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Abstract

Diverse crops are both outbred and clonally propagated. Breeders typically use truncation selection of parents and invest significant time,
land, and money evaluating the progeny of crosses to find exceptional genotypes. We developed and tested genomic mate selection cri-
teria suitable for organisms of arbitrary homozygosity level where the full-sibling progeny are of direct interest as future parents and/or cul-
tivars. We extended cross variance and covariance variance prediction to include dominance effects and predicted the multivariate selec-
tion index genetic variance of crosses based on haplotypes of proposed parents, marker effects, and recombination frequencies. We
combined the predicted mean and variance into usefulness criteria for parent and variety development. We present an empirical study of
cassava (Manihot esculenta), a staple tropical root crop. We assessed the potential to predict the multivariate genetic distribution (means,
variances, and trait covariances) of 462 cassava families in terms of additive and total value using cross-validation. Most variance (89%) and
covariance (70%) prediction accuracy estimates were greater than zero. The usefulness of crosses was accurately predicted with good cor-
respondence between the predicted and the actual mean performance of family members breeders selected for advancement as new
parents and candidate varieties. We also used a directional dominance model to quantify significant inbreeding depression for most traits.
We predicted 47,083 possible crosses of 306 parents and contrasted them to those previously tested to show how mate selection can re-
veal the new potential within the germplasm. We enable breeders to consider the potential of crosses to produce future parents (progeny
with top breeding values) and varieties (progeny with top own performance).

Keywords: genomic mate selection; variance prediction; directional dominance; nonadditive effects; cassava; Genomic Prediction;
GenPred; Shared Data Resources

can be further divided into two parts (Gaynor et al. 2017;
Santantonio and Robbins, 2020; Werner et al. 2020) consisting of
(1) population improvement by recurrent selection (RS) and (2) a
variety development pipeline (VDP). RS is done in order to man-
age and improve the frequency of beneficial alleles in the popula-
tion over time. The VDP consists of a series of field trials in which
candidates’ performance is evaluated. For clonal crops, germ-
plasm is advanced from one VDP stage to the next by vegetative
propagation.

Introduction

Diverse crops ranging from staples (e.g., cassava and potato) to
cash crops (e.g., cacao) to forestry products (e.g., eucalyptus) are
both outbred and clonally propagated (Gemenet and Khan 2017).
In these crops, exceptional genotypes can be immortalized and
commercialized as clonal varieties. Few clonal crops are also in-
bred thus, like livestock, each cross segregates phenotypically to
different degrees. Unlike seed crops (e.g., maize, wheat), inbreed-
ing is unnecessary for product development. Consider a breeding

program implementing some form of genomic selection (GS)
(Heffner et al. 2009; Jannink et al. 2010) on a population. All extant
members and future progeny are or will be genotyped using
genome-wide markers. Field evaluations are conducted at spe-
cles- and trait-appropriate stages for one or more traits, on at
least a subset of the genotypes. Genomic prediction is used to in-
crease selection intensity and decrease cycle times by providing
selection criteria for more genotypes, faster than would have oth-
erwise been possible (Hickey et al. 2017). The breeding scheme

The importance of matings and the need for mate
selection criteria

Every cross is important. Crosses imply an opportunity and a
risk. New matings generate genetic variation, the substrate on
which selection can operate. However, for a breeder, new crosses
require investment of time, land, and money, especially consider-
ing the added costs of genotyping. Moreover, crosses may exhibit
inbreeding depression or heterosis. Thus, matings serve the mul-
tiple purposes of producing new candidate breeding parents for
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RS and/or cultivars for VDP, potentially evaluated for multiple
product profiles characterized by unique selection indices (SI).
Selection to drive improvement in the population’s mean over
time to meet the objective of RS centers on allele-substitution
effects and the breeding value (BV). For the VDP, selecting clones
to advance for testing should be based on the total genetic value
(TGV) of an individual which includes nonadditive genetic effects
such as dominance.

Genomic predictions incorporating nonadditive
effects

Nonadditive effects can be included in genomic predictions in a
number of ways (Vitezica et al. 2013; Varona et al. 2018). Most of
the literature so far has dealt with including nonadditive effects
in the prediction of the genetic values of an existing pool of selec-
tion candidates (Varona et al. 2018). Nonadditive predictions have
often been shown to increase prediction accuracy (Heslot et al.
2012; Wolfe et al. 2016a; Werner et al. 2020). In addition, the mean
performance (mean TGV) of the progeny can deviate from the
prediction based on the mean BV of the parents in the presence
of nonadditive effects. Genomic predictions of cross mean TGV
have been applied to hybrid performance (Alves et al. 2019) and
mate allocation (Toro and Varona 2010). Predictions can also in-
clude genome-wide inbreeding/overdominance effects, also re-
ferred to as directional dominance; Xiang et al. (2016) and this has
recently been shown to be advantageous in a simulated two-part
clonal crop breeding scheme (Werner et al. 2020).

Genomic mate selection for outbred, clonal crops

When one or both parents are heterozygous, offspring are
expected to segregate for their BV and TGVs. The relative advan-
tage of possible pairwise matings can best be distinguished when
predictions of both the genetic mean and variance are available.
The usefulness criterion (UC) or simply “usefulness” of a cross is
a prediction of the mean performance of the selected superior
fraction of the progeny: UC = u+1 x o, where ¢ is the predicted
genetic standard deviation of the progeny and i is the standard-
ized selection intensity (Zhong and Jannink 2007; Segelke et al.
2014; Lehermeier et al. 2017b). The additive genetic variance of an
infinite pool of progeny from a cross can be predicted determinis-
tically using the combination of genome-wide marker effects, a
genetic map, and phased parental haplotypes (Lehermeier et al.
2017b). This approach has almost exclusively been applied to the
prediction of additive genetic variance and covariance (Neyhart
et al. 2019). Bonk et al. (2016) showed that dominance in addition
to additive within-family variances can be deterministically pre-
dicted in outbred species based on gametic variances of putative
parents (Bijma et al. 2020). Most other applications are predictions
of the variance of inbred lines derived from inbred founders
(Zhong and Jannink 2007; Lehermeier et al. 2017b; Allier et al.
2019b; Neyhart et al. 2019; Neyhart and Smith 2019).

Criteria and methods developed in this study

In this study, we extend the deterministic prediction of progeny
variances in several ways to maximize the utility and practicality
of implementing genomic mate selection. First, we show how to
include dominance in the prediction of cross genetic variance
and we do so for founders of arbitrary inbreeding level. Next, we
distinguish two types of cross usefulness: usefulness for RS (i.e.,
the predicted mean BV of offspring selected as parents; UCparent)
and usefulness for variety development (i.e., the predicted mean
TGV of clones advanced as varieties in the VDP; UCygriery). Finally,
since matings are usually chosenbased on multiple traits, we

extend the prediction to cross variance on SI. We show that to
predict index variance, we must predict the full matrix of trait ge-
netic variances and covariances (Bonk et al. 2016; Allier et al
2019b; Neyhart et al. 2019). We implement the core functions for
multi-trait prediction of outbred cross variances including addi-
tive and dominance effects in an R package predCrossVar.

