Development of an Augmented Reality system
based on marker tracking for robotic assisted
minimally invasive spine surgery
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Abstract. Spine surgery is nowadays performed for a great number
of spine pathologies; it is estimated that 4.83 million surgeries are car-
ried out globally each year. This prevalence led to an evolution of spine
surgery into an extremely specialized field, so that traditional open in-
terventions to the spine were integrated and often replaced by minimally
invasive approaches. Despite the several benefits associated to robotic
minimally invasive surgeries (RMIS), loss of depth perception, reduced
field of view and consequent difficulty in intraoperative identification of
relevant anatomical structures are still unsolved issues. For these rea-
sons, Augmented Reality (AR) was introduced to support the surgeon
in surgical applications. However, even though the irruption of AR has
promised breakthrough changes in surgery, its adoption was slower than
expected as there are still usability hurdles. The objective of this work is
to introduce a client software with marker-based optical tracking capa-
bilities, included into a client-server architecture that uses protocols to
enable real-time streaming over the network, providing desktop render-
ing power to the head mounted display (HMD). Results relative to the
tracking are promising (Specificity=0.98 40.03; Precision=0.94 +0.04;
Dice=0.80 +0.07) as well as real-time communication, which was suc-
cessfully set.

Keywords: Augmented Reality - Marker Tracking - Spine Surgery.

1 Introduction

The incidence of spinal disorders has undergone a huge increase in the last few
years, reaching epidemic extensions. It is estimated that globally 4.83 million
spinal operations are annually performed [6]. This growing trend was related to
the aging population, greater disease prevalence, improved diagnostic modali-
ties, development of new surgical techniques, and an increased number of spine
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surgeons [16]. Over the past few decades, spine surgery has become an extremely
specialized field; highly complex procedures are more and more performed, across
all age groups, and often through minimally invasive approaches [19]. Traditional
open interventions to the spine, although familiar to surgeons, are associated
with morbidity, increased blood loss, increased postoperative pain, longer recov-
ery time, and impaired spinal functions. Thus, less invasive techniques that can
provide equivalent or better outcomes compared with conventional spine surgery,
while limiting approach-related surgical morbidity, are desirable [17].

Minimally invasive surgeries (MIS) procedures are characterized by small
surgical incisions, minimal disruption of musculature, intraoperative monitor-
ing and imaging modalities. The use of small surgical incisions was associated
with less surgical-related morbidity, better long-term postoperative outcomes,
and decreased costs mostly due to shorter postoperative hospital stays [20]. Un-
der this scenario, surgical robots emerged during the ‘90s [10] and from then,
progresses to optimize the use of robotic technology were made. Robotic min-
imally invasive surgeries (RMIS) in fact, increase surgeons ability with tremor
compensation, allowing the use of more sophisticated control strategies (e.g., vir-
tual fixture) [12]. Nevertheless, as spine surgeons are familiar with the patient
anatomy when it can be directly visualized and MIS generally limits the area
of surgical interest, certain key anatomic landmarks can be lost [13]. Moreover,
RMIS is associated with reduced field of view and consequent difficulty in in-
traoperative identification of relevant anatomical structures. For these reasons,
RMIS is more technically demanding; however operative times and complications
are reduced as the surgeon becomes more experienced with the technique [11].

A solution for these problems can be found in augmented reality (AR), an
imaging technology which provides digital contents that augment information di-
rectly on the real world. AR creates opportunities for new medical treatments: in
fact, various imaging methods can be used to guide surgical instruments through
the body without the physician direct sight [5]. Thanks to AR, sensitive struc-
tures placed in the surgical field can be identified in the pre-operative plan, and
their intra-operative position can be retrieved in order to avoid the interaction
of the robot with these structures [1]. Moreover, AR enables the surgeon direct
sight on the surgical area, without the need to switch between screen and patient,
and it is associated with increased safety and accuracy, and reduced amount of
intraoperative radiation (as it happens when using fluoroscopy) [23].

Although AR is not a new technology and it has made progresses in the
past years, with considerable benefits for both patient care and surgical perfor-
mance, its adoption in the surgical field is still impeded by a set of technological
barriers regarding handling, feasibility, hardware limitations, and the high cost
of the instruments, which reduces the possibility of a wider development of this
surgery [21]. One of the greatest limitations of AR is the low frame rate achieved
by the head mounted display (HMD). Another problem is the need of real-time
patient motion tracking, which is required to accurately position the instru-
ments. This is usually solved by positioning markers on the patient body or on
the robot end-effector, whose position in space is measured by tracking devices.



