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Abstract
Adopting a probabilistic approach we determine the
optimal dividend payout policy of a firm whose sur-
plus process follows a controlled arithmetic Brown-
ian motion and whose cash-flows are discounted at a
stochastic dynamic rate. Dividends can be paid to share-
holders at unrestricted rates so that the problem is cast as
one of singular stochastic control. The stochastic interest
rate is modeled by a Cox–Ingersoll–Ross (CIR) process
and the firm’s objective is tomaximize the total expected
flow of discounted dividends until a possible insolvency
time. We find an optimal dividend payout policy which
is such that the surplus process is kept below an endoge-
nously determined stochastic threshold expressed as a
decreasing continuous function 𝑟 ↦ 𝑏(𝑟) of the current
interest rate value. We also prove that the value func-
tion of the singular control problem solves a variational
inequality associated to a second-order, non-degenerate
elliptic operator, with a gradient constraint.
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1 INTRODUCTION

1.1 The problem

In this paper we solve an optimal dividend problemwith stochastic discounting. In ourmodel, the
company pays dividends to shareholders at unrestricted rates and any dividend payment instan-
taneously reduces the company’s surplus. The aim is to maximize the total expected discounted
return of dividend payments, up to a possible insolvency time. We assume that dividends are
discounted exponentially at a stochastic rate given by a deterministic non-decreasing and non-
negative function 𝜌 of the spot interest rate 𝑅. As we also discuss in Remark 2.3, when 𝜌(𝑅) = 𝑅

such a discounting force might be justified, for example, by thinking that the company discounts
at the cost of equitywhich, in a risk-neutralworld, coincideswith the risk-free interest rate accord-
ing to the capital asset pricing model. Alternatively, looking at the company as a dividend paying
security in a complete financial market, the stochastic discount factor can be then interpreted as
a classical deflator process. Accordingly, the company’s value is given by the total expected dis-
counted flow of dividends. In classical optimal dividend models the discount rate is often deter-
ministic (and constant), so that shareholders are only exposed to risks arising from the random
profitability of the firm (see also Section 1.3). On the contrary, in our setting shareholders are also
exposed to uncertainty from the wider macro-economic activity via random fluctuations in the
interest rate.
From a mathematical point of view, we model the previous problem as a two-dimensional sin-

gular stochastic control problem. The two coordinates of the state process are the surplus process
and the spot interest rate. The surplus process evolves as a Brownian motion (𝑍𝐷𝑡 )𝑡≥0 with drift
𝜇 and volatility 𝜎, which is linearly controlled via a non-decreasing stochastic process (𝐷𝑡)𝑡≥0
representing the cumulative amount of distributed dividends. The uncontrolled spot interest rate
(𝑅𝑡)𝑡≥0 enters into the exponential discount factor appearing in the expected return of dividend
payments. The process (𝑅𝑡)𝑡≥0 is assumed to be independent of the surplus’ process, and to fol-
low amean-reverting dynamics specified by the Cox–Ingersoll–Ross (CIR)model.We require that
the coefficients of the CIR process fulfill the so-called Feller condition (see (4) below), so that the
spot interest rate is strictly positive at any time with probability one. The discount rate at time 𝑡 is
of the form 𝜌(𝑅𝑡) (hence, total discounting up to time 𝑡 is 𝑒−

∫ 𝑡

0
𝜌(𝑅𝑠)𝑑𝑠), for some nonnegative and

non-decreasing function 𝜌 satisfying suitable growth conditions (see Assumption 2.1). Notice that
our requirements on 𝜌 are such that the cases of constant and linear discounting forces (i.e., like
𝜌(𝑟) = 𝜌0 > 0 or 𝜌(𝑟) = 𝑟 for all 𝑟 ∈ ℝ+) are included in our setting. The aim is to maximize the
total expected discounted value of dividends, up to the random time 𝜏𝐷 ∶= inf {𝑡 ≥ 0 ∶ 𝑍𝐷𝑡 ≤ 𝛼},
for a given and fixed solvency level 𝛼 ≥ 0. If 𝛼 = 0 we find the classical bankruptcy condition for
this kind of models.

1.2 Methodology and results

The key challenge in our work arises from the two-dimensional (non-degenerate) diffusive nature
of the set-up. Indeed, dynamic programing ideas link the stochastic control problem to a varia-
tional problem involving an elliptic partial differential equation (PDE) with gradient constraint
that is not amenable to an explicit solution. This stands in contrast with some of themore classical
versions of the same problem where the state process is purely one-dimensional (see Jeanblanc-
Piqué and Shiryaev (1995) for an early formulation and, for example, Lokka and Zervos (2008)
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and Sethi and Taksar (2002) among more recent contributions). Indeed, the dynamic programing
equation arising in one-dimensional problems involves an ordinary differential equation (ODE)
so that a so-called guess-and-verify approach can be implemented. The latter consists of an edu-
cated guess on the structure of the problem’s solution, leading to an ODE for the value function
with suitable boundary conditions (usually involving smooth-fit). The ODE can be solved explic-
itly and a verification theorem allows to prove that such solution is indeed the value function of
the problem. That approach fails in our set-up since explicit solutions are not available.
In order to solve our two-dimensional optimal dividend problem, here we follow ideas devel-

oped in De Angelis and Ekström (2017) and later extended in De Angelis (2020b). We link the
optimal dividend problem to an auxiliary problem of optimal stopping whose underlying process
is a two-dimensional reflecting diffusion (𝑅, 𝐾) and whose payoff increases upon each new reflec-
tion of (𝑅, 𝐾), but it is discountedwith the same stochastic dynamic rate as in the original dividend
problem. In both De Angelis and Ekström (2017) and De Angelis (2020b) the interest rate is con-
stant although the state-space is two-dimensional. In De Angelis and Ekström (2017) the problem
is set on a finite-time horizon but the diffusive dynamics only affects one state variable. In De
Angelis (2020b) the time-horizon is infinite but there is partial information that leads to the same
Brownian motion driving a two-dimensional SDE (hence degenerate). On the contrary, here we
have a fully two-dimensional diffusive set-up so that the construction of the auxiliary optimal
stopping problem is different to those in De Angelis and Ekström (2017) and De Angelis (2020b)
(e.g., here it preserves the stochastic discounting) and the subsequent analysis of the optimal divi-
dend policymust follow a different line of argument. In particular, the use of a stochastic discount
rate with CIR dynamics leads to numerous technical complications. These arise, for example, in
the proof of a preliminary verification theorem for the dividend problem (Theorem 2.4), as well
as in showing boundedness and regularity of the value in the optimal stopping problem (Proposi-
tions 3.4 and 3.11). Also it is worth noticing that the dynamic programing equation in De Angelis
and Ekström (2017) and De Angelis (2020b) involves a one-dimensional parabolic PDE, while in
our problem we have a two-dimensional elliptic PDE.
In the auxiliary optimal stopping problem that we consider (see the beginning of Section 3), the

state variable consists of the original spot interest rate 𝑅 appearing in the discount factor, and of
a Brownian motion 𝐾 with drift 𝜇 and volatility 𝜎, which is reflected at the solvency level 𝛼. By
making use of almost exclusively probabilistic arguments, we show that the optimal stopping time
is expressed in terms of the hitting time of the process 𝑡 ↦ 𝐾𝑡 to a (stochastic) moving boundary
𝑡 ↦ 𝑏(𝑅𝑡), where 𝑏 is a non-increasing and continuous function on [0,∞) whose properties are
collected in Lemma 3.8, Theorem 3.13 and Proposition 3.14. Moreover, using that the underlying
process (𝑅, 𝐾) is a strong Feller process and that the boundary points are regular (in the proba-
bilistic sense) for the stopping region, we can show (Proposition 3.11) that the value function𝑈 of
the stopping problem is everywhere continuously differentiable (see also De Angelis and Peskir
(2020) for general results in this direction).
The smoothness of the function 𝑈 allows to construct the value function 𝑉 of the dividend

problem by a simple integration (formula (187) in Section 4) and provides nice regularity prop-
erties for 𝑉. Indeed, as a function of the state variables (𝑟, 𝑧) associated to the process (𝑅, 𝑍𝐷),
the mapping (𝑟, 𝑧) ↦ 𝑉(𝑟, 𝑧) is globally 𝐶1, with second-order derivatives 𝜕𝑧𝑧𝑉 and 𝜕𝑟𝑧𝑉 that are
continuous everywhere. Furthermore, the second-order derivative 𝜕𝑟𝑟𝑉 is locally bounded in the
whole space and continuous away from the boundary 𝑧 = 𝑏(𝑟) with well-defined limits up to the
boundary (Propositions 4.1 and 4.2). A direct approach to the variational problem with gradient
constraint for the function 𝑉 is involved, especially because of an additional boundary condition
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along the solvency level, that is, 𝑉(𝑟, 𝛼) = 0 (see, e.g., Grandits (2013, 2014, 2015)). In this respect,
our probabilistic approach overcomes the difficulties arising in the PDE arguments.
The main result of the paper is Theorem 4.3 which, thanks to the verification Theorem 2.4 and

to the regularity results mentioned above, links the value functions 𝑈 and 𝑉 and provides an
optimal dividend strategy as a Skorokhod reflection of the process 𝑡 ↦ 𝑍𝐷𝑡 below the stochastic
boundary 𝑡 ↦ 𝑏(𝑅𝑡). The structure of the optimal dividend policy is discussed in Section 5.1, and
numerical illustrations of the free boundary and of the value function𝑈 for the optimal stopping
problem are presented in Section 5.2.

1.3 Related literature

The first version of an optimal dividend problem was formulated by Bruno de Finetti in 1957 in
De Finetti (1957). De Finetti proposed to measure the value of an insurance company in terms
of the discounted value of its future dividend payments. Since then the optimal dividend prob-
lem has been studied extensively and it has become a cornerstone of the modern Mathematical
Finance/Actuarial Mathematics literature. Early contributions addressing the dividend problem
via control-theoretic techniques include, for example, Jeanblanc-Piqué and Shiryaev (1995), where
the authors consider several problem formulations, including controls with bounded-velocity and
singular controls (see also Radner and Shepp (1996), which appeared in the same years). A broad
class of infinite-time horizon singular control problems for one-dimensional diffusions, inspired
by the optimal dividend problem, were analyzed in Shreve et al. (1984) who obtained general for-
mulae. Numerous extensions and refinements of those early models have appeared in the litera-
ture; here we only mention a few of them and our review is certainly not exhaustive. For exam-
ple, in Cadenillas et al. (2007) the cash reserve has a mean-reverting dynamics and lump sum
dividend payments are made at optimally chosen discrete dates (i.e., impulsive controls are con-
sidered); similarly, Bayraktar and Egami (2010), consider models with general diffusive dynamics
for the surplus process, impulsive dividend payments and implementation delay; Reppen et al.
(2020) studies a model with stochastic drift in the dynamics of the company’s surplus process; in
Belhaj (2010) the surplus process evolves as a jump-diffusion so that the company faces two types
of liquidity risk: a Brownian risk and a Poisson risk; jump processes appear also in Bayraktar et al.
(2013), where the surplus ismodeled by a spectrally positive Lévy process; on an infinite-time hori-
zon, Lokka and Zervos (2008) allows capital injections in order to avoid company’s bankruptcy,
whereas Ferrari (2019) considers a general diffusive model with “forced” capital injections (see
also Ferrari and Schuhmann (2019) for the finite-time horizon version). In the series of papers
Grandits (2013, 2014, 2015) the author solves the optimal dividend problem with finite-time hori-
zon by means of purely PDE methods, whereas De Angelis and Ekström (2017) addresses the
problem probabilistically. Additional references can be also found in the review Avanzi (2009)
and in the book Schmidli (2008).
More closely related to our work are the papers considering stochastic discounting, many of

which have appeared in recent years. In a discrete-time setting, the analysis is typically considered
in the context of risk models for insurance companies (see, e.g., Xie and Zou (2010) and the more
recent Tan et al. (2015)). In continuous-time we find, for example, Akyildirim et al. (2014) and
Jiang and Pistorius (2012) where the wealth process is a drifted Brownian motion and the interest
rate is modulated by a continuous-time Markov chain (more recently Jiang (2015) extends Jiang
and Pistorius (2012) to the case of a jump-diffusive surplus process). Fixed-point methods are



BANDINI et al. 5

adopted in Jiang and Pistorius (2012) and Jiang (2015), whereas dynamic programing ideas appear
in Akyildirim et al. (2014).
The papers Eisenberg (2015) and Eisenberg (2018) consider discounting factors of the form

𝑒−𝑈𝑡 . In Eisenberg (2015) the process (𝑈𝑡)𝑡≥0 is either a drifted Brownian motion or an integrated
Ornstein–Uhlenbeck process, while it is a CIR process in Eisenberg (2018). It is worth noticing
that the CIR process in Eisenberg (2018) does not mean-revert to a finite value but explodes as 𝑡
diverges to infinity, in order to guarantee a finite value of the problem.With such specifications of
the discount factor, the nature of the optimal dividend problems considered in Eisenberg (2015)
and Eisenberg (2018) is very different from ours. In our paper indeed it is the discount rate— and
not the cumulative discounting force—that takes a mean-reverting CIR dynamics. At the techni-
cal level, when (𝑈𝑡)𝑡≥0 in Eisenberg (2015) is a Brownian motion with drift, a change of measure
allows a reduction to a one-dimensional diffusive set-up.When (𝑈𝑡)𝑡≥0 is an integrated Ornstein–
Uhlenbeck process a viscosity characterization of the value function is provided but without an
optimal dividend policy. In Eisenberg (2018), explicit solutions are obtained when the surplus
process is deterministic; the case of a stochastic surplus is instead investigated only in a regime of
small volatility. Extensions of Eisenberg (2015) to the case in which (𝑈𝑡)𝑡≥0 is a Lévy process can
be found in Cheng (2017), Eisenberg and Krühner (2017), and Jiang (2018).
Compared to the existing literature we provide a detailed analysis of the value function and of

the optimal dividend policy in a two-dimensional diffusive setting, under very mild assumptions
on the discount rate (cf. Assumption 2.1 below), and under the Feller condition (4) that guarantees
strictly positive interest rates.

1.4 Plan of the paper

The rest of the paper is organized as follows. In Section 2 we set up the problem and prove a
preliminary verification theorem. The auxiliary optimal stopping problem is studied in Section 3,
while in Section 4 we construct the value function of the optimal dividend problem together with
its optimal dividend strategy. Finally, Section 5.1 contains a financial discussion on the optimal
dividend policy which is accompanied by numerical illustrations presented in Section 5.2. Sec-
tion 5.3 discusses possible extensions to a model including correlation between the interest rate
and the company’s surplus processes.

2 PROBLEM SETTING AND VERIFICATION THEOREM

2.1 Problem formulation and assumptions

We consider a probability space (Ω, , 𝖯) that carries two independent Brownian motions (𝐵𝑡)𝑡≥0
and (𝑊𝑡)𝑡≥0. We denote by 𝔽 ∶= (𝑡)𝑡≥0 the filtration generated by (𝐵,𝑊) and augmented with
𝖯-null sets. We fix 𝛼 ≥ 0, representing a minimum capital requirement, and we assume that the
cash reserve (or surplus) of a company follows the controlled dynamics

𝑍𝐷𝑡 = 𝑧 + 𝜇 𝑡 + 𝜎𝐵𝑡 − 𝐷𝑡, 𝑡 ≥ 0, (1)

where 𝜇 ∈ ℝ, 𝜎 > 0, 𝑧 ≥ 𝛼, and (𝐷𝑡)𝑡≥0 is right-continuous and non-decreasing. Indeed, 𝐷𝑡
denotes the total amount of dividends paid to the shareholders up to time 𝑡. The set of
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admissible cumulative dividend payments is given by

 ∶= {𝐷 ∶ 𝐷 is 𝔽-adapted, non-decreasing, right-continuous and such that,

setting 𝐷0− = 0, we have 𝐷𝑡 − 𝐷𝑡− ≤ 𝑍𝐷𝑡− − 𝛼, ∀𝑡 ≥ 0, 𝖯-a.s.
}
. (2)

In the rest of the paper we denote by 𝑍0 the dynamics of 𝑍𝐷 with 𝐷 ≡ 0.
The interest rate follows a CIR dynamics and, in particular, we have, for all 𝑡 ≥ 0,

𝑑𝑅𝑡 = 𝑘(𝜃 − 𝑅𝑡) 𝑑𝑡 + 𝛾
√
𝑅𝑡 𝑑𝑊𝑡, 𝑅0 = 𝑟 ≥ 0, (3)

where 𝑘, 𝜃 and 𝛾 are fixed constants. We assume the so-called Feller condition

2𝑘𝜃 ≥ 𝛾2 (4)

so that 𝑅𝑡 > 0, 𝖯-a.s. for all 𝑡 > 0 (see, e.g., (Jeanblanc et al., 2009, p. 357 and Section 6.1.3)). In
what follows we find sometimes convenient to use the notation 𝑅𝑟𝑡 for the interest rate process
that starts at time zero from 𝑅0 = 𝑟. Similarly, we denote by 𝑍𝑧,𝐷𝑡 the surplus process started at
time 0− (i.e., before any dividend payment) from the level 𝑧 ≥ 𝛼, and by 𝑍𝑧,0𝑡 the process 𝑧 + 𝜇𝑡 +

𝜎𝐵𝑡. Accordingly, we will denote by 𝖯𝑟,𝑧 the probability measure on (Ω,) such that 𝖯𝑟,𝑧(⋅) =
𝖯(⋅|𝑅0 = 𝑟, 𝑍𝐷0− = 𝑧), and we define 𝖤𝑟,𝑧 the corresponding expected value. Also, 𝖤𝑟 will denote
the expectation under 𝖯𝑟(⋅) = 𝖯(⋅|𝑅0 = 𝑟) and 𝖤𝑧 the expectation under 𝖯𝑧(⋅) = 𝖯(⋅|𝑍𝐷0− = 𝑧).
We assume that the firm’s manager discounts dividends at a rate 𝜌 that depends on the current

level of the interest rate. The manager aims at maximizing the total expected discounted flow of
dividends up to a possible insolvency time of the firm. Then the value function of the problem
reads

𝑉(𝑟, 𝑧) ∶= sup
𝐷∈

𝖤𝑟,𝑧

[
∫

𝜏𝐷𝛼

0−

𝑒− ∫ 𝑡

0
𝜌(𝑅𝑡)𝑑𝑡𝑑𝐷𝑡

]
, (5)

where, for any 𝐷 ∈ , the random time horizon

𝜏𝐷𝛼 ∶= inf {𝑡 ≥ 0 ∶ 𝑍𝐷𝑡 ≤ 𝛼} (6)

enforces the solvency requirement 𝑍𝐷𝑡 ≥ 𝛼 for all 𝑡 ≤ 𝜏𝐷𝛼 . The notation 0− in the integral means
that we include a possible jump 𝐷0 − 𝐷0− ≤ 𝑧 − 𝛼 at time zero. If 𝛼 = 0 we recover the classical
bankruptcy condition for this kind of models (see, e.g., (Schmidli, 2008, Chapter 2, Section 2.5)).
The following assumptions on the discount rate will be standing.

Assumption 2.1. The discount rate 𝜌 ∶ ℝ+ → ℝ+ is a continuous function. Moreover

(i) it is non-decreasing;
(ii) there exist two non-negative constants 𝑐1 and 𝑐2 such that 𝑐1 + 𝑐2 > 0 and 𝜌(𝑟) ≥ 𝑐1 + 𝑐2 𝑟 for

𝑟 ≥ 0;
(iii) there exists 𝑐3 > 0 and 𝑞 ∈ ℕ such that, for 𝑟1 > 𝑟2 ≥ 0,

𝜌(𝑟1) − 𝜌(𝑟2) ≤ 𝑐3(1 + 𝑟
𝑞
1)(
√
𝑟1 −
√
𝑟2). (7)
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Remark 2.2. We observe that (i) and (ii) of Assumption 2.1 above will be used to prove all the
results below.
∙ Condition (i) enables to obtain monotonicity properties of the value function.
∙ Condition (𝑖𝑖) is a mild requirement which allows us to deal with the (possibly) infinite horizon
in Problem (5).
Assumption 2.1-(iii) above is only needed in order to prove the 𝐶1 property of Proposition 3.11;

hence all the results obtained before Proposition 3.11 do actually hold without Assumption 2.1-
(iii). Furthermore, notice that Assumption 2.1-(iii) is satisfied if 𝜌 is such that 0 ≤ 𝜌(𝑟1) − 𝜌(𝑟2) ≤
𝑐3(1 + 𝑟

𝑞̄
1 )(𝑟1 − 𝑟2), for some 𝑐3 > 0, 𝑞̄ ∈ ℕ and for any 𝑟1 ≥ 𝑟2 ≥ 0.

Observe also that condition (7) is verified, for example, when 𝜌 ∈ 𝐶1(ℝ+) and there exist 𝐶 > 0

and 𝑞 ∈ ℕ such that 𝜌′(𝑟) ≤ 𝐶(1 + 𝑟𝑞) for any 𝑟 ≥ 0. Finally, notice that (𝑖) + (𝑖𝑖) + (𝑖𝑖𝑖) is con-
sistent with reasonable models for the discount rate, including 𝜌(𝑟) = 𝑟 and 𝜌(𝑟) = const., which
are canonical.

Remark 2.3. As already discussed in the Introduction, the canonical case 𝜌(𝑟) = 𝑟 has various
economic/financial interpretations. For example, we might think that the company evaluates the
risk-adjusted present value of each future dividend by discounting it at the cost of equity. In a
risk-neutral world, the latter cost coincides with the risk-free interest rate, according to the capital
asset pricingmodel Sharpe (1964). Alternatively, the discount factor can be thought of as a classical
deflator process, if we interpret the company’s value as the fair price of a dividend paying security
in a complete financial market (see, e.g., Sections 6L and 6M in Duffie (2001)).
In this paper, for the sake of mathematical generality, we take a generic 𝜌 satisfying Assump-

tion 2.1. That allows an interpretation of the model in which discounting is understood as an
“opportunity cost”. In this interpretation the personal time-preferences of a representative share-
holder are linked to the financial market’s evolution and, in particular, to the interest paid by an
alternative form of investment in a “safe” asset, like a bond. Determining the structural form of
agents’ time preferences is a fundamental problem in experimental economics related to utility
theory. A definitive answer has not been obtained yet and we refer to the reviews Frederick et al.
(2002) and Harrison et al. (2005), for experimental methods and findings.

For frequent future use we recall that for any 𝛽 > 0 one has (see, e.g., Jeanblanc et al. (2009),
Corollary 6.3.4.3, p. 362)

𝖤𝑟

[
𝑒−𝛽 ∫

𝑡

0
𝑅𝑢𝑑𝑢

]
= 𝑒−𝐴𝛽(𝑡)−𝑟𝐺𝛽(𝑡), (8)

with

𝐺𝛽(𝑡) ∶=
2𝛽
(
𝑒
𝜂𝛽 𝑡−1

)
𝜂𝛽

(
𝑒
𝜂𝛽 𝑡+1

)
+𝑘
(
𝑒
𝜂𝛽 𝑡−1

) ,
𝐴𝛽(𝑡) ∶= −

2𝑘𝜃

𝛾2
ln

[
2𝜂𝛽𝑒

(𝜂𝛽+𝑘)
𝑡
2

(𝜂𝛽+𝑘)
(
𝑒
𝜂𝛽 𝑡−1

)
+2𝜂𝛽

]
,

(9)

and 𝜂𝛽 ∶=
√
𝑘2 + 2 𝛾2𝛽.
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2.2 Verification theorem

The infinitesimal generator  of the pair (𝑍0, 𝑅) is defined by its action on twice-continuously
differentiable functions 𝑓 as

(𝑓)(𝑟, 𝑧) ∶= 1

2
𝜎2 𝑓𝑧𝑧(𝑟, 𝑧) + 𝜇 𝑓𝑧(𝑟, 𝑧) +

1

2
𝛾2 𝑟 𝑓𝑟𝑟(𝑟, 𝑧) + 𝑘(𝜃 − 𝑟) 𝑓𝑟(𝑟, 𝑧), (10)

where we adopt the notation 𝑓𝑟 ∶=
𝜕

𝜕𝑟
𝑓, 𝑓𝑧 ∶=

𝜕

𝜕𝑧
𝑓, 𝑓𝑟𝑟 ∶=

𝜕2

𝜕𝑟2
𝑓, 𝑓𝑟𝑧 ∶=

𝜕2

𝜕𝑟𝜕𝑧
𝑓 and 𝑓𝑧𝑧 ∶=

𝜕2

𝜕𝑧2
𝑓.