Empirical study of cassava

We present an empirical study of the accuracy for predicting ad-
ditive and nonadditive genomic mate selection criteria. We set up
a cross-validation scheme that measures the accuracy of predict-
ing means, variances and usefulnesses of previously untested
crosses using data from a real cassava (Manihot esculenta) breed-
ing program. Cassava is one of the most important tropical staple
foods, especially in Africa (http://faostat.fao.org). Among outbred,
clonal crops, GS is relatively mature in cassava breeding (de
Oliveira et al. 2012; Ly et al. 2013; Wolfe et al. 2016a,b, 2017; Elias
et al. 2018; Yonis et al. 2020; Okeke et al. 2017; Ozimati et al. 2018)
because of the Next Generation Cassava Breeding Project (http://
www.nextgencassava.org, est. 2012), and the species can serve as
a model for many others. We leverage a validated GS pedigree
with genome-wide phased haplotypes and a genetic map (Chan
et al. 2019). We used a directional dominance model (Xiang et al.
2016) to make first-time estimates of genome-wide inbreeding
(homozygosity) effects in cassava. We report our empirical study
in a fully reproducible and documented framework (https://wolf
emd.github.io/PredictOutbredCrossVar/).

Methods

Formulation of genomic predictions and selection
criteria

Below, we describe predictions that are applicable as selection
criteria, first for genomic truncation selection Grs, followed by
extensions that enable mate selection Gys. Throughout, we dis-
tinguish selection criteria based on their suitability for evaluating
the potential of individuals (for Grs) or crosses (for Gys) for RS vs
VDP.

Grs: Selecting genotypes with predictions about
generation t

Genomic recurrent TS (Grs) evaluates existing individuals, either
for their potential as parents (without regards to specific mates)
and/or their potential as clonal cultivars. Under a nonepistatic
model, the TGVs of individuals in the current population (time t)
can be partitioned into a BV (ggy) and a dominance deviation gpp.

9rcv = 9sv T 9op

Consider a diploid population with n individuals genotyped at
p biallelic genomic loci.

y=f+a+Wd+e

In this linear model, the n x 1 vector of phenotypic observa-
tions, y is modeled according to a combination of genetic and
nongenetic effects. Fixed experimental design-related effects
estimates are given by g and its corresponding incidence matrix
X([n X Niyeq]) Where Nfixeq is the number of fixed factors. The ele-
ments of the [n x p] matrices Z and W contain column-centered
marker genotypes:
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2-2p AA -2q7  AiA;
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Here, p; and g; are the population allele frequencies, as opposed
to the within-parent allele frequencies, which are referred to later
on. This encoding of genotypes results in marker effects (« and d)
that correspond to allele substitution and dominance deviation
effects (Vitezica et al. 2013). The marker effects can then be used
to predict genomic estimated TGVs (GETGV, g¢y) as the sum of
the genomic estimated BV (GEBV, g, = Z) and a corresponding
dominance deviation (GEDD, g, = Wd). The GEBV predicts the
mean offspring of a clone mated at random and as such is suit-
able for truncation RS of parents. The GETGV predicts the perfor-
mance of each clone, rather than any property of its offspring
and is useful for selection for variety advancement.

Gus: Selecting crosses with predictions about
generation t+ 1

GEBV and GETGV enable us to do truncation selection. In order to
implement mate selection, criteria that distinguish crosses are
needed. Progeny of crosses may segregate for both their breeding
and TGVs. Crosses may thus differ in their likelihood of produc-
ing progeny that are superior varieties (high grgy,,,) and/or
parents (high gz, ,). We focus here on distinguishing the best
crosses on the basis of both their predicted genetic means and
variances.

Predicted cross means

The family mean, ugy can be predicted as the mean of parental
BVs.

GEBVp1 4+ GEBVp)
Hgy = f

Dominance deviation can be included in order to predict the
mean TGV, urgy according to Equation 14.6 (Falconer and Mackay
1996; Toro and Varona 2010; Varona et al. 2018; Werner et al.
2020).

A (Pik — Ak — V&) + de[2Piedix + Y(Pix — ie)]

P
Hrcvy =

k=1

Here, pi and g are the allele frequencies of the counted (alter-
native) and the noncounted (reference-genome) allele, respec-
tively, for one of the two parents (indexed by i). The difference in
frequency between the parent one (indexed by i) and the parent
two (indexed by J) is,yx = pi — pjx and the summation is over the p
markers indexed by k. Note that ay is the average effect and not
the allele substitution effect, o estimated by the additive-
dominance parameterization presented above. As a result, pre-
dicting prgy with the formula above may not be appropriate. We
adopt a suitable additive-dominance partition, described below,
in our primary analyses.

Predicted cross variances

The within-cross additive genetic variance can be predicted de-
terministically, relying on the formula for the genetic variance
under linkage disequilibrium using Equation 5.16a (Lynch and
Walsh 1998; Lehermeier et al. 2017b). Below, we use Equation
5.16b (Lynch and Walsh 1998) to predict dominance variance de-
terministically in an infinite population of diploid full-siblings
(Bonk et al. 2016).

52 T
Gy =a a

6%, =d'D?d, where D’=D®D,® indicating element-wise
(Hadamard) multiplication of D, having the effect of squaring all
elements.

L2 a2 | a2
O1gv = Ogv t+ Opp

The p x p variance-covariance matrix, D, is the expected link-
age disequilibrium among full-siblings by considering the
expected pairwise recombination frequency and each parent’s
haplotype phase.

Dgfmetes _ (1 _ 2C) 1) D??Plos

D%Smetes _ (1 _ 2C) o D?z;plos

genotypes __ pygametes gametes
DP1 xP - DP1 + DPQ

Dgfpl“ and ngﬂ"s are simply the p x p covariance matrices associ-
ated with each parent’s respective 2 xp haplotype matrix
(Hp,orp,), Where elements are 1 if the counted allele is present, 0
otherwise. We computed D"#'* = 1H"H — pp”, where p is a vector
of within-individual, per-SNP allele frequencies (Alachiotis et al.
2016).