The marker to be placed is printed and then attached to the patient skin or
to the robot end-effector. In the first case it is fixed using any kind of existing
bio-compatible transparent tape or glue, paying attention to the placement of
the marker in a smooth and planar site; in the second one, it is attached to the
robot and then covered with a sterile transparent foil. The marker usually does
not affect the intervention but problems could arise due to occlusion, which can
occur if the marker is partially covered, and the augmented scene is suppressed or
visualized on top of real objects (e.g. surgical instruments or surgeon hands) [7].

Multiple tracking technologies were proposed but they are characterized by
different drawbacks: optical tracking requires direct line of sight between a set
of stereo cameras and the markers -which is difficult to achieve in a crowded
operating room (OR)- while electromagnetic tracking precision is reduced by the
proximity of metallic objects. Optical tracking normally achieves tracking errors
of several millimeters [22], which is not sufficient for high-precision interventions
such as spine surgery. However, previous studies made with electromechanical
tracking show the potential to achieve tracking errors < 1 mm, which is a great
improvement over existing technology [2].

In this work, a marker-based optical tracking is proposed, in which two-
dimensional open source markers were used. It was tested and evaluated with
different metrics and then integrated in a client-server architecture, on which
computationally intensive tasks are performed on remote servers, leaving the
wearable devices in charge of rendering the final frames transmitted as a video
stream.

2 Methods

2.1 Marker system selection

For the client software implementation, open-source libraries were used as a
starting point for the development of a marker detection and tracking algorithm
and for the integration of this algorithm on the HoloLens 13. The marker track-
ing algorithm was developed taking as reference OpenCV 4, an open source
Computer Vision library, which offers infrastructures for real time applications.
In OpenCV the ArUco module, based on the ArUco library [8,14], was used to
implement the tracker application. ArUco library was chosen among the many
fiducial marker detection systems available, as it is the most popular and reliable
one. In fact, ArUco is robust and able to detect and correct binary code errors,
it is characterized by a good performance at a wide range of marker orienta-
tions and great adaptability to non-uniform illumination conditions [14, 15]. The
algorithm and the libraries were mainly implemented in C++.

Experimental design: The marker tracking algorithm was firstly tested
on a desktop application acquiring video of markers with a smartphone, later
Adobe After Effect [4] was used to simulate an intraoperative scenario and finally

3 https://docs.microsoft.com/it-it /hololens/
* https://opencv.org/
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Fig. 1: Phases of ArUco marker tracking.

it was adapted to be used as Universal Windows Platform (UWP) application for
HoloLens in the context of server-client communication. The diagram in Fig. 1
shows the phases of the tracking algorithm based on fiducial bitonal markers.
ArUco markers are synthetic square markers composed by a black border and
an inner binary matrix which determines their identifier (ID). The marker black
border facilitates its fast detection in the image and the binary codification
allows its identification and the application of error detection and correction
techniques [8].

The marker size defines the dimension of the internal matrix (such as, a
marker size of 4x4 is composed by 16 bits); markers can be found rotated in the
environment, as the detection process is able to determine the original rotation,
so that each corner is identified unequivocally. A dictionary of markers is the set
of markers that are considered in a specific application, it is the list of binary
codifications of each of its markers. The marker ID is the marker index within the
dictionary it belongs to [7]. Starting from an image containing ArUco markers,
the detection process must return a list of detected markers. Each detected
marker includes the position of its four corners in the image (in their original
order) and the ID of the marker. In this work a 4x4 dictionary was used.

Calibration of the system: Camera calibration is the process of obtaining
intrinsic and extrinsic camera parameters which allows to determine where a 3D
point in the space projects in the camera sensor (pose estimation). In this work
the OpenCV routine was used [3,24]. OpenCV uses the pinhole camera model
in which a scene view is formed by projecting 3D points into the image plane
through a perspective transformation. The camera parameters can be divided
into intrinsics and extrinsics. Intrinsic parameters include focal length of the
camera lens in both axes, optical center of the sensor and distortion coefficients.
The calibration was done by targeting the camera on a known structure, a flat
pattern of alternating black and white squares (chessboard) [24].



