
Agre et al. BMC Plant Biology          (2021) 21:552  
https://doi.org/10.1186/s12870-021-03314-w

RESEARCH

Identific tion of quantitative trait 
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Abstract 

Background:  Improvement of tuber yield and tolerance to viruses are priority objectives in white Guinea yam breed-
ing programs. However, phenotypic selection for these traits is quite challenging due to phenotypic plasticity and 
cumbersome screening of phenotypic-induced variations. This study assessed quantitative trait nucleotides (QTNs) 
and the underlying candidate genes related to tuber yield per plant (TYP) and yam mosaic virus (YMV) tolerance in a 
panel of 406 white Guinea yam (Dioscorea rotundata) breeding lines using a genome-wide association study (GWAS).

Results:  Population structure analysis using 5,581 SNPs differentiated the 406 genotypes into seven distinct sub-
groups based delta K. Marker-trait association (MTA) analysis using the multi-locus linear model (mrMLM) identified 
seventeen QTN regions significant for TYP and five for YMV with various effects. The seveteen QTNs were detected on 
nine chromosomes, while the five QTNs were identified on five chromosomes. We identified variants responsible for 
predicting higher yield and low virus severity scores in the breeding panel through the marker-effect prediction. Gene 
annotation for the significant SNP loci identified several essential putative genes associated with the growth and 
development of tuber yield and those that code for tolerance to mosaic virus.

Conclusion:  Application of different multi-locus models of GWAS identified 22 QTNs. Our results provide valuable 
insight for marker validation and deployment for tuber yield and mosaic virus tolerance in white yam breeding. The 
information on SNP variants and genes from the present study would fast-track the application of genomics-informed 
selection decisions in breeding white Guinea yam for rapid introgression of the targeted traits through markers 
validation.
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Background
Root and tuber crops are significant contributors to 
global food supply next to cereal crops. Yam is among the 
principal root and tuber crops, after cassava and potato, 
that are widely grown and consumed as subsistence sta-
ples [1]. Yam is a collective name for the Dioscorea spe-
cies extensively cultivated in the tropics and subtropics 
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by smallholder farmers for its starchy underground 
tuber and aerial bulbils [2, 3]. The global estimated mean 
annual yam production and gross values are approxi-
mately 73 million tons and 14 billion US dollars, respec-
tively, with West Africa accounting for 92% of the total 
yam production [4, 5]. There are over 600 Dioscorea spe-
cies, of which 11 are economically significant [6]. White 
Guinea yam (D. rotundata), indigenous to Africa, is the 
most produced and consumed among cultivated species, 
supporting the livelihood of over 300 million people [2]. 
Yam is also important in many key life ceremonies in the 
major producing areas of West Africa [7].

Despite its socio-economic importance, a significant 
yield increase has not been achieved over the decades 
compared to cereal crops [1]. Improved varieties are vital 
for attaining increased productivity in farmers’ fields. The 
development of improved yam varieties requires a better 
understanding of the genetic control of traits contribut-
ing to the increased yield and acceptable quality by grow-
ers and consumers. However, the breeding efforts have 
not adequately explored the genetic basis of tuber yield 
and virus resistance traits to fast-track improved cultivar 
development. Genes controlling key traits such as resist-
ance to pests and diseases, tuber yield, and tuber quality 
traits exhibit quantitative inheritance. They may not be 
linked in a preferred direction, making improving these 
traits challenging using conventional breeding techniques 
[8]. In QTL mapping studies, the variation in virus resist-
ance is attributed to a single major locus with a modest 
contribution [9]. Two random amplification of polymor-
phic DNA (RAPD) markers tightly linked in the coupling 
phase with Ymv-1 locus on the same linkage group were 
reported in resistant genotypes of D. rotundata.

For tuber yield, limited knowledge exists regarding 
QTL mapping studies [8]. The QTLs detected for YMV 
in yam were mainly based on conventional family-based 
linkage mapping. In contrast, the GWAS strategy using 
naturally occurring variants is a more robust and efficient 
method for identifying significant loci and the genes 
involved in the genetic control of complex traits. The 
GWAS strategy has increasingly been utilized in many 
crops, including root and tuber crops, to dissect the 
underlying genetic control mechanism in complex traits. 
However, GWAS mapping for tuber yield and YMV tol-
erance in yam has not been reported to date.

Supporting yam breeding efforts based on quantitative 
genetics principles and genomics tools is indispensable to 
increase the program’s effectiveness for increasing pro-
ductivity. Yam cultivar development using conventional 
strategies spans at least ten years from crossing to vari-
ety release recommendation [4, 6]. The complementa-
tion of the traditional breeding techniques with advanced 
molecular tools has reduced the breeding cycle in crops 

[10]. In theory, genotypic information from molecular 
markers, when associated with phenotypic traits of inter-
est, may be extensively used to select individuals with 
higher genetic value through marker-assisted selection 
(MAS) [11].

This study’s objective was to dissect the genetic control 
of tuber yield and YMV tolerance in white Guinea yam.

Material and methods
Plant materials
The study panel comprised 406 white Guinea yam clones, 
of which, 36 were trait progenitors, 49 elite clones, and 
321 early generation breeding lines from the IITA’s yam 
breeding program (Supplementary Table 1). All the gen-
otypes are from the International Institute of Tropical 
Agriculture, IITA Ibadan Nigeria and are maintained by 
the Yam Breeding Improvement Unit.