The p x p pairwise recombination frequencies matrix is ¢ and
can be derived from a genetic map. D§"“** and D" are the co-
variance matrices for each parents pool of possible gametes,
whose covariances sum to give the expected covariances geno-
types in the cross, DI **. The genetic variances 63, and 67,
are thus predicted as above by using D = D3/ /*

Usefulness criteria (UC)}—mean of superior family
members

Given that predictions of genetic means and variances for a cross
are available, they can be combined into a single cross selection
criterion. We focus here on the UC, which predicts the mean (BV)
of the superior progeny from a cross, i.e., the mean after selection
(Schnell and Utz 1975; Zhong and Jannink 2007; Lehermeier et al.
2017b). We note that predictions of cross means and variances
may be used in other ways (Bijma et al. 2020), but focus on UC.
The UC = p+1 x o, where uis the predicted mean of the cross, iis
the standardized within-family selection intensity and ¢ is the
predicted cross standard deviation.

In the context of the two-part breeding scheme for GS in
clonal crops, crosses may be useful for producing both new
parents and new varieties. We, therefore, define e therefore dis-
tinguish two UCs: UCpgrentand UCyqriery (Table 1). Notice that in ad-
dition to separate predictions of mean and variance for UCpgrent
Us UC,griety, two-part GS implies that the within-family intensity
of selection for RS does not necessarily equal that of the VDP
(Santantonio and Robbins 2020).

Extension to multi-trait selection indices

Parent selection is often done based on a multi-character selec-
tion index (SI). Crosses can be considered for their potential to
produce progeny with good merit on one or more SI by first

Table 1 Criteria for evaluating crosses

Parameter Breeding values Total genetic values
Mean HBv HTGV
Variance cay 62y = Ok + o

Usefulness UCparent = ptpy + (irs x 63v) UC,qriety = #rgy + (ivop X 616v)
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predicting the variances and covariances for each trait on the SI
(Bonk et al. 2016; Allier et al. 2019b; Neyhart et al. 2019). We can
therefore predict the mean and variance of a cross on the SI as
follows:

1) Predict (co)variances for all traits on SI. Consider an index
with two traits, T1 and T2.

2 T 2 T T
o1 = aTlDaTlch = mTdeTQGTLTZ = MTlDdTQ

Apply to dominance by substituting « with d and squaring ele-
ments of D.

1) Compute the predicted mean and variance on the SI.

Hs = WGy
o3 = w'Gw

The n x T matrix g5, contains the GEBV for each trait and the
T x 1 vector w are the index weights. The T x T matrix G is the ad-
ditive (or total) genetic variance-covariance matrix for traits on
the index.

2 N
G'I'mm JTrait; O Traity, Traitr

G=

. . 2
O Traity, Traitr GTraitT.TraitT

Based on these predictions of family means, variances and
trait-covariances, we can compute the mean of selected family
members on the index (i.e., the UCg)).

UCs; = pg; +is1 X 651

Including directional dominance as a
genome-wide inbreeding effect

Many outbred, clonal crops are known to suffer from inbreeding de-
pression. The typical genome-wide regression models the marker
effects as drawn from a normal distribution, with mean zero and an
estimated variance parameter. To include directional dominance,
we model the genome-wide proportion of loci that are homozygous
with the 1 x p vector, f, as a fixed-covariate, leading to:

y=p+fb+Za+Td +e

The scalar b is the estimated linear effect of overall homozy-
gosity, interpreted as inbreeding depression or heterosis depend-
ing on its direction relative to each trait (Xiang et al. 2016). The
effect of over/under-dominance measured by b can be incorpo-
rated into the predicted means and variances by dividing b by the
number of effects (p) and subtracting that value from the vector
of dominance effects, to get d =d" —% (Xiang et al. 2016; Varona
et al. 2018; Werner et al. 2020). It is important to note that the par-
tition of genetic effects in this model corresponds to the
“biological” (or genotypic) parameterization (Vitezica et al. 2013).
The dominance coding in the matrix I is

(0 —2pjq)) A1Aq
yij = (1 — ij%) A1A2 .
(O — ijqj) AQAQ
As a result the effects a and d do not correspond to allele sub-
stitution and dominance deviation effects directly, but the sum

of variance components still equals the 6%, and allele substitu-
tion effects can be recovered as « = a + d(q — p) in order to predict
gpy (Vitezica et al. 2013; Varona et al. 2018; Werner et al. 2020).

Empirical assessment of the accuracy predicting
means, variances, covariances, and usefulnesses
in cassava crosses

Since 2012, the Next Generation Cassava Breeding project (http://
www.nextgencassava.org) has implemented GS in African and
Latin American breeding programs (de Oliveira et al. 2012; Ly et al.
2013; Wolfe et al. 2017). Cassava breeding programs are well-
poised to adopt Gys if, in addition to prediction of means, varian-
ces and covariances can be accurately predicted.

Cassava data: pedigree, genetic map, and phased
haplotypes

We chose a publicly available, previously published pedigree, ge-
netic map, and phased marker-dataset as the best starting point
for our analysis (Chan et al. 2019; https://www biorxiv.org/con
tent/10.1101/794339v1.full). The pedigree and germplasm chosen
represent parents and offspring from the first three cycles of GS
conducted at the International Institute of Tropical Agriculture
(IITA). These germplasm and genomic selections have been de-
scribed in greater detail previously (Rabbi et al. 2017, 2020; Wolfe
et al. 2016a,b, 2017, 2019). We note that each cycle of selection
was done by recurrent genomic truncation selection using a SI
similar (but not identical) to the one described below. The base
generation (CO) was the top-ranked clones among a larger collec-
tion of the diverse but interrelated elite as well as landrace germ-
plasm. Chan et al. (2019) implemented a number of procedures to
ensure the quality of the data. First, technical replications of the
original genotyping-by-sequencing (GBS) were validated with
BIGRED (Chan et al. 2018) and reads were combined to reduce
missingness and increase read-depth-per-sample. Next, a multi-
pass analysis using the pedigree-validation software,
AlphaAssign (Whalen et al. 2018) was used to ensure only rela-
tionships supported by the data were assumed downstream.
Genotypes were called using validated pedigree information, and
sites with more than 30% missing data were removed, leaving
206,539 out of 336,692 sites (summed across all 18 chromosomes)
for analysis. The filtered dataset was used as input for phasing
and imputation. Pedigree-guided imputation and phasing were
accomplished by SHAPEIT2/duoHMM (O’Connell et al. 2014).
Finally, the authors constructed a genetic linkage map based on
crossover events observed in the dataset. We restricted our
analysis to only the 3199 individuals comprising 462 full-sibling
families (and their parents), in which both parents were vali-
dated/known.

