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1 INTRODUCTION

Required concurrency [3] can cause actions to interfere with running
continuous effects. This interference can modify the rate of change,
including the polarity, of a continuous effect. In this work, we
propose a mechanism to support discrete interference of rates of
change caused by instantaneous actions, the start and end endpoints
of other durative actions, and numeric timed initial fluents [9].
Current temporal planners have very limited support for such
numeric dynamics. COLIN [2] reduces a temporal numeric planning
problem to a linear program (LP), but operates on an implicit
assumption that the rate of change of a durative action’s continuous
effect is constant throughout its execution. In this work we propose
some enhancements to the algorithms used in COLIN [2], in order
to support discrete interference of continuous effects, and a new
planner, DICE, was developed to implement them.

2 CONSTANTS IN CONTEXT

A context refers to the interval between two adjacent discrete
happenings in a temporal plan, where a happening refers to the time-
stamp of a discrete state transition [5]. We only assume that the rate
of change is constant throughout a temporal context. This enables a
single durative action to have piecewise linear continuous effects.

Definition 2.1. A temporal context, C = [ti, ti+1], in a plan’s
happening sequence, T , is an interval enclosed by two adjacent
discrete happenings, ti and ti+1, where 0 ≤ ti < ti+1, and there
is no intermediate happening, t, that is {t|ti < t < ti+1} ∩ T = ∅.
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Figure 1. Linear Continuous Effects with Constants in Context.

An LP is used to verify the feasibility and validity of a temporal
plan. Its variables consist of the happenings that correspond to the
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discrete steps of the plan, together with the values of the non-
time-dependent [1] numeric fluents before and after each happening.
The constraints of the LP consist of temporal constraints between
the steps of the plan, mainly the ordering constraints and duration
conditions of durative actions, together with numeric pre-conditions
and effects of each action in the plan. The rate of change of each
continuous effect on a variable, v, is computed dynamically within
each temporal context, from the list of durative actions running
concurrently, as illustrated in Figure 1.

The rate of change of v in temporal context i is computed from
the continuous effects running throughout context i, denoted ceffsi,
on v. This is shown in Equation 1, where ceffsi is represented as a
multiset, since the same continuous effect could take place n > 0
times concurrently. Each continuous effect, expr , on v, is evaluated
in the context of the discrete state, si, that initiated context i.

dvi
dt

=
∑

〈v,expr〉→n∈ceffsi

n · expr(si) (1)

Since continuous effects depend on action durations, whether a
sequence of actions achieves a numeric goal or not could depend on
the chosen schedule for those actions. We refer to such numeric goals
as schedule dependent. When during forward search the planner
evaluates a state against such goals, G, a dummy action, aG, with
precondition pre(aG) = G, and effects eff (aG) = 〈∅, ∅, ∅〉, is
appended to the current plan. If the LP for the resultant plan is
solvable the schedule dependent goals are achievable with the plan.

3 A NUMERIC ENHANCED TRPG

The Temporal Relaxed Planning Graph (TRPG) [2] adapts the
Metric-FF delete relaxation heuristic [6], and associates a time-stamp
to each action layer, which represents the earliest time at which
the actions in that layer can be applied [2]. However, the TRPG
does not take into account actions whose effects indirectly enable
numeric goals to be achieved. A numeric enhanced TRPG (TRPGne)
is proposed, which takes into account richer numeric causality. It
propagates effects on variables that are used in effect expressions of
other variables, and identifies implicit intermediate goals by inferring
new numeric preconditions on actions that achieve numeric goals.
These preconditions are then used during relaxed plan extraction.

4 EHC WITH ASCENT BACKTRACKING

Enforced Hill-Climbing (EHC), a popular heuristic search algorithm
used in classical [8], numeric [6], and temporal planners [2], suffers
from an inherent weakness that hill-climbing decisions could lead
to a dead end [7]. This issue becomes more evident in planning
problems with temporal and numeric bounded constraints, where the
heuristic can be too optimistic and leads to a constraint violation.
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Table 1. Experimental results for three domains, performed on an Intel R© CoreTM i7-3770 CPU @ 3.40Ghz, allocated a maximum of 3GB RAM.

Plantery Rover Intelligent Pump Control Demand-Side Electricity Management
DICE UPMurphi (1.0) DICE UPMurphi (20.0) DICE UPMurphi (10.0)

# Time (s) States Time (s) States Time (s) States Time (s) States Time (s) States Time (s) States
1 8.208 622 22.84 805,145 0.348 40 2.04 51,137 0.899 76 78.14 3,740,370
2 8.243 429 153.04 5,264,013 0.605 55 135.68 3,244,517 1.099 97 1,437.38 61,313,989
3 15.695 442 • • 0.683 70 • • 1.782 125 • •
4 17.589 417 • • 1.023 86 • • 1.548 138 • •
5 43.653 431 • • 1.404 103 • • 1.503 204 • •
6 45.455 474 • • 1.197 81 • • 3.582 247 • •
7 72.977 518 • • 1.744 86 • • 6.932 310 • •
8 152.903 666 • • 2.522 97 • • 11.623 292 • •
9 117.159 647 • • 3.7 138 • • 14.805 321 • •
10 160.035 755 • • 5.897 132 • • 12.971 298 • •

When EHC fails, most planners resort to an exhaustive search such
as Weighted A*. However, this means that a wrong hill-climb late in
the search could cause EHC to fail even if it is close to a solution.
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Figure 2. EHC with Ascent Backtracking.

We propose enhancing EHC with an ascent backtracking
mechanism. A Hill-Climb Backtracking Stack of states from which
an enforced hill-climb was performed is stored in memory, as
illustrated in Figure 2. This introduces negligible memory overheads.
When EHC fails, the state at the top of the stack is popped, to
reverse the latest hill-climb. At this point all the helpful actions are
reconsidered, without performing any enforced hill-climbing if one
of them has a better heuristic value than the one encountered so far.
If this also fails, the next state is popped off the stack and the process
is repeated, until a solution is found or the stack is empty.

5 EVALUATION

The algorithms described above were implemented in a new planner,
referred to as DICE (Discrete Interference of Continuous Effects).
It was developed in Scala, which runs on the JavaTM Virtual
Machine. The performance of DICE was compared to that of the
PDDL-based hybrid planner, UPMurphi 3.1 [4], which uses a time
discretization approach to support complex non-linear functions.
Tests were performed on 3 domains that feature constants in context.
The problem instances for each domain increase in complexity
incrementally. The time-step used in UPMurphi is indicated in
parentheses in Table 1, which shows the results from both planners.
Missing timings indicate that the planner ran out of memory.

6 CONCLUSION

In this work we have proposed a mechanism through which planning
with rich numeric characteristics under required concurrency can be
performed. The algorithms used by COLIN [2] were enhanced in
order to support durative actions whose continuous effects change
their gradient at specific time points due to interference from other
discrete actions. These algorithms were implemented in a new
planner called DICE. We also proposed a new heuristic, the TRPGne,
which performs a better analysis of numeric causality. EHC was also
complemented with ascent backtracking, which recovers from dead-
ends by reversing the latest hill-climb decisions, and adds negligible
memory overheads. DICE was evaluated on domains featuring these
rich numeric characteristics and compared with UPMurphi [4], the
only known PDDL-based planner that supports these characteristics.
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