The financial intuition suggests that the firm’s manager is more likely to pay dividends when
the firm performs well. We thus expect that for each value 𝑟 of the interest rate, there should be a
critical value of the surplus process, such that dividends are paid if 𝑧 is larger than such a value.
Motivated by this intuition and by the idea that a dynamic programing principle should also hold,
we formulate the following verification theorem.
For the ease of notation we introduce the sets

 ∶= (0,∞) × (𝛼,∞) and  ∶= [0,∞) × [𝛼,∞). (11)

Moreover, for an interval (𝑥1, 𝑥2) of the real line, we adopt the convention that (𝑥1, 𝑥2) = ∅when-
ever 𝑥2 ≤ 𝑥1.

Theorem 2.4. Let Assumption 2.1 and condition (4) hold. Assume that there exists functions 𝑎 ∶
(0, +∞) → [𝛼,+∞) and 𝑣 ∶  → ℝ+ with the following properties.
(i) The mapping 𝑟 ↦ 𝑎(𝑟) is right-continuous and non-increasing.
(ii) The function 𝑣 is such that 𝑣 ∈ 𝐶1() ∩ 𝐶() with 𝑣𝑧𝑧, 𝑣𝑟𝑧 ∈ 𝐶() and 𝑣𝑟𝑟 ∈ 𝐿∞

𝑙𝑜𝑐
() ∩ 𝐶(̄ ∩

), where
 ∶= {(𝑟, 𝑧) ∈  ∶ 𝑣𝑧(𝑟, 𝑧) > 1}. (12)

(iii) The couple (𝑣, 𝑎) solves the free-boundary problem

⎧⎪⎪⎨⎪⎪⎩

𝑣(𝑟, 𝑧) − 𝜌(𝑟) 𝑣(𝑟, 𝑧) ≤ 0, a.e. (𝑟, 𝑧) ∈ 
𝑣(𝑟, 𝑧) − 𝜌(𝑟) 𝑣(𝑟, 𝑧) = 0, 𝛼 < 𝑧 < 𝑎(𝑟), 𝑟 > 0

𝑣𝑧(𝑟, 𝑧) > 1, 𝛼 < 𝑧 < 𝑎(𝑟), 𝑟 > 0

𝑣𝑧(𝑟, 𝑧) = 1, 𝑧 ≥ 𝑎(𝑟), 𝑟 > 0

𝑣(𝑟, 𝛼) = 0, 𝑟 ≥ 0.

(13)

Then, 𝑣 ≥ 𝑉 on . In addition, if 𝑣(𝑟, 𝑧) ≤ 𝑐(𝑧 − 𝛼) for all (𝑟, 𝑧) ∈  and some 𝑐 > 0, then for
every (𝑟, 𝑧) ∈  we have 𝑣(𝑟, 𝑧) = 𝑉(𝑟, 𝑧) and the process

𝐷𝑎
𝑡 ∶= sup

0≤𝑠≤𝑡
[
𝑍𝑧,0𝑠 − 𝑎(𝑅𝑟𝑠 )

]+
, 𝑡 ≥ 0, (14)
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with 𝐷𝑎
0− = 0, is optimal at (𝑟, 𝑧); that is,

𝑣(𝑟, 𝑧) = 𝑉(𝑟, 𝑧) = 𝖤𝑟,𝑧

⎡⎢⎢⎣∫
𝜏𝐷

𝑎
𝛼

0−

𝑒− ∫ 𝑡

0
𝜌(𝑅𝑡)𝑑𝑡𝑑𝐷𝑎

𝑡

⎤⎥⎥⎦. (15)

Proof. Part 1: Proof that 𝑣 ≥ 𝑉 on .
We start arguing as in Fleming and Soner (2006), Chapter VIII, Theorem 4.1. More precisely,

for each 𝑘 ≥ 1, we introduce the standard mollifier 𝜙𝑘(𝑟, 𝑧) = 𝑘−2𝜙(𝑘𝑟, 𝑘𝑧) with 𝜙 ∈ 𝐶∞𝑐 (𝐵1(0)),
𝜙 ≥ 0, ∫

ℝ2 𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧 = 1 (where 𝐵1(0) is the ball inℝ2 centered in zero with radius one), so that
𝜙𝑘(𝑟, 𝑧) ∈ 𝐶∞𝑐 (𝐵1∕𝑘(0)). Thenwe define (𝑣𝑘)𝑘≥1 ⊂ 𝐶∞() by convolution as 𝑣𝑘 ∶= 𝑣 ∗ 𝜙𝑘. Thanks
to the regularity assumptions on 𝑣, for any compact set 𝐾 ⊂  we have

lim
𝑘→∞
||𝑣𝑘 − 𝑣||𝐿∞(𝐾) = 0, (16)

lim
𝑘→∞

‖‖‖𝑣𝑘𝑧 − 𝑣𝑧
‖‖‖𝐿∞(𝐾) = 0, lim

𝑘→∞

‖‖‖𝑣𝑘𝑟 − 𝑣𝑟
‖‖‖𝐿∞(𝐾) = 0, (17)

lim
𝑘→∞

‖‖‖𝑣𝑘𝑧𝑧 − 𝑣𝑧𝑧
‖‖‖𝐿∞(𝐾) = 0, lim

𝑘→∞

‖‖‖𝑣𝑘𝑟𝑧 − 𝑣𝑟𝑧
‖‖‖𝐿∞(𝐾) = 0. (18)

In general 𝑣𝑘𝑟𝑟 will not converge to 𝑣𝑟𝑟 uniformly on every compact subset of , since 𝑣𝑟𝑟 is not
continuous. Therefore, we cannot expect that 𝑣𝑘 converges to 𝑣 uniformly on compact sets.
However, by the definition of weak derivative and since 𝑣𝑟𝑟 ∈ 𝐿∞

𝑙𝑜𝑐
(), we have (𝑣𝑘)𝑟𝑟 = (𝑣𝑟𝑟 ∗ 𝜙𝑘).

Then, thanks to the continuity of the coefficients in  we have

lim
𝑘→∞
||(𝑣𝑘) − [(𝑣) ∗ 𝜙𝑘]||𝐿∞(𝐾) = 0, (19)

for every compact𝐾 ⊂ , using that theminimal distance from𝐾 to is strictly positive. Recalling
that𝑣 − 𝜌(⋅) 𝑣 ≤ 0 a.e. in, then it also holds that (𝑣 − 𝜌(⋅) 𝑣) ∗ 𝜙𝑘 ≤ 0 everywhere in. Hence
(19) yields

lim sup
𝑘→∞

sup
(𝑟,𝑧)∈𝐾

(𝑣𝑘 − 𝜌(𝑟)𝑣𝑘)(𝑟, 𝑧) ≤ 0. (20)

Let now (𝑟, 𝑧) ∈  be given and fixed, and consider an arbitrary admissible dividend strategy
𝐷 ∈ . For 0 < 𝜀 < 𝑧 − 𝛼, set

𝜂𝑍
𝐷

𝜀 ∶= inf
{
𝑡 ≥ 0 ∶ 𝛼 ≤ 𝑍𝑧,𝐷𝑡 ≤ 𝛼 + 𝜀

}
. (21)

Notice that when 𝜏𝐷𝛼 (𝜔) = 0 (recall that 𝜏𝐷𝛼 is defined in (6)) also 𝜂𝑍
𝐷

𝜀 (𝜔) = 0 for every 𝜀 ∈ (0, 𝑧 −

𝛼). Moreover, if 𝜏𝐷𝛼 (𝜔) > 0, for every 𝛿 > 0 sufficiently small we have

inf
0≤𝑡≤𝜏𝐷𝛼 (𝜔)−𝛿

𝑍𝑧,𝐷𝑡 (𝜔) > 𝛼, (22)
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hence for every 𝛿 > 0 we find 𝜀 > 0 such that

inf
0≤𝑡≤𝜏𝐷𝛼 (𝜔)−𝛿

𝑍𝑧,𝐷𝑡 (𝜔) > 𝛼 + 𝜀 ⟹ 𝜏𝐷𝛼 (𝜔) − 𝛿 ≤ 𝜂𝑍
𝐷

𝜀 (𝜔) ≤ 𝜏𝐷𝛼 (𝜔). (23)

Since 𝜂𝑍𝐷𝜀 (𝜔) is increasing in 𝜀 we conclude that 𝜂𝑍𝐷𝜀 (𝜔) ↑ 𝜏𝐷𝛼 (𝜔), 𝖯𝑟,𝑧 a.s., as 𝜀 ↓ 0.
Let us also define

𝜏𝑍
𝐷

𝜀 ∶= inf

{
𝑡 ≥ 0 ∶ 𝑍𝑧,𝐷𝑡 ≥ 1

𝜀

}
, 𝜂𝑅𝜀 ∶= inf

{
𝑡 ≥ 0 ∶ 𝑅𝑟𝑡 ∉

(
𝜀,
1

𝜀

)}
, (24)

and

𝜗𝐷𝜀 ∶= 𝜂𝑍
𝐷

𝜀 ∧ 𝜂𝑅𝜀 ∧ 𝜏
𝑍𝐷
𝜀 . (25)

We have 𝜗𝐷𝜀 = inf {𝑡 ≥ 0 ∶ (𝑅𝑟𝑡 , 𝑍
𝑧,𝐷
𝑡 ) ∉ 𝐾𝜀}, where 𝐾𝜀 = (𝜀,

1

𝜀
) × (𝛼 + 𝜀,

1

𝜀
). Since +∞ is unattain-

able for the processes 𝑅 and 𝑍𝐷 and 0 is unattainable for 𝑅, we also have 𝜗𝐷𝜀 ↑ 𝜏𝐷𝛼 𝖯𝑟,𝑧 a.s., as
𝜀 ↓ 0.
Let us now fix 𝑡 > 0. The Dynkin formula applied to the process 𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢𝑣𝑘(𝑅𝑠, 𝑍

𝐷
𝑠 ) on the

(random) time interval [0, 𝜗𝐷𝜀 ∧ 𝑡] gives

𝑣𝑘(𝑟, 𝑧) = 𝖤𝑟,𝑧

[
𝑒− ∫ 𝜗𝐷𝜀 ∧𝑡

0
𝜌(𝑅𝑢)𝑑𝑢𝑣𝑘

(
𝑅𝜗𝐷𝜀 ∧𝑡, 𝑍

𝐷

𝜗𝐷𝜀 ∧𝑡

)]

−𝖤𝑟,𝑧

[
∫

𝜗𝐷𝜀 ∧𝑡

0

𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢( − 𝜌(𝑅𝑠))𝑣

𝑘
(
𝑅𝑠, 𝑍

𝐷
𝑠

)
𝑑𝑠

]

+𝖤𝑟,𝑧

[
∫

𝜗𝐷𝜀 ∧𝑡

0

𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢𝑣𝑘𝑧

(
𝑅𝑠, 𝑍

𝐷
𝑠

)
𝑑𝐷𝑐

𝑠

]

−𝖤𝑟,𝑧

⎡⎢⎢⎣
∑

0≤𝑠≤𝜗𝐷𝜀 ∧𝑡
𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢

(
𝑣𝑘
(
𝑅𝑠, 𝑍

𝐷
𝑠

)
− 𝑣𝑘
(
𝑅𝑠, 𝑍

𝐷
𝑠−

))⎤⎥⎥⎦, (26)

where 𝐷𝑐 denotes the continuous part of 𝐷 and the final sum is non-zero only for (at most count-
ably many) times 𝑠 such that Δ𝐷𝑠 ∶= 𝐷𝑠 − 𝐷𝑠− > 0. Notice that∑

0≤𝑠≤𝜗𝐷𝜀 ∧𝑡
𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢

(
𝑣𝑘
(
𝑅𝑠, 𝑍

𝐷
𝑠

)
− 𝑣𝑘
(
𝑅𝑠, 𝑍

𝐷
𝑠−

))

= −
∑

0≤𝑠≤𝜗𝐷𝜀 ∧𝑡
𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢 ∫

Δ𝐷𝑠

0

𝑣𝑘𝑧
(
𝑅𝑠, 𝑍

𝐷
𝑠− − 𝑦

)
𝑑𝑦. (27)
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Since (𝑍𝑧,𝐷𝑠 , 𝑅𝑟𝑠 )0≤𝑠≤𝜗𝐷𝜀 ∧𝑡 ∈ 𝐾𝜀, using (16–18) and (20), (26) we obtain, sending 𝑘 → +∞,

𝑣(𝑟, 𝑧) ≥ 𝖤𝑟,𝑧

[
𝑒− ∫ 𝜗𝐷𝜀 ∧𝑡

0
𝜌(𝑅𝑢)𝑑𝑢𝑣

(
𝑅𝜗𝐷𝜀 ∧𝑡, 𝑍

𝐷

𝜗𝐷𝜀 ∧𝑡

)]

+𝖤𝑟,𝑧

[
∫

𝜗𝐷𝜀 ∧𝑡

0

𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢𝑣𝑧

(
𝑅𝑠, 𝑍

𝐷
𝑠

)
𝑑𝐷𝑐

𝑠

]

+𝖤𝑟,𝑧

⎡⎢⎢⎣
∑

0≤𝑠≤𝜗𝐷𝜀 ∧𝑡
𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢 ∫

Δ𝐷𝑠

0

𝑣𝑧
(
𝑅𝑠, 𝑍

𝐷
𝑠− − 𝑦

)
𝑑𝑦
⎤⎥⎥⎦. (28)

Recalling that 𝑣𝑧 ≥ 1 on by (13) (hence 𝑣 ≥ 0 too, since 𝑣(𝑟, 𝛼) = 0 for any 𝑟 ≥ 0) we obtain from
(28) that

𝑣(𝑟, 𝑧) ≥ 𝖤𝑟,𝑧

[
𝑒− ∫ 𝜗𝐷𝜀 ∧𝑡

0
𝜌(𝑅𝑢)𝑑𝑢𝑣

(
𝑅𝜗𝐷𝜀 ∧𝑡, 𝑍

𝐷

𝜗𝐷𝜀 ∧𝑡

)]
+ 𝖤𝑟,𝑧

[
∫

𝜗𝐷𝜀 ∧𝑡

0

𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢 𝑑𝐷𝑠

]

≥ 𝖤𝑟,𝑧

[
∫

𝜗𝐷𝜀 ∧𝑡

0

𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢 𝑑𝐷𝑠

]
. (29)

Then, we can take limits first as 𝑡 ↑ ∞, and then as 𝜀 ↓ 0, and employ monotone convergence to
obtain

𝑣(𝑟, 𝑧) ≥ 𝖤𝑟,𝑧

[
∫

𝜏𝐷𝛼

0

𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢 𝑑𝐷𝑠

]
. (30)

Since 𝑣 ∈ 𝐶() and 𝑟 ↦ 𝜌(𝑅𝑟𝑡 ) is 𝖯-a.s. continuous and non-decreasing, an application of Fatou’s
lemma also gives

𝑣(0, 𝑧) = lim
𝑟↓0

𝑣(𝑟, 𝑧) ≥ 𝖤𝑧

[
∫

𝜏𝐷𝛼

0

lim inf
𝑟↓0

𝑒− ∫ 𝑠

0
𝜌(𝑅𝑟𝑢)𝑑𝑢 𝑑𝐷𝑠

]
= 𝖤𝑧

[
∫

𝜏𝐷𝛼

0

𝑒− ∫ 𝑠

0
𝜌(𝑅0𝑢)𝑑𝑢 𝑑𝐷𝑠

]
, (31)

upon noticing that 𝜏𝐷𝛼 is independent of 𝑟. Finally, we also have 𝑣(𝑟, 𝛼) = 0 = 𝑉(𝑟, 𝛼), where the
second equality is by definition of 𝑉.
Thus (30) is true for any𝐷 ∈  and for any (𝑟, 𝑧) ∈ [0,∞) × [𝛼,∞) andwe conclude that 𝑣 ≥ 𝑉

on .
Part 2: Proof of 𝑣 = 𝑉 and (15). We divide this part of the proof into three steps.
Step 1. Fix (𝑟, 𝑧) ∈ [0, +∞) × (𝛼,+∞). We are going to prove that the process𝐷𝑎 in (14) belongs

to and, 𝖯𝑟,𝑧-a.s.,

𝑍𝐷
𝑎

𝑡 ≤ 𝑎(𝑅𝑡) for all 0 ≤ 𝑡 ≤ 𝜏𝐷
𝑎

𝛼 . (32)
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Moreover, we show the Skorokhod minimality condition:

∫
𝜏𝐷

𝑎
𝛼

0

𝟙{
𝑍𝐷

𝑎
𝑡− <𝑎(𝑅𝑡)

} 𝑑𝐷𝑎
𝑡 =

∑
0≤𝑡≤𝜏𝐷𝑎𝛼

∫
Δ𝐷𝑎𝑡

0

𝟙{
𝑍𝐷

𝑎
𝑡− −𝜁<𝑎(𝑅𝑡)

}𝑑𝜁 = 0. (33)

To prove these facts observe first that 𝐷𝑎 is by construction 𝔽-adapted and non-decreasing.
Moreover, by definition of 𝐷𝑎 we easily get, for 0 ≤ 𝑡 ≤ 𝜏𝐷

𝑎

𝛼 ,

𝐷𝑎
𝑡 − 𝐷𝑎

𝑡− = max
{
0,
(
𝑍0𝑡 − 𝑎(𝑅𝑡)

)+
− 𝐷𝑎

𝑡−

}
= max

{
0, 𝑍𝐷

𝑎

𝑡− − 𝑎(𝑅𝑡)
} ≤ 𝑍𝐷

𝑎

𝑡− − 𝛼, (34)

where in the last inequality we used that 𝑎 ≥ 𝛼. The second equality above also implies

𝑍𝐷
𝑎

𝑡− − Δ𝐷𝑎
𝑡 = min

{
𝑍𝐷

𝑎

𝑡− , 𝑎(𝑅𝑡)
}
, (35)

which guarantees that the second integral in (33) equals zero. Condition (32) follows by definition
of 𝐷𝑎, upon noticing that

𝑍𝐷
𝑎

𝑡 = 𝑍0𝑡 − 𝐷𝑎
𝑡 ≤ 𝑎(𝑅𝑡) for 0 ≤ 𝑡 ≤ 𝜏𝐷

𝑎

𝛼 , 𝖯𝑟,𝑧-a.s. (36)

It remains to show that 𝐷𝑎 is right-continuous and that the first integral in (33) is also
zero. Fix 𝜔 ∈ Ω (outside of a null set so that 𝑡 ↦ (𝑍0𝑡 (𝜔), 𝑅𝑡(𝜔)) are continuous) and let 𝑡 ∈
(0, 𝜏𝐷

𝑎

𝛼 (𝜔)] be such that 𝑍𝐷𝑎𝑡− (𝜔) = 𝑍0𝑡 (𝜔) − 𝐷𝑎
𝑡−(𝜔) < 𝑎(𝑅𝑡(𝜔)). Since 𝐷𝑎 is non-decreasing, we

have 𝑍𝐷𝑎𝑡 (𝜔) = 𝑍0𝑡 (𝜔) − 𝐷𝑎
𝑡 (𝜔) < 𝑎(𝑅𝑡(𝜔)), that is, 𝑍0𝑡 (𝜔) − 𝑎(𝑅𝑡(𝜔)) < 𝐷𝑎

𝑡 (𝜔). Recalling that 𝑟 ↦
𝑎(𝑟) is right-continuous and non-increasing, then it is also lower semi-continuous. Hence 𝑡 ↦
𝑍0𝑡 (𝜔) − 𝑎(𝑅𝑡(𝜔)) is upper semi-continuous. Then there exists some 𝜀 ∶= 𝜀(𝜔, 𝑡) > 0 such that

sup
𝑠∈[𝑡,𝑡+𝜀]

[
𝑍0𝑠 (𝜔) − 𝑎(𝑅𝑠(𝜔))

]+ ≤ 𝐷𝑎
𝑡 (𝜔). (37)

It thus follows that for all 𝑠 ∈ [𝑡, 𝑡 + 𝜀] we have

𝐷𝑎
𝑠 (𝜔) = 𝐷𝑎

𝑡 (𝜔) ∨ sup
𝑢∈(𝑡,𝑠]

[
𝑍0𝑢(𝜔) − 𝑎(𝑅𝑢(𝜔))

]+
= 𝐷𝑎

𝑡 (𝜔). (38)

Since (38) holds for any 0 < 𝑡 ≤ 𝜏𝐷
𝑎

𝛼 (𝜔) such that 𝑍𝐷𝑎𝑡− (𝜔) < 𝑎(𝑅𝑡(𝜔)), the first integral in
(33) is zero. Moreover, right-continuity of 𝐷𝑎 follows by upper semi-continuity of 𝑡 ↦ 𝑍0𝑡 (𝜔) −

𝑎(𝑅𝑡(𝜔)) similarly to (37) and (38), so that the process 𝐷𝑎 belongs to.
The above implies that the triple (𝑍𝐷𝑎 , 𝑅, 𝐷𝑎) solves the Skorokhod reflection problem for

the process (𝑍0, 𝑅) (with reflecting direction (−1, 0)) in the set {𝛼 ≤ 𝑧 < 𝑎(𝑟), 𝑟 ≥ 0}, seen as
a relatively open1 subset of the orthant . By construction, the process cannot jump into the
set {𝛼 ≤ 𝑧 < 𝑎(𝑟), 𝑟 ≥ 0}. Indeed jumps are allowed only at points of left discontinuity of 𝑎
(hence when the boundary {𝑧 = 𝑎(𝑟)} contains a vertical segment) and cannot go out of this
boundary.
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Step 2. Here we show that 𝑣 = 𝑉. Fix (𝑟, 𝑧) ∈ . We know that (26) holds for the special choice
of control 𝐷𝑎. The process (𝑍𝐷𝑎 , 𝑅) is constrained to evolve in the set {𝛼 ≤ 𝑧 ≤ 𝑎(𝑟), 𝑟 ≥ 0} = 
(cf. (12)), and 𝑣𝑟𝑟 is assumed to be continuous therein.
It follows that (𝑍𝑧,𝐷

𝑎

𝑠 , 𝑅𝑟𝑠 )0≤𝑠≤𝜗𝐷𝑎𝜀 ∈ 𝐾𝜀 ∩  and, consequently, that 𝑣𝑘 → 𝑣 on 𝐾𝜀 ∩ .
Exploiting the second equation in (13) and the continuity of , 𝜌, 𝑣, this implies that the second
term of the right hand side of (26) converges to 0 as 𝑘 → ∞. The limit for the first, the third and
the fourth term of (26) can be instead obtained as in Part 1, thus yielding (28) with equality for
the control 𝐷𝑎. Now, recalling (32), we see that the randommeasure 𝑡 ↦ 𝑑𝐷𝑎

𝑡 is supported on the
(random) set of times 𝑡 ∈ [0, 𝜏𝐷

𝑎

𝛼 ] for which 𝑍𝐷𝑎𝑡− ≥ 𝑎(𝑅𝑡); hence, using the fourth of (13), also the
inequality of the first line of (29) becomes equality when 𝐷 = 𝐷𝑎.
Hence, for 𝑟 > 0 we have

𝑣(𝑟, 𝑧) = 𝖤𝑟,𝑧

⎡⎢⎢⎣𝑒− ∫ 𝜗𝐷
𝑎

𝜀 ∧𝑡

0
𝜌(𝑅𝑢)𝑑𝑢𝑣

(
𝑅𝜗𝐷𝑎𝜀 ∧𝑡, 𝑍

𝐷𝑎

𝜗𝐷
𝑎

𝜀 ∧𝑡

)
+ ∫

𝜗𝐷
𝑎

𝜀 ∧𝑡

0

𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢 𝑑𝐷𝑎

𝑠

⎤⎥⎥⎦ (39)

and it remains to take limits as 𝑡 ↑ ∞ and 𝜀 ↓ 0. Assume for a moment that

lim
𝜀↓0

lim
𝑡↑∞

𝖤𝑟,𝑧

[
𝑒− ∫ 𝜗𝐷

𝑎
𝜀 ∧𝑡

0
𝜌(𝑅𝑢)𝑑𝑢𝑣

(
𝑅𝜗𝐷𝑎𝜀 ∧𝑡, 𝑍

𝐷𝑎

𝜗𝐷
𝑎

𝜀 ∧𝑡

)]
= 0, (40)

then the second term in (39) also converges by monotone convergence as in (30) and we have

𝑣(𝑟, 𝑧) = 𝖤𝑟,𝑧

⎡⎢⎢⎣∫
𝜏𝐷

𝑎
𝛼

0

𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢 𝑑𝐷𝑎

𝑠

⎤⎥⎥⎦ ≤ 𝑉(𝑟, 𝑧) (41)

for all (𝑟, 𝑧) ∈ . By the result in Part 1 of the proof we conclude that 𝑣 = 𝑉 on  and 𝑣(𝑟, 𝛼) =
𝑉(𝑟, 𝛼) = 0 for all 𝑟 ≥ 0. The result extends to 𝑟 = 0 by recalling that 𝑟 ↦ 𝜌(𝑟) is non-decreasing
(hence 𝜌(𝑅𝑟𝑡 ) ≥ 𝜌(𝑅0𝑡 ) for all 𝑡 ≥ 0, 𝖯-a.s.) and 𝑣 ∈ 𝐶(𝑂). Indeed we have