Cassava data: traits, trials, and selection indices

We chose four focal cassava traits: dry matter percentage (DM),
fresh root yield in natural-log tons-per-hectare (logFYLD),
season-wide mean cassava mosaic disease severity (1-5 scale;
MCMDS), and total carotenoids by color chart (1-8 scale;
TCHART). These traits include both polygenic (DM and logFYLD)
and mono/oligenic architectures (MCMDS and TCHART). Two of
the traits are known to have important dominance variance
(logFYLD and MCMDS), while DM has been shown to be largely
additive (Wolfe et al. 2016a,b). From these traits, we composed
two hypothetical SI, which represent two real and disparate
breeding goals (Supplementary Table S1). Both indices target in-
creased DM and logFYLD and reduced MCMDS. We refer to the
first index as the “Standard SI” (or StdSI) as it emphasizes yield
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and disease resistance in a white-fleshed background. The sec-
ond index “Biofortification SI” (or BiofortSI) focuses on breaking a
historically negative genetic correlation between DM and carot-
enoid content by weighting most heavily the combination of
yellow-flesh (high TCHART) and high DM. We note that the pedi-
gree and germplasm analyzed here arose from genomic trunca-
tion selection for the equivalent of the StdSI. For this reason, our
population and analyses should not be considered as representa-
tive or definitive regarding biofortification breeding goals. We
started with unscaled, noneconomic weights and scaled them by
dividing by the standard deviation of phenotypic BLUPs (see be-
low) for each trait (Supplementary Table S1).

We used pre-adjusted phenotypes, namely, de-regressed
BLUPs as input for our downstream analyses. The field trial data
used span from 2013 to 2019 and are available directly from
http://www.cassavabase.org. The download, quality control, for-
matting and mixed-model analysis that produced the BLUPs are
fully documented and reproducible here: https://wolfemd.github.
10/IITA_2019GS/. The BLUPs produced and used in this study of
cross variance prediction were originally used for GS conducted
during summer 2019. The entire raw IITA trial download was too
large for GitHub and is therefore stored here: http://ftp.cassava
base.org/marnin_datasets/NGC_BigData/.

Parent-wise cross-validation scheme

We devised a cross-validation scheme that: (1) allowed measure-
ment of the accuracy of predicting means, variances, and cova-
riances in previously unobserved crosses, and (2) enabled us to
distinguish accuracy predicting BV from TGV. First, define a vec-
tor, P of the parents listed in the pedigree. Define also a second
vector C listing the genotypes (clones) in the pedigree, including
the parents (P ¢ C).
We conducted five replications of the following procedure:

1) Define parent-wise cross-validation folds: randomly assign
the parents in P into k-folds. We chose k = 5 folds or about
42 of 209 parents in P per fold (defined as P&, the list of
“test” parents in the kth-fold.

For each of the k-folds (set of 42 “test” parents), divide the
clones vector C into two mutually exclusive sets: “training”
(Crry) and “validation” (Cyip). From the set Crry, We exclude
all descendants (offspring, grandchildren, great grandchil-
dren, etc.) of P;. We include the P%, themselves (pheno-
typing the parents before predicting their offspring) and any
nondescendents. Define Cy;p simply as the set difference
between C and Crzn.

Estimate marker effects independently by fitting mixed-
models (see section below for further details) to Cy;p and
Crry corresponding to each P

For each PX;, define the set of crosses to predict, X5, to
include any of the 462 actual families (sire-dam pairs) in
the pedigree, in which the P% were involved. By construc-
tion, the real family members that have been observed for
each of the X% ., were excluded from the model used to get
marker effects for Crpy, and included in the model for Cyip.
Predict the means, variances and covariances for each focal
trait in each cross, X% 5,4 Using the Crry marker effects only.
For each family in X 4, using all existing family members,
compute the sample means, variances, and covariances for
GEBV and GETGV as predicted by the Cy;p marker effects.
Calculate the accuracy of prediction for each mean
(corgy*t, corrgyt), variance (corgy -, corrcy®) and covari-
ance (corgy®#, corrgy®#) in terms of both BV and TGV. For

N
—

W
=

-3

Ul
=

(&)}
~

cor'r we used the Pearson correlation between predicted
and sample mean GEBV/GETGV. For cor®~ and cor®i, only
families with greater than two members were able to be in-
cluded, and we weighted the correlation between the pre-
dicted and sample (co)variance of GEBV/GETGV according
to the family size (R package:function psych::cor.wt). For
sake of comparison, we also include accuracies in the sup-
plement where predicted values are correlated to pheno-
typic (rather than genomic-predicted) BLUPs, e.g.,
COYyY, gy yps COLTLy pryp» and S0 on.

The cross-validation scheme is numerically summarized in
Supplementary Table S2 (see also Supplementary Tables S3-S5).

Multi-trait Bayesian ridge regressions

We used the multi-trait Bayesian ridge regression (MtBRR) imple-
mented in the development version of the BGLR R package
(https://github.com/gdlc/BGLR-R), which is itself a direct port of
the model implemented in the package MTM (de los Campos and
Grineberg 2016). The MtBRR models marker effects as being
drawn from a multivariate-normal distribution with mean effects
of 0 for each trait and variance-covariance parameters jointly es-
timated from the posterior distribution of the Gibbs chain. We
ran each chain for 30,000 iterations, discarded the first 5000 as
burn-in and thinned to every 5th sample. The number of itera-
tions was chosen based on prior univariate analyses using 10,000
iterations (Wolfe et al. 2017). Convergence was confirmed visually
during initial test runs. We used de-regressed BLUPs as responses
in each model to match the approach used for GS (Wolfe et al.
2017), but BGLR does not currently support weighted observa-
tions in the multi-trait model. Our main focus was on the direc-
tional dominance model described above. However, we also fit a
nondirectional additive plus dominance model to which we make
some comparisons in the Supplementary material.

We fit an MtBRR to each Crgry and Cy;p as described above. In
addition, we analyzed the entire population (“All” samples) and
the component genetic groups, which are: GG (or CO; the original
progenitors chosen from a population known as the “Genetic
Gain”), TMS13, TMS14, and TMS15, which represent the off-
spring from 2013 (C1), 2014 (C2), and 2015 (C3), respectively.

