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Abstract. This work presents some ideas and theory on representing ordinary Petri nets using matrices and 
builds on previous work in [11],[12].  The three main types of matrices used for Petri net representation are 
the input, output and incidence matrices. The motivation for this work is that matrices can provide an 
alternative way to describe Petri nets from the conventional graphical representation. As is indicated several 
properties can be inferred, observed and derived from the matrices. Some definitions and examples are used.

1 Introduction  
Petri nets [1]-[4] are expressive graphical and 

mathematical formalisms that share a dual identity. 
These are useful for modelling concurrency in 
asynchronous, distributed, parallel, deterministic and 
other configurations. Petri nets have been used 
extensively for modelling and representing discrete 
interactive and concurrent behaviour. Their application 
can be extended to systems with mobile connectivity and 
configurations.  

The structure of Petri nets in graphical terms is that 
these are bi-partite diagrams. To simplify a bit, the 
topographical structure of Petri nets is that these are 
composed of structured nodes and edges. In simple terms 
a Petri net is a digraph. 

Petri nets look visually similar to other diagrammatic 
notations like UML 2 activity diagrams and flowcharts. 
However they are intrinsically different. There exists 
some form of equivalence between Petri nets and other 
graphical notational structures. There is a lack of 
knowledge how to combine Petri nets with other 
formalisms and structures. This is a possible challenge 
where to find a common basis. Combining other 
structures and notations could be quite useful for 
creating other methods or approaches for software and 
system modelling especially in the near future [13]-[14]. 

A fundamental feature of Petri nets is that the 
structure of the net remains unaltered when the net is 
executed. It is only the token count in the various places 
of the net that changes [6]-[10]. 

Petri nets can be represented using equations, state 
equations or other notations. One possible way of 
representing Petri nets is using matrices. The matrices 
can be used to construct more concise forms of Petri 
nets. It is possible to represent well formed and well 
behaved basic Petri nets. Several basic analysis methods 
rely on the principle that the Petri net has a given 
solution and is restricted, i.e. it has a limited state space. 

The properties are normally derived from the 
transition or place invariants that can cover parts or all of 

the net. Boundedness, safeness, liveness, reversibility, 
home states, coverability, reachability are main 
properties that allow for simple verification. These 
properties related to Petri net execution and structure are 
obtainable from the incidence matrix in conjunction with 
the marking vector and other values.  

Matrices are useful for representing the static 
structure of ordinary Petri nets. But the execution of the 
net requires additional representation. Matrices are 
useful to represent that part of Petri nets that does not 
require changes. If higher order net structures are used 
then the properties pertaining to the higher order net 
cannot be represented using matrices, it is only the 
structural outline that is easily depicted. 

The most common matrices that are usable for Petri 
net representation are the incidence matrix and input and 
output matrices. The input and output matrices can 
depict certain details that are not visible in the incidence 
matrix. M at r i x r ep r esen t at ion  can  be 
ext en d ed  to r ep r esen t in g th e m ar k in g 
gr aph  an d  execu t ion al  cycles. 

The input flow, output flow matrices and the  
incidence matrix have special properties that can be used 
for different forms of analysis. 

2 Motivation 
Petri nets are very interesting graphical and 
mathematical formalisms.  A lot of literature has been 
written about their formalisation and representation 
using complex notations. Sometimes the most 
fundamental principles are overlooked. From the static 
representation of the net structure, the behaviour of the 
net can be inferred. Ordinary Petri nets can offer non-
trivial modeling solutions for diverse problem classes. 
Unfortunately the more complex the net the more 
difficult it becomes to predict its dynamic behaviour. 
However, there are still some basic properties of the 
Petri net are valid for analysis.  
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The main reason for this paper it to explain the 
importance of Petri net representation using matrices. 
This key property of Petri nets is very often ignored or 
underrated. Matrices have interesting mathematical 
properties that can be used for further analysis. Matrices 
can be used to find alternative combinations and 
configurations. The matrices can be used to prove that 
two nets are similar or dissimilar. The one property of a 
Petri net that is simple to construct include the inflow 
and outflow matrices of the net. The principle of the 
incidence matrix which is derived from the input and 
output matrices is analogous to the construction of 
adjacency matrices for directed graphs.  

The matrices for Petri nets can be constructed for 
very large nets. Obviously the matrices allow for simpler 
and more compacted representation. Certain fundamental 
properties can be understood just by glancing at these 
matrices.  

3 Some Basic Definitions and 
Properties 

These definitions and properties are based from previous 
work presented in [11] and [12]. 

3.1. Petri Net Definition 

An ordinary Petri net is defined as bi-partite digraph, 
with two vertice types.  A Petri net is a four tuple set, PN 
= (P,T,F,W).  P is a finite non empty set of places P= 
{p1,p2,p3,…,pn}. T is a finite non empty net of 
transitions T= {t1,t2,t3,…,tn}. F is a finite non empty set 
of flows from a place to a transition and vice-versa, 
given as )(){( TxPPxTF ∪⊆ . Normally (PxT) 
represents the input arcs also denoted as I and (TxP) 
represent the output arcs denoted as O.  

 W is a weight function or marking value for the 
tokens at a place p, given as  },...,3,2,1{: nPW →  . 

Places and transitions are disjoint i.e. φ=∪TP   and 

φ=∪ PT . Nodes are not isolated. The Petri net can 
have an initial marking this is normally given as Mo. 

3.2. Ordinary Nets vs Non- Ordinary 

A Petri net is ordinary iff, 1),(,, ≤∈∈∀ tpITtPp  

and 1),( ≤tpO . This implies that all arcs weights are 
defined as having a multiplicity or value of 1. This  
fundamental property can be directly observed from the 
input flow matrix and the output flow matrix. If there are 
no entries > 1 in both matrices then the Petri net is 
ordinary. If 1),(;)( >∃ ∈ tpIPp  or 1),(;)( >∃ ∈ tpOPp .  

If there is an entry or value > 1 then it is defined as a 
non-ordinary net. 

3.3. Node Properties 

A node in an ordinary Petri net refers to either a place or 
a transition, y is a node iff y TP ∪∈ . The input set or 
pre set of a transition t implies the set of all input places 
to t. This can be written as 

}0),(:{ ≠∩∈=• tpIPppt . The output set or 
post set of t is the set of all output places from t. This can 
be written as }0),(:{ ≠∩∈=• ptOPppt . An 
elementary path in the Petri net is identified as a 
sequence of nodes: naaa ,.......,, 21 ; where n 1≥  

and ∃  arc( 1, +ii aa ) for i 1−∈ nN  if n>1 and ji aa =  

implies that i=j where },...,2,1{ nNn =  possibly 
defining a self-loop, elementary loop or a circuit. 

The nodes of Petri nets are of two types. Either place 
or transition type. This restricts the structure of the net. 

3.4. Petri net execution using Matrices and 
Vectors 

Transition firing  in the ordinary Petri net is given as M1 
= M0 + Cf . M0 is the initial marking vector and f is the 
firing vector, i.e. which transition is to fire. M1 is the  
new resultant marking.  The initial marking vector  M0   
represents the initial state of the net. C is the incidence 
matrix. 

3.5. Input Flow, Output Flow and Incidence 
Matrices 

A simple way to represent the structure of Petri nets 
using mathematical notations is to use input/output 
matrices. 

Unless the physical structure of the Petri net is altered 
these matrices should remain fixed or unchanged. 
Structural information of the net is captured or encoded 
in the input and output matrices. The input matrices 
captures all the place inputs to all the transitions whilst 
the output matrices captures all the outputs from the 
transitions to places. 

The incidence matrix can be constructed from the 
input and output matrices. The input /output matrices are 
constructible for almost every type of net independently 
whether it is live or not. I.e. the tokens are not 
considered at all. Firing the net has no effect on the 
incidence matrix.  

The incidence matrix contains structural information 
about a Petri net, i.e. the connections from places to 
transitions and vice-versa, along with all the number of 
transitions are represented in the incidence matrix. 

The incidence matrix can be created for a Petri net 
independently if the net is live or not or if there are other 
issues. 

3.6. Input Flow, Output Flow and Incidence 
Matrices Definitions 

The Iij matrix is a matrix that contains the complete set 
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of input flows from places to transitions. It can be given 
as )),(:{ Ftptp ∈=• . The values are non-negative.  

The Oij matrix is the complete set of output flows 
from transitions to places. I.e. )),(:{ Fpttp ∈=• . 
Again these values are non-negative.  

The incidence matrix Cij also denoted simply as C is 
composed of the difference between the output flow 
matrix Oij and the input flow matrix Ii thus Cij = Oij – Iij. 
The incidence matrix representation can also be written 
as −+ −= ijijij CCC , where ),( jiWCij =

+ if ij Pt •∈  

else it is zero and ),( jiWCij =
−  if •∈ ij Pt else it is 

zero and W(i,j)= weight of an arc from ji →  or 

ij → . Simply +
ijC  represents the output of transitions 

to places and −
ijC  represents the input of places to 

transitions. The incidence matrix may contain negative 
values unlike the input and output matrices.  

To have the complete picture of the Petri net, the 
input flow matrix and the output flow matrix have to be 
examined together. This is because in the final incidence 
matrix Cij it is possible to end up with flows that cancel 
each other out. E.g. if input and output flows  cancel 
each other out, then in the incidence matrix there would 
be a zero value that would not indicate anything of use. 

The address of the element in the matrix are 
determined by the values i,j. where i represents the row 
number, i.e. the place row and j represents the column, 
i.e. the transition column. 

The idea of the input, output and incidence matrix is 
given below.  Letter values are used for the arc weights.  
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4 Problem Definition 
Matrices can be used to represent ordinary Petri nets 

and infer several properties related to structure and 
behavior. 

 

 

5 Problem Solutions and Matrix 
Definitions 

5.1. Dimensions of the Matrices 

The matrix dimensions represent the size of the Petri 
net and vice-versa. E.g. a Petri net having 20 places and 
24 transitions would be represented via a 20x24 matrices 
irrespectively of the connections in the net structure (the 
input and output arcs do not in any way affect the size of 
the matrix). Similar properties related to the matrix 
dimensions hold for the input and output matrices. 

The dimensions of the matrices can be used to 
compare the properties of two or more Petri nets. E.g. if 
the dimensions of the incidence matrices for two Petri 
nets are 10x20 and 10x7. This implies that both Petri 
nets have the same number of places only. If there are 
two incidence matrices 7x10 and 5x10 this implies that 
both Petri nets have 10 transitions and varying amount of 
places.  

5.2. Petri net example and its Matrices 

t1 t2

p1
a b

c

d

e

f
p2 p3

 

Fig. 1. A basic Petri net. 
 
The corresponding incidence matrix for fig. 1 is given 
below: 

 
 
If the arc weights have a value of one the 3x2  incidence 
matrix depicted below is constructed.  
  

 
 It is evident that (f-e) cancel each 
other out so the input and output 

matrices can carry more structural information about the 
net than the incidence matrix.  

5.3. Square Matrices 

This is a special case of the incidence matrix or input/ 
output matrix. This is only possible when the number of 
places and the number of transitions of the Petri net are 
equal. For this to be possible the Petri net must be 
constructed keeping these principles in mind. However 
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there are instances where these properties could result 
automatically. 

 

Fig. 2. A Petri net having square matrices 

5.4. Parallel Rows of the Incidence Matrix 

The parallel rows of the incidence matrix show that 
places are parallel to each other.  

These features or attributes are not necessary directly 
visible from the net itself as the drawing of the net might 
not be so clear due to issues with the layout. Having 
parallel places implies that there could be parallel states 
occurring during the execution or static state of the net. 

5.5. Parallel Columns of the Incidence Matrix 

The parallel columns of the incidence matrix also 
indicate that the transitions occur in parallel. 

5.6. Inferring Concurrency from the Incidence 
Matrix 

If there is an incidence matrix for a Petri net that is 
properly labelled. It is possible to infer if transitions can 
possibly occur concurrently. Note that this just indicates 
the possibility of this taking place. 

5.7. Separate Petri nets having Identical Number 
of Transitions and Identical Number of Places 

Definition 1:  If two Petri nets have incidence matrices 
with identical dimensions it follows by definition that the 
Petri nets must have an identical number of places and 
an identical number of transitions. The number of 
connections can differ. The sum of these two incidence 
matrices is possible. This implies that if two Petri nets 
have incidence matrices with identical dimensions it is 
possible to add these incidence matrices together. A 
better way would be to sum the input and output 
matrices for both nets and create new ones and then to 
derive the incidence matrices. The result of adding these 
matrices together is the creation of new nets. I.e. the 
different nets are combined into one. E.g. if we have A1 
and A2 and the orders for A1,A2 are identical Mo= M1 
then A1 can be added to A2 or vice-versa. 
  
Definition 2: 
From definition 1, it holds that if two nets are identical 
their arcs can be summed together. Converting this net 

into the incidence matrix should yield the same value as 
summing the incidence matrices of the individual 
identical nets.  
 
Difference of Incidence matrices having identical 
dimensions : 

This is possible but the result could be a net with 
dangling nodes. I.e. it is possible to have a result of 
unconnected nodes.  The definitions for doing this can be 
based on the definitions previously given which need to 
be amended. 

5.8. Separate Petri nets Not having Identical 
Number of Transitions and Identical Number of 
Places 

Given a Petri net where the no. of places≠  no. of 
transitions. I.e. the number of transitions and places is 
not equal, then there cannot be an incidence matrix that 
is square. Hence there cannot be a symmetric matrix.  

5.9. Possible Properties for Petri nets having 
Square Matrices 

Deduction: That if there is a net having the same 
amount of places and transitions. i.e. no. of places = no. 
of transitions and properly labelled in sequence, the 
incidence matrix will be a square matrix that is possibly 
symmetric. Where TA A= . 

5.10. Decomposing or Representing the Petri 
net using Column and Row Vectors 

The incidence matrix of the Petri net can be easily 
decomposed or separated into column and row vectors. 
This is easier to do if there are several unconnected 
subnets. This is explained in [11] and [12]. 

6 Some Examples and Results 

For the following examples it is assumed that the 
matrices are created  from respective Petri nets and the 
row and columns follow ordered labelling. Rows 
represent places (p1,p2,...,pn) whilst columns represent 
transitions (t1,t2,...tn). 

6.1. Row and Column Vectors 

The following square incidence 
matrix implies that row vector       
[-1 0 0] has a place P1 represented 
by this vector. There is an input 
transition t1 but no outputs are 
visible.   

 
 

















−
−

−

010
111

001
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A column vector  implies that transition t1 has 
an input place p1 and an output place p2.  
 
 
 

 
 

6.2. Concurrency and Parallel Behaviour 

The following 3x3 square 
incidence matrix implies that out 
of three transitions two are 
parallel or concurrent.  The 
following matrix implies that 
three transitions are parallel or 

concurrent.  
 

This incidence matrix implies that 
place p1 has one input and one 
output. These could occur in parallel 
or concurrently.  Place p2 has two 
outputs that must occur in parallel.  

 
Implies that e.g. t1 outputs to places 
p2/p3 concurrently for sure. 
 
 

 
Im p l ies th at  t 1  get s or  awai t s i n pu t s 
f r om  p 1 an d  p2 con cu r r en t ly . 
 
