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A simulation of stably stratified plane Poiseuille flow at a moderate Reynolds number
(Reτ = 550) and Richardson number (Riτ = 480) is presented. For the first time, the
dynamics in the channel core are shown to be described as a series of internal waves
that approximately obey a linear wave dispersion relationship. For a given streamwise
wavenumber kx there are two internal wave solutions, a dominant low frequency
mode and a weaker-amplitude high-frequency mode, respectively corresponding to
‘backward’ and ‘forward’ propagating internal waves relative to the mean flow. Analysis
of linearised equations shows that the dominant low-frequency mode appears to arise
due to a particularly sensitive response of the mean flow profiles to incoherent forcing.
Instantaneous visualisations reveal that hairpin vortices dominate the outer region of
the channel flow, neighbouring the buoyancy dominated channel core. These hairpins
are fundamentally different from those observed in canonical unstratified boundary layer
flows, as they arise via quasi-linear local processes far from the wall, governed by
background shear. Outer region ejection events are common and can be induced by high
amplitude waves. Ejected hairpins are transported into the channel core, in turn ‘ringing’
the prevailing strong buoyancy gradient and thus generating high-amplitude internal
waves, high dissipation and wave breaking, induced by spanwise vortex stretching and
baroclinic vorticity generation. Such spontaneous and sustained generation of quasi-linear
internal waves by wall-bounded sheared turbulence may provide novel idealised solutions
for, and insight into, large-scale turbulent mixing in a wide range of environmental and
industrial flows.
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1. Introduction

Stably stratified shear flows are commonplace in nature, dominating fluid dynamical
processes in the ocean (Wells & Dorrell 2021) and atmosphere (Mahrt 2014). The
restoring forces of buoyancy play a key role in mixing processes and have been subject to
considerable research over the last few decades (Caulfield 2021). Dynamics are rich even
under weak (stable) stratification and can induce strong anisotropy, intermittency, layering,
and internal waves (Caulfield 2021). These dynamics are crucial for the understanding,
and parameterisation in larger scale models, of processes fundamental to natural flows,
including: transport of scalar properties, e.g. temperature and salinity (Garaud 2018) and
particulate concentration (Hung, Niu & Chou 2020); mixing and entrainment of ambient
fluids (Wells, Cenedese & Caulfield 2010); and energy transport (Winters et al. 1995).

To understand the complex dynamics of stratified turbulent flow this paper focuses
on a particular idealised wall-bounded flow, namely stratified plane Poiseuille flow, also
referred to as channel flow. Simulations of stratified channel flow have been the focus of
much research over the last two decades (Garg et al. 2000; Armenio & Sarkar 2002; Iida,
Kasagi & Nagano 2002; Moestam & Davidson 2005; Garcia-Villalba & del Alamo 2011;
Zonta, Onorato & Soldati 2012; Zonta 2013; Zonta & Soldati 2018). Flows have typically
been modelled using direct numerical simulation (DNS) or large-eddy simulation (LES).
However, there has been limited quantitative analysis of the spatio-temporal structure of
these flows.

Stratified channel flow is governed by three dimensionless quantities: the friction
Reynolds number (Reτ ); the friction Richardson number (Riτ ); and the Prandtl number
(Pr), defined as

Reτ = uτ δ
ν
, Riτ = δg�ρ

ρ0u2
τ

, Pr = ν

κ
, (1.1a–c)

where uτ = √
τw/ρ0 is the friction velocity, τw the wall shear stress, ρ0 a reference density,

δ the channel half-height, g the gravitational acceleration, �ρ the density difference
between the upper and lower walls, ν the kinematic viscosity and κ the diffusivity of the
density field. For constant Reynolds and Prandtl numbers, Garcia-Villalba & del Alamo
(2011) demonstrated the existence of three flow regimes, which they referred to as strongly
stratified laminar flow, strongly stratified turbulent flow and weakly stratified turbulent
flow. Each regime describes the state of turbulence, which is still stratified with depth
(Zonta & Soldati 2018). At sufficiently high Richardson numbers, turbulence is entirely
suppressed resulting in the strongly stratified laminar flow regime. As the Richardson
number reduces, local regions of intermittent turbulence can be sustained near the walls,
leading to the strongly stratified turbulent flow regime. Critical values of Riτ for the
transition from laminar flow can be well predicted through linear stability analysis (Gage &
Reid 1968). The transition to weakly stratified turbulence is (inevitably) less well defined,
but is quantified when near-wall turbulence is no longer intermittent. Here, the core of
the channel is strongly affected by buoyancy while the near-wall dynamical behaviour is
dominated by turbulence. In this regime there is strong spatial variability, which as we
discuss below, leads to subtle interplay between (relatively) localised internal waves and
disordered turbulent motions.

This paper is concerned with this interesting case of weakly stratified flow, where both
turbulence and buoyancy control the flow dynamics in complex and interconnected ways.
Heretofore, the most extensive data set for weakly stratified turbulent channel flow was
created by Garcia-Villalba & del Alamo (2011), using DNS at Pr = 0.7, Reτ = 180 and
Reτ = 550, and a Richardson number range of up to Riτ = 1920. The high Reynolds
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Internal waves and hairpins in plane Poiseuille flow

number allowed Garcia-Villalba & del Alamo (2011) to simulate a wider range of weakly
stratified cases compared with previous authors who were limited by Reτ = 180, where the
strongly stratified regime onsets at lower Riτ ≈ 60 (Garcia-Villalba & del Alamo 2011). In
contrast, simulations at Reτ = 550 and Riτ = 960 were still found to be ‘weakly stratified’,
in this specific sense.

In the weakly stratified flow regime the dynamical influence of buoyancy varies
qualitatively in the vertical (wall-normal) direction. Near the wall, effects of buoyancy
are relatively small and the flow is turbulent, while at the centre of the channel there is
evidence that relatively coherent internal waves are present (Armenio & Sarkar 2002; Iida
et al. 2002; Moestam & Davidson 2005; Garcia-Villalba & del Alamo 2011). Moestam &
Davidson (2005) related periodic variations in stratified shear flow to the (local) dispersion
relation of linear internal waves, Doppler shifted in a spatially varying streamwise flow

(ω − Uckx)
2 = N2

(
kx + kz

kx + ky + kz

)2

, (1.2)

where ω is the temporal frequency, Uc the (time- and planar-averaged) velocity of the
streamwise background flow and ki the three-dimensional wavenumber. Here, N is the
buoyancy frequency associated with the time- and planar-averaged density, which, like
Uc, varies in the vertical direction. However, Moestam & Davidson (2005) neglected the
effect of Doppler shift (Uckx), assumed (in a WKB fashion) that the buoyancy frequency
varies slowly relative to the vertical wavelength of the internal waves, and approximated
spatial wavenumbers using the domain size. These are sweeping assumptions, particularly
in the channel core, where internal waves have been observed over a range of wavenumbers
(Iida et al. 2002; Garcia-Villalba & del Alamo 2011), the mean velocity is large, and the
buoyancy frequency varies rapidly.

Iida et al. (2002) and Garcia-Villalba & del Alamo (2011) characterised internal waves
by investigating spatial energy spectra. Both studies found peaks in vertical velocity energy
spectra over a range of wavelengths kx ≈ 1 to 4. In addition, both studies reported a phase
shift of π/2 between the density and vertical velocity signals, consistent with solutions to
the linearised energy equation for internal waves. The higher Reynolds number simulations
of Garcia-Villalba & del Alamo (2011) allowed separation of scales of motion in spatial
spectra; providing clear evidence that internal waves were confined to the channel core
at Reτ = 550, while Garcia-Villalba & del Alamo (2011) reported that confinement of
internal waves at Reτ = 180 was difficult to determine due to the smaller scale separation
between the outer and inner regions.

There are, however, several important unanswered questions regarding the nature of the
internal wave field in weakly stratified channel flow. While there is some evidence that
these waves are internal waves, it is fair to say that an appropriate form for their dispersion
relation has yet to be clearly determined, and in particular the relevance of linearised
descriptions to what are clearly finite-amplitude structures is uncertain. In addition, the
mechanisms both generating and sustaining waves in stratified channel flow have not yet
been quantified, nor has their interaction with near-wall turbulence.

This paper aims to answer these questions by presenting a simulation of the weakly
stratified channel flow at moderate Reynolds and Richardson numbers (Reτ = 550, Riτ =
480). Numerical methodology is detailed in § 2 before analysing time- and planar-averaged
statistics, multi-dimensional spectra and dynamic mode decomposition (DMD) in §§ 3.1
to 3.3, where highly coherent internal waves are found to dominate the core of the channel
in the region 0.8 < y < 1.2, where y is the vertical wall-normal coordinate scaled by the
channel half-height. The dominant mode identified is found to be a ‘backward’ travelling
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(relative to the spatially and temporally averaged flow velocity in the channel core) internal
wave approximately satisfying a linear dispersion relation, ω = Umeankx − Nmean, where
U is the time- and planar-averaged streamwise velocity and subscript ‘mean’ denotes
spatial averaging over the full channel core region (0.8 < y < 1.2). Solutions to the
linearised governing equations are also sought and tested for relevance, formulated as
both a stochastically forced initial value problem and a differential eigenvalue problem
in §§ 3.4 and 3.5. Internal waves are found to emerge as a sensitive filtered response to
turbulent perturbations at the core edge over a range of wavenumbers and frequencies.
Analysis of the instantaneous structure of plane Poiseuille flow (§ 3.6) reveals that the
largest turbulent perturbations to the core edge are coherent hairpin vortices. Crucially,
these vortices are generated via local processes in the buoyancy-affected outer region of
the channel. These dynamics are clearly qualitatively different from canonical boundary
layer flows, where hairpin vortices are generated in the inner region much closer to the
wall. These (stratified) hairpins are ejected from the turbulent region of the channel and
into the buoyancy-dominated channel core, ‘ringing’ the relatively strong density gradient
and thus both inducing periodic internal waves and triggering local wave breaking. Results
are discussed in § 4 and placed in context, before we conclude with some possible future
avenues of research inspired by these findings.

2. Methodology

A fully developed stably stratified channel flow is numerically simulated. The flow is
driven past no-slip walls by a constant pressure gradient (constant Reτ ), and stable
stratification is maintained by imposing constant upper and lower wall densities. The
dimensionless continuity, momentum and density scalar transport equations are solved:

∂Ui

∂xi
= 0, (2.1)

DUi

Dt
= − ∂P

∂xi
+ 1

Reτ

∂2Ui

∂xj2
+ fi − Riτ ρ′ ŷi, (2.2)

and
Dρ
Dt

= 1
ReτPr

∂2ρ

∂xj2
, (2.3)

where Ui = (U,V,W)′ represents velocity, xi = (x, y, z)′ represents Cartesian spatial
coordinates, t represents time, P represents kinematic pressure, ρ is the density field and
ŷi is the y-direction unit vector. The flow is forced by a constant streamwise (negative)
pressure gradient, fi = (1, 0, 0)′. Flow variables are made dimensionless by the channel
half-height δ, friction velocity uτ and the density difference between the upper and lower
walls, �ρ. Resultant dimensionless variables are the friction Reynolds number (Reτ ),
the friction Richardson number (Riτ ) and the Prandtl number (Pr). The buoyancy force
Riτ ρ′ ŷi is dependent on the density fluctuation, ρ′ = ρ − ρ̄ where ρ̄ is the time (averaged
over time T in table 1) and planar-averaged (averaged in homogeneous directions x and z)
density field. In this case the purely wall-normal y-dependent density field (ρ̄) is absorbed
(hydrostatically) into the pressure term. In practice ρ̄ is approximated at each timestep by
the instantaneous planar-averaged density, consistent with previous work (e.g. Armenio
& Sarkar 2002; Garcia-Villalba & del Alamo 2011). However, it should be noted that
preliminary simulations carried out with a buoyancy term based upon the full density field
ρ led to no difference in turbulent statistics, aside from the pressure term.