Predicting cross means, variances, and
usefulnesses

We predicted cross means using the posterior mean marker
effects. For variance predictions, Lehermeier et al. (2017a,b) used
the posterior mean variance (PMV), which is effectively the mean
of the variances predicted by each MCMC-sample of marker
effects (see Equations 7-10 in that study). The alternative ap-
proach, referred to as the variance of posterior means (VPM), is to
make variance predictions simply with the posterior mean
marker effects. The PMV is expected to be less biased compared
to the VPM but is considerably more computationally intensive.
Moreover, PMV requires the on-disk storage of massive posterior
marker-effects arrays. We computed the PMV for each prediction
in the cross-validation study and in estimating population ge-
netic variances. In the Supplementary Appendix, we made a brief
comparison of PMV and VPM and based on these results, used
VPM in the exploratory predictions, which are described below.
We computed SI means and variances using the predicted (and
sample) means, variances and covariances of the component
traits, and the index weights, given in Supplementary Table S1.
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Realized selection intensities (measuring post-
cross selection)

We used GEBV and GETGV based on test-set marker-effects to
compute observed (or realized) usefulness criteria i.e., UCpgren: and
UCyqriery and measure prediction accuracy as follows. For UCpqrent,
we computed the mean GEBV of family members who were
themselves later used as parents. We computed UCyger, using
the mean GETGV of family members advanced to the penulti-
mate stage of the VDP, the advanced yield trial (AYT). In order to
combine predicted means and variances into usefulness criteria,
i.e., UCparent @and UC,qpiery, We first calculated the realized intensity
of within-family selection (irs and iypp). For irs, we used the pro-
portion of family members who themselves appear in the pedi-
gree as parents. For the iypp, we used the raw plot-basis data to
compute the proportion of clones from each family with at least
one plot in the aforementioned AYT stage of the VDP, as of July
2019. We computed standardized selection intensity in R using
1 = dnorm(qnorm(1 — propSel)) /propSel, where propSel is the propor-
tion selected.

Exploratory analysis: predictions of previously
untested crosses

We conducted a prediction exercise evaluating the interest of
possible future crosses compared to those previously made in
terms of additive and total merit, i.e., UCygrent @and UCygriety. We
predicted the means and variances of all possible pairwise mat-
ings between the union of 209 parents already used and the 100
clones with top rank on the StdSI, of which only 3 overlapped
(N =306 parents). This resulted in 47,083 crosses to predict. We
used marker-effects from the full-model (all clones included). We
predicted means, variances, and covariances for all four traits
and subsequently used these to compute StdSI and BiofortSI
means and variances.

The dataset we analyzed does not include all traits or germ-
plasm relevant to the IITA breeding program. For that reason, our
results especially regarding the potential benefits of new matings
are meant as an example. Assessment of the actual best new
matings to make in the ongoing breeding program will rely on a
broader analysis.

Results

Results along with code generating summaries, figures, and re-
lated tables are also available as part of the workflowr R mark-
down website (Results, Figures, Supplementary Figures, and
Supplementary Tables).

Pedigree and Germplasm: There were 3199 individuals in 462
families, derived from 209 parents in our pedigree. Parents were
used an average of 31 (median 16, range 1-256) times as male
and/or female parents in the pedigree. The mean family size was
7 (median 4, range 1-72). The average proportion of homozygosity
was 0.84 (range 0.76-0.93) across the 3199 pedigree members
(computed over 33,370 variable SNP; Supplementary Table S14).
As expected for a population under RS, the homozygosity propor-
tion increased with each generation with C0, C1, C2, and C3 hav-
ing homozygosity proportion of 0.826, 0.835, 0.838, and 0.839,
respectively (Supplementary Figure S1).

Cross-validation Scheme: Across the 5 replications of fivefold
cross-validation, the average number of clones was 1833 (range
1245-2323) for training sets and 1494 (range 1003-2081) for test-
ing sets. The 25 training-testing pairs set up an average of 167
(range 143-204) crosses to predict (Supplementary Table S2).

BLUPs and SI: The correlation between the two SI (StdSI and
BiofortSI; Supplementary Table S1) based on i.i.d. (nongenomic)
BLUPs of component traits was 0.43 (Supplementary Figure S2).
The correlation between DM and TCHART BLUPs was —0.29.

Accuracy of family mean prediction

Across traits, most accuracy estimates (more than 75%) were
lower for prediction of family-mean TGV than for mean BV (me-
dian difference TGV-BV = —0.017). The only exception was for
yield (logFYLD), where TGV>BV, median increase of 0.13 (Figure
1, Supplementary Table S10). We note that accuracy is higher for
BiofortSI compared to StdSI, which makes sense given that
BiofortSI emphasizes DM and TCHART, which have higher accu-
racy than logFYLD and MCMDS.

Accuracy of within-family variance and
covariance prediction

Most (89%) of variance prediction accuracies were greater than
zero, with median accuracy 0.14 across traits (Figure 2A,
Supplementary Table S11). For covariances, prediction accuracy
was lower (median 0.07) and 70% of accuracy estimates were
greater than zero (Figure 2B, Supplementary Table S11). In con-
trast to results for predicting family-means, the most accurately
predicted trait-variances were MCMDS, TCHART, and logFYLD
with median accuracies (proportion accuracies > 0) of 0.25 (0.92),
0.17 (0.84), and 0.15 (1.0), respectively. Var(DM), for example, had
among the lowest median accuracies at 0.07. Interestingly, the
DM-TCHART covariance was also very well predicted with me-
dian accuracy 0.23 (97% of accuracies > 0). Accuracy for the SI
variances were intermediate with median StdSI accuracy = 0.17
(0.92) and BiofortSI = 0.09 (0.78) compared to the component
traits. Like the SI accuracy for family-means, accuracy for varian-
ces was related to the accuracy of the component traits. In con-
trast to predicting SI cross-means, for variances, the StdSI
BiofortSI. This makes sense as the StdSI emphasized logFYLD and
MCMDS, whose variance were better predicted than those of DM,
TCHART, and related covariances. There were, overall, only small
differences in accuracy between o3, and o?;, with the median
difference being —0.003.

Accuracy predicting the usefulness of crosses

The observed UC are the mean GEBV or GETGV of family mem-
bers who were themselves later used as parents or advanced on
the VDP. In order to compute the UC, we first calculated the real-
ized intensity of within-family selection (izs and iypp)
(Supplementary Figure S3; Supplementary Table S13). There
were 48 families with a mean intensity of 1.59 (mean 2% selected)
that themselves had members who were parents in the pedigree
and could be used to validate UCpgen: predictions. There were 104
families for validation of UC,qrr, predictions, with mean intensity
1.46; mean 5% members selected and advanced to the AYT stage
of the VDP. On a per-repeat-fold basis, the number of families
with observed usefulness for measuring prediction accuracy was
limited. For UCpgren: there were an average of 17 families (min 9,
max 24). For UC,qr, the sizes for the focal AYT stage of the VDP
were an average depended on the VDP stage, for the focal stage
UC[U/ZEY, mean number of 37 families was 37 (min 25, max 50)
per-repeat-fold.

