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ABSTRACT The human ear has distinguishing features that can be used for identification. Automated ear
detection from 3D profile face images plays a vital role in ear-based human recognition. This work proposes
a complete pipeline including synthetic data generation and ground-truth data labeling for ear detection in
3D point clouds. The ear detection problem is formulated as a semantic part segmentation problem that
detects the ear directly in 3D point clouds of profile face data. We introduce EarNet, a modified version of
the PointNet++ architecture, and apply rotation augmentation to handle different pose variations in the real
data. We demonstrate that PointNet and PointNet++ cannot manage the rotation of a given object without
such augmentation. The synthetic 3D profile face data is generated using statistical shapemodels. In addition,
an automatic tool has been developed and is made publicly available to create ground-truth labels of any 3D
public data set that includes co-registered 2D images. The experimental results on the real data demonstrate
higher localization as compared to existing state-of-the-art approaches.

INDEX TERMS 3D point clouds, deep neural network, data generation, ear detection.

I. INTRODUCTION
The external shape of the human ear has distinguishing
features that differ significantly from person to person.
Research shows that even the ears of identical twins are
different [1]–[3]. Importantly, the ear shape of a person
remains steady between the ages of 8 to 70 [4]–[6]. These two
factors have attracted the research community to investigate
using images of the ear for numerous applications, including
biometric identification; 3D ear reconstruction from partially
occluded ear images [7] or from a single 2D ear image [8];
gender recognition; genetic study; and asymmetry analysis
for clinical purposes [9]–[13].

In ear-based biometrics, one of the significant steps is
to localize ears in profile face images. Most ear detection
approaches have used 2D images for ear region localization
as they require fewer computations [11], [12], [14]. Due
to the importance of being able to handle unconstrained
images for object detection and segmentation, recently

The associate editor coordinating the review of this manuscript and

approving it for publication was Kaustubh Raosaheb Patil .

numerous deep learning-based methods have been proposed,
including simple convolutional neural network (CNN) based
methods [15]–[18], landmark-based methods [19], Faster
R-CNN based methods [20], pixel-wise methods [21], and
geometric-based methods [22]. However, 2D image-based
approaches are limited to constrained scenarios due to their
sensitivity to lighting conditions and pose variations. There-
fore, 3D images can be used to overcome the limitations of
2D images [23].

Recent developments in 3D imaging techniques have
fast-tracked 3D image-based applications, including bio-
metrics, robotics, medical diagnosis, and autonomous driv-
ing [23], [24]. Generally, 3D data can be represented
in various forms, such as point clouds, volumetric grids,
depth images, and meshes. Point cloud representation is
becoming more popular as it reserves original geometric
information in 3D domains without discretization. How-
ever, conventional convolutional neural networks cannot
be applied directly to point clouds due to the irregu-
lar order of these points. Therefore, most work using
3D images has generally converted point cloud data to
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Euclidean structured format before sending it to CNN archi-
tectures. This representation conversion introduces unnec-
essarily voluminous data and wraps natural invariances of
the data due to the generation of quantization artefacts.
Recently, Qi et al. have introduced two novel deep learn-
ing architectures named PointNet [25] and PointNet++
[26] that can identify features directly on 3D point clouds.
These two networks provide solutions to the aforemen-
tioned problem and open the door to solve many other
research questions in classification and semantic segmen-
tation, including Engelmann [27], PointSIFT [28], 3DCon-
textNet [29], ShellNet [30], LSANet [31], PointCNN [32],
PCCN [33], ConvPoint [34], KPConv [35], InterpCNN [36]),
RSNet [37], G+RCU [38], 3P-RNN [39], DGCNN [40], SPG
[41], GACNet [42], and DPAM [43]. For more details readers
are directed to the comprehensive survey on point cloud data
presented by Guo et al. [44].
In this work, the ear detection problem is expressed as a

semantic part segmentation problem where the profile face
data (3D point clouds) is divided into two parts: ear and non-
ear. As the problem is formulated in a single class with two
parts, we are motivated to use a simpler network. In this
work, we propose a deep learning-based approach named
EarNet to detect ears directly on 3D point clouds of pro-
file face data by modifying PointNet++ [26] architecture.
To handle pose variations in the test data sets, we include a
rotation augmentation block during the transfer learning of
the EarNet.