Phenotyping
Phenotypic data on tuber yield per plant (TYP) and yam 
mosaic virus (YMV) severity were recorded on the plant 
materials assessed at different breeding stages at IITA in 
Nigeria. The TYP and YMV severity were recorded on 
plants in the field using the procedure described in yam 
ontology (http://​www.​cropo​ntolo​gy.​org/​ontol​ogy/​CO_​
343/​Yam) and yam standard operation protocol [12]. 
Tuber yield was recorded in kilogram on a plant basis at 
harvest (eight months after planting). The YMV sever-
ity score was assessed at 30-day intervals from 2 to 6 
months after planting based on a visual assessment of the 
relative area of plant leaf surfaces affected by the mosaic 
virus disease using a five-ordinal scale of 1–5. A score of 
1 represented no visible symptoms of virus infection, 2 
for mild mosaic, vein-banding, green spotting or fleck-
ing, curling and mottling on few leaves but no leaf distor-
tion, 3 for low incidence (25–50%) of the mosaic virus on 
the entire plant, 4 for the severe mosaic on most leaves 
and leaf distortion, and 5 for severe mosaic and bleaching 
with severe leaf distortion and stunting. The virus sever-
ity score values were converted to percentages and then 
used to estimate the area under disease progress curve 
(AUDPC) values as described by Forbes et al. [13]:

where yi = disease severity at the ith observation, ti = 
time (days) at the ith observation, and n = total number 
of observations.

Phenotypic data analysis
We applied a one-step linear mixed model that used 
G-matrix to compute the best linear unbiased predictor 

AUDPC =

∑n−1

i=1

(

yi + yi+1

2

)

(ti+1 − ti)

http://www.cropontology.org/ontology/CO_343/Yam
http://www.cropontology.org/ontology/CO_343/Yam
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(BLUP) values of an individual clone for a trait from the 
best fit model using the average information criterion 
(AIC) in restricted maximum likelihood (REML) algo-
rithm [14] in the ASReml-R version 4 package [15]. The 
model used was:

where yij is the phenotypic value, μ is the overall aver-
age (shared by all observations), βi is the effect of block 
i, τj is the specific effect to genotype j, γk is the spe-
cific effect to trials k and ℇij is an effect specific to each 
experimental unit (combination block and genotype ) 
and Zuu is the the vectors of random additive and non-
additive genetic within location effects, respectively, 
with corresponding design matrix Zu. Accordingly, 
the genetic variance was partitioned into the additive 
effects, which were associated with a covariance struc-
ture proportional to genetic relationships derived from 
the molecular markers and the non-additive genetic 
effect.  The non-additive genetic  variance is explained 
by individual identity rather than the genomic relation-
ship matrix following the approach described by Bor-
gognone et al. [16] and Ovenden et al. [17].

Broad sense heritability (H2) estimates for the traits 
were calculated from phenotypic variance (σ2p) and the 
genotypic variance (σ2g). The BLUP values of the gen-
otypes for the traits extracted from the best fit model 
were used as input for the GWAS model.

Genotyping and SNP data analysis
For each genotype, total genomic DNA was isolated 
from lyophilized young and fully expanded healthy 
leaves. Deoxyribonucleic acid (DNA) was extracted from 
the leaf samples using the CTAB procedure with slight 
modification [18]. DNA quality and concentration were 
assessed using agarose gel and nanodrop, respectively, 
following the methods described in Aljanabi and Mar-
tinez [19]. High-throughput genotyping was conducted 
in 96 plex DArTseq protocol, and SNPs were called 
using the DArT’s proprietary software, DArTSoft, as 
described by Killian et al. [20]. Reads and tags found in 
each sequencing result were aligned to the Dioscorea 
rotundata reference genome version 2 (https://​drive.​
google.​com/​drive/​folde​rs/​1H5T4​xjKAE​l9LliR-​4qK_​
IR6Ty​pCDe8​nj) with Hisat2 [21]. The raw HapMap file 
generated was first converted to a Variant Call Format 
(VCF) and filtered for missing value and polymorphic 
SNPs using quality control criteria of low sequence 
depth <5; SNP markers with missing values >20%; minor 
allele frequency (MAF) <0.05 and heterozygosity >50. Of 
the 16,242 SNP markers subjected to the filtering quality 

yij = π + βi + τj + γ k + εij + Zuu

criteria, 5,581 good-quality SNPs were retained for vari-
ous analyses.

Population genetic analysis
Various population genetic analysis methods were 
conducted to explore the structure and level of genetic 
diversity in the study material. The SNP distribution 
and the density were estimated using the ‘Cmplot’ 
function implemented in the CMplot R package [22]. 
For the SNP mutation from the reference to the alter-
native, SNPlay open website was used to estimate 
the rate of the transition and transversion across the 
retained SNP. Statistics such as the minor allele fre-
quency (MAF), the observed and the expected het-
erozygosity, and the polymorphism information 
content were estimated using the function "--freq" and 
"--hardy" using PLINK V1.90 [23].

The genetic relationship among the plant materials was 
explored using the principal component analysis (PCA) 
in FactorMiner R package [24]. For the PCA, the origin of 
the plant (early generation and parental profile) was used 
as factor.

Structure software version 2.3.3 [25, 26] was used to 
cluster samples into populations. Structure simulations 
were carried out using an admixture model with a burn-
in period of 20000 iterations and a Markov chain Monte 
Carlo (MCMC) set at 20000. The simulations were 
repeated 3 times for K-values of 1 to 10. The optimal sub-
population model was investigated in several ways: (1) by 
applying the informal pointers (i.e. geographical origin) 
proposed by Pritchard et  al. [25] and Falush et  al. [27]; 
(2) by considering ΔK, a second order rate change with 
respect to K, as defined in Evanno et  al. [28], as imple-
mented in STRU​CTU​RE HARVESTER [29] and thus the 
most likely value of K determined. Structure population 
was then plotted using barplot function implemeneted 
in R. The phylogeny tree was done using ape version 5.0 
implemented in R [30].

