

Title	Acquisition of monosomy 7 and a RUNX1 mutation in Pearson syndrome					
Author(s)	Nishimura, Akira; Hirabayashi, Shinsuke; Hasegawa, Daisuke; Yoshida, Kenichi; Shiraishi, Yuichi; Ashiarai, Miho; Hosoya, Yosuke; Fujiwara, Tohru; Harigae, Hideo; Miyano, Satoru; Ogawa, Seishi; Manabe, Atsushi					
Citation	Pediatric blood & cancer, 68(2), e28799 https://doi.org/10.1002/pbc.28799					
Issue Date	2021-02					
Doc URL	http://hdl.handle.net/2115/84042					
Rights	This is the peer reviewed version of the following article: Nishimura, A, Hirabayashi, S, Hasegawa, D, et al. Acquisition of monosomy 7 and a RUNX1 mutation in Pearson syndrome. Pediatr Blood Cancer. 2021; 68:e28799, which has been published in final form at https://doi.org/10.1002/pbc.28799. This article may be used for non- commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions					
Туре	article (author version)					
File Information	Pediatr Blood Cancer_68_e28799.pdf					

Instructions for use

- Acquisition of monosomy 7 and a *RUNX1* mutation in Pearson syndrome
 Akira Nishimura^{1,2}, Shinsuke Hirabayashi^{1,3}, Daisuke Hasegawa¹, Kenichi Yoshida⁴,
 Yuichi Shiraishi⁵, Miho Ashiarai¹, Yosuke Hosoya¹, Tohru Fujiwara⁶, Hideo Harigae⁶,
 Satoru Miyano⁵, Seishi Ogawa^{4,7,8} and Atsushi Manabe^{1,3}
- 7 ¹Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan; ²Department of 8 Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; 9 ³Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan; 10 ⁴Department of Pathology and Tumor Biology, Graduate School of Medicine, 11 Kyoto University, Kyoto, Japan; ⁵Laboratory of DNA Information Analysis, Human Genome Center, 12 Institute of Medical Science, University of Tokyo, Tokyo, Japan; ⁶Department of Hematology and 13 Rheumatology, Tohoku University Graduate School, Sendai, Japan; ⁷Institute for the Advanced 14 Study of Human Biology (WPI ASHBi), Kyoto University, Kyoto, Japan; ⁸Department of Medicine, 15 Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- 16

17 **Correspondence to:**

18 Shinsuke Hirabayashi, MD

- 19 Department of Pediatrics,
- 20 Hokkaido University Graduate School of Medicine, Sapporo, Japan
- 21 Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
- Phone:+81-11-706-5954 Fax:+81-11-706-7898 E-mail: <u>hirabayashi-slh@umin.ac.jp</u>
- 24 Word count: abstract: 97; Manuscript: 1,230; Reference 25; Table: 1; Figure 1.
- 25 **Keywords:** Monosomy 7, *RUNX1*, Pearson syndrome

26 Running head: Monosomy 7 and RUNX1 mutation in PS

Abbreviations						
BM	bone marrow					
HSCT	hematopoietic stem cell transplantation					
IBMFS	inherited bone marrow failure syndrome					
MDS	myelodysplastic syndrome					
mtDNA	mitochondrial DNA					
PS	Pearson syndrome					
WES	whole exome sequencing					

27 ABSTRACT

Pearson syndrome (PS) is a very rare and often fatal multisystem disease caused by deletions in mitochondrial DNA that result in sideroblastic anemia, vacuolization of marrow precursors, and pancreatic dysfunction. Spontaneous recovery from anemia is often observed within several years of diagnosis. We present the case of a 4-month-old male diagnosed with PS who experienced prolonged severe pancytopenia preceding the emergence of monosomy 7. Whole-exome sequencing identified two somatic mutations including RUNX1 p.S100F that was previously reported as associated with myeloid malignancies. The molecular defects associated with PS may have the potential to progress to advanced MDS.

