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The ability to progress from simple to more complex, organized, and spatially differentiated
forms, or morphogenesis, is, perhaps, one of the most fundamental properties of biological
systems from individual cells to large multicellular organisms, to whole populations. Customarily,
cell biology is concerned with the morphogenesis of individual cells, while developmental
biology studies morphogenesis on the scales of tissues and whole organisms. We envision
that the Section “Patterning and Morphogenesis” will take on the challenge of unifying these
efforts focusing on their integration based on the common organizing principles. Historically,
patterning and morphogenesis has been a fundamentally multidisciplinary area of research that
experienced influences of many scientific disciplines outside of biology, i.e., physics, chemistry,
and mathematics. Therefore, one of our goals will be to foster this spirit of multidisciplinarity and
encourage contributions from classical experimental research as well as from more quantitative
and theoretical fields. Even when the development of tools allowing appropriate experimental
approaches to complex cellular and molecular activity was still in its infancy, theoretical models
were already proposed to account for the formation of complex and highly specific morphological
features. Many influential ideas generated by the twentieth century giants, such as Alan Turing,
Conrad Waddington, and Lewis Wolpert, have become even more exciting now, when we can
actually observe and experimentally perturb their manifestations in living biological systems.

SEEING IS BELIEVING

Currently we experience an unprecedent boom in several areas of technology that have dramatically
increased the depth and detail with which the mechanisms of patterning and morphogenetic
processes are explored.Most often these technological developments happened independently from
each other, but their clever and creative combination has potentiated their individual power, as
well as expanded their applicability. Advances in optical microscopy are among the technological
developments with the highest impact in the depth, resolution and precision that can be applied to
the analysis of a wide variety of cell and molecular behaviors guiding morphogenetic processes in
many different in vivo and in vitro systems. Full exploitation of the power of advanced microscopic
technology resulted from its association with other technological areas. For instance, concomitant
development of methods to introduce different types of fluorescent labels (Shcherbakova et al.,
2014) into cell structural components, many of them compatible with live imaging analyses in cells
or even whole organisms, has enabled observation of morphogenetic processes at unprecedented
space and time resolution. The use of advanced computational techniques has also significantly
increased image analysis power. The recent success of the super resolution microscopy (Sengupta
et al., 2012; Betzig, 2015) and the generation of precise active 3D models (Long et al., 2012) are just
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two examples illustrating the benefits of merging imaging and
computation. These improvements allowed live observation of
highly dynamic processes, such as establishment of cellular
polarity, complex oscillations, and propagation of waves inside
cells and tissues (Bement et al., 2015; Tsiairis and Aulehla, 2016;
Wu et al., 2018; Landin Malt et al., 2019). This also allowed us
to follow cell routes and fates in highly complex structures like a
developing mouse embryo (Mcdole et al., 2018). Surely, these are
only the appetizers for what we will witness in the coming years.

Efficient single cell technologies have also been introduced
in the analysis of a variety of complex morphogenetic processes
(Wagner et al., 2018; Cao et al., 2019; Delile et al., 2019; Pijuan-
Sala et al., 2019). It is expected that the power of this analytic
approach will be considerably increased with the combination of
protocols allowing spatial allocation of the individual cells within
the tissue of origin, as well as by the assistance of systems biology
methodology to infer and model gene networks regulating
those processes, also leading to the generation of experimentally
testable hypotheses (Tam and Ho, 2020). In addition to analytical
approaches, in recent years new technologies have also expanded
the toolbox permitting introduction of precisely controlled
modifications in the experimental system required to evaluate the
role of specific features in the generation of complex structures.
The appearance of the CRISPR/Cas9-based genomic editing
techniques (Adli, 2018) is among the most relevant of those new
approaches, with an immediate deep impact in the field of cell
and developmental biology. For instance, it has democratized the
use of genetics to the analysis of patterning and morphogenetic
processes. Until very recently controlled experimental alterations
of gene activity were possible in only a handful of model systems,
and even in them the options to modify gene expression were
often limited, mostly relying on the introduction of different
types of exogenous elements in the genome or interfering with
gene expression machinery. CRISPR/Cas9 technology provided
for the first time the possibility of introducing reverse genetic
approaches to the study of cellular and developmental processes
in organisms previously considered unsuited to controlled
genetic modification (Martin et al., 2016; Mazo-Vargas et al.,
2017; Rasys et al., 2019).

