
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 25, no. 1, pp. 563–580 (2021)
DOI: 10.7155/jgaa.00571

A family of tree-based generators
for bubbles in directed graphs

Vicente Acuña 1 Leandro Ishi Soares de Lima 2 Giuseppe F. Italiano 3,4

Luca Pepè Sciarria 5 Marie-France Sagot 4,6 Blerina Sinaimeri 3,4

1Center for Mathematical Modeling (FB210005),
University of Chile and IRL 2807 CNRS, Santiago, Chile.

2European Bioinformatics Institute, Cambridge, UK
3LUISS University, Rome, Italy

4Erable, INRIA Grenoble Rhône-Alpes, France
5University of Rome Tor Vergata, Rome, Italy

6Université de Lyon, Université Lyon 1, Laboratoire de Biométrie et Biologie Evolutive, UMR
5558, Villeurbanne France.

Submitted: February 2021 Reviewed: September 2021 Revised: October 2021

Accepted: October 2021 Final: October 2021 Published: October 2021

Article type: Regular paper Communicated by: G. Liotta

Abstract. Bubbles are pairs of internally vertex-disjoint (s, t)-paths in a directed
graph. In de Bruijn graphs built from reads of RNA and DNA data, bubbles represent
interesting biological events, such as alternative splicing (AS) and allelic differences
(SNPs and indels). However, the set of all bubbles in a de Bruijn graph built from
real data is usually too large to be efficiently enumerated and analysed in practice. In
particular, despite significant research done in this area, listing bubbles still remains the
main bottleneck for tools that detect AS events in a reference-free context. Recently, in
[1] the concept of a bubble generator was introduced as a way for obtaining a compact
representation of the bubble space of a graph. Although this bubble generator was
quite effective in finding AS events, preliminary experiments showed that it is about

A preliminary version of this paper was presented at the 31st Intern. Workshop on Combinatorial Algorithms [2].

V. Acuña is supported by CMM ANID PIA FB210005 and ACE210010 - CNRS IRL #2807 and Center for Genome
Regulation FONDAP 15090007. G. F. Italiano is partially supported by MIUR, the Italian Ministry for Education,
University and Research, under PRIN Project AHeAD (Efficient Algorithms for HArnessing Networked Data). B.
Sinaimeri and M.-F. Sagot are partially funded by the French ANR project Aster (2016-2020). Part of this work
was done while G. F. Italiano was visiting Université de Lyon and B. Sinaimeri and M.-F. Sagot were visiting LUISS
University in Rome.

E-mail addresses: viacuna@dim.uchile.cl (Vicente Acuña) leandro@ebi.ac.uk (Leandro Ishi Soares de Lima) gital-
iano@luiss.it (Giuseppe F. Italiano) luca.pepesciarria@gmail.com (Luca Pepè Sciarria) Marie-France.Sagot@inria.fr
(Marie-France Sagot) bsinaimeri@luiss.it (Blerina Sinaimeri)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00571
mailto:viacuna@dim.uchile.cl
mailto:leandro@ebi.ac.uk
mailto:gitaliano@luiss.it
mailto:gitaliano@luiss.it
mailto:luca.pepesciarria@gmail.com
mailto:Marie-France.Sagot@inria.fr
mailto:bsinaimeri@luiss.it
https://creativecommons.org/licenses/by/4.0/

564 Acuña et al. Tree-based bubble generator

5 times slower than state-of-art methods. In this paper we propose a new family of
bubble generators which improve substantially on previous work: bubble generators in
this new family are about two orders of magnitude faster and are still able to achieve
similar precision in identifying AS events. To highlight the practical value of our new
bubble generators, we also report some experimental results on real datasets.

Keywords: bubble generator, directed graphs, alternative splicing

1 Introduction

The advent of sequencing technologies has revolutionised the study of DNA and RNA data. The
information contained in the reads coming from genome or transcriptome sequencing is usually
represented by a de Bruijn graph (see e.g., [20, 22]). A de Bruijn graph is a graph whose vertices
correspond to sequences of length k on the DNA alphabet {A,C, T,G}, and there is an edge (u, v)
if the k − 1 suffix of u coincides with the k − 1 prefix of v. An example of a de Bruijn graph is
given in Fig. 1.

In this graph bubbles, i.e., pairs of internally vertex-disjoint (s, t)-paths, play an important
role in the study of genetic variations, which include Alternative Splicing (AS) in RNA-data [18,
23, 22, 24] and SNPs (Single Nucleotide Polymorphism), and indels in DNA-data [12, 26, 27].
Since bubbles can be associated to such biologically relevant events, in recent years there have
been several theoretical studies on bubbles (see e.g., [5, 6, 21, 23, 25]), and in particular there
has been a growing interest in algorithms for listing all bubbles in a directed graph. However,
in real data graphs the number of bubbles can be exponential in the size of the graph. As a
consequence, in practice current algorithms are able to list only a subset of the bubble space, thus
losing the information related to the bubbles that are left unexplored. Furthermore, not every
bubble corresponds to a biological event. Indeed, a significant number of these bubbles can be
false positives (i.e., they are not biologically relevant events), and are produced as artifacts of
the underlying construction of the de Bruijn graph. In this framework, the main question is how
to find a subset of bubbles that can be efficiently computed in practice and that correspond to
relevant biological events.

To tackle this question, the notion of bubble generator was first introduced in [1]. Intuitively, a
bubble generator is a subset of bubbles of polynomial size, from which all the other bubbles in the
graph can be obtained through a suitable application of a specific symmetric difference operator.
In particular, the bubble generator proposed in [1] contains at most m ·n bubbles, where m and n
denote respectively the number of edges and vertices in the input graph. Furthermore, the authors
of [1] provided an algorithm that, given any bubble B in the graph, is able to find in O(n3) time
the bubbles of the generator that can be combined to produce B through a symmetric difference
operator. To test its practical value, the bubble generator was used to find AS events in a real
dataset. As reported in [1], this bubble generator was able to achieve about the same precision in
identifying AS events as the state-of-art-algorithm KisSplice [18, 22], but unfortunately building
the bubble generator was about 5 times slower than finding AS events with KisSplice. Despite
its great theoretical value, this poses a serious limitation on the practical application of this bubble
generator to large-scale datasets, which are typical of biological applications.

To address this issue, in this paper we present a new family of bubble generators which improves
substantially on the one proposed in [1]. In particular, in the same RNA dataset used in [1],
bubble generators in our family are about two orders of magnitude faster in practice than the
bubble generator in [1], and improve the precision in identifying AS events from 77.3% to 90%.

JGAA, 25(1) 563–580 (2021) 565

Furthermore, as the generators are truly fast in practice, we are now able to analyse a larger dataset
that was not possible with the bubble generator proposed in [1]. When compared to the state-
of-the-art algorithm for identifying AS events, our bubble generators are also much faster than
KisSplice [18, 22], have similar precision, and find AS events that KisSplice cannot find. In the
experiments, we observed that our new generators also contain many bubbles that correspond to a
particular type of AS event, namely intron retention (IR), which is usually considered a hard-to-
find event. We believe that our experimental findings make the new bubble generators the method
of choice for finding AS events in a reference-free context, especially in large-scale data sets.

From the theoretical viewpoint, our new generators are of minimum size (i.e. size m− n+ 1)
for flow graphs, i.e., graphs in which there exists a vertex that can reach all other vertices. In
case of general graphs, their size is bounded by |S|(m − n + 1), where S is the source set, i.e., a
minimum set of vertices that can reach every other vertex in the graph. Although in the worst
case this is asymptotically equivalent to the size of the generator in [1], in our experiments the
new generators had a much smaller size in practice. Furthermore, the new generators have a much
faster decomposition algorithm: given a bubble B it is possible to compute in O(n) time the set
of bubbles in the new generators from which B can be composed, while the bubble decomposition
algorithm of [1] required as much as O(n3) time for this task.

To design our new family of generators, we find a way to exploit some connections with cycle
bases. We observe that the techniques developed for cycle bases (both in undirected and in directed
graphs) cannot be applied directly to bubble generators. Indeed, as reported in [1], the main
difference with cycle bases is that in our problem, in order to have biological relevance the following
two properties are needed:

(P1) A bubble generator for a directed graph G must contain only bubbles;

(P2) For each bubble of G there exists a decomposition into bubbles of the generator, so that
only bubbles are generated at each step of this decomposition.

We remark that ensuring properties (P1) and (P2) for cycles (in place of bubbles) is already
non-trivial. Indeed, Gleiss et al. [10] have shown that it is possible to find a basis composed
of directed cycles if the graph is strongly connected. However, this is not known in the case of
general directed graphs. On the other side, Property (P2) is somewhat reminiscent of the notion of
cyclically robust cycle bases which allows one to generate all cycles of a given graph by iteratively
adding cycles of the basis [13, 17]. Unfortunately, not all graphs have a cyclically robust cycle basis
[11] and understanding for which graph classes such a basis can be found is still an important open
problem (see e.g., [17]). Despite all these difficulties, we prove that a bubble generator based on
spanning trees of the input graph satisfies properties (P1) and (P2). Since our bubble generators
are identified from a chosen spanning tree, we also investigate the influence of the choice of spanning
tree on the resulting generator.

The remainder of this paper is organised as follows. Section 2 presents some definitions that will
be used throughout the paper. Section 4 introduces our family of bubble generators for flow graphs
and for arbitrary graphs and we prove that it satisfies properties (P1) and (P2). Section 5 presents
our experimental results: we first provide an empirical analysis of the characteristics of our new
bubble generators based on the choice of the spanning tree (Subsection 5.1) and then we show an
application of our new bubble generators in processing and analysing RNA data (Subsection 5.2).
Finally, we conclude with some open problems in Section 6.

566 Acuña et al. Tree-based bubble generator

2 Preliminaries

Throughout the paper, we assume that the reader is familiar with the standard graph terminology,
as contained for instance in [8]. A graph is a pair G = (V,E), where V is the set of vertices, and
E ⊆ V × V is the set of edges. For convenience, we may also denote the set of vertices V of G
by V (G) and its set of edges E by E(G). We further set n = |V (G)| and m = |E(G)|. A graph
may be directed or undirected, depending on whether its edges are directed or undirected. In this
paper, we deal with graphs that are directed, unweighted and finite. An edge e = (u, v) is said to
be incident to the vertices u and v, and u and v are said to be the endpoints of e = (u, v). For a
directed graph, edge e = (u, v) is said to be leaving vertex u and entering vertex v. Alternatively,
e = (u, v) is an outgoing edge for u and an incoming edge for v. The in-degree of a vertex v is
given by the number of edges entering v, while the out-degree of v is the number of edges leaving
v. The degree of v is the sum of its in-degree and out-degree.

We say that a graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E.
Given a subset of vertices V ′ ⊆ V , the subgraph of G induced by V ′, denoted by GV ′ , has V ′ as
vertex set and contains all edges of G that have both endpoints in V ′. Given a subset of edges
E′ ⊆ E, the subgraph of G induced by E′, denoted by GE′ , has E′ as edge set and contains all
vertices of G that are endpoints of edges in E′. Given a subset of edges E′ ⊆ E, we denote by
by G \ E′ the graph induced by E \ E′. Given two subgraphs G and H, their union G ∪H is the
graph F for which V (F) = V (G) ∪ V (H) and E(F) = E(G) ∪ E(H). Their intersection G ∩H is
the graph F for which V (F) = V (G) ∩ V (H) and E(F) = E(G) ∩ E(H).

Let s, t be any two vertices in G. A (directed) path from s to t in G, denoted as s ; t, is a
sequence of vertices and edges s = v1, e1, v2, e2, . . ., vk−1, ek−1, vk = t, such that ei = (vi, vi+1)
for i = 1, 2, . . . , k− 1. Since there is no danger of ambiguity, in the remainder of the paper we will
also denote a path simply as s = v1, v2, . . ., vk−1, vk = t (i.e., as a sequence of vertices). A path
is simple if it does not contain repeated vertices, except possibly for the first and the last vertex.
Throughout this paper, all the paths considered will be simple and referred to as paths. A path
from s to t is also referred to as an (s, t)-path. The length of a path is given by the number of
edges that belong to it.

Definition 1 Given a directed graph G and two (not necessarily distinct) vertices s, t ∈ V (G),
an (s, t)-bubble consists of two directed (s, t)-paths referred to as legs, that are internally vertex
disjoint. Vertex s is the source and t is the target of the bubble. If s = t then exactly one of the
paths of the bubble has length 0, and therefore B corresponds to a directed cycle. In this case, we
say that B is a degenerate bubble.

We say that a vertex u is reachable from the vertex v if there exists a path from v to u in the
graph. An undirected graph is connected if every vertex is reachable from any other vertex in the
graph. A directed graph G is (weakly) connected if the underlying undirected graph is connected.

Any maximal connected subgraph of G is called a connected component. We denote by c the
number of connected components of G. A directed graph G is a tree if it is connected and has
n − 1 edges. A subgraph T of G is called a spanning tree if it constitutes a tree on all vertices in
G. A directed graph G is connected if and only if there is a spanning tree of G.

A directed graph G is a flow graph if there is at least one vertex s (referred to as a start vertex)
which can reach all other vertices. Given a directed and connected graph G, any spanning tree T
containing directed paths from a vertex r to each leaf is a called a directed spanning tree rooted
at r. Notice that a directed graph G is a flow graph with start s if and only if there is a directed
spanning tree rooted at s.

JGAA, 25(1) 563–580 (2021) 567

3 Bubble generators in the space of even subgraphs

We recall here the operation used to combine two bubbles [1]. Two subgraphs G1, G2 of G can be
combined by the operator △ that simply consists in the graph induced by the symmetric difference
of the set of edges. More formally, G1△G2 = (G1 ∪G2) \ (E(G1)∩E(G2)) where E(Gi) is the set
of edges of Gi. If G3 = G1△G2, we say that G3 is the sum of G1 and G2. Notice that by definition
G3 is a graph induced by a set of edges and thus it has no isolated vertices.

Given this operator, there are examples (see Figure 1) of two biological events (one nested
inside the other) that generate three bubbles in their graph representation. However, those three
bubbles are not independent since any one of them can be generated as the sum of the other two.
This motivates defining a subset of bubbles that can generate all the bubbles in the graph.

TAG

CGACCCATA TAC ACC CCG

AGA

ACT

GAG

CTC TCG

p2 : ATACTCGAG
p3 : ATAGAG

p1 : ATACCCGAG

p1 : ATACCCGAG

TAG

CGACCCATA TAC ACC CCG

AGA

ACT

GAG

CTC TCG

p2 : ATACTCGAG
p3 : ATAGAG

Figure 1: A toy example illustrating a SNP inside an AS event. We show three different sequences
and the corresponding de Bruijn graph constructed for k-mer size 3. The bubble between the paths
p1 and p2 is generated by a SNP while the bubble between p1 and p3 corresponds to an AS event
generated by the skipping of the subsequence CCC.

Although the previous example shows a sum of two bubbles that yields a bubble, this is not
always the case. To tackle this issue, we identify a bigger space that properly contains bubbles by
introducing the notion of even subgraphs. An even subgraph is a directed subgraph where every
vertex has total even degree. Note that bubbles (and any sum of two bubbles) are even subgraphs,
and it can be shown that the sum of two even subgraphs (under operator △) is an even subgraph.
Moreover, the space of all even subgraphs of G, under the defined operation, is a vector space that
we call the even space of G (also called the cycle space in undirected graphs [10, 14, 15, 19]). The
dimension of the even space, and therefore the size of any basis, is known to be m− n+ c (where
m, n and c are respectively the number of edges, vertices and connected components of G).

Bubbles are particular cases of even subgraphs, but in general it is not true that a basis of the
even space can be composed only by bubbles. The set of even subgraphs that can be obtained
by the sum of the bubbles is a vector subspace B of the even space. Therefore, the dimension of
B is bounded by m − n + c. If we are not taking into account Property P2, then the problem of
finding a small set B of bubbles that can generate the set of all bubbles is reduced to the problem
of finding a basis of B. Hence, the size of B is bounded by m − n + c. However, if we require B
to satisfy also Property P2, then the problem becomes more complicated and the size of B can be
greater than m− n+ c (see Figure 2).

Let B be a set of bubbles in G. We say that a bubble B has a tree decomposition in B, if B
can be decomposed in a binary-tree-like-fashion where the leaves correspond to bubbles in B and
the internal nodes are bubbles. We say that B is a bubble generator if each bubble in G has a tree
decomposition in B. Hence, by definition, a bubble generator satisfies properties P1 and P2.

A bubble generator B is minimal if no proper subset of B is a bubble generator. A bubble
generator is minimum if it has the minimum cardinality.

568 Acuña et al. Tree-based bubble generator

B

C

D

E

B

C

D

F

A

B D

E

A

B

C

D

A

B D

E

A

B D

F

B

C

D

F

A

B

C

D

E

F

(a)

B

C

D

E

B

C

D

F

A

B D

E

A

B

C

D

A

B D

E

A

B D

F

B

C

D

F

A

B

C

D

E

F

(b)

B

C

D

F

A

B D

E

A

B

C

D

B

C

D

E

A

B D

E

A

B D

F

B

C

D

F

A

B

C

D

E

F

(a) (b) (c) (c)

Figure 2: (a) A graph G, with a minimal bubble generator having size larger than the size of a
basis of its even space. (b) A minimal bubble generator of G. (c) A basis for the even space.

4 Defining a bubble generator from a spanning tree

In this section, we define a bubble generator (that is, a generator of all bubbles that satisfies prop-
erties P1 and P2). We consider first flow graphs and then we extend our results to general graphs.
Given a flow graph G with start vertex s, we find a directed spanning tree T of G, by performing
any graph visit starting from s. In the experimental results in Section 5 we consider different types
of visits, such as Depth-First Search, Breadth-First Search and Scan-First Search [7].

Let T be a directed spanning tree rooted at s and let e = (u, v) be a non-tree edge. The
insertion of e to the tree T produces a unique bubble Be. The source of this bubble is the least
common ancestor w of u and v, and its target is v. The two legs of this bubble are the tree path
from w to v and the tree path from w to u followed by the edge (u, v). We denote by BT (G) the
set of bubbles obtained in this way for all non-tree edges of the flow graph G. Notice that the set
of bubbles with only one non-tree edge is exactly the set BT (G) as every non-tree edge generates
exactly one bubble in BT (G). Since T has n− 1 edges, the set BT (G) contains m−n+1 bubbles.

Before proving that BT (G) is a bubble generator (satisfying Property P2), we first show that
BT (G) can generate any bubble. The definition of BT (G) is inspired on how Kirchhoff bases are
built in the cycle space of undirected graphs [16]. Indeed, our proof shows that BT (G) is a basis;
this implies that it can generate any even subgraph, and thus any bubble.

Theorem 1 Let G be a flow graph with start vertex s. Let T be a directed spanning tree rooted at
s and let BT (G) be the set of m − n + 1 bubbles identified by the non-tree edges of G. Then any
bubble B of G can be expressed as the sum of bubbles in BT (G).

Proof: Let B be any even subgraph of G. We show that BT (G) can generate B. Since bubbles
are even subgraphs, then the theorem follows.

We proceed by induction on the number of non-tree edges in B. If B has exactly one non-tree
edge, then B belongs to BT (G) and the theorem follows trivially. Assume now that the theorem
holds for even subgraphs with k − 1 non-tree edges. Let B be an even subgraph with k non-tree
edges and let e1 be one of its non-tree edges. If B1 is the bubble in BT (G) identified by the
non-tree edge e1, then the even subgraph B△B1 has k − 1 non-tree edges. By the induction
hypothesis, there are k − 1 bubbles B2, . . . , Bk such that B△B1 = B2△ . . .△Bk and therefore
B = B1△B2△ . . .△Bk. 2

JGAA, 25(1) 563–580 (2021) 569

Notice that |BT (G)| = m−n+1 and that any bubble in BT (G) has an exclusive edge (i.e. not
contained in any other bubble of the set) and therefore no bubble in BT (G) can be generated from
the remaining bubbles in BT (G). Thus, BT (G) is an independent set of bubbles and any bubble
generator of a flow graph must have at least m− n+ 1 bubbles.

Theorem 1 gives also a direct way to obtain the decomposition of a bubble B into bubbles of
BT (G) for flow graphs. We show in Theorem 3 that these bubbles allow for a decomposition in a
tree-like fashion and thus Properties P1 and P2 are satisfied.

Since each non-tree edge (u, v) is contained exactly in one bubble of BT (G), one needs to
consider all and only the bubbles of BT (G) identified by the non-tree edges of B (with respect to
T). Moreover, the set BT (G) can be found efficiently by simply performing a visit from the start
vertex s and by returning the non-tree edges.

It is worth mentioning that Theorem 1 can be extended to general graphs as follows. Let G
be an arbitrary directed graph G. Let S be a minimum set of vertices from which every vertex of
G can be reached. We denoted by S a source set of G. Note that in the worst case, |S| = O(n).
For each s ∈ S, let BT (G, s) be the set of bubbles identified by a visit starting from the vertex s
of G. Consider the set B(G,S) = ∪s∈SBT (G, s). Observe that the source of any bubble B in G
can be reached by at least one vertex s in S. Thus B belongs to a subgraph of G, which is a flow
graph rooted at s, and hence can be expressed as a composition of bubbles in BT (G, s). This can
be summarised by the following theorem.

Theorem 2 Let G be a directed graph and let S be its source set. Then there is a set of bubbles
B, such that each bubble in G can be generated starting from the bubbles in B (with a symmetric
difference operator), and |B| ≤ |S|(m− n+ 1).

Notice that for general graphs, our generator can reach the size of the generator proposed in [1].
However, it will be shown in Section 5 that in practice the size of our generator is much smaller.
Finally, we show that our generator ensures a tree-like decomposition and thus satisfies Property
P2. In other words, we show that each bubble B in G has a tree decomposition using a subset of
bubbles in BT and such that in each step we combine only bubbles. This result is quite technical
and is the main theoretical contribution of our work. To prove this we first need two propositions.

Given a bubble B and two distinct vertices u, v in B (not necessarily distinct from s, t), a
(u, v)-chord of B is a directed path from u to v that is internally vertex disjoint with B (i.e.
except for u and v, the path u ; v has no other vertex in common with B).

Proposition 1 Given a non-degenerate (s, t)-bubble B and a (u, v)-chord of B such that at least
one of the followings hold: (i) {u, v} ∩ {s, t} ̸= ∅, (ii) there is no directed path v ; u in B. Then
the (u, v)-chord defines two bubbles B1 and B2 such that B = B1△B2.

Proof: We consider two cases depending whether u and v are in different legs of B or not. If u
and v are in different legs of B, then we define B1 to be the bubble with source u and target t and
B2 to be the bubble with source s and target v. Notice that if at least one of u and v coincides
with s or t, they can still be considered to be in different legs as s and t belong to both legs of B.
It is easy to see that B = B1△B2. These cases are depicted in Fig. 3(a) − (d). If u and v are in
the same leg of B then we define B1 to be the bubble with source u and target v and B2 to be the
bubble with source s and target t (see Fig. 3(e1)). However, if there exists a path from v ; u in B
(see Fig. 3(e2)) then it is not possible to define the two bubbles B1 and B2. Notice that this is the
only case where the (u, v)-chord does not allow to define the two bubbles for which B = B1△B2.2

570 Acuña et al. Tree-based bubble generator

s t

u

v

B2 B1

(a1)

s t

v

u

B2 B1

(a2)

u=s t

vB2

B1

(b1)

v=s t

uB2

B1

(b2)

s t=v

u

B2

B1

(c1)

s t=u

v

B2

B1

(c2)

u=s t=vB1

B2

(d1)

v=s t=uB1

B2

(d2)

s tB2

B1

(e1)

u v

s tB2

B1

(e2)

v u

Figure 3: All the possible cases considered in Proposition 1. In dotted line we have the edges of the
(u, v)-chord, the bubble B is composed by the black and grey edges, the bubble B1 is composed
by the black and the dotted line edges and the bubble B2 by the grey and the dotted line edges.

Proposition 2 Given a degenerate bubble B then any (u, v)-chord of B defines two bubbles B1

and B2 such that B = B1△B2.

Proof: The proof follows straightforwardly by observing that every vertex in a directed cycle
C has in-degree and out-degree equal to one. After adding the edges of the (u, v)-chord, u has
out-degree equal to 2 and v has in-degree 2. Thus the directed cycle C can be written as the sum
of B1 that is the non-degenerate bubble with source u and target v and B2 that is the degenerate
bubble with source and target u (or v). 2

Propositions 1 and 2 are used to prove the following theorem.

Theorem 3 Let G be a flow graph with start vertex r, and let BT (G) be the set of bubbles identified
by a spanning tree T rooted at r. Then any bubble B in G can be decomposed in O(n2) time in
bubbles in BT (G) in a tree-like fashion.

Proof: Let G be a flow graph with start vertex r, and let BT (G) be the set of bubbles identified
by a spanning tree T starting from r. Let B be a bubble in G. We prove the theorem by induction
on the number of non-tree edges k in B. We show that B can be decomposed in at most k − 1
steps in bubbles from BT (G) in a tree-like fashion.

The base case k = 1 is trivial as the bubble is already in the generator and thus no decomposition
is needed. For the induction step suppose that the claim is true for bubbles with up to k− 1 non-
tree edges. Let B be a bubble with source s and target t with k non-tree edges. If B is a cycle,
then s = t can be chosen arbitrarily. Let E be the set of non-tree edges of B (|E| = k).

JGAA, 25(1) 563–580 (2021) 571

To prove the theorem, it suffices to show that B can be decomposed into two bubbles B1, B2,
with non-tree edges E1 and E2 respectively, such that E1 ̸= ∅, E2 ̸= ∅ and E1, E2 form a partition
of E. Moreover, by the induction hypothesis B1 and B2 can be decomposed in at most |E1| and
|E2| steps with |E1|+ |E2| = k. We will use the following observation:

Proposition 3 Let B be a bubble with k non-tree edges, and let B1 and B2 be two bubbles such
that B = B1△B2. If E(B1) ∩ E(B2) ⊆ E(T) then both B1 and B2 will have strictly less than k
non-tree edges.

Indeed, Proposition 3 follows from three simple observations: (i) if E(B1)∪E(B2) ⊆ E(B)∪E(T)
then B1 and B2 can only contain non-tree edges already in B; (ii) no non-tree edge can be in both
B1 and B2, and (iii) any bubble must have at least one non-tree edge (as it cannot be entirely in
the tree T). The main idea to prove the induction step is to identify a chord consisting only of
tree edges and use it to decompose B into two bubbles according to Proposition 1. As the chord
contains only tree edges, the result will then follow by Proposition 3. We consider two cases:

Case I: B is a non-degenerate bubble Note that there must necessarily be a path p = r ; t
in T (as a special case, p can be empty whenever r = t). To identify a chord consisting only of
tree edges, we follow this path “backwards” starting from t. The following cases are possible:

(a) The path p = r ; t (traced backwards) leaves and re-enters the bubble B. More formally,
there exist two vertices v and u in V (B) (with v not necessarily distinct from t and u not
necessarily distinct from s) such that the path v ; t is in B and the path u ; v is internally
vertex-disjoint from both legs of B. This case is depicted in Fig. 4(a1)-(a3). As the path p is
in T , it cannot touch the same vertex twice, and so u and v must be distinct. We then have a
(u, v)-chord that satisfies Proposition 1 and thus we can define B1, B2 such that B = B1△B2.
By Proposition 3, both B1 and B2 will have strictly less than k non-tree edges.

(b) The path p = r ; t (traced backwards) never leaves the bubble B. In other words, p is
entirely included in one leg of B. This implies that r belongs to this leg. In this case we need
to identify a new path in T as a chord of B. We distinguish the following two cases:

(b1) Assume first s ̸= r. Then, there must be a path q : r ; s in T . This case is depicted
in Fig. 4(b1). Starting from s, we trace this path backwards. Notice that as s has no
incoming edges in B, the first edge encountered (w, s) cannot be in B. Let u be the
first vertex in B that we encountered tracing backwards this path q. Notice that must
u exist, since we eventually end up in r, and r is in B. Then, the (u, s)-chord satisfies
Proposition 1 and we can define B1, B2 such that B = B1△B2. From Proposition 3
both B1 and B2 must have less than k non-tree edges.

(b2) Assume now s = r. In this case, the path p coincides with one of the legs of B, which
then is entirely contained in the tree T . This case is depicted in Fig. 4(b2). Note that
B must have at least two non-tree edges, otherwise it would be in the bubble generator.
As one leg of B is entirely in the tree T , both those non-tree edges must be in the
other leg of B. As a consequence, there must be a non-tree edge (w1, w2) in B, which
is not incident to t. Consider now the path q = r ; w2 in T : note that the tree path
q cannot be entirely in B. Follow the path q starting from r = s, and let u be the first
vertex where q departs from B: more formally, let (u, u1) be the first edge of q such
that (u, u1) ̸∈ E(B) (hence u ∈ V (B)). Vertex u can belong to any of the two legs of

572 Acuña et al. Tree-based bubble generator

s v=t

u

B2
B1

(a1)

u=s v=t
B2

B1

(a2)

s t

u v

B2

B1

(a3)

(b1)

s t

r

s t

r

u

B1
B2

(b2)

r=s t r=s t

w2w1u

B1
B2

(c2)

s t

r
B1

B2s t

r’ r
(c1)

s t

r

B1
B2

s t

r

u

Figure 4: All the possible cases considered in Case I of Theorem 3. In dashed line we indicate
edges of the bubble B that belong to the tree T and in a dotted line a path that belongs to the
tree but not to B. In grey the edges of B that do not belong to the tree T .

B. Note that the path q must enter B again at some point, since q ends in w2 and
w2 ∈ V (B). Following q forward from u, let v be the first vertex in q that belongs to
V (B). Notice that v must necessarily belong to the the leg of B that contains w2 as
the other leg belongs entirely to T and none of its vertices can have in-degree greater
than one in T . The (u, v)-chord satisfies the conditions of Proposition 1 and thus we
can define B1, B2 such that B = B1△B2. From Proposition 3 both B1 and B2 must
have less than k non-tree edges.

(c) The path p = r ; t (traced backwards) leaves the bubble B and never re-touches it again.
Let v ∈ V (B) be the first vertex such that the edge (v′, v) ̸∈ E(B). Notice that v must exist
as it can be t. In this case, clearly r ̸∈ V (B). Then, there must be a path q = r ; s which is
not entirely contained in B. Starting from s, we trace the path q backwards. The following
two cases can happen:

(c1) q touches the bubble B. As s has no incoming edges in B the first edge of q is not
in B. Hence, there exists a vertex in q, different from s that belongs to B. This case
is depicted in Fig. 4(c1). Let u be the first vertex we encounter that touches B. The
(u, s)-chord satisfies the conditions of Proposition 1 and thus we can define B1, B2 such
that B = B1△B2. From Proposition 3 both B1 and B2 must have less than k non-tree
edges.

(c2) q does not touch the bubble B. This case is depicted in Fig. 4(c2). Notice that the paths
r ; s and r ; v may share some edges, and so we consider r′ as the least common

JGAA, 25(1) 563–580 (2021) 573

ancestor of s and v in T . In this case, B can be written as the sum of two bubbles: B1

with source r′ and target v (v is not necessarily distinct from t), and B2 with source r′

and target t. From Proposition 3 both B1 and B2 must have less than k non-tree edges.

s y

z

(a)

x

w

y1 s y

z

(a1)

x

w

B1

B2

u

y1
s y

z

(a2)

x

w

v

y1

r

B2

B1

Figure 5: All the possible cases considered in Case II of Theorem 3. In a dotted line we indicate a
path that belongs to the tree but not to B. In grey the edges of B that do not belong to the tree T .

Case II: B is a cycle As B is not in the generator, then there must be at least two non-tree
edges in B, say (x, y) and (w, z). This case is depicted in Fig. 5(a) (notice that y is not necessarily
distinct from w). At least one among y and z must be different from the tree root r: without loss
of generality, assume y ̸= r. Consider the path p = r ; y in T and follow this path backwards
starting from y. Since (x, y) is a non-tree edge, the first edge (y1, y) traced back in the path p is
not in B. The following two cases can happen:

(a1) The path r ; y1 touches the bubble B. Starting from y1 and following the edges backwards,
let u be the first vertex that u ∈ V (B). This case is depicted in Fig. 5(a1) Then we have
found a (u, y) -chord. From Proposition 2, we can define B1, B2 such that B = B1△B2.
From Proposition 3 both B1 and B2 must have less than k non-tree edges.

(a2) The path r ; y1 does not touch the bubble B. This implies that the only vertex in common
between the path p = r ; y and B is y. Then clearly r ̸∈ V (B). As a consequence, there
must exist a path r ; z that is not entirely contained in B (as r is not in B). This case is
depicted in Fig. 5(a2). Starting from r, let v be the first vertex in the path r ; z that belongs
to V (B). Clearly v exists as it can be z. Notice that B can be written as the sum of two
bubbles: B1 with source r and target y and B2 with source r and target v. By Proposition 3,
both B1 and B2 must have less than k non-tree edges.

Finally, notice that each step of the decomposition takes O(n) time (as we are traversing a
bubble and a path in a tree) and each bubble can have at most O(n) non-tree edges. Therefore
the decomposition can be done in O(n2) time. 2

Using the same arguments used for Theorem 2, we can extend Theorem 3 to general graphs as
follows.

Corollary 1 Let G be a directed graph, then there is a set of bubbles B, such that each bubble in
G can be decomposed in O(n2) time in bubbles in B in a tree-like fashion.

574 Acuña et al. Tree-based bubble generator

5 Experimental results

To test the usefulness of our family of generators in practice, we applied it to the identification
of AS events in RNA data in a reference-free context. In order to compare our generators to
both the state-of-art algorithm KisSplice [18, 22] and to the generator defined in [1], we used
two datasets: Dataset 1 is the same dataset as in [1] which consists of a sample (corresponding
to chromosome 10) of 4,932,572 RNA-seq Illumina paired-end reads extracted from the mouse
brain tissue (available in the ENA repository under the following study: PRJEB25574). Dataset 2
corresponds to a sample of 10 million reads from the dataset presented in [3] of human lung cells
infected by Influenza A viruses (IAVs).

We built the de Bruijn graph from these reads and applied standard sequencing-error-removal
procedures by using KisSplice [18, 22]. We recall that KisSplice is a method to find AS events
in a reference-free context by enumerating bubbles in a de Bruijn Graph.

For our family, we considered generators coming from three different types of underlying span-
ning trees, namely Depth-First Search (DFS), Breadth-First Search (BFS) and Scan-First Search
(SFS). We recall here that Scan-First Search is the graph search procedure introduced in [7] and
which works as follows. As with DFS and BFS, we start from a specified source vertex s and we
mark it. At each step, we perform what we call a scan. This selects a marked vertex v and marks
all previously unmarked neighbours of v. In other terms, SFS proceeds by scanning a marked and
unscanned vertex until all vertices are scanned. Notice that both BFS and DFS can be seen as
special cases of SFS. Similarly to BFS and DFS, also SFS can produce a tree as follows. Initially,
the tree is empty. Whenever a vertex v is scanned, all the edges between v and its previously un-
marked neighbours are added to the tree. In our experiments, we implemented SFS with a random
choice of the next vertex to be scanned, and averaged on 1,000 runs with different random seeds.

To compute the source set of the de Bruijn graph, we computed in linear time the DAG
of its strongly connected components and chose a vertex from each source. The de Bruijn graph
corresponding to our dataset had a total of 83,400 vertices, 99,038 edges and 18,385 source vertices.

Finally, we recall that for general graphs, our new generators are not necessarily minimal.
In order to avoid producing duplicates of the same bubble, we discarded a bubble whenever its
source was already contained in a tree previously computed from another start vertex. Notice
that this does not guarantee the minimality of the generator as there can still be bubbles that
can be composed from bubbles that were already present in the generator. For this reason, in
general graphs we expect that the size of the generator may vary substantially, depending on the
underlying tree chosen.

All our experiments were carried out on a 64-bit machine running Ubuntu 16.04 LTS, equipped
with a 2.30 GHz processor Intel(R) Xeon(R) Gold 511, 192 GB of RAM, 16MB of L3 cache and 1
MB of L2 cache.

5.1 An empirical analysis of the characteristics of the bubble generator
based on the choice of the spanning tree

We first explore experimentally some characteristics of bubble generators in our family, depending
on the choice of the underlying spanning tree. The parameters we consider are: (i) the size of the
generator, (ii) the number of degenerate bubbles (cycles), (iii) the average length of the longest leg,
(iv) the average length of the shortest leg, (v) the number of branching bubbles (a branching bubble
is a bubble containing more than 5 vertices of in-degree or out-degree greater than 1 [18, 22]).

Table 1 shows the main characteristics of generators in our family. We also include the time

JGAA, 25(1) 563–580 (2021) 575

required to compute each generator. We do not include in this running time the pre-processing
time spent in creating the de Bruijn graph, which is exactly the same for all generators. We refer
to a generator in our family simply by the graph search used to generate it and we denote by
SP-Gen the generator defined in [1].

Generator Size #NDBubbles #DBubbles AvgLong AvgShort time(s)
DFS 12175 11792 383 90.53 40.5 3
BFS 42324 41959 365 33.57 21.23 3

SFS
Mean 41388 41187 201 56.58 41.47 3
STD 1102.8 1096 6.8 0.3 0.32 0.09

SP-Gen [1] 91486 80108 11378 70.12 31.31 380

Table 1: Characteristics of the generators in our family. The columns represent: the size of the
generator, #NDBubbles the number of non degenerate bubbles found, #DBubbles the number of
degenerate bubbles (i.e. cycles), AvgLong and AvgShort the average length of the longest and
shortest leg, respectively, and the time the algorithm spent in seconds. Notice that for Scan-First
search trees (SFS) we report the mean and the standard deviation of 1000 different runs.

As illustrated in Table 1, the size of all our new generators, independently of the underlying
spanning tree, is much smaller than the size of SP-Gen [1]. Furthermore, all our new generators
can be computed two orders of magnitude faster than SP-Gen. Furthermore, compared to BFS and
SFS, the DFS generator usually has smaller size and its bubbles have longer legs. We also observe
that, compared to SP-Gen, the percentage of cycles significantly drops in our new generators: from
12.4% for SP-Gen to 3.1% for DFS, 0.8% for BFS and 0.5% for SFS. This is desirable as cycles
are degenerate bubbles that do not correspond to AS events, and thus generators that avoid cycles
are preferable.

5.2 Application of the bubble generator to the identification of AS
events in RNA-seq data

As already mentioned in the introduction, identifying AS events in the absence of a reference
genome remains a challenging problem. Local assemblers such as KisSplice [18] are faced with a
dramatically large (and often practically unfeasible) running time due to the exponentially large
number of bubbles present, most of which are false positives, i.e. they are artificial bubbles not
associated with biological events. Indeed, a significantly large number of such artificial bubbles
comes from complex subgraphs created by the presence of approximate repeats in the transcrip-
tomic sequence. Thus, tools such as KisSplice use heuristics in order to avoid dealing with large
portions of a de Bruijn graph containing such complex subgraphs. Here we show how the set
of bubbles belonging to generators in our family can be used to predict AS events. Notice that
our method is reference-free; however, in order to evaluate it, we make use of annotated reference
genomes to assess if our predictions are correct.

To estimate the precision of our new generators in predicting AS events we proceed as follows.
We consider the whole set of bubbles belonging to the generator. We then apply the same filter
(based on the length of the legs) as in KisSplice to extract the bubbles that can be considered
as putative AS events. To determine the true AS events, we used STAR [9] to map the putative
bubbles of Dataset 1 to the Mus musculus reference genome and annotations (Ensembl release 94)

576 Acuña et al. Tree-based bubble generator

and those of Dataset 2 to the human genome (hg38, Gencode v36). We then analysed the results
using KisSplice2RefGenome [4]. Following [18], a bubble corresponds to a true AS event (or a
true positive (TP)) if one leg matches the inclusion isoform and the other the exclusion isoform.
Otherwise, the bubble is classified as a false positive. The precision of the method is defined as
TP/(TP + FP).

Below we detail the analysis of the results for the two datasets considered. We compared
our results to both SP-Gen and KisSplice. We report that Dataset 2 was already too large to
be handled by SP-Gen, which did not finish even after 1 day, whereas KisSplice and the tree
generators from our family produced the results in approximately 10 minutes. As a result, we will
not report data from SP-Gen on Dataset 2.

5.3 Analysis of Dataset 1: comparison with the SP-Gen and KisSplice

The results for DFS/BFS/SFS and SP-Gen are reported in Table 2. The results show that the
number of true AS events found by our generators is comparable to the number of true AS events
found by SP-Gen whereas the number of false positives is significantly smaller. Indeed, our genera-
tors have a precision between 87.7% and 91.6%, compared to 77.3% for the SP-Gen. An interesting
aspect of SP-Gen was that it contained many bubbles that were classified as Intron Retention (IR),
which is a type of AS event that is generally particularly hard to identify. As shown in Table 2,
the number of IR for our generators remains similar to the one found by SP-Gen.

Algorithm #putatitve AS events #true AS events precision #IR
BFS 1046 959 (91.6%) 319
DFS 1178 1034 (87.7%) 392
SFS 1163 1053 (90.5%) 391

SP-Gen [1] 1403 1085 (77.3%) 377

Table 2: Precision of the generators in our family. The columns represent: number of putative AS
events, number of true AS events, precision and number of intron retation events.

Since the computation of generators in our family is truly fast in practice, we combined them
by taking the union of bubbles coming from different generators and tested whether this would
increase the number of AS events found. Notice that the same bubble could be found in two
different generators in our family, and thus we eliminated duplicate bubbles in this process. In
Table 3 we report the results of different unions of generators in our family (DFS, BFS and 10
randomly chosen runs of SFS), together with the results of SP-Gen and KisSplice. As can be
seen, the union of different generators in our family allows us to find more true AS events than
both SP-Gen and KisSplice.

Finally, in [1] it was shown that SP-Gen was able to identify some AS events that will certainly
be lost by KisSplice. Indeed, the heuristic used by KisSplice does not generate bubbles con-
taining a number of branching vertices (i.e., vertices with in-degree or out-degree at least 2) higher
than some threshold. In KisSplice, the default value for this branching threshold is 5. Increasing
the value of this threshold will increase exponentially the running time of the algorithm and thus
a large branching threshold is unfeasible in practice. As reported in [1], around 27 true AS events
in SP-Gen have a branching number higher than 5, and are lost by KisSplice. For the family of
our generators, we have that the number of true AS events that are certainly lost by KisSplice is:

JGAA, 25(1) 563–580 (2021) 577

Algorithm #putatitve AS events #true AS events precision
BFS + DFS 1245 1099 88.3%

10-SFS 1622 1179 72.7%
BFS + DFS + 10-SFS 1677 1196 71%

SP-Gen [1] 1403 1085 77.3%
KisSplice 1293 1159 89.63%

Table 3: Combining different generators in our family. The columns represent: number of putative
AS events, number of true AS events and precision.

(a) 16 for the BFS, (b) 77 for the DFS, and (c) an average of 80 for SFS (averaged over different
choices of the random seed).

5.4 Analysis of Dataset 2: comparison with KisSplice

As already mentioned, this dataset was too big to analyse by SP-Gen. Indeed, SP-Gen did not
finish even after 1 day, while the generators of our family and KisSplice took approximately 10
minutes to produce the results. As a result, we report here only the comparison of our new tree
generators with KisSplice. As reported in Table 4, our new generators produce results that are
comparable to KisSplice. As a matter of fact, our generators produce a number of true AS events
that is similar to the one generated by KisSplice and the same holds for IR events. By combining
the results of our generators, we get a slightly higher number than KisSplice for both true AS
events and IR events.

Notice also that both the generator andKisSplice have a low precision on this dataset, meaning
that most of the bubbles found in the sample do not correspond to AS events in human. This is
not surprising as this dataset contains many reads coming from the virus [3].

Finally, the generators produce up to 155 true AS events that are certainly missed byKisSplice
as they correspond to bubbles with more than 5 branching vertices.

Algorithm #putatitive AS events #true AS events # IR # high branching
BFS 133 780 2172 159 76
DFS 49 884 2118 165 76

BFS + DFS 160652 2231 166 101
3-SFS 218 104 2162 162 83

BFS + DFS + 3-SFS 498048 2302 170 155
KisSplice 11 512 2257 165 -

Table 4: Combining different generators in our family. The columns represent: number of putative
AS events, number of true AS events, number of Intron Retention events and true AS events whose
corresponding bubbles have more than 5 branching vertices.

In summary, our new generators allowed us to analyse this dataset, which was not possible with
SP-Gen. Although the new generators show a similar performance as KisSplice in terms of both

578 Acuña et al. Tree-based bubble generator

the number of true AS events and computational time, they offer a nice complementary view as
they are able to include true AS events that were missed by KisSplice.

6 Conclusions and open problems

In this paper, we have proposed a new family of bubble generators which improves substantially on
the previous generator (SP-Gen [1]): generators in the new family are much faster, i.e., about two
orders of magnitude faster than SP-Gen, and they are still able to achieve similar (and sometimes
higher) precision in identifying AS events.

Our work raises several new and perhaps intriguing questions. First, we notice that while for
flow graphs our family produces minimum generators, for general graphs it is still open to find a
minimum bubble generator. Second, the fast computation of our new generators opens the way to
the design of algorithms that efficiently combine the bubbles of a generator in order to find more
AS events. Third, we believe that the number of false positives could be reduced by adding more
biologically motivated constraints. An example of constraint that can be introduced toward this
aim is to give a weight to each edge of the de Bruijn graph based on the reads coverage. A true AS
event would then correspond to bubbles in which the edges inside a leg must have similar weights
(but different legs may have different coverage). Fourth, when constructing a de Bruijn graph
from RNA-seq reads, some filters are applied that are meant to eliminate sequencing errors. These
filters remove vertices and edges whose coverage by the set of reads is below some given thresholds.
Changing those thresholds has a significant impact on the resulting de Bruijn graph, and hence on
the set of solutions. Is it possible to compute in a dynamic fashion a bubble generator when this
coverage threshold is changing, without having to recompute everything from scratch?

References

[1] V. Acuña, R. Grossi, G. F. Italiano, L. Lima, R. Rizzi, G. Sacomoto, M. Sagot, and
B. Sinaimeri. On bubble generators in directed graphs. Algorithmica, 82(4):898–914, 2020.
doi:10.1007/s00453-019-00619-z.

[2] V. Acuña, L. Lima, G. F. Italiano, L. Pepè Sciarria, M. Sagot, and B. Sinaimeri. A family of
tree-based generators for bubbles in directed graphs. In Combinatorial Algorithms - 31st In-
ternational Workshop, IWOCA 2020, Bordeaux, France, June 8-10, 2020, Proceedings, pages
17–29, 2020.

[3] U. Ashraf, C. Benoit-Pilven, V. Navratil, C. Ligneau, G. Fournier, S. Munier, O. Sismeiro,
J.-Y. Coppée, V. Lacroix, and N. Naffakh. Influenza virus infection induces widespread al-
terations of host cell splicing. NAR Genomics and Bioinformatics, 2(4), 11 2020. doi:

10.1093/nargab/lqaa095.

[4] C. Benoit-Pilven, C. Marchet, E. Chautard, L. Lima, M.-P. Lambert, G. Sacomoto, A. Rey,
A. Cologne, S. Terrone, L. Dulaurier, J.-B. Claude, C. Bourgeois, D. Auboeuf, and V. Lacroix.
Complementarity of assembly-first and mapping-first approaches for alternative splicing an-
notation and differential analysis from RNAseq data. Scientific Reports, 8(1), 2018. doi:

10.1038/s41598-018-21770-7.

https://doi.org/10.1007/s00453-019-00619-z
https://doi.org/10.1093/nargab/lqaa095
https://doi.org/10.1093/nargab/lqaa095
https://doi.org/10.1038/s41598-018-21770-7
https://doi.org/10.1038/s41598-018-21770-7

JGAA, 25(1) 563–580 (2021) 579

[5] E. Birmelé, P. Crescenzi, R. Ferreira, R. Grossi, V. Lacroix, A. Marino, N. Pisanti, G. Saco-
moto, and M.-F. Sagot. Efficient Bubble Enumeration in Directed Graphs. In SPIRE, pages
118–129, 2012. doi:10.1007/978-3-642-34109-0_13.

[6] L. Brankovic, C. S. Iliopoulos, R. Kundu, M. Mohamed, S. P. Pissis, and F. Vayani. Linear-
time superbubble identification algorithm for genome assembly. Theoretical Computer Science,
609:374–383, 2016. doi:https://doi.org/10.1016/j.tcs.2015.10.021.

[7] J. Cheriyan, M.-Y. Kao, and R. Thurimella. Scan-first search and sparse certificates: An im-
proved parallel algorithm for k-vertex connectivity. SIAM Journal on Computing, 22(1):157–
174, 1993. doi:10.1137/0222013.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third
Edition. The MIT Press, 3rd edition, 2009.

[9] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson,
and T. R. Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1):15–21,
2013. doi:10.1093/bioinformatics/bts635.

[10] P. M. Gleiss, J. Leydold, and P. F. Stadler. Circuit bases of strongly connected digraphs.
Discussiones Mathematicae Graph Theory, 23(2):241–260, 2003.

[11] R. H. Hammack and P. C. Kainen. Robust cycle bases do not exist for Kn,n if n ≥ 8. Discrete
Applied Mathematics, 235:206 – 211, 2018. doi:10.1016/j.dam.2017.10.001.

[12] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean. De novo assembly and genotyping
of variants using colored de bruijn graphs. Nat Genet, 44(2):226–232, 2012. doi:10.1038/

ng.1028.

[13] P. C. Kainen. On robust cycle bases. Electronic Notes in Discrete Mathematics, 11:430 – 437,
2002. The Ninth Quadrennial International Conference on Graph Theory, Combinatorics,
Algorithms and Applications.

[14] T. Kavitha, C. Liebchen, K. Mehlhorn, D. Michail, R. Rizzi, T. Ueckerdt, and K. A. Zweig.
Cycle bases in graphs characterization, algorithms, complexity, and applications. Computer
Science Review, 3(4):199 – 243, 2009. doi:https://doi.org/10.1016/j.cosrev.2009.08.

001.

[15] T. Kavitha and K. Mehlhorn. Algorithms to compute minimum cycle bases in directed graphs.
Theory of Computing Systems, 40(4):485 – 505, 2007. doi:10.1007/s00224-006-1319-6.

[16] G. Kirchhoff. Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der
linearen vertheilung galvanischer ströme geführt wird. Annalen der Physik, 148(12):497–508,
1847.

[17] K. Klemm and P. F. Stadler. A note on fundamental, non-fundamental, and robust cycle
bases. Discrete Applied Mathematics, 157(10):2432 – 2438, 2009. Networks in Computational
Biology. doi:10.1016/j.dam.2008.06.047.

[18] L. Lima, B. Sinaimeri, G. Sacomoto, H. Lopez-Maestre, C. Marchet, V. Miele, M.-F.
Sagot, and V. Lacroix. Playing hide and seek with repeats in local and global de novo
transcriptome assembly of short RNA-seq reads. Algorithms Mol Biol, 12, 2017. doi:

10.1186/s13015-017-0091-2.

https://doi.org/10.1007/978-3-642-34109-0_13
https://doi.org/https://doi.org/10.1016/j.tcs.2015.10.021
https://doi.org/10.1137/0222013
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1016/j.dam.2017.10.001
https://doi.org/10.1038/ng.1028
https://doi.org/10.1038/ng.1028
https://doi.org/https://doi.org/10.1016/j.cosrev.2009.08.001
https://doi.org/https://doi.org/10.1016/j.cosrev.2009.08.001
https://doi.org/10.1007/s00224-006-1319-6
https://doi.org/10.1016/j.dam.2008.06.047
https://doi.org/10.1186/s13015-017-0091-2
https://doi.org/10.1186/s13015-017-0091-2

580 Acuña et al. Tree-based bubble generator

[19] S. MacLane. A combinatorial condition for planar graphs. Fundamenta Mathematicae, 28:22–
32, 1937.

[20] J. R. Miller, S. Koren, and G. Sutton. Assembly algorithms for next-generation sequencing
data. Genomics, 95(6):315–327, 2010. doi:https://doi.org/10.1016/j.ygeno.2010.03.

001.

[21] T. Onodera, K. Sadakane, and T. Shibuya. Detecting Superbubbles in Assembly Graphs. In
Algorithms in Bioinformatics, volume 8126 of LNCS, pages 338–348. Springer Berlin Heidel-
berg, 2013. doi:10.1007/978-3-642-40453-5_26.

[22] G. Sacomoto, J. Kielbassa, R. Chikhi, R. Uricaru, P. Antoniou, M.-F. Sagot, P. Peterlongo,
and V. Lacroix. Kissplice: de-novo calling alternative splicing events from rna-seq data. BMC
Bioinformatics, 13(S-6):S5, 2012. doi:10.1186/1471-2105-13-S6-S5.

[23] G. Sacomoto, V. Lacroix, and M.-F. Sagot. A polynomial delay algorithm for the enumeration
of bubbles with length constraints in directed graphs and its application to the detection of
alternative splicing in RNA-seq data. In WABI, pages 99–111, 2013.

[24] M. Sammeth. Complete alternative splicing events are bubbles in splicing graphs. Journal of
Computational Biology, 16(8):1117–1140, 2009. doi:10.1089/cmb.2009.0108.

[25] W.-K. Sung, K. Sadakane, T. Shibuya, A. Belorkar, and I. Pyrogova. An O(m logm)-time
algorithm for detecting superbubbles. IEEE/ACM Trans. Comput. Biol. Bioinformatics,
12(4):770–777, 2015. doi:10.1109/TCBB.2014.2385696.

[26] R. Uricaru, G. Rizk, V. Lacroix, E. Quillery, O. Plantard, R. Chikhi, C. Lemaitre, and
P. Peterlongo. Reference-free detection of isolated SNPs. Nucleic Acids Research, 43(2):e11,
2015. doi:10.1093/nar/gku1187.

[27] R. Younsi and D. MacLean. Using 2k + 2 bubble searches to find single nucleotide
polymorphisms in k-mer graphs. Bioinformatics, 31(5):642–646, 2015. doi:10.1093/

bioinformatics/btu706.

https://doi.org/https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/10.1007/978-3-642-40453-5_26
https://doi.org/10.1186/1471-2105-13-S6-S5
https://doi.org/10.1089/cmb.2009.0108
https://doi.org/10.1109/TCBB.2014.2385696
https://doi.org/10.1093/nar/gku1187
https://doi.org/10.1093/bioinformatics/btu706
https://doi.org/10.1093/bioinformatics/btu706

	Introduction
	Preliminaries
	Bubble generators in the space of even subgraphs
	Defining a bubble generator from a spanning tree
	Experimental results
	An empirical analysis of the characteristics of the bubble generator based on the choice of the spanning tree
	Application of the bubble generator to the identification of AS events in RNA-seq data
	Analysis of Dataset 1: comparison with the SP-Gen and KisSplice
	Analysis of Dataset 2: comparison with KisSplice

	Conclusions and open problems