Genome Wide‑Association Analysis (GWAS)
The GWAS were performed using the R package mrMLM 
v4.0.2 [31] with six multi-locus models. These models 
included: 1) multi-locus random-SNP-effect Mixed Lin-
ear Model [32], 2) Fast multi-locus random-SNP-effect 
EMMA (FASTmrEMMA) [33], 3) Iterative Sure Inde-
pendence Screening EM-Bayesian LASSO (ISIS EM-
BLASSO) [34], 4) polygenic-background-control- based 
least angle regression plus empirical Bayes (pLARmEB) 
[35], 5) polygenic- background-control-based Kruskal-
Wallis test plus empirical Bayes (pKWmEB) [36]; and 6) 
fast mrMLM (FASTmrMLM) [37].

https://drive.google.com/drive/folders/1H5T4xjKAEl9LliR-4qK_IR6TypCDe8nj
https://drive.google.com/drive/folders/1H5T4xjKAEl9LliR-4qK_IR6TypCDe8nj
https://drive.google.com/drive/folders/1H5T4xjKAEl9LliR-4qK_IR6TypCDe8nj
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In the mrMLM analysis, we accounted for population 
structure (Q) generated from Structure analysis. For each 
trait, the optimal number Q value included in the GWAS 
models was determined based on the highest ΔK value. 
The percentage of variation explained by the associated 
marker (R2) and the markers effect were estimated in the 
mrMLM (v 4.0.2) R package (https://​cran.r-​proje​ct.​org/​
web/​packa​ges/​mrMLM/​index.​html).

Identific tion of existing putative genes
The possible candidate genes within the significant 
QTL region were searched in the defined range win-
dow of 1 MB at 500 Kb (downstream and upstream) 
from the yam Generic File Format (GFF3) file. Linkage 
disequilibrium (LD) was assessed between the signifi-
cant SNPs using the LDheatmap library [38]. The yam 
generic feature format (GFF3) of the reference genome 
was used to identify the main gene in the inter-genic 
region using the SNPReff. Functions of the genes asso-
ciated with the identified SNPs were determined using 
the public database Interpro, European Molecular Biol-
ogy Laboratory-European Bioinformatics Institute 
(EMBL-EBI) [39].

Haplotype estimation and SNP markers effect prediction
Haplotype associated with significant QTL was devel-
oped using “rstatix” package implemented in R, and 
the sequence of each haplotype was defined based on 
the 406 genetic material considered as testing and or 
identification population. The variant effect prediction 
was evaluated through the adjusted posterior probabil-
ity, and the markers with high segregation were identi-
fied. Marker effects were then plotted for vizualization.

Results
Phenotypic data of the white yam
Table  1 presents summary statistics for the phenotypic 
traits assessed. Broad-sense heritability estimates were 
high, 0.708 for tuber yield per plant and 0.903 for yam 
mosaic virus. The phenotypic value for the tuber yield 
ranged from 0.93 to 1.47 kg plant-1 with an average of 
1.19 kg. The area under the disease progress curve for 

YMV ranged from 100.56 to 2900.45 with an average of 
936.16. (Supplementary Table 2).

Genetic diversity, population structure and linkage 
disequilibrium
The DArT genotyping of 406 white Guinea yam clones 
detected the highest number of SNPs (637) mapped on 
chromosome 5 and the lowest of 123 on chromosome 11 
(Supplementary Fig. 1A). Transition SNPs (60.13%, 3,356 
SNPs) were more frequent than transversions (39.87%, 
2225 SNPs) (Supplementary Fig. 1B). The observed het-
erozygosity value ranged from 0.029 to 0.622, with an 
average of 0.336 (Supplementary Fig. 1C). The expected 
heterozygosity value ranged from 0.09 to 0.5, with an 
average of 0.331 (Supplementary Fig.  1D). The minor 
allele frequency ranged from 0.05 to 0.5, with a mean of 
0.24 (Supplementary Fig. 1E). The polymorphic informa-
tion content (PIC) ranged from 0.087 to 0.335, with an 
average value of 0.267 (Supplementary Fig. 1F).

The population structure analysis of the yam diver-
sity panel shows that the delta K values from the mean 
log-likelihood probabilities plateaued at K=7 (1306.47) 
(Fig.  1A). At K=7, the 406 yam diversity panel was 
divided into 7 sub-populations (Fig. 1C). Using the 50% 
cutoff criterion of membership probability threshold, 
305 accessions were successfully assigned to the 7 differ-
ent sub-populations. The remaining 101 accessions with 
a probability of associations less than 50% were desig-
nated as an admixed population. The phylogenetic tree 
also showed seven sub-populations with higher degrees 
of admixture similar to the delta K plot from the STRU​
CTU​RE (Fig. 1B).

Exploring the the genetic relashionship through prin-
cipal component analysis showed that the first two PCs 
account for 63.7% of the total variation (Fig. 2). The PCA 
clearly showed a higher degree of admixture between the 
early generation and parental profile clones. Both the 
early generation and the parental profile clones were dis-
tributed along PC1 and the PC2 (Fig. 2).

