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Abstract This paper proposes a new mathematical model for multi-objective redundancy allocation 
problem (RAP) without component mixing in each subsystem when the redundancy strategy can be 
chosen for individual subsystems. Majority of the mathematical model for the multi-objective 
redundancy allocation problems (MORAP) assume that the redundancy strategy for each subsystem is 
predetermined and fixed. In general, active redundancy has received more attention in the past. 
However, in practice both active and cold-standby redundancies may be used within a particular 
system design and the choice of the redundancy strategy becomes an additional decision variable. The 
proposed model for MORAP simultaneously maximizes the reliability and the net profit of the system. 
And finally, to clarify the proposed mathematical model a numerical example will be solved.

Keywords Redundancy Allocation Problem, Serial-Parallel System, Redundancy Strategies,
MORAP.

1 Introduction

The primary goal of reliability engineering is to improve the reliability of system. In the initial 
design activity, the redundancy allocation is a direct way of enhancing system reliability. The 
redundancy allocation problem involves the simultaneous selection of components and a 
system-level design configuration, which can collectively meet all design constraints in order 
to optimize some objective functions such as system cost and/or reliability. RAP can be 
categorized into RAP without component mixing [1, 2] and RAP with mix of components [3-
9]. Some researchers studied the RAP when the redundancy strategy can be chosen for 
individual subsystems [10-12]. 

MORAP is studied by many researchers. Basacca et al. [13] used a multi-objective 
genetic algorithm which allows the decision maker to identify set of pareto optimal solutions. 
They present a new model for maximizing the net profit and system reliability. Coit et al. [14] 
studied a MORAP to maximize system reliability and minimize the estimation of reliability. 
Coit et al. [15] used a multi-objective genetic algorithm to find pareto optimal solutions with 
three different goals (maximum system reliability and minimum cost and weight). Finally, the 
Pareto optimal solutions are prioritized based on the decision maker's objective function 
preferences. Coit et al. [16] considered a MORAP to maximize the reliability of each 
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individual subsystem. Konak et al. [17] considered a problem to determine the  optimal design 
configuration to maximize system reliability and minimize system cost, considering weight 
constraint and constraint for the number of dedicated components to each subsystem. They 
used a multinomial Tabu Search to solve this problem. Konak et al. [18] considered a multi-
objective RAP to maximize the reliability and minimize the cost. They used Tabu Search 
approach to initially find the entire Pareto set and then pruned the set of Pareto solutions by a 
Monte-Carlo simulation based on the decision marker's predefined objective function 
preferences. Taboada et al. [19] solved the same problem by using a new multiple objective 
evolutionary algorithm (MOEA) which mainly differs from other MOEAs. Taboada et al. [20]
studied MORAP to maximize the overall system reliability and minimize the system cost and 
weight. It was initially solved by using the Non-dominate Sorting Genetic Algorithm
(NSGA). They proposed two pruning methods to reduce the size of the Pareto optimal set.
Ling et al. [21] developed a multi-objective variable neighborhood search (MOVNS) 
algorithm for solving MORAP. They verified the performance of the proposed algorithm by 
testing it on three sets of complex instances with different subsystems. Lins et al. [22] studied 
a MORAP subject to imperfect repairs and system availability. They used a multi-objective 
genetic algorithm to solve this problem and compared result with multi-objective Ant colony 
algorithm. In all these introduced multi-objective papers, the active strategy is predetermined 
for subsystems. 

Based on the single objective model which is presented by Coit [10], in this paper a new
MORAP will be proposed. The main difference of this study with other MORAP is 
considering each subsystems strategy as a decision variable. 

The structure of this paper is organized as follows; Sections 2 and 3 present the problem 
definition and the problem modeling, respectively. In Section 4 a numerical example is 
solved. Finally, conclusion and future research is presented.

2 Problem definition

The problem that is studied in this paper is the result of adding a new objective function to the 
RAP without component mixing that is presented by Coit [10]. This new objective function 
calculates the pure profit that is gained during a limit period, considering different costs like
purchasing, penalties during downtime and damage cost of the components. The objective is 
to determine the strategy and choose the element and redundancy-level for each subsystem to 
maximize system reliability and profit of system subject to cost and weight constraints.

3 Problem modeling

To formulate the problem, the parameters first are defined in section 3.1. The new objective 
function is then derived in section 3.2. Finally, the mathematical model is developed in 
section 3.3.

3.1 Parameters

The parameters of the model are defined as follows.
A set of all subsystems with active redundancy,
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S         set of all subsystems with cold-standby redundancy,
N         set of all subsystems with no redundancy.

        s number of subsystems

in       number of components used in subsystems i(i=1,2,3,…,s)

n        set of ),...,,(n 21i snnn

      zi index of the component that is dedicated to subsystem i

       z set of ),....,,(z 21i szzz

      T mission time
)zR(t, i system reliability at time t 

    (t)rij reliability at time t for component j in subsystem i

  ,ij ijk scale and shape parameters for the Erlang distribution; )(/)()(f 1
ij ij

t
ij

ijijij ett    

W   C, system constraint limits for cost and weight

,cij ijw purchasing cost and weight for the jth available component for the subsystem i

)(i t failure switching reliability at time t

pt        the amount of money per unit time paid by the customer for the plan service

     TP total profit from plant operation
      Bi installation cost per each component

   TCp total purchase and installation costs

     cNS penalty cost during downtime, due to missed delivery of agreed service

TcNS total penalties during downtime for period T

       cd damage cost per each component

  Tcd total damaged cost during period T

3.2 Objective functions

The profit function contains the plant profit, purchasing and installation cost, penalties during 
downtime and the damage cost.