By viewing this structure from various angles, it is possible to obtain the
(relative) location and orientation of the camera for each image in addition to
the intrinsic parameters of the camera. To provide multiple views, the board
was rotated and translated while keeping the camera fixed to acquire the images
(80 images of a 9x6 chessboard with square dimension of 24mm). At the end
of the calibration process, results were saved into an XML file (which contains
intrinsics and extrinsics parameters, and camera matrix), and it was used in the
routine to estimate the pose and to track ArUco markers.

2.2 Server-Client communication

Once obtained a working desktop application it was adapted to be used with
HoloLens 1 and included in the client-server architecture. DirectX ® and We-
bRTC ¢ (Web Real-Time Communications) were used to deliver desktop ren-
dering power to HoloLens, so that the entire computation is done on the server
side and HoloLens becomes a viewer. The proposed visualization architecture in-
cludes three interconnected applications, running at the same time: the HoloLens
Client, the Windows Desktop Server, and a Signaling Server which manages the
communication and connection between the first two. This architecture was built
on the 3DStreamingToolkit 7 which uses the WebRTC protocols, as well as the
NVEncode hardware encoding library from NVIDIA ®. The hardware architec-
ture used to establish the communication includes three components: a router, a
desktop Windows server (hosting the rendering server and the signaling server ?),
and the HoloLens 1 running the DirectX HoloLens Client. A local network was
used for communication as it enables control, reliability, transmission speed and
latency. The peers interact with the signaling server to share the handshakes
and start a direct peer-to-peer transmission. After this, data are sent directly
between client and server.

2.3 Evaluation protocol

The following metrics were used to qualitatively analyze the marker-based optical
tracking system:

— Localization accuracy of the marker pose: it is important, in spine surgery,
to test how accurately the position and orientation of the marker were de-
termined by the localization algorithm.

— Runtime performance: to measure how long it takes to process a frame is
an important parameter to consider: in fact, the algorithm being part of
a real time application needs to have a fast processing time. A timer was
integrated in the algorithms to get the time the system needs to process

® https://docs.microsoft.com/it-it /windows/mixedreality/

5 https://webrtc.org/

" https://3dstreamingtoolkit.github.io/docs-3dstk/

8 https://www.nvidia.com/

9 https://github.com/anastasiiazolochevska,/ signaling-server
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one frame. The running time was measured at a distance of 40 cm between
the marker and the camera, a marker size of 4 cm and a static scene with
constant lighting conditions. Furthermore, to ensure consistent results, the
measurements were performed several times and finally the average of the
detection rate for 100 frames was determined.

— Robustness: to test how the system behaves in different environment condi-
tions. It is important to consider the environment in which a marker system
is used, in fact parameters as illumination conditions and partial occlusion
of the marker play an important role [9]. For these tests, a marker grid was
used. The detection rate was first determined with three different light con-
ditions, from low to strong light (typical condition in an OR). Moreover, in
the OR it is often required to cover the marker with a protective transparent
foil, which can lead to light reflection and therefore to partial masking of the
marker. To simulate this scenario the marker grid was coated firstly with a
transparent smooth foil, and then with a transparent crumpled foil.

All these metrics were evaluated by recording a set of videos containing a variable
number of markers (1 to 35), with a Huawei P20 camera, using an image resolu-
tion of 1080 x 1920 pixels. All tests were performed using an Intel Core i5-7200U
2.50GHz x 4-core processor with 12GB RAM running Windows10 (10.0.18363).

The correct detection of markers is a critical aspect that must be analyzed
to verify that the proposed algorithm is able to obviate redundant information
present in the scene, extracting exclusively marker information. To assess the
quality of the tracked marker pose, it is necessary to know the marker pose
as ground truth. The ground truth used was extracted from the thresholding
process involved in the detection of the marker. Then indexes were calculated
in MATLAB 2018a '°: multiple frames containing the marker in gray scale were
analyzed and compared with a mask. The mask was created using the function
roipoly, which creates an interactive polygon tool associated with the image
displayed in the current figure and returns the mask as a binary image, setting
pixels inside the Region Of Interest to 1 and pixels outside to 0. The segmented
image is then confronted with the ground truth.

