(t) satisfies

Under the equation for an anti-bubble, we have that

where

(33)h(t) = �[1 − (1 + t)−�]

(34)�
2(t) = �

2 + �[1 − (1 + t)−�]

(35)
dX

t
= �dt + �dW

t

(36)lim
t→∞

�
2(t) = 0

(37)�
2 + � = 0; �

2 = −�

(38)P(t) = Me−y(t)T

(39)X(t) = lnM − y(t)T

(40)dXt = �(t)dt + �(t)dWt + vdj(t)
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Combining Equations (39)–(41) it follows that the bond yields y(t) satisfy

where W�

t = −Wt. Thus it follows that (42) gives the formula for a speculative bubble since W�

t

d
=Wt. 

Similarly Equations (23)–(25) and (39) show that an exogenous shock would also affect observable 
bond yields in the same way.

5. Multivariate bubbles and anti-bubbles
In this subsection, we discuss multivariate models for bubbles. Thus, we are able to simultaneously 
describe multiple markets. This is significant for empirical applications across different countries 
(McNeil et al., 2005; Sornette & Malevergne, 2006) and different regions.

Let Pt denote the prices (P1t ,…, P
p

t
) of a basket of p assets at time t. Define Xt = (X1t ,…, X

p

t
) where 

Xit = log P
i
t. For the multivariate model, Assumptions 1 and 2 are replaced by their vector/matrix 

analogues.

Assumption 3 (Intrinsic Rate of Return) The intrinsic rate of return is assumed constant and 
equal to �:

Assumption 4 (Intrinsic Level of Risk) The intrinsic level of risk is assumed constant and equal  
to Σ:

Co-ordinatewise our starting Equation (3) becomes

and before the crash Xt satisfies the vector-valued equation

where v is the diagonal matrix satisfying vii = − ln(1 − �i) = vi. Assumption 1 above yields a vector-
valued re-statement of Equation (9):

Similarly, Assumption 2 shows that the second-order condition now becomes

where Σj denotes the correlation matrix of j(t). Equation (48) thus shows how correlation in the 
bubble process is transferred to prices prior to the crash. Genuinely high-dimensional and multivariate 
models are possible though it seems that these may lose some interpretability. Since bivariate 
models are by far the most convenient and natural to use in applications in the sequel we restrict to 
a bivariate model.

5.1. A bivariate model
In a bivariate extension of the preceding univariate and multivariate models, Equation (46) 
becomes

(41)
�(t) = � − vh(t)

�
2(t) = �

2 − v2h(t)

(42)dy(t) = −
�(t)

T
dt +

�(t)

T
dW�

t −
v

T
dj(t)

(43)E[X
t+Δ

− X
t
|X
t
] = �Δ + o(Δ)

(44)Var[Xt+Δ − Xt|Xt] = ΣΔ + o(Δ)

(45)pi(t) = pi
1
(t)(1 − �

i) j(t)

(46)dXt = �(t)dt +
√
�(t)dWt − vdj(t)

(47)�(t) − vh(t) = �; �(t) = � + vh(t)

(48)Σ(t) + vΣjv
Th(t) = Σ; Σ(t) = Σ − vΣjv

Th(t)
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where X
t
= (X

1
(t), X

2
(t))

T denotes the log-price of Assets 1 and 2 at time t, Σ(t) is the instantaneous 
covariance and Wt is standard bivariate Brownian motion. Assumption 1 gives

Assumption 2 gives

In addition to Equation (10) the phase-transition condition also gives

Historical Estimation Bias. Equation (52) when taken together with Equations (9) and (10) serve to 
highlight possible dangers regarding historical estimation bias – an issue with specific relevance to 
the CDO crisis (see e.g. MacKenzie & Spears, 2014). We have already seen that during a bubble 
regime prices may be rising at artificially high rates with comparatively little volatility compared to 
the underlying long-term values. Equation (52) is also useful in highlighting that using historical 
prices in a bubble regime may lead to under-diversified portfolios as a consequence of under-
estimating long-term correlation levels in returns series. If a crash occurs at time t0, in addition to an 
increase in marginal volatility, the covariance of ΔX1(t0) and ΔX2(t0) increases by a factor of 
�v

1
v
2
h (t

0
) (from �

12
− �v

1
v
2
h (t

0
) to its equilibrium value of �12).