T

tTP P . R(t)  (1)

Equation 1 is the plant profit in which tp represents the amount of money per until time paid 

by the customer for the plant service, and R(t) is the instantaneous plant reliability.

i i

s

p i iz iz
i 1

TC n (C B )


  (2)

Equation 2 is the purchasing and installation cost of the s nodes in which the ith of them 
constituted of in components.

T

NS NSTC C . (1 R(t))  (3)



60 M. EbrahimNezhad, … / IJAOR Vol. 1, No. 2, 57-64, Autumn 2011 (Serial #2)

Equation 3 is the amount of money to be paid to the customer because of missed delivery of 
the agreed service when the plant is unavailable.
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    (4)

Equation 4 is the total damage cost during period T. The component time – to-failure is 
distributed according to Erlang distribution, so T

ii iziz  is the average failed components 

during period T for the i th subsystem. As all the dedicated components may fail before 
finishing period T, the number of damaged components for subsystem i would be

},min{ Tn
ii izizi 

Equation (4) can be changed as equation(5):
S

d i
i 1

TC U


  (5)

In which iu can be shown as:   

  i . U&  sisizizi cnTcU
ii

  (6)

The net profit objective function can be then written as follows:
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According to equations (5):
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3.3 The mathematical model

The proposed mathematical model is described as follow:
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i i sU n C ,                           i 1,2,....,S,  (5)
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(1): Maximize the reliability of the system in which the first, second and third term of the 
equation denotes the reliability for the subsystem with cold redundancy strategy, active 
strategy and no redundant Coit [10].

(2): Maximize the net profit value.
(3): Purchasing cost constraint.
(4): Weight constraints.
(5),(6):

sizizii CTnu
ii

},min{  is replaced with the two constraint

sizizisii CTuCnu
ii

., 

This model belongs to Np-hard class and solving it by exact methods is not possible, a 
small example considering two subsystems will be solved whit exact method in the next 
section.  All possible amounts for the variables are considered and the problem will be solved 
for all the possible combination of these variable amounts. Finally, the set of pareto optimal 
solution will be calculated among these possible solutions and a unique solution will select
among the set of solution using normalize method.

4 Numerical example

In this example, a series-parallel system whit two parallel subsystems is considered. In each 
subsystem three or four components type can be assigned. Component cost, weight and 
Erlang distribution parameters ( ijk,ij ) are shown in table 1. The objectives are maximization

system reliability and profit at 100 hours, subject to purchase cost constraint (C=230max) and 
the system weight constraint (W=270max). Active or cold-standby redundancy can be used
for each subsystem. Reliability to switch to non-failed components is 0.99 for all subsystems
whit cold-standby redundancy. Maximum number of components which can be assigned in 
each subsystem are 2. $2000000tp , $100NSc and installation costs are shown in Table 

2. The small example is solved for different possible solutions. Table 3 shows the 81 possible 
solutions. A normalize method is used to select a unique solution from the set of Pareto 
optimal solutions. Considering

1F as the best gained reliability and 2F as the best gained net 

profit value, the set of Pareto optimal solutions can be normalized by;
2

2
2

1 )()( FyFx ii 

in which the ix and iy are the amounts of the first and second objective for the ith optimal 
solution, respectively. The best solution has the lowest normalized amount. In the proposed 
example, 41 in table 3, contains the biggest amounts for both reliability and net profit value in 
contrast with other possible solutions.

Table 1 Input of the small example

i

Choice(j)
1 2 3

λij kij cij wij λij kij cij wij λij kij cij wij

1 0.00532 2 1 3 0.000726 1 1 4 0.00499 2 2 2

2 0.00818 3 2 8 0.000619 1 1 10 0.00431 2 1 9
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Table 2 Installation costs for each subsystem