The quality of the proposed algorithm was assessed calculating the following
spatial overlap-based metrics:

Accuracy: assesses the extent to which a binary segmentation method correctly
identifies or excludes a condition. It is defined by: Accuracy = %,
where TP, TN, FP, FN mean true positive, true negative, false positive and
false negative, respectively.

Sensitivity: also known as True Positive Rate (TPR) or Recall, defines the por-
tion of positive voxels in the ground truth which are also identified as positive
by the evaluated segmentation. It is defined by: Sensitivity = TPTJF%.
Specificity: or True Negative Rate (T'NR), measures the portion of negative
voxels (background) in the ground truth segmentation that are also identified as

10 https://www.mathworks.com /products/matlab.html
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Fig. 2: Boxplot of the different metrics used to evaluate the localization accuracy
of the pose estimation.

negative by the evaluated segmentation. It is defined by: Speci ficity = %}r\;ﬂp.

Precision: or Positive Predictive Value (PPV), is not usually used in validation
of medical images, but it is used to calculate the F-Measure. It is defined by:

.. TP
Precision = TPLFP"

F1l-measure: F/3-Measure is a balance between precision and recall. F3-Measure

is defined by: FM Sz = (g;—ll)p PI;P_‘: fTPPRR. When 8 = 1.0 (precision and recall

are equally important), it becomes F1-Measure (FMS1). It is also known as har-

monic mean, and it is defined by: FMS = %.

MCC: or Matthew Correlation Coefficient, is used to assess performances, has
a range of -1 (completely wrong binary Classﬂier) to 1 (completely right binary
P.F

classifier). It is defined by: MCC = TPTN — F
/(TP+FP) (TP+FN) (TN+FP) (TN+FN)’

Dice: or Dice Similarity Index, evaluates the similarity between prediction and

ground truth, by measuring the TP found and penalizing the FP found. It is
C Dice — 2.TP

deﬁned by Dice = 5TP + FP ¥ FN°

Jaccard: the Jaccard index or Jaccard similarity coefficient, evaluates the sim-

ilarity and diversity of sample sets. It has a relation with Dice, and it is defined

. _ TP
by JaCCG/I"d = m

3 Results

3.1 Localization accuracy of the pose estimation

The establishment of how accurately the position and orientation of the marker
is performed by the localization algorithm is particularly important. It was found
that augmenting the distance between the marker and the camera the accuracy
decreases, while with a fixed distance accuracy improves with increasing marker
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Fig. 3: Detection of an ArUco marker grid under three different light conditions.
From left: low light, medium light and bright light.

Table 1: Average time of detection and pose estimation.

Process Runtime: 1 marker(+2—) Runtime: 5x4 grid (=)
Marker detection 224.74 502.68
Pose estimation 231.07 552.65

size. For these reasons all the tests were performed at a distance of 40-60 cm
from the sensor to the marker, using a marker size of 3-5 cm.

The performance was assessed through several spatial overlap-based metrics
calculated on individual frames from video sensor data. All the items were indi-
vidually tested to verify the presence of a match between the frame under test
and the ground truth, for each video frame. The performance on each individ-
ual frame was then averaged over the total to develop performance scores. The
statistics of the computed performance measures are reported in Fig. 2 which
shows the relative boxplots; while mean values and standard deviation (SD) are
listed in Tab. 2.

Table 2: Mean value and standard deviation of the metrics used to evaluate the
localization accuracy of the pose estimation.
Metric Mean SD

Accuracy 0.94 +£0.04
Sensitivity 0.70  £0.10
Specificity 0.98  +0.03
Precision 0.94 £0.07

F1 0.80 £0.07
MCC 0.78  £0.08
Dice 0.80 £0.07

Jaccard 0.67 +£0.10



Fig.4: Samples of the detection of ArUco marker grid covered with largely
smooth foil (left) and covered with a crumple-rich foil (right).

Specificity which indicates the ability to correctly generate a negative result
when the marker is not present in the scene (high TNR) has shown the highest
value among the indexes.

3.2 Runtime

Results of the experiments done to determine the time required to process a
frame to detect and estimate the pose of a single marker of size 4 cm and of 20
markers arranged on a 5x4 grid, at a camera distance of 40 cm in a stationary
scene with constant illumination conditions, are presented in Tab. 1.

