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Abstract1  

This note attempts a systematisation of different pieces of literature that underpin the recent 

policy and academic debate on the value of data. It mainly poses foundational questions 

around the definition, economic nature and measurement of data value, and discusses the 

opportunity to redistribute it. It then articulates a framework to compare ways of 

implementing redistribution, distinguishing between data as capital, data as labour or data as 

an intellectual property. Each of these raises challenges, revolving around the notions of data 

property and data rights, that are also briefly discussed. The note concludes by indicating 

areas for policy considerations and a research agenda to shape the future structure of data 

governance more at large.  

 

                                                      
1 I wish to thank first and foremost Andrea Glorioso for the excellent discussions on the topic and comments on 
previous versions of this note. Mr Glorioso wishes to note that his comments did not necessarily reflect the 
official position of the European Union or of any of its Institutions and Bodies. I warmly acknowledge suggestions 
by the SWPS reviewers. I am also very grateful to Ed Steinmueller, Simone Vannuccini and Ariel Wirkierman, for 
remarks and suggestions on a previous draft; to Alberto Marzucchi and Tommaso Ciarli, within the joint 
organisation of the EMAEE 2019 Conference on the Economics, Governance and Management of AI, Robots and 
Digital Transformations held at SPRU in June 2019. The conference debate between Carol Corrado and Jennifer 
Morone on “Data as Capital or Data as Labour?” has been an invaluable source of reflections. I am grateful to 
the participants to the Knowledge Symposium, University of Heidelberg, 27 June 2019 where I presented “Digital 
Transformation and Digital Ownership. Policy Challenges to redistribute data value”, particularly to Michael 
Handke; and the participants to the Alan Turing Workshop on Data Trusts, Cambridge Jesus College, 23 
September 2019, for the great debate on related and relevant issues. I had fruitful exchanges with Luca De Biase 
at the EY Digital Summit held in Capri in October 2019, where we debated around the proposal and challenges 
illustrated here. I am greatly indebted to Katherine Davies, who has provided excellent editing and suggestions 
to my blog and written pieces around the theme. All omissions are my responsibility.  
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1. Introduction 

Digital transformations are creating great opportunities but also challenges for modern 

labour markets. Supporting and steering transformations while reducing disruption is a 

pertinent policy challenge. While discussions must address the technological anxiety and 

declining working conditions associated with advances in AI and automation, they should also 

consider how digital transformations could reduce unemployment and underemployment, 

and increase prosperity and inclusion at the European level. 

To explore possible solutions to these policy challenges, the European Commission in 

September 2018 convened an expert group on the impact of the digital transformation on EU 

labour markets. The group included experts from the public and private sector, alongside a 

few academics. The HLG convened over five monthly meetings that provided opportunities 

to cross-fertilise our own expertise. We were asked to think outside the box, providing 

ground-breaking policy recommendations based on empirical evidence. These have fed into 

a final report, released on 8 April 2019 and discussed in Brussels at the High-Level Conference 

on the Future of Work. The nine recommendations are summarized on the expert group’s 

home page. 

This document develops the background underpinning the recommendations on 

redistribution of data value that I put forward in the report, with the aim of systematising the 

positions emerged in less and more recent literature, articulating them in further detail, 

proposing alternative ways of implementation and discussing the challenges arising. Up to 

Section 3, I abstain from considering whether the concept of data ownership is appropriate 

or not in this context.  

The economic value of data2 has increased substantially in recent years. Advances in 

automation and Machine Learning (ML) rely heavily on feeds of data to transform into 

relevant intelligence. Currently, the necessary infrastructure to treat, process and analyse 

these data (and thus benefit from their value) is mainly concentrated in a handful of big tech 

companies. However, data-value is largely dependent on the constant feed of personal data 

                                                      
2 Unless otherwise specified, here I refer to data mainly as personal data shared by individuals in the context of 
their leisure or work activities online.  
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generated by (online) consumers and workers within companies and on the possibility to 

store, aggregate and treat individual data.  

The European Commission has been at the forefront to promote convergence in the global 

governance of data (privacy), including, but not limited to, the well-known EU GDPR (General 

Data Protection Regulation). Despite these efforts, the current (or currently absent) global 

data governance structure calls for a discussion of how data value is (or should be) 

distributed, which aims to go beyond simply revisiting traditional competition policy.  

So far, the collection and appropriation of data by companies has gone largely unquestioned. 

People willingly provide their personal data in exchange for using an online service, and 

perceive this exchange as a barter. And firms also benefit from collecting their employees’ 

and consumers’ data, uncompensated. But there is an increasing need to consider – and 

measure – the value of data.  

Attempts to do so are not new. Companies’ capabilities to innovate and grow are determined 

not only by their investments in R&D, training, engineering, design and so on, but also their 

ability to aggregate, treat and learn from the data they are gathering (see OECD, 2018 and 

previous versions of the Oslo Manual). Advancements in data development and analytics 

mean that such information are increasingly seen and measured as ‘knowledge-based capital’ 

or ‘intangible assets.’ Measurement and economic impact of intangibles have been the object 

of an established branch of literature (see Corrado et al., 2009 among others), although not 

specifically to the emergence of big data.  