 

6.3. Inferring Conflict and Choice  

If a row vector ni  of the incidence 
matrix   has > 1 negative values then 
it implies that a place represented by 

the row connects to more than one transition. So to 
explain in simpler terms a place is shared between two or 
more transitions. Thus there is the possibility for conflict 
or choice arising. 

6.4. Direct Sum of Square Subnet Matrices 
having identical dimensions 

p1

t1

p2

t2 t3

p3
b

c

d f

ea

pn

tn

n1

n2

 

Fig. 3. Separate Petri nets with square matrices 
 
Considering fig. 3. There is a repeated pattern where 
there is the possibility of having several subnets each 
having a separate square incidence matrix. The incidence 

matrix for this pattern is given below. 
 

( ) 0 0 0 0 ..
0 ( ) 0 0 0 ..
0 0 ( ) 0 0 ..
0 0 0 .. 0 ..
0 0 0 0 .. ..
.. .. .. .. .. ( 2 1)

b a
d c

f e
C

n n

− 
 − 
 −

=  
 
 
 

− 

 

In this particular example if the weight values of the 
input arcs and output arcs are identical the result of the 
incidence matrix would be a zero matrix.  

There is also the possibility of having an identity 
matrix.  

If there are nets that are unconnected or broken down 
into sub-components, if the number of places and the 
number of transitions for the net are equal, i.e. the nets 
incidence matrices can be represented using  square 
matrices A1 , A2 ,……, An of order m1 ,m2,……., mn 
where m1 = m2 =,….,= mn. It is possible to create a 
generalized ordered matrix A through the direct sum of 
A1 , A2 ,……, An.  The values A1 , A2 ,……, An  are the 
diagonal values in A.  This can only be done if nets A1 , 
A2 ,……, An are completely unconnected. 

6.5. Incidence Matrices with Fractional Values 

1/2 1
p1 p2

t1

 
Fig. 4. Petri net with a fractional value 

The Petri net in fig.4 indicates that the input value is 0.25 or 
one fourth of a token.  The incidence matrix is represented as 

the vector 
1 2
1

− 
 
 

. 

7 Some Uses of Petri net Matrices and 
Findings 
These Petri net matrices have important uses for finding 
transition and place invariants as is already done in 
general Petri net theory. However several other uses for 
these nets can be identified. E.g. they could be used for 
verification of concurrency and reliability issues of the 
nets. The matrices can be considered to be fundamental 
properties of Petri nets and also the counterpart 
representation of the Petri net. Many different definitions 
related to Petri nets are used in literature. E.g. ordinary 
or non- ordinary nets. However such definitions are 
subjective in the sense that they pertain to fixed Petri net 
classes. It is possible to create new definitions or find 
new names for these properties.  

As has been done in previous work [11]-[12] it is 
possible to invert the matrices and find several other 
properties that have not been discussed here.  

1 1 1
1 1 1
1 1 1
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 − 
 − 
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In real life scenarios these matrices represent patterns 
of behavior and organization. The matrices are a concise 
and direct way of representing the Petri net more 
formally and mathematically from just using a simple 
drawing.  

The ideas of using vectors and fractional values shows 
that even simple matrices can exhibit several types of 
behavior that are not immediately obvious. This work 
can be extended to different areas of Petri net research 
and can include other types of nets. 

Unfortunately for analysis sake each Petri net has to 
be understood in isolation. Just a simple modification of 
the input or output arcs of the Petri net can result in a 
totally new independent configuration which implies that 
a previous condition or result would not necessarily hold 
true. Modifying the basic structure of the net like adding 
new places and transitions will create completely 
different configurations. 

8 Concluding Remarks 
This work demonstrates the importance of using 
matrices for Petri net representation and for 
understanding and analyzing important properties. It is 
hoped that in the future more work is done in this 
direction. 

Pictures are the traditional means for communicating 
and explaining this between systems and persons. 
Normally much attention is paid to the graphical or 
pictorial part. Petr nets can be used to serve both ends.  
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