Genome‑wide scan for traits
Tuber yield
We found seventeen SNPs markers distributed on 9 
chromosomes, significantly associated with tuber yield 
(kg plant-1) (Table  2; Fig.  3). The LOD values for these 
SNPs ranged from 5.07 to 10.88 with minor allele fre-
quency (MAF) ranging from 0.09 to 0.50. Of the 17 SNP 
markers associated with tuber yield, four were mapped 
on chromosome 4, two on chromosome 5, two each on 
chromosomes 8, 10, 14, and 17 and a single SNP each on 
chromosomes 13, 15, and 19 (Table 2). The SNP marker 
chr05_24682916 explained the highest total phenotypic 
variance 8.47%.

Table 1  Descriptive statistics of tuber yield per plant (TYP) and 
yam mosaic virus (YMV)

TYP Tuber yield per plant, YMV yam mosaic virus (AUDPC value)

Traits Minimum Maximum Mean Standard 
Deviation

Broad sense 
heritability 
(H2)

TYP 0.93 1.47 1.19 0.11 0.708

YMV 100.56 2900.45 936.16 481.19 0.903

https://cran.r-project.org/web/packages/mrMLM/index.html
https://cran.r-project.org/web/packages/mrMLM/index.html
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Yam mosaic virus resistance
We found five SNP loci that showed a significant associa-
tion with the reaction to mosaic virus infection (Table 2, 
Fig.  4). Of the significant SNPs associated with YMV, 
three markers named chr03_6338751, chr05_30671001 
and chr16_1482029 displayed negative quantitative trait 
nucleotide effects (Table 2). Using different genetic model 
for the SNP association SNP marker chr15_3906069 
located on chromosome 15 was identified by two meth-
ods pLARmEB and pKWmEB. The total phenotypic vari-
ance explained by the markers associated with the yam 
mosaic virus varied from 0.33% to 5.96%. The minor 
allele frequency (MAF) of the associated SNP marker 
ranged from 0.16 to 0.49.

SNP‑trait association mapping
Four multi-locus models (MLMs) including FASTm-
rMLM, mrMLM, pKWmEB and pLARmEB detected a 
total of 22 QTNs across the 20 chromosomes of white 
yam for TYP and YMV traits (Table 2). Of the 22 QTNs, 
a total of 17 SNPs significantly associated with TYP. 
Among the 17 loci, two SNPs each were detected by 

FASTmrMLM and mrMLM; and seven SNPs each by 
pKWmEB and pLARmEB. These QTNs were distributed 
unevenly on 9 chromosomes (Table 2). Models pKWmEB 
and pLARmEB detected the highest number of 7 QTNs 
each. The 7 QTNs of model pKWmEB were detected 
on chromosomes 4, 5, 8 and 10, while those of model 
pLARmEB were detected on chromosomes 4, 5, 14, 15, 
17 and 19.

For YMV, a total of five QTNs were detected by 
pLARmEB and pKWmEB and unevenly distributed on 
five chromosomes.

TYP tuber yield (kg plant-1), YMV Yam mosaic virus 
severity score (AUDPC value), LOD Logarithm of odds, 
Chr chromosomes, Pos position, bp base-pair, MAF 
Minor allele frequency, r2 r-square, QTN quantitative 
trait nucleotide

Identific tion of existing putative genes
Tuber yield
We explored the association of the identified QTN 
regions on the physical map with the potential candi-
date genes and their functions using the white Guinea 

Fig. 1  Graphical representation of the population structure of the 406 yam diversity panel. A Plot of mean likelihood of delta K against the 
number of K groups. The highest peak observed at K=7 signifies the grouping of accessions into seven groups. B Phylogeny tree showing the 
7 Sub-populations. The colors represent each sub-population. C Population structure originated from the STRU​CTU​RE based K=7. Each vertical 
barplot represents a single yam clone



Page 6 of 16Agre et al. BMC Plant Biology          (2021) 21:552 

yam genome sequence. The LD heatmap of the signifi-
cant SNPs on chromosomes 4, 5, 8, 13, 14, 15, 17 and 
19 displayed a high genetic correlation (0.3 to 0.85) 
between the specific SNPs in the vicinity of the peak 
adjacent to the putative gene (Fig. 5). On chromosome 
4, the significant SNP for tuber yield is located on the 
genomic regions harboring six putative genes (Gib-
berellin regulated protein, AP2/ERF domain, NB-ARC, 
Dirigent protein, Membrane transport protein, and 
Importin subunit beta-1, plants) with known functions. 
On chromosome 5, we detected three putative genes 
(Expansin, AUX/IAA protein and AP2/ERF domain). 
On chromosome 8, we identified two putative genes 
(AUX/IAA protein; Glycine-rich protein) (Supple-
mentary Table  4). Several putative genes were identi-
fied on chromosome 14 (Supplementary Table S4). On 
chromosome 15, which displayed average correlation 
through the Ldheatmap, five genes were identified in 
the vicinity of the targeted SNP marker. The LD heat-
map for the SNP found in association with tuber yield 

on chromosome 19 revealed the presence of 9 puta-
tive genes (ABC transporter-like, Exportin-1/Impor-
tin-beta-like, Sodium/calcium exchanger membrane 
region, AUX/IAA protein, Geminivirus AL3 coat pro-
tein, AP2/ERF domain, Major facilitator, sugar trans-
porter-like, and Expansin).

Yam mosaic virus resistance
We identified four candidate genes, namely AP2/ERF 
domain, Major facilitator, sugar transporter-like, and 
AUX/IAA protein on chromosome 3 near the SNP 
found in association with the YMV. The four identi-
fied candidate genes, AP2/ERF domain and AUX/IAA 
protein, were reported to confer essential gene func-
tions related to plant defense and growth. The pair-
wise LD between the SNP of chromosome 3, 5, 10, 15 
and 16 situated in genomic regions associated with 
YMV displayed a higher correlation with the three 
main haplotypes block (Fig.  6). On chromosome 10, 
fifteen different putative genes were identified near 

Fig. 2  Principal component displaying the relationship between and among the early generation and parental profile clones used in this study
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the significant SNPs as being associated with the YMV 
resistance, namely SNF2-related domain, Geminivirus 
AL3 coat protein, SANT/Myb domain, Geminivirus 
AL1 replication-associated protein, CLV type, Chlo-
rophyll A-B binding protein, AP2/ERF domain, Gdt1 
family, NB-ARC, Probable transposase, Ptta/En/Spm 
plant, Geminivirus AL1 replication-associated protein, 

catalytic domain, Kinesin-like protein and Geminivirus 
Rep catalytic domain.

Haplotype SNP distribution and SNP markers effect 
prediction
The frequencies and marker prediction effects of vari-
ous haplotypes associated with tuber yield and resistance 

Table 2  SNP markers associated with the tuber yield per plant (TYP) and yam mosaic virus severity score.

Trait Method SNP marker Chr pos (bp) QTN effect LOD score ‘-log10(P)’ r2 (%) MAF Genotype 
for code 1

YMV pLARmEB chr03_6338751 3 6338751 -143.86 6.10 6.93 4.68 0.46 T

pKWmEB chr05_30671001 5 30671001 -109.57 5.32 6.13 5.96 0.49 A

pLARmEB chr10_1116193 10 1116193 206.37 5.24 6.05 3.87 0.26 A

pLARmEB chr15_3906069 15 3906069 211.65 6.88 7.74 0.31 0.16 A

pKWmEB chr15_3906069 15 3906069 174.41 6.15 6.99 0.33 0.16 A

pKWmEB chr16_1482029 16 1482029 -100.04 5.00 5.80 3.29 0.49 T

TYP mrMLM chr04_23401186 4 23401186 -0.02 5.07 5.87 3.76 0.45 A

pLARmEB chr04_8196378 4 8196378 -0.03 5.42 6.23 0.43 0.17 T

pLARmEB chr04_18269860 4 18269860 -0.02 7.23 8.10 1.41 0.48 C

pKWmEB chr04_6236404 4 6236404 -0.03 8.14 9.03 5.25 0.25 T

pLARmEB chr05_24237388 5 24237388 -0.02 10.88 11.83 1.86 0.45 T

pKWmEB chr05_24682916 5 24682916 0.03 10.00 10.94 8.47 0.39 A

pKWmEB chr08_7046574 8 7046574 -0.01 5.41 6.23 7.38 0.21 A

pKWmEB chr08_10135940 8 10135940 -0.02 5.59 6.41 1.64 0.26 C

pKWmEB chr10_1571815 10 1571815 -0.03 6.28 7.12 0.86 0.15 C

pKWmEB chr10_1317508 10 1317508 -0.01 6.39 7.24 2.41 0.41 T

FASTmrMLM chr13_13467988 13 13467988 -0.02 6.04 6.87 2.93 0.41 T

FASTmrMLM chr14_11301309 14 11301309 -0.08 7.04 7.91 1.08 0.11 A

pLARmEB chr14_11128124 14 11128124 -0.04 5.19 5.99 1.78 0.15 G

pLARmEB chr15_5858214 15 5858214 0.02 5.30 6.10 0.39 0.32 T

mrMLM chr17_15363223 17 15363223 -0.06 5.44 6.25 0.01 0.10 T

pLARmEB chr17_19041958 17 19041958 -0.02 5.11 5.91 0.16 0.14 C

pLARmEB chr19_9446619 19 9446619 -0.03 5.16 5.96 0.70 0.09 G

Fig. 3  Genome-wide association analysis of tuber yield per plant. Manhattan plot indicating three SNP markers located on chromosomes 4, 5, 8, 
10, 13, 14, 15, 17 and 19 associated with the tuber yield per plant. The blue letters are the Interpro ID for the different putative genes near the SNP 
markers associated with the tuber yield per plant
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to yam mosaic virus in white Guinea yam are presented 
in Table  3. Of the seventeen SNP markers associ-
ated with the tuber yield, six SNP markers including 
chr04_6236404, chr05_24237388, chr08_7046574, 
chr13_13467988, chr14_11128124 and chr17_15363223 
displayed high haplotype segregation among the differ-
ent variants. Accordingly, the SNP markers on chromo-
somes 4, 5, 8, 13, 14 and 17 identified variants CC and 
CT to be associated with genotypes with higher tuber 
yield, whereas variants TT and AT were found to be 
associated with lower tuber yield (Fig. 7). Of the five SNP 
markers associated with the YMV, two (chr10_1116193 
and chr16_1482029) were found to have high significant 
haplotype variations (Table 3). On chromosome 10, SNP 
markers associated with the YMV located at 1116193 bp 
showed that variants GG and AG were linked to lower 
predicted YMV value, while variant AA was identified to 
predict the higher YMV score (Fig. 8A). For the marker 
chr16_1482029 associated with YMV located at 1482029 
bp variants TT and AT were linked to lower predicted 
YMV value (Fig. 8B).

.

Discussion
Phenotypic variation
The natural variation among the studied traits was high 
and very informative. Relatively high broad-sense her-
itability of 0.708 for tuber yield per plant and 0. 903 for 
yam mosaic virus severity score demonstrated substantial 
genetic variation in traits between the different clones. 
Therefore, the studied traits are amenable to genetic 
improvement through selection [40]. Furthermore, the 
observed natural genetic variation in the study materials 
signifies their relevance for genetic studies.

Population differentiation
Understanding population structure within the stud-
ied clones is imperative to determine how it affects the 

ability of GWAS to infer marker-trait association. The 
population structure of the present study based on the 
delta reveals 7 sub-populations, indicating high genetic 
variability. The high genetic variability indicates the 
potentials of the studied clones for genetic improve-
ment aimed at tuber yield per plant and yam mosaic 
virus. The the phylogeny analysis reveals similar results 
as the populature structure analysis, indicating their 
relevance in preventing sham associations in GWAS in 
this study [41, 42]. Thus, the marker density, diversity, 
and sample size demonstrated that the yam breeding 
panel used for this study is sufficiently powered to cap-
ture allelic variations for the studied traits.

Genome‑wide association studies
The whole-genome scan for phenotypic and allelic vari-
ation in tuber yield and yam mosaic virus resistance 
identified genome regions on ten chromosomes (chro-
mosomes 4, 5, 8, 10, 13, 14, 15, 16, 17 and 19) with signifi-
cant −log10 values. Both Q matrix (population structure) 
were considered in a mixed linear model for the associa-
tion analysis to reduce false-positive associations. The 
model used for tuber yield and tolerance to yam mosaic 
virus showed no inflation of p-values indicating that the 
structure of relationships was well accounted for in the 
GWAS analysis. These findings are consistent with the 
view that traits with no inflation of p-values show that 
the structural relationship is adequate for GWAS analysis 
[42]. Genome-wide association mapping has been used 
in exploring the elite alleles of many agronomic traits 
such as tuber dry matter and oxidative browning [42] in 
water yam (Dioscorea alata). In the present study, the 
phenotypic effect values of the favorable alleles of TYP 
and YMV were evaluated and inferred to positively and 
negatively affect the individual traits. Based on the strin-
gent criterion of −log10, we identified 17 significant 
markers trait associations ranging between 1.01 e-20 and 

Fig. 4  Genome-wide association analysis of yam mosaic virus. Manhattan plot indicating SNPs associated with the YMV. The y-axis represents the 
p-value of the marker-trait association on a –log10 scale. The red letters are the Interpro ID for the different putative genes near the SNP markers 
associated with the yam mosaic virus
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0.044 for tuber yield per plant; and 5 significant markers 
trait associations ranging between 5.25 e-14 and 0.029 
for yam mosaic virus. The information on SNP variants 
from the present study would fast-track the application 
of genomics-informed selection decisions in breeding 
white Guinea yam for higher tuber yield and resistance 
to mosaic virus. Such great potential of GWAS has been 
reported for some root and tuber crops such as cassava 
[43], potatoes [44] and water yam [42].

Detection of QTNs by multi‑locus models (MLMs)
This study used different MLMs (FASTmrMLM, 
mrMLM, pKWmEB and pLARmEB) to identify genomic 
region associated with TYP and YMV. A total of 17 
SNPs were significantly associated with TYP by the 
four MLM models across 9 out of the 20 chromosomes 
viz: chrs 4, 5, 8, 10, 14, 15, 17 and 19. Each of the four 
models detected different and complemeneted numbers 
of the SNPs: pKWmEB and pLARmEB (7 QTNs each) > 

Fig. 5    Heatmap LD haplotype blocks for different SNP markers located on different chromosomes A chromosome 4; B chromosome 5; 
C chromosome 8; D chromosome 10; E chromosome 13; F chromosome 14; G chromosome 15; H chromosome 17 and I chromosome 19. The R2 
color key indicates the degree of significant association with the putative genes
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FASTmrMLM, mrMLM (2 QTNs each). This indicates 
varied detection of each model. The MLMs used in this 
study detected putative candidate genes for the studied 
traits indicating its usefulness in GWAS. These results 
support the view that MLMs are useful for identify-
ing QTNs and candidate genes in plants [45]. The find-
ings of this study established a link between quantitative 
traits such as tuber yield and yam mosaic virus and single 
nucleotide polymorphisms. The variations observed in 
the population pannels constitute a pool of quantitative 
trait nucleotides (QTNs) that modulate tuber yield and 
yam mosaic virus traits in white yam.

Identific tion of putative genes
Our results identified SNP markers that associate sig-
nificantly with allelic variation for tuber yield and YMV 
tolerance in white yam. The detected markers offer 
good targets for further validation and analysis due to 
their location in proximity to candidate genes regulating 
growth, development and disease resistance. The SNP in 
chromosome 3 is near to AP2/ERF domain, AUX/IAA 

protein, major facilitator, sugar transporter-like genes. 
Zarei et  al. [46] reported that the AP2/ERF-domain 
transcription factor ORA59 acts as the integrator of the 
jasmonic acid (JA) and ethylene (ET) signaling path-
ways and is the key regulator of JA- and ET-responsive 
PLANT DEFENSIN1.2 (PDF1.2) expression. The SNP in 
chromosome 4 is near to Geminivirus AL1 replication-
associated protein, catalytic domain, AP2/ERF domain, 
NB-ARC, Dirigent protein, and membrane transport 
protein genes. The NB-ARC domain is noted to play a 
role in ATPase domain that comprises NB, ARC1, and 
ARC2 subdomains, which in its nucleotide-binding state 
regulates the R protein activity or resistance in plants 
[47]. The plant defense is induced by the R proteins in 
response to specific pathogen-derived molecules, called 
avirulence (AVR) proteins, thereby restricting pathogen 
proliferation [48]. The SNP in chromosome 10 is near to 
Geminivirus AL1 replication-associated protein, cata-
lytic domain, Geminivirus Rep catalytic domain, Gemi-
nivirus AL3 coat protein, AP2/ERF domain, NB-ARC, 
Chlorophyll A-B binding protein, plant and chromista. 