Conventionally, a large set of training data is required to
train a deep neural network efficiently. To the best of our
knowledge, however, labeled 3D point cloud data for ear
detection is not available. Therefore, we propose a novel
approach for generating a large 3D synthetic profile face data
set using two publicly available statistical 3D face models to
train the proposed EarNet. Three public data sets are utilized
to evaluate the performance of the trained model. Moreover,
to examine the robustness of this approach, we also use a
challenging 3D profile face data set from the University of
Western Australia (UWA) that contains occlusions due to
earphones. The contribution of this work can be summarized
as follows:

1) A novel deep learning-based ear detection model
named EarNet is proposed. EarNet is a modified ver-
sion of PointNet++ [26] with a rotation augmentation
block addressing pose variation problems in the real
data.

2) A novel approach is proposed to synthetically generate
a large number of 3D profile face data, which is used
to train the proposed EarNet.

3) A novel approach is proposed to create the ground-truth
labels on real 3D data where 2D co-registered images
are available. The ground-truth data is then used for
quantitative evaluation of the EarNet.

4) Comprehensive experiments are conducted demon-
strating state-of-the-art performance on the largest
publicly available 3D profile face data set.

The rest of the paper is organized as follows. Related work
for 3D ear detection is described in Section II. The proposed
ear detection pipeline is elaborated in Section III. The perfor-
mance evaluation is explained in Section IV, followed by a
conclusion in Section V.

II. RELATED WORK
Themain focus of this work is ear detection in 3D data. There-
fore, we only include existing approaches that have used 3D
data for ear detection and categorize them into two groups:
conventional machine learning-based approaches and deep
learning-based approaches. These are summarized below.

A. MACHINE LEARNING-BASED APPROACHES
Existing machine learning-based approaches for ear detec-
tion in 3D data are either shape model-based, landmark-
based, or graph-based. Chen and Bhanu [45] proposed a
shape model-based approach for localizing ears in 3D profile
face images. The helix and anti-helix parts of the ear were
represented by a shape model consisting of a discrete set of
3D vertices. The authors extracted step edges from the profile
images because of strong visibility in the ear helix. The
segments of the edges were thinned, dilated, and classified
into several clusters. A modified iterative closest point (ICP)
algorithmwas applied to align the edges and the shape model.
Ear detection was obtained by the minimum registration error
between the cluster and the shape model. The reported detec-
tion accuracy was 92.6% on 312 test images from 52 subjects.
The limitation of the approach was the sensitivity of scale and
pose variation. Zhou et al. [46] presented a 3D shapemodel to
extract a set of shape-based features to train the support vector
machine (SVM) classifier. They reported 100% accuracy;
however, this result was obtained on only 142 test images.

A landmark-based ear detection technique that achieved
100% detection accuracy on the UND J2 data set was
proposed by Lei et al. [23]. They presented a tree-based
graph (ETG) to represent the ear and a curvedness map for
localizing ear landmarks. However, their approach required
manual intervention for landmark annotation.

An edge connectivity graph was proposed by Prakash and
Gupta [47] for ear detection on 3D images from the UND
J2 data set achieving 99.38% detection accuracy. The authors
used a connectivity graph technique to extract the initial ear
edge image. Their approach handled the influence of the scale
and in-plane rotation. However, the authors did not solve
off-plane rotation for ear detection. As a result, they had to
discard some images from the UND J2 data set because of
poor detection quality. Pflug et al. [48] proposed a binary
mean curvature map for edge detection on 3D profile images
and reported 95.65% accuracy on the UND J2 data set. The
detected edges were used for semantic analysis to reconstruct
the helix contour of the ear. The successful detection was
defined by 50% overlapping pixels between ground-truth and
the predicted ear region. As a result, their approach included
additional pixels as an ear region, including clothes (e.g.,
scarves and collars).
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TABLE 1. Summary of the existing 3D ear detection methods.