Policies to redistribute data value would need a radical rethinking of the nature of data in the 

current technological landscape, and within the extant narrative around intangible 

investments and intangible capital.  

2. Foundational questions  

The concept of bartering personal data for online services counterposes a view in which 

individual data contributions can be seen as the initial stage of a data value chain and, as 

such, worthy of remuneration.  
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On the one hand, data generated, aggregated and treated within firms has led to standard 

practices of workers not being directly compensated for sharing their private data with firms. 

On the other hand, data aggregation, treatment, development and analytics – alongside data 

management skills – are included among what economists consider as intangible assets of 

firms. These traditionally contribute to the knowledge-based capital in national accounts 

(alongside Research & Development (R&D), Intellectual Property Rights (IPR), training, 

software, engineering and design, marketing and branding), as their collection, stocking and 

analytical treatment entail investments from firms.  

The practice has superseded the theory in this case, and the literature on intangible assets 

has contributed to making the practice an unquestioned standard. The practice of carrying 

out data analytics and firms’ investment in transforming this into data intelligence (thus an 

intangible asset) has led to a high concentration of equity value in a few companies. This is 

based on their retaining not only direct access to the source of data, but also the 

infrastructures to create incentives to and influence individual data generation and the 

emergence of the very markets that buy data intelligence.  

Thus far, the measuring of intangible capital has incorporated a broad range of items from 

R&D investments, to trademarks, to human capital, alongside data. This practice closely aligns 

with the guidelines for measurement of innovative investments provided by the Oslo Manual 

(OECD, 2018). There is, however, the question of whether the value generated by these 

different items can be considered homogenous, at least to the extent that they can be safely 

included in the same (intangible) capital stock.  

Ideally, we could ask why a firm paying a licence for the use of externally-sourced knowledge, 

(i.e. patents or trademarks owned by other firms), or indeed receiving a licence for the use of 

their patents or trademarks, would include these as intangible investments, while it does not 

necessarily pay for the use of individual data generated by consumers or workers (similarly 

external sources of information). Such data can then be aggregated and treated with data 

analytics to generate value. Both types of investments are intermediates to the generation 

of intangible value, both are sourced externally, both need to be further treated by the 

typical firm to generate value.  
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Including different items into the stock of intangible capital is methodologically sound only if 

we use the same criteria (and price system to start with) to track the generation of value, 

from raw data as intermediates that enter the data value chain to the cumulated value of 

data intelligence.  

The appropriation of external (intermediate) value is remunerated in the case of external R&D 

or trademark acquisition, but is not in the case of individual data. 

Why?  

We should step back and ask several foundational (and thus far unanswered) questions that 

might change how we approach data value. These pertain to different realms and arise at 

different stages. We first revert to the economic nature of a ‘good’ (Box 1), then problematise 

the nature of data (Box 2), and reflect on whether we need a policy to redistribute data value 

and what could be a framework to tackle this (Box 3). 

Economic nature of data and implications for measurement of data value  

Box 1 – Excludability, Rivalry and types of goods  

Excludability: a good is excludable if an individual can be denied access to or consumption of 

it.  

Rivalry: a good is rivalrous if its consumption by an individual makes it used up or unsuitable 

for use by someone else. 

The economic nature of goods in terms of excludability and rivalry is determined both by law, 

which regulates the contractual rights over their ownership and use, and by the scale of their 

supply.  

Public Goods are both non-excludable and non-rivalrous. 

Private Goods are typically excludable and rivalrous. 

Club Goods are a particular set of public goods, as they are non-rivalrous, but excludable as 

individuals can be denied access to or use of them. 
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Common Goods are goods that are non-excludable and rivalrous, typically natural resources, 

whose use is limited (rivalrous) but are not excludable.  

 

Based on the notions of excludability and rivalry, some questions arise on the specific nature 

of data, summarised in Box 2 below.  

 

It has been observed (Jones and Tonetti, 2019) that data are typically non-rival and therefore 

can be considered as club goods. However, because of the very nature of data, particularly 

the production process that entails a data value chain, their nature might not be as static. 

 

Before bringing all the pieces together, though, a set of different questions arises, that should 

be grounding any reasoning around the governance of data value (Box 3).  

 

Box 2 – Measurement of data value  
 
What is the economic nature of data? (public, private, club or common good)  
 
Which type(s) of data are valuable?  
 
How is data value created, and extracted?  
 
How is data value currently tracked and measured, if at all?  
 
Is it possible to unambiguously identify the stages of a data value chain, to recognise data 
value generators and data value extractors along different stages of the data value chain? 
 
If it is, what price system is best fit to value data and quantify the concentration of data 
value?  
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(Re)distribution, Governance and Challenges 

 

Data subjects create value individually. Data value is then extracted by data capitalists 

through investments in digital infrastructures, organisational and human capital, enabling 

data collection and aggregation, treatment and analysis. How should policies redistribute the 

data value? By compensating data value creators and/or taxing data value extractors?  