Another group of technological advances relates to the
introduction of new in vitro model systems closely simulating in
vivo conditions that for a variety of reasons cannot be effectively
approached in their natural environment. To name but a few,
in vitro reconstitutions of the MinCDE cell patterning system
(Loose et al., 2008; Glock et al., 2019), mixtures of cytoskeletal
polymers and their cognate molecular motors (Koenderink et al.,
2009; Opathalage et al., 2019), and whole mimetic actomyosin
cortices (Carvalho et al., 2013; Foster et al., 2019), dramatically
accelerated our understanding of the morphogenesis in the
corresponding in vivo systems. Some of these in vitro approaches
had been around already for a number of years. Indeed, embryoid
bodies, Keller sandwiches and a variety of tissue explants
represent three classical examples of such systems that have been
effectively used for decades (Doetschman et al., 1985; Keller and
Danilchik, 1988; Freshney, 2016). However, the technologies for
the generation of complex in vitro models evolved considerably
from these early systems and are now mostly represented

by structures globally known as organoids (Kretzschmar and
Clevers, 2016), when they aim at mimicking specific organ
structures like the brain or the intestine, and gastruloids (Beccari
et al., 2018), when they intend to reproduce early stages in
embryonic development.

QUO VADIS?

Given these fascinating technological advances, what are
the main challenges that the broad field of patterning and
morphogenesis is currently facing? Owing to the impact of the
concept of morphogens introduced by Turing (1952), chemical
regulation of morphogenesis has been in the spotlight for
decades. Indeed, the concept of morphogens further developed
by Wolpert and colleagues turned out to be exceptionally
fruitful (Smith et al., 2008; Green and Sharpe, 2015; Wolpert,
2016). Supported by the discussed above modern technologies,
we are presently confident that many proteins, e.g., TGFβ,
bone morphogenetic proteins, sonic hedgehog and WNTs, fully
qualify for the role of extracellular morphogens. Interestingly,
the concept of morphogens can be also productively extended
into intracellular morphogenesis within the framework of
the activator-substrate model (Hubatsch and Goehring, 2020).
Perhaps, the best characterized intracellular morphogens are
small GTPases that form membrane localized prepatterns for
cytoskeletal structures and in the context of the establishment
of cell polarity (Goryachev and Leda, 2017, 2019, 2020). The
concept of mechanical regulation of morphogenesis was formed
a long time ago, perhaps even before that of chemical regulation.
However, due to the experimental difficulties and the paucity of
theoretical approaches it remained in the shadow of the chemical
regulation. This situation changed dramatically in the past
decade due to the burgeoning development of experimental and
theoretical biomechanics. One of the current grand challenges
is to integrate chemical and mechanical mechanisms to achieve
a new level in understanding of morphogenesis on both
intracellular and multicellular levels (Howard et al., 2011;
Goehring and Grill, 2013; Gross et al., 2017).

Arguably, the most recent development in the mechanisms
of morphogenesis has been the recognition of the role played
by the phenomenon of phase separation (Hyman et al., 2014;
Banani et al., 2017). Phase separation is a well-developed concept
in physics and chemistry but its relevance to biology in general
and morphogenesis in particular has been largely unexplored.
Presently evidence is abound that phase separation is the
governing principle in control of formation of multiple cellular
organelles not bound by a lipid membrane, such as centrosomes,
nucleolus, and a large variety of cytoplasmic and nuclear granules
and bodies (Woodruff et al., 2018; Alberti et al., 2019). The out
of equilibrium nature of biological phase separation makes all
the difference as it converts a rigid unidirectional aggregation of
molecules into a highly plastic process which is finely controlled
by cellular signaling. Another current grand challenge is to
understand these mechanisms of regulation and to integrate
them with the better understood patterning mechanisms by
reaction and diffusion. While currently phase separation appears
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mainly relevant to the intracellular morphogenesis, it is not
unlikely that phase separation also plays roles on themulticellular
scale, e.g., in the formation of basal membranes, and even tissue
and organism scales, such as in fascia and cartilage.

It is exciting to anticipate what the development of
these new conceptual and technical advances will teach
us about how cells work and interact to build complex
functional structures. We hope that, in the years to come,
the Patterning and Morphogenesis Section of the Frontiers
in Cell and Developmental Biology will play an important
role in disseminating this new knowledge among the scientific
community and beyond.
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