3.3 Robustness to external influences

The detection rates of the markers for each of the following conditions were
calculated dividing the number of markers correctly identified by the total num-
ber of markers in the grid. Fig. 3 shows a picture of the camera detecting the
marker grid at the three different light conditions (dark, medium and bright),
while Fig. 4 shows the influence of covering on marker detection. Detection rates
of each trial are shown in Tab. 3. Even with medium lighting the detection of
ArUco is possible with 42.7% in almost half of all images, while with a very low
lighting the rate decreases at 3.5%.

Table 3: Detection rates under different lighting and covering conditions.

Condition Detection rate
Low light 3.5 %
Medium light 42.7%
Bright light 100%
Smooth foil 98 %

Crumpled foil 47 %
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Fig. 5: Localization accuracy metrics. (a) Boxplot of the metrics used to evaluate
the marker detection ability in condition of medium light. (b) Boxplot of the
metrics used to evaluate the marker detection ability in presence of a crumpled
covering foil.

Results obtained covering the marker grids with transparent foils to simulate
the sterile coating of the OR are dependent on the degree of crumpling: the
higher the folds, the stronger the generated light reflection and the lower the
detection rate.

In Fig. 5 the boxplot of metrics used to evaluate the localization accuracy in
presence of dark light and in presence of a crumpled foil covering the marker are
shown. Significant differences were observed in Dice index and the Sensitivity
values if compared with the ones of the detection performance in optimal condi-
tions. Reduced marker detection rates in these conditions can be also observed
in the reduction of these values. Accuracy and Specificity have similar values
both in the optimal condition and in case of external disturbances.

3.4 Communication and 3D visualization

Communication was successfully set between the rendering server and two differ-
ent DirectX clients (desktop and HoloLens). Once launched the signaling server,
the rendering server and the client were connected to it and started to exchange
information.

As a first trial to test the communication, a spinning cube was remotely ren-
dered and visualized on a desktop client in the 3DStreamingToolkit environment.
Then, the same desktop client was used to receive a rendered frame implemented
on a VTK server. These tests were conducted on a computer receiving the frames
from a remote host running both signaling and rendering servers; 60 frames per
second (FPS) were obtained almost all the time.

Later, communication with the HoloLens client was verified. The client was
developed in Visual Studio 2017 as UWP application and then deployed on
HoloLens. An application that renders the model of a vertebra developed on a
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Fig. 6: Picture of the HoloLens client showing the model of a vertebra that was
previously remotely rendered on a Unity server and then transmitted to the
headset through 3DStreamingToolkit communication architecture.

Unity rendering server was transmitted and effectively visualized on HoloLens
as can be seen in Fig. 6.

4 Discussion

Results of spatial overlap-based metrics are promising: among the indexes Speci-
ficity shows the highest value (mean=0.98 +0.03), thus the algorithm rarely
gives positive results in absence of marker. This is most likely due to the small
dimension of the marker and so to the small portion occupied in the scene, which
leads to the identification of a lot of T'N. This finding is further strengthened by
the result of the FPR as function of the marker size in the image, which resulted
to be zero in all cases tested.

Accuracy (mean=0.94 +0.04) and Precision (mean=0.94 +0.07) have the
highest values after Specificity. Accuracy is a measure of the system performance
in relation to both correctly detecting and correctly rejecting targets, so a high
value can be interpreted as the capability of the algorithm to consider only TP,
rejecting FP. This is also confirmed by the high resultant value of Precision,
which is the fraction of detected items that are correct, and the high value of
the FI-measure (mean=0.80 £0.07) which gives an estimate of the accuracy of
the system under test.

The Dice coefficient is the most used statistical metric in validating seg-
mentations. Besides the direct comparison between manual and ground truth
segmentations, usually the Dice is used to measure reproducibility (repeatabil-
ity) and accuracy of manual segmentations and the spatial overlap accuracy [25].
Results show a high value of the Dice coefficient (mean=0.80 +0.07), suggesting
that the outcomes match the ground truth with a high extent, thus the marker
is detected in the correct position. The FI-measure is mathematically equivalent
to Dice [18], in fact their resultant values are the same.