Fig. 6  Summary of the local LD and haplotype blocks for different SNP marker located on different chromosome A chromosome 3, B chromosome 
10, C Chromosome (5), D chromosome 15 and E chromosome 16 The R2 color key indicates the degree of significant association
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Table 3  Frequencies and marker prediction effects of various haplotypes associated with tuber yield (kg plant-1) and reaction to yam 
mosaic virus infection (AUDPC value)

Traits Markers Hap Seq Freq Adjusted probability Prob. Adj. 
significan e

Yield chr04_6236404 Hap1 CCCT​ 0.475 3.74 e-05 ****

Hap2 CCTT​ 0.296 7.11 e-07 ****

Hap3 CTTT​ 0.228 0.001 ***

chr04_8196378 Hap1 CCCT​ 0.481 0.218 ns

Hap2 CCTT​ 0.364 0.041 *

Hap3 CTTT​ 0.154 0.218 ns

chr04_18269860 Hap1 AAAC​ 0.328 0.399 ns

Hap2 AACC​ 0.359 0.814 ns

Hap3 ACCC​ 0.312 0.814 ns

chr04_23401186 Hap1 AAAG​ 0.274 0.029 *

Hap2 AAGG​ 0.396 0.001 ***

Hap3 AGGG​ 0.330 0.619 ns

chr05_24237388 Hap1 CCCT​ 0.367 0.020 *

Hap2 CCTT​ 0.316 3.57 e-11 ****

Hap3 CTTT​ 0.317 1.02 e-05 ****

chr05_24682916 Hap1 AAAC​ 0.295 0.921 ns

Hap2 AACC​ 0.305 0.044 *

Hap3 ACCC​ 0.400 0.043 *

chr08_7046574 Hap1 AAAC​ 0.142 0.294 ns

Hap2 AACC​ 0.423 1.25 e-11 ****

Hap3 ACCC​ 0.435 2.16 e-08 ****

chr08_10135940 Hap1 CCCG​ 0.217 0.363 ns

Hap2 CCGG​ 0.326 0.522 ns

Hap3 CGGG​ 0.457 0.522 ns

chr10_1317508 Hap1 CCCT​ 0.363 0.079 ns

Hap2 CCTT​ 0.359 0.713 ns

Hap3 CTTT​ 0.278 0.246 ns

chr10_1571815 Hap1 CCCT​ 0.144 0.873 ns

Hap2 CCTT​ 0.362 0.873 ns

Hap3 CTTT​ 0.494 0.978 ns

chr13_13467988 Hap1 CCCT​ 0.364 0.912 ns

Hap2 CCTT​ 0.365 6.12 e-04 ***

Hap3 CTTT​ 0.270 0.001 ***

chr14_11301309 Hap1 AAAG​ 0.110 0.705 ns

Hap2 AAGG​ 0.393 0.386 ns

Hap3 AGGG​ 0.498 1.01 e-20 ****

chr14_11128124 Hap1 CCGG​ 0.414 6.59 e-18 ****

chr15_5858214 Hap1 CCCT​ 0.394 0.003 **

Hap2 CCTT​ 0.192 0.242 ns

Hap3 CTTT​ 0.315 0.057 ns

chr17_15363223 Hap1 AAAT​ 0.539 1.20 e-13 ****

Yield chr17_19041958 Hap1 CCCT​ 0.146 0.516 ns

Hap2 CCTT​ 0.281 0.516 ns

Hap3 CTTT​ 0.370 0.799 ns

chr19_9446619 Hap1 AAAG​ 0.349 0.002 **

Hap2 AAGG​ 0.513 2.94 e-06 ****

Hap3 AGGG​ 0.059 0.872 ns
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Geminivirus AR1/BR1 coat protein, AP2/ERF domain, 
Geminivirus AL1 replication-associated protein, catalytic 
domain, Geminivirus AL1 replication-associated pro-
tein, central domain, and NB-ARC genes. Geminiviruses 
have been reported by Sunter and Bisaro [49] to play 
role in the Transactivation of Geminivirus AR1 and BR1 
Gene Expression by the Viral AL2 Gene Product. Chlo-
rophyll A-B binding protein is known as a light recep-
tor that stimulates growth and development in plants 
[50]. The SNP in chromosome 16 is near to Geminivirus 
AR1/BR1 coat protein; AP2/ERF domain; Geminivirus 
AL1 replication-associated protein, catalytic domain; 
Geminivirus AL1 replication-associated protein, central 
domain; and NB-ARC genes. The SNP in chromosome 
14 is near to expansin, cellulose-binding-like domain; 
mitochondrial substrate/solute carrier, expansin, root 
cap; dirigent protein; small auxin-up RNA; major facilita-
tor, sugar transporter-like genes. Expansins or expansin-
like proteins (loosenins) were reported to loosen plant 
cell wall activity and lignocellulose saccharification [51]. 
Mitochondrial carrier proteins play roles in plant growth 
and disease resistance [52]. The SNP in chromosome 15 
is near to Gibberellin regulated protein; Major facilita-
tor, sugar transporter-like; Senescence regulator S40; 
ABC transporter-like genes. The gibberellin regulated 
protein (GRP) has been noted to be up-regulated by gib-
berellin, and most of these proteins have a role in plant 