934 A10-4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f H

ul
l, 

on
 1

4 
Ja

n 
20

22
 a

t 1
6:

45
:5

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
07

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.1007


Internal waves and hairpins in plane Poiseuille flow

Case Reτ Reb Riτ Rib Nu Λ Nx Ny Nz Δ+
x Δ+

y,max Δ+
z T

U 550 10 508 0 0 21.25 — 80 28 40 172.8 64.0 129.6 45
S 550 14 281 480 0.356 4.12 1.36 80 44 40 172.8 40.2 129.6 40

Table 1. Cases with time-averaged parameters and case-specific quantities. The bulk Reynolds and Richardson
numbers are given by Reb = Ubδ/ν and Rib = �ρgδ/2ρ0U2

b where Ub is the bulk velocity. Nu = −2∂yρ̄|w is
the Nusselt number and Λ = 2ReτPr/κRiτNu is the Obukhov length normalised by the channel half-height
δ with the Kármán constant κ = 0.41; Δ+

i quantifies the element sizes in wall units (normalisation by δν =
ν/uτ ). Note that each element is further discretised by 83 GLL points.

x

y

y = 0

y = 2 ρ = −1/2

ρ = 1/2

U = V = W = 0

U = V = W = 0

ρ(y) U(y)

Figure 1. Numerical domain. Coloured regions represent the inner region at y � 0.2 and y � 1.8 (blue), the
outer region at 0.2 < y � 0.8 and 1.2 � y < 1.8 (pink) and the channel core at 0.8 < y < 1.2 (red). The dashed
line represents the channel centreline at y = 1.

The domain is presented in figure 1. The reference density is taken as the mean density
in the channel, equal to the density at the channel centreline, such that the (dimensionless)
density boundary conditions at the walls are ρ( y = 0) = 1

2 and ρ( y = 2) = −1
2 . Velocity

boundary conditions are no slip at the walls, and periodic conditions are applied at the x-
and z-normal boundaries.

Equations are discretised and solved using Nek5000, a spectral element code developed
by Fischer et al. (2008). The dimensionless domain size is Lx × Ly × Lz = 8π × 2 ×
3π, consistent with Garcia-Villalba & del Alamo (2011). The computational domain is
decomposed into Nx × Ny × Nz hexahedral spectral elements on which the governing
equations are discretised using a Galerkin method. Vertical element sizes are determined
by a hyperbolic stretching function, with a maximum element size at the centre of the
channel. Equations are solved by means of local approximations based on high-order
tensor-product polynomial basis on Gauss-Lobatto-Legendre (GLL) nodes. Simulations
adopt 83 GLL nodes in each element (seventh-order polynomials) and equations are solved
using the Pn-Pn scheme, where all variables are represented by the same polynomial order
(Tomboulides, Lee & Orszag 1997). Temporal discretisation uses third-order backward
differencing with a dimensionless timestep of 1 × 10−4, and nonlinear terms are dealiased
using the 3/2 rule (Orszag 1979; Canuto et al. 2012). Grid resolution is detailed in table 1.

The effects of sub-grid-scale dissipation are accounted for via modal based explicit
filtering, equivalent to deconvolution LES or hyper-viscosity (Stolz, Schlatter & Kleiser
2005). This method solves the unfiltered governing equations (2.1) to (2.3) and applies
an explicit low-pass filter at the end of each time step to dissipate energy artificially
at the highest polynomial modes. These simulations adopt an attenuation amplitude of
0.05 following previous work modelling wall-bounded turbulent flows (Lai, Merzari &
Hassan 2019; Merzari et al. 2020a,b; Jin et al. 2021). For further details see Fischer &
Mullen (2001) and Chatterjee & Peet (2018). While simulations are coarser than DNS
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in the spanwise and streamwise directions, the stratified flow case is fully resolved in
the vertical direction (see e.g. Garcia-Villalba & del Alamo 2011) such that artificial
dissipation is primarily felt in the homogeneous directions. The explicit filtering
methodology is validated against the stratified channel flow DNS of Garcia-Villalba &
del Alamo (2011) in Appendix A, where a grid sensitivity study is also presented. Despite
the close agreement between the LES herein and the DNS of Garcia-Villalba & del Alamo
(2011) it should be noted that all presented data are of filtered quantities and therefore
should be treated as approximate values, particularly variables derived from the dissipation
rates.

Two simulations are presented in this paper, detailed in table 1 (Pr = 1 for both
simulations). Case U, of an unstratified flow with a passive scalar field, is initialised with
a perturbed logarithmic velocity profile while Case S, of a stratified flow, is initialised
from pseudo-steady U data, effectively by instantaneously ‘turning on’ gravity, and so
making the passive scalar field (density) dynamically significant which subsequently feeds
back on the velocity field via the buoyancy force. Before data collection, all cases are
advanced to a statistically steady state in two steps. First a coarse simulation is run with a
polynomial order of 5 (63 GLL points per element). Secondly, the simulation is run with
the desired polynomial order of 7 (83 GLL points). Convergence of both steps is assessed
by monitoring the friction Reynolds numbers at the walls and the bulk Richardson number.
This process reduces overall computational cost while ensuring the flow is fully developed
before data collection. Subsequent data collection is carried out over a dimensionless time
interval of T , which varied between the two cases according to table 1.

Over integration period T time-averaged statistics are calculated at all GLL points
which are subsequently plane averaged in the homogeneous directions (x and z). In
order to assess temporal dependence of flow variables time-series data are collected
at several slices through the domain, several normal to y, and a slice normal to z at
z = Lz/2. Slice data are collected on uniform grids at a resolution equal to the total
number of degrees of freedom in each direction, obtained using spectral interpolation.
Slice data containing instantaneous velocity (U,V,W), pressure (P), density (ρ), velocity
gradients (∂Ui/∂xj) and density gradients (∂ρ/∂xj) are collected every 20 timesteps (every
2 × 10−3 dimensionless time units) over duration T , resulting in a time series of at least
20 000 slices. The integration time (T) is over 4 times longer than previous studies (e.g.
Garcia-Villalba & del Alamo 2011), enabling convergence of temporal spectra and DMD
data. This paper will demonstrate that intermittent ejection events near the channel core
occur over O(δ/uτ ) time scales, necessitating the longer integration time used herein.

3. Results

3.1. Time-averaged statistics
Turbulent statistics are presented in figure 2. In this paper the overbar represents the
combination of planar (x and z) and temporal averaging over time T (table 1), and the
primes represent the remaining fluctuating component of a variable: ρ = ρ̄ + ρ′. The same
averaging process is used to calculate root-mean-square and flux variables, for example,
u2

rms = u′u′. Plane Poiseuille flow is characterised by steep velocity gradients and high
turbulent kinetic energy (TKE) near the wall, and a maximum velocity Umax at the channel
centre. For clarity, data presented in figure 2 are for y = 0 → 1, given that all flow statistics
are symmetric about the centreline apart from ρ̄ and u′v′+, which are antisymmetric
(i.e. symmetric with a change of sign). For the unstratified case (U), where density is
transported as a passive scalar, the advective scalar (‘buoyancy’) flux (ρ′v′) is constant
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Figure 2. Profiles of flow statistics, averaged in x, z and t. Superscript + represents wall-unit normalisation
by uτ , δν = ν/uτ , and ρτ = −�ρRe−1

τ Pr−1∂yρ̄. Solid lines are Case U data, dashed lines are Case S data.
Areas shaded light and dark grey respectively highlight the inner (y � 0.2) and channel core (y > 0.8) regions,
while the outer region (0.2 < y � 0.8) is unshaded. Areas shaded green represent regions where the phase
speed of ‘linear’ internal waves is equal to the background planar and temporally averaged flow velocity:
c = Umean − Nmean/kx = U. Here, N is the buoyancy frequency, defined in (3.1a–d), and the subscript ‘mean’
denotes averaging over the channel core (y > 0.8); c is calculated for a streamwise wavenumber (kx) range
of 2.5 to 5.0. These kx bounds correspond to 50 % of the maximum v′ spectral energy at y = 1 (as shown in
figure 8).

for y � 0.2 and the momentum flux (u′v′) and density field vary linearly with the vertical
coordinate. Deviations between unstratified (U) and stratified (S) averaged statistics are
most clear far from the walls (y � 0.2).

At high levels of stratification three distinct regions in the flow are observed, the
inner, outer and core regions. The inner region, y � 0.2 and y � 1.8, comprises the
viscosity-affected boundary layer, while the outer region, 0.2 < y � 0.8 and 1.2 � y <
1.8 comprises the turbulent region where the direct effects of viscosity on U are
negligible. Finally, the channel core region, 0.8 < y < 1.2, is where buoyancy dominates
the dynamics. This classification is based upon the standard definitions of the inner and
outer regions of an (unstratified) turbulent boundary layer (see e.g. Pope 2000), with the
channel core defining the region of high density gradient. While these labels are used
throughout the manuscript it is important to note their qualitative nature; the quantitative
bounds between these different regions are (naturally) less well defined in such a transient
flow.

The inner region is largely unchanged by stratification when Riτ is increased, owing to
its high shear and production of turbulence (figure 2). The collapse of near-wall U and S
data is expected due to the imposed constant pressure gradients and therefore friction
(quantified through Reτ ). However, it should be noted that the bulk Reynolds number
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Reb is significantly increased for Case S (see table 1). The (relatively) high turbulence
production leads to a well-mixed region of essentially constant density extending through
the outer region of the flow. Conversely, the channel core is characterised by a strong
density gradient and low levels of turbulence, evidenced through profiles of u+

rms and
w+

rms. Note that v+
rms actually increases in this region due to the presence of (internal

gravity) waves, as will be shown in spectra and DMD data. This is further illustrated
by profiles of the buoyancy flux (ρ′v′+) which tends to zero at the channel centre
for Case S. This behaviour is explained by the (essentially perfect) decorrelation of ρ′
and v′ which are out of phase by π/2. Such a phase difference is characteristic of
the polarisation relations of linear internal waves, as noted by Garcia-Villalba & del
Alamo (2011).

