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ABSTRACT 27 

Pearson syndrome (PS) is a very rare and often fatal multisystem disease caused by 28 

deletions in mitochondrial DNA that result in sideroblastic anemia, vacuolization of 29 

marrow precursors, and pancreatic dysfunction. Spontaneous recovery from anemia 30 

is often observed within several years of diagnosis. We present the case of a 4-month-31 

old male diagnosed with PS who experienced prolonged severe pancytopenia 32 

preceding the emergence of monosomy 7. Whole-exome sequencing identified two 33 

somatic mutations including RUNX1 p.S100F that was previously reported as 34 

associated with myeloid malignancies. The molecular defects associated with PS may 35 

have the potential to progress to advanced MDS. 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 
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INTRODUCTION 44 

Pearson syndrome (PS) is a multi-organ system disorder characterized by refractory 45 

sideroblastic anemia with vacuolization of bone marrow (BM) precursors, lactic 46 

acidosis and exocrine pancreatic dysfunction that result from the deletion of 47 

mitochondrial DNA (mtDNA) sequences. Pancreatic dysfunction frequently 48 

accompanies PS but it is not critical for the diagnosis.1,2 The incidence of PS is very 49 

low, at approximately one case per million individuals.3 PS is one of the disorders to 50 

be considered in the differential diagnosis of hypocellular BM in young children.4,5 It is 51 

not clear whether PS is associated with malignant transformation; the long-term 52 

prognosis of PS is generally poor, as children often succumb to fatal lactic acidosis.6 53 

Monosomy 7 is a common cytogenetic abnormality identified in inherited BM failure 54 

syndromes (IBMFS) and pediatric myelodysplastic syndrome (MDS).7 The basic 55 

mechanisms underlying the acquisition of monosomy 7, including haplo-insufficiency 56 

and related somatic events, have been explored previously.8 Here we describe a case 57 

of a patient diagnosed with PS who experienced prolonged and severe pancytopenia 58 

followed by the emergence of monosomy 7 and a somatic mutation in RUNX1 59 

underwent hematopoietic stem cell transplantation (HSCT).  60 
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 61 

METHODS 62 

Written informed consent from the guardians of the patient was obtained for sample 63 

storage and analyses. The analyses were conducted in accordance with the 64 

Declaration of Helsinki. DNA from BM cells obtained from the patient at diagnosis and 65 

again upon development of pancytopenia were subjected to whole-exome sequencing 66 

(WES); DNA from buccal cells was used as a germline control. Whole-exome capture 67 

was performed using SureSelect Human All Exon Kit V6 (Agilent Technology, Santa 68 

Clara, CA, USA). Captured targets were subjected to sequencing using a HiSeq 2000 69 

(Illumina, San Diego, CA, USA). With mean depths of 114-143x, sequence alignments 70 

and mutation identifications were performed using our in-house Genomon program, 71 

as previously described.9 Candidate mutations were identified with the following filters: 72 

(i) P-value < 10−1.3 (by Fisher’s test); (ii) EB call (Empirical Bayesian mutation calling)10 73 

P-value < 10−4; (iii) variant allele frequency in normal sample < 0.02. Copy number 74 

analysis was performed using in-house program known as CNACS11 75 

(https://github.com/papaemmelab/toil_cnacs). Frequency of deletion in mtDNA was 76 

https://github.com/papaemmelab/toil_cnacs
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calculated as mean depth of mtDNA with deletion detected (MT:8,469–13,446) divided 77 

by those without (MT:1–8,468). 78 

 79 

RESULTS AND DISCUSSION 80 

A 4-month-old boy was admitted for treatment of respiratory syncytial virus infection 81 

and mild pancytopenia. There was no past medical history or any notable family history. 82 

Examination of the BM was notable for vacuolated myeloid and erythroid precursors 83 

with ring  sideroblasts. Chromosomal analysis revealed 46,XY in 20 out of 20 84 

metaphase spreads. Blood levels of lactic acid were elevated; as such, genetic testing 85 

was performed. A large deletion of mtDNA was detected, which indicates a diagnosis 86 

of PS. The deleted mtDNA allele was detected at a frequency 81% in BM as a 87 

consequence of heteroplasmy that was identified by WES with off-target sequencing 88 

reads on mtDNA (Figure 1a). No somatic mutations were detected in BM cells at 89 

diagnosis. 90 

The patient began a series of regular red blood cell transfusions to treat his anemia. 91 

At the age of 22 months, BM examination revealed significant hemophagocytosis after 92 

a respiratory tract infection that resolved in response to prednisolone. Profound 93 
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thrombocytopenia and neutropenia emerged at the age of 30 months. Platelets counts 94 

were fluctuating with regular transfusion. Absolute neutrophil counts was stable 95 

around 300 /µL. BM examination revealed hypo-cellular marrow with 2 % of 96 

myeloblasts and minimal dysplasia. A repeat chromosomal analysis revealed a 45,XY, 97 

−7 [12]/ 45, idem, t(4;21)(p11;q22) [4]/ 46, XY [4] aberration; monosomy 7 was also in 98 

38% of the cells by fluorescent in situ hybridization and WES (Figure 1b). Furthermore, 99 

WES revealed two somatic mutations of RUNX1 and LINGO4 in addition to monosomy 100 