B. DEEP LEARNING-BASED APPROACHES
The earliest attempt for ear detection on 3D point clouds
was EpNet [49] where network layers of PointNet [25] were
customized to detect ear points on 3D profile faces. EpNet
mapped the input points into a feature vector by multilayer
perceptron networks (MLP). A max-pooling operator was
then employed on these feature vectors. This pooling opera-
tion resulted in a permutation invariant global feature vector.
Finally, using MLP, the point feature vector and the global
feature vector were combined and transformed into an output
vector. Although EpNet solved permutation and transforma-
tion invariance in point clouds, it cannot capture the local
structure in the Euclidean space. As a result, detection accu-
racy was affected by pose variations.

Recently, Zhu and Mu [50] have proposed an ear segmen-
tation approach using PointNet++. The authors trained their
network using transfer learning on pre-trained weights from
ShapeNet data [51]. They used one 3D data per subject (total
of 415 subjects) from the UND J2 data set for fine-tuning
their segmentation network. Their approach was tested on
the remaining data from the UND J2 data set. However, the
authors did not examine the use of data augmentation while
training their deep neural network. They also did not examine
the effect of pose variation effects on the detection perfor-
mance. We summarize existing 3D ear detection methods
in Table 1. Note that the authors usually reported various
performance metrics as dependent on their own evaluation
protocols. As a result, direct comparisons between the detec-
tion accuracy reported in Table 1 should be avoided.

III. PROPOSED EAR DETECTION PIPELINE
In this work, a large synthetic data set is produced using
two publicly available statistical models to train the proposed
EarNet. The ground-truths of real data sets are generated
by utilizing Mask R-CNN [52]. The complete processing
pipeline of ear detection is described below.

A. TRAINING DATA GENERATION
To create an extensive 3D data set for training, two publicly
available statistical models, Basel Face Model (BFM) [53]
and Liverpool-York Head Model (LYHM) [54] were used.
The aim of using two models was to increase variations in the
training data. Both models were created using a dimensional-
ity reduction technique named Principal Component Analysis
(PCA). By varying shape parameters, different face instances

can be generated. Then it is straightforward to label the ear
points of these generated data because a known one-to-one
correspondence exists amongst the data.

All 3D profile face images of the UND J2 and UND F
data set are left-side profile face images. Our literature review
indicates that ear detection is conducted mostly on profile
face 3D images. However, both of the above-mentioned sta-
tistical models contain full-face images. Therefore, we trans-
formed the full-face image of the statisticalmodels to left-side
profile face data. The following steps were conducted to
create the left-side profile face data. First, the nose tip
was detected using a coarse to fine approach proposed by
Mian et al. [55], where each 3D face data was sliced hor-
izontally at multiple steps. The location on the slice with
the largest altitude triangle was regarded as a possible nose
tip and was given a confidence value equivalent to the alti-
tude. This process was iterated for all the slices to get one
candidate point per slice corresponding to the nose ridge.
Some points that did not correspond to the nose ridge were
considered outliers. The outliers were eliminated by using
Random Sample Consensus (RANSAC) [56]. The point with
the maximum confidence value was selected as a nose tip.
Second, the detected nose tip was chosen for the current
viewpoint. The full-face image was rotated to a different
azimuth (−45◦,−60◦,−90◦) and elevation (±30◦) angles.
This rotation facilitated pose variations in the training data.
Third, the hidden point for each rotation angle was deleted
by using a hidden point removal algorithm [57]. Finally, the
preprocessed data were downsampled. The purpose of this
downsampling was to reduce the computation for the EarNet.
Three downsampling techniques (random sampling without
replacement, uniform box grid, and non-uniform box grid)
were applied. The non-uniform box grid method was selected
as this shows better sampling quality to retain the overall
geometric shape of the 3D face data. The number of points
was selected empirically to preserve the overall shape of the
face and ