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Abstract General relativity (GR) characterizes gravity as
a geometric properly exhibited as curvature on spacetime.
Teleparallelism describes gravity through torsional proper-
ties, and can reproduce GR at the level of equations. Similar
to f (R) gravity, on taking a generalization, f (T ) gravity can
produce various modifications its gravitational mechanism.
The resulting field equations are inherently distinct to f (R)

gravity in that they are second order. In the present work,
f (T ) gravity is examined in the cosmological context with a
number of solutions reconstructed by means of an auxiliary
scalar field. To do this, various forms of the Hubble param-
eter are considered with an f (T ) Lagrangian emerging for
each instance. In addition, the inhomogeneous equation of
state (EoS) is investigated with a particular Hubble parame-
ter model used to show how this can be used to reconstruct
the f (T ) Lagrangian. Observationally, the auxiliary scalar
field and the exotic terms in the FRW field equations give the
same results, meaning that the variation in the Hubble param-
eter may be interpreted as the need to reformulate gravity in
some way, as in f (T ) gravity.

1 Introduction

Modified gravity is one of the two direct approaches for
reproducing the late-time acceleration observed in the uni-
verse [1–3]. Additionally, there are other consistency prob-
lems that must eventually be tackled in the general relativity
(GR) approach to gravity [4,5]. The question then becomes
what reformulation of gravity should be adopted, or whether
we should take an extension of GR as our starting position.
This is indeed a popular approach to the problem; many ref-
erences consider an extension to the GR Einstein–Hilbert
action in which the predominant attempt can be represented
by the f (R) gravity formulations [6,7].
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One proposition that has gained interest in recent years
is that of teleparallel gravity [8–11]. The concept was ini-
tiated by Einstein himself shortly after his introduction of
GR [12]. At first this was simply an equivalent reformulation
of GR, called the teleparallel equivalent of general relativ-
ity (TEGR), which replaces the Einstein–Hilbert Lagrangian
with an analog teleparallel torsion quantity, T (known as the
torsion scalar).

As with the Einstein–Hilbert action and the f (R)

approach, the simplest generalization is to an arbitrary func-
tion of the torsion scalar, f (T ) [8]. Similarly, the TEGR
formulation is equivalent to GR at the level of equations,
however, its generalization is distinctly different from f (R)

in a number of important ways. The first way is that the result-
ing field equations continue to be of second order while those
of f (R) are fourth order. This has led to interesting insights
both cosmologically and otherwise [8,9,11,13,14].

Any alternative to GR should answer some of the open
questions in GR. From the cosmological perspective, it would
be interesting to put together a consistent theory that predicts
the expansion behavior of both the early- and the late-time
universe. In fact this is one of the primary motivations behind
the�CDM modification to Einstein’s GR formulation. While
the first realization of the need for modifications to Einstein’s
GR comes from the observation in 1998 of the accelerating
expansion of the universe [1,2], there is now overwhelming
observational evidence for the need to modify the Einstein
formulation [15].

The goal of the present work is to produce known and new
Lagrangian models within the f (T ) gravity context using
several Hubble parameter models [16], using an auxiliary
scalar field as a conduit to perform this reconstruction. This
scalar field, essentially, takes on the role of dark energy, and
would be the mediator through which these cosmological
effects would take over.

Unless stated otherwise, geometric units are used where
G = 1 = c. Also Latin indices are used to refer to local iner-
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tial coordinates while Greek ones are used to refer to global
coordinates. This paper is divided as follows. In Sect. 2,
f (T ) gravity is introduced with some focus on the distinction
between f (R) and f (T ) gravity, and cosmological effects.
In Sect. 3, the reconstruction work is presented along with the
particular Lagrangians that reproduce the Hubble parameters
being considered. The inhomogeneous EoS is then derived
in Sect. 4 where a particular example is given along with the
general approach to determining f (T ) Lagrangians. Finally
the results are summarized and discussed in Sect. 5.

2 f (T ) gravity and cosmology

GR and its variants are largely based on the metric tensor, gμν ,
in terms of fundamental dynamical variables. This tensor acts
as a potential quantity while the curvature is in turn repre-
sented through the Levi-Civita connection (which is torsion-
free), �λ

μν . In teleparallelism this connection is replaced by

the Weitzenböck connection, �̂λ
μν . This new connection is

curvature-free and is based on two fundamental dynamical
variables, namely the tetrads (or vierbein) and the spin con-
nection. The tetrads, eaμ, are four orthonormal vectors that
relate inertial and global frames in that they build the metric
up from the Minkowski metric by means of an application of
this transformation. In real terms, they represent the physical
observer and can be related to the metric by means of

gμν = ηabe
a
μe

b
ν, (1)

where ηab = diag(1,−1,−1,−1). The tetrads obey the fol-
lowing inverse relations:

eaμe
ν

a = δν
μ eaμe

μ
b = δab . (2)

On the other hand, the spin connection, ωb
aμ, is not a

tensor and is dependent on the particular system under con-
sideration, i.e. it accounts for the coordinate system in a way
retains the covariance of f (T ) gravity [9]. Indeed in the liter-
ature there is a division between tetrads. There are those that
produce a vanishing spin connection, ωb

aμ = 0, called pure
tetrads while in the impure tetrad frames the spin connection
takes on some nonzero values.

In this work we take the flat FRW metric

ds2 = dt2 − a2(t)	3
i=1dx2

i , (3)

where xi represent Cartesian coordinates. The natural choice
of tetrad for this metric is

eaμ = diag(1, a(t), a(t), a(t)). (4)

Since this tetrad has vanishing spin connection components
[9], no contributions needs to be included in what follows. In
turn, the Weitzenböck connection takes on the form �̂λ

μν =
e λ
a ∂μeaν [10]. This naturally leads to the torsion tensor

T λ
μν = �̂λ

μν − �̂λ
νμ. (5)

The difference between the Weitzenböck and the Levi-
Civita connections is characterized by the contortion tensor

Kμν
a = 1

2

(
T μν
a + T νμ

a − Tμν
a

)
. (6)

Lastly the superpotential tensor is introduced

S μν
a = Kμν

a − e ν
a T αμ

α + e μ
a T αν

α, (7)

which is produced purely for mathematical convenience [8].
These tensors can be combined to form the torsion scalar,

T = T a
μνS

μν
a , which is the Lagrangian for TEGR.

It is at this point that the distinction between curvature
and this torsion-based theory of gravity can be made clearer.
In GR we adopt the Ricci scalar, R, as the gravitational
Lagrangian [17] whereas in the TEGR case the torsion scalar
is taken. The difference between the two quantities obviously
lies in a boundary term since they produce the same theory at
the level of equations [8]. The distinction can be quantified
through [18]

R(e) = −T + B, (8)

where B = 2
e ∂

μ(eT λ
λμ) = 2∇μT λ

λμ is the boundary term.
Therefore, taking the Lagrangian −T +B will exactly repro-
duce the Ricci scalar. However, this similarity is lost once the
theory is generalized to an arbitrary function thereof, that is,
unless the function is f (R) = f (−T +B). In all other cases,
f (R) and f (T ) will not coincide in any meaningful way.
Moreover, the ensuing field equations are unique in that, out
of the three possible quantities involved, namely R, T , and
B, f (T ) is the only Lagrangian that produces second order
field equations [18,19].

Now, using the tetrad in Eq. (4), the torsion scalar turns
out to be [9]

T = −12
ȧ2(t)

a2(t)
≡ −12H2. (9)

Generalizing the action to an arbitrary function of the torsion
scalar, f (T ), results in

S = 1

4κ

∫
d4xe f (T ), (10)
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where κ = 4πG and e = det eaμ. On taking a variation with
respect to the tetrad the following field equations emerge [8]:

E μ
a ≡ e−1 fT ∂ν

(
eS μν

a

) + fT T S
μν

a ∂νT

− fT T
b
νa S

νμ
b + 1

4
f (T )e μ

a = κ� μ
a , (11)

where �
μ

a ≡ 1
e

δLm
δeaμ

, fT and fT T denote the first and second

derivatives of f (T ) with respect to T , and Lm is the matter
Lagrangian.

As usual, for the cosmological case a perfect fluid is
assumed, i.e.

�μν = (pm(t) + ρm(t)) uμuν − pmgμν, (12)

where pm(t) and ρm(t) are the matter pressure and energy
density, respectively, and uμ is the fluid four velocity uμ =
(1, 0, 0, 0).

The resulting Friedmann equations turn out to be [9]

f

4
+ 6 fT H

2 = κρm (13)

and

f

4
+ 6 fT H

2 + 2 fT Ḣ − 48 fT T H
2 Ḣ = −κpm, (14)

where dots denote derivatives with respect to cosmic time.
With these governing equations in hand, an auxiliary

scalar field can now be introduced to reconstruct the f (T )

Lagrangian.

3 Reconstruction in f (T ) gravity using scalar–tensor
theory

In general it is difficult to determine specific cosmologies
directly from the modified Friedmann equations in Eqs. (13)
and (14) due to the general nature of these relations. For
this reason a technique first developed for f (R) gravity
in Ref. [20] is investigated in the f (T ) setting. Following
Refs. [20–22] an auxiliary scalar field, φ, without a kinetic
term is explored. This approach has shown to be very effec-
tive in determining solutions to otherwise insoluble equa-
tions.

In this context consider the action

S =
∫

d4xe(P(φ)T + Q(φ)), (15)

where P(φ) and Q(φ) are arbitrary functions.
Taking a variation with respect to the tetrads, eaμ, gives

h μ
a (P(φ)T + Q(φ)) − 4P(φ)T b

νa S
νμ

b = κ� μ
a . (16)

The benefit of taking this scalar field form is that a second
variation can be taken, one with respect to the scalar field
itself. This results in the simple relation

P ′(φ)T + Q′(φ) = 0, (17)

where primes denote derivatives with respect to the scalar
field, φ. This second relation can in turn be used to determine
a relation between the scalar field and the torsion scalar, φ =
φ(T ). Replacing the result in the action in Eq. (15) gives
a way to resolve the Lagrangian in the original action in
Eq. (10)

f (T ) = P(φ(T ))T + Q(φ(T )). (18)

The scalar field governing relations in Eq. (16) can be
taken for any setting, in particular we take them for the metric
in Eq. (3) which results in

12H2P(φ) + Q(φ) = κρm,

Q(φ) − 10H2P(φ) = −κpm, (19)

which are the Friedmann equations for the scalar field.
The scalar field can easily be taken to be the coordinate

time, φ = t , and setting the EoS to be pm = ωmρm . The
stress-energy tensor has not been altered in any significant
way so the same conservation equation naturally follows,
namely ρ̇m + 3H(1 + ωm)ρm = 0. Solving this relation
naturally leads to the cosmic time dependence of the energy
density,

ρm = ρm,0Exp

[
−3(1 + ωm)

∫
dt H(t)

]
. (20)

The solution for ρm is important because with this in hand,
the Friedmann equations for the scalar field can be used to
determine the scalar field action components as a function
of the Hubble parameter. However, in this case the Hubble
parameter will be a function of the scalar field, H = g(φ),
which is where the relationship between the torsion scalar
and the scalar field comes in. Using Eq. (16) and taking the
coupling parameters as κ = 1 = ρm,0 for convenience, the
scalar field functions can be determined. Since the theory is
second order, the scalar field turns out to be soluble in terms of
the Hubble parameter. After solving the coupled differential
equations

P(φ)g2(φ)Exp

[
3 (1 + ωm)

2
g2(φ)

]
= k, (21)

where k is some constant, and

Q(φ) = 10g2(φ)P(φ)

−ωmExp

[
−3(1 + ωm)

∫
dφg(φ)

]
. (22)
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For any given scalar field functional dependence, P =
P(φ), Eq. (21) returns a Lambert-W function so this is not
considered. Instead various Hubble parameter profiles are
taken in order to investigate the reconstruction advantages
of this approach. In the following these Hubble parameter
model are introduced along with the associated motivation,
the Lagrangian functions are then worked out.

Model 1 First a two term Hubble parameter which takes
different forms at early and late times is considered. Take
[16,20]

g(φ) = H1

φ2 + H0

ts − φ
, (23)

where ts is an arbitrary characteristic time that represents the
time at which the big rip would occur. At early times this
Hubble parameter leads to a period of accelerated expansion
similar to inflation which is followed directly by a decelerated
period of expansion. As t → ts , the expansion of the universe
becomes super-accelerated leading to the big rip. This is one
straightforward way to reconcile the early- and late-times
behaviors of the universe.

For early times, t � ts , it straightforwardly follows that

H(t) ∼ H1

t2 (24)

ä

a
∼ H1

t2

(
H1

t2 − 2

t
+ 2H0

ts − t

)
> 0. (25)

Similar to the concept of inflation, for a time t close to zero,
the acceleration parameter is positive, ä

a > 0. The model
then naturally enters a period of deceleration [16] while the
condition t � ts is retained.

The scalar field functions can then be determined, which
will turn out to fix the f (T ) Lagrangian. Firstly, by Eq. (21)
it is found that

P(φ) = k φ4

H2
1 Exp[ 3(1+ωm)

2

(
H1
φ2

)2]
, (26)

and by Eq. (22) it follows that

Q(φ) = 10 k

Exp

[
3(1+ωm )

2

(
H1
φ2

)2
]

−ωmExp

[
3(1 + ωm)H1

φ2

]
. (27)

By using Eq. (9) the scalar field can be expressed in terms
of the torsion scalar, φ2 = −12H1/T . In turn, this leads
to a functional form for the original f = f (T ) Lagrangian
through the scalar field in the Lagrangian of Eq. (15), giving

f (T ) ∼ −ωmExp

[
−1 + ωm

4
T

]
. (28)

This represents the active part of the Lagrangian that would be
needed to account for the early time segment of the universe
in f (T ) gravity.

Now for very late times, approaching the big rip, i.e t → ts
resulting in Hubble and acceleration parameters

H(t) ∼ H0

ts − φ

ä

a
∼ H0

(ts − φ)2 (1 + H0). (29)

As the big rip time is approached the universe enters a phase
of very rapid expansion again [16]. As shown above, the
scalar field functions can be determined through Eqs. (21)
and (22),

P(φ) = k (ts − φ)2

H2
0 Exp

[
3(1+ωm)H2

0
2(ts−φ)2

] , (30)

and analogously

Q(φ) = 10 k

Exp
[

3(1+ωm)H2
0

2(ts−φ)2

]

−ωm (ts − φ)3H0(1+ωm) . (31)

Inverting the torsion scalar in Eq. (9) results in a reconstructed
function for the torsion Lagrangian

f (T ) ∼ −10k Exp

[
1

6
(1 + ωm)T

]
. (32)

In this case the additional component of the Lagrangian is
again exponential, however, in this case it is positive since it
plays a role at late times.

The intermediary phase of the universe would still be
accounted for by the TEGR component. The end result is
a Lagrangian for f (T ) gravity given by f (T ) = T −
a0Exp[−A0T ] − b0Exp[A1T ], where the ai and Ai are pos-
itive constants. The resulting theory would satisfy the cos-
mological requirements. However, more work would have to
be done to understand the behavior of the theory on smaller
scales such as for galaxies and the solar system. One way
to get a more constrained Lagrangian from this approximate
form would be to compare supernova data and reduce the
arbitrariness of the free parameters.

Model 2 In model 1 the very late-time rapid acceleration
takes on a phantom nature. Another approach is to consider
[16]

g(φ) = H0 + H1

φn
, (33)
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where H0 and H1 > 0 are constants, and n is a positive inte-
ger. The n > 1 region is considered since it gives three well-
defined regions corresponding to an early acceleration phase
(interpreted as inflation), then deceleration, and finally late-
time acceleration. The corresponding acceleration parameter
turns out to be

ä

a
= Ḣ + H2 = − nH1

φn+1 +
(
H0 + H1

φn

)2

. (34)

For the model under consideration we do not need to take
limits to determine the f (T ) Lagrangian, so the scalar func-
tions can straightforwardly be determined, giving

P(φ) = k
(
H0 + H1

φn

)2
Exp

[
3(1+ωm )

2

(
H0 + H1

φn

)2
] (35)

and

Q(φ) = 10k Exp

[

−3(1 + ωm)

2

(
H0 + H1

φn

)2
]

−ωmExp

[
−3(1 + ωm)

(
H0φ − H1

(n − 1)φn−1

)]
.

(36)

Inverting the torsion scalar relation in Eq. (9) results in a
scalar field,

φ =
⎛

⎝ H1√
− T

12 − H0

⎞

⎠

1/n

. (37)

The arbitrary function f (T ) can then be determined in gen-
eral,

f (T ) = P(φ)T + Q(φ)

= −2k Exp

[
1 + ωm

8
T

]

−ωm Exp

[
3(1 + ωm)

1 − n

(
nH0 − √−T/12

)

×
(

H1√−T/12 − H0

)1/n
]

. (38)

As in the first model the TEGR term is still included
to govern the intermediate stage of evolution of the uni-
verse, resulting in the general Lagrangian form f (T ) ∼
T + b0Exp[b1T ] + B0Exp[B1(B2 + √−T )

(
1√−T+B3

)N ].
The square root term actually emerges naturally in other mod-
els [11,13,14], however, when it appears on its own it does
not contribute to the eventual Friedmann equations whereas
in this case it is implicit in another function. In the current
context it is interesting for it turns out to form part of the

Lagrangian solution. To a much lesser extent this is not dis-
similar to the Gauss–Bonnet generalizations [23].

Model 3 Lastly, the following model is considered [16]:

g(φ) = Hi + Hlce2αφ

1 + ce2αφ
, (39)

where Hi , Hl , c and α are positive constants. In model 2 addi-
tional scalar fields have to be introduced to suppress issues
with inflation whereas in the current context a clear link with
observation is attainable.

For the early and late universe the Hubble parameter tends
to the constants Hi and Hl , respectively. In this way, Hi would
drive inflation and Hl would take on the small cosmological
constant for late times.

The corresponding acceleration parameter turns out to be

ä

a
= 2αce2αφ(Hl − Hi ) + (Hi + cHle2αφ)2

(1 + ce2αφ)2 . (40)

Putting this into the scalar field functions in the Lagrangian
in Eqs. (21) and (22) results in

P(φ)

= k
(
1 + ce2αφ

)2

(Hi + Hlce2αφ)2Exp

[
3(1+ωm )

2

(
Hi+Hlce2αφ

1+ce2αφ

)2
]

(41)

and

Q(φ)

= 10k

Exp

[
3(1+ωm )

2

(
Hi+Hlce2αφ

1+ce2αφ

)2
]

−ωmExp [−3Hiφ (1 + ωm)]
(

1 + ce2αφ
)B

, (42)

where B = − 3(1+ωm )
2α

(Hl − Hi ). As in the previous case, the
relationship between the scalar field and the torsion scalar
follows straightforwardly:

φ = 1

2α
ln

⎛

⎝1

c

Hi − 1
√

− T
12 − Hl

⎞

⎠ . (43)

Through the mechanics of the scalar field, φ, Eq. (18) is
utilized to produce the teleparallel Lagrangian,

f (T ) = −2kExp

[
(1 + ωm)T

8

]

−ωm

⎛

⎝1 + Hi − 1
√

− T
12 − Hl

⎞

⎠

⎛

⎝1

c

Hi − 1
√

− T
12 − Hl

⎞

⎠

B

.

(44)
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Incorporating TEGR again gives a relatively simple
Lagrangian that contains different Lagrangian elements for
the different epochs of the cosmological history. In this
instance this gives the model f (T ) ∼ T + d0Exp[d1T ] +
D0

(

1 + Hi−1√
− T

12 −Hl

) (
Hi−1√

− T
12 −Hl

)D

1

, which has two effective

Hubble parameters for early and late times. This last model
can work as a bridge between the first two models, since it
contains both terms in

√−T and also the exponential term in
T . Altogether a wide variety of potential Lagrangian terms
emerge from considering this collection of Hubble parameter
ansatzes.

4 The inhomogeneous equation of state

In the previous section different Hubble functions are used to
reconstruct the gravitational Lagrangian using a scale factor
approach as the vehicle for reconstruction. In this section the
additional terms that f (T ) offers are interpreted as an extra
dark fluid. The resulting EoS of the dark fluid depends on the
Hubble parameter and its derivatives, in an inhomogeneous
way.

Taking the modified Friedmann equations from Eqs. (13)
and (14), we have

3H2 = 1

fT

(
− f

8

)
,

−3H2 − 2Ḣ = 1

fT

(
f

2
− 24 fT T H

2 Ḣ

)
, (45)

where no other matter contributions are admitted. This would
represent a cosmology dominated by modified gravity terms.
On comparison with the standard Friedmann equations from
GR, the energy and pressure density contributions can easily
be identified as

ρ = 1

κ

1

fT

(
− f

8

)
,

p = 1

κ

1

fT

(
f

8
− 24 fT T H

2 Ḣ

)
, (46)

where a perfect fluid context is being assumed. That is, the
modified terms can be interpreted as forming part of a cosmic
perfect fluid that takes on the role of dark energy. Following
this line of thought a dark fluid EoS naturally emerges as

ω = p

ρ
= −1 + 192 fT T H2 Ḣ

f
, (47)

which can be represented as

p = −ρ − 24 fT T H2 Ḣ

fT
, (48)

where the second term is dependent only on the Hubble
parameter (κ = 1). This is the inhomogeneous EoS for the
dark fluid which has been investigated in Refs. [20,24–27].
Following Refs. [20,28], this equation can be generalized to

p = −ρ + g
(
H, Ḣ , Ḧ , . . .

)
, (49)

where g(H, Ḣ , Ḧ , . . .) = − 24 fT T H2 Ḣ
fT

. On combining the
Friedmann equations and using the inhomogeneous EoS
gives the following differential equation in f (T ):

Ḣ + κ

2
g

(
H, Ḣ , Ḧ , . . .

) = 0, (50)

where κ is taken as unity for convenience in what follows.
This equation can be solved only once a Hubble parameter is
assigned since it is essentially a linear first order differential
equation in f (T ).

As an example the following Hubble parameter is consid-
ered [28]:

H(t) = H0t + H1

t
, (51)

where H0 and H1 are positive constants. The Hubble model
gives an early decelerating period followed up an accelerating
period, which are studied in turn as limiting cases. Another
reason why this is done is that the relationship between the
torsion scalar and cosmic time is non-invertible in the general
case. This is needed to eliminate any appearances of cosmic
time as t = t (T ) in the eventual f (T ) Lagrangian.

For the initial decelerating period, H(t) ∼ H1/t , giving
a time dependence

t = H1

√
12

−T
, (52)

and solving Eq. (50) gives

f (T ) = −144H4
1 λ

√
πErfi

[
T 2

288H4
1

]

, (53)

where λ is an integration constant. It is not uncommon for
f (T ) gravity to produce Lagrangians that cannot be put in
closed form [8,29,30]. Thus by using Eq. (49), the inhomo-
geneous EoS equation that turns out to reproduce this kind
of behavior is given by

p ∼ −ρ − H2 Ḣ

6H4
1

T . (54)

On the other hand, for late times the Hubble parameter
takes the form H(t) ∼ H0t , and combining with Eq. (9)
results in the time dependence
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t =
√

− T

12H2
0

. (55)

Again solving the differential equation Eq. (50) turns out to
give a Lagrangian

f (T ) = λ̃ lnT, (56)

where λ̃ is an integration constant. This general type of
Lagrangian has shown some promise in cosmological set-
tings [8,29]. Taking derivatives gives the general inhomoge-
neous EoS equation as

p = −ρ + 24H2 Ḣ

T
. (57)

This indeed reproduces the desired late-time behavior.

5 Discussion and conclusion

In this work a number of different solutions of f (T ) theory
have emerged from investigating the cosmological scenario
within the context of both early- and late-time epochs. This
was achieved through the vehicle of using an auxiliary scalar
similar to the approach [20]. This method works very well for
generalized theories because it gives a second way of solving
the Friedmann equations.

Secondly, the inhomogeneous EoS was also derived using
a particular Hubble parameter, with both early- and late-
time reconstructions. Together these two approaches offer
two methods of using an auxiliary scalar field to reconstruct
the f (T ) Lagrangian. Moreover, the auxiliary scalar field
and the exotic modified gravity terms interpreted as a perfect
fluid EoS result in the same state parameter behavior.

f (T ) theories may provide a suitable description of the
expansion history of the universe without the need to include
exotic components to the stress-energy part. The models
would need to be constrained at lower scales, such as in the
galactic and solar system regime. Thus the models should
next be compared with cosmological data such as supernovae
luminosity distance data and the CMB profile, similar to the
initiative in f (R) theory; however, this is out of the scope of
this paper.

Beyond the models considered for the first method another
two were attempted, namely g(φ) = φα and g(φ) =
h2

0

(
1

t20 −φ2 + 1
t21 +φ2

)
; however, in either case the problem

becomes intractable very fast. Other approaches may include
perturbative analyses.

For the models that do emerge, firstly they are predomi-
nantly exponential functions but some are not. In a follow-up
study, it would be interesting to understand better the transi-

tion between the different epochs in terms of the Lagrangian
terms presented here. This would naturally involve an anal-
ysis of the stability of each model.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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