In what follows, we consider some of the above questions and put forward a framework to 

initiate discussion around policies for data value redistribution. In a nutshell:  

a) Should we consider data as intangible capital and simply tax more effectively 

the profits generated by data ownership and analytics?  

b) Should we consider data as labour and rethink the configuration of the labour 

market, for instance offering a wage premium to workers who generate data 

appropriated by companies?  

Box 3 – Governance of data value redistribution: main challenges  
 
What types of data raise an issue of value redistribution? Personal data for private use? 
Personal data for public use? Both, regardless of their use destination?  
 
Is the concept of data ownership subsumed under the process of data value appropriation?  
 
Is there such a thing as a public value of data, and is data use by state enterprises or other 
organs of the state legitimated as it carries a public value?  
 
Can we devise a framework to redistribute corporate equity value generated by accessing 
individual data value, beyond corporate taxes?  
 
Can this framework bypass the controversial concept of personal data ownership?  
 
Which institutions are best placed to implement processes of redistribution of data value?  

Are there fundamental ethical issues raised by the framing of an individual as the portable 
bundle of data (s)he generates?  

Does this framing align with the rationale underpinning data privacy protection as a 
fundamental right (as in GDPR)?  
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c) Should we consider data as the Intellectual Property (IP) or more simply a 

licensable asset owned by the individual who generates it, as part of a system that 

recognises and protects intellectual property rights and asks platforms owners to pay 

a licence for use?  

I will argue that there are pros and cons with each of these, particularly when it comes to 

resolve data value fairness. I will attempt to propose a different thinking around data, which 

might bring about more benefits than a more traditional regulation of data brokers and data 

markets.  

3. A framework to redistribute data value: Data as Labour, Capital, 

Intellectual Property  

A taxonomy of the nature of data   

Data are a polymorphous category. Different types of data enter the chain of data value, and 

possibly only some of them are arguably valuable.  

Data can be valuable for both data generators and data brokers in similar ways, as is implicit 

in the idea of a ‘barter’ between online platforms and their users/consumers, in which a 

service is delivered in exchange for individual data provided (for free).  

Some data only have a use value while other have clearly an exchange value. Some data might 

become obsolete as they provide obsolete information, and their value could decline.  

A good starting point is to devise a preliminary taxonomy to identify which data are (or should 

be) the object of a redistribution policy. 

If we reprise Buchanan (1965) we could apply his definition of ‘club goods’3 to most categories 

of personal data that are appropriated by companies. Personal data generated as information 

(vis à vis knowledge, below) are excludable but non-rivalrous as any club good. In other words, 

                                                      
3 As illustrated in Box 1, club goods are typically non-rivalrous, i.e. their consumption by an individual does not 
make them unsuitable for use by another individual and their size does not typically lead to their being used up; 
but, unlike pure public goods, they are also excludable, i.e. their use or access can be denied. 
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big (personal) data have high excludability but very low rivalry as their scale is immense. 

Because of their low rivalry in consumption, club goods have a zero-marginal cost. In the case 

of data, the high fixed costs of the digital infrastructure to collect and treat data, combined 

with the zero marginal costs of individual data, is what make big tech companies quasi-natural 

monopolies.4 There is therefore a typical asymmetry in the value of data for members of the 

club, i.e. data generators and data collectors. However, devising a price system for goods 

that have zero marginal costs is a difficult (and useless?) endeavour.  

Once the individual data are aggregated, and treated to generate value from data analytics 

and relevant intelligence, their nature changes from that of club goods.  

Data analytics becomes knowledge, i.e. a public good (non-rivalrous and non-excludable). 

Data intelligence is a public good if it is used for non-profit purposes and managed by public 

actors (examples include the use of biometric data for health research). When information is 

processed and becomes knowledge, its nature of public good might (or might not) lead to 

public benefit, as long argued by economists of innovation (among others, Foray, 2004).  

However, when appropriated by private actors for profitable purposes (as in marketing or 

other forms of profit-led intelligence) they become a private good (excludable and rivalrous).   

It is a matter of policy choice to identify which category of data should be the object of a 

redistribution policy. The framework below – for simplicity – applies to any category of 

individual data, appropriated by public or private actors through collection, storage, 

aggregation and treatment for public or private purposes. I delineate three ways to frame a 

redistribution rationale, which could be alternative or complementary.  

                                                      
4 Within a marginalistic approach to data value, a zero marginal cost means a marginal value of data close to 
zero. However, data have increasing returns to scale rather than decreasing ones. For instance, according to 
Posner and Weyl (2018), the machine learning complexity-based marginal value of data grows as a function of 
the number of tasks you want to accomplish. In the authors’ own words: “(..) the primary determinant of the 
marginal value (of data) is not the statistics of a given ML problem, but rather the distribution of the complexity 
across different problems” (Posner and Weyl, 2018, p. 228).  
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Data as Capital  

One way is to consider Data as Capital (DaC). Prior to the rise of ‘Big Tech’ in the last decade, 

companies relied on intangible capital and innovative capabilities for a relatively longer period 

of time. Investments in R&D, patents, trademarks, software, design, engineering, training, 

and organisational capital all fed into their ‘knowledge-based capital’ or ‘intangible assets’ 

and were measured as such (Corrado et al., 2009). Data collection, treatment and analytics 

represent intangible investments and have only more recently started representing the lion’s 

share of accumulated collective intelligence on which companies rely.  