Apart from the Prandtl number Pr (determined by molecular properties of the fluid),
three other natural non-dimensional quantities for turbulent stratified shear flows are the
gradient Richardson number, Rig, the horizontal Froude number, Frh, and the buoyancy
Reynolds number, ReB:

Rig = N2(
∂U/∂y

)2 , Frh = ε̄

Nu2
rms
, ReB = Reτ

ε̄

N2 , N2 = −Riτ
dρ̄
dy
, (3.1a–d)

where ε̄ = Re−1
τ ∂iu′

j∂iu′
j is the time- and planar-averaged dissipation rate of TKE and N

is the buoyancy frequency. These quantities capture the relative significance of the time
scales of buoyancy, shear, turbulence and viscous dissipation, and are in general functions
of y (when constructed from planar and temporal averaging). Their profiles are presented
in figure 3, although it should be noted that quantities dependent on the dissipation rate of
TKE (Frh and ReB) are only approximate due to the filter-based artificial dissipation. Here,
the defining boundaries of the channel core (0.8 < y < 1.2) are more evident, as they can
be identified to coincide with the sharp rise in Rig. Note in particular that Rig > 0.2 for
0.75 � y � 1.25 due to the steep density gradient, although it should also be appreciated
that Rig is singular at y = 1 due to the zero-valued velocity gradient. Similar trends are
observed for both Frh and ReB which peak in the inner region at y ≈ 0.1 with Frh ≈ 0.7
and ReB ≈ 200 (note that Frh is singular at y = 0). Both quantities decrease monotonically
in the outer region until reaching their minimum values in the channel core. A local
maximum is present for Frh at y = 1 due to the decrease in urms (figure 2). The ability
of a stratified flow to sustain active turbulence is often quantified by a threshold on the
buoyancy Reynolds number: ReB � 20 (Smyth & Moum 2000). Case S has ReB < 20 for
y � 0.6, and ReB = 0.14 at the channel centreline. The low ReB and Frh in the channel
core indicate a viscosity-affected (or indeed viscosity-dominated) stratified flow regime,
as noted by Garcia-Villalba & del Alamo (2011). Mean profiles indicate (unsurprisingly)
that relatively very strong stratification suppresses turbulence in the channel core leading
to stable, and close to laminar flow.

Table 1 also reports the Obukhov scale normalised by the channel half-height: Λ =
2ReτPr/κRiτNu, where κ = 0.41 is the Kármán constant and Nu = −2∂yρ̄|w is the
Nusselt number. The Obukhov scale quantifies the length at which turbulent production
due to buoyancy is equal to that due to shear. Case S has Λ > 1, indicating that shear
dominates over buoyancy production in the present simulation.

3.2. Spectra
The dependency of energy spectra on the three-dimensional wavenumber ki = (kx, ky, kz)

′
with respective wavelengths λi = 2π/ki, and temporal frequency ω, is now investigated.
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Internal waves and hairpins in plane Poiseuille flow

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0
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0.2
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0.4

Rig

0.0

0.2

0.4

0.6

0.8

Frh

10−1

100

101

102

103

ReB

Figure 3. Profiles of key dimensionless quantities for Case S, defined in (3.1a–d). Shaded regions are as per
figure 2.

(a) (b)

(c) (d)

10−1 100 101

10−1

100

λz

E2D
uv kxkz, y = 0.182, y+ = 100.0

10−1 100 101

10−1

100

E2D
vv kxkz, y = 0.182, y+ = 100.0

10−1 100 101

λx

10−1

100

λz

E2D
ρρ kxkz, y = 0.182, y+ = 100.0

10−1 100 101

λx

10−1

100

E2D
ρv kxkz, y = 0.182, y+ = 100.0

Figure 4. Two-dimensional premultiplied spatial energy spectra for the (negative) momentum flux (a), vertical
velocity (b), density (c) and buoyancy flux (d), at y+ = 100. Solid contour lines represent U data, shaded
contours represent S data. Contour lines are 20 %, 40 %, 60 % and 80 % of respective maximum values.

Two-dimensional spatial energy spectra computed on three y-normal planes are presented
in figures 4 to 6. Energy spectra are reported for fluctuations of the vertical velocity
v′, density ρ′, the momentum flux u′v′ and the buoyancy flux ρ′v′, with the latter two
statistics omitted from spectra collected at y = 1 (figure 6), where they are uncorrelated
(see figure 2). In each figure, spectra from S data are plotted with shaded contours, while
spectra from U data are plotted with solid contour lines.
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(a) (b)

(c) (d )

10−1 100 101

10−1

100

λz

E2D
uv kxkz, y = 0.75, y+ = 412.5

10−1 100 101

10−1

100

E2D
vv kxkz, y = 0.75, y+ = 412.5

10−1 100 101

λx

10−1

100

λz

E2D
ρρ kxkz, y = 0.75, y+ = 412.5

10−1 100 101

λx

10−1

100

E2D
ρv kxkz, y = 0.75, y+ = 412.5

Figure 5. Two-dimensional premultiplied spatial energy spectra for the (negative) momentum flux (a), vertical
velocity (b), density (c) and buoyancy flux (d), at y = 0.75. Solid contour lines represent U data, shaded
contours represent S data. Contour lines are 20 %, 40 %, 60 % and 80 % of respective maximum values.

(a) (b)

10−1 100 101

λx

10−1

100

λz

E2D
vv kxkz, y = 1.0, y+ = 550.0

10−1 100 101

λx

10−1

100

E2D
ρρ kxkz, y = 1.0, y+ = 550.0

Figure 6. Two-dimensional premultiplied spatial energy spectra for the vertical velocity (a) and density (b), at
y = 1. Solid contour lines represent U data, shaded contours represent S data. Contour lines are 20 %, 40 %,
60 % and 80 % of respective maximum values.

All spatial spectra of figures 4 to 6 are consistent with findings of Garcia-Villalba
& del Alamo (2011). Near the wall, energy spectra are very similar for the stratified
and unstratified cases, aside from a reduction of energy associated with large-scale
wavelengths in the S data, relative to respective maxima. These suppressed long and
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Internal waves and hairpins in plane Poiseuille flow

wide structures are termed global modes (Del Alamo & Jiménez 2003). Conversely, at
the channel centre (as shown in figure 6) U and S spectra are markedly different, where
Case S has a peak at (λx, λz) ≈ (1.5, 6), significantly larger and more anisotropic than
Case U, which peaks at (λx, λz) ≈ (1, 1). The contour lines are also narrower in λx for
Case S. In addition, v′ and ρ′ energy spectra appear significantly more correlated for Case
S, than for the Case U. Garcia-Villalba & del Alamo (2011) argued that such correlation is
further evidence of internal waves.

At the intermediate y = 0.75 (shown in figure 5), two peaks are present for Case S, one
of which is due to turbulence, (λx, λz) ≈ (0.9, 0.5), and the other is due to the presence
of internal waves, (λx, λz) ≈ (1.3, 4). Interestingly, the peak corresponding to the internal
waves has different height dependence for the v′ and ρ′ spectra. Specifically, the peak in
ρ′ energy spectra is consistent between y = 1 and y = 0.75, while the peak in v′ spectra is
shifted slightly towards larger streamwise wavelengths at y = 0.75. Garcia-Villalba & del
Alamo (2011) noted that stratification suppresses spanwise and streamwise wavelengths,
pushing the peak in E2D(λx, λz) associated with turbulence to smaller wavelengths than the
unstratified case. Garcia-Villalba & del Alamo (2011) also found that stable stratification
damps the tall turbulent structures (global modes), such that dynamics in the outer region
are governed by a local scaling based on the Obukhov lengthΛ( y), defined as (Nieuwstadt
1984)

Λ( y) = − 1
κRiτ

τ ( y)3/2

q( y)
, (3.2)

where τ( y) and q( y) represent the total (dimensionless) momentum and buoyancy fluxes
and κ = 0.41 is the Kármán constant. Here, Λ( y) is made dimensionless by the channel
half-height δ, andΛ(0) corresponds to the values ofΛ reported in table 1. Garcia-Villalba
& del Alamo (2011) found that energy spectra as a function of spanwise and streamwise
wavelengths normalised by Λ( y) collapsed in the outer region of the flow for their
simulations with Riτ = 240–960 if the ratio y/Λ( y) was kept constant. This suggests that
turbulent processes in the outer layer are governed by local processes, but it is not as
yet clear over what range of y this scaling holds, due to the relatively low Reτ and Riτ
considered by Garcia-Villalba & del Alamo (2011).

Energy spectra as a function of the vertical and streamwise wavenumbers are presented
in figure 7. Spectra are calculated using a Hamming window over the interval y ∈
[0.2, 0.8], capturing the turbulent motion in the outer region of the flow. The x- and y-axes
of figure 7 have been scaled to a small range focused on the highest energy wavenumbers,
and both halves of the vertical wavenumber spectra are shown here due to asymmetry
about ky = 0. Given the energy spectra are premultiplied with streamwise and vertical
wavenumbers, energies are expected to be negative for ky < 0 and positive for ky > 0 for
E2D
vv kxky, E2D

ρρ kxky and E2D
ρv kxky and the opposite is expected for E2D

uv kxky. Figure 7 indicates
that U and S spectra are similar in the region y ∈ [0.2, 0.8], where large differences only
arise for the momentum and buoyancy fluxes. Most energy is contained in the lowest
wavenumber mode, corresponding to structures with a wavelength equal to the full spatial
window, y ∈ [0.2, 0.8]. The spectral energy of figure 7 should therefore be interpreted
with care, since spectra are clearly affected by the window size and the non-periodic
nature of the vertical direction y. However, it is argued that this is a physical constraint
owing to the channel domain height (or Reynolds number), and these results demonstrate
that there is insufficient space for vertical wavenumbers to dominate. Peak energy occurs
between a wave vector angle range of 45–65◦ for all spectra, similar to those observed
in the classic experiments of Dohan & Sutherland (2003), where waves at such an angle
were observed propagating away from a turbulent mixed region forced by an oscillating
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(a) (b)

(c) (d)
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E2D
vv kxky, y ∈ [0.2, 0.8]
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S: Riτ = 480

E2D
ρρ kxky, y ∈ [0.2, 0.8]
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kx

S: Riτ = 480

E2D
ρv kxky, y ∈ [0.2, 0.8]

Figure 7. Two-dimensional premultiplied energy spectra as a function of vertical and streamwise
wavenumbers. Spectra are calculated in the window y ∈ [0.2, 0.8]. Contour lines are 20 %, 40 %, 60 % and
80 % of respective minimum (cyan) and maximum (magenta) values. Dashed lines represent equal magnitudes
of vertical and streamwise wavenumbers, kx = ±ky (45◦ wave vector angle). Note that spectra are truncated at
ky = ±10.

grid. Dohan & Sutherland (2003) speculated that this preferred propagation of angle was
associated with maximisation of the vertical transport of horizontal momentum. Although
the angle of wave propagation in this flow simulation is consistent with that observed in
their experiments, any argument of direct connection between the key dynamics of the two
flows should perhaps be treated with caution due to the absence of large-scale shear in the
experiments and the occurrence of the peak at the lowest wavenumber for the simulation
data.