The MCC index shows how the manually segmented image is correlated
with the annotated ground truth. The promising resultant value of the index
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(mean=0.79 £0.08) indicates the consistency and capability of the proposed
algorithm in correctly identifying, tracking and estimating the pose of markers
in the scene.

In this study, the optimal size of the marker was determined based on the
detection rate, resulting in a marker dimension of 3-5 cm at a distance of 40-60
cm from the sensor. It was also observed that the dimension of the marker and
the distance from the camera influence the computation speed: the higher is the
marker size and the smaller is the distance from the camera, the faster is the
detection. This finding is in accordance with the literature [14].

Regarding the runtime, the obtained results (224.74 ms for single marker
detection and 231.07 ms for pose estimation) were found to be a bit higher
than in the literature [7]. However, as the selection of the camera influences
the runtime of the marker detection, the obtained runtime is supposed to be
influenced by the used hardware (both camera and computer used to process
the frames). It was also observed that increasing the number of markers in the
scene the runtime increases.

About findings on the capability of the algorithm to correctly identify mark-
ers in worse conditions like partial occlusion, results show that noise resilience
decreases (detection rate = 47%) when covering the markers with a crumpled
foil: this is due to the higher reflection that is generated, thus the inability of
the algorithm to find the corners of the markers and estimate their IDs. While
for the illumination criteria, detection rate decrease up to 3.5%, suggesting the
inability of the algorithm to detect markers in condition of reduced illumination.
Results from the boxplots of metrics used to evaluate the algorithm performance
in these conditions show that the match with the ground truth is low (Dice), so
the marker is often detected in the wrong position. On the other hand, Accuracy
and Specificity have similar values both in the optimal condition and in case of
external disturbances, and this is due to the fact that even with worse conditions
a smaller percentage of markers is correctly identified.

Results related to the communication and 3D visualization are still partial.
If on one side the communication between the rendering server and the DirectX
clients was successfully set, on the other side the client needs to be completed
integrating the tracking algorithm to send information regarding the marker pose
to the robot, in order for the server to read the last transform messages coming
from the glasses and tracker, and to upload its position. To do so, the tracking
applications already adapted for this work need to be fused together to obtain
a final one capable to access the camera frame and use the OpenCV libraries.

5 Conclusion

This paper is part of a project which was developed starting from the idea
to provide assistance to the surgeon during spine surgery, by visualizing the
area of interest using an AR device. More practically, the proposed system will
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help the surgeon both to develop pre-operative plans (to study the patient’s
anatomy through different imaging techniques used to generate the AR scene
to be visualized on the HMD and overlaid on specific anatomical sites) and to
visualize patient structures without cutting or disrupting tissues, to perform
low-risk surgeries, and minimize side effects and operational time.

To reach this goal a marker tracking algorithm was developed to detect ArUco
markers attached to the patient’s skin or to the robot end effector to track move-
ments. ArUco markers characteristics (reliability, robustness, ability to detect
and correct errors, good performance, adaptability to non-uniform illumination
conditions) led to the choice of this system among the many available [14].

To use the developed algorithm directly on HoloLens and integrate it in an
AR application, it was included in a system which permits real time communi-
cation between server and client through the WebRTC protocol. The HoloLens
in this architecture was used as client to receive frames remotely rendered on a
desktop server, via a signaling server. The use of remote rendering allows the of-
floading of heavy GPU tasks from the HoloLens client, increasing the possibility
to achieve a real-time framerate of 30 FPS.

At present the client-server system is still at an early stage, the integration
of the tracking algorithm directly on the headset system is essential to trans-
mit the marker pose to the robot allowing it to adjust its position accordingly.
Nevertheless, the current state of the application provides an evidence that this
architecture and current materials may be implemented with positive outcomes.
In fact, with current tools, the tested application shows the 3DStreamingToolkit
desktop client receiving the rendered frame, with 60 FPS obtained almost all the
time. This result is promising as the final goal for the use of AR in the surgical
world is the achievement of a real-time framerate of 30 FPS at least.

As a next step, deep learning techniques could also be included in the marker
tracking to improve the detection process and provide better performances for
pose estimation. However, to avoid delays and keep the real-time characteristics
needed for this system, this step should be offloaded on the server side.

To conclude, it is acknowledged that additional research is required to im-
prove the proposed architecture so that, once attained the required adjustments,
the presented system has the potential to be used in the medical field.
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