Interestingly, Corrado (2019) considers a Data Value Chain in which raw individual data bear 

the lowest value, while what adds value are the processes that aggregate, systematise and 

treat raw individual data. In this system, the main outcome of data analytics becomes 

intelligence that is appropriated by the company. The literature on intangibles (Corrado et al., 

2009) considers the spending on data analytics, now increasingly Machine Learning (ML) and 

Artificial Intelligence (AI), as intangible investments and measures them as such. Within 

national accounts, data analytics are covered in the methods that are used to estimate 

software investments. These have two possible sources: the first is “own account software”, 

the value of which is measured by the compensation of work done by employees in certain 

tasks, such as engineers and programmers (Brynjolfsson et al., 2018); the second is 

“purchased software”, acquired from relevant external markets (Corrado, 2019).  

A central underpinning of the literature on intangibles is based on the current US accounting 

system, which has long considered datasets as intangible assets, similar to the way they are 

considered in the OECD Oslo Manual guidelines for measuring innovation investments.5 

Certainly, some of the national accounting elements need to be updated to incorporate 

aspects that are unique to the current AI systems. In fact, some available indicators suggest 

that - while the growth rate of investments in AI is increasing in the US – the investment rate 

                                                      
5 In this context, it is worth noting that owning intangibles assets is not necessarily a synonymous of being 
innovative. One might argue that the stock of personal data for profitable purposes such as marketing profiling 
is not equivalent to capital stock of R&D investments for innovation purposes. Taxing profits generated by data 
analytics is legitimate as long as it is not discriminatory against R&D intensive firms, which are expected to create 
knowledge and societal spillovers from their research investments. 
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in intangibles on the whole is decreasing (Corrado, 2019). Recent work (Brynjolfsson et al., 

2017) raises the challenges posed by AI when measuring national intangible investments.  

Redistributing value within the “Data as Capital” framework   

If we frame the redistribution around the notion of “Data as Capital”, the most 

straightforward way to redistribute the value of the collective intelligence from mass-scale 

data would be to rely on supranational public institutions that create the (so far missing) 

market for data (Ibarra et al., 2018). One could then design an adequate system of taxation 

of current data owners, similar to the ‘bit tax’ (Soete and Kamp, 1997) (proposed over twenty 

years ago) or the more recent ‘robot tax’ (as proposed to the European Parliament by the 

Committee of Legal affairs6). European Union law on the protection of personal data, 

including the European General Data Protection Regulation (GDPR), can be considered a 

fundamental milestone in data regulation, which prepares the ground for balancing the 

power between data generators and data extractors. The GDPR would, in principle, be 

consistent with shifting the rights of data (value) creation to the individuals that generate 

them. This proves that concerted government action can play an important role towards 

building a new regulatory framework that deals with the (market) failure of a missing market 

for data.  

The fact that data are included as intangible assets in firm balance sheets could facilitate the 

practical implementation of a tax on intangibles capital by fiscal authorities. This is however 

based on the heroic assumption that, once released by the individual, data are easily trackable 

and it is possible to reconstruct a data value chain, based on an appropriate price system to 

quantify costs of storage, aggregation and treatment. Devising corporate taxes on intangible 

capital is therefore not obvious. In addition, the very nature of data would make the role of 

supranational fiscal institutions more appropriate, in a context of increasingly undermined 

traditional national tax bases.  

More in general, the usual resistance to capital taxes is that governments are generally 

unwilling to impede capital formation which is the source of growth and employment as well 

                                                      
6 European Parliament - Document/A-8-2017-0005. See also for a response R. Viola, Robotics will be a key driver 
of economic growth, The Parliament Magazine, December 2017. 
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as profits. Better to tax the golden eggs than the golden goose lest the owner decide not to 

allow the goose to reproduce. One might argue, again, that the big techs are not exactly – or 

not always - the golden gooses, the same way a firm highly investing in R&D would be.  

Data as Labour  

Another option is to treat Data as Labour (DaL), meriting (wage) remuneration. According to 

Ibarra et al., (2018) (see also Posner and Weyl, 2018), there are several possible advantages 

of treating individual data as labour, including reducing the need to redistribute income by 

imposing a corporate tax on digital activities, as illustrated earlier. 7  

An emergent debate, stemming from the RadicalxChange foundation in the US, reprises 

Posner and Weyl (2018), who argue that the “powerhouse of the digital economy” – the Big 

Tech – exploit the lack of public understanding of how machine learning (ML) and AI collect 

and treat data that are generated by consumers and workers.  