A further interesting feature of the vertical-streamwise wavenumber spectra is evident
in the spectra for the momentum and buoyancy fluxes, which not only show a new peak
in spectra for Case S compared with Case U, but also show it is of a different sign to
the other peaks. This new peak occurs at (kx, ky) ≈ (20,−40), or a wave vector angle of
63◦ to the horizontal (figure 7). However, the high streamwise wavenumber of this peak
suggests it is not related (at least directly) to the internal waves in the channel core, which
have a maximum spectral energy at λx ≈ 1.5 or kx ≈ 4.2. It is speculated that these high
wavenumber downward (away from the core and towards the walls) travelling structures
arise from wave breaking at the core edge.

The two-dimensional (2-D) energy spectra are shown as a function of streamwise
wavenumber and temporal frequency in figure 8. Two-dimensional spectra are calculated
using the method of Welch, with a 50 % overlap Hamming window in the temporal
dimension. The window has a length of 4096 timesteps with the full time series containing
at least 20 000 snapshots, deemed appropriate through a sensitivity study (not shown).
Spectra are subsequently averaged in the spanwise (z) direction, and can be directly used
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Figure 8. Two-dimensional energy spectra as a function of streamwise wavenumber kx and frequency ω at
y = 1 for Case U (a,b) and Case S, (c,d). Contours are log-scaled relative energy spectra magnitude. The lines
represent different dispersion relations. Subscript max denotes maximum values, and subscript mean denotes
the average value in the channel core region (0.8 < y < 1.2).

to calculate the dispersion relation, ω(kx). U spectra (figure 8) indicate that all spectral
energy closely follows the relation ω = Umaxkx, where Umaxkx represents the Doppler shift
due to the background flow at the midpoint of the channel y = 1, a (perhaps) unsurprising
result since that is precisely where the spectral data are reported.

However, the dispersion relation for Case S deviates significantly from ω = Umaxkx.
Indeed, two peaks are observed in the spectral energy on either side of ω = Umaxkx
for a given kx, with the lower-frequency peak having a spectral energy several orders
of magnitude larger than the high-frequency peak. Two additional (model) dispersion
relations are shown in figure 8, i.e. ω = Umaxkx ± Nmax and ω = Umeankx ± Nmean, where
the subscript ‘max’ represents the maximum value of a variable (equal to the value at
y = 1) and subscript ‘mean’ represents the spatial average value of a variable only in
the channel core region, 0.8 < y < 1.2. Of course, these are the dispersion relations for
linear internal waves with zero vertical wavenumber ky, Doppler shifted by a notional
uniform flow equal to either Umax or Umean, and maximal magnitude intrinsic frequency
(i.e. the local frequency in a fluid at rest, see for example the pedagogical discussion
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in Bühler 2014) with constant buoyancy frequency Nmax or Nmean. It is important to
remember that this relationship is highly idealised, and at best is expected to apply
only approximately in the real turbulent flow, as both U and N vary significantly even
within the central core region. Nevertheless, figure 8 shows that these dispersion relations
appear to be relevant, as both ‘forward’ (i.e. with positive intrinsic frequency, and hence
positive phase speed relative to the streamwise flow) and ‘backward’ (i.e. with negative
intrinsic frequency) propagating internal waves are present in the channel core. As there
is (dominant) streamwise velocity throughout the central core region, both types of waves
are still convected downstream by the mean flow.

Interestingly, the observed peaks of figure 8 agree with ω = Umeankx ± Nmean,
suggesting that internal waves in some sense extend across the entire core-region of
the channel and are therefore largely governed by the spatially and temporally averaged
buoyancy frequency and velocity in that region (0.8 < y < 1.2). It must be remembered
that spectral data of figure 8 are extracted only from the very midpoint of the channel at
y = 1.

The highest magnitude waves are contained in streamwise wavenumbers consistent
with the 2-D spatial spectra of figure 6, with temporal frequencies of 50 � ω � 150.
Somewhat curiously, the higher extrinsic frequency (i.e. the frequency observed by a
stationary observer, using again the nomenclature of Bühler 2014) ‘forward’ propagating
mode has a spectral energy several orders of magnitude smaller than the lower extrinsic
frequency ‘backward’ propagating mode. This implies that the (streamwise) phase
speed ω/kx < Umean for the dominant low extrinsic frequency mode, which is indeed
observed.

The highest energy (E2D/E2D
max � 0.5) ‘backward’ propagating internal waves occur

between a wavenumber range of 2.5 � kx � 5 for Case S. The critical levels for these
(highest energy) internal waves, where c = ω/kx = Umean − Nmean/kx = U, lie in the
shaded regions of figures 2 and 3, in the range 0.55 � y � 0.75. The importance of these
critical levels will be discussed in § 3.5.

For brevity only 2-D spectra at y = 1 is reported. Further from the channel centreline
spectra for Case S collapse onto the dispersion relation ω = Uckx with Uc representing
the planar and temporally averaged velocity U at a corresponding y value, suggesting a
negligible effect of the stratification. Nevertheless, the data clearly show, surprisingly, that
at least the observed periodic structures in the central core region are still well described
by linear internal wave theory based around constant streamwise velocity and buoyancy
frequency, even though the wave-like structures are undoubtedly finite amplitude, and both
the streamwise velocity and buoyancy frequency vary significantly in the vertical. The
apparently robust coherence of these waves will be analysed in the following section, using
DMD.

3.3. Dynamic mode decomposition
While spectra clearly demonstrate that time-periodic internal-wave-like flow is present
in the core region, the 2-D spatial structure of these ‘waves’ is not yet clear. DMD
(Schmid 2010) provides a technique to obtain dynamically relevant flow structure from
time-resolved data. DMD approximates the flow by

qk =
N−1∑
j=0

Φ jλ
k−1
j , k = 1, . . . ,N − 1, (3.3)

where qk represents a snapshot of the data at timestep k (including all variables at all points
in space, with planar and temporal means subtracted), Φ j represents DMD modes and λj
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Internal waves and hairpins in plane Poiseuille flow

represents DMD eigenvalues. Alternatively, this can be expressed in terms of the modal
growth rate σj and frequency ωj:

qk =
N−1∑
j=0

Φ j exp((σj − iωj)tk), k = 1, . . . ,N − 1. (3.4)

This decomposition is applied to a z-normal slice at z = Lz/2 and a y-normal slice at y = 1
(detailed in § 2). The dimensionless time period between slice samples is 2 × 10−3 (20
simulation timesteps), and the spatial resolution of the slices is coarsened by omitting
every second point in both directions to reduce memory requirements. For each slice
the DMD modes are computed using the method of Schmid (2010): first, the matrix
qk is constructed from U, V , W and ρ slice data, with planar and temporal means
subtracted. DMD modes are subsequently calculated by first applying a singular value
decomposition to qk before calculation of the DMD modes Φ j and eigenvalues λk−1

j . Note
that decompositions are calculated without smoothing of the data or truncation of the
singular values. Reconstruction of qk from the DMD results in an l2 norm error of order
1 × 10−8. Importance of certain modes is assessed by their modal energy, EΦ,j = ||Φ j||2.
As simulations are of fully converged stationary flow all decompositions presented here
have growth rates σj ≈ 0 which will subsequently not be reported.

Figure 9 shows DMD for Case S (Ri = 480) on a z-normal slice. DMD modal energies
have been plotted with 1-D temporal energy spectra, E1D

vv , obtained at y = 1. Generally
EΦ decreases with increasing ω, seemingly in disagreement with temporal energy spectra
(figure 9). This is explained by noting that DMD modal energies are calculated over the
full channel height, while spectral energies are only calculated at y = 1. When narrowing
the ω axis range, figure 9 shows that modal energies, EΦ , lead to the same local peaks
in frequency as the temporal spectra E1D

vv , corresponding to spatial forcing of the domain
length, and the internal waves. The spatially forced local peaks arise due to the finite
periodic domain size, where streamwise wavenumbers (kx) in multiples of 2π/Lx are
‘favoured’ over others. The peaks in temporal frequency correspond to these structures
passing through the domain at some convective velocity Uc. Note that these local peaks
arising from spatial forcing are also present in the 2-D spectra of figure 8 but are partially
hidden by the logarithmic scaling. Examples of U, V and ρ components of Φ are also
reported in figure 9 and demonstrate that the internal waves are highly coherent, spanning
the full height of the core region. The vertical extent of waves suggests a plausible
reason for the surprising agreement between the (spatially localised) spectral data from
y = 1 and the linear dispersion relation for internal waves based upon the buoyancy
frequency and velocity averaged over the channel core region (figure 8). Further, it is
noted that the density and vertical velocity modes are out of phase by π/2, consistent
with the polarisation relations for monochromatic internal gravity waves, and indeed the
instantaneous visualisations of Garcia-Villalba & del Alamo (2011).

The dispersion relation can also be obtained empirically from DMD using y-normal
slices at y = 1, an example of which is presented in figure 10. Modal amplitudes are in
excellent agreement with temporal energy spectra. Further, all modes are characterised
by structures that span the full width of the domain, and have a dominant underlying
wavenumber kx. This is demonstrated in figure 10 by presenting spatial spectra in
the streamwise direction of two example modes, where the dominant peaks are at
wavenumbers of kx ≈ 2.5 and kx ≈ 3.5 respectively. Note also that there is an additional
much smaller peak for both signals at a slightly lower kx value. These second peaks are
approximately three orders of magnitude smaller in spectral energy, but are a consistent
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Figure 9. DMD modes for Case S on a z-normal slice at z = Lz/2. DMD modal amplitudes EΦ,j = ||Φ j||2
as a function of temporal frequency ωj are plotted in (a) with black dots. Panel (b) presents the same data as
(a) with axis limits focused on the internal waves. One-dimensional temporal vertical velocity energy spectra,
E1D
vv , calculated at y = 1, are also plotted with a red line. The spatial structure of the highlighted mode in (a,b)

(•, blue) is shown in (c–f ), where ΦU is the streamwise velocity component, ΦV is the vertical velocity
component and Φρ is the density component. Streamlines calculated from ΦU and ΦV are reported in (e).
The observed structure of this example mode (•, blue) is typical of all modes corresponding to local peaks in
E1D
vv , deviating only by the streamwise wavenumber.

feature of modes with ω � 200. These secondary small-amplitude peaks correspond to the
higher-frequency ‘forward’ internal wave-like structures observed in the spatio-temporal
spectra of figure 8, while the high-amplitude peaks correspond to the lower-frequency
‘backward’ propagating internal wave-like structures.

The spatial spectra of DMD modes at y = 1 are subsequently used to determine the
dispersion relation empirically, by obtaining the kx values of all notable peaks in the
spectral energy (achieved using a peak-finding algorithm). The dispersion relation for
Case S is plotted in figure 11. There is clear agreement between the dispersion relation
obtained by DMD and 2-D spectra (figure 8). However, the DMD dispersion relation
shows the two separate peaks, on either side of ω = Umaxkx more clearly. The flow is
comprised of a series of internal waves, with peak amplitudes occurring over a temporal
frequency range of 50 � ω � 200. The lower-frequency dominant waves closely follow
the dispersion relation ω = Umeankx − Nmean, while the higher-frequency waves have a
significantly less well-defined dispersion relation that lies between ω = Umeankx + Nmean
and ω = Umaxkx + Nmax.