𝑉(0, 𝑧) ≤ 𝑣(0, 𝑧) = lim
𝑟↓0

𝑣(𝑟, 𝑧) = lim
𝑟↓0

sup
𝐷∈

𝖤𝑟,𝑧

[
∫

𝜏𝐷𝛼

0

𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢 𝑑𝐷𝑠

]

≤ sup
𝐷∈

𝖤0,𝑧

[
∫

𝜏𝐷𝛼

0

𝑒− ∫ 𝑠

0
𝜌(𝑅𝑢)𝑑𝑢 𝑑𝐷𝑠

]
= 𝑉(0, 𝑧), (42)

where the first inequality was proven in Part 1 above and the second inequality also uses that the
set and the stopping time 𝜏𝐷𝛼 do not depend on 𝑟 ≥ 0.
Step 3. In this step it only remains to prove (40). By using that, by assumption, 𝑣(𝑟, 𝑧) ≤ 𝑐(𝑧 − 𝛼)

for some 𝑐 > 0, we have
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𝖤𝑟,𝑧

[
𝑒− ∫ 𝜗𝐷

𝑎
𝜀 ∧𝑡

0
𝜌(𝑅𝑢)𝑑𝑢𝑣

(
𝑅𝜗𝐷𝑎𝜀 ∧𝑡, 𝑍

𝐷𝑎

𝜗𝐷
𝑎

𝜀 ∧𝑡

)]

≤ 𝑐 𝖤𝑟,𝑧

[
𝑒− ∫ 𝜗𝐷

𝑎
𝜀

0
𝜌(𝑅𝑢)𝑑𝑢

(
𝑍𝐷

𝑎

𝜗𝐷
𝑎

𝜀

− 𝛼

)
𝟙{

𝜗𝐷
𝑎

𝜀 <𝑡
}𝟙{

𝜗𝐷
𝑎

𝜀 =𝜂𝑍
𝐷𝑎

𝜀

}]

+𝑐 𝖤𝑟,𝑧

[
𝑒− ∫ 𝜗𝐷

𝑎
𝜀

0
𝜌(𝑅𝑢)𝑑𝑢

(
𝑍𝐷

𝑎

𝜗𝐷
𝑎

𝜀

− 𝛼

)
𝟙{

𝜗𝐷
𝑎

𝜀 <𝑡
}𝟙{

𝜗𝐷
𝑎

𝜀 ≠𝜂𝑍𝐷𝑎𝜀

}]

+𝑐 𝖤𝑟,𝑧

[
𝑒− ∫ 𝑡

0
𝜌(𝑅𝑢)𝑑𝑢

(
𝑍𝐷

𝑎

𝑡 − 𝛼
)
𝟙{

𝜗𝐷
𝑎

𝜀 ≥𝑡}
]

≤ 𝑐𝜀𝖯𝑟,𝑧

[
𝜗𝐷

𝑎

𝜀 = 𝜂𝑍
𝐷𝑎

𝜀

]
+𝑐 𝖤𝑟,𝑧

[
𝑒− ∫ 𝜗𝐷

𝑎
𝜀

0
𝜌(𝑅𝑢)𝑑𝑢

(
𝑧 − 𝛼 + 𝜇𝜗𝐷

𝑎

𝜀 + 𝐵𝜗𝐷𝑎𝜀

)
𝟙{

𝜗𝐷
𝑎

𝜀 <𝑡
}𝟙{

𝜗𝐷
𝑎

𝜀 ≠𝜂𝑍𝐷𝑎𝜀

}]

+𝑐 𝖤𝑟,𝑧

[
𝑒− ∫ 𝑡

0
𝜌(𝑅𝑢)𝑑𝑢(𝑧 − 𝛼 + 𝜇𝑡 + 𝜎𝐵𝑡)𝟙

{
𝜗𝐷

𝑎
𝜀 ≥𝑡}
]

(43)

where we have used that 𝑍𝐷𝑎
𝜗𝐷

𝑎
𝜀

≤ 𝛼 + 𝜀 on the event {𝜗𝐷𝑎𝜀 = 𝜂𝑍
𝐷𝑎

𝜀 }, as well as that 𝑍𝐷𝑎𝑡 ≤ 𝑍0𝑡 =

𝑧 + 𝜇𝑡 + 𝜎𝐵𝑡 for all 𝑡 ≥ 0, by (1). We now estimate the last two terms of (43). For the third one, the
independence of 𝐵 and𝑊 and standard inequalities give

𝖤𝑟,𝑧

[
𝑒− ∫ 𝑡

0
𝜌(𝑅𝑢)𝑑𝑢(𝑧 − 𝛼 + 𝜇𝑡 + 𝜎𝐵𝑡)𝟙

{
𝜗𝐷

𝑎
𝜀 ≥𝑡}
]

≤ (𝑧 − 𝛼 + |𝜇|𝑡 + 𝖤[|𝐵𝑡|])𝖤𝑟[𝑒− ∫ 𝑡

0
𝜌(𝑅𝑢)𝑑𝑢

]
≤ (𝑧 − 𝛼 + |𝜇|𝑡 +√𝑡)𝖤𝑟[𝑒− ∫ 𝑡

0
𝜌(𝑅𝑢)𝑑𝑢

]
. (44)

Now we look at the second term. Since 𝜗𝐷𝑎𝜀 < 𝑡 and 𝐵 and𝑊 are independent, we have

𝖤𝑟,𝑧

[
𝑒− ∫ 𝑡

0
𝜌(𝑅𝑢)𝑑𝑢

(
𝑧 − 𝛼 + 𝜇𝜗𝐷

𝑎

𝜀 + 𝐵𝜗𝐷𝑎𝜀

)
𝟙{

𝜗𝐷
𝑎

𝜀 <𝑡
}𝟙{

𝜗𝐷
𝑎

𝜀 ≠𝜂𝑍𝐷𝑎𝜀

}]
≤ (𝑧 − 𝛼 + |𝜇|𝑡)𝖤𝑟[𝑒− ∫ 𝑡

0
𝜌(𝑅𝑢)𝑑𝑢

]
+ 𝖤𝑟

[
𝑒− ∫ 𝑡

0
𝜌(𝑅𝑢)𝑑𝑢

]
𝖤

[
sup
0≤𝑠≤𝑡 𝐵𝑠

]
≤ 𝖤𝑟

[
𝑒− ∫ 𝑡

0
𝜌(𝑅𝑢)𝑑𝑢

]
(𝑧 − 𝛼 + |𝜇|𝑡 + 2

√
𝑡), (45)
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where the final inequality follows by Jensen’s and Doob’s inequalities for 𝐵. Feeding (44) and (45)
back into (43) we obtain, for a suitable constant 𝐶 > 0,

𝖤𝑟,𝑧

[
𝑒− ∫ 𝜗𝐷

𝑎
𝜀 ∧𝑡

0
𝜌(𝑅𝑢)𝑑𝑢𝑣

(
𝑅𝜗𝐷𝑎𝜀 ∧𝑡, 𝑍

𝐷𝑎

𝜗𝐷
𝑎

𝜀 ∧𝑡

)]

≤ 𝑐𝜀 + 𝐶(𝑧 − 𝛼 + |𝜇|𝑡 +√𝑡)𝖤𝑟[𝑒− ∫ 𝑡

0
𝜌(𝑅𝑢)𝑑𝑢

]
. (46)

We now distinguish two cases coming from Assumption 2.1-(ii). If 𝜌(𝑟) ≥ 𝑐1 for any 𝑟 ≥ 0 and
for some 𝑐1 > 0 then (40) is immediately deduced from (45). If 𝜌(𝑟) ≥ 𝑐2𝑟 for some 𝑐2 > 0, then

𝖤

[
𝑒− ∫ 𝑡

0
𝜌(𝑅𝑟𝑢)𝑑𝑢

]
≤ 𝖤

[
𝑒−𝑐2 ∫

𝑡

0
𝑅𝑟𝑢𝑑𝑢

]
= 𝑒−𝐴𝑐2 (𝑡)−𝑟𝐺𝑐2 (𝑡), (47)

where we used (8) and (9) for the equality.
Plugging the latter back into (45) we get

𝖤𝑟,𝑧

[
𝑒− ∫ 𝜗𝐷

𝑎
𝜀 ∧𝑡

0
𝜌(𝑅𝑢)𝑑𝑢𝑣

(
𝑅𝜗𝐷𝑎𝜀 ∧𝑡, 𝑍

𝐷𝑎

𝜗𝐷
𝑎

𝜀 ∧𝑡

)]
≤ 𝑐𝜀 + 𝐶(𝑧 − 𝛼 + |𝜇|𝑡 +√𝑡)𝑒−𝐴𝑐2 (𝑡)−𝑟𝐺𝑐2 (𝑡) (48)

and (40) holds since (cf. (9)) 𝐺𝑐2(𝑡) ≥ 0 and 𝐴𝑐2(𝑡) ≈
𝑘𝜃

𝛾2
(𝜂𝑐2 − 𝑘)𝑡 for 𝑡 sufficiently large, with

𝜂𝑐2 > 𝑘. □

In the case 𝜇 ≤ 0 it is intuitively clear that the firm’smanagerwants to liquidate the fund imme-
diately, by paying dividends in a single transaction, that is, 𝐷0 = 𝑧 − 𝛼. It is indeed immediate to
check that for𝜇 ≤ 0 the couple 𝑣(𝑟, 𝑧) = 𝑧 − 𝛼 and 𝑎(𝑟) ≡ 𝛼 satisfies (i)–(iii) in Theorem 2.4. Thus,
the next corollary holds as a simple application of the theorem.

Corollary 2.5. Suppose that 𝜇 ≤ 0. Then 𝑉(𝑟, 𝑧) = 𝑧 − 𝛼 for any (𝑟, 𝑧) ∈  and the optimal divi-
dend policy is given by (𝐷𝛼

𝑡 )𝑡≥0 such that 𝐷𝛼
0− = 0 and 𝐷𝛼

𝑡 = 𝑧 − 𝛼 for 𝑡 ≥ 0.

As a consequence of the corollary, from now on we require:

Assumption 2.6. We have 𝜇 > 0.

In the rest of the paper we shall always assume that (4) and Assumptions 2.1 and 2.6 hold with-
out further mention.

3 AN AUXILIARY TWO-DIMENSIONAL OPTIMAL STOPPING
PROBLEM

As we discussed in the Introduction (Subsection 1.2), in order to tackle our singular control prob-
lem we follow the approach taken in De Angelis and Ekström (2017): (i) we guess a link between
the dividend problem and an optimal stopping problem with value function 𝑈; (ii) we solve the
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latter by characterizing its optimal stopping boundary 𝑏; (iii) we go back to the original problem
by showing that (cf. Theorem 4.3 in Section 4)

𝑉(𝑟, 𝑧) = ∫
𝑧

𝛼

𝑈(𝑟, 𝑦)𝑑𝑦, (49)

and that the optimal stopping boundary 𝑏 of 𝑈 also triggers the optimal dividend policy (i.e., it
plays the role of 𝑎 in (14)).
The present section is devoted to introducing and studying the optimal stopping problem “asso-

ciated” to our original optimal dividend problem. In the optimal stopping problem the underly-
ing process consists of the interest rate process 𝑅 and of a reflecting diffusion 𝐾. Moreover, the
stopping payoff increases upon each new reflection of (𝑅, 𝐾), but it is discounted with the same
stochastic dynamic rate as in the original dividend problem. The heuristic derivation of the con-
nection between the dividend problem and the stopping problem is provided in Section 5.3 fol-
lowing arguments originally developed in (De Angelis and Ekström, 2017, Section 3) and later
expanded in De Angelis (2020b).
After formulating the optimal stopping problem, we divide this section into two parts. First, in

Section 3.1 we provide basic properties of the stopping value function𝑈 (monotonicity, bounded-
ness and continuity, respectively in Lemma 3.3, Proposition 3.4, Proposition 3.6), which in turn
allow us to show that 𝑈 solves a suitable free boundary problem (Corollary 3.7). Second, in Sec-
tion 3.2we prove the global regularity of𝑈 (i.e., even across the free boundary; cf. Proposition 3.11),
and three additional results on a required boundary condition (Corollary 3.12) and on the regu-
larity of the optimal stopping boundary (Theorem 3.13 and Proposition 3.14).
We denote 𝐵

∞ ∶= 𝜎(𝐵𝑡, 𝑡 ≥ 0). For 𝑡 ≥ 0, let

𝑌𝑡 ∶= −𝜇𝑡 + 𝜎𝐵𝑡, 𝑆𝑡 ∶= sup
0≤𝑢≤𝑡 𝑌𝑢, and 𝐾𝑧

𝑡 ∶= (𝑧 − 𝛼) ∨ 𝑆𝑡 − 𝑌𝑡+𝛼. (50)

When clear from the context, we will simply write 𝐾𝑡 instead 𝐾𝑧
𝑡 . Notice that, the process 𝐾 is

an arithmetic Brownian motion reflecting at 𝛼 and, according to the discussion at p. 2 of Peskir
(2006), it is a Markov process. Then, setting

𝜆 =
2𝜇

𝜎2
, (51)

we introduce the optimal stopping problem

𝑈(𝑟, 𝑧) = sup
𝜏≥0 𝖤
[
𝑒𝜆 ((𝑧−𝛼)∨𝑆𝜏−(𝑧−𝛼))−∫

𝜏

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠

]
, (𝑟, 𝑧) ∈ , (52)

where the optimization is taken over all the 𝔽𝐾,𝑊-stopping times, where 𝔽𝐾,𝑊 ∶= (𝐾,𝑊
𝑡 )𝑡≥0 is

the filtration generated by 𝐾 and𝑊, augmented by the 𝖯-null sets. Problem (53) is the one that
we expect to be associated to the original optimal dividend problem via the formula (49) (see
Section 5.3 for details).

Remark 3.1. Due to the presence of the processes 𝑆𝑡 and ∫ 𝑡

0
𝜌(𝑅𝑟𝑠 )𝑑𝑠 in the exponential of the gain

process, the optimal stopping problem (52) may appear non-standard in our Markovian set-up.
Indeed, the standard form of a Markovian problem involves the expectation of a function of a
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Markov process, stopped at a stopping time, while the process 𝑆𝑡 and ∫ 𝑡

0
𝜌(𝑅𝑟𝑠 )𝑑𝑠 are not Marko-

vian. We now show that (52) can be rewritten easily as a standard optimal stopping problem.
Denote 𝐼𝑖,𝑟𝑡 ∶= 𝑖 + ∫ 𝑡

0
𝜌(𝑅𝑟𝑠 )𝑑𝑠, 𝑌

𝑦
𝑡 ∶= 𝑦 − 𝜇𝑡 + 𝜎𝐵𝑡 and notice that 𝐾𝑧

𝑡 + 𝑌𝑡−𝛼 = (𝑧 − 𝛼) ∨ 𝑆𝑡
by (50) and that the process (𝐾, 𝑌) is Markovian. Then, it is easy to see that for 𝑈 as in (52) we
have

𝑈(𝑟, 𝑧) = 𝑒𝑖−𝜆𝑦𝑈(𝑟, 𝑧, 𝑦, 𝑖), (53)

where 𝑈 is the value function of the standard optimal stopping problem

𝑈(𝑟, 𝑧, 𝑦, 𝑖) = sup
𝜏≥0 𝖤
[
𝑒𝜆 (𝐾

𝑧
𝜏+𝑌

𝑦−𝛼
𝜏 −(𝑧−𝛼))−𝐼𝑖,𝑟𝜏

]
, (𝑟, 𝑧, 𝑦, 𝑖) ∈  × ℝ × ℝ+, (54)

for the four-dimensional Markov process (𝑅𝑡, 𝐾𝑡, 𝑌𝑡, 𝐼𝑡)𝑡≥0. However, due to (53), we can abandon
the general standard formulation (54) and just consider a problem of optimal stopping for the
process (𝑅𝑡, 𝐾𝑡)𝑡≥0 rather than for the process (𝑅𝑡, 𝐾𝑡, 𝑌𝑡, 𝐼𝑡)𝑡≥0.

Remark 3.2. It is worth noticing that, for 𝑟 ≥ 0,

𝐿𝑟 ∶= lim
𝑡→∞

(
𝜆 𝑆𝑡 − ∫

𝑡

0

𝜌(𝑅𝑟𝑠 ) 𝑑𝑠

)
≤ 𝜆 𝑆∞ (55)

and by (Karatzas and Shreve, 1991, Sec. 3.5.C, Eq. (5.13))

𝖯(𝑆∞ > 𝑥) = 𝑒−𝜆𝑥. (56)

Hence 𝖯(𝐿𝑟 = +∞) ≤ 𝖯(𝑆∞ = +∞) = 0 for all 𝑟 ≥ 0, since 𝜇 > 0 (Assumption 2.6).

From now on we focus on the study of problem (52). We will then prove in Section 4 how such
an optimal stopping problem is related to the original optimal dividend problem.

3.1 Basic properties of𝑼 and a free boundary problem

It is not hard to verify that, 𝖯-almost surely, the map

(𝑟, 𝑧) ↦ 𝜆 [(𝑧 − 𝛼) ∨ 𝑆𝜏 − (𝑧 − 𝛼)] − ∫
𝜏

0

𝜌(𝑅𝑟𝑠 ) 𝑑𝑠 (57)

is non-increasing in 𝑧. Moreover, using comparison theorems for (3), we also have that themap in
(57) is non-increasing in 𝑟 since 𝜌(⋅) is non-decreasing. These facts imply the next simple result,
whose proof is omitted for brevity.

Lemma 3.3. The map 𝑧 ↦ 𝑈(𝑟, 𝑧) is non-increasing for each 𝑟 ∈ ℝ+. Moreover, the map 𝑟 ↦
𝑈(𝑟, 𝑧) is non-increasing for each 𝑧 ∈ [𝛼,+∞).
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The next proposition gives us an important bound on𝑈, and estimates obtained in its proof will
be used several times in the rest of the paper. It is useful to introduce here the random variables

𝐻𝑟 ∶= 1 + ∫
∞

0

𝑒−𝑐2 ∫
𝑡

0
𝑅𝑟𝑠 𝑑𝑠 𝜆 𝑒𝜆 𝑆𝑡 𝑑𝑆𝑡 (58)

and

𝑆𝑝 ∶= sup
0≤𝑡<∞(𝐵𝑡 − 𝑝𝑡), (59)

where 𝑝 ∶= 𝜇∕𝜎 + 𝑐1𝜎∕2𝜇 and the constants 𝑐1, 𝑐2 ≥ 0 are as in (𝑖𝑖) of Assumption 2.1.

Proposition 3.4. Recall 𝑐1 and 𝑐2 from (𝑖𝑖) in Assumption 2.1. We have

0 ≤ 𝑈(𝑟, 𝑧) ≤ ℎ0, for all (𝑟, 𝑧) ∈ , (60)

where

ℎ0 ∶= 𝖤[𝑒𝜆𝜎𝑆
𝑝
] < +∞ if 𝑐1 > 0 and ℎ0 ∶= sup

𝑟∈ℝ+

𝖤[𝐻𝑟] < +∞ if 𝑐2 > 0. (61)

Proof. The lower bound in (60) is trivial. For the upper bound instead we use Assumption 2.1 to
write

𝖤
[
𝑒𝜆 ((𝑧−𝛼)∨𝑆𝜏−(𝑧−𝛼))−∫

𝜏

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠

] ≤ 𝖤
[
𝑒𝜆 𝑆𝜏−𝑐1𝜏−𝑐2 ∫

𝜏

0
𝑅𝑟𝑠 𝑑𝑠
]
. (62)

Now, if 𝑐1 > 0 we have, by using (51),

𝑈(𝑟, 𝑧) ≤ sup
𝜏
𝖤
[
𝑒𝜆 𝑆𝜏−𝑐1𝜏

] ≤ 𝖤[𝑒𝜆𝜎𝑆
𝑝
]

= 2𝑝 ∫
∞

0

𝑒
2𝜇

𝜎
𝑦
𝑒−2𝑝𝑦𝑑𝑦 = 2𝑝 ∫

∞

0

𝑒
−
𝑐1𝜎

𝜇
𝑦
𝑑𝑦 < +∞, (63)

whereweused that 𝖯(𝑆𝑝 > 𝑥) = exp(−2𝑝𝑥) (see (Karatzas and Shreve, 1991, Sec. 3.5.C, Eq. (5.13))).
If instead 𝑐2 > 0 (and in particular when 𝑐1 = 0) calculations are a bit more involved. Noticing

that the process 𝑆 is of finite variation, we first use an integration by parts to obtain

𝑈(𝑟, 𝑧) ≤ sup
𝜏
𝖤
[
𝑒𝜆 𝑆𝜏−𝑐2 ∫

𝜏

0
𝑅𝑟𝑠 𝑑𝑠
]

= 1 + sup
𝜏
𝖤

[
∫

𝜏

0

𝑒−𝑐2 ∫
𝑡

0
𝑅𝑟𝑠 𝑑𝑠 𝜆 𝑒𝜆 𝑆𝑡 𝑑𝑆𝑡 − 𝑐2∫

𝜏

0

𝑒−𝑐2 ∫
𝑡

0
𝑅𝑟𝑠 𝑑𝑠𝑅𝑟𝑡 𝑒

𝜆 𝑆𝑡 𝑑𝑡

]
≤ 𝖤[𝐻𝑟] ≤ sup

𝑟∈ℝ+

𝖤[𝐻𝑟], (64)
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where in the last inequality we used that 𝑅𝑟𝑡 ≥ 0 for all 𝑡 ≥ 0. It remains to prove that ℎ0 =
sup𝑟∈ℝ+

𝖤[𝐻𝑟] < +∞. Letting

𝐻𝑟
𝑇 ∶= ∫

𝑇

0

𝑒−𝑐2 ∫
𝑡

0
𝑅𝑟𝑠 𝑑𝑠 𝜆 𝑒𝜆 𝑆𝑡 𝑑𝑆𝑡 (65)

we have 𝖤[𝐻𝑟] = 1 + lim𝑇→∞ 𝖤[𝐻𝑟
𝑇] by monotone convergence. It is therefore sufficient to find

a bound for 𝖤[𝐻𝑟
𝑇] which is independent of 𝑇 and 𝑟. Using independence of 𝐵 and 𝑊, Fubini’s

theorem and explicit formulae for CIR model (see, e.g., Jeanblanc et al. (2009), p. 361), we obtain

𝖤
[
𝐻𝑟
𝑇

]
= 𝖤

[
𝖤

(
∫

𝑇

0

𝑒−𝑐2 ∫
𝑡

0
𝑅𝑟𝑠 𝑑𝑠 𝜆 𝑒𝜆 𝑆𝑡 𝑑𝑆𝑡

|||||𝐵
∞

)]

= 𝖤

[
∫

𝑇

0

𝖤

(
𝑒−𝑐2 ∫

𝑡

0
𝑅𝑟𝑠 𝑑𝑠
||||𝐵

∞

)
𝜆 𝑒𝜆 𝑆𝑡 𝑑𝑆𝑡

]

= 𝖤

[
∫

𝑇

0

𝖤

(
𝑒−𝑐2 ∫

𝑡

0
𝑅𝑟𝑠 𝑑𝑠

)
𝜆 𝑒𝜆 𝑆𝑡 𝑑𝑆𝑡

]

= 𝖤

[
∫

𝑇

0

𝑒−𝐴𝑐2 (𝑡)−𝑟𝐺𝑐2 (𝑡) 𝜆 𝑒𝜆 𝑆𝑡 𝑑𝑆𝑡

]
(66)

where 𝐺𝑐2 and 𝐴𝑐2 are as in (9) with 𝛽 = 𝑐2, and where 𝜂𝑐2 ∶=
√
𝑘2 + 2 𝛾2 𝑐2. Setting 𝑓(𝑡) ∶=

𝖤[𝑒𝜆𝑆𝑡 ], integrating by parts in (66), using Fubini and undoing the integration by parts we get

𝖤
[
𝐻𝑟
𝑇

]
= 𝑒−𝐴𝑐2 (𝑇)−𝑟𝐺𝑐2 (𝑇)𝑓(𝑇) − 𝑒−𝐴𝑐2 (0)−𝑟𝐺𝑐2 (0) − ∫

𝑇

0

𝖤
[
𝑒𝜆 𝑆𝑡
]
𝑑
(
𝑒−𝐴𝑐2 (𝑡)−𝑟𝐺𝑐2 (𝑡)