44 INTRODUCTION

Pearson syndrome (PS) is a multi-organ system disorder characterized by refractory 45 46 sideroblastic anemia with vacuolization of bone marrow (BM) precursors, lactic acidosis and exocrine pancreatic dysfunction that result from the deletion of 47 48 mitochondrial DNA (mtDNA) sequences. Pancreatic dysfunction frequently accompanies PS but it is not critical for the diagnosis.^{1,2} The incidence of PS is very 49 low, at approximately one case per million individuals.³ PS is one of the disorders to 50 51 be considered in the differential diagnosis of hypocellular BM in young children.^{4,5} It is 52 not clear whether PS is associated with malignant transformation; the long-term prognosis of PS is generally poor, as children often succumb to fatal lactic acidosis.⁶ 53 54 Monosomy 7 is a common cytogenetic abnormality identified in inherited BM failure syndromes (IBMFS) and pediatric myelodysplastic syndrome (MDS).⁷ The basic 55 mechanisms underlying the acquisition of monosomy 7, including haplo-insufficiency 56 57 and related somatic events, have been explored previously.⁸ Here we describe a case 58 of a patient diagnosed with PS who experienced prolonged and severe pancytopenia followed by the emergence of monosomy 7 and a somatic mutation in RUNX1 59 60 underwent hematopoietic stem cell transplantation (HSCT).

62 METHODS

63 Written informed consent from the guardians of the patient was obtained for sample 64 storage and analyses. The analyses were conducted in accordance with the Declaration of Helsinki. DNA from BM cells obtained from the patient at diagnosis and 65 again upon development of pancytopenia were subjected to whole-exome sequencing 66 67 (WES); DNA from buccal cells was used as a germline control. Whole-exome capture 68 was performed using SureSelect Human All Exon Kit V6 (Agilent Technology, Santa 69 Clara, CA, USA). Captured targets were subjected to sequencing using a HiSeq 2000 70 (Illumina, San Diego, CA, USA). With mean depths of 114-143x, sequence alignments 71 and mutation identifications were performed using our in-house Genomon program, as previously described.⁹ Candidate mutations were identified with the following filters: 72 73 (i) *P*-value < $10^{-1.3}$ (by Fisher's test); (ii) EB call (Empirical Bayesian mutation calling)¹⁰ 74 *P*-value < 10^{-4} ; (iii) variant allele frequency in normal sample < 0.02. Copy number analysis performed in-house CNACS¹¹ 75 was using program known as (https://github.com/papaemmelab/toil_cnacs). Frequency of deletion in mtDNA was 76

calculated as mean depth of mtDNA with deletion detected (MT:8,469–13,446) divided
by those without (MT:1–8,468).

79

80 RESULTS AND DISCUSSION

81 A 4-month-old boy was admitted for treatment of respiratory syncytial virus infection and mild pancytopenia. There was no past medical history or any notable family history. 82 83 Examination of the BM was notable for vacuolated myeloid and erythroid precursors 84 sideroblasts. Chromosomal analysis revealed 46,XY in 20 out of 20 with ring metaphase spreads. Blood levels of lactic acid were elevated; as such, genetic testing 85 was performed. A large deletion of mtDNA was detected, which indicates a diagnosis 86 87 of PS. The deleted mtDNA allele was detected at a frequency 81% in BM as a 88 consequence of heteroplasmy that was identified by WES with off-target sequencing 89 reads on mtDNA (Figure 1a). No somatic mutations were detected in BM cells at 90 diagnosis.

91 The patient began a series of regular red blood cell transfusions to treat his anemia. 92 At the age of 22 months, BM examination revealed significant hemophagocytosis after 93 a respiratory tract infection that resolved in response to prednisolone. Profound