Therefore, simulations have so far shown that stratified channel flow leads to three
well-defined regions in the flow, i.e. the inner region, the outer region and the channel core
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Figure 10. DMD modes for Case S on a y-normal slice at y = 1. DMD modal amplitudes EΦ,j = ||Φ j||2 as
a function of temporal frequency ωj are plotted in (a) with black dots. One-dimensional temporal vertical
velocity energy spectra, E1D

vv , calculated at y = 1, are also plotted with a red solid line. The spatial structure of
the two highlighted modes in (a) (�, �) are shown in (b,c), where ΦV is the density component. The observed
structure of these two example modes is typical of all modes with local peaks in EΦ . Energy spectra of ΦV as
a function of streamwise wavenumber kx are presented in (d) for both Mode 1 (�) and Mode 2 (�). Note that
both signals are bimodal, with a dominant high kx peak and a weaker low kx peak.

(a) (b)
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Figure 11. Dispersion relation for Case S, obtained from DMD modes at y = 1. Data are Φv modes (a) and
Φρ modes (b). Figures are coloured by spectral energy, normalised by the maximum spectral energy.

region, characterised by a strong density gradient and a relatively low turbulence intensity.
Spectra and DMD reveal two sets of structures which are sustained in the channel core, and
can be interpreted, at least loosely, as linear internal waves that are highly coherent and
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span the full core-region height. The dominant mode occurs at a lower frequency, (and
hence lower phase speed for given streamwise wavenumber) and has an energy several
orders of magnitude higher than the (also present) higher-frequency mode. However, the
mechanisms driving and sustaining these periodic wave-like structures are as yet unclear.
In particular, spectra in the inner and outer regions show that vertical wavenumbers
are negligible in this flow, suggesting that the generation mechanisms for these waves
are indeed different from those in the non-sheared grid-turbulence experiments reported
by Dohan & Sutherland (2003), as discussed above. The spectral energy dependence
on vertical wavenumbers is found to be dominated by the lowest wavenumber modes
(figure 7) suggesting that modes are physically restricted by the channel height (or
Reynolds number). It is also important to remember the strong (wall-normal) spatial
variation in streamwise velocity and buoyancy frequency in the central core region. This
variation is crucial, as in the following section the waves are demonstrated to arise from
the sensitivity of the mean profiles to perturbation growth, using two different, although
related and complementary, analysis techniques.

3.4. Stochastic forcing of the linearised equations
The first hypothesis that is tested is the proposition that the internal ‘waves’ are generated
and sustained by an inhomogeneous incoherent turbulent forcing. This process may be
thought of as either a filtering of random forcing from the turbulence in the inner
and outer regions, or equivalently a sensitive response of particular structures in the
central core region to such forcing. With either viewpoint, the outcome is proposed to
be that essentially random turbulence continually forces small perturbations from mean
flow profiles over a range of wavenumbers and frequencies, and what emerges are the
most favoured or sensitive perturbation structures, which exhibit the strongest ‘response’
(in the sense that the perturbation energy grows). Specifically, it is proposed that the
‘waves’ are generated by the amplification of certain frequencies and the fastest growing
modes dominate consistently with the heuristic linear internal wave dispersion relation
using the mean streamwise velocity and mean buoyancy frequency within the central
core region. This hypothesis is tested by investigating the response of the linearised
momentum, buoyancy and continuity equations to white-noise forcing (uncorrelated in
t and x, but correlated in y), which is a highly idealised yet still instructive model for
the (assumed) incoherent forcing due to turbulence generated principally in the inner and
outer regions of the flow. The stochastically forced linearised Navier–Stokes equations
have been successfully adopted to analyse the stability of wall-bounded shear flows (see
e.g. Farrell & Ioannou 1993; Jovanović & Bamieh 2005; Hwang & Cossu 2010; Jovanović
2021), with previous work often adopting an approach based on linear dynamical systems
analysis (see Jovanović (2021) for a recent review of this methodology). This work evolves
the stochastically forced linearised Navier–Stokes equations in time directly by introducing
a streamfunction formulation. In this way, the governing equations are a direct precursor
to the viscous Taylor–Goldstein analysis of § 3.5.

Following Liu, Thorpe & Smyth (2012) the dimensionless linearised momentum,
buoyancy and continuity equations for this system are

∂u
∂t

+ U
∂u
∂x

+ v
dU
dy

= −∂p
∂x

+ Ah
∂2u
∂x2 + Av

∂2u
∂y2 + dAv

dy
∂u
∂y
, (3.5)

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
+ b + Ah

∂2v

∂x2 + Av
∂2v

∂y2 + dAv
dy

∂v

∂y
, (3.6)
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∂u
∂x

+ ∂v

∂y
= 0, (3.7)

and
∂b
∂t

+ U
∂b
∂x

+ v
dB
dy

= Kh
∂2b
∂x2 + Kv

∂2b
∂y2 + dKv

dy
∂b
∂y
, (3.8)

where u, v, p and b denote streamwise velocity, vertical velocity, pressure and buoyancy
perturbations and U = U( y), and B = B( y) = −Riτ ρ̄( y) represent planar and temporally
averaged streamwise velocity and buoyancy, obtained from the full 3-D simulations. Note
that this formulation allows for wall-normal variation in both the streamwise velocity and
the density (or equivalently buoyancy frequency). The buoyancy perturbation relates to the
density perturbation by b = −Riτ ρ. Ah, Av , Kh and Kv represent horizontal and vertical
diffusivities of momentum (A) and buoyancy (K), equal to the sum of both viscous and
turbulent diffusion.

The streamfunction ψ is introduced, where u = ∂ψ/∂y and v = −∂ψ/∂x, transforming
the equations to

∂

∂t
∇2ψ + U

∂

∂x
∇2ψ − d2U

dy2
∂ψ

∂x
= −∂b

∂x
+ 1

Reτ
∇4ψ + W( y), (3.9)

and
∂b
∂t

+ U
∂b
∂x

− dB
dy
∂ψ

∂x
= 1

PrReτ
∇2b. (3.10)

Here, the diffusivities of momentum have been separated into viscous (1/Reτ ) and
turbulent components, the turbulent part of which is modelled by W( y), a white-noise
function correlated in y. The streamfunction formulation allows the white-noise forcing to
be imposed while maintaining mass continuity. It is assumed that the buoyancy fluxes have
a minor role in the inner region of the boundary layer, such that the turbulent components
of Kh and Kv can be neglected while molecular diffusion (1/PrReτ ) is retained. The
dimensionless parameters are the same as for the Case S simulation, and so Reτ = 550,
Riτ = 480 and Pr = 1.

The system of equations is discretised and solved using Dedalus (Burns et al. 2020).
Equations are solved on a 2-D domain of size Lx × Ly = 8π × 2, discretised using a
Fourier basis in the periodic (x) direction and a Chebyshev basis in the vertical (y)
direction, dealiased using the 3/2 rule. The grid is chosen to match the LES resolution
(table 1). At each grid point W( y) is calculated by a normal distribution around a mean
value of 0 and a standard deviation of 1/

√
�t, where �t is the simulation timestep. To

better approximate turbulence in the inner region of the flow the normal distribution is
multiplied by νt/νt,max, where νt = −u′v′/∂yU quantifies the eddy viscosity of the 3-D
nonlinear simulations, such that W( y) is strongest in the inner region of the flow and zero
at the walls and channel centreline (visualised in figure 12). The initial value problem,
initially at rest, is integrated in time using a first-order Runge–Kutta scheme for a total
simulation time of T = 80, where the flow reaches a pseudo-steady state at T ≈ 10.

A snapshot of the simulation is presented in figure 12. The wave-like structure is
clearly seen to develop due to the stochastic forcing away from the channel core. The
dispersion relation at the channel centreline is plotted in figure 13. The dominant mode
arising in the (real) nonlinear system is clearly well captured by this stochastically forced
linearised system (compare with figure 8), indicating that it is insensitive to the particular
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Figure 12. Snapshots of solutions to the white-noise-forced linearised equations. Variables are the
streamwise velocity (a), vertical velocity (b) and buoyancy (c), perturbations, and the white-noise
function (d).

forcing in the inner/outer regions of the flow. Note that the solutions to the stochastically
forced linearised system are particularly insensitive to the form of the forcing term W( y).
Alongside white-noise forcing at the grid scale, further noise functions were tested,
including ‘red noise’ with time correlation, uniform distributions without correlation with
νt and spatially correlated noise calculated by up-sampling noise generated on a coarser
grid. None of these functions made an appreciable difference to the dispersion relation,
and are therefore not reported.

These results suggest that wavelike structures arise as a sensitive response of the
mean flow profiles to incoherent forces. Inspection of the gradient Richardson number
Rig (figure 3) shows that Rig ≈ 0.2, and so it is perhaps unsurprising that perturbations
can grow significantly. The mean flow profiles develop as a function of both Reynolds
number and Richardson number. The particular conditions that allow waves and turbulence
to coexist in the channel arise from the combination of the imposed density gradient
and the near-wall turbulence. In the weakly stratified regime the near-wall dynamics
are governed by the turbulence generated by near-wall shear, which appears largely
unaffected by stratification, due to the imposed friction Reynolds number. This leads to the
well-mixed inner and outer regions of the flow. However, the imposed density gradient at
the boundaries must be satisfied somewhere in the flow, which subsequently and inevitably
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Internal waves and hairpins in plane Poiseuille flow
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Figure 13. Two-dimensional energy spectra as a function of streamwise wavenumber kx and frequency ω at
y = 1, for the white-noise-forced system. Contours are log-scaled relative energy spectrum magnitude. The
lines represents different dispersion relations. Subscript max denotes maximum values, and subscript mean
denotes the average value in the channel core region (0.8 < y < 1.2).

leads to the sharp density gradient at the channel core, where the flow is furthest from the
near-wall shear. This leads to the well-defined inner, outer and channel core regions of
figure 2. The system acts as a spectral filter such that incoherent perturbations nearer the
walls cause ringing and lead to coherent periodic wavelike structures in the core.

However, the high-frequency mode obtained through the white-noise-forced system
more closely matches the dispersion relation ω = Umaxkx rather than a dispersion relation
for linear internal waves. This discrepancy will be discussed in the following section,
where rather than investigating the linear response to incoherent forcing we consider the
linear (normal mode) instability of the mean profiles.

