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Transcranial magnetic stimulation to assess motor neurophysiology
after acute stroke in the United States: Feasibility, lessons learned, and
values for future research

Transcranial magnetic stimulation (TMS) has been widely
applied in both basic and clinical neuroscience since its introduc-
tion in 1985. In addition to its potential therapeutic value for
exciting or inhibiting neural circuits [1], TMS can be used to inves-
tigate corticomotor excitability (CME), which is a key aspect of
voluntary movement [2]. For example, single-pulse TMS can elicit
electrical signals, which propagate along descending motor path-
ways and are recorded as motor evoked potentials (MEP) in target
muscles. After stroke, TMS-evoked MEPs have been used to assess
the integrity of the descending corticospinal tract (CST) and prog-
nosticate upper limb function [3,4]. Assessment of MEP presence
(MEPþ) or absence (MEP-) in the affected hand muscle (i.e., first
dorsal interosseus (FDI)) at 5e7 days post-stroke is proposed to es-
timate long-term upper limb function with an MEPþ response pre-
dictive of better motor outcomes [5,6]. However, assessment of
acute stroke MEP status has yet to be implemented in the United
States (US). Performing TMS testing during a poststroke acute hos-
pital stay is challenging, particularly in the US healthcare system
where hospital stays are 3.9e6.7 days on average [7] and literature
provides little guidance on implementation. Further, the dichoto-
mous categorization of MEPþ/MEP- may estimate the CST integrity
in an over-simplified way [4,8]. It is possible that other neurophys-
iologic measures assessed by TMS may be complementary bio-
markers to characterize pathophysiology and assist estimates of
motor function, but the feasibility of collecting these data in an
acute hospital setting has not been well described.

Our primary aimwas to develop a feasible process for collecting
TMS-evoked responses at bedside, acutely post-stroke in a US hos-
pital. The secondary aim was to assess the potential utility of addi-
tional TMS-evoked responses to better characterize
neurophysiology in acute stroke. We discuss the necessary coordi-
nation, setup, and the lessons learned to facilitate the use of this
potentially important tool. TMS measures collected include bilat-
eral resting motor threshold (RMT, measuring CME) [1], cortical si-
lent period (cSP, measuring intracortical inhibition) [9], and
ipsilateral silent period (iSP, measuring interhemispheric inhibi-
tion) [10]. Thesemeasures reflect excitatory and inhibitory process-
ing of the primary motor cortices (M1) with a single-pulse TMS.

Implementing bedside TMS assessment requires close interdis-
ciplinary coordination. An onsite coordinator approaches post-
stroke individuals within the first few days after admission to
screen for contraindications, obtain informed consent, and commu-
nicate with TMS investigators who subsequently make every effort
to complete the TMS assessment prior to patient discharge.

Between August 2019 and June 2021, 61 people enrolled in a pro-
spective cohort studye The StrokeMotor reHabilitation and Recov-
ery sTudy (SMaHRT; NCT03485040) e at the Massachusetts
General Hospital were screened for eligibility. Forty-six people con-
sented and 30 people completed the TMS assessments. Sixteen in-
dividuals were not able to receive TMS due to medical
complications or acute illness (N ¼ 7), discharge before testing
could occur (N ¼ 7), withdrawal due to surgery (N ¼ 1), or testing
impacted by COVID-19 restrictions (N ¼ 1). The participants were
4.9 ± 1.7 days (range: 2e8 days) post first-onset ischemic stroke.

The methodology for TMS assessment was as follows. A trans-
portable cart equipped with a single-pulse TMS unit, a 70-mm
figure-of-eight remote coil (The Magstim Company Ltd, UK), and
a neuronavigation system (BrainSight, Rogue Research Inc., Canada)
was used to wheel into a ward for bedside assessment (Fig. 1). The
participants were positioned upright either in a bedside chair or
long-sitting in bed. The investigators cleaned the skin to place a
subject tracker (for neuronavigation) on the forehead and surface
electrodes on bilateral FDI muscles to record electromyography
(EMG). A participant's head was co-registered into a T1 template
scan with neuronavigation to guide the search of hotspot in the
M1. The assessment procedures of each hemisphere (ipsilesional
hemisphere first) are described below.

1 FDI Hotspot Localization andMEPþ/MEP- Determination. MEPþ
was defined as any visible and consistent EMG response above
the background activity (typically >20mV) and occurring 25e40
milliseconds post-stimulus at an intensity up to 100% maximum
stimulator output (MSO). For those whose MEP could not be
elicited at rest, a voluntary contraction was performed to
generate background EMG activity to again attempt to obtain an
MEP.

2 RMT Determination (%MSO). The TMS Motor Threshold
Assessment Tool (MTAT 2.0) was used to determine RMT
defined as �50mV [1]. MTAT was used due to the speed of
threshold determinationwith minimal number of pulses. If MEP
could only be elicited during active contraction, an active motor
threshold was not determined, but the individual was catego-
rized as MEPþ.

3 cSP (contralateral to the stimulated hemisphere) and iSP (ipsi-
lateral to the stimulated hemisphere) Measurements. Two silent
period measures were obtained simultaneously
(intensity ¼ 130% RMT) with bilateral FDI contraction [9,10]. If
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cSP or iSP were not visible, stimulus intensity was increased
until cSP or iSP was observed, up to 100% MSO.

Demographics and TMS data are presented in Supplementary
Table 1. Testing required approximately 30e40 minutes to com-
plete all measures in both hemispheres. There were seven individ-
uals defined asMEP-. Among the 23MEPþ individuals, eight had no
RMT given the standard 50mV criteria (i.e., MEP<50mV at 100%
MSO). Medians of the RMT were 48% (ipsilesional) and 44% (con-
tralesional) (95% confidence interval (CI) of difference: 5.1, 4.9; ef-
fect size ¼ 0.007). Since the silent period requires muscle
contraction, data were unavailable in some individuals with severe
hemiparesis due to inability to perform active contraction. Medians
of the cSP were 245.7 ms (ipsilesional) and 169.8 ms (contrale-
sional) (95% CI of hemisphere difference: 30.7, 121.0; effect
size ¼ 1.2). The ipsilesional/contralesional ratio of cSP was
1.5 ± 0.5, indicating a strong effect of greater ipsilesional intracort-
ical inhibition. Medians of the iSP were 40.7% (ipsilesional) and
52.3% (contralesional) (95% CI of difference: 17.2, 0.3; effect

size ¼ 0.5). The ipsilesional/contralesional ratio of iSP was
0.9 ± 0.3, indicating a moderate effect of imbalanced interhemi-
spheric inhibition (Supplementary Table 2).

A transportable TMS cart and efficient interdisciplinary commu-
nication enable comprehensive, bedside TMS assessment to occur
in between complex medical patient needs during acute hospitali-
zation in a US-based hospital. Corticomotor excitability and inhibi-
tion may help illuminate the dynamic and poorly understood
pathophysiology in acute stroke. The outlined process will enable
future research on identifying TMS-derived biomarkers for motor
function prognosis in stroke.
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