94	thrombocytopenia and neutropenia emerged at the age of 30 months. Platelets counts
95	were fluctuating with regular transfusion. Absolute neutrophil counts was stable
96	around 300 / μ L. BM examination revealed hypo-cellular marrow with 2 % of
97	myeloblasts and minimal dysplasia. A repeat chromosomal analysis revealed a 45,XY,
98	-7 [12]/ 45, idem, t(4;21)(p11;q22) [4]/ 46, XY [4] aberration; monosomy 7 was also in
99	38% of the cells by fluorescent in situ hybridization and WES (Figure 1b). Furthermore,
100	WES revealed two somatic mutations of <i>RUNX1</i> and <i>LINGO4</i> in addition to monosomy
101	7 (Table 1). RUNX1 p.S100F mutation was previously reported in myeloid
102	malignancies. ¹² The frequency of mtDNA deletion was 78%. The patient received an
103	unrelated cord blood transplantation at the age of 42 months to treat prolonged
104	pancytopenia. The conditioning regimen included anti-thymocyte globulin, fludarabine,
105	and melphalan from HLA fully matched (8/8) unrelated cord blood. Lactic acidosis
106	deteriorated with infusion reaction by anti-thymocyte globulin. Neutrophil engraftment
107	was obtained on day 20. Acute GVHD of skin (stage 3) and liver (stage 1) were
108	resolved with prednisolone. He was discharged on day 66. His hematological status
109	and acid-base balance are stable 20 months after HSCT.

110 The proportion of deleted mtDNA in hematopoietic cells of patients diagnosed with 111 PS varies due to heteroplasmy; the severity of hematologic manifestations is directly 112 related to this phenomenon. Cytopenia associated with PS may resolve spontaneously with a decreasing frequency of mitochondria with deleted mtDNA.^{13,14} 113 114 Our patient did not experience any resolution of his anemia; the ratio of deleted to intact mtDNA did not change over time as assessed by WES. In addition to persistent 115 116 BM failure, monosomy 7 appeared two years after initial diagnosis. PS is important as a differential diagnosis of IBMFS, however it is considered to be a non-hematological 117 118 disorder. Actually, development of cytogenetic abnormalities was previously reported 119 in three cases of PS; all cases had chromosome 7 related abnormalities. The clinical 120 course varied from transient abnormalities to progression AML.4, 15,16 121 Monosomy 7 occurs during the clonal evolution to MDS/leukemia in a variety of IBMFSs.⁷ MDS with monosomy 7 in children has been associated with a high risk of 122 123 disease progression.¹⁷ Among those cohorts, patients with germline SAMD9/9L 124 mutations also frequently developed monosomy 7 as a consequence of an adaptationby-aneuploidy mechanism.¹⁸ SAMD9/9L locate on chromosome 7, and their mutations 125 126 have growth-restricting activity. WES confirmed that our patient harbored no known

127	germline abnormalities including SAMD9/9L, GATA2 and FANC genes that would
128	suggest a predisposition to MDS. Acquisition and selection of monosomy 7 clones
129	may be caused with a similar mechanism in patients with BM failure7 where the
130	hematopoietic milieu is exposed to cytopenia-induced stress. Of note, our patient did
131	not undergo treatment with G-CSF, which is known to be associated with the
132	development of monosomy 7 in patients with BM failure. ¹⁹
133	Acquisition of additional genetic abnormalities predicts disease progression in adult
134	MDS. ²⁰ One study showed that MDS in children was often associated with Ras/MAPK
135	pathway mutations; by contrast, children with germline SAMD9/9L mutations rarely
136	acquired additional gene or chromosomal alterations. ²¹ Monosomy 7 itself results in
137	haplo-insufficiency of tumor suppressor genes on chromosome 7, which could
138	cooperate with other driver events in modulating the pathogenesis of myeloid
139	malignancies. For example, loss of EZH2 (located on 7q36) has been shown to
140	interact with RUNX1 mutations and to generate myeloid tumors in mice. ²² Somatic
141	mutations in RUNX1 are reported frequently in association with childhood MDS with
142	monosomy 7.23 In IBMFSs, including Fanconi anemia and severe congenital
143	neutropenia, the combination of RUNX1 mutations and monosomy 7 also contribute

to myeloid leukemogenesis.^{24,25} Of note, a *RUNX1* mutation that has been associated
with myeloid malignancies was also identified in our patient. This clone might have
had the potential to progress to advanced MDS.