3.5. Solutions to the viscous Taylor–Goldstein equations
Solutions are sought to the viscous Taylor–Goldstein equations (Liu et al. 2012; Lian,
Smyth & Liu 2020) which are derived from the linearised momentum, continuity and
buoyancy transport equations of § 3.4 by assuming perturbations take the form

v = R[v̂( y) exp(λt + ikxx)], b = R[b̂( y) exp(λt + ikxx)], (3.11a,b)

where λ = σ − iω is the complex growth rate, v̂( y) and b̂( y) represent complex
vertical structure functions and it is assumed the wave vector is aligned with the x
direction (ky = 0). Following Lian et al. (2020), and ensuring dimensional consistency
with the full 3-D simulations, the dimensionless viscous Taylor–Goldstein equations are

(λ+ ikxU)∇2v̂ − ikx
d2U

dy2 v̂ = Twv̂ − k2
x b̂, (3.12)

(λ+ ikxU)b̂ + dB
dy
v̂ = Tbb̂, (3.13)
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with viscous and diffusive operators

Tw = d2

dy2

(
Av

d2

dy2

)
− k2

x
d
dy

[
(Ah + Av)

d
dy

]
+ k4

xAh, (3.14)

Tb = d
dy

(
Kv

d
dy

)
+ k2

xKh, (3.15)

where Ah and Av are horizontal and vertical viscosities, and Kh and Kv are horizontal
and vertical diffusivities. Although in principle this form of the equations allows for
the modelling of turbulence through a turbulent diffusion closure, here, only molecular
diffusion is allowed, such that Ah = Av = 1/Reτ and Kh = Kv = 1/PrReτ . Inclusion of
eddy viscosity (not shown) actually does not affect the obtained dispersion relation and
only has a minor smoothing effect on the structure functions at the critical levels, where
ω = Ukx. Equations (3.12) and (3.13) can be reconstructed as a generalised differential
eigenvalue problem, and solved numerically using finite differencing for given profiles
of U( y) and B( y), and wavenumber kx (see Lian et al. (2020) for further details). The
eigenvalue problem is solved on a uniform grid consisting of 401 points over a wavenumber
range of kx = 0.5–80. For each kx 801 modes are found with corresponding complex
structure functions v̂ and b̂, and the eigenvalues λ = σ − iω.

The dispersion relation ω(kx) obtained from the eigenvalue problem is plotted in
figure 14, as well as the eigenstructures of the two modes at kx = 4 that have the
largest growth rates. The dispersion relation is coloured by σ , and is negative for all
modes such that the system is stable to small perturbations, with maximum growth rates
close to but less than σ = 0. There is good agreement between the (real) nonlinear
simulations of figure 8, the stochastically forced linear solutions of figure 13 and the
viscous Taylor–Goldstein solutions of figure 14, all of which obtain the dispersion relation
ω = Umeankx − Nmean for the dominant ‘backward’ travelling mode. The spatial structure
of the two highest growth rate modes for kx = 4, labelled Mode 1 and Mode 2, are
also plotted in figure 14. Mode 1 lies on the linear dispersion relation for ‘backward’
travelling internal waves, and shows that there is a critical level at y ≈ 0.7, where ω = Ukx.
This approximately corresponds to the point at which Rig = 0.2 in figure 3, before
rapidly increasing in the channel core. Further, the spatial structure is qualitatively similar
when comparing v(x, y) and b(x, y) for Mode 1 in figure 14 to the stochastically forced
instantaneous snapshot of figure 12, and the DMD modes of figure 9. There is therefore
a plethora of evidence to suggest that turbulent perturbations ring the system at the edge
of the channel core and generate coherent internal waves (figures 2, 3, 8, 11, 13 and 14);
the critical levels for the most energetic waves occur in a turbulent region of the flow at
0.55 � y � 0.75 (figures 2 and 5). Any wave breaking in the flow is therefore likely to be
induced by turbulent events rather than a saturation of energy at a critical level.

However, neither the stochastically forced system nor the viscous Taylor–Goldstein
solutions reproduce the high-frequency modes, ω = Umeankx + Nmean as per the nonlinear,
3-D simulations. Mode 2 of figure 14 actually lies close to the dispersion relation
ω = Umaxkx. The spatial structure, particularly the buoyancy, is much narrower than for
Mode 1, thus implying stronger gradients in the structure of this mode, and also a more
specific sensitivity of the mode to the particular structure of the (averaged) background
flow in the vicinity of the peak in the amplitude of the perturbation. The stronger values
of the gradient suggest that Mode 2 may be more sensitive to nonlinearities, while the
fact that the (actual) background flow varies in time also suggest that the particular
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Figure 14. Solutions to the viscous Taylor–Goldstein equations. The dispersion relation ω(kx) is plotted in
(a), with modes coloured by their growth rate. The lines represent different (linear) dispersion relations, where
subscript max denotes maximum values, and subscript mean denotes the average value in the channel core
region (0.8 < y < 1.2). The two highlighted modes correspond to those with the highest growth rates for
kx = 4. Their complex structure eigenfunctions v̂( y) and b̂( y) are reported in (b–e), with real components
marked in black, complex components marked in grey, and the origin marked by the dotted black lines. Critical
lines are marked in red, where the (streamwise) phase speed ω/kx = U. In addition, the spatial structures v(x, y)
and b(x, y), obtained from (3.11a,b) are plotted for one wavelength, in (b–e).

structure of the background flow may not be in the required form conducive to growth of
Mode 2. Although speculative, it therefore seems plausible that the actual flow conditions
may suppress Mode 2 while allowing Mode 1 to persist. The disagreement between the
high-frequency mode obtained from the linearised systems and the nonlinear simulations
suggests that the observed ‘forward’ propagating internal waves arise either through
some nonlinearity in the system, or possibly a dependence on instantaneous deviations
away from the mean flow profiles. Possible reasons for the disagreement will be further
discussed in § 4.
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3.6. Analysis of instantaneous data
The (apparently essentially linear) mechanisms generating and sustaining the
low-frequency mode can now be summarised. The background mean flow profiles, arising
from the well-mixed outer region coupled with the steep density gradient in the channel
core, are linearly unstable. Wave-like structures also arise as a sensitive filtered response
to incoherent turbulence perturbations at the core edge, over a range of wavenumbers and
frequencies, generating internal waves which approximately satisfy the linear dispersion
relation ω = Umeankx − Nmean. The observed appearance of the high-frequency low
energy mode in spectra and DMD is less well explained, given that the two sets of
linearised equations considered above do not appear to reproduce these waves. In this
section, the flow is considered from a different viewpoint, with an investigation of the
nonlinear transient flow dynamics, with a particular focus on the interactions between the
turbulent outer region and the buoyancy dominated channel core, associated with specific
coherent, yet inherently spatio-temporally intermittent, hairpin vortical structures.

Streamwise-wall-normal planar snapshots of the instantaneous local TKE dissipation
rate, ε = Re−1

τ ∂iu′
j∂iu′

j, are plotted in figures 15 and 16 for Case S. The two sets of
snapshots track turbulent events at the edge of the channel core in a Lagrangian reference
frame, with a horizontal coordinate given by x′ = x − Uct where Uc is the spatially and
temporally averaged velocity in the interval 0.7 < y < 1.3 (x′ ∈ [0, Lx] due to periodicity).
Grey regions indicate an unstable density field, where dense fluid is above light fluid,
indicative of wave-breaking events.

Figure 15 shows a strong ejection of turbulent fluid from the outer region into the
channel core, nearly penetrating downwards to the centreline of the flow. The event is
highly dissipative, causing local ‘wave breaking’ as it passes through the core edge. All
observed wave-breaking events appear to arise due to the same mechanism. Therefore, in
this paper, ‘wave breaking’ refers to the over-turning of density contours due to a saturation
in energy associated with highly dissipative ejection events passing from the outer region
and into the channel core. The bulk of the flow in the channel core has ε ≈ 0; all dissipation
in the channel core is due to turbulent activity penetrating the core edge. The ejection also
perturbs waves as it passes through the core edge.

Figure 16 shows a much more active period of the flow. Here, an ejection event is tracked
in an already highly turbulent period. In this case high-amplitude waves are present in the
channel core before the ejection event, and turbulent ejections appears to act in phase with
the observed internal waves. The density gradient in the core is sharpened during highly
turbulent activity, but once events have dissipated the contours relax and the density field
smooths out (as is apparent at t = 0.35). The event of figure 16 appears to be a local
source of high dissipation, particularly at t = 0.1, in contrast to the clear ejection of fluid
in figure 15. However, this is due to the purely planar visualisation which cannot capture
the three-dimensionality of the ejection, evidenced through the appearance of the ejection
‘tail’ at t = 0.3 in figure 16. All observed ‘wave-breaking’ events are consistent and appear
to be induced by ejection events rather than linear instability.

Contours of v′ are also plotted for the turbulent event of figure 16 in figure 17. The
turbulent ejection clearly acts in phase with the vertical velocity of the internal wave.
The turbulent structure is fairly consistent in height during the first three snapshots (t =
0 to t = 0.1), with y ≈ 0.9, due to the large region of negative vertical velocity above
it, suppressing upward vertical flow. This changes during t = 0.15 to t = 0.2, where the
vertical velocity in the channel core is positive and the turbulent structure rapidly moves
upwards. At t = 0.25 to t = 0.3 the structure is suppressed by the following wave crest
and dissipates its remaining TKE. The opposite is true for the upper region of the channel,
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Figure 15. Time series of z-slice data focused on a turbulent ejection event in a Lagrangian frame of reference,
where t = 0 represents the start of the event. The streamwise coordinate is given by x′ = x − Uct where Uc is
the temporally and spatially averaged velocity in the given window. Filled contours are TKE dissipation rate,
overlaid by iso-contours of constant density with a difference between them of 0.1. The thick solid contour
represents ρ = 0. Negative contours are dashed lines, positive contours are solid lines. The grey regions indicate
an unstable density field. The dashed box focuses on a single ejection event.

where turbulent events are typically ejected when the vertical velocity in the core is locally
negative. As such, ejections on either side of the channel core rarely interact since they are
typically out of phase. This process suggests that when high-amplitude waves are present
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Figure 16. Time series of z-slice data focused on a turbulent ejection event in a Lagrangian frame of reference,
where t = 0 represents the start of the event. The streamwise coordinate is given by x′ = x − Uct where Uc is
the temporally and spatially averaged velocity in the given window. Filled contours are TKE dissipation rate,
overlaid by iso-contours of constant density with a difference between them of 0.1. The thick solid contour
represents ρ = 0. Negative contours are dashed lines, positive contours are solid lines. The grey regions indicate
an unstable density field. The dashed box focuses on a single ejection event.

in the channel core, turbulent ejections are enhanced by the wave motion which draws in
turbulent structures from the outer region.

The wave-breaking mechanisms can be analysed by assessing the budgets of spanwise
vorticity, Ωz, where Ω = ∇ × U is the three-dimensional vorticity field. Taking the curl
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Figure 17. Time series of z-slice data focused on a turbulent ejection event in a Lagrangian frame of reference,
where t = 0 represents the start of the event. The streamwise coordinate is given by x′ = x − Uct where Uc
is the average velocity in the given window. Filled contours are vertical momentum sources due to fluctuating
pressure and density fields, overlaid by iso-contours of constant density with a difference between them of
�ρ = 0.1. The thick solid contour represents ρ = 0. Negative contours are dashed lines, positive contours are
solid lines. The grey regions indicate turbulent events (ε > 5). The dashed box focuses on a single ejection
event.
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of the momentum equation leads to

DΩ

Dt
= (Ω · ∇)U − Riτ∇ρ × ŷ + 1

Reτ
∇2Ω, (3.16)

demonstrating that the vorticity can change due to vortex stretching and baroclinic torques
as well as due to viscous effects. Tracking the transport of vorticity yields insight into
how wave breaking occurs in the system. It is particularly insightful to identify the
mechanisms by which Ωz is generated at the edges of the channel core. Contours of the
spanwise vorticity field and corresponding budgets are presented in figure 18 for a single
snapshot. The ejection event in the upper region of the channel core is characterised by
strong positive spanwise vorticity at the interface between the turbulent structure and the
channel core region; it is this positive vorticity that leads to wave breaking at the core
edge. Wave-breaking events are associated with negative vorticity for y < 1 and positive
vorticity for y > 1. As shown in figure 18 spanwise vorticity generation is dominated by
vortex stretching, particularly the term involving the spanwise vorticityΩz∂zUz, indicating
that the turbulent structure is highly three-dimensional and has a strong spanwise vorticity
field. The contribution from the baroclinic vorticity term, −(Riτ∇ρ × ŷ)z = −Riτ ∂xρ
has a leading-order effect and is of the same sign as the vortex stretching, but is
approximately 2–3 times smaller in magnitude. Both the spanwise vortex stretching and
the baroclinic source act to generate positive vorticity on the downstream edge and the
core-facing edge of the ejection, and negative vorticity at the upstream edge of the ejection,
subsequently suppressing downward flow and overturning the local density contours. The
vortex stretching term involving the wall-normal vorticity Ωy∂yUz is also significant at
leading order, acting to oppose spanwise vorticity generation.

The interface between the channel core and outer region is clearly intermittent with
occasional high dissipation events that trigger high-amplitude waves. The intermittency
of Case S is quantified in figure 19. The time dependences of several statistics are
presented in the window x′ ∈ [0,π] for the lower portion of the channel core, y ∈ [0.8, 1],
and the upper portion of the outer region, y ∈ [0.5, 0.8]. Statistics are calculated from
the z-normal slice data, snapshots of which are plotted in figures 15 to 18. The length
lc is defined as the length of the density contour ρ = 0.2 in the interval x′ ∈ [0,π],
normalised by its minimum possible value of π, such that lc = 1 corresponds to a
perfectly flat density contour. High values of lc correspond to wave-breaking events
where the contour is stretched, overturned and made multi-connected by the turbulent
events. Spatially averaged TKE and buoyancy dissipation rates are also plotted, defined
by 〈ε〉 = Re−1

τ 〈∂iu′
j∂iu′

j〉 and 〈X 〉 = −RiτPr−1Re−1
τ 〈∂iρ

′∂iρ
′〉/∂yρ̄, where the buoyancy

dissipation rate is (appropriately) normalised by the square of the characteristic buoyancy
frequency (Caulfield 2021). The angled brackets denote local spatial averaging in the
interval x′ ∈ [0,π] and either y ∈ [0.8, 1] or y ∈ [0.5, 0.8]. Grey regions are based upon
strong peaks in lc, indicative of vigorous perturbation of the central core region. The
intermittency of the flow is clear in the time series of lc, 〈ε〉 and 〈X 〉, averaged in the
interval y ∈ [0.8, 1]. The large distinct peaks in these signals correspond to events similar
to those displayed in figures 15 and 16, where turbulent ejections cause high dissipation
and wave breaking. There are quiet periods of low dissipation, short periods of high
dissipation, and longer periods where the flow is quite active. Note that quiet periods
have an O(δ/uτ ) time scale (or �t ≈ O(1)), necessitating the long integration times
adopted in the present study. Peaks in lc clearly correspond to peaks in 〈ε〉, and 〈X 〉 in
y ∈ [0.8, 1]. Further, there is a strong correlation between activity in the core y ∈ [0.8, 1]
and activity in the outer region y ∈ [0.5, 0.8]. Specifically, high dissipation in the channel
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Figure 18. Vorticity field and budgets on a z-normal slice at t = 0.15 of figure 15. Solid iso-contours are
density with a difference between them of 0.1. The thick solid contour represents ρ = 0. Negative contours are
dashed lines, positive contours are solid lines. The dashed box focuses on a single ejection event.

core corresponds to strong turbulent activity in the outer region of the flow. There also
appears to be a lag between events in the core and corresponding peaks in the outer region,
where activity in the core ‘leads’ activity in the outer layer. This seemingly contradictory
behaviour arises due to the Lagrangian frame of reference where flow in the outer region
is convected more slowly than flow in the core. Ejection events therefore appear in the core
slightly before they appear in the outer region (see e.g. t ≈ 14.25 of figure 19).

Time-series data therefore suggest that dissipative events in the channel core are
dependent on turbulent activity in the outer region of the flow. These time series also show
that the dissipation rates of TKE and buoyancy are well correlated and of a similar order,
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Figure 19. Intermittency of the spatially averaged dissipation rates of TKE (ε) and buoyancy (X ) in the lower
portion of the channel core (y ∈ 0.8, 1.0), and the near-core portion of outer region (y ∈ [0.5, 0.8]), in the
interval x′ ∈ [0,π]; lc is the length of the contour ρ = 0.2 normalised by π, such that lc = 1 corresponds to a
perfectly flat contour. Grey regions correspond to peaks in lc, indicative of wave-breaking ejection events.

with 〈X 〉 typically half the value of 〈ε〉. Correlations between turbulent events and locally
averaged density and velocity gradients (〈∂yρ〉 and 〈∂yU〉) are less clear, and subsequently
omitted from figure 19.

The three-dimensionality of the turbulent structures is visualised by iso-contours of
swirl strength λci in figure 20, where λci is the imaginary part of complex eigenvalues for
the velocity gradient tensor. Hairpin vortices dominate at the interface between the outer
and core regions of the channel, which are not observed in such abundance for moderate to
high Reynolds number developed turbulent flows (Schlatter et al. 2014). Hairpins dominate
the flow, with some developing in isolation and others grouping together as hairpin
packets. Figures 15 and 16 are therefore associated with ejections of hairpin structures in
isolation, and as hairpin packets, respectively. These structures are not a dominant feature
of high Reynolds number channel flow but have been detected by Hack & Schmidt (2021)
at Reτ = 2000 by conditionally averaging the most dissipative events (99.9th percentile).
However, they clearly dominate in this weakly stratified regime. An isolated hairpin
vortex is visualised in figure 21, with iso-surfaces of positive and negative u′ and v′. The
hairpin structure is consistent with visualisations in previous (unstratified) simulations and
experiments (see e.g. Dennis & Nickels 2011; Hack & Moin 2018). Negative u′ and positive
v′ are observed in the vortex core (Q2 event, referring to an event in the second quadrant
of the u′–v′ plane), and positive u′ and negative v′ at the edges of the vortex (Q4 event,
referring to an event in the fourth quadrant of the u′–v′ plane). The low speed upward
moving fluid in the centre of the hairpins is a Q2 event, as per typical hairpin structures
that dominate low Reynolds number boundary layer flows.

The Case S hairpins are quantitatively different to those of Case U, as shown in figure 22.
Here hairpins have been visualised by λci along with contours of u′ = −1, visualising low
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0.0 0.2 0.4 0.6 0.8 1.0

y

Figure 20. Iso-surfaces of swirl strength, λci, in the lower half of the channel for Case S, coloured by vertical
coordinate y. The colour map is centred at y = 0.8, such that ‘red’ regions highlight structures in the core
region of the channel. The flow direction is approximately ‘north–west’. The λci contour value is 0.5 % of its
maximum value.

(a) (b)

Figure 21. An isolated hairpin vortex visualised by an iso-surface of swirl strength, λci, in the lower half of
channel for Case S (grey). Red and blue iso-surfaces represent u′ = 1 and u′ = −1, respectively (a), and v′ = 1
and v′ = −1, respectively (b). The λci contour value is 0.5 % of its maximum value.

speed Q2 streaks. Long and wide streaks are associated with Case U which extend from
the wall up to the channel centre. Hairpins are not a dominant feature, but some vortical
structures can be observed wrapped around the low speed streaks which originate near
the wall. Hairpins are the dominant coherent structure of Case S, and are fundamentally
different to those of Case U. Case S streaks are much narrower and shorter, and it is unclear
if they originate from near the wall. This is consistent with the spatial spectra of figures 4 to
6, which show that stratification suppresses long wide structures, or global modes. Further,
Garcia-Villalba & del Alamo (2011) have shown that outer region turbulence scales like
the local Obukhov length (3.2). It is therefore unlikely that hairpins originate from the
inner region of the flow, and are instead generated in the outer region.

Similar hairpin structures have recently been observed in stratified shear flow without
walls (Pham & Sarkar 2010, 2011; Pham, Sarkar & Winters 2012; Watanabe et al. 2019).

934 A10-31

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f H

ul
l, 

on
 1

4 
Ja

n 
20

22
 a

t 1
6:

45
:5

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
07

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.1007


C.J. Lloyd, R.M. Dorrell and C.P. Caulfield

(a)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
y

0.0 0.2 0.4 0.6 0.8 1.0
y

Figure 22. Coherent hairpin structures visualised by λci with iso-surfaces of u′ = −1 (green). Cases are U
(a) and S (b). The λci contour value is 0.5 % of its maximum value. Both sets of iso-surfaces, λci and u′, are
coloured by the vertical coordinate y.

Watanabe et al. (2019) observed remarkably similar hairpins at the edge of a stably
stratified shear layer. The abundance of hairpin structures in the stratified shear layer was
explained by reporting the integral shear parameter (Jiménez 2018), S∗, defined as the ratio
between the eddy turnover time and the time scale of the mean shear

S∗ = u′
iu

′
i

ε

∂U
∂y
. (3.17)

A Value of S∗ � 1 implies the evolution of turbulent structures is strongly dependent on
mean shear, typically peaking in the buffer region of channel flows and boundary layers
before decaying to S∗ ≈ 10 in the logarithmic and outer regions of the flow. Watanabe
et al. (2019) noted that hairpins were observed when S∗ � 10 at the centre of the stably
stratified shear layer. The y-dependence of the integral shear parameter S∗ for cases U
and S is plotted in figure 23. Under stable stratification S∗ peaks at a higher value in the
channel core than in the inner region, in contrast to the unstratified case where S∗ tends
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Figure 23. Variation with y of the integral shear parameter S∗ = u′
iu

′
i∂yU/ε for Case U (solid line) and Case

S (dashed line).

to 0 in the region y � 0.4–1.0. The second peak in Case S is due to the local maximum
of ∂yU (figure 2) and the low TKE dissipation rate. Further, Case S exhibits a consistently
higher S∗ in the outer region of the flow than Case U, particularly in the region y > 0.5,
where hairpins dominate. The high value of S∗ implies coherent turbulent structures are
strongly dependent on shear, and can therefore be considered to be quasi-linear (Jiménez
2018).

Hairpins were also observed in stratified shear flow by Pham & Sarkar (2010) and
Pham et al. (2012). They found hairpin vortices (which they referred to as ‘horseshoe’
vortices) appeared to originate as spanwise instabilities of Kelvin–Helmholtz rollers in
an unstable shear layer. Spanwise vortices were subsequently drawn into the stable shear
layer beneath and stretched into hairpins. However, we did not detect any evidence of
Kelvin–Helmholtz instabilities in the present LES. The study of Pham & Sarkar (2011)
observed similar hairpins to Pham & Sarkar (2010) and Pham et al. (2012) but without
the presence of Kelvin–Helmholtz rollers. No insight into their origin was given, but
it is entirely reasonable that hairpins in stratified channel flow are governed by an
analogous process. In particular, the well-mixed outer region can be interpreted as an
unstable shear layer, neighbouring the stably stratified channel core. One hypothesis
is that the initial spanwise vortices originate in the outer region due to the internal
waves in the channel core, noting that the waves can be detected in spatial spectra at
y = 0.75 (figure 5). Alternatively (or additionally) spanwise vortices may be generated
locally in the outer region through quasi-linear processes, due to high S∗. Regardless
of their origin, outer layer spanwise vortices are stretched and lifted by background
shear and ejected into the channel core where they dissipate and perturb internal
waves.

4. Discussion

It has been shown that stably stratified channel flow can be split into three regions:
the inner region (y < 0.2); the outer region (0.2 < y < 0.8); and the channel core (y >
0.8), all symmetric about the channel centreline, y = 1. These definitions are consistent
with canonical unstratified channel flow and boundary layer definitions, apart from the
buoyancy-affected channel core. This paper has demonstrated that a series of internal
waves dominate the channel core, approximately following a linear dispersion relation with
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constant flow velocity and buoyancy frequency ω = ±Nmean + Umeankx, where subscript
mean denotes averaging of variables over the full channel core height. Waves are generated
over a wide range of wavenumbers and frequencies, with a dominant low-frequency
‘backward’ propagating mode, and a low-amplitude high-frequency ‘forward’ propagating
mode, relative to the background mean flow. Spontaneous development of dominant (at
least apparently) linear waves in stratified flows may offer insight into the large-scale
mixing dynamics of environmental flows (Caulfield 2021; Wells & Dorrell 2021). Analysis
of linearised equations have shown that the dominant relatively low-frequency mode
can be interpreted as arising either due to a particularly sensitive response of the mean
flow profiles to incoherent forcing, or alternatively due to the exponential growth of
instabilities of the mean flow profiles themselves. Either (linear) interpretation implies
that perturbations can ring the system and generate highly coherent structures spanning
the full height of the channel core. However, inherently linear mechanisms do not appear
to reproduce the higher-frequency, yet lower-amplitude, internal waves which are also
observed in the full nonlinear numerical simulations.

Instantaneous (three-dimensional) data reveal intermittent spontaneous highly
dissipative events, where turbulent structures are ejected into the channel core from the
turbulent outer region. These extreme structures generate high-amplitude waves and drive
local wave breaking as they pass from the outer region and into the core. These structures
are largely coherent hairpin vortices which dominate the outer region, arising as isolated
structures or hairpin packets, and are fundamentally different to those typically observed
in canonical boundary layer and channel flows. In particular, these stratified hairpins arise
via local processes rather than originating near the wall. The low speed streaks at the
centre of these hairpins are much thinner and shorter than in unstratified channel flow,
and Garcia-Villalba & del Alamo (2011) have shown that spectra in this region scales
like the local Obukhov length (Nieuwstadt 1984). Similar structures have been observed
in stratified shear flow (e.g. Pham et al. 2012; Watanabe et al. 2019), in the absence of
walls, and can be partially explained through consideration of the shear parameter S∗, as
defined in (3.17), and as the ratio of the eddy turnover time to the time scale of mean
shear. S∗ has a peak at the edge of the channel core, larger than its peak in the buffer layer
for Case S, indicating that outer region turbulent structures are quasi-linear and strongly
affected by mean shear, consistent with typical hairpin vortices in the near-wall region
of unstratified flow. It is hypothesised that these vortices evolve due to similar processes
to those observed by Pham & Sarkar (2011), where spanwise vortex tubes originate in
the outer region, analogously to in an unstable shear layer. The origin of these spanwise
vortices is hypothesised to be due to local quasi-linear processes, or alternatively as a result
of internal waves in the channel core. The evolution of these structures is governed by the
background shear which stretches and rolls vortices into hairpins. Hairpins are ejected
from the outer region into the channel core, causing large-scale coherent internal waves.
As hairpins pass through the critical layer they cause wave breaking, due to spanwise
vortex stretching and baroclinic vorticity generation.

Analysis of the linearised system has shown that the high-frequency low-amplitude
modes observed in the 3-D simulations must arise from either deviations from the mean
flow profiles or nonlinearity. A reasonable hypothesis is that hairpin ejections cause strong
deviations to the mean flow profiles that may allow the high-frequency mode to propagate.
However, conditional averaging over particularly high ε events in the channel core does not
produce deviations large enough to alter the dispersion relation obtained from the viscous
Taylor–Goldstein equations, and only has a minor distorting effect on the modal spatial
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Internal waves and hairpins in plane Poiseuille flow

structure (not shown). It is therefore concluded that the high-frequency mode must arise
from the strong and nonlinear ejections of hairpin vortices.

The instantaneous vertical velocity profiles of figure 17 actually demonstrate an intricate
coupling between the hairpin ejections and the channel core, where ejections typically
occur in phase with the internal waves. High-amplitude internal waves therefore enhance
ejection events, allowing them to penetrate deeper into the core. It is plausible that
a self-sustaining process is present, where hairpin ejections lead to high-amplitude
waves which subsequently draw in further hairpins from the outer region. In addition,
high-amplitude internal waves may sustain further hairpins by inducing spanwise vorticity
in the outer layer, subsequently leading to the rolling and stretching of vortices into
hairpins. This cycle is not necessary for waves to persist, but does explain the occasional,
highly active periods in the flow (e.g. figure 19 at t ≈ 15).

An immediate question that arises from this study is how these mechanisms and
structures scale with Reynolds, Richardson and Prandtl numbers. Some insight may be
gained from the study of Garcia-Villalba & del Alamo (2011), who simulated the stratified
channel flow at Riτ = 960. They obtained very similar spatial spectra and density/velocity
profiles as in their case with Riτ = 480 and the present study. Given the primary backward
travelling waves appear to arise due to instability of the mean flow profiles, the waves
reported by Garcia-Villalba & del Alamo (2011) are likely governed by the same processes
identified here.

The influence of Riτ on hairpins and subsequent forward travelling modes is less clear.
As Riτ increases, the velocity profile becomes more jet like (Garcia-Villalba & del Alamo
2011). Subsequently, one may expect the outer region to sustain more hairpin vortices due
to an increase in S∗, which will ring the sharp density profile more frequently. However, an
increase in Riτ will also act to stabilise the channel core and may therefore suppress strong
ejection events. It is also unclear if the same structures and mechanisms are present in the
strongly stratified regime, where near-wall turbulence is intermittent (Garcia-Villalba &
del Alamo 2011). Clearly these dynamics are complex and should be considered for future
research.

5. Conclusions

In conclusion, the present investigation uses numerical simulations to quantify the
internal waves at the core (0.8 < y < 1.2) of relatively weakly stratified plane
Poiseuille flow. Spatio-temporal spectra and DMD have demonstrated, for the first time,
that coherent structures spanning the full channel core height largely follow the linear
dispersion relation for internal waves (with constant buoyancy frequency and background
streamwise velocity) over a wide range of wavenumbers and frequencies. This particular
demonstration of the relevance of linear stability to turbulent stratified shear flows opens
up pathways of future research of natural flows. The dominant mode is a relatively
low-frequency internal wave-like structure, ‘backwards’ propagating relative to the mean
flow, which can be interpreted as arising from a sensitive forced response or from
a linear instability inherent in the mean flow profiles, demonstrated by solving the
stochastically forced linearised governing equations and the viscous Taylor–Goldstein
equations respectively. Heuristically, waves may be thought of as being generated via
‘ringing’ of the enhanced density gradient at the edge of the central core region due to
perturbations in the outer, turbulent, regions of the flow.

Flow visualisation demonstrates that the resulting high-amplitude internal waves are
a result of intermittent highly dissipative ejections from the outer regions and into
the channel core. These ejections are associated with coherent hairpin vortices that
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dominate the boundary between the buoyancy-affected core region and the turbulent outer
region. These stratified hairpins are fundamentally different from the attached eddies
of canonical boundary layer flows, and arise from local quasi-linear processes where
spanwise vortices are stretched and lifted by background shear. Indeed, it appears that
the dynamics of the internal wave-like structures and the stratified hairpins are strongly
coupled. Specifically, if internal waves are present they can induce further ejections which
act in turn in phase with the waves. As hairpins pass through the boundary of the central
core region they cause local wave-breaking due to vortex stretching and baroclinic vorticity
generation.

This paper quantifies the interaction between outer region turbulence and internal
waves in stably stratified plane Poiseuille flow. However, it raises several unanswered
questions. For example, it is still unclear how the observed coherent and robust structures
scale with key dimensionless parameters such as Reτ , Riτ and Pr. Perhaps most
significantly, what role do coherent hairpins and internal waves play in the irreversible
turbulent mixing within this flow, and how does their subtle interplay affect the energetic
partitioning (i.e. the ‘efficiency’) of the mixing in wall-bounded stratified turbulent
flow.
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Appendix A. Grid sensitivity and validation study

The sensitivity of solutions to the grid resolution was assessed by increasing the
polynomial order from 83 GLL points to 123 GLL points per element for Case S.
Second-order time- and planar-averaged statistics were found to converge for an averaging
period of T = 8. All other simulation details are as per § 2. The increase in polynomial
order represents an effective resolution increase from Nx × Ny × Nz = 561 × 309 × 281,
for the Case S grid defined in table 1 with 83 GLL points, to Nx × Ny × Nz = 881 × 485 ×
441 for the same grid with 123 GLL points.

Solutions are plotted in figure 24, where the refined case has been labelled S2. S and
S2 data collapse in the outer region and channel core, with minor differences present in
the inner region where Case S over-predicts the peak TKE. This subsequently leads to
a marginally higher velocity at y ≈ 0.2. Given this paper is focused on the interactions
between the outer region and the channel core, Case S is used for further analysis, given
the longer sampling period required for convergence of the extracted DMD and spectra.

The LES methodology is validated for stratified channel flow by comparing solutions
against the DNS of (Garcia-Villalba & del Alamo 2011) at Reτ = 550, Riτ = 480 and
Pr = 0.7. The Case S simulations were repeated with Pr = 0.7 (as opposed to Pr = 1)
using the same methodology described in § 2. Time- and planar-averaged statistics are
presented in figure 25. Very close agreement is obtained between the two simulations,
aside from the slight underprediction of TKE in the inner region, consistent with the grid
resolution study of figure 24. The insensitivity of solutions to further grid refinement (in
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Figure 24. Profiles of time- and planar-averaged flow statistics. Solid lines represent Case S, dashed lines
represent Case S2.
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Figure 25. Profiles of time- and planar-averaged flow statistics for Reτ = 550, Riτ = 480 and Pr = 0.7. Solid
lines are LES data and dash-dotted lines are the DNS of Garcia-Villalba & del Alamo (2011).
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the outer and channel core regions) and the close agreement with DNS justifies the use of
modal based explicit filtering (Fischer & Mullen 2001; Chatterjee & Peet 2018) and the
choice of grid resolution.
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