The (not too) science-fiction scenario described in Posner and Weyl (2018) is that the mass 

unemployment feared as a result of AI is a myth, as humans are still fundamental as data 

generators, the work of the future. The missing labour market of data generators, Posner and 

Weyl (2018) argue, could be likened to the unpaid housework performed by homemakers. A 

‘data dignity’ narrative is then developed, borrowing from the notion of ‘labour dignity’ 

(Morone, 2019).  

Redistributing value within the “Data as Labour” framework   

Starting to remunerate even a small subset of high-value data for specific purposes would 

radically and irreversibly change big platforms’ business models (undermining their 

oligopsony power). The digital commons currently have very little space for competitors.  

                                                      
7 Ibarra et al., 2018 argue for instance that treating data as labour could Increase the productivity of AI systems; 
encourage entrepreneurship and innovation by individuals, leading to an increase in the quality and quantity of 
data and be a source of self-esteem in a context where the changing nature of work is expected to reward the 
individual beyond pure financial remuneration.  
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The challenges of implementing this process are, however, significant. First, a substantial 

overhaul would be needed to adequately inform consumers – and, indeed, workers - of the 

unequal terms of the barter they are currently offered before feeding their data into big tech 

platforms. Second, and no less important, a ‘general purpose’ tracking infrastructure does not 

yet exist and would have to be imposed by public regulation, which raises the same issues 

that we have highlighted in the previous section. Also, this approach would need a radical 

rethinking of the labour markets configuration, including mitigating the potential for 

counterproductive exploitation and misuse of the incentive to generate unnecessary mass of 

data within labour contracts.  

To address this, the development of MIDs (Mediators of Individual Data) has been proposed. 

MIDs work as intermediaries between individual data generators and companies, and their 

role is to mediate data exchange. They should be fiduciary, ensure high standards of data 

quality, make data provenance inalienable, allow equal, and possibly long term, sharing of 

benefits (Morone, 2019). MIDs act as cooperative data brokers and allow for collective or 

communal data ownership by the individual data generators. Despite their nature of data 

commons, MIDs likely need government support to take off. We will return to this later in 

Section 3.  

As part of the ‘data dignity’ plea, Morone (2019) argues, the role of unions would represent 

a countervailing power to that of the big tech oligopsony. Data labour movements and digital 

unionisation could, in a similar way to the 20th century industrial union, allow: (i) Collective 

bargaining (data labourers are incredibly dis-homogeneous since the de-industrialisation 

process started to disintegrate a collective identity of (factory) workers); (ii) quality 

certification (data quality should be ensured and misuse of incentives mitigated perverse 

incentives avoided); (iii) career development. Each of these points would deserve a thorough 

reflection and possibly more grounding. 

Interestingly from our (academic) perspective, the “Data as Labour” framework should 

engage with debates around the changing nature of work, particularly on what the intrinsic 

and extrinsic incentives to work (Bénabou and Tirole, 2006) have become in the digital 

economy. Remunerating data generators could either undermine or enhance the social 

rewards attached to the sense of belonging to online communities, of being empowered and 
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contributing to social value, i.e. the intrinsic incentives. With billions of heterogenous 

potential digital workers, this is however hard to predict. If providing good quality data can 

increase workers’ self-esteem, then remuneration would be based on a grounded rationale. 

If, instead, it increases their extrinsic (perverse) incentives to provide low quality data to 

maximise their financial rather than social rewards, then a “Data as Labour” framework would 

not be optimal. 

Also, again from the (academic) perspective, it would be of extreme interest to re-visit the 

theory of value in the economic discipline, to account for digital transformation and what 

capital and labour have become within these. From such a perspective, the “Data as Labour” 

framework seems to substantially converge towards the “Data as Capital” framework as they 

both rely on a pricing system that risks being fundamentally detached from the actual value 

system. Also, if data are the new labour, can we revisit the theory of labour value? And, 

relatedly, are we trying to devise a method of valuing an intangible product (data) or 

remunerating the source of its (re)production?  

Data as an Intellectual Property and a licensable asset  

A third, novel, and possibly more inclusive way to tackle the issue of redistributing data value 

is to treat workers’ and consumers’ data as Intellectual Property8, worthy of remuneration 

as a usable and licensable asset and of protection as an Intellectual Property Right (“Data 

as Intellectual Property Right”). Data generated by both workers (within a labour contract, 

and through the process of carrying out their tasks) and consumers (outside the firm, but 

through the process of consuming services and thus appropriated by the firm) are owned by 

them, to the extent that they result from their individual investments in their own personal 

knowledge. Data can therefore can be treated as intellectual property and be protected by 

(a sort of) authorship’s right.  

                                                      
8 Interestingly, in some Latin languages such as Italian, (and Spanish and French) the term ‘Intellectual property 
right’ is translated literally as “protection of authorship’s rights” (protezione dei diritti di autore), with no 
reference to ‘property’. I am sure that colleagues in Law and Ethics would be able to step in this debate much 
more elegantly than I can ever do here.  
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Redistributing value within the “Data as Intellectual Property Right” framework   

To the extent that individual data is used (collected, aggregated, and analysed) by the firm to 

increase its intangible assets, it should be treated as use of an intellectual asset and 

remunerated through the payment of a licence fee. This would change the nature of the 

contract between individual and company: rather than being paid a wage within a labour 

contract, the individual would be paid for the use concession of a licensable asset, her 

authorship’s right. It would also align better with the nature of a balanced exchange: 

intellectual property is owned by the worker or consumer and used by the firm, who pays a 

licence fee to do so.  