Table 3  Possible solutions and the objective amounts of them for the proposed small example

so
lu

ti
on

Subsys1 Subsys2
Reliability Net Profit

so
lu

ti
on

Subsys1 Subsys2
Reliability Net Profit

ARS z1 n1 ARS z2 n2 ARS z1 n1 ARS z2 n2

1 N 1 1 N 1 1 0.3363496 672332.8 42 A 2 2 N 3 1 0.3363496 672460.8

2 N 2 1 N 2 1 0.3363496 672083.8 43 A 3 2 N 3 1 0.99995 1999828

3 N 3 1 N 3 1 0.999998 1999202 44 S 1 2 N 3 1 0.3363496 672460.8

4 N 1 1 N 2 1 0.3363496 672083.8 45 S 2 2 N 3 1 0.3363496 672460.8

5 N 1 1 N 3 1 0.3363496 671834.8 46 S 3 2 N 3 1 0.99994 1999828

6 N 1 1 A 2 2 0.9399769 1879218 47 A 1 2 A 1 2 0.9399769 1879710

7 N 2 1 N 1 1 0.3363496 672332.8 48 A 1 2 A 2 2 0.9399769 1879685

8 N 2 1 N 3 1 0.3363496 671834.8 49 A 1 2 A 3 2 0.9399769 1879660

9 N 1 1 A 3 2 0.9399769 1879047 50 A 1 2 S 1 2 0.6043351 1208534

10 N 3 1 N 1 1 0.99997 1999700 51 A 1 2 S 2 2 0.6043351 1208491

11 N 3 1 N 2 1 0.999995 1999451 52 A 1 2 S 3 2 0.6043351 1208449

12 N 1 1 S 1 2 0.6043351 1208313 53 A 2 2 A 1 2 0.9963972 1992556

13 N 1 1 A 1 2 0.9399769 1879389 54 A 2 2 A 2 2 0.9963972 1992531

14 N 1 1 S 3 2 0.6043351 1207838 55 A 2 2 A 3 2 0.9963972 1992506

15 N 1 1 S 2 2 0.6043351 1208075 56 A 2 2 S 1 2 0.8730956 1746082

16 N 2 1 A 1 2 0.9963972 1992235 57 A 2 2 S 2 2 0.8730956 1746039

17 N 2 1 A 2 2 0.9963972 1992064 58 A 2 2 S 3 2 0.8730956 1745997

18 N 1 1 S 3 2 0.6043351 1207838 59 A 3 2 A 1 2 0.9975796 1994921

19 N 2 1 A 3 2 0.9963972 1991893 60 A 3 2 A 2 2 0.9975796 1994896

20 N 2 1 S 1 2 0.8730956 1745861 61 A 3 2 A 3 2 0.9975796 1994871

21 N 2 1 S 3 2 0.8730956 1745386 62 A 3 2 S 1 2 0.98801 1975922

22 N 3 1 A 1 2 0.9975796 1994600 63 A 3 2 S 2 2 0.98801 1975880

23 N 3 1 A 2 2 0.9975796 1994429 64 A 3 2 S 3 2 0.98801 1975837

24 N 3 1 A 3 3 0.9969435 1992792 65 A 1 2 A 3 2 0.9399769 1879660

25 N 3 1 S 1 2 0.98801 1975701 66 A 2 2 A 3 2 0.9963972 1992506

26 N 3 1 S 2 2 0.98801 1975464 67 S 1 2 A 3 2 0.9399769 1879660

27 N 3 1 S 3 2 0.98801 1975226 68 S 2 2 A 3 2 0.9963972 1992506

28 A 1 2 N 1 1 0.3363496 672551.9 69 S 3 2 A 3 2 0.9975796 1994871

29 A 2 2 N 1 1 0.3363496 672551.9 70 S 2 2 A 1 2 0.9963972 1992556

30 S 1 2 S 3 2 0.6043351 1208449 71 S 2 2 A 2 2 0.9963972 1992531

31 S 1 2 N 1 1 0.3363496 672551.9 72 S 2 2 A 3 2 0.9963972 1992506

32 S 2 2 N 1 1 0.3363496 672551.9 73 S 2 2 S 1 2 0.8730956 1746082

33 S 3 2 N 1 1 0.99997 1999919 74 S 2 2 S 2 2 0.8730956 1746039

34 A 1 2 N 2 1 0.3363496 672506.4 75 S 2 2 S 3 2 0.8730956 1745997

35 A 2 2 N 2 1 0.3363496 672506.4 76 S 3 2 A 1 2 0.9975796 1994921

36 A 3 2 N 2 1 0.99996 1999874 77 S 3 2 A 2 2 0.9975796 1994896

37 S 1 2 N 2 1 0.3363496 672506.4 78 S 3 2 S 2 2 0.98801 1975880

38 S 2 2 N 2 1 0.3363496 672506.4 79 S 3 2 S 3 2 0.98801 1975837

39 S 3 2 N 2 1 0.999998 1999874 80 S 1 2 A 1 2 0.9399769 1879710

40 A 1 2 N 3 1 0.3363496 672460.8 81 S 1 2 A 2 2 0.9399769 1879685

41 A 3 2 N 1 1 0.999999 1999919

Choice(j)

Subsystem
1 2 3

iiz
iiz

iiz
1 82 21 17
2 15 93 13



A New Non-dominated Sorting Genetic Algorithm … 63

5 Conclusion and future research

In this paper, a new MORAP with choice of redundancy strategies has been studied. We 
solved a small example considering all the possible solutions. After gaining the set of Pareto 
optimal solutions, we normalized them to filter the set and reach a unique solution. Solving 
the model for large examples with exact methods is not possible. Therefore, heuristic 
algorithms like NSGAII is a good method to solve the problem. 
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