development and some of its members have antimicro-
bial activity [53, 54]. The SNP in chromosome 19 is near 
to Exportin-1/Importin-beta-like; Expansin; Sodium/
calcium exchanger membrane region; Major facilitator, 
sugar transporter-like; AUX/IAA protein. The sodium/
calcium exchanger has been reported to influence met-
abolic regulation on ion carrier interactions in living 
organisms [55]. The SNPs in chromosomes 6 and 8 are 
near to AUX/IAA protein and Protein ENHANCED DIS-
EASE RESISTANCE 2, C-terminal (EDR2) genes. The 
Aux/IAA gene has been noted to play cellular and devel-
opmental roles in plants’ lifespan, such as root develop-
ment, shoot growth, and fruit ripening [56]. The Protein 
ENHANCED DISEASE RESISTANCE 2, C-terminal 
(EDR2) in plants limits cell death initiation and the estab-
lishment of hypersensitive response [57]. The identified 
putative candidate genes and SNPs linked with these 
important economic traits could help design new breed-
ing strategies to hoard superior alleles for these key traits 
in future marker-based breeding. The novel regions iden-
tified in this study have not been previously detected, 
possibly due to the limitations of the various marker sys-
tems used in earlier studies.

Our findings indicated that multiple loci having 
unequal effects can influence the variation for TYP 
and YMV in white yam. The identified novel candi-
date genomic regions with growth, development and 

Table 3  (continued)

Traits Markers Hap Seq Freq Adjusted probability Prob. Adj. 
significan e

YMV chr03_6338751 Hap1 GGGT​ 0.427 1.000 ns

Hap2 GGTT​ 0.320 1.000 ns

Hap3 GTTT​ 0.466 1.000 ns

chr10_1116193 Hap1 AAAG​ 0.226 0.254 ns

Hap2 AAGG​ 0.309 0.003 **

Hap3 AGGG​ 0.465 6.75 e-07 ****

chr15_3906069 Hap1 AAAC​ 0.214 0.882 ns

Hap2 AACC​ 0.281 0.882 ns

Hap3 ACCC​ 0.412 0.882 ns

chr16_1482029 Hap1 AAAT​ 0.307 0.096 ns

Hap2 AATT​ 0.424 2.01 e-04 ***

Hap3 ATTT​ 0.576 0.006 **

chr05_30671001 Hap1 AAAG​ 0.365 1.000 ns

Hap2 AAGG​ 0.265 1.000 ns

Hap3 AGGG​ 0.369 1.000 ns

ns=non-significa t, *, **, ***, and **** indicate significa t association between haplotypes and markers
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disease resistance genes in our study require further 
validation and testing in yam germplasm. This could 
be done by converting these MTAs into low cost Kom-
petitive Allele-Specific PCR (KASP) markers that can 
efficiently transfer alleles into elite yam genotypes 
as reported for wheat [58]. These valuable genomic 
resources and PCR based markers (KASP markers) 
could greatly support selection initiatives for key traits 
in yam breeding through marker-assisted selection 
(MAS). These will also support the systematic study of 
the genetics, comparative genomics and evolution of 
yam, aimed at expediting the isolation and characteri-
zation of genes that control agronomically important 
traits such as tuber yield and yam mosaic virus.

The SNP marker-TYP trait association exhibited 
high haplotype segregation. The marker effects alleles 
CC and CT are responsible for predicting high tuber 
yield per plant in the diversity panel used in the study, 
while alleles TT and GG were identified to associate 
with low yield. For the YMV, we found alleles GG, 
AG and TT to be responsible for low YMV disease 

scoring prediction. These findings suggest that data 
mining of favorable alleles is essential for improving 
the quantitative trait for tuber yield and YMV in yam 
using marker-assisted selection. Moreover, the results 
could be helpful for marker validation and deployment 
in yam breeding. Our findings agree with the view 
that information on marker effect based on segrega-
tion pattern is fundamental for marker validation and 
deployment in a breeding program [47, 59]. Associa-
tion mapping has been utilized to explore elite alleles 
present in many agronomic traits, including yield and 
related attributes in bread wheat [60].

Conclusion
Useful genetic variability exists in the 406 genotypes 
studied. The genetic architecture of TYP and YMV are 
regulated by varied QTNs unevenly distributed on the 
20 chromosomes of white yam. Among the 4 MLM 
models, pKWmEB and pLARmEB are most robust in 
identifying more QTNs. The associated SNP mark-
ers could be potentially employed for targeted and 

Fig. 7  Boxplots showing the effect of the significant markers associated with tuber yield per plant on: A chromosome 4, B chromosome 5 C 
chromosome 8, D chromosome 13, E chromosome 14 and F chromosome 17. The letters on the X-axis represent allele variants
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accelerated tuber yield per plant and YMV resistance in 
white yam. The information from our study could help 
design new breeding strategies to hoard superior alleles 
for tuber yield per plant and yam mosaic virus in future 
marker-based breeding. The chromosomal regions 
controlling these studied traits could be exploited for 
selection and effective pyramiding of favorable alleles 
in white yam population improvement. Findings are 
relevant for population improvement of desirable TYP 
and YMV traits using marker assisted breeding (MAB) 
and haplotype-based scheme.
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