By considering it as a licensable asset, data generators could choose to be paid a license use 

fee when data analytics are used for private purposes and feed into profits (e.g. marketing 

analytics). Alternatively, they can choose to openly share private information in case personal 

data feeds into public knowledge (e.g. health)  

There are some advantages of an approach based on “Data as Intellectual Property Right” and 

a remuneration of data as a licensable asset over the others. For example, it could (i) Reduce 

the infrastructural burden of administering a digital tax or changing digital ownership; (ii) 

Ensure dismissed workers do not lose their rights on data ownership once they are out of the 

labour contract; (iii) Reduce the likelihood that certain workers miss being paid a wage against 

the use of their data; (iv) Ensure that firms keep paying an IPR to consumers who have 

completed / exhausted their consumption transactions, but who have provided data that 

continues to contribute to the intangible assets of the firm; (v) This way we do not necessarily 

tax innovative firms, but redistribute profits directly. 

This proposal would require first and foremost a change in mindset about the nature and the 

value of ‘big data’ in a context in which – as it has been put forward – data is the ‘new oil’9. 

Indeed, data are not a source of rent (as oil is) for those that stock it, but a source of profit. 

                                                      
9 See The world's most valuable resource is no longer oil, but data. The Economist, May 2017. See also If 
data are the 'new oil', how can their value be shared fairly? Policy@Sussex, 11 April 2019 
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Data ownership is arguably the most diffused source of value and should first be tracked and 

then recognised at time of provision.  

This is clearly only a first step. The technicalities and their design should be the object of 

specific further analysis. For instance, implementation would require a definition of the 

duration and the dimension of the licence fee, and the tax regime that should be applicable 

(or not) to it. One could think of a tax-free licence to be perceived by data subjects, which 

would align to the redistribution rationale put forward here. However, this could entail a 

perverse incentive to generate data to maximise financial compensation, similarly to what 

observed for the “Data as Labour” framework. 

Underpinning all of the frameworks above is an assumption of traceability of the data 

generated by individuals. Redistribution of data value would need to start as soon as the 

individual data are collected in some aggregate form for further use. Traceability is therefore 

the single, most crucial implementation challenge that affects all three frameworks. Arguably, 

the GDPR and related fundamental data protection regulations are a milestone to build upon 

to implement traceability. Any record of individual consent to use of their data as a result 

of GDPR compliance is potentially a traceability starting point that allows implementing all 

the forms of data value redistribution illustrated above. This can become a General Data 

Tracking Regulation that would allow corporate actor to be accountable for any profitable use 

of individual data.  

4. Challenges: The notions of data property, ownership and right 

The founding rationale of the GDPR is that personal data protection is a fundamental right. 

This gives the EU a pioneering advantage in the field of data regulation, in comparison with 

the absence of any similar regulation in the US, Japan or China. It should be borne in mind 

that the GDPR also regulates and encourage the “free movement” of personal data within the 

EU.  

For the purpose of this note, that is mainly finding a feasible ground to redistribute the value 

of data, the rationale of the GDPR might pose a number of challenges. 
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If personal data protection is a fundamental right, ensured to each and every citizen 

(regardless of their ‘worker’ or ‘consumer’ status), would the consideration of an individual’s 

data as their intellectual property undermine its nature as a fundamental right? In other 

words, would the monetisation of personal data – in any of the forms above, albeit 

beneficially - be inconsistent with the nature of fundamental right?  

Are the right to privacy protection and the right to be compensated as ‘author’ compatible? 

Would the creation of a market for data be voiding or conflicting with the right to individual 

data protection and the regulation of free data movement?  

Have research and practice tackled these issues?  

There have been numerous debates and local experiments around the democratisation of 

data governance, data sovereignty. Institutions such as the Open Data Institute are 

questioning the appropriateness of the concept of data ownership and the natural monopoly 

that data owners – either private or public – represent. Further considerations on the role of 

encryption versus data sharing deserve more research efforts and we do not enter this 

debate here. However, with in mind the aim grounding a policy to redistribute data value, we 

develop a few considerations around the challenges above, based on further scholarship.  

It has been proposed that a Data Trust law could be implemented in addition to the GDPR 

(Delacroix and Lawrence, 2018). Trust law is based on the “duty of care” of the actor that 

(gathers), treats and uses data. Delacroix and Lawrence (2018) argue for the implementation 

of a variety of Data Trusts, each instantiating a particular way of balancing out risks and 

responsibilities. Such an ecosystem of Data Trusts would allow individuals to switch Trusts 

when needed or preferred. Its success would depend on the Trusts’ ability to implement their 

functions around the rights on data portability and data erasure (e.g. “right to be forgotten”, 

arts 20 and 17 of GDPR).  