Most estimates (95%) of UC accuracy were greater than zero,
with per-trait accuracies largely similar to the family-mean pre-
dictions. Indeed, the overall correlation between mean and UC
accuracies was 0.75. As might be expected, given the incorpora-
tion of variance-predictions and the more limited validation
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Figure 1 Accuracy predicting family means. Fivefold parent-wise cross-validation estimates of the accuracy predicting the cross means on SI (A) and for
component traits (B), are summarized in boxplots. Accuracy (y-axis) was measured as the correlation between the predicted and the sample mean GEBV
or GETGV. For each trait, accuracies are given for two prediction types: family mean BV vs TGV.
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Figure 2 Accuracy predicting genetic (co)variances. Fivefold parent-wise cross-validation estimates of the accuracy predicting the genetic variance of
crosses on SI (A) and for component trait variances (B) and covariances (C). Accuracy (y-axis) was measured as the correlation between the predicted
and the sample (co)variance of GEBV or GETGV. For each trait (panel), accuracies for two prediction types are given: VarBV and VarTGV.

sample size, the UC accuracy was on average lower by —0.09
compared to the family-mean accuracy (Figure 3, Supplementary
Table S12). In contrast to predictions of cross variances, the me-
dian UC for the BiofortSI was higher (0.58) compared to the StdSI
(0.49). Among component traits, median accuracy ranks TCHART
(0.83) > DM (0.65) > logFYLD (0.24) > MCMDS (0.10). As with the
mean, there was a tendency (62% of estimates) for UCygen: to be
slightly better predicted than UG,y (median magnitude of dif-
ference = —0.06). Prediction accuracy for UC was similar when
setting a constant intensity of 2.67 instead of using family-
specific realized intensity (Supplementary Table S12).

Population estimates of the importance of
dominance variance

Our focus is mainly on distinguishing among crosses, and the
accuracy of cross-based predictions. Detailed analysis of the
additive-dominance genetic variance-covariance structure in
cassava (sub)-populations is an important topic, which we
mostly leave for future study. We make a brief examination of
the genetic variance-covariance estimates associated with the
overall population and component genetic groups. We report
all PMV-covariance estimates in Supplementary Table S15 and
complete BGLR output in the repository associated with this
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study. We focus here on genetic variance-covariance account-
ing for LD, as in Lehermeier et al. (2017a), “Method 2.” Over all
genetic groups analyzed, across trait and SI variances, domi-
nance accounted for an average of 24% (range 6-53%).
Dominance was most important (mean 46% of genetic vari-
ance) for yield (logFYLD) and least important for TCHART
(mean 11%) (Figure 4). For several estimates, there was an op-
posing sign between additive and dominance components, e.g.,
positive dominance but negative additive genetic covariance
for DM-logFYLD.

Population estimates of inbreeding effects

We found that genome-wide estimates of the effect of homozy-
gosity were consistently negative for logFYLD with a mean direc-
tional dominance regression coefficient of —2.75 log(tons/ha)
across genetic groups (mean effect —3.88 across cross-validation
folds). In addition, DM estimates indicated inbreeding depression
effects in several genetic groups and the majority of cross-
validation folds with mean directional dominance regression co-
efficient of —4.82 percent dry matter across genetic groups (mean
effect —7.85 across cross-validation folds) and similarly for
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Figure 3 Accuracy predicting cross usefulness (the expected mean of future selected offspring). Fivefold parent-wise cross-validation estimates of the
accuracy predicting the usefulness of crosses on the SI (A) and for component traits (B), are summarized in boxplots. Accuracy (y-axis) was measured as
the family-size weighted correlation between the predicted and observed usefulness of crosses for breeding parents (UCpgren:) Or varieties (UC,qriety)-
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Figure 4 Population-level measures of the importance of dominance genetic effects. The genetic variance estimates from the models fitted to the overall
population (“All”) and also to its four genetic groups (x-axis) are presented in these barplots. Each panel contains results for a trait variance or
covariance. For SI (A) and component traits (B) the proportion of genetic variance accounted for by dominance is shown on the y-axis. For covariances
between component traits (C) the estimates themselves are plotted. In C, fill color indicates variance component (additive vs dominance).

1 20Z JaquiaAoN 80 Uo Jasn (y1]]) ainmnouby [eaidod] Jo ansu| [euoneulaiul Aq 66/£9£9/22 L aehi/s/6 | z/aionie/sonsusb/woo dno-oiwepese//:sdiy wo.ll papeojumod



M. D. Wolfeetal. | 9

DM logFYLD

MCMDS

TCHART

104

o
1

[

-

[=]
L

InbreedingEffect

-20 4

-6 -

Group
All
co
C1
c2
C3
ParentwiseCV

Figure 5 Estimates of the genome-wide effect of inbreeding. For each trait (panels), the fixed-effect for genome-wide proportion of homozygous sites is
shown on the y-axis, as estimated by a directional dominance model. For the overall population (“All”") and four genetic groups (“C0” C1"C2"C3"), the
posterior mean estimate and its standard deviation (bars) are shown on the x-axis. For comparison a boxplot showing the distribution of estimates from
models fit to parent-wise cross-validation training and validation sets (“ParentwiseCV”) is also shown.

MCMDS, mean inbreeding effect of 0.32 worse disease severity
across genetic groups (mean effect 1.27 across cross-validation
folds). This corresponds to higher homozygosity being associated
with lower DM, lower yield, and greater disease severity (Figure 5,
Supplementary Table S16).

Exploring predictions about untested crosses

We made 8 predictions (2 SIs x 2 selection targets [BV, TGV] x 2
criteria [Mean, UC = Mean + i*SD]) for each of 47,083 possible
crosses of 306 parents. We examined the correlation structure
among these predictions in order to understand the multivariate
decision space they describe (Figure 6, Supplementary Figures S4
and S5).

The two SI are (by design) disparate breeding goals. The mean
correlation (across var. components) between SIs was low for pre-
dictions of the family mean (0.20) and lower for the UC (0.14), but
high for the SD (0.91). The predictions of BV and TGV were
strongly correlated with 0.95 (0.96) for predicted cross means on
the StdSI (BiofortSI), 0.88 (0.91) for predicted genetic standard de-
viation, and 0.93 (0.95) for UC.

The predicted cross means and variances had a low, but nega-
tive correlation (Figure 6A). Across traits and variance compo-
nents, the average correlation between predicted mean and
standard deviation (cor*®) was —0.37. At the standardized inten-
sity of 2.67 (1% selected) the predicted UC was dominated by the
mean (average cor*UC = 0.995) and there was a small negative
correlation between variance and UC (average cor®V¢ = —0.26).

We wanted to know how selections of crosses-to-make would
be affected by our choice of criteria. Separately, for each of the 8
predictions of 47,083 crosses, we selected the top 50 ranked
crosses (Supplementary Table S19). In total, only 202 unique
crosses were selected based on their rank on at least one of the 8
predictions. Of those, 112 were selected for the StdSI (90 Biofort)
and included only 7 (6) self-crosses. No crosses were selected for
both SI. None of the selected crosses have previously been tested
in the IITA breeding program. We plotted the predicted p vs the ¢
(Figure 6A) and the UCpgren: Us the UCygyiery (Figure 6B). We high-
light the unique new crosses proposed and contrast them to the
462 previously made, distinguishing genetic groups (selection-

cycle-of-origin, CO, C1, and C2) by colors, in order to illustrate the
extent to which our genomic mate selection criteria propose
novel and putatively better crosses. For simplicity, we plotted
predictions for StdSI only.