)
= ∫

𝑇

0

𝑒−𝐴𝑐2 (𝑡)−𝑟𝐺𝑐2 (𝑡)𝑓′(𝑡)𝑑𝑡, (67)

where by Sec. 3.5.C in Karatzas and Shreve (1991) (upon using equations (5.11) and (5.12) therein,
and noticing that our 𝖯(𝑆𝑡 > 𝑏) is equal to 𝖯(−𝜇)(𝑇𝑏 ≤ 𝑡) in the notation of Karatzas and Shreve
(1991)) we have

𝑓(𝑡) = ∫
∞

0

𝑒𝜆 𝑧

(
∫

𝑡

0

1√
2𝜋𝜎2𝑠3

(𝑧 + 𝜇𝑠

𝜎2𝑠
𝑧 − 1
)
𝑒
−
(𝑧+𝜇𝑠)2

2𝜎2𝑠 𝑑𝑠

)
𝑑𝑧, (68)

𝑓′(𝑡) =
1√

2𝜋𝜎2𝑡3 ∫
∞

0

𝑒
𝜆 𝑧−

(𝑧+𝜇𝑡)2

2𝜎2𝑡

(
𝑧 + 𝜇𝑡

𝜎2𝑡
𝑧 − 1

)
𝑑𝑧. (69)

Recalling that 𝜆 = 2𝜇∕𝜎2, straightforward algebra gives

𝜆𝑧 −
(𝑧 + 𝜇𝑡)2

2𝜎2𝑡
= −

(𝑧 − 𝜇𝑡)2

2𝜎2𝑡
. (70)
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Changing variable in the integral (69) we obtain

𝑓′(𝑡) =
1√

2𝜋𝜎2𝑡3 ∫
∞

0

𝑒
−
(𝑧−𝜇𝑡)2

2𝜎2𝑡

(
𝑧 + 𝜇𝑡

𝜎2𝑡
𝑧 − 1

)
𝑑𝑧

=
1

𝑡 ∫
∞

−𝜇𝑡

(
𝑦 + 2𝜇𝑡

𝜎2𝑡
(𝑦 + 𝜇𝑡) − 1

)
1√
2𝜋𝜎2𝑡

𝑒
−

𝑦2

2𝜎2𝑡 𝑑𝑦

=
1

𝑡
𝖤

[
𝟙{𝜎𝐵𝑡≥−𝜇𝑡}

(
𝜎𝐵𝑡 + 2𝜇𝑡

𝜎2𝑡
(𝜎𝐵𝑡 + 𝜇𝑡) − 1

)]

=
1

𝑡
𝖤

[
𝟙{𝜎𝐵𝑡≥−𝜇𝑡}

(
𝐵2𝑡
𝑡
− 1 +

3𝜇

𝜎
𝐵𝑡 +

2𝜇2

𝜎2
𝑡

)]

≤ 2𝜇2

𝜎2
+

3𝜇

𝜎
√
𝑡
+
1

𝑡
𝖤

[
𝟙{𝜎𝐵𝑡≥−𝜇𝑡}

(
𝐵2𝑡
𝑡
− 1

)]
. (71)

The last term above may be evaluated as follows:

1

𝑡
𝖤

[
𝟙{𝜎𝐵𝑡≥−𝜇𝑡}

(
𝐵2𝑡
𝑡
− 1

)]
=
1

𝑡 ∫
∞

−
𝜇𝑡

𝜎

1√
2𝜋𝑡

(
𝑦2

𝑡
− 1

)
𝑒
−
𝑦2

2𝑡 𝑑𝑦

=
1

𝑡

(
∫

∞

−
𝜇𝑡

𝜎

1√
2𝜋𝑡

𝑦

(
−𝑒

−
𝑦2

2𝑡

)′
𝑑𝑦 − ∫

∞

−
𝜇𝑡

𝜎

1√
2𝜋𝑡

𝑒
−
𝑦2

2𝑡 𝑑𝑦

)
= −

𝜇

𝜎
√
2𝜋

1√
𝑡
𝑒
−
𝜇2𝑡

2𝜎2 < 0, (72)

where, in the last equality, we have used the integration by parts. Using (71–72) above in (67) we
then conclude

𝖤
[
𝐻𝑟
𝑇

] ≤ ∫
𝑇

0

𝑒−𝐴𝑐2 (𝑡)−𝑟𝐺𝑐2 (𝑡)

(
2𝜇2

𝜎2
+

3𝜇

𝜎
√
𝑡

)
𝑑𝑡

≤ ∫
∞

0

𝑒−𝐴𝑐2 (𝑡)

(
2𝜇2

𝜎2
+

3𝜇

𝜎
√
𝑡

)
𝑑𝑡 < +∞, (73)

where the last integral is finite because 𝐴𝑐2(𝑡) ≈
𝑘𝜃

𝛾2
(𝜂𝑐2 − 𝑘)𝑡 as 𝑡 → ∞, 𝜂𝑐2 > 𝑘, and

𝐴𝑐2(0) = 0. □

An important consequence of the proof of Proposition 3.4 is that

𝖤

[
sup
0≤𝑡<∞ 𝑒𝜆[(𝑧−𝛼)∨𝑆𝑡]−∫

𝑡

0
𝜌(𝑅𝑟𝑠 )𝑑𝑠

]
< +∞, for all (𝑟, 𝑧) ∈ . (74)

Moreover, it is not hard to verify that the Markov process (𝐾𝑡, 𝑆𝑡, 𝑌𝑡, 𝑅𝑡, ∫ 𝑡

0
𝜌(𝑅𝑠)𝑑𝑠)𝑡≥0 is also of

Feller type. Then, (Shiryaev, 2008, Lemma 3, Sec. 3.2.3 and Lemma 4, Sec. 3.2.4) guarantee that
there exists a lower semi-continuous function 𝑢 which is the smallest superharmonic function
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larger than one (see Remark 3.1 for a detailed comparison with Shiryaev (2008)). Here, superhar-
monic refers to the property

𝑢(𝑟, 𝑧) ≥ 𝖤
[
𝑒𝜆[(𝑧−𝛼)∨𝑆𝜏−(𝑧−𝛼)]−∫

𝜏

0
𝜌(𝑅𝑟𝑠 )𝑑𝑠𝑢(𝑅𝑟𝜏, 𝐾

𝑧
𝜏 )
]

(75)

for any stopping time 𝜏 and any (𝑟, 𝑧) ∈ . Now, let us introduce the sets
 ∶= {(𝑟, 𝑧) ∈  ∶ 𝑈(𝑟, 𝑧) > 1}, (76)

 ∶= {(𝑟, 𝑧) ∈  ∶ 𝑈(𝑟, 𝑧) = 1}, (77)

known in the literature as continuation and stopping sets, respectively. Thanks to (Shiryaev, 2008,
Thm. 1, Sec. 3.3.1 and Thm. 3, Sec. 3.3.3), and the fact that 𝑈 is lower semi-continuous, we have
that 𝑈 = 𝑢 and that

𝜏∗ ∶= inf {𝑡 ≥ 0 ∶ (𝑅𝑡, 𝐾𝑡) ∈ } (78)

is the smallest optimal stopping time for (52), provided that 𝖯𝑟,𝑧(𝜏∗ < +∞) = 1, otherwise it is an
optimal Markov time. In some instances below we will stress the dependence on the data (𝑟, 𝑧) of
the optimal stopping time, that is,

𝜏∗(𝑟, 𝑧) ∶= inf
{
𝑡 ≥ 0 ∶

(
𝑅𝑟𝑡 , 𝐾

𝑧
𝑡

)
∈ }. (79)

Moreover, recalling again that 𝑈 is lower semi-continuous and given the process

Λ𝑡 ∶= 𝑒𝜆((𝑧−𝛼)∨𝑆𝑡−(𝑧−𝛼))−∫
𝑡

0
𝜌(𝑅𝑠)𝑑𝑠𝑈(𝑅𝑡, 𝐾𝑡), 𝑡 ≥ 0, (80)

then

(Λ𝑡)𝑡≥0 is a 𝖯𝑟,𝑧-supermartingale (81)

and

(Λ𝑡∧𝜏∗)𝑡≥0 is a 𝖯𝑟,𝑧-martingale (82)

for all (𝑟, 𝑧) ∈  (see (Peskir, 2006, Thm. 2.4, Sec. 2, Chapter I) or (Shiryaev, 2008, Sec. 3.4)).
Next we provide a technical lemma which is useful to prove continuity of 𝑈 later on.

Lemma 3.5. For 𝑛 > 0, let us denote

𝑈𝑛(𝑟, 𝑧) = sup
0≤𝜏≤𝑛 𝖤

[
𝑒𝜆 ((𝑧−𝛼)∨𝑆𝜏−(𝑧−𝛼))−∫

𝜏

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠

]
, (𝑟, 𝑧) ∈ . (83)
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Then for all (𝑟, 𝑧) ∈  we have

lim
𝑛→∞

𝑈𝑛(𝑟, 𝑧) = 𝑈(𝑟, 𝑧). (84)

Proof. Clearly (𝑈𝑛)𝑛>0 is an increasing sequence and 𝑈𝑛 ≤ 𝑈 for all 𝑛 > 0. Therefore we denote
its limit 𝑈∞ ∶= lim𝑛→∞ 𝑈𝑛 ≤ 𝑈. Let us now fix (𝑟, 𝑧) ∈ ℝ+ × [𝛼,+∞) and let 𝜏∗ = 𝜏∗(𝑟, 𝑧) be
optimal for 𝑈(𝑟, 𝑧). Then

𝑈𝑛(𝑟, 𝑧) ≥ 𝖤𝑟,𝑧

[
𝑒𝜆 ((𝑧−𝛼)∨𝑆𝜏∗∧𝑛−(𝑧−𝛼))−∫

𝜏∗∧𝑛

0
𝜌(𝑅𝑡)𝑑𝑡
]

(85)

and using Fatou’s lemma we conclude

𝑈∞(𝑟, 𝑧) = lim inf
𝑛→∞

𝑈𝑛(𝑟, 𝑧) ≥ 𝖤𝑟,𝑧

[
lim inf
𝑛→∞

𝑒𝜆 ((𝑧−𝛼)∨𝑆𝜏∗∧𝑛−(𝑧−𝛼))−∫
𝜏∗∧𝑛

0
𝜌(𝑅𝑡)𝑑𝑡
]

= 𝖤𝑟,𝑧

[
𝑒𝜆 ((𝑧−𝛼)∨𝑆𝜏∗−(𝑧−𝛼))−∫

𝜏∗
0

𝜌(𝑅𝑡)𝑑𝑡
]
= 𝑈(𝑟, 𝑧). (86)

□

We close this section by proving that𝑈 is indeed continuous. It is worth remarking that all our
results hold without any restriction on 𝜇, 𝜎, and the only requirement is 2𝑘𝜃 ≥ 𝛾2 to guarantee
strictly positive rates.

Proposition 3.6. The function𝑈 is continuous on  and 𝑧 ↦ 𝑈(𝑟, 𝑧) is convex for each 𝑟 ∈ ℝ+.

Proof. First we show convexity. Since

𝑧 ↦ 𝑒𝜆 [(𝑧−𝛼)∨𝑆𝜏−(𝑧−𝛼)]−∫
𝜏

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠 (87)

is convex and sup(𝑓 + 𝑔) ≤ sup(𝑓) + sup(𝑔), we easily obtain

𝑈(𝑟, 𝛽𝑧1 + (1 − 𝛽)𝑧2)

≤ sup
𝜏≥0 𝖤
[(
𝛽𝑒𝜆 [(𝑧1−𝛼)∨𝑆𝜏−(𝑧1−𝛼)] + (1 − 𝛽)𝑒𝜆 [(𝑧2−𝛼)∨𝑆𝜏−(𝑧2−𝛼)]

)
𝑒− ∫ 𝜏

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠

]
≤ 𝛽𝑈(𝑟, 𝑧1) + (1 − 𝛽)𝑈(𝑟, 𝑧2) (88)

for all 𝛽 ∈ (0, 1).
Now we show that 𝑧 ↦ 𝑈(𝑟, 𝑧) is continuous uniformly with respect to 𝑟 ∈ ℝ+. Recall that

𝑈(𝑟, ⋅) is decreasing (Lemma 3.3), let 𝑧2 > 𝑧1 and denote by 𝜏1 ∶= 𝜏∗(𝑟, 𝑧1) the optimal stopping
time for 𝑈(𝑟, 𝑧1). Since 𝜏1 is suboptimal in 𝑈(𝑟, 𝑧2) we get

0 ≤ 𝑈(𝑟, 𝑧1) − 𝑈(𝑟, 𝑧2)

≤ 𝖤
[
𝑒− ∫ 𝜏1

0
𝜌(𝑅𝑡)𝑑𝑡
(
𝑒𝜆((𝑧1−𝛼)∨𝑆𝜏1−(𝑧1−𝛼) − 𝑒𝜆((𝑧2−𝛼)∨𝑆𝜏1−(𝑧2−𝛼)

)]
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≤ 𝖤
[
𝟙{𝑆𝜏1>𝑧1−𝛼}

𝑒𝜆𝑆𝜏1−∫
𝜏1
0

𝜌(𝑅𝑡)𝑑𝑡
(
𝑒−𝜆(𝑧1−𝛼) − 𝑒−𝜆(𝑧2−𝛼)

)]
≤ ℎ0
(
𝑒−𝜆(𝑧1−𝛼) − 𝑒−𝜆(𝑧2−𝛼)

)
(89)

where ℎ0 is as in Proposition 3.4 and we have also used that

𝑒𝜆(𝑆𝜏1−(𝑧2−𝛼)) ≤ 𝑒𝜆((𝑧2−𝛼)∨𝑆𝜏1−(𝑧2−𝛼)). (90)

It only remains to prove that 𝑟 ↦ 𝑈(𝑟, 𝑧) is continuous for each 𝑧 ∈ [𝛼,+∞) given and fixed.
Since 𝜌 is non-decreasing (cf. (𝑖) in Assumption 2.1), then 𝑟 ↦ 𝑈(𝑟, 𝑧) is non-increasing
(Lemma3.3) and lower semi-continuous (see the discussion above Lemma 3.5).Hence 𝑟 ↦ 𝑈(𝑟, 𝑧)

is right-continuous for each 𝑧 ∈ [𝛼,+∞). Recalling 𝑈𝑛 from Lemma 3.5, and noticing that
𝑈(𝑟, 𝑧) − 𝑈(𝑟 − ℎ, 𝑧) ≤ 0 is non-decreasing as ℎ ↓ 0, we have

0 ≥ lim
ℎ→0

[𝑈(𝑟, 𝑧) − 𝑈(𝑟 − ℎ, 𝑧)] = lim
ℎ→0

lim
𝑛→∞

[𝑈𝑛(𝑟, 𝑧) − 𝑈(𝑟 − ℎ, 𝑧)]

= lim
𝑛→∞

lim
ℎ→0

[𝑈𝑛(𝑟, 𝑧) − 𝑈(𝑟 − ℎ, 𝑧)], (91)

wherewe are allowed to swap the limits as both sequences are non-decreasing (as𝑛 → ∞ and ℎ →
0). Now we set 𝜏ℎ ∶= 𝜏∗(𝑟 − ℎ, 𝑧), which is optimal for 𝑈(𝑟 − ℎ, 𝑧), and consider the suboptimal
stopping time 𝜏ℎ ∧ 𝑛 inside 𝑈𝑛. With no loss of generality we assume 𝑟 − ℎ ≥ 𝑟0 for some 𝑟0 > 0.
Then, using that 𝜌(𝑅𝑟−ℎ⋅ ) ≥ 𝜌(𝑅

𝑟0
⋅ ) (in the last term of the expression below), we obtain

𝑈𝑛(𝑟, 𝑧) − 𝑈(𝑟 − ℎ, 𝑧)

≥ 𝖤

[
𝟙{𝜏ℎ≤𝑛}𝑒𝜆((𝑧−𝛼)∨𝑆𝜏ℎ−(𝑧−𝛼))−∫

𝜏ℎ
0

𝜌(𝑅𝑟𝑡 )𝑑𝑡
(
1 − 𝑒

− ∫ 𝜏ℎ
0

[
𝜌
(
𝑅𝑟−ℎ𝑡

)
−𝜌(𝑅𝑟𝑡 )

]
𝑑𝑡
)]

+𝖤
[
𝟙{𝜏ℎ>𝑛}𝑒

𝜆((𝑧−𝛼)∨𝑆𝑛−(𝑧−𝛼))−∫ 𝑛

0
𝜌(𝑅𝑟𝑡 )𝑑𝑡⋅

⋅

(
1 − 𝑒

𝜆((𝑧−𝛼)∨𝑆𝜏ℎ−(𝑧−𝛼)∨𝑆𝑛)−∫ 𝑛

0

[
𝜌
(
𝑅𝑟−ℎ𝑡

)
−𝜌(𝑅𝑟𝑡 )

]
𝑑𝑡
𝑒− ∫ 𝜏ℎ

𝑛
𝜌(𝑅

𝑟0
𝑡 )𝑑𝑡

)]
. (92)

We make a number of observations: (i) since 𝜏ℎ = inf {𝑡 ≥ 0 ∶ 𝑈(𝐾𝑧
𝑡 , 𝑅

𝑟−ℎ
𝑡 ) = 1}, and 𝑈(𝑧, ⋅) is

non-increasing, we have 𝜏ℎ ↓ 𝜂, 𝖯-a.s. as ℎ → 0 with 𝜂 a stopping time; (ii) the latter implies that
𝖯-a.s. we have

lim
ℎ→0

𝑆𝜏ℎ = 𝑆𝜂 and lim
ℎ→0∫

𝜏ℎ

𝑛

𝜌
(
𝑅𝑟𝑡
)
𝑑𝑡 = ∫

𝜂

𝑛

𝜌
(
𝑅𝑟𝑡
)
𝑑𝑡 for all 𝑟 > 0; (93)

(iii) by dominated convergence and continuity of 𝜌 we have, 𝖯-a.s.

lim
ℎ→0∫

𝑛

0

|||𝜌(𝑅𝑟−ℎ𝑡 ) − 𝜌
(
𝑅𝑟𝑡
)|||𝑑𝑡 = 0, (94)
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which also implies

lim
ℎ→0

(
𝟙{𝜏ℎ≤𝑛} ∫

𝜏ℎ

0

[
𝜌
(
𝑅𝑟−ℎ𝑡

)
− 𝜌
(
𝑅𝑟𝑡
)]
𝑑𝑡

)
= 0. (95)

Recalling (74) we can use dominated convergence in (92) to obtain

0 ≥ lim
𝑛→∞

lim
ℎ→0

[𝑈𝑛(𝑟, 𝑧) − 𝑈(𝑟 − ℎ, 𝑧)]

≥ lim
𝑛→∞

𝖤
[
𝟙{𝜂≥𝑛}𝑒𝜆((𝑧−𝛼)∨𝑆𝜂∧𝑛−(𝑧−𝛼))−∫

𝜂∧𝑛

0
𝜌(𝑅𝑟𝑡 )𝑑𝑡⋅

⋅

(
1 − 𝑒

𝜆((𝑧−𝛼)∨𝑆𝜂−(𝑧−𝛼)∨𝑆𝜂∧𝑛)−∫ 𝜂

𝜂∧𝑛
𝜌(𝑅

𝑟0
𝑡 )𝑑𝑡
)]

. (96)

It is now easy to check that, 𝖯-a.s.

lim
𝑛→∞

[
𝜆((𝑧 − 𝛼) ∨ 𝑆𝜂 − (𝑧 − 𝛼) ∨ 𝑆𝜂∧𝑛) − ∫

𝜂

𝜂∧𝑛

𝜌(𝑅
𝑟0
𝑡 )𝑑𝑡

]
= 0. (97)

Hence, using dominated convergence once again in (96), gives

0 ≥ lim
ℎ→0

[𝑈(𝑟, 𝑧) − 𝑈(𝑟 − ℎ, 𝑧)] = lim
𝑛→∞

lim
ℎ→0

[𝑈𝑛(𝑟, 𝑧) − 𝑈(𝑟 − ℎ, 𝑧)] ≥ 0 (98)

as claimed. □

Continuity of𝑈 immediately implies that  is closed and that  is relatively open in: indeed,
by its definition,  may not be open in ℝ2 since it may include a portion of the lines {𝑟 = 0} and
{𝑧 = 𝛼}. For this reason we will use the notation 𝜕 for the boundary of  in ℝ2 and 𝜕 for the
relative boundary in . Moreover Int will denote the interior of  in ℝ2.
Observe now that the (super)martingale property of the process Λ (see (81) and (82)), along

with standard arguments (see, e.g., (Karatzas and Shreve, 1998, Theorem 2.7.7)) give the following
corollary.

Corollary 3.7. The function 𝑈 belongs to 𝐶2 separately in the interior of  and in the interior of 
(so away from 𝜕), and it satisfies

𝑈(𝑟, 𝑧) − 𝜌(𝑟)𝑈(𝑟, 𝑧) = 0, for (𝑟, 𝑧) ∈ Int (99)

𝑈(𝑟, 𝑧) − 𝜌(𝑟)𝑈(𝑟, 𝑧) = −𝜌(𝑟), for (𝑟, 𝑧) ∈ Int (100)

𝑈(𝑟, 𝑧) = 1, for (𝑟, 𝑧) ∈ 𝜕. (101)

Refined regularity of 𝑈 and its behavior at ℝ+ × {𝛼} will be provided in the next section.
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3.2 Differentiability of𝑼

In order to obtain higher regularity properties for 𝑈 we need some information on the shape of
the stopping region  . Recalling Lemma 3.3 (in particular the fact that 𝑈 is non-increasing in 𝑧)
and defining, for 𝑟 ≥ 0,

𝑏(𝑟) ∶= sup{𝑧 ∈ [𝛼, +∞) ∶ 𝑈(𝑟, 𝑧) > 1} (102)

with the convention that sup∅ = 𝛼, we immediately find, for 𝑟 ∈ ℝ+,

𝑟 ∶= {𝑧 ∈ [𝛼, +∞) ∶ (𝑟, 𝑧) ∈ } = [𝑏(𝑟), +∞). (103)

This means that the 𝑟-section of the stopping set is connected and the graph of the map 𝑟 ↦
𝑏(𝑟) describes the boundary that separates  from  (denoted by 𝜕 above). Next we state few
important properties of the optimal boundary.

Lemma 3.8. Consider the map 𝑏 ∶ ℝ+ → [𝛼,+∞] defined in (102). Then

𝑟 ↦ 𝑏(𝑟) is non-increasing and right-continuous. (104)

Moreover, 𝑏(𝑟) > 𝛼 for all 𝑟 ≥ 0.