Data Trusts could therefore circumnavigate the issues around ‘data property’ by focusing 

on ‘data rights’. It is undoubtable that different data would require different rights, from full 

portability, to access and erasure. A Data Trustee would need a mandate to exercise rights on 

behalf of data subjects (Arts 80(1) of GDPR currently envisage such mandate only in relation 
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to arts 77-79) (Delacroix and Lawrence, 2018). By facilitating access to ‘pre-authorised’ 

aggregated data, instituting a Trust may remove key obstacles to the untapped research 

potential relying on ‘Big Data’ (see also Corrado, 2019). 

However, the take-off of Data Trusts might be constrained by the same implementation 

challenges mentioned above in the case of MIDs within the “Data as Labour” framework. First, 

individuals might have minimal incentives to register and/or having the necessary 

competences or willingness to identify the ones they wish to register with, in a context of a 

multitude of Trusts. Also, shared provenance is more common than is assumed, and could 

prove problematic to the implementation of a Data Trust (e.g. genetic data, ambient 

surveillance, social media feeds), as the authors also mention (Delacroix and Lawrence, 2018). 

More in general, a full, scaled up adoption of Data Trust is difficult to predict, particularly in a 

context of trust competition as the one advocated by the Delacroix and Lawrence (2018).  

5. Considerations for policy and further research 

The rationale behind the GDPR might not necessarily be incompatible with the frameworks 

above. Within the “Data as Capital” framework (as in many constitutions), we could consider 

the freedom to start an economic activity as a fundamental right. Similarly, within the “Data 

as Labour” framework, the right to a decent job is, in many cases, protected as a fundamental 

right. Within the “Data as Intellectual Property Right” framework, both private property and 

intellectual property rights are contractual rather than fundamental rights. Even so, data use 

by non-owners might legitimately require their owner to be compensated, and the non-

owner to abide to specific duties. For instance, in the case of (data) trust law, the trustee 

having the assets (data) holds a right (over data use) which is subject to a duty owed to the 

specific beneficiary (the individual providing their data, or data subject) or to be used 

exclusively for charitable purposes (for instance, public benefit).  

The challenges considered above, albeit crucial to steer the debate on data governance, seem 

to overlook the fact that the notion of ‘data property’ is already a reality, and has been for a 

long time.  
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The proposal of treating data as an intellectual property outlined above needs, for the 

moment, to build upon the existing data governance structure and its unintended 

consequences in terms of value redistribution, regardless of whether the concept of data 

ownership is appropriate or not. To this purpose, we need to frame the debate on the basis 

of a series of common definitions, and a common understanding of what data value is and 

new method to track it. Also, the appropriate framework(s) should not only assess whether 

we need a process of redistribution, but also identify who is in the relevant position to 

implement it.  

The IPR proposal not only does not necessarily risk voiding the rationale behind GDPR, privacy 

and data protectionism, but could usefully build on it. For instance, the GDPR and other EU 

regulations can play a fundamental role in implementing a fairer redistribution of data value, 

as they provide an unprecedented awareness to individuals to consent, deny or limit the use 

of data and choose the recipient. Also, any record of individual consent to the use of personal 

data as a result of GDPR compliance is a potential traceability starting point. Tracing means 

providing a channel to identify actors and stages of data treatment and measure the value 

of data analytics.  

The pleas for data trust are valuable, and it is worth continuing the debate. However, when 

the issue of scalability occurs, we could think of a European Data Trust, which is not mutually 

exclusive with local, small scale experiments of data commons, it could actually be a 

governance benchmark.  

More research for action is needed to explore all these issues in further depth, particularly 

those that underpin reflections on data value redistribution, and I currently propose to 

prioritise examining the following:  

1. Is the notion of Individual Data Right helpful at all? Does the GDPR protect the 

Data Analytics segment of the Data (Global) Value Chain, rather than the “raw” 

material only (the individual data) and if not, should it? From a data value chain 

perspective, this means protecting data intermediates alongside raw data. This relies 

on the assumption, mentioned above, of an effective infrastructure for data 

traceability to be in place. We would need to frame a new Governance of the 
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Commons rather than the individual and the GDPR could become a global standard. 

Here is a matter of scale of the data treatment rather than the protection of the 

individual data as a fundamental right. 

 

2. Where should the enforcement of data protection start? Where is the power 

in the current structure of data governance? Again, the crucial issue might be to 

regulate along the whole data value chain, from individual protection, through the 

(private) data collection infrastructure, therefore enforcing transparency and 

accountability of actors that own the infrastructure. This represents a necessary (but 

not sufficient) condition to implement any of frameworks put forward in this note.  

 

3. To what extent it is feasible to use tax gains to create a European data public 

Trust, a public mediator of individual data, assuming this is the right institutional level 

to protect intermediate data markets? To what extent the current examples of local 

implementation of Data Trust or commons are useful to test the feasibility of a 

European level Trust? What are the bottlenecks, the financial and use constraints to 

scale up local experiences?  