There were 44 parents represented among the 112 “best”
crosses for StdSI with a median usage in 3 families each (range
1-70, most popular parent = TMS13F1095P0013). Only 33
parents among 90 “best” crosses were indicated for the BiofortSI
with a median contribution to 4 (range 1-81, most popular par-
ent = IITA-TMS-IBA011371) crosses. Figure 7 breaks down the
selections on the StdSI according to prediction and variance
components as a network where selected parents are nodes and
matings are edges. For the StdSI, only 17 of 112 crosses (30 of 90
for BiofortSI) were selected jointly for both BV and TGV. Self-
crosses were only selected based on BV. In fact, 22 of 44 parents
selected on the StdSI were chosen only for the TGV of their
crosses and 4 only for their BVs (Figure 7). For the BiofortSI, one
parent was chosen only for BV, but 14 of 33 were only interesting
for their TGV. Only 27 crosses for the StdSI (14 for BiofortSI)
were selected only based on the UC (i.e., selected for their vari-
ance but not their mean). As judged by the number of times a
cross was chosen given the four selection criteria, there are 58
unique crosses in the top 50 for the StdSI and 66 for the
BiofortSI. This demonstrates a relatively simple approach for
selecting the overall best crosses based on the four predicted
mate selection criteria.

Discussion

We developed and tested genomic mate selection criteria suitable
for multi-trait index selection in organisms of arbitrary homozy-
gosity level where the F; (full-sibling progeny) are of direct inter-
est as future parents and/or cultivars (varieties). We focused on
the prediction of the Sl-associated genetic variance of crosses
based on the haplotypes of proposed parents, estimates of
marker effects, and estimates of recombination frequencies be-
tween marker loci. We combined the predicted mean and vari-
ance of a cross into usefulness criteria for parent (UCparens) and
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Figure 6 Genomic mate selection criteria for the StdSI predicted for previously untested crosses. We predicted 47,083 crosses among 306 parents. We
made four predictions: 2 variance components [BV, TGV] x 2 criteria [Mean, UC = Mean + 2*SD]. Two-dimensional contour lines show the distribution of
all predicted crosses. For each of the predictions, we took the top 50 ranked crosses and then selected the union of crosses selected by at least one
metric. The 462 crosses previously made are also shown and genetic groups (CO, C1, and C2) are distinguished by color from the 112 new crosses to
highlight the opportunity for improvement. Selfs are shown as triangles, outcrosses as circles. The predicted cross genetic mean is plotted against the
predicted family genetic standard deviation (Sd, ¢) for BV and TGV (panel rows) (A). The UCpqren: is plotted against the UCyariery With a red one-to-one line

in B.

variety (UCyariery) development, by predicting the genetic variance
of both breeding (c3,) and TGVs (63, = 63y + 63p).

Sufficiency and implications of prediction
accuracy estimates

We worked with 462 real cassava families of heterogeneous size.
We made practical use of the available data in implementing the
parent-wise cross-validation scheme. We found that prediction
accuracy for family means were largely similar to our previously
published estimates (Wolfe et al. 2016a, 2017). Variance and UC
prediction accuracies were lower than mean prediction accura-
cies in general. Given that variances are the second-moment of
the distribution, it makes sense that accuracies for variances are
lower than for means (Zhong and Jannink 2007; Osthushenrich
et al. 2018; Neyhart and Smith 2019). The accuracy predicting the
family mean for a given trait was not well correlated with the ac-
curacy estimate for predicting family variances (r = —0.22). This
suggests that, for a given phenotype, breeding programs cannot
simply rely on available estimates of family-mean prediction

accuracy to determine the adequacy of family-variance predic-
tions. The UC and family-mean accuracy estimates were reason-
ably correlated (r=0.75).

Many factors contribute to achieving optimal accuracy and
those factors are well understood in the literature. We focused
here on getting an assessment of the overall ability to distinguish
crosses with high vs low genetic variances. Previous studies of
variance-prediction accuracy evaluated relatively few families,
but with larger size (Osthushenrich et al. 2018; Yao et al. 2018;
Neyhart and Smith 2019). Interestingly, we found that traits with
the most accurately predicted variances had less accurately pre-
dicted means, including the SIs (mean: StdSI < BiofortSI; vari-
ance: StdSI > BiofortSI; Figures 1 and 2). This does not seem
initially explainable by our priors regarding trait genetic architec-
tures; DM and FYLD are both generally considered as polygenic/
infinitesimal traits, while MCMDS and TCHART are expected to
be closer to mono- or oligogenic (Wolfe et al. 2016b;Rabbi et al.
2020). Differences in accuracy between mean and variance pre-
dictions should instead have to do with the nature of linkage
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Figure 7 Network plot of selected parents and matings for the StdSI. There were 44 parents and 112 crosses chosen because they were in the top 50 for
at least one of four predictions: 2 variance components [BV, TGV] x 2 criteria [Mean, UC = Mean + 2*SD]). Parents are shown as nodes, with size
proportional to their usage (number of connections). Matings are shown as edges, with linetype distinguishing selection based on Mean (solid) and UC

(dashed) and color depicts selection for BV vs TGV.

disequilibrium, especially as it affects marker-causal relation-
ships (de Los Campos et al. 2015; Lehermeier et al. 2017a). Similar
to the simulations and empirical results of Neyhart et al. (2019)
we found that the DM-TCHART covariance was particularly well
predicted, corresponding to hypothesized tight linkage between
QTL on chromosome 1 (Rabbi et al. 2017); a region known to con-
tain large low-recombination regions of historical introgression
from the wild relative M. glaziovii (Wolfe et al. 2019).

The actual accuracy achieved should be higher than our esti-
mates. Our empirical estimates of progeny variance, against
which we validate our predictions, are subject to both Mendelian
sampling and effect estimation error. That error decreases the
correlation, biasing all our estimates downward. Put another
way, we make predictions of the variance of an infinite number
of progeny, but are only able to correlate those predictions to a
real sample of families with finite and heterogeneous numbers of
offspring.

Several conditions for the implementation of cross-variance
predictions and mate selection need to be met. First, predictions
of GEBV or GETGYV are considered suitable for genomic truncation
selection; for example, based on cross-validation and/or cross-
generation prediction accuracy estimates. Second, genetic maps
are established and trusted. Finally, accurate marker data phas-
ing for candidate parents must be available. If these criteria are
met the logistics of mate selection are feasible.