The cases of two patients with PS who received unrelated HSCT were previously 147 described in the literatures.^{15,16} In one patient, both hematological and non-148 hematological manifestations resolved in response to this intervention,¹⁶ similar to that 149 observed in our case. PS has features of fatal multisystem dysfunction and 150 151 spontaneous recovery from anemia within several years of diagnosis. Although HSCT 152 can result in serious complications, it may be a feasible option for patients with severe 153 PS who acquired cytogenetically abnormalities in BM and should be considered in a 154 future prospective clinical trial.

155

156 Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS)
through Grants-in-Aid for Scientific Research (KAKENHI), grant number (16K21376
and 18K16128 to S.H, JP26221308 and JP19H05656 to S.O) and also by the Japan

160	Agency for Medical Research and Development (AMED); the Project for Development
161	of Innovative Research on Cancer Therapeutics (JP 20cm0106501h0005 to S. O.).
162	
163	Authorship Contributions
164	Conception and design: A.N, S.H., D.H., and A.M. Data analysis and interpretation: all
165	authors. Manuscript writing and final approval: all authors.
166	
167	Disclosure of Conflicts of Interest
168	All authors declare that there are no conflicts of interest.
169	
170	
171	
172	
173	
174	
175	
1/6	
170	
170	
180	
181	
182	
183	
184	
185	

186 References

187	1.	Pearson HA, Lobel JS, Kocoshis SA, et al. A new syndrome of refractory sideroblastic anemia with						
188		vacuolization of marrow precursors and exocrine pancreatic dysfunction. J Pediatr.						
189		1979;95(6):976-984.						
190	2.	Rotig A, Colonna M, Bonnefont JP, et al. Mitochondrial DNA deletion in Pearson's marrow/pancreas						
191		syndrome. <i>Lancet.</i> 1989;1(8643):902-903.						
192	3.	Farruggia P, Di Cataldo A, Pinto RM, et al. Pearson Syndrome: A Retrospective Cohort Study from						
193		the Marrow Failure Study Group of A.I.E.O.P. (Associazione Italiana Emato-Oncologia Pediatrica).						
194		<i>JIMD Rep.</i> 2016;26:37-43.						
195	4.	Gagne KE, Ghazvinian R, Yuan D, et al. Pearson marrow pancreas syndrome in patients						
196		suspected to have Diamond-Blackfan anemia. <i>Blood.</i> 2014;124(3):437-440.						
197	5.	Niemeyer CM, Baumann I. Classification of childhood aplastic anemia and myelodysplastic						
198		syndrome. Hematology / the Education Program of the American Society of Hematology American						
199		Society of Hematology Education Program. 2011;2011:84-89.						
200	6.	Yoshimi A, Grünert SC, Cario H, et al. Hematological presentation and change in clinical phenotype						
201		during follow-up in Pearson syndrome. <i>Blood</i> . 2019:134 (Supplement_1):3746.						
202	7.	Wlodarski MW, Sahoo SS, Niemeyer CM. Monosomy 7 in Pediatric Myelodysplastic Syndromes.						

- 203 Hematol Oncol Clin North Am. 2018;32(4):729-743.
- 204 8. Inaba T, Honda H, Matsui H. The enigma of monosomy 7. *Blood.* 2018;131(26):2891-2898.
- 205 9. Yokoyama A, Kakiuchi N, Yoshizato T, et al. Age-related remodelling of oesophageal epithelia by
- 206 mutated cancer drivers. *Nature*. 2019;565(7739):312-317.
- 207 10. Shiraishi Y, Sato Y, Chiba K, et al. An empirical Bayesian framework for somatic mutation detection
- from cancer genome sequencing data. *Nucleic Acids Res.* 2013;41(7):e89.
- 209 11. Yoshizato T, Nannya Y, Atsuta Y, et al. Genetic abnormalities in myelodysplasia and secondary
- 210 acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood.
- 211 2017;129(17):2347-2358.
- 212 12. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in Acute
- 213 Myeloid Leukemia. The New England journal of medicine. 2016;374(23):2209-2221.
- 214 13. Muraki K, Nishimura S, Goto Y, Nonaka I, Sakura N, Ueda K. The association between
- 215 haematological manifestation and mtDNA deletions in Pearson syndrome. J Inherit Metab Dis.
- 216 1997;20(5):697-703.
- 217 14. Yanagihara I, Inui K, Yanagihara K, et al. Fluorescence in situ hybridization analysis of peripheral
- blood cells in Pearson marrow-pancreas syndrome. *J Pediatr.* 2001;139(3):452-455.
- 219 15. Faraci M, Cuzzubbo D, Micalizzi C, et al. Allogeneic bone marrow transplantation for Pearson's

- syndrome. Bone Marrow Transplant. 2007;39(9):563-565.
- 16. Hoyoux C, Dresse MF, Robinet S, et al. Cord blood transplantation in a child with Pearson's disease.
- 222 Pediatr Blood Cancer. 2008;51(4):566.
- 223 17. Kardos G, Baumann I, Passmore SJ, et al. Refractory anemia in childhood: a retrospective analysis
- of 67 patients with particular reference to monosomy 7. *Blood.* 2003;102(6):1997-2003.
- 225 18. Narumi S, Amano N, Ishii T, et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE
- syndrome, and are associated with loss of chromosome 7. *Nature genetics*. 2016;48(7):792-797.
- 227 19. Ohara A, Kojima S, Hamajima N, et al. Myelodysplastic syndrome and acute myelogenous
- 228 leukemia as a late clonal complication in children with acquired aplastic anemia. Blood.
- **229** 1997;90(3):1009-1013.
- 230 20. Makishima H, Yoshizato T, Yoshida K, et al. Dynamics of clonal evolution in myelodysplastic
- 231 syndromes. *Nature genetics*. 2017;49(2):204-212.
- 232 21. Schwartz JR, Ma J, Lamprecht T, et al. The genomic landscape of pediatric myelodysplastic
- 233 syndromes. *Nat Commun.* 2017;8(1):1557.
- 234 22. Sashida G, Harada H, Matsui H, et al. Ezh2 loss promotes development of myelodysplastic
- 235 syndrome but attenuates its predisposition to leukaemic transformation. Nat Commun.
- 236 2014;5:4177.

237	23. Pastor V, Hirabayashi S, Karow A, et al. Mutational landscape in children with myelodysplastic
238	syndromes is distinct from adults: specific somatic drivers and novel germline variants. Leukemia.
239	2017;31(3):759-762.
240	24. Quentin S, Cuccuini W, Ceccaldi R, et al. Myelodysplasia and leukemia of Fanconi anemia are
241	associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1
242	lesions. <i>Blood.</i> 2011;117(15):e161-170.
243	25. Skokowa J, Steinemann D, Katsman-Kuipers JE, et al. Cooperativity of RUNX1 and CSF3R
244	mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood.
245	2014;123(14):2229-2237.
246	
247	
248	
249	
250	
251	
252	
253	

254 TABLE AND FIGURE LEGENDS

255

256 **Table 1.**

257 Mutations identified by whole-exome sequencing.

258

259 Figure 1.

- 260 Deletion in mtDNA and monosomy 7 detected by whole-exome sequencing.
- a) Deletion in mtDNA. Sequencing depth on mtDNA are displayed in gray using IGV
- for samples at diagnosis and after the development of pancytopenia as well as a
- 263 control sample. Colored positions mean the positions where alleles different from the
- 264 reference sequence were called.
- b) Monosomy 7 after the development of pancytopenia. Total copy number (CN) and
- allele specific (AS) CN of chromosome 7 are shown for samples at diagnosis and after
- the development of pancytopenia.

Figure 1

а

Patient (at diagnosis) Depth with del/

depth wtihout del 0.19

Patient (pancytopenia) Depth with del/ depth wtihout del 0.22

Control (without PS)

Depth with del/ depth wtihout del 1.08

Deletion (MT:8,469-13,446)

Table 1. Mutations identified by whole exome sequencing

Chr	Start	End	Ref	Alt	Gene	Exonic function	Amino acid change	VAF_tumor	VAF_normal
21	36259192	36259192	G	Α	RUNX1	Missense SNV	NM_001754:exon4:c.C299T:p.S100F	0.086	0
1	151774970	151774970	G	А	LING04	Missense SNV	NM_001004432:exon2:c.C211T:p.R71C	0.032	0