7 (Table 1). RUNX1 p.S100F mutation was previously reported in myeloid 101 

malignancies.12 The frequency of mtDNA deletion was 78%. The patient received an 102 

unrelated cord blood transplantation at the age of 42 months to treat prolonged 103 

pancytopenia. The conditioning regimen included anti-thymocyte globulin, fludarabine, 104 

and melphalan from HLA fully matched (8/8) unrelated cord blood. Lactic acidosis 105 

deteriorated with infusion reaction by anti-thymocyte globulin. Neutrophil engraftment 106 

was obtained on day 20. Acute GVHD of skin (stage 3) and liver (stage 1) were 107 

resolved with prednisolone. He was discharged on day 66. His hematological status 108 

and acid-base balance are stable 20 months after HSCT. 109 
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The proportion of deleted mtDNA in hematopoietic cells of patients diagnosed with 110 

PS varies due to heteroplasmy; the severity of hematologic manifestations is directly 111 

related to this phenomenon. Cytopenia associated with PS may resolve 112 

spontaneously with a decreasing frequency of mitochondria with deleted mtDNA.13,14 113 

Our patient did not experience any resolution of his anemia; the ratio of deleted to 114 

intact mtDNA did not change over time as assessed by WES. In addition to persistent 115 

BM failure, monosomy 7 appeared two years after initial diagnosis. PS is important as 116 

a differential diagnosis of IBMFS, however it is considered to be a non-hematological 117 

disorder. Actually, development of cytogenetic abnormalities was previously reported 118 

in three cases of PS; all cases had chromosome 7 related abnormalities. The clinical 119 

course varied from transient abnormalities to progression AML.4, 15,16 120 

Monosomy 7 occurs during the clonal evolution to MDS/leukemia in a variety of 121 

IBMFSs.7 MDS with monosomy 7 in children has been associated with a high risk of 122 

disease progression.17 Among those cohorts, patients with germline SAMD9/9L 123 

mutations also frequently developed monosomy 7 as a consequence of an adaptation-124 

by-aneuploidy mechanism.18 SAMD9/9L locate on chromosome 7, and their mutations 125 

have growth-restricting activity. WES confirmed that our patient harbored no known 126 
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germline abnormalities including SAMD9/9L, GATA2 and FANC genes that would 127 

suggest a predisposition to MDS. Acquisition and selection of monosomy 7 clones 128 

may be caused with a similar mechanism in patients with BM failure7 where the 129 

hematopoietic milieu is exposed to cytopenia-induced stress. Of note, our patient did 130 

not undergo treatment with G-CSF, which is known to be associated with the 131 

development of monosomy 7 in patients with BM failure.19 132 

Acquisition of additional genetic abnormalities predicts disease progression in adult 133 

MDS.20 One study showed that MDS in children was often associated with Ras/MAPK 134 

pathway mutations; by contrast, children with germline SAMD9/9L mutations rarely 135 

acquired additional gene or chromosomal alterations.21 Monosomy 7 itself results in 136 

haplo-insufficiency of tumor suppressor genes on chromosome 7, which could 137 

cooperate with other driver events in modulating the pathogenesis of myeloid 138 

malignancies. For example, loss of EZH2 (located on 7q36) has been shown to 139 

interact with RUNX1 mutations and to generate myeloid tumors in mice.22 Somatic 140 

mutations in RUNX1 are reported frequently in association with childhood MDS with 141 

monosomy 7.23 In IBMFSs, including Fanconi anemia and severe congenital 142 

neutropenia, the combination of RUNX1 mutations and monosomy 7 also contribute 143 
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to myeloid leukemogenesis.24,25 Of note, a RUNX1 mutation that has been associated 144 

with myeloid malignancies was also identified in our patient. This clone might have 145 

had the potential to progress to advanced MDS. 146 

The cases of two patients with PS who received unrelated HSCT were previously 147 

described in the literatures.15,16 In one patient, both hematological and non-148 

hematological manifestations resolved in response to this intervention,16 similar to that 149 

observed in our case. PS has features of fatal multisystem dysfunction and 150 

spontaneous recovery from anemia within several years of diagnosis. Although HSCT 151 

can result in serious complications, it may be a feasible option for patients with severe 152 

PS who acquired cytogenetically abnormalities in BM and should be considered in a 153 

future prospective clinical trial. 154 
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TABLE AND FIGURE LEGENDS 254 

 255 

Table 1. 256 

Mutations identified by whole-exome sequencing. 257 

 258 

Figure 1. 259 

Deletion in mtDNA and monosomy 7 detected by whole-exome sequencing. 260 

a) Deletion in mtDNA. Sequencing depth on mtDNA are displayed in gray using IGV 261 

for samples at diagnosis and after the development of pancytopenia as well as a 262 

control sample. Colored positions mean the positions where alleles different from the 263 

reference sequence were called. 264 

b) Monosomy 7 after the development of pancytopenia. Total copy number (CN) and 265 

allele specific (AS) CN of chromosome 7 are shown for samples at diagnosis and after 266 

the development of pancytopenia. 267 
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Table 1. Mutations identified by whole exome sequencing
Chr Start End Ref Alt Gene Exonic function Amino acid change VAF_tumor VAF_normal

21 36259192 36259192 G A RUNX1 Missense SNV NM_001754:exon4:c.C299T:p.S100F 0.086 0
1 151774970 151774970 G A LINGO4 Missense SNV NM_001004432:exon2:c.C211T:p.R71C 0.032 0
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