The possibility remains that estimates of variance might be
poor enough to contribute more noise than signal to the selection
decisions. The answer is hard to intuit and decisions must be
made on a program-specific basis. By obtaining a prediction of
cross-variance we add a component of information to the cross-
mean predictions we had before. We also add a potential source
of error. One suggestion might simply be to incorporate cross-

variance predictions into selections via the UC cautiously by
choosing a relatively low-standardized selection intensity value
when incorporating the mean and variance predictions. Field val-
idating variance predictions across multiple large families and
simulating long-term outcomes may offer the best viable addi-
tional sources of decision support regarding the use of usefulness
predictions.

The importance of nonadditive effects and the
effect on inbreeding

Nonadditive effects are important in cassava, accounting for an
average of 24% of genetic variance in this study. Our results are
consistent with previous studies that highlight the importance of
nonadditive effects for fresh root yields but not for dry matter or
total carotenoid content (Esuma et al. 2016; Wolfe et al. 2016a,
2017; Nduwumuremyi et al. 2018; Andrade et al. 2019). To our
knowledge, we are the first to report partitions of trait-trait ge-
netic covariance into additive and dominance components,
though we do not comment on it in detail in this study. We also
report the first estimates of genome-wide marker-based direc-
tional dominance in cassava. Using the model of Xiang et al.
(2016), we found notable evidence of inbreeding depression, for ev-
ery trait except TCHART, but especially yield. Our results match
several previous estimates of inbreeding depression based on
field observation of selfed (S;) progeny (Pujol and McKey 2006;
Rojas et al. 2009; Kawuki et al. 2011; de Freitas et al. 2016). Theory
and data (reviewed in Kristensen and Sgrensen 2005) indicate
that traits more closely associated with fitness (in cassava, this
would be traits related to root and stem production, for example)
should be more impacted by directional dominance (inbreeding
depression). These results also make sense in light of the evi-
dence of deleterious genetic load in cassava (Ramu et al. 2017)
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and balancing selection for heterozygosity in introgression
regions (Wolfe et al. 2019). It was also interesting to observe that
there are unique matings with elite rank only for TGV (nonaddi-
tive effects) and still others uniquely interesting for BV. The net-
work plot in Figure 7 shows a pattern of crosses within vs among
particular parents selected for exploiting either BV or TGV that
warrants future investigation. Our cross-validation scheme
allows us to distinguish TGV and BV accuracy by using genomic
estimates of BV and TGV as validation data. Nevertheless, we
found only small differences between TGV and BV accuracy for
both mean and variance-related predictions. The composition of
a mating plan based on UCpgren: and UCygariety 18 still an important
decision point for breeders. To a certain extent, choices depend
on a breeder’s emphasis on matings to produce varieties us to im-
prove the population overall. In the future, numerically opti-
mized mating plans that balance investment in crosses to
maximize the value of parents and varieties produced by each
crossing block can be developed.

Caveats, limitations, and future directions for
GMS in outbred, clonal crops

In some circumstances, for computational efficiency, it may be
desirable to use the VPM rather than the PMV approach to predict
cross variances. Our results show that the correlation between
VPM and PMV predictions is very high but their magnitude is dif-
ferent, as is the accuracy estimate (see Supplementary
Appendix). If any bias is consistent, then ranking differences be-
tween PMV and VPM (or REML) predictions of cross variance will
not occur. Ultimately, if implementing mate selections via the
usefulness criteria, choosing the VPM method would mostly have
the consequence of shrinking the predicted values toward the
mean.

Other critical considerations for practical implementation in-
clude the necessary phasing quality and method. We leveraged a
dataset imputed and phased using a validated pedigree (Chan
et al. 2019); many plant breeding programs may not have suitable
pedigree or depth of relationships to enable this. We do not rule
out using “standard” population-based imputation and phasing
(e.g., Browning and Browning 2016). Promising also will be the de-
velopment of a practical haplotype graph suitable for outbred
diploids like cassava (Jensen et al. 2020; Zou et al. 2020). In addi-
tion, the necessary marker density for accurate prediction should
be considered as it has a very significant effect on computational
speed.

Several extensions and future directions are of interest mov-
ing forward from the current study. We have only addressed
dominance, but extensions of variance prediction to include epis-
tasis or even nonlinear kemel types should be straightforward
(Alves et al. 2019). The directional dominance model and its as-
sumption of uncorrelated additive and dominance effects and
linear genome-wide effects on phenotype of increasing homozy-
gosity need evaluation (Xiang et al. 2018). We note that many out-
bred, clonal crops are actually polyploids. For organisms with
such genomes, further developments in recombination mapping,
phasing, and prediction models will be required, but are expected
to be possible. In our study, we focused on trait-associated vari-
ance prediction. Considerable development of mate selection cri-
teria has concerned the avoidance of genetic diversity loss
generally, these are approaches that constrain inbreeding
(Kinghorn 2011; Woolliams et al. 2015) and are distinct from trait-
associated predictions presented here. We note that Allier et al.
(2019Db) recently described prediction of the variance in parental
contribution in a family (i.e., the variance in inbreeding level) as a

correlated trait, using an extension of the approach for prediction
trait-associated variance.

Conclusions

By providing predictions of the selection-index-associated means
and variances in arbitrary crosses for additive and dominance var-
lances, we provided a suite of genomic mate selection criteria
suitable for the complexities of a modern (cassava) breeding pro-
gram. We presented a simple approach for genomic truncation
mate selection that identifies a profile of crosses collectively in-
teresting because of the predicted merit of their progeny in terms
ofpgy, #rcy, o8y, and ercy. Ultimately, crossing plans can be nu-
merically optimized (Akdemir and Sanchez 2016; Gorjanc and
Hickey 2018; Akdemir et al. 2019; Allier et al. 2019a) to consider
trait-associated means and variances as well as inbreeding levels,
to provide a high degree of control for the management of breed-
ing populations.

Data availability, reproducibility, and
predCrossVar Rpackage

We accessed the pedigree, genetic map, and haplotypes from the
Cassavabase FTP server repository for Chan et al. (2019). The full
repository for this study including all data and output can also be
accessed through the Cassavabase FTP server (here) using
“Guest” credentials. The repository, minus large data files, can be
found on GitHub here. We used Rmarkdown and the R package
workflowr (version 1.6.2) to document our empirical analysis in a
fully reproducible website. Finally, we implemented the core
functions for multi-trait prediction of outbred cross variances in-
cluding additive and dominance effects in an R package
predCrossVar (repository on GitHub, web documentation) and
used it in the aforementioned analyses. Supplementary material

is available at figshare: https://doi.org/10.25386/genetics.
14569044.
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