Contagion. The above discussion leads naturally to an empirical test for contagious effects that 
arise as part of the bubble process. As discussed below this involves testing the hypothesis shown in 
Equation (57). Suppose we have two assets whose prices are given by eX(t) and eY(t). Let  
ΔXt = Xt+1 − Xt. Under the model (49), knowledge of Y(t) reduces uncertainty in X(t) by

Similarly, knowledge of X(t) reduces uncertainty in Y(t) by the amount

The constraints �2X (t)≥0 and �2Y (t)≥0 imply that

Contagion from Y(t) to X(t) occurs if Y(t) is more informative about X(t) than X(t) is about Y(t). From 
Equations (54) and (55) contagion from Y(t) to X(t) occurs if

(49)dXt = �(t)dt +
√
Σ(t)dWt − vdj(t)

(50)�1(t) = �1 + v1h(t); �2(t) = �2 + v2h(t)

(51)Σ(t) =

(
�
2

1
�
12

�
12

�
2

2

)
−

(
v
1

0

0 v
2

)(
1 �

� 1

)(
v
1

0

0 v
2

)
h(t)

(52)=

(
�
2

1
�
12

�
12

�
2

2

)
−

(
v
2

1
�v

1
v
2

�v
1
v
2

v
2

1

)
h(t).

(53)min
t

Σ(t) = 0; min
t

�12 − �v1v2h(t) = 0

(54)
Var[ΔX(t)] − Var[ΔX(t)|ΔY(t)] = Var[ΔX

t
] − (1 − Cor

2
(ΔX

t
, ΔY

t
)) Var[ΔX

t
]

= Cor
2
(ΔX

t
, ΔY

t
) Var[ΔX

t
]

(55)Var[ΔY(t)] − Var[ΔY(t)|ΔX(t)] = Cor
2
(ΔX

t
, ΔY

t
) Var[ΔY

t
]

(56)�
2
X =

v2X

T − tc

; �2Y =
v2Y

T − tc

(57)

Cor
2
(ΔX

t
, ΔY

t
) Var[ΔX

t
] < Cor

2
(ΔX

t
, ΔY

t
) Var[ΔY

t
]

Var[ΔX
t
] < Var[ΔY

t
]

v
2

X

[
1

T − t
c

+ ln

(
T − t

T − t + 1

)]
< v

2

Y

[
1

T − t
c

+ ln

(
T − t

T − t + 1

)]

v
2

X
< v

2

Y
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Equation (57) is significant as it shows that contagion occurs as the overall bubble process becomes 
dominated by price rises and speculation in Asset Y. Similarly in an anti-bubble contagion from Y(t) to 
X(t) occurs as speculation that drives down the price of Y(t) becomes the dominant effect.

6. Empirical applications

6.1. Is there a bubble in London property prices?
Amid intense speculation in the media, and anecdotal evidence of speculative pressures forcing 
buyers to place bids in excess of the asking price, it is of interest to determine whether or not London 
property prices are currently in a bubble. Whilst recent price hikes do look dramatic they do need to 
be adjusted for inflation in order to gain a more complete picture. This simple procedure can 
nonetheless have a dramatic effect. Information from actual price-paid may also be needed to 
provide a more realistic assessment of the evidence for a bubble. In view of the above, it is also 
important to recognize that the debate about a possible bubble occurs against the backdrop of wider 
structural problems. Recent figures released suggest that the average London house price is now 
eight times the average first-time buyer’s salary.

A plot of average London property prices obtained from the Land Registry, based on actual price-
paid data and adjusted for inflation, is shown below in Figure 1. To some extent prices appear to be 
simply recovering from past price falls although the recent price rises that have occurred are clearly 
far from trivial. Results for the test of speculative bubbles are shown below in Table 1. Irrespective of 
the time window chosen our model suggests that there is currently no evidence of a bubble.

Figure 1. Inflation-adjusted 
London house prices.
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Table 1. Results testing the null hypothesis of no speculative bubble
Date LR-statistic p-value
March 2009 – March 2014 1.075 0.141

March 2010 – March 2014 1.394 0.119

March 2011 – March 2014 1.431 0.116

Jan 2012 – March 2014 1.226 0.134
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6.2. The Greek Eurozone crisis
We illustrate our model with an application to the ongoing Eurozone crisis. A time series plot of 
Greek government bond yields is shown below in Figure 2. For a number of years, Greek government 
bond yields were very stable before spiking upwards from late 2009 onwards as the crisis took hold. 
The precise chronology of the crisis is discussed in Choi, Gulati, and Posner (2011). Following 
established methodology (Fry, 2012; Johansen & Sornette, 2010; Sornette et al., 2003) we test for 
the presence of an exogenous shock in the first 100 trading days following a putative shock — and 
cross-check these results with Choi et al. (2011). Results are summarized in Table 2.

In Choi et al. (2011) Greece’s announced plan to cut its budget deficit on 5/11/2009 is heralded as 
the start of the crisis. Results in Table 2 suggest that this event did indeed have a statistically 
significant effect upon Greek bond yields. Moreover, our results classify the Greek crisis as an 
endogenous shock associated with fundamental weaknesses in the economies of the Eurozone 
countries (Blundell-Wagnall, 2011).

6.3. US bubbles prior to the crash of 2008
We illustrate our multivariate bubble models with an application to a data set consisting of the S& P 
500 and the Federal Funds Rate (FFR). The joint behaviour of US interest rates is much studied (Guo, 
Zhou, Cheng, & Sornette, 2011; Sornette & Cauwels, 2014; Zhou & Sornette, 2004) and is also of 
wider interest amid concern that loose US monetary policy has inflated a succession of recent 
bubbles (Sornette & Cauwels, 2014).

Figure 2. Greek government 
bond yields 2010–2012.
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Table 2. Results for the test of endogenous vs. exogenous shocks (Section 3)
Start date 5/11/2009
�̂� -0.535

e.s.e. �̂� 0.207

t-value 2.585

p-value 0.010

Conclusion Significant evidence of an endogenous shock
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The FFR is the interest rate at which depositing institutions actively trade balances held at the 
Federal Reserve. In particular, data published as the FFR effective rate represent the weighted 
averaged across all such transactions. As the rate increases, it becomes more expensive for financial 
institutions to borrow funds. One feature of interest is whether or not the FFR increases as a symptom 
of wider problems with credit worthiness. In a similar vein to the original model in Johansen et al. 
(2000) increases in the FFR may compensate lending institutions for the Credit Risk that they bear. It 
is well known that such structural problems and anti-bubbles in the underlying can lead to dramatic 
increases and bubbles in the associated interest rates Fry (2014) – see Section 4.

Following a similar approach in Guo et al. (2011) we analyse weekly data from January 2003 to 
June 2007. A plot of the S& P 500 and the FFR is shown below in Figure 3. Both series show a rapid 
growth over time consistent with earlier suggestions of a bubble in both series. Results in Table 3 
give conclusive evidence of a bubble in both univariate series. This is subsequently confirmed by the 
statistical significance of the bivariate bubble model. Further, the test for contagion in Equation (57) 
suggests no evidence for contagion running from the FFR to the S& P 500 and what we have instead 

Table 3. Results for the statistical tests for bubbles
Univariate bubble model

LR-statistic p-value

S& P 500 7.454 0.001

FFR 14.601 0.000

Multivariate bubble model

11.189 0.001

Test for contagion

t-value p-value

0.746 0.456

Figure 3. S& P 500 (solid lines) 
and Federal Funds Rate (FFR) 
(dashed lines).
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is co-dependence. This tallies with aspects of the account of debt-fuelled bubbles in Sornette and 
Cauwels (2014). In the lead in to the crisis the FFR increased to unsustainably high levels as a 
symptom of generally decreasing credit quality in the wider financial system. This also fed into, and 
was also influenced by, an unsustainable bubble in the US stock market.

7. Conclusions and further work
This paper discusses models for financial bubbles and crashes adding to several recent developments 
in the area (Fry, 2012, 2014). Bubbles occur as the price rises to compensate a representative 
investor for the risk of a crash. Similarly, anti-bubbles occur as the price decreases as compensation 
for the risk associated with a subsequent market correction. This is accompanied by a detectable 
increase in market overconfidence akin to phase-transition behaviour in statistical physics (Borland, 
2012). Not all crashes are predictable however. Throughout history, financial and economic systems 
have remained at the mercy of fundamental uncertainties (Machado & Mata, 2013; Reinhart & 
Rogoff, 2009). However, our model does enable us to track the effects of unpredictable market 
shocks.

Our model allows for a more systematic approach in empirical applications. We develop statistical 
tests for bubbles, anti-bubbles and endogenous shocks. Simple adjustments also enable us to track 
related effects on bond markets and interest rates. Our multivariate models enable us to compare 
multiple markets simultaneously and all for a more considered approach to analysing contagion. 
Beyond the purely operational, our model highlights a possible issue with historical estimation bias. 
Relying on historical prices only may overestimate gains (losses) during a bubble (anti-bubble), may 
underestimate the true level of long-term risk and may also underestimate long-term correlation 
levels potentially leading to under-diversified portfolios (MacKenzie & Spears, 2014).

The empirical analyses in this paper are interesting and important in their own right and may help 
to shed light on areas related to economic policy. Firstly, our model refutes recent claims of a bubble 
in London house prices. Secondly, our model classifies the announcement of Greek plans to cut their 
budget deficit as an endogenous shock reflecting deep underlying economic factors. This appears in 
line with the interpretation in Choi et al. (2011). Thirdly, our model finds evidence of speculative 
bubbles in the S& P 500 and in the FFR prior to the Crash of 2008. This suggests that prior to 2008 a 
stock market bubble and a decline in lending quality occurred simultaneously and fed off each other.

The models in this paper are potentially very rich. Further applications include financial resilience 
(Coaffee, 2003), economic policy (Carnot, Koen, & Tissot, 2011) and market psychology and trading 
(Plummer, 2006). Future work will examine bitcoin and crypto-currencies and the UK housing market 
amid concerns that conventional approaches may understate the true extent of the North-South 
divide in the UK (Rowthorn, 2010).
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