  



 21 

References  

Bénabou, Roland & Jean Tirole, 2006. Incentives and Prosocial Behaviour. The American 

Economic Review 96(5), pp. 1652-78.  

Erik Brynjolfsson & Daniel Rock & Chad Syverson, 2018. Artificial Intelligence and the Modern 

Productivity Paradox: A Clash of Expectations and Statistics, NBER Chapters, in: The 

Economics of Artificial Intelligence: An Agenda, pages 23-57 National Bureau of Economic 

Research, Inc.  

Buchanan, James M., 1965. An Economic Theory of Clubs, in Economica, New Series, Vol. 32, 

No. 125, pp. 1-14. 

Corrado, Carol & Charles Hulten & Daniel Sichel, 2009. Intangible Capital And U.S. Economic 

Growth, Review of Income and Wealth, International Association for Research in Income and 

Wealth, vol. 55(3), pages 661-685, September. 

Corrado, Carol, 2019. Data as an Asset: Expanding the Intangible Framework. Presented at 

the EMAEE 2019 Conference on the Economics, Governance and Management of AI, Robots 

and Digital Transformation – Held at SPRU, University of Sussex, 3-5 June 2019. 

http://www.sussex.ac.uk/spru/newsandevents/events/emaee2019.  

Delacroix, Sylvie and Lawrence, Neil, 2018. Disturbing the ‘One Size Fits All’ Approach to Data 

Governance: Bottom-Up Data Trusts” (October 12, 2018). Available at SSRN: 

https://ssrn.com/abstract=3265315 or http://dx.doi.org/10.2139/ssrn.3265315  

Foray, Dominique, 2004. The Economics of Knowledge. MIT Press.  

Ibarra, Imanol Arrieta & Goff, Leonard & Hernández, Diego Jiménez & Lanier, Jaron & Weyl, 

Glen, E., 2018. Should We Treat Data as Labor? Moving Beyond “Free”, American Economic 

Association Papers & Proceedings, 2018, Vol. 1, No. 1, https://ssrn.com/abstract=3093683. 

 

Jones, Charles I. & Tonetti, Christopher. 2019. Non-Rivalry and the Economics of Data,  

https://www.nber.org/papers/w26260.  



 22 

Morone, Jennifer, 2019. Data as Labour for Data Dignity, Presented at the EMAEE 2019 

Conference on the Economics, Governance and Management of AI, Robots and Digital 

Transformation – Held at SPRU, University of Sussex, 3-5 June 2019. 

http://www.sussex.ac.uk/spru/newsandevents/events/emaee2019.  

OECD, Oslo Manual 2018 – Guidelines for collecting, reporting and using data on innovation, 

4th edition, October 2018, http://www.oecd.org/science/oslo-manual-2018-

9789264304604-en.htm 

Posner, Eric & Weyl, Glen E., 2018. Radical Markets: Uprooting Capitalism and Democracy for 

a Just Society. Princeton University Press.  

Savona, Maria, 2019. If Data are the 'New Oil', how can their value be shared fairly? 

Policy@Sussex, 11 April 2019.  

Soete, Luc & Kamp, K, 1997. Taxing consumption in the electronic age, Intermedia 25(4), 

August 1997, pp 19-22.  



September

2019-20. Teaming up with Large R&D Investors: Good or Bad for Knowledge Production and Diffusion? Sara Amoroso 
and Simone Vannuccini

2019-19. Experimental Innovation Policy. Albert Bravo-Biosca

August

2019-18. Relating Financial Systems to Sustainability Transitions: Challenges, Demands and Dimensions. Chantal P.

Naidoo

2019-17. Innovation and Self-Employment. Tommaso Ciarli, Mattia Di Ubaldo and Maria Savona

2019-16. Integration in Global Value Chains and Employment in Europe. Filippo Bontadini, Rinaldo Evangelista, 
Valentina Meliciani and Maria Savona

2019-15. Revisiting the Natural Resource ‘Curse’ in the Context of Trade in Value Added: Enclave or High-development

Backward Linkages? Filippo Bontadini and Maria Savona

July

2019-14. The Impact of Increasing Returns on Knowledge and Big Data: From Adam Smith and Allyn Young to the Age 
of Machine Learning and Digital Platforms. Yao-Su Hu

2019-13. Eco-Innovation and Firm Growth in the Circular Economy: Evidence from European SMEs. Pelin Demirel and 
Gamze Ozturk Danisman

Science Policy Research Unit 
University of Sussex, Falmer 
Brighton BN1 9SL 
United Kingdom

SPRU website: www.sussex.ac.uk/business-school/spru 
SWPS website: www.sussex.ac.uk/business-school/spru/research/swps 
Twitter: @spru

Recent papers in the SPRUWorking Paper Series:

Suggested citation: 
Maria Savona (2019). The Value of Data: Towards a Framework to Redistribute It. SPRU Working Paper Series 
(SWPS), 2019-21: 1-22. ISSN 2057-6668. Available at: www.sussex.ac.uk/spru/swps2019-21