Proof. The fact that  is closed and (103) imply that 𝑟 ↦ 𝑏(𝑟) is lower semi-continuous. Indeed
take any sequence (𝑟𝑛)𝑛≥1 converging to some 𝑟0 ≥ 0. Then

(𝑟𝑛, 𝑏(𝑟𝑛)) ∈  ⇒  ∋ lim inf
𝑛→∞

(𝑟𝑛, 𝑏(𝑟𝑛)) = (𝑟0, lim inf
𝑛→∞

𝑏(𝑟𝑛)) (105)

and by (102) we have lim inf𝑛→∞ 𝑏(𝑟𝑛) ≥ 𝑏(𝑟0). Using again Lemma 3.3 (in particular the fact that
𝑈 is non-increasing in 𝑟) we have

(𝑟, 𝑧) ∈  ⇒ [𝑟, +∞) × {𝑧} ∈  , (106)

that is, 𝑟 ↦ 𝑏(𝑟) is non-increasing. Since 𝑏(⋅) is also lower semi-continuous, then (104) holds.
It only remains to prove the final statement. Take any 𝑟0 ≥ 0, fix 𝜀 > 0 and denote

𝜏𝜀 = inf {𝑡 ≥ 0 ∶ 𝑅
𝑟0
𝑡 ≥ 𝑟0 + 𝜀}. For any 𝑡 > 0 the stopping time 𝜏𝜀 ∧ 𝑡 is admissible and suboptimal

for 𝑈(𝑟0, 𝛼) so that

𝑈(𝑟0, 𝛼) ≥ 𝖤

[
𝑒
𝜆𝑆𝜏𝜀∧𝑡−∫ 𝜏𝜀∧𝑡

0
𝜌
(
𝑅
𝑟0
𝑠

)
𝑑𝑠
]
≥ exp

(
𝖤

[
𝜆𝑆𝜏𝜀∧𝑡 − ∫

𝜏𝜀∧𝑡

0

𝜌
(
𝑅
𝑟0
𝑠

)
𝑑𝑠

])
, (107)

where the final inequality is due to Jensen’s inequality. Recalling that 𝜌 is non-decreasing
(Assumption 2.1) we have

∫
𝜏𝜀∧𝑡

0

𝜌
(
𝑅
𝑟0
𝑠

)
𝑑𝑠 ≤ 𝜌̄𝜀(𝜏𝜀 ∧ 𝑡), (108)
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with 𝜌̄𝜀 ∶= 𝜌(𝑟0 + 𝜀) = sup0≤𝑟≤𝑟0+𝜀 𝜌(𝑟). Now we use estimates as in (Peskir, 2019, Lemma 15). In
particular, we have

𝖤

[
𝜆𝑆𝜏𝜀∧𝑡 − ∫

𝜏𝜀∧𝑡

0

𝜌
(
𝑅
𝑟0
𝑠

)
𝑑𝑠

]
≥ 𝖤

[
𝜆𝜎 sup

0≤𝑠≤𝜏𝜀∧𝑡
𝐵𝑠 − (𝜇 + 𝜌̄𝜀)(𝜏𝜀 ∧ 𝑡)

]

≥ 𝜆𝜎𝖤

[
sup
0≤𝑠≤𝑡 𝐵𝑠 − 𝟙{𝜏𝜀≤𝑡} sup

0≤𝑠≤𝑡 𝐵𝑠
]
− (𝜇 + 𝜌̄𝜀)𝑡

≥ 𝜆𝜎𝖤

[
sup
0≤𝑠≤𝑡 𝐵𝑠

]
− 𝜆𝜎𝖯(𝜏𝜀 ≤ 𝑡)

1

2 𝖤

[(
sup
0≤𝑠≤𝑡 𝐵𝑠

)2] 1

2

− (𝜇 + 𝜌̄𝜀)𝑡

= 𝜆𝜎
√
𝑡

(
1 − 𝖯(𝜏𝜀 ≤ 𝑡)

1

2

)
− (𝜇 + 𝜌̄𝜀)𝑡 (109)

where in the final inequality we used that sup0≤𝑠≤𝑡 𝐵𝑠 = |𝐵𝑡| in law. Since 𝖯(𝜏𝜀 > 0) = 1 and, con-
sequently, 𝖯(𝜏𝜀 ≤ 𝑡) → 0 as we let 𝑡 → 0, we have that the term involving

√
𝑡 dominates. Hence,

plugging (109) in (107) and choosing 𝑡 sufficiently small we reach 𝑈(𝑟0, 𝛼) > 1 which implies
𝑏(𝑟0) > 𝛼. Since 𝑟0 ≥ 0 was arbitrary, the proof is complete. □

The simple properties that we have obtained above are crucial to guarantee global𝐶1 regularity
of 𝑈. We start by noticing that 𝐾 and 𝑅 are independent and have transition densities 𝑝𝐾(𝑡, 𝑧; 𝑧′)
and 𝑝𝑅(𝑡, 𝑟; 𝑟′), respectively, which are continuous with respect to the initial point, that is, 𝑧 ↦
𝑝𝐾(𝑡, 𝑧; 𝑧′) and 𝑟 ↦ 𝑝𝑅(𝑡, 𝑟; 𝑟′) are continuous for all 𝑡 > 0, 𝑧′ ∈ [𝛼, +∞), 𝑟′ ∈ [0, +∞). Then it is
not hard to verify that the process (𝑅𝑡, 𝐾𝑡)𝑡≥0 is strong Feller, that is, for any Borel measurable and
bounded function 𝑓 ∶ ℝ+ × ℝ+ and any 𝑡 > 0, it holds that (𝑟, 𝑧) ↦ 𝖤𝑟,𝑧[𝑓(𝑅𝑡, 𝐾𝑡)] is continuous.
We then have the following important result.

Lemma 3.9. For any (𝑟0, 𝑧0) ∈ 𝜕 and any sequence (𝑟𝑛, 𝑧𝑛)𝑛≥1 ⊂  such that (𝑟𝑛, 𝑧𝑛) → (𝑟0, 𝑧0)

as 𝑛 → ∞, we have

lim
𝑛→∞

𝜏∗(𝑟𝑛, 𝑧𝑛) = 0, 𝖯-a.s. (110)

Proof. Let us denote by 𝜎∗ the first hitting time of (𝐾, 𝑅) to  :
𝜎∗(𝑟, 𝑧) ∶= inf

{
𝑡 > 0 ∶

(
𝑅𝑟𝑡 , 𝐾

𝑧
𝑡

)
∈ }. (111)

It is well known (see (Dynkin, 1965, Chapter 13.1-2, Vol. II)) that since (𝑅𝑡, 𝐾𝑡)𝑡≥0 is a strong Feller
process, (111) holds if and only if all the boundary points are regular for  , namely

𝖯𝑟,𝑧(𝜎∗ = 0) = 1 ∀(𝑟, 𝑧) ∈ 𝜕. (112)

(For further details on the above statement the reader may consult, for example, (Karatzas and
Shreve, 1991, Theorem 2.12, Ch. 4.2) and (De Angelis and Peskir, 2020, pp. 4–5 and Corollary 2).)
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Denoting by

𝜎∗(𝑟, 𝑧) ∶= inf
{
𝑡 ≥ 0 ∶

(
𝑅𝑟𝑡 , 𝐾

𝑧
𝑡

)
∈ Int} (113)

the first entry time of (𝑅𝑟𝑡 , 𝐾
𝑧
𝑡 )𝑡≥0 to the interior of  , and noticing that 𝜎∗ ≤ 𝜎∗, we now prove

(112) by showing that

𝖯𝑟,𝑧(𝜎∗ = 0) = 1 ∀(𝑟, 𝑧) ∈ 𝜕. (114)

Let (𝑟0, 𝑧0) ∈ 𝜕. Define ∶= [𝑟0,∞) × [𝑧0,∞), and denote by Int and 𝜕 respectively its
interior and its boundary in ℝ2. Since 𝑟 ↦ 𝑏(𝑟) is non-increasing, we have ⊆  . Also, let  be
a compact neighbourhood of (𝑟0, 𝑧0) and let Int and 𝜕 denote, respectively, its interior and its
boundary inℝ2. Since (𝑟0, 𝑧0) ∈ 𝜕 then 𝑟0 > 0 andwe assume that ∩ {𝑟 = 0} = ∅. Then there
exists some 𝜂 > 0 such that

𝜂−1 ≥ 𝛾2𝑟 ≥ 𝜂 on (115)

so that the diffusion coefficient of the process (𝑅𝑡)𝑡≥0 is uniformly non-degenerate over. Let us
define an auxiliary process (𝑅𝑡)𝑡≥0 with dynamics

𝑑𝑅𝑡 = 𝑏(𝑅𝑡)𝑑𝑡 + 𝛾(𝑅𝑡)𝑑𝑊𝑡, 𝑅0 = 𝑟, (116)

𝑑𝐾𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡, 𝐾0 = 𝑧, (117)

where 𝑏(𝑟) = 𝜅(𝜃 − 𝑟) and 𝛾(𝑟) = 𝛾
√
𝑟 on , and are continuously extended to be constant

outside. Notice that the uniform ellipticity condition (115) holds for 𝛾 on the whole ℝ.
Since the process (𝑅𝑡, 𝐾𝑡)𝑡≥0 is non-degenerate over the wholeℝ2, it admits a continuous tran-

sition density 𝑝(⋅, ⋅, ⋅; 𝑟, 𝑧) such that, for any 𝑡 > 0

𝑀

𝑡
𝑒
−𝜆0
|𝑟−𝑟|2+|𝑧−𝑧̄|2

𝑡 ≥ 𝑝(𝑡, 𝑟, 𝑧̄; 𝑟, 𝑧) ≥ 𝑚

𝑡
𝑒
−Λ0
|𝑟−𝑟|2+|𝑧−𝑧̄|2

𝑡 (118)

for some constants 𝑀 > 𝑚 > 0, Λ0 > 𝜆0 > 0 (see, e.g., (Aronson, 1967, Theorem 1)). Moreover,
denoting

𝜏 ∶= inf {𝑡 ≥ 0 ∶ (𝑅𝑡, 𝐾𝑡) ∉ Int × (𝛼,∞)} (119)

and

𝜏̃ ∶= inf {𝑡 ≥ 0 ∶ (𝑅𝑡, 𝐾𝑡) ∉ Int × (𝛼,∞)}, (120)

we have that

(𝑅𝑡∧𝜏 , 𝐾𝑡∧𝜏) = (𝑅𝑡∧𝜏̃ , 𝐾𝑡∧𝜏̃), 𝖯𝑟0,𝑧0 -a.s. (121)
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by uniqueness of the solution of the SDE (recall that the reflected process 𝐾 is just a Brownian
motion with drift away from the reflection point 𝛼).
Now, let′ be a (half) conewith vertex in (𝑟0, 𝑧0), whose closure is contained in Int ∪ (𝑟0, 𝑧0),

and denote by 𝜎′ and 𝜎′ the corresponding entry times of (𝑅, 𝐾) and (𝑅, 𝐾), respectively, into
the interior of′. Notice that this additional cone is needed in the argument that follows because
(𝑡0, 𝑧0)may lie on a horizontal/vertical stretch of the boundary 𝜕, in which case (𝜕 ∩ 𝜕) ⧵
(𝑟0, 𝑧0) ≠ ∅ whereas (𝜕 ∩ 𝜕′) ⧵ (𝑟0, 𝑧0) = ∅ always holds. Fixing 𝑡 > 0 we then have, using
first that Int ⊆ Int ,

𝖯𝑟0,𝑧0 (𝜎∗ ≤ 𝑡) ≥ 𝖯𝑟0,𝑧0 (𝜎
′ ≤ 𝑡) ≥ 𝖯𝑟0,𝑧0 (𝜎

′ ≤ 𝑡, 𝜏 > 𝑡)

= 𝖯𝑟0,𝑧0 (𝜎
′ ≤ 𝑡, 𝜏̃ > 𝑡) = 𝖯𝑟0,𝑧0 (𝜎

′ ≤ 𝑡) − 𝖯𝑟0,𝑧0 (𝜎
′ ≤ 𝑡, 𝜏̃ ≤ 𝑡)

≥ 𝖯𝑟0,𝑧0 (𝜎
′ ≤ 𝑡) − 𝖯𝑟0,𝑧0 (𝜏̃ ≤ 𝑡), (122)

where the first equality holds by (121). Thanks to (118)

𝖯𝑟0,𝑧0 (𝜎
′ ≤ 𝑡) = ∫′

𝑝(𝑡, 𝑟0, 𝑧0; 𝑟, 𝑧)𝑑𝑟𝑑𝑧 ≥ ∫′

𝑚

𝑡
𝑒
−Λ0
|𝑟−𝑟0|2+|𝑧−𝑧0|2

𝑡 𝑑𝑟𝑑𝑧. (123)

Using the fact that the change of variable 𝑠 = 𝑟−𝑟0√
𝑡
, 𝜁 = 𝑧−𝑧0√

𝑡
maps the cone′ into a cone′

0 with
the same aperture but vertex in (0,0), we get

𝖯𝑟0,𝑧0 (𝜎
′ ≤ 𝑡) ≥ ∫′

0

𝑚 𝑒−Λ0(𝑠
2+𝜁2)𝑑𝑠𝑑𝜁 =∶ 𝑞 > 0. (124)

Letting 𝑡 → 0 we obtain 𝖯𝑟0,𝑧0 (𝜎
′ = 0) ≥ 𝑞 > 0 and therefore, by (122), also that 𝖯𝑟0,𝑧0 (𝜎∗ = 0) ≥

𝑞 > 0 upon noting that 𝖯𝑟0,𝑧0 (𝜏̃ ≤ 𝑡) → 0 as 𝑡 → 0.
Since {𝜎∗ = 0} is measurable with respect to the trivial 𝜎-algebra 𝐾,𝑊

0 , by the Blumenthal’s 0-1
Law we obtain 𝖯𝑟0,𝑧0 (𝜎∗ = 0) = 1, which completes the proof. □

Lemma 3.10. Fix 𝑞 ∈ ℕ. There is a constant 𝑐 > 0 such that, for all 𝔽𝐾,𝑊-stopping times 𝜏, and any
(𝑟, 𝑧) ∈ ℝ+ × [𝛼,+∞), it holds

𝖤

[
𝑒𝜆𝑆𝜏−∫

𝜏

0
𝜌(𝑅𝑟𝑡 )𝑑𝑡 ∫

𝜏

0

𝑒
−
𝑘

2
𝑡
[
1 +
(
𝑅𝑟𝑡
)1+𝑞]√

𝑅𝑡 𝑑𝑡

]
≤ 𝑐. (125)

Moreover the family {
𝑒𝜆𝑆𝜏−∫

𝜏

0
𝜌(𝑅𝑟𝑡 )𝑑𝑡 ∫

𝜏

0

𝑒
−
𝑘

2
𝑡
[
1 +
(
𝑅𝑟𝑡
)1+𝑞]√

𝑅𝑡 𝑑𝑡, 𝜏 ≥ 0

}
(126)

is uniformly integrable.
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Proof. Using that 𝑆 is of finite variation we integrate by parts to get a first, convenient, upper
bound

𝑒𝜆𝑆𝜏−∫
𝜏

0
𝜌(𝑅𝑟𝑡 )𝑑𝑡 ∫

𝜏

0

𝑒
−
𝑘

2
𝑡
[
1 +
(
𝑅𝑟𝑡
)1+𝑞]√

𝑅𝑟𝑡 𝑑𝑡

≤ 𝜆 ∫
𝜏

0

𝑒𝜆𝑆𝑡−∫
𝑡

0
𝜌(𝑅𝑟𝑠 )𝑑𝑠

(
∫

𝑡

0

𝑒
−
𝑘

2
𝑠
[
1 + (𝑅𝑟𝑠 )

1+𝑞
]√

𝑅𝑟𝑠𝑑𝑠

)
𝑑𝑆𝑡

+ ∫
𝜏

0

𝑒
𝜆𝑆𝑡−∫ 𝑡

0
𝜌(𝑅𝑟𝑠 )𝑑𝑠−

𝑘

2
𝑡
[
1 +
(
𝑅𝑟𝑡
)1+𝑞]√

𝑅𝑟𝑡 𝑑𝑡

≤ 𝜆 ∫
∞

0

𝑒𝜆𝑆𝑡−∫
𝑡

0
𝜌(𝑅𝑟𝑠 )𝑑𝑠

(
∫

𝑡

0

𝑒
−
𝑘

2
𝑠
[
1 + (𝑅𝑟𝑠 )

1+𝑞
]√

𝑅𝑟𝑠𝑑𝑠

)
𝑑𝑆𝑡

+ ∫
∞

0

𝑒
𝜆𝑆𝑡−∫ 𝑡

0
𝜌(𝑅𝑟𝑠 )𝑑𝑠−

𝑘

2
𝑡
[
1 +
(
𝑅𝑟𝑡
)1+𝑞]√

𝑅𝑟𝑡 𝑑𝑡

=∶ 𝐴 + 𝐵. (127)

Hence, to prove both claims of this lemma it is enough to show that 𝖤[𝐴] + 𝖤[𝐵] < +∞.
We start by proving that 𝖤[𝐵] < +∞. Using that 𝜌 ≥ 0 (see Assumption 2.1), that

√
𝑟 ≤ 1 + 𝑟,

Fubini’s theorem and independence of 𝑆𝑡 and 𝑅𝑡 we obtain

𝖤[𝐵] ≤ 𝑐 ∫
∞

0

𝖤

[
𝑒
𝜆𝑆𝑡−

𝑘

4
𝑡
]
𝑒
−
𝑘

4
𝑡
𝖤
[
1 + 𝑅𝑟𝑡 +

(
𝑅𝑟𝑡
)1+𝑞

+
(
𝑅𝑟𝑡
)2+𝑞]

𝑑𝑡 (128)

for some constant 𝑐 > 0, which will vary from line to line. Observe now that (recall (59))

𝜆𝑆𝑡 −
𝑘

4
𝑡 ≤ 𝜆𝜎 sup

0≤𝑠≤𝑡

(
𝐵𝑠 −

𝜇

𝜎
𝑠 −

𝑘

4𝜆𝜎
𝑠

)
≤ 𝜆𝜎𝑆𝑝, with 𝑝 =

𝜇

𝜎
+

𝑘

4𝜆𝜎
. (129)

Since 𝖯(𝑆𝑝∞ > 𝑥) = exp(−2𝑝𝑥) for 𝑝 > 0 (see Remark 3.2), as in (63) we easily get 𝖤[exp(𝜆𝑆𝑡 −
𝑘𝑡∕4)] ≤ 𝑐′ for some 𝑐′ > 0. Hence

𝖤[𝐵] ≤ 𝑐 ∫
∞

0

𝑒
−
𝑘

4
𝑡
𝖤
[
1 + 𝑅𝑟𝑡 +

(
𝑅𝑟𝑡
)1+𝑞

+
(
𝑅𝑟𝑡
)2+𝑞]

𝑑𝑡. (130)

Now we recall (Dufresne, 2001, Thm. 2.3), which states that, for any 𝜁 ∈ ℕ, there is a constant
𝐶𝜁 > 0, only depending on 𝜁 and the coefficients of the SDE (3), such that

𝖤
[(
𝑅𝑟𝑡
)𝜁] ≤ 𝐶𝜁, for all 𝑡 ≥ 0. (131)

Using the latter bound in (130) for 𝜁 = {1, 1 + 𝑞, 2 + 𝑞} we get 𝖤[𝐵] < +∞.
Next we show that 𝖤[𝐴] < +∞. We only provide full details in the case 𝜌(𝑟) ≥ 𝑐2𝑟 (see Assump-

tion 2.1), since the case 𝜌(𝑟) ≥ 𝑐1 is easier and can be dealt with in the same way. Below we use
𝖤[𝐴] = 𝖤[𝖤(𝐴|𝐵

∞)] and independence of 𝑅 from𝐵
∞. Then, recalling that

√
𝑟 ≤ 1 + 𝑟, by Fubini’s
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theorem we obtain

𝖤[𝐴] ≤ 𝑐 𝖤

[
∫

∞

0

𝑒𝜆𝑆𝑡𝖤

(
𝑒−𝑐2 ∫

𝑡

0
𝑅𝑟𝑠 𝑑𝑠 ∫

𝑡

0

(1 + 𝑅𝑟𝑠 + (𝑅𝑟𝑠 )
1+𝑞

+ (𝑅𝑟𝑠 )
2+𝑞

)𝑒
−
𝑘

2
𝑠
𝑑𝑠||𝐵

∞

)
𝑑𝑆𝑡

]

≤ 𝑐 𝖤

[
∫

∞

0

𝑒𝜆𝑆𝑡𝖤

(
𝑒−𝑐2 ∫

𝑡

0
𝑅𝑟𝑠 𝑑𝑠 ∫

𝑡

0

(
1 + 𝑅𝑟𝑠 + (𝑅𝑟𝑠 )

1+𝑞
+ (𝑅𝑟𝑠 )

2+𝑞
)
𝑒
−
𝑘

2
𝑠
𝑑𝑠

)
𝑑𝑆𝑡

]
(132)

for some constant 𝑐 > 0, which will vary from line to line. Repeated use of Hölder inequality and
(8) give

𝖤

(
𝑒−𝑐2 ∫

𝑡

0
𝑅𝑟𝑠 𝑑𝑠 ∫

𝑡

0

(
1 + 𝑅𝑟𝑠 + (𝑅𝑟𝑠 )

1+𝑞
+ (𝑅𝑟𝑠 )

2+𝑞
)
𝑒
−
𝑘

2
𝑠
𝑑𝑠

)

≤ 𝖤

(
𝑒−2𝑐2 ∫

𝑡

0
𝑅𝑟𝑠 𝑑𝑠

) 1

2

𝖤
⎡⎢⎢⎣
(
∫

𝑡

0

(
1 + 𝑅𝑟𝑠 + (𝑅𝑟𝑠 )

1+𝑞
+ (𝑅𝑟𝑠 )

2+𝑞
)
𝑒
−
𝑘

2
𝑠
𝑑𝑠

)2⎤⎥⎥⎦
1

2

≤ 𝑒
−
1

2
𝐴2𝑐2 (𝑡)−

𝑟

2
𝐺2𝑐2 (𝑡)𝖤

[
∫

𝑡

0

𝑒
−
𝑘

2
𝑠
𝑑𝑠 ∫

𝑡

0

(
1 + 𝑅𝑟𝑠 + (𝑅𝑟𝑠 )

1+𝑞
+ (𝑅𝑟𝑠 )

2+𝑞
)2
𝑒
−
𝑘

2
𝑠
𝑑𝑠

] 1

2

≤ 𝐶′𝑞 𝑒
−
1

2
𝐴2𝑐2 (𝑡)−

𝑟

2
𝐺2𝑐2 (𝑡), (133)

where the final inequality follows from (131), for 𝜁 = {1, 1 + 𝑞, 2 + 𝑞}, and with some 𝐶′𝑞 > 0.
Plugging the last expression above in (132) gives

𝖤[𝐴] ≤ 𝑐 𝖤

[
∫

∞

0

𝑒𝜆𝑆𝑡 𝑒
−
1

2
𝐴2𝑐2 (𝑡)−

𝑟

2
𝐺2𝑐2 (𝑡)𝑑𝑆𝑡

]
. (134)

The latter can be treated exactly by the samemethods that we used to estimate (66), hence 𝖤[𝐴] <
+∞. □

The methodology that we adopt to prove 𝐶1 regularity of the value function was developed in
DeAngelis and Peskir (2020) for generalmulti-dimensional, finite-time and infinite-time horizon,
optimal stopping problems. However, due to the square root in the diffusion coefficient of the CIR
dynamics, some of the integrability conditions required in De Angelis and Peskir (2020) seem
difficult to verify directly. So in the proof of Proposition 3.11 below we adapt the method to our
setting.

Proposition 3.11. One has that𝑈 ∈ 𝐶1(). Moreover
𝑈𝑧(𝑟, 𝑧) = −𝜆𝖤𝑟,𝑧

[
𝟙{𝑆𝜏∗>𝑧−𝛼}𝑒

𝜆(𝑆𝜏∗−(𝑧−𝛼))−∫ 𝜏∗
0

𝜌(𝑅𝑡)𝑑𝑡
]

(135)

for all (𝑟, 𝑧) ∈ .
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Proof. The proof is organized in two steps.
Step 1. We start by noticing that (135) trivially holds in the interior of  with 𝑈𝑧 = 0. Further,

we know that𝑈𝑧 is continuous in Int, so that if we can prove (135) in Int, then Lemma 3.9 and
the use of dominated convergence will also imply continuity of 𝑈𝑧 across 𝜕. Finally, to show
that (135) holds in Int we can repeat the same steps as in the proof of (De Angelis and Ekström,
2017, Thm. 5.3), upon replacing the discount factor therein by ∫ 𝜏∗

0
𝜌(𝑅𝑠)𝑑𝑠. We omit further details

in the interest of brevity.
Step 2. Here we prove that 𝑈𝑟 ∈ 𝐶(). We know that 𝑈𝑟 is continuous separately in Int and

Int . Then, it suffices to prove continuity across the boundary 𝜕. We start finding bounds on
𝑈𝑟.
Fix (𝑟, 𝑧) ∈ Int, 𝜀 ∈ (0, 𝜀0), and denote 𝜏∗ ∶= 𝜏∗(𝑟, 𝑧). Recalling Lemma 3.3 and optimality of

𝜏∗ for 𝑈(𝑟, 𝑧), we obtain

0 ≥ 𝑈(𝑟 + 𝜀, 𝑧) − 𝑈(𝑟, 𝑧)

𝜀

≥ 1

𝜀
𝖤
[
𝑒𝜆((𝑧−𝛼)∨𝑆𝜏∗−(𝑧−𝛼))−∫

𝜏∗
0

𝜌(𝑅𝑟+𝜀𝑠 )𝑑𝑠
(
1 − 𝑒∫

𝜏∗
0 (𝜌(𝑅𝑟+𝜀𝑠 )−𝜌(𝑅𝑟𝑠 ))𝑑𝑠

)]
≥ 1

𝜀
𝖤

[
𝑒𝜆((𝑧−𝛼)∨𝑆𝜏∗−(𝑧−𝛼))−∫

𝜏∗
0

𝜌(𝑅𝑟𝑠 )𝑑𝑠
(
1 − 𝑒

∫ 𝜏∗
0

𝑐3

(
1+(𝑅𝑟+𝜀𝑠 )

𝑞
)
(
√

𝑅𝑟+𝜀𝑠 −
√
𝑅𝑟𝑠 )𝑑𝑠
)]

, (136)

where in the last inequality we have used Assumption 2.1, (i) and (iii), and the fact that 𝑟 ↦ 𝑅𝑟

is non-decreasing.
Next, we notice that by Tanaka formula and Yamada–Watanabe’s theorem, the process 𝐴 ∶=√
𝑅 is the unique solution to

𝑑𝐴𝑡 =

[(
𝑘𝜃

2
−
𝛾2

8

)
1

𝐴𝑡
−
𝑘

2
𝐴𝑡

]
𝑑𝑡 +

𝛾

2
𝑑𝑊𝑡, 𝐴0 =

√
𝑅0. (137)

We then have

𝑑

(
𝐴𝑡 𝑒

𝑘

2
𝑡
)
= 𝑒

𝑘

2
𝑡
𝑑𝐴𝑡 + 𝐴𝑡

𝑘

2
𝑒
𝑘

2
𝑡
𝑑𝑡

= 𝑒
𝑘

2
𝑡
[(

𝑘𝜃

2
−
𝛾2

8

)
1

𝐴𝑡
−
𝑘

2
𝐴𝑡

]
𝑑𝑡 + 𝑒

𝑘

2
𝑡 𝛾

2
𝑑𝑊𝑡 + 𝐴𝑡

𝑘

2
𝑒
𝑘

2
𝑡
𝑑𝑡

= 𝑒
𝑘

2
𝑡
[(

𝑘𝜃

2
−
𝛾2

8

)
1

𝐴𝑡

]
𝑑𝑡 + 𝑒

𝑘

2
𝑡 𝛾

2
𝑑𝑊𝑡, (138)

which gives in the integral form

𝐴𝑠 𝑒
𝑘

2
𝑠
= 𝐴0 +

(
𝑘𝜃

2
−
𝛾2

8

)
∫

𝑠

0

𝑒
𝑘

2
𝑡 1

𝐴𝑡
𝑑𝑡 + ∫

𝑠

0

𝑒
𝑘

2
𝑡 𝛾

2
𝑑𝑊𝑡. (139)

Hence, using the above formula, we obtain(√
𝑅𝑟+𝜀𝑠 −

√
𝑅𝑟𝑠

)
𝑒
𝑘

2
𝑠
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=
√
𝑟 + 𝜀 −

√
𝑟 −

(
𝑘𝜃

2
−
𝛾2

8

)
∫

𝑠

0

𝑒
𝑘

2
𝑡

√
𝑅𝑟+𝜀𝑡 −

√
𝑅𝑟𝑡√

𝑅𝑟+𝜀𝑡

√
𝑅𝑟𝑡

𝑑𝑡

≤ √𝑟 + 𝜀 −
√
𝑟, (140)

where the inequality follows from 𝑅𝑟 ≤ 𝑅𝑟+𝜀, upon recalling that 2𝑘𝜃 ≥ 𝛾2. Therefore,(√
𝑅𝑟+𝜀𝑠 −

√
𝑅𝑟𝑠

)
≤ (
√
𝑟 + 𝜀 −

√
𝑟)𝑒

−
𝑘

2
𝑠 (141)

Hence, substituting (141) in the last integral of (136) and recalling 𝜀 ≤ 𝜀0 we get

∫
𝜏∗

0

𝑐3

(
1 +
(
𝑅𝑟+𝜀𝑠

)𝑞)(√
𝑅𝑟+𝜀𝑠 −

√
𝑅𝑟𝑠

)
𝑑𝑠

≤ (√𝑟 + 𝜀 −
√
𝑟
)
∫

𝜏∗

0

𝑒
−
𝑘

2
𝑠
𝑐3

(
1 +
(
𝑅
𝑟+𝜀0
𝑠

)𝑞)
𝑑𝑠. (142)

Plugging this expression in (136) and using that

1 − 𝑒(
√
𝑟+𝜀−
√
𝑟)𝐶 = −𝜀𝐶 ∫

1

0

1

2
√
𝑟 + 𝜀𝑢

𝑒(
√
𝑟+𝜀𝑢−

√
𝑟)𝐶𝑑𝑢

≥ −𝜀𝐶𝑒(
√
𝑟+𝜀0−

√
𝑟)𝐶 ∫

1

0

1

2
√
𝑟 + 𝜀𝑢

𝑑𝑢

= −𝐶𝑒(
√
𝑟+𝜀0−

√
𝑟)𝐶(
√
𝑟 + 𝜀 −

√
𝑟), (143)

for any 𝐶 ≥ 0 independent of 𝜀, we continue with the chain of inequalities

0 ≥ 𝑈(𝑟 + 𝜀, 𝑧) − 𝑈(𝑟, 𝑧)

𝜀

≥ −
(
√
𝑟 + 𝜀 −

√
𝑟)

𝜀

⋅𝖤

[
𝑒𝜆((𝑧−𝛼)∨𝑆𝜏∗−(𝑧−𝛼))−∫

𝜏∗
0

𝜌(𝑅𝑟𝑠 )𝑑𝑠 ∫
𝜏∗

0

𝑒
−
𝑘

2
𝑠
𝑐3

(
1 +
(
𝑅
𝑟+𝜀0
𝑠

)𝑞)
𝑑𝑠

⋅ exp

((√
𝑟 + 𝜀0 −

√
𝑟
)
∫

𝜏∗

0

𝑒
−
𝑘

2
𝑠
𝑐3

(
1 +
(
𝑅
𝑟+𝜀0
𝑠

)𝑞)
𝑑𝑠

)]
. (144)

Now we let 𝜀 → 0 first, and then we also let 𝜀0 → 0. Thanks to monotone convergence we obtain

0 ≥ 𝑈𝑟(𝑟, 𝑧)

≥ −
1

2
√
𝑟
𝖤

[
𝑒𝜆((𝑧−𝛼)∨𝑆𝜏∗−(𝑧−𝛼))−∫

𝜏∗
0

𝜌(𝑅𝑟𝑠 )𝑑𝑠 ∫
𝜏∗

0

𝑐3
(
1 + (𝑅𝑟𝑠 )

𝑞)
𝑒
−
𝑘

2
𝑠
𝑑𝑠

]
. (145)
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We notice that the right-hand side above is bounded by a constant, thanks to Lemma 3.10.
Now, fix (𝑟0, 𝑧0) ∈ 𝜕 and take a sequence Int ∋ (𝑟𝑛, 𝑧𝑛) → (𝑟0, 𝑧0), as 𝑛 → ∞. Using (145)

with (𝑟𝑛, 𝑧𝑛) in place of (𝑟, 𝑧), recalling that 𝜏∗(𝑟𝑛, 𝑧𝑛) → 0 by Lemma 3.9, and using dominated
convergence (justified by the second claim of Lemma 3.10), we get

0 ≥ lim sup
𝑛→∞

𝑈𝑟(𝑟𝑛, 𝑧𝑛) ≥ lim inf
𝑛→∞

𝑈𝑟(𝑟𝑛, 𝑧𝑛) ≥ 0. (146)

Since the boundary point was arbitrary we conclude that 𝑈𝑟 is continuous across 𝜕. □

An immediate consequence of the above proposition is the following.

Corollary 3.12. For all 𝑟 ∈ ℝ+, we have

𝑈𝑧(𝑟, 𝛼+) = −𝜆𝑈(𝑟, 𝛼). (147)

Proof. Fix 𝑟 ≥ 0 and let 𝑧𝑛 ↓ 𝛼 as 𝑛 → ∞. Then, if

𝜏𝑛∗ ∶= 𝜏∗(𝑟, 𝑧𝑛) → 𝜏𝛼∗ = 𝜏∗(𝑟, 𝛼) as 𝑛 → ∞, 𝖯-a.s., (148)

it suffices to take limits in (135). Indeed, by dominated convergence (recall (74)) we obtain

𝑈𝑧(𝑟, 𝛼+) = −𝜆𝖤

[
𝑒
𝜆𝑆𝜏𝛼∗

−∫ 𝜏𝛼∗
0

𝜌(𝑅𝑟𝑡 )𝑑𝑡
]
= −𝜆𝑈(𝑟, 𝛼), (149)

where, in order to remove the indicator function in the limit of (135), we have also used that
𝖯(𝑆𝜏𝛼∗ > 0) = 1, being 𝖯(𝜏𝛼∗ > 0) = 1 since 𝑏(𝑟) > 𝛼 by Lemma 3.8. So it only remains to prove con-
vergence of the stopping times in (148).
The sequence (𝐾𝑧𝑛)𝑛≥1 is decreasing and therefore the sequence of stopping times (𝜏𝑛∗)𝑛≥1 is

increasing with 𝜏𝑛∗ ≤ 𝜏𝛼∗ for all 𝑛 ≥ 1. Hence, 𝜏𝑛∗ ↑ 𝜏∞ ≤ 𝜏𝛼∗ , 𝖯-a.s., for some stopping time 𝜏∞.
Now we show that 𝜏∞ = 𝜏𝛼∗ as needed, using an argument similar to those used in (Chiarolla and
De Angelis, 2016, Lem. 4.17) and (Menaldi, 1980, Lem. 1.2) but under different conditions.
Recall that (𝑡, 𝑟, 𝑧) ↦ (𝑅𝑟𝑡 (𝜔), 𝐾

𝑧
𝑡 (𝜔)) is continuous for all𝜔 ∈ Ω ⧵ 𝑁 and someuniversal null set

𝑁 byKolmogorov–Chentsov continuity theorem. Fix𝜔 ∈ Ω ⧵ 𝑁. Let 𝛿 > 0 be such that 𝜏𝛼∗ (𝜔) > 𝛿,
then by continuity of paths there exists 𝑐𝛿 > 0 such that

inf
0≤𝑡≤𝛿
(
𝑈
(
𝑅𝑟𝑡 (𝜔), 𝐾

𝛼
𝑡 (𝜔)
)
− 1
) ≥ 𝑐𝛿. (150)

Thanks to the explicit dynamics of (𝐾𝑡)𝑡≥0 in (50) we find 𝐾𝑧𝑛
𝑡 − 𝐾𝛼

𝑡 = (𝑧𝑛 − 𝛼 − 𝑆𝑡)
+ ≤ (𝑧𝑛 − 𝛼).

The latter and (89) give

sup
0≤𝑡≤𝛿
|||𝑈(𝑅𝑟𝑡 (𝜔), 𝐾𝛼

𝑡 (𝜔)
)
−𝑈
(
𝑅𝑟𝑡 (𝜔), 𝐾

𝑧𝑛
𝑡 (𝜔)
)|||

≤ ℎ0 sup
0≤𝑡≤𝛿
(
𝑒−𝜆(𝐾

𝛼
𝑡 (𝜔)−𝛼) − 𝑒−𝜆(𝐾

𝑧𝑛
𝑡 (𝜔)−𝛼)

)
≤ 𝜆ℎ0 sup

0≤𝑡≤𝛿
(
𝐾
𝑧𝑛
𝑡 (𝜔) − 𝐾𝛼

𝑡 (𝜔)
) ≤ 𝜆ℎ0(𝑧𝑛 − 𝛼). (151)
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Then there is 𝑛𝛿,𝜔 ≥ 1 such that

inf
0≤𝑡≤𝛿
(
𝑈
(
𝑅𝑟𝑡 (𝜔), 𝐾

𝑧𝑛
𝑡 (𝜔)
)
− 1
) ≥ 𝑐𝛿

2
(152)

for all 𝑛 ≥ 𝑛𝛿,𝜔. Hence lim𝑛→∞ 𝜏𝑛∗(𝜔) > 𝛿 and, since 𝛿 was arbitrary

lim
𝑛→∞

𝜏𝑛∗(𝜔) ≥ 𝜏𝛼∗ (𝜔). (153)

Recalling that 𝜔 ∈ Ω ⧵ 𝑁 was also arbitrary, we conclude. □

We close this section by proving continuity of the optimal boundary (Theorem 3.13), its bound-
edness and its asymptotic limit as 𝑟 → ∞ (Proposition 3.14).
It is worth noticing that for the continuity of the boundary, we cannot use (Peskir, 2019, Thm.

10). The second condition in Eq. (3.31) in the statement of that theorem fails in our case as 𝑑𝜌(𝑟)

𝑑𝑧
=

0.

Theorem3.13. Consider themap 𝑏 ∶ ℝ+ → [𝛼,+∞] defined in (102). Then 𝑟 ↦ 𝑏(𝑟) is continuous.

Proof. We suitably adapt the proof of (De Angelis, 2020b, Thm. 5.2) which holds in a parabolic set-
up.We already know that 𝑟 ↦ 𝑏(𝑟) is non-increasing and right-continuous by (104) in Lemma 3.8.
It thus remains to prove that 𝑟 ↦ 𝑏(𝑟) is left-continuous. We argue by contradiction.
Assume thus that there exists 𝑟0 > 0 such that 𝑏(𝑟0−) ∶= lim𝑟→𝑟0 𝑏(𝑟) > 𝑏(𝑟0). Then there also

exist 𝑧1, 𝑧2 satisfying 𝑏(𝑟0) < 𝑧1 < 𝑧2 < 𝑏(𝑟0−) and 𝑟1 < 𝑟0 such that

Σ ∶= (𝑟1, 𝑟0) × (𝑧1, 𝑧2) ⊂ , {𝑟0} × (𝑧1, 𝑧2) ⊂ 𝜕. (154)

Now, by Proposition 3.11, we know that𝑈 ∈ 𝐶1() and that (135) holds. Since 𝖯𝑟,𝑧(𝜏∗ < +∞, 𝑆𝜏∗ >

𝑧 − 𝛼) > 0 for any (𝑟, 𝑧) ∈  and 𝑈𝑧 is uniformly continuous in any compact subset of , then
formula (135) implies that there exists 𝜀0 > 0 such that

𝑈𝑧 ≤ −𝜀0 on 𝜕Σ ∩
{
𝑟 ≤ 𝑟1 + 𝑟0

2

}
=∶ 𝜕Σ0. (155)

Moreover, by uniform continuity on any compact set, for any 𝜀 > 0, there exists 𝛿𝜀 > 0 such that
𝛿𝜀 → 0 as 𝜀 → 0 and

sup
[𝑟0−𝛿𝜀,𝑟0]×[𝑧1,𝑧2]

(|𝑈𝑟(𝑟, 𝑧)| + |𝑈𝑧(𝑟, 𝑧)|) ≤ 𝜀. (156)

In particular,

𝑈𝑧(𝑟0 − 𝛿𝜀, 𝑧) ≥ −𝜀. (157)

Let us now set 𝑢 ∶= 𝑈𝑧. Classical interior regularity results for PDEs (see, e.g., (Friedman, 1964,
Thm. 10, Ch. 3, Sec. 5)) guarantee that 𝑢 ∈ 𝐶2(Σ) ∩ 𝐶(Σ). By differentiating the PDE for 𝑈 given
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in Corollary 3.7 and taking into account (155), we get

𝑢(𝑟, 𝑧) − 𝜌(𝑟)𝑢(𝑟, 𝑧) = 0, (𝑟, 𝑧) ∈ Σ,

𝑢(𝑟, 𝑧) = 0, (𝑟, 𝑧) ∈ 𝜕Σ ∩ 𝜕,
𝑢(𝑟, 𝑧) ≤ 0, (𝑟, 𝑧) ∈ Σ,

𝑢(𝑟, 𝑧) ≤ −𝜀0, (𝑟, 𝑧) ∈ 𝜕Σ0.

(158)

On the interval (𝑟1, 𝑟0 − 𝛿𝜀] we consider a process that is equal to (𝑅𝑡)𝑡≥0 away from 𝑟0 − 𝛿𝜀, it
is reflected (downwards) at 𝑟0 − 𝛿𝜀, and it gets absorbed on the portion of the boundary 𝜕Σ ⧵ 𝜕.
To this end, we introduce a process 𝜉𝜀 with dynamics

𝑑𝜉𝜀𝑡 = 𝑘(𝜃 − 𝜉𝜀𝑡 )𝑑𝑡 + 𝛾
√
𝜉𝜀𝑡 𝑑𝑊𝑡 − 𝑑𝐴𝜀

𝑡 , 𝜉𝜀0 = 𝑟0 − 𝛿𝜀, (159)

where 𝐴𝜀 is an increasing and continuous process with 𝐴𝜀
0 = 0 such that

𝜉𝜀𝑡 ≤ 𝑟0 − 𝛿𝜀 and 𝑑𝐴𝜀
𝑡 = 1{𝜉𝜀𝑡 =𝑟0−𝛿𝜀}

𝑑𝐴𝜀
𝑡 for all 𝑡 ≥ 0. (160)

The existence of 𝜉𝜀 follows from standard results on reflecting diffusions, but can also be con-
structed as a time-change of a scaled reflected Brownianmotion, see for example Lions and Sznit-
man (1984) or (Bass, 1998, Sec. 12, Chapter I) for more details. Let

𝜁𝑡 ∶= 𝑍0𝑡 = 𝑧 + 𝜇𝑡 + 𝜎𝐵𝑡, for 𝑧 ∈ (𝑧1, 𝑧2), (161)

and set

𝜏𝜀Σ ∶= inf
{
𝑡 ≥ 0 ∶

(
𝜁𝑡, 𝜉

𝜀
𝑡

)
∈ 𝜕Σ ⧵ 𝜕

}
. (162)

Then, the process (𝜉𝜀
𝑡∧𝜏𝜀

Σ

, 𝜁𝑡∧𝜏𝜀
Σ
)𝑡≥0 evolves in the rectangle (𝑟1, 𝑟0 − 𝛿𝜀] × (𝑧1, 𝑧2), it is reflected hor-

izontally (inward) at each time 𝜉𝜀 hits 𝑟0 − 𝛿𝜀 and it is absorbed upon reaching the portion of
boundary 𝜕Σ ⧵ 𝜕. Notice also that 𝖤[𝜏𝜀Σ] < ∞ since it is dominated by the exit time of 𝜁 from
the bounded interval [𝑧1, 𝑧2].
Let us now apply Dynkin’s formula to 𝑒− ∫ ⋅

0
𝜌(𝜉𝜀𝑢)𝑑𝑢𝑢(𝜉𝜀⋅ , 𝜁⋅) on the (random) time interval [0, 𝜏𝜀Σ]

and use the first equation in (158):

𝖤

[
𝑒− ∫ 𝜏𝜀

Σ
0

𝜌(𝜉𝜀𝑢)𝑑𝑢𝑢
(
𝜉𝜀
𝜏𝜀
Σ

, 𝜁𝜏𝜀
Σ

)]
= 𝑢(𝑟0 − 𝛿𝜀, 𝑧) − 𝖤

[
∫

𝜏𝜀
Σ

0

𝑒− ∫ 𝑡

0
𝜌(𝜉𝜀𝑢)𝑑𝑢𝑢𝑟

(
𝜉𝜀𝑡 , 𝜁𝑡
)
𝑑𝐴𝜀

𝑡

]

= 𝑢(𝑟0 − 𝛿𝜀, 𝑧) − 𝖤

[
∫

𝜏𝜀
Σ

0

𝑒− ∫ 𝑡

0
𝜌(𝜉𝜀𝑢)𝑑𝑢𝑢𝑟(𝑟0 − 𝛿𝜀, 𝜁𝑡) 𝑑𝐴

𝜀
𝑡

]
, (163)

where in the second equality we used (160). From the final condition in (158) and using that 𝜌 ≥ 0

is bounded on Σ, on the left-hand side of (163) we have

𝖤

[
𝑒− ∫ 𝜏𝜀

Σ
0

𝜌(𝜉𝜀𝑢)𝑑𝑢𝑢
(
𝜉𝜀
𝜏𝜀
Σ

, 𝜁𝜏𝜀
Σ

)] ≤ −𝜀0 𝖤
⎡⎢⎢⎣𝑒− ∫ 𝜏𝜀

Σ
0

𝜌(𝜉𝜀𝑢)𝑑𝑢1{(
𝜉𝜀
𝜏𝜀
Σ

,𝜁𝜏𝜀
Σ

)
∈𝜕Σ0

}⎤⎥⎥⎦
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≤ −𝜀0 𝐶 𝖯
((
𝜉𝜀
𝜏𝜀
Σ

, 𝜁𝜏𝜀
Σ

)
∈ 𝜕Σ0

)
, (164)

for some constant 𝐶 > 0 only depending on Σ. Thanks to (157), on the right-hand side of (163) we
get

𝑢(𝑟0 − 𝛿𝜀, 𝑧) − 𝖤

[
∫

𝜏𝜀
Σ

0

𝑒− ∫ 𝑡

0
𝜌(𝜉𝜀𝑢)𝑑𝑢𝑢𝑟(𝑟0 − 𝛿𝜀, 𝜁𝑡) 𝑑𝐴

𝜀
𝑡

]

≥ −𝜀 − 𝖤

[
∫

𝜏𝜀
Σ

0

𝑒− ∫ 𝑡

0
𝜌(𝜉𝜀𝑢)𝑑𝑢𝑈𝑧𝑟(𝑟0 − 𝛿𝜀, 𝜁𝑡) 𝑑𝐴

𝜀
𝑡

]
. (165)

Collecting (164–165), we obtain

−𝜀0 𝐶 𝖯
((
𝜉𝜀
𝜏𝜀
Σ

, 𝜁𝜏𝜀
Σ

)
∈ 𝜕Σ0

) ≥ −𝜀 − 𝖤

[
∫

𝜏𝜀
Σ

0

𝑒− ∫ 𝑡

0
𝜌(𝜉𝜀𝑢)𝑑𝑢𝑈𝑧𝑟(𝑟0 − 𝛿𝜀, 𝜁𝑡) 𝑑𝐴

𝜀
𝑡

]
. (166)

Next we want to take limits in (166) as 𝜀 → 0. In order to avoid potential difficulties with the
continuity of𝑈𝑧𝑟 at the boundary {𝑟0} × (𝑧1, 𝑧2) ⊂ 𝜕, we adopt an approach using test functions.
Let us take 𝜑 ∈ 𝐶∞𝑐 ((𝑧1, 𝑧2)), 𝜑 ≥ 0. Thanks to (162) we can write 𝜏𝜀Σ = 𝜏1(𝑧) ∧ 𝜏2(𝑧) ∧ 𝜂

𝜀, where

𝜂𝜀 ∶= inf {𝑡 ≥ 0 ∶ 𝜉𝜀𝑡 ≤ 𝑟1},

𝜏1(𝑧) ∶= inf {𝑡 ≥ 0 ∶ 𝜁𝑡 ≤ 𝑧1}, 𝜏2(𝑧) ∶= inf {𝑡 ≥ 0 ∶ 𝜁𝑡 ≥ 𝑧2}. (167)

and notice that 𝜂𝜀 is independent of the initial condition 𝑧 for the process 𝜁𝑡. Multiplying (166) by
𝜑(𝑧), integrating over (𝑧1, 𝑧2) and using Fubini’s theorem, we get

−𝜀0 𝐶 ∫
𝑧2

𝑧1

𝜑(𝑧)𝖯
((
𝜉𝜀
𝜏𝜀
Σ

, 𝜁𝜏𝜀
Σ

)
∈ 𝜕Σ0

)
𝑑𝑧

≥ −𝜀 − 𝖤

[
∫

𝜂𝜀

0

𝑒− ∫ 𝑡
0
𝜌(𝜉𝜀𝑢)𝑑𝑢

(
∫

𝑧2

𝑧1

1{𝑡<(𝜏1∧𝜏2)(𝑧)} 𝑈𝑧𝑟(𝑟0 − 𝛿𝜀, 𝑧 + 𝜇𝑡 + 𝐵𝑡) 𝜑(𝑧) 𝑑𝑧

)
𝑑𝐴𝜀

𝑡

]
. (168)

The mapping 𝑧 ↦ 𝜏1(𝑧, 𝜔) (resp. 𝑧 ↦ 𝜏2(𝑧, 𝜔)) is increasing and continuous for 𝖯-a.e.-𝜔 (resp.
decreasing, continuous).Monotonicity is by pathwise comparisonswhereas continuity is a known
result for one dimensional diffusions (it may also be deduced by arguments analogous to those in
Lemma 112). It follows that 𝑧 ↦ 𝜏1(𝑧) ∧ 𝜏2(𝑧) is 𝖯-a.s. continuous and it changes its monotonic-
ity at most once. In particular, for any 𝜔 ∈ Ω ⧵ 𝑁 with 𝖯(𝑁) = 0, there exist 𝑧(𝑡, 𝜔) and 𝑧̄(𝑡, 𝜔)
satisfying 𝑧1 < 𝑧(𝑡, 𝜔) < 𝑧̄(𝑡, 𝜔) < 𝑧2 and such that

{𝑧 ∈ (𝑧1, 𝑧2) ∶ 𝜏1(𝑧, 𝜔) ∧ 𝜏2(𝑧, 𝜔) > 𝑡} = (𝑧(𝑡, 𝜔), 𝑧̄(𝑡, 𝜔)). (169)

Plugging (169) into (168) we obtain

−𝜀0 𝐶 ∫
𝑧2

𝑧1

𝜑(𝑧)𝖯
((
𝜉𝜀
𝜏𝜀
Σ

, 𝜁𝜏𝜀
Σ

)
∈ 𝜕Σ0

)
𝑑𝑧
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≥ −𝜀 − 𝖤

[
∫

𝜂𝜀

0

𝑒− ∫ 𝑡

0
𝜌(𝜉𝜀𝑢)𝑑𝑢

(
∫

𝑧̄(𝑡,𝜔)

𝑧(𝑡,𝜔)

𝑈𝑧𝑟(𝑟0 − 𝛿𝜀, 𝑧 + 𝜇𝑡 + 𝐵𝑡) 𝜑(𝑧) 𝑑𝑧

)
𝑑𝐴𝜀

𝑡

]
. (170)

Integrating by parts, recalling (156) and using that (𝑧(𝑡, 𝜔), 𝑧̄(𝑡, 𝜔)) ⊂ (𝑧1, 𝑧2), we get

|||||∫
𝑧̄(𝑡,𝜔)

𝑧(𝑡,𝜔)

𝑈𝑧𝑟(𝑟0 − 𝛿𝜀, 𝑧 + 𝜇𝑡 + 𝐵𝑡) 𝜑(𝑧) 𝑑𝑧
|||||

=
|||||𝑈𝑟(𝑟0 − 𝛿𝜀, 𝑧 + 𝜇𝑡 + 𝐵𝑡) 𝜑(𝑧)|𝑧̄(𝑡,𝜔)𝑧(𝑡,𝜔)

− ∫
𝑧̄(𝑡,𝜔)

𝑧(𝑡,𝜔)

𝑈𝑟(𝑟0 − 𝛿𝜀, 𝑧 + 𝜇𝑡 + 𝐵𝑡) 𝜑
′(𝑧) 𝑑𝑧

|||||
≤ 𝜀(𝑧2 − 𝑧1)(||𝜑||∞ + ||𝜑′||∞), (171)

where || ⋅ ||∞ denotes the supremumnorm on (𝑧1, 𝑧2). Since this bound is deterministic and inde-
pendent of 𝑧, when we plug it back into the integral with respect to 𝑑𝐴𝜀

𝑡 we obtain

−𝜀0 𝐶 ∫
𝑧2

𝑧1

𝜑(𝑧)𝖯
((
𝜉𝜀
𝜏𝜀
Σ

, 𝜁𝜏𝜀
Σ

)
∈ 𝜕Σ0

)
𝑑𝑧 ≥ −𝜀

(
1 + (𝑧2 − 𝑧1)(||𝜑||∞ + ||𝜑′||∞)𝖤[𝐴𝜀

𝜂𝜀

])
.

From the integral form of 𝜉𝜀 we obtain

𝖤
[
𝐴𝜀
𝜂𝜀

]
= 𝖤

[
𝑟0 − 𝛿𝜀 + ∫

𝜂𝜀

0

𝑘(𝜃 − 𝜉𝜀𝑠 )𝑑𝑠

]
− 𝖤
[
𝜉𝜀𝜂𝜀

] ≤ 𝑟0 + 𝑘𝜃𝖤[𝜂𝜀] − 𝑟1. (172)

By construction, 𝜉𝜀 ≤ 𝑅𝑟0 for any 𝜀 > 0. Then 𝖤[𝜂𝜀] ≤ 𝖤[𝜂], where 𝜂 ∶= inf {𝑡 ≥ 0 ∶ 𝑅
𝑟0
𝑡 ≤ 𝑟1}, and

the expectation of the latter hitting time is finite since the CIR process is positively recurrent
(cf. Section 12 in Chapter II of Borodin and Salminen (2002)). Then we have 𝖤[𝐴𝜀

𝜂𝜀 ] ≤ 𝐶1, for a
constant 𝐶1 > 0 independent of 𝜀.
Finally, we get

𝜀0 𝐶 ∫
𝑧2

𝑧1

𝜑(𝑧)𝖯
((
𝜉𝜀
𝜏𝜀
Σ

, 𝜁𝜏𝜀
Σ

)
∈ 𝜕Σ0

)
𝑑𝑧 ≤ 𝜀(1 + 𝐶1(𝑧2 − 𝑧1)(||𝜑||∞ + ||𝜑′||∞)). (173)

Then, taking limits as 𝜀 goes to zero, the previous inequality yields

lim sup
𝜀→0 ∫

𝑧2

𝑧1

𝜑(𝑧)𝖯
((
𝜉𝜀
𝜏𝜀
Σ

, 𝜁𝜏𝜀
Σ

)
∈ 𝜕Σ0

)
𝑑𝑧 ≤ 0. (174)

We now show that the above inequality leads to a contradiction. Notice that

𝖯
((
𝜉𝜀
𝜏𝜀
Σ

, 𝜁𝜏𝜀
Σ

)
∈ 𝜕Σ0

) ≥ 𝖯(𝜂𝜀 < (𝜏1 ∧ 𝜏2)(𝑧)) (175)
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and, letting 𝜇(𝑑𝑡; 𝑧) denote the (well-known) law of (𝜏1 ∧ 𝜏2)(𝑧), we have

𝖯(𝜂𝜀 < (𝜏1 ∧ 𝜏2)(𝑧)) = ∫
∞

0

𝖯(𝜂𝜀 < 𝑡) 𝜇(𝑑𝑡; 𝑧), (176)

by independence of 𝜂𝜀 and 𝜏1 ∧ 𝜏2.
Since 𝜉𝜀 ≤ 𝑅𝑟0 by pathwise comparison, then

𝖯(𝜂𝜀 < 𝑡) ≥ 𝖯(𝜂 < 𝑡), for all 𝜀 > 0. (177)

with 𝜂 introduced above. Therefore we have

lim inf
𝜀→0

𝖯(𝜂𝜀 < (𝜏1 ∧ 𝜏2)(𝑧)) ≥ ∫
∞

0

𝖯(𝜂 < 𝑡) 𝜇(𝑑𝑡; 𝑧) ∶= 𝑓(𝑧) > 0, ∀𝑧 ∈ (𝑧1, 𝑧2). (178)

Then, from (174) and Fatou’s lemma we reach a contradiction. Thus 𝑟 ↦ 𝑏(𝑟) is continuous. □

Proposition 3.14. One has:

(i) 𝑏(𝑟) < +∞ for all 𝑟 > 0;
(ii) if𝜌(𝑟) ≥ 𝑐1 for some 𝑐1 > 0, then 𝑏(𝑟) ≤ 𝑧⋆𝑐1 for all 𝑟 ≥ 0, where 𝑧⋆𝑐1 ∈ (𝛼,∞) is the free boundary

of the optimal stopping problem (52) with 𝜌(𝑟) ≡ 𝑐1;
(iii) if 𝜌(𝑟) ≥ 𝑐2𝑟 for some 𝑐2 > 0, then lim𝑟↑∞ 𝑏(𝑟) = 𝛼.

Proof. We prove each item separately.

(i) Suppose that there exists 𝑟0 > 0 such that 𝑏(𝑟0) = +∞. Then, by monotonicity, 𝑏(𝑟) = +∞

for all 𝑟 ∈ [0, 𝑟0). Then take 𝑟 ∈ [0, 𝑟0) and set 𝜏̂ ∶= inf {𝑡 ≥ 0 ∶ 𝑅𝑟𝑡 ≥ 𝑟0}, 𝖯-a.s. Clearly, 𝜏̂ ≤ 𝜏∗
𝖯𝑟,𝑧-a.s. for all 𝑧 ≥ 𝛼, and therefore the superharmonic property of the value 𝑈 (cf. (81) and
(82)) implies that

1 < 𝑈(𝑟, 𝑧) = 𝖤

[
𝑒𝜆 ((𝑧−𝛼)∨𝑆𝜏̂−(𝑧−𝛼))−∫

𝜏̂

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠𝑈

(
𝑅𝑟
𝜏̂
, 𝐾𝑧

𝜏̂

)]
≤ 𝖤

[
𝟙{𝑆𝜏̂≥𝑧−𝛼}𝑒𝜆 (𝑆𝜏̂−(𝑧−𝛼))−∫

𝜏̂

0
𝜌(𝑅𝑟𝑠 )𝑑𝑠ℎ0

]
+𝖤

[
𝟙{𝑆𝜏̂<𝑧−𝛼}𝑒

− ∫ 𝜏̂

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠𝑈

(
𝑅𝑟
𝜏̂
, 𝐾𝑧

𝜏̂

)]
≤ 𝑒−𝜆 (𝑧−𝛼)𝖤

[
𝑒𝜆 𝑆𝜏̂−∫

𝜏̂

0
𝜌(𝑅𝑟𝑠 )𝑑𝑠ℎ0

]
+ 𝖤

[
𝑒− ∫ 𝜏̂

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠𝑈

(
𝑅𝑟
𝜏̂
, 𝐾𝑧

𝜏̂

)]
. (179)

By noticing that 𝜏̂ does not depend on 𝑧, recalling (74), and taking limits as 𝑧 ↑ ∞ we obtain

lim
𝑧→∞

𝑒−𝜆 (𝑧−𝛼)𝖤

[
𝑒𝜆 𝑆𝜏̂−∫

𝜏̂

0
𝜌(𝑅𝑟𝑠 )𝑑𝑠ℎ0

]
= 0. (179)
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On the other hand, for any 𝑟 ∈ [0, 𝑟0] we have

1 < 𝑈(𝑟, 𝑧) = sup
𝜏≥0 𝖤
[
𝑒𝜆 ((𝑧−𝛼)∨𝑆𝜏−(𝑧−𝛼))−∫

𝜏

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠

]
≤ sup

𝜏≥0 𝖤
[
𝟙{𝑆𝜏≥𝑧−𝛼} 𝑒𝜆 (𝑆𝜏−(𝑧−𝛼))−∫

𝜏

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠

]
+ sup

𝜏≥0 𝖤
[
𝟙{𝑆𝜏<𝑧−𝛼}

]
≤ 𝑒−𝜆(𝑧−𝛼) sup

𝜏≥0 𝖤
[
𝑒𝜆 𝑆𝜏−∫

𝜏

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠

]
+ 1

≤ ℎ0 𝑒
−𝜆(𝑧−𝛼) + 1. (181)

It follows that lim𝑧→+∞ 𝑈(𝑟, 𝑧) = 1 for any 𝑟 ∈ [0, 𝑟0]. Recalling that lim𝑧→+∞ 𝐾𝑧
𝑡 = +∞ a.s.,

and noticing that the CIR process is positively recurrent, this in turn yields

lim
𝑧→∞

𝑈
(
𝑅𝑟
𝜏̂
, 𝐾𝑧

𝜏̂

)
= 1 a.s. (182)

Thus, applying the Lebesgue dominated convergence theorem in (180), we get

1 ≤ 𝖤

[
𝑒− ∫ 𝜏̂

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠

]
. (183)

Being 𝖯𝑟(𝜏̂ > 0) > 0 for any 𝑟 ∈ [0, 𝑟0), we reach a contradiction.
(ii) Assume that 𝜌(𝑟) ≥ 𝑐1 for some 𝑐1 > 0. Because of

𝑈(𝑟, 𝑧) ≤ sup
𝜏≥0 𝖤
[
𝑒𝜆 ((𝑧−𝛼)∨𝑆𝜏̂−(𝑧−𝛼))−𝑐1𝜏

]
=∶ 𝑣(𝑧; 𝑐1), (184)

one has for any 𝑟 ≥ 0 that

{𝑧 > 𝛼 ∶ 𝑧 ≥ 𝑏(𝑟)} = {𝑧 > 𝛼 ∶ 𝑈(𝑟, 𝑧) = 1} ⊇ {𝑧 > 𝛼 ∶ 𝑣(𝑧; 𝑐1) = 1}. (185)

Notice now that 𝑣(𝑧; 𝑐1) ≤ 𝑒𝜆(𝑧−𝛼)𝑣 for some constant 𝑣 > 0 for all 𝑧 ≥ 0 (cf. (63)), and that
{𝑧 > 𝛼 ∶ 𝑣(𝑧; 𝑐1) = 1} = {𝑧 > 𝛼 ∶ 𝑧 ≥ 𝑧⋆𝑐1} for some 𝑧

⋆
𝑐1
∈ (𝛼,∞). Hence we conclude that

𝑏(𝑟) ≤ 𝑧⋆𝑐1 .
(iii) Assume that 𝜌(𝑟) ≥ 𝑐2𝑟 for some 𝑐2 > 0. To prove that lim𝑟↑∞ 𝑏(𝑟) = 𝛼 we argue by contra-

diction and we suppose that 𝑏∞ ∶= lim𝑟↑∞ 𝑏(𝑟) > 𝛼. Then take 𝑧1, 𝑧2 such that 𝛼 < 𝑧1 <

𝑧2 < 𝑏∞ and for 𝑧 ∈ (𝑧1, 𝑧2) and 𝑟 ≥ 0 set 𝜎 ∶= inf {𝑡 ≥ 0 ∶ 𝐾𝑡 ∉ (𝑧1, 𝑧2)} 𝖯𝑧-a.s. Clearly,
ℝ+ × (𝑧1, 𝑧2) ⊂ , and therefore 𝜎 ≤ 𝜏∗ 𝖯𝑟,𝑧-a.s., and this fact implies that (see (82))

1 < 𝑈(𝑟, 𝑧) = 𝖤

[
𝑒𝜆 ((𝑧−𝛼)∨𝑆𝜎−(𝑧−𝛼))−∫

𝜎

0
𝜌(𝑅𝑟𝑠 ) 𝑑𝑠𝑈(𝑅𝑟

𝜎
, 𝐾𝑧

𝜎
)

]
≤ ℎ0𝖤

[
𝑒𝜆 ((𝑧−𝛼)∨𝑆𝜎−(𝑧−𝛼))−𝑐2 ∫

𝜎

0
𝑅𝑟𝑠 𝑑𝑠

]
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= ℎ0𝖤
[
𝑒𝜆𝑆𝜎−𝐴𝑐2 (𝜎)−𝑟𝐺𝑐2 (𝜎)

]
. (186)

Here, (60) has been used for the penultimate step, while the independence of the Brownian
motions𝑊 and 𝐵 led to the last equality, together with (8) and (9). Since the last expectation on
the right-hand side of (186) can be made arbitrarily small by taking 𝑟 sufficiently large, we reach
a contradiction and we have thus proved that lim𝑟↑∞ 𝑏(𝑟) = 𝛼. □

4 SOLUTION TO THE DIVIDEND PROBLEM

In this section we show that we can find a couple (𝑣, 𝑎) that satisfies all the assumptions in The-
orem 2.4, hence we obtain a full solution to problem (5).
Let us define the function 𝑣 ∶  → ℝ+ as follows

𝑣(𝑟, 𝑧) ∶= ∫
𝑧

𝛼

𝑈(𝑟, 𝑦)𝑑𝑦. (187)

Using Proposition 3.11 we obtain that the functions 𝑣𝑧, 𝑣𝑧𝑧, 𝑣𝑟 and 𝑣𝑧𝑟 are continuous on .
Proposition 4.1. The function 𝑣 has a weak derivative 𝑣𝑟𝑟 ∈ 𝐿∞

𝑙𝑜𝑐
(). Moreover, we can select an

element of the equivalence class of 𝑣𝑟𝑟 ∈ 𝐿∞
𝑙𝑜𝑐
() (still denoted by 𝑣𝑟𝑟) such that

𝑣rr(𝑟, 𝑧) = 𝟙{𝑏(𝑟)≥𝛼} 2
𝛾2

(
∫

𝑏(𝑟)∧𝑧

𝛼

[𝜌(𝑟)𝑈(𝑟, 𝑦) − 𝜇𝑈𝑧(𝑟, 𝑦) − 𝑘(𝜃 − 𝑟)𝑈𝑟(𝑟, 𝑦)] dy

)
𝑟−1

−𝟙{𝑏(𝑟)≥𝛼} 𝜎
2

𝛾2
(𝑈𝑧(𝑟, 𝑧 ∧ 𝑏(𝑟)) − 𝑈𝑧(𝑟, 𝛼+)) 𝑟

−1. (188)

Proof. The main idea in this proof is to compute explicitly the weak derivative 𝑣𝑟𝑟.
Since 𝑣𝑟(⋅, 𝑧) is a continuous function for all 𝑧 > 𝛼, we say that its weak derivative with respect

to 𝑟 is a function 𝑓 ∈ 𝐿1() such that, for any 𝜑 ≥ 0 with 𝜑 ∈ 𝐶∞𝑐 (ℝ+), it holds

∫
∞

0

𝑣𝑟(𝜂, 𝑧)𝜑
′(𝜂)𝑑𝜂 = −∫

∞

0

𝑓(𝜂, 𝑧)𝜑(𝜂)𝑑𝜂, for 𝑧 ∈ (𝛼,+∞). (189)

We denote by 𝑔 the generalized, right-continuous, inverse of the decreasing function 𝑏 and, for
future frequent use, we also define 𝑔𝜀(⋅) ∶= 𝑔(⋅) − 𝜀 for 𝜀 > 0.
Using that 𝑈𝑟 is continuous, with 𝑈𝑟(𝜂, 𝑦) = 0 for 𝜂 ≥ 𝑔(𝑦), and employing Fubini’s theorem

we can write

∫
∞

0

𝑣𝑟(𝜂, 𝑧)𝜑
′(𝜂)𝑑𝜂

= ∫
∞

0

(
∫

𝑧

𝛼

𝑈𝑟(𝜂, 𝑦)𝑑𝑦

)
𝜑′(𝜂)𝑑𝜂 = ∫

𝑧

𝛼

(
∫

∞

0

𝑈𝑟(𝜂, 𝑦)𝜑
′(𝜂)𝑑𝜂

)
𝑑𝑦
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= ∫
𝑧

𝛼

(
∫

𝑔(𝑦)

0

𝑈𝑟(𝜂, 𝑦)𝜑
′(𝜂)𝑑𝜂

)
𝑑𝑦 = ∫

𝑧

𝛼

(
lim
𝜀→0 ∫

𝑔𝜀(𝑦)

0

𝑈𝑟(𝜂, 𝑦)𝜑
′(𝜂)𝑑𝜂

)
𝑑𝑦

= lim
𝜀→0 ∫

𝑧

𝛼

(
∫

𝑔𝜀(𝑦)

0

𝑈𝑟(𝜂, 𝑦)𝜑
′(𝜂)𝑑𝜂

)
𝑑𝑦, (190)

where in the last line we used dominated convergence. We now recall that

𝛾2

2
𝑟𝑈𝑟𝑟 = 𝜌(𝑟)𝑈 −

𝜎2

2
𝑈𝑧𝑧 − 𝜇𝑈𝑧 − 𝑘(𝜃 − 𝑟)𝑈𝑟 (191)

in  and that 𝑈𝑟𝑟 is continuous away from 𝜕. This implies that for fixed 𝜀 > 0 we can write
(recalling that 𝜑(0) = 0)

∫
𝑔𝜀(𝑦)

0

𝑈𝑟(𝜂, 𝑦)𝜑
′(𝜂)𝑑𝜂 = 𝑈𝑟(𝑔𝜀(𝑦), 𝑦)𝜑(𝑔𝜀(𝑦)) − ∫

𝑔𝜀(𝑦)

0

𝑈𝑟𝑟(𝜂, 𝑦)𝜑(𝜂)𝑑𝜂

= 𝑈𝑟(𝑔𝜀(𝑦), 𝑦)𝜑(𝑔𝜀(𝑦))

−
2

𝛾2

(
∫

𝑔𝜀(𝑦)

0

𝜂−1
[
𝜌(𝜂)𝑈(𝜂, 𝑦) −

𝜎2

2
𝑈𝑧𝑧(𝜂, 𝑦) − 𝜇𝑈𝑧(𝜂, 𝑦) − 𝑘(𝜃 − 𝜂)𝑈𝑟(𝜂, 𝑦)

]
𝜑(𝜂)𝑑𝜂

)
. (192)

Plugging the latter into (190) we find

lim
𝜀→0 ∫

𝑧

𝛼

(
∫

𝑔𝜀(𝑦)

0

𝑈𝑟(𝜂, 𝑦)𝜑
′(𝜂)𝑑𝜂

)
𝑑𝑦

= lim
𝜀→0 ∫

𝑧

𝛼

𝑈𝑟(𝑔𝜀(𝑦), 𝑦)𝜑(𝑔𝜀(𝑦))𝑑𝑦

− lim
𝜀→0 ∫

𝑧

𝛼

2

𝛾2

(
∫

𝑔𝜀(𝑦)

0

𝜂−1[𝜌(𝜂)𝑈(𝜂, 𝑦) − 𝜇𝑈𝑧(𝜂, 𝑦) − 𝑘(𝜃 − 𝜂)𝑈𝑟(𝜂, 𝑦)]𝜑(𝜂)𝑑𝜂

)
𝑑𝑦

+ lim
𝜀→0 ∫

𝑧

𝛼

𝜎2

𝛾2

(
∫

𝑔𝜀(𝑦)

0

𝜂−1𝑈𝑧𝑧(𝜂, 𝑦)𝜑(𝜂)𝑑𝜂

)
𝑑𝑦. (193)

For the first two limits on the right-hand side of (193) we can use dominated convergence and
recall that 𝑈𝑟(𝑔(𝑦), 𝑦) = 0 to get

∫
∞

0

𝑣𝑟(𝜂, 𝑧)𝜑
′(𝜂)𝑑𝜂

= −∫
𝑧

𝛼

2

𝛾2

(
∫

𝑔(𝑦)

0

𝜂−1[𝜌(𝜂)𝑈(𝜂, 𝑦) − 𝜇𝑈𝑧(𝜂, 𝑦) − 𝑘(𝜃 − 𝜂)𝑈𝑟(𝜂, 𝑦)]𝜑(𝜂)𝑑𝜂

)
𝑑𝑦

+ lim
𝜀→0 ∫

𝑧

𝛼

𝜎2

𝛾2

(
∫

𝑔𝜀(𝑦)

0

𝜂−1𝑈𝑧𝑧(𝜂, 𝑦)𝜑(𝜂)𝑑𝜂

)
𝑑𝑦. (194)
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For the remaining term on the right-hand side of (193), we set 𝑏𝜀(𝜂) as the generalized inverse of
𝑔𝜀(𝜂), use Fubini’s theorem and obtain

lim
𝜀→0 ∫

𝑧

𝛼

𝜎2

𝛾2

(
∫

𝑔𝜀(𝑦)

0

𝜂−1𝑈𝑧𝑧(𝜂, 𝑦)𝜑(𝜂)𝑑𝜂

)
𝑑𝑦

=
𝜎2

𝛾2
lim
𝜀→0 ∫

𝑔𝜀(𝛼)

0

(
∫

𝑧∧𝑏𝜀(𝜂)

𝛼

𝑈𝑧𝑧(𝜂, 𝑦)𝑑𝑦

)
𝜂−1𝜑(𝜂)𝑑𝜂

=
𝜎2

𝛾2 ∫
𝑔(𝛼)

0

(𝑈𝑧(𝜂, 𝑧 ∧ 𝑏(𝜂)) − 𝑈𝑧(𝜂, 𝛼+))𝜂
−1𝜑(𝜂)𝑑𝜂, (195)

where in the last line we also used 𝑏𝜀 → 𝑏 and 𝑔𝜀 → 𝑔. Combining (194) and (195), and using
Fubini’s theorem once more we find

∫
∞

0

𝑣𝑟(𝜂, 𝑧)𝜑
′(𝜂)𝑑𝜂

= −∫
𝑔(𝛼)

0

2

𝛾2

(
∫

𝑏(𝜂)∧𝑧

𝛼

[𝜌(𝜂)𝑈(𝜂, 𝑦) − 𝜇𝑈𝑧(𝜂, 𝑦) − 𝑘(𝜃 − 𝜂)𝑈𝑟(𝜂, 𝑦)]𝑑𝑦

)
𝜂−1𝜑(𝜂)𝑑𝜂

+
𝜎2

𝛾2 ∫
𝑔(𝛼)

0

(𝑈𝑧(𝜂, 𝑧 ∧ 𝑏(𝜂)) − 𝑈𝑧(𝜂, 𝛼+))𝜂
−1𝜑(𝜂)𝑑𝜂 = −∫

∞

0

𝑓(𝜂, 𝑧)𝜑(𝜂)𝑑𝜂, (196)

where, noticing that {𝜂 ≤ 𝑔(𝛼)} = {𝑏(𝜂) ≥ 𝛼}, we have defined

𝑓(𝜂, 𝑧) ∶= 𝟙{𝑏(𝜂)≥𝛼} 2
𝛾2

(
∫

𝑏(𝜂)∧𝑧

𝛼

[𝜌(𝜂)𝑈(𝜂, 𝑦) − 𝜇𝑈𝑧(𝜂, 𝑦) − 𝑘(𝜃 − 𝜂)𝑈𝑟(𝜂, 𝑦)]𝑑𝑦

)
𝜂−1

−𝟙{𝑏(𝜂)≥𝛼} 𝜎
2

𝛾2
(𝑈𝑧(𝜂, 𝑧 ∧ 𝑏(𝜂)) − 𝑈𝑧(𝜂, 𝛼+))𝜂

−1. (197)

It follows that 𝑣𝑟𝑟 = 𝑓 in the weak sense.
□

In order to use Theorem 2.4 we need to show that 𝑣𝑟𝑟 is continuous as well in the closure  of
the continuation set , and we accomplish that in the next proposition. We remark that global 𝐶2
regularity of a solution to (13) is far from being a trivial result and, in particular, we are not aware
of any probabilistic proof of this fact.

Proposition 4.2. One has that 𝑣𝑟𝑟 is continuous in  ∩ .
Proof. It suffices to observe that for any (𝑟, 𝑧) ∈  ∩  we have 𝑧 ≤ 𝑏(𝑟). Hence

𝑣rr(𝑟, 𝑧) = 𝟙{𝑏(𝑟)≥𝛼} 2
𝛾2

(
∫

𝑧

𝛼

[𝜌(𝑟)𝑈(𝑟, 𝑦) − 𝜇𝑈𝑧(𝑟, 𝑦) − 𝑘(𝜃 − 𝑟)𝑈𝑟(𝑟, 𝑦)] dy
)
𝑟−1
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−𝟙{𝑏(𝑟)≥𝛼} 𝜎
2

𝛾2
(𝑈𝑧(𝑟, 𝑧) − 𝑈𝑧(𝑟, 𝛼+)) 𝑟

−1, (198)

and the claimed continuity follows from Proposition 3.11. Notice that 𝟙{𝑏(𝑟)≥𝛼} = 1 for all 𝑟 < 𝑟𝛼,
where 𝑟𝛼 ∶= sup{𝑟 > 0 ∶ 𝑏(𝑟) > 𝛼}. □

We conclude this section by proving that indeed 𝑉 = 𝑣 and by providing an optimal dividend
strategy.

Theorem4.3. Recall 𝑏 from (102),𝑉 from (5) and 𝑣 from (187). Then𝑉(𝑟, 𝑧) = 𝑣(𝑟, 𝑧) for all (𝑟, 𝑧) ∈
 and the process

𝐷∗
𝑡 ∶= sup

0≤𝑠≤𝑡
[
𝑍0𝑠 − 𝑏(𝑅𝑠)

]+
, 𝑡 ≥ 0 (199)

is an optimal dividend strategy; that is, for all (𝑟, 𝑧) ∈  we have

𝑣(𝑟, 𝑧) = 𝑉(𝑟, 𝑧) = 𝖤𝑟,𝑧

⎡⎢⎢⎣∫
𝜏𝐷

∗
𝛼

0−

𝑒− ∫ 𝑡

0
𝜌(𝑅𝑡)𝑑𝑡𝑑𝐷∗

𝑡

⎤⎥⎥⎦. (200)

Proof. It suffices to check that 𝑣 of (187) satisfies all the conditions in Theorem 2.4. The function
𝑣 is continuous everywhere. Moreover, by Proposition 3.11, 𝑣𝑧, 𝑣𝑧𝑧, 𝑣𝑟 and 𝑣𝑧𝑟 are continuous on, and, by Proposition 4.2, 𝑣𝑟𝑟 is continuous in  ∩ .
Since 𝑈 ≥ 1 we have that 𝑣𝑧 ≥ 1, with equality for 𝑧 ≥ 𝑏(𝑟), 𝑟 > 0. Moreover, by (135) we see

that 𝑣𝑧𝑧 = 𝑈𝑧 < 0 for all (𝑟, 𝑧) ∈  such that 𝛼 ≤ 𝑧 < 𝑏(𝑟). Hence 𝑣𝑧 > 1 for such values of (𝑧, 𝑟)
because 𝑣𝑧(𝑟, 𝑏(𝑟)) = 𝑈(𝑟, 𝑏(𝑟)) = 1. Also, 0 ≤ 𝑣(𝑟, 𝑧) ≤ ℎ0(𝑧 − 𝛼) for any (𝑟, 𝑧) ∈  due to (60).
For 𝑟 ∈ ℝ+ and 𝛼 < 𝑧 < 𝑏(𝑟)we have by Corollary 3.7 and the dominated convergence theorem

that

0 = ∫
𝑧

𝛼

( − 𝜌(𝑟))𝑈(𝑟, 𝑦)𝑑𝑦

=
1

2
𝜎2𝑣𝑧𝑧(𝑟, 𝑧) + 𝜇𝑣𝑧(𝑟, 𝑧) −

(
1

2
𝜎2𝑣𝑧𝑧(𝑟, 𝛼+) + 𝜇𝑣𝑧(𝑟, 𝛼+)

)
+
1

2
𝛾2𝑟𝑣𝑟𝑟(𝑟, 𝑧) + 𝜅(𝜃 − 𝑟)𝑣𝑟(𝑟, 𝑧) − 𝜌(𝑟)𝑣(𝑟, 𝑧) = ( − 𝜌(𝑟))𝑣(𝑟, 𝑧), (201)

upon observing that 1
2
𝜎2𝑣𝑧𝑧(𝑟, 𝛼+) + 𝜇𝑣𝑧(𝑟, 𝛼+) = 0 by Corollary 3.12. Repeating the same calcu-

lations for 𝑧 > 𝑏(𝑟), 𝑟 > 0, we find that ( − 𝜌(𝑟))𝑣(𝑟, 𝑧) ≤ 0. Hence, ( − 𝜌(𝑟))𝑣(𝑟, 𝑧) ≤ 0 for a.e.
(𝑟, 𝑧) ∈ .
Therefore we have verified all the conditions in (13), and it thus follows that 𝑣 = 𝑉 and𝐷∗ ≡ 𝐷𝑏

is optimal. □
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F IGURE 1 An illustrative drawing
of the free boundary 𝑟 ↦ 𝑏(𝑟) and of the
optimal dividend payout. The red arrows
illustrate the vertical push that is needed
to keep the surplus process below the
interest-rate dependent boundary 𝑏. In
particular, the optimal dividend process
defines a continuous measure 𝑡 ↦ 𝑑𝐷∗

𝑡

on ℝ+ which is completely singular with
respect to the Lebesgue measure [Color
figure can be viewed at
wileyonlinelibrary.com]

5 CONCLUDING REMARKS

5.1 Some comments on the optimal dividend policy

The optimal control from (199) prescribes to pay dividends in such a way to keep the surplus pro-
cess below the stochastic threshold 𝑡 ↦ 𝑏(𝑅𝑡) at all times. In particular, the company distributes
theminimum amount of dividends that prevents the current surplus level from exceeding the cur-
rent optimal ceiling 𝑏(𝑅𝑡). Any excess of the surplus is paid as a lump sum. Figure 1 below provides
an illustration of the curve 𝑟 ↦ 𝑏(𝑟), of the process (𝑍, 𝑅), and of the optimal dividend payout (we
refer to Section 5.2 for the numerical evaluation of the free boundary for some specific choices of
the discount rate). The optimal dividends distribution is therefore of barrier type but, differently to
classical models with constant discount rate and constant optimal barrier (see, e.g., Section 2.5.2
in Chapter 2 of Schmidli (2008)), here we observe dynamic (stochastic) adjustments of the bar-
rier. This strategy shows how the firm’s manager responds to the fluctuations of the spot rate and
allows to draw some economic/financial conclusions in a dynamic (random) macro-economic
set-up. In particular, since the free boundary 𝑏 is a decreasing function, we observe that in scenar-
ios where the interest rate tends to increase, the firmmanager will pay dividends more frequently
because the expected present value of future dividend payments decays. Of course this behavior
also increases the probability of an early insolvency of the firm since in our model the growth rate
of the surplus process is constant and independent of the current spot rate on the market. Despite
this general trend, we also observe that no matter how large the spot rate, an immediate liquida-
tion of the firm can never be optimal (final claim in Lemma 3.8). The combined uncertainty on
the future moves of the spot rate and the surplus process indeed encourage gradual liquidation in
light of a possible reversion of the spot rate towards lower values and/or upwards excursions of
the surplus process.
If the discount rate is such that 𝜌(𝑟) ≥ 𝜌0 for some constant 𝜌0 > 0 (e.g., it is of linear form

𝜌(𝑟) = 𝜌0 + 𝑟), one easily obtains from (5) that the value function with interest-rate dependent
discount force is smaller than the one with 𝜌(𝑟) ≡ 𝜌0. However, we also see that if 𝜌(𝑟) ≥ 𝜌0, then
the interest-rate dependent barrier 𝑏 is uniformly bounded fromabove by the constant free bound-
ary 𝑧⋆𝜌0 arising in the problem with constant discount rate 𝜌0 (Proposition 3.14-(ii)). Continuity of
the boundary 𝑟 ↦ 𝑏(𝑟) implies that optimal lump sum payments can happen only at the initial
time with 𝐷∗

0 = (𝑧 − 𝑏(𝑟))+. It thus follows that lump sum payments are larger than those in the
problem with constant discount rate, that is, (𝑧 − 𝑧⋆𝜌0)

+. Moreover, according to Proposition 3.14-
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(iii), we see that in the linear case 𝜌(𝑟) = 𝜌0 + 𝑟 the size of the lump sum payments increases with
the value of the interest rate (and indeed it attains itsmaximumwhen 𝑟 ↑ ∞, with𝐷∗

0 = (𝑧 − 𝛼)+).
This is in contrast with the case of constant interest rate 𝜌(𝑟) = 𝜌0, where 𝐷∗

0 = (𝑧 − 𝑧⋆𝜌0)
+.

5.2 Numerical illustrations

In this section we outline a simple numerical method that allows to compute the free boundary
𝑏 via the PDE associated to the value function 𝑈 of the optimal stopping problem (52). A direct
study of the PDE for its value function𝑉 (cf. (5)) is possible in principle butmore involved because
the gradient constraint 𝑉𝑧 ≥ 1 is harder to implement than the obstacle constraint 𝑈 ≥ 1. While
the study of an optimized numerical scheme is outside the scope of our paper, the results in this
section show that the connection to optimal stopping also provides useful tools for numerical
solution of the original singular control problem.
We consider the two cases when 𝜌(𝑟) = 𝑟0 + 𝑟 and 𝜌(𝑟) =

√
𝑟0 + 𝑟, for 𝑟0 = 0.05 (notice that

Assumption 2.1 is satisfied). The parameters’ values are:

𝛼 = 0, 𝜎 = 1, 𝜇 = 1, 𝜃 = 0.15, 𝜅 = 0.5, 𝛾 = 0.3, (202)

with respect to a time unit of one year (these are for illustrative purpose only and we leave the
question of calibration with real market data for future work).
The free boundary is determined as the boundary of the level set at 1 of the function 𝑈. The

function 𝑈 is approximated numerically by the solution of a penalized PDE problem over the
truncated domain Num ∶= (𝑟min, 𝑟max) × (0, 𝑧max), where 𝑟min = 0.005, 𝑟max = 1.1 and 𝑧max =
2.5 are chosen arbitrarily. In our experiments some care is needed for the choice of 𝑟min since {0}
is non-attainable for the spot rate 𝑅.
Given 𝛿 = 0.01 we use the software Mathematica’s command NDsolve to solve the following

penalized problem:

𝑈(𝑟, 𝑧) − 𝜌(𝑟)𝑈(𝑟, 𝑧) =
1

𝛿
(1 − 𝑈(𝑟, 𝑧))+, (𝑟, 𝑧) ∈ Num (203)

with Neumann boundary condition (cf. Corollary 3.12)

𝑈𝑧(𝑟, 0+) = −𝜆𝑈(𝑟, 0+), 𝑟 ∈ (𝑟min, 𝑟max), (204)

and Dirichlet conditions

𝑈(𝑟, 𝑧max) = 1 = 𝑈(𝑟max, 𝑧) and 𝑈(0+, 𝑧) =

(
1 −

1

1 + 𝑧

)
𝑢(𝑧). (205)

Here, 𝑢(𝑧) = 𝑉0
𝑧(𝑧) is the derivative of the value function𝑉0 of the optimal dividend problemwith

constant interest rate 𝜌(0) > 0 (recall that in our case 𝜌(0) equals either 𝑟0 or
√
𝑟0), whose explicit

formula can be found in (cf. eq. (3.3) in Lokka and Zervos (2008)).
This system of equations can be justified as follows:

(i) The penalization procedure is standard when solving variational inequalities arising in opti-
mal stopping (see, e.g., Bensoussan and Lions (1982)). One can show that as 𝛿 ↓ 0 the solution
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F IGURE 2 Plots of the optimal
stopping boundary in the case
𝜌(𝑟) = 𝑟0 + 𝑟 (boundary of the black
area) and 𝜌(𝑟) =

√
𝑟0 + 𝑟 (boundary of

the grey area). Continuation regions lie
below the boundaries, while stopping
regions above the boundaries. The fact
that the boundaries curve downwards for
large 𝑟 is an artifact of the boundary
condition at 𝑟𝑚𝑎𝑥

of (203) converges to the true value function 𝑈 uniformly on compacts (provided of course
that 𝑈 is sufficiently regular, as in our case). The advantage of solving (203) numerically
instead of the free boundary problem in Corollary 3.7 is that the domain in (203) does not
need to be determined as part of the solution.

(ii) The first condition in (205), that is, 𝑈(𝑟max, 𝑧) = 𝑈(𝑟, 𝑧max) = 1, is justified by noticing that
the optimal boundary 𝑏(𝑟) is bounded (cf. Proposition 3.14-(ii)) and converges to 𝛼 = 0 as
𝑟 ↑ ∞ (cf. Proposition 3.14-(iii)). So, for large values of 𝑟 and/or 𝑧 we expect to be in the
stopping region.

(iii) The second condition in (205) is the most delicate, since {0} is not attainable by 𝑅 and so in
theory there is no need for a boundary condition. Numerically, however, such a condition
is needed. Here we use that 𝑈(𝑟, 𝑧) ≤ 𝑢(𝑧) for any (𝑟, 𝑧), and that, theoretically we expect
𝑈(0, 𝑧) ≈ 𝑢(𝑧) for large values of 𝑧.

Drawings of the optimal stopping boundaries are presented in Figure 2. The boundary of the
black region is the one obtained for 𝜌(𝑟) = 𝑟0 + 𝑟, whereas the boundary of the grey area is the one
obtained for 𝜌(𝑟) =

√
𝑟0 + 𝑟. For completeness we also plot the value function 𝑈 of the optimal

stopping problems.
In Figure 2 we observe that the optimal boundary related to 𝜌(𝑟) =

√
𝑟0 + 𝑟 is smaller than

that related to 𝜌(𝑟) = 𝑟0 + 𝑟. Intuitively, because of its mean-reverting behavior, the interest rate
process 𝑅 oscillates around 𝜃 = 0.15 for all times with large probability. So

√
𝑟0 + 𝑅𝑡 ≈ 0.2 (being

𝑟0 = 0.05), with fluctuations of order
√
𝑅𝑡 ≈ 0.45. As a consequence,

√
𝑟0 + 𝑅𝑡 ≳ 𝑟0 + 𝑅𝑡, which

implies that the value function𝑈 with linear discount rate is larger than the one discounted with
𝜌(𝑟) =

√
𝑟0 + 𝑟 (see Figures 3 and 4). This fact in turn yields the ordering between the free bound-

aries observed in Figure 2.
From Figure 2 we also notice that the optimal boundary obtained for 𝜌(𝑟) =

√
𝑟0 + 𝑟 seems

more convex than its counterpart in the case of linear discount rate, in a right neighborhood of
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F IGURE 3 Plot of 𝑈 in the case
𝜌(𝑟) = 𝑟0 + 𝑟 [Color figure can be viewed
at wileyonlinelibrary.com]

F IGURE 4 Plot of 𝑈 in the case
𝜌(𝑟) =

√
𝑟0 + 𝑟 [Color figure can be

viewed at wileyonlinelibrary.com]

𝑟 = 0. This is due to the fact that when 𝑟 = 𝑟min the two value functions in Figures 3 and 4 take
the same value (cf. (205)) but a small increment in 𝑟 affects the discount rate 𝜌(𝑟) =

√
𝑟0 + 𝑟more

than in the linear case, hence causing a faster drop in the corresponding value function.We finally
notice that employing eq. (3.6) in Lokka and Zervos (2008), among others, the free boundaries
associated to the optimal dividend problemswith constant discount rate 𝜌(𝑟) = 𝑟0 and 𝜌(𝑟) =

√
𝑟0

can be explicitly evaluated. In particular, for our parameter choice they assume values 3.56 and
1.98, respectively.

5.3 On the case of correlated Brownian motions

Throughout this paper we have assumed that 𝑊 and 𝐵 are independent. Here we provide the
heuristic connection between the dividend problem and an optimal stopping problem when𝑊
and 𝐵 are correlated (see also De Angelis (2020b)). The connection used in Section 3 will then
follow as a special case. We do remark however that the stopping problem obtained for correlated
Brownian motions is structurally more involved than the one we solved in this paper. A complete
study requires different tools and it is left for future work (more details are presented at the end).
Recall the dynamics for (𝑅, 𝑍𝐷) given by (3) and (1) and assume 𝖤[𝐵𝑡𝑊𝑡] = 𝛽𝑡, for some 𝛽 ∈

(−1, 1). The infinitesimal generator  of the pair (𝑅, 𝑍0) is then defined by its action on twice-
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continuously differentiable functions 𝑓 as

𝑓 ∶=
1

2
𝜎2 𝑓𝑧𝑧 + 𝛽𝜎𝛾

√
𝑟 𝑓𝑟𝑧 +

1

2
𝛾2 𝑟 𝑓𝑟𝑟 + 𝜇 𝑓𝑧 + 𝑘(𝜃 − 𝑟) 𝑓𝑟, (206)

and the HJB equation for the dividend problem reads as in (13), but with  given now by (206).
Letting 𝑧 ↓ 𝛼 in the second equation of (13), assuming that [0, ∞) × {𝛼} belongs to the inaction

set, we get

1

2
𝜎2 𝑣𝑧𝑧(𝑟, 𝛼+) + 𝜇 𝑣𝑧(𝑟, 𝛼+) + 𝛽𝜎𝛾

√
𝑟 𝑣𝑟𝑧(𝑟, 𝛼+) = 0, (207)

using the fact that 𝑣(𝑟, 𝛼) = 0 should imply 𝑣𝑟(𝑟, 𝛼) = 𝑣𝑟𝑟(𝑟, 𝛼) = 0 for sufficiently smooth 𝑣. Set-
ting 𝑢 ∶= 𝑣𝑧 and differentiating the second equation in (13), we find

⎧⎪⎨⎪⎩
𝑢(𝑟, 𝑧) − 𝜌(𝑟) 𝑢(𝑟, 𝑧) = 0, on {𝑢 > 1}

𝑢(𝑟, 𝑧) ≥ 1, a.e. (𝑟, 𝑧) ∈ 
𝑢𝑧(𝑟, 𝛼+) +

2𝛽𝛾

𝜎

√
𝑟 𝑢𝑟(𝑟, 𝛼+) +

2𝜇

𝜎2
𝑢(𝑟, 𝛼+) = 0, 𝑟 ≥ 0,

(208)

where the final equation is (207). A further condition of the form

𝑢(𝑟, 𝑧) − 𝜌(𝑟) 𝑢(𝑟, 𝑧) ≤ 0, a.e. (𝑟, 𝑧) ∈  (209)

should appear in variational problems related to optimal stopping. While this cannot be derived
directly from (13), we may equally expect that the variational problem for 𝑢 be related to the opti-
mal stopping problem

𝑈(𝑟, 𝑧) ∶= sup
𝜏≥0 𝖤𝑟,𝑧

[
𝑒
2𝜇

𝜎2
𝓁𝛼𝜏 −∫ 𝜏

0
𝜌(𝑅𝑠) 𝑑𝑠

]
, (𝑟, 𝑧) ∈ , (210)

where (recall (50)),

𝐾𝑧
𝑡 = 𝑧 − 𝑌𝑡 + 𝓁𝛼𝑡 , 𝑌𝑡 = −𝜇𝑡 + 𝜎𝐵𝑡 and 𝓁𝛼𝑡 ∶= (𝑧 − 𝛼) ∨ 𝑆𝑡 − (𝑧 − 𝛼), (211)

so that (𝐾𝑡)𝑡≥0 is a Brownian motion with drift 𝜇 and diffusion 𝜎, starting at 𝑧 ≥ 𝛼 and reflected
at 𝛼 (see Peskir (2006)); instead, the dynamics of the process 𝑅 reads

𝑑𝑅𝑡 = 𝑘(𝜃 − 𝑅𝑡)𝑑𝑡 + 𝛾

√
𝑅𝑡 𝑑𝑊𝑡 +

2𝛽𝛾

𝜎

√
𝑅𝑡 𝑑𝓁

𝛼
𝑡 , 𝑅0 = 𝑟, (212)

where𝑊 is also a Brownian motion and 𝖤[𝐵𝑡𝑊𝑡] = 𝛽𝑡 as before.
In order to clarify why we expect 𝑢 = 𝑈, assume 𝑢 ∈ 𝐶2(̄) be a solution to (208) with the

additional condition (209). Applying Dynkin’s formula to

𝑒
2𝜇

𝜎2
𝓁𝛼𝑡 −∫ 𝑡

0
𝜌(𝑅𝑠) 𝑑𝑠𝑢(𝑅𝑡, 𝑍𝑡) (213)
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on the random interval [0, 𝜏], we get

𝑢(𝑟, 𝑧) = 𝖤𝑟,𝑧

[
𝑒
2𝜇

𝜎2
𝓁𝛼𝜏 −∫ 𝜏

0
𝜌(𝑅𝑠) 𝑑𝑠𝑢(𝑅𝜏, 𝑍𝜏) − ∫

𝜏

0

𝑒
2𝜇

𝜎2
𝓁𝛼𝑡 −∫ 𝑡

0
𝜌(𝑅𝑠) 𝑑𝑠(𝑢 − 𝜌𝑢)(𝑅𝑡, 𝐾𝑡)𝑑𝑡

]
+ 𝖤𝑟,𝑧

[
∫

𝜏

0

𝑒
2𝜇

𝜎2
𝓁𝛼𝑡 −∫ 𝑡

0
𝜌(𝑅𝑠) 𝑑𝑠Γ(𝑅𝑡, 𝐾𝑡)𝑑𝓁

𝛼
𝑡

]
, (214)

where Γ(𝑟, 𝑧) ∶= 𝑢𝑧(𝑟, 𝑧) +
2𝛽𝛾

𝜎

√
𝑟 𝑢𝑟(𝑟, 𝑧) +

2𝜇

𝜎2
𝑢(𝑟, 𝑧). Then, using that 𝑢 − 𝜌𝑢 ≤ 0 and that

Γ(𝑅𝑡, 𝐾𝑡)𝑑𝓁
𝛼
𝑡 = Γ(𝑅𝑡, 𝛼)𝑑𝓁

𝛼
𝑡 = 0 we obtain

𝑢(𝑟, 𝑧) ≥ 𝖤𝑟,𝑧

[
𝑒
2𝜇

𝜎2
𝓁𝛼𝜏 −∫ 𝜏

0
𝜌(𝑅𝑠) 𝑑𝑠𝑢(𝑅𝜏, 𝑍𝜏)

]
≥ 𝖤𝑟,𝑧

[
𝑒
2𝜇

𝜎2
𝓁𝛼𝜏 −∫ 𝜏

0
𝜌(𝑅𝑠) 𝑑𝑠

]
(215)

for any stopping time 𝜏. Therefore, 𝑢 ≥ 𝑈. Finally, by the first and second formula in (208), the
above inequalities become equalities if we choose

𝜏 = inf {𝑡 ≥ 0 ∶ 𝑢(𝑅𝑡, 𝐾𝑡) = 1} (216)

and provided that 𝖯𝑟,𝑧(𝜏 < ∞) = 1 and suitable transversality conditions hold. Thus 𝑈 = 𝑢.
If 𝛽 = 0we fall back into our original setting from Section 3, where 𝑅 = 𝑅 and 𝑅 is independent

of 𝐾 (then also 𝑈 = 𝑈 as in (52)). Such independence of the two processes is useful to establish
integrability and monotonicity properties of the value function 𝑈, which instead are no longer
guaranteed when 𝛽 ≠ 0 (the main difficulty is due to 𝓁𝛼 appearing also in the dynamics of of the
discount rate). Therefore, a study of the problem in full generality requires different methods to
the one we use in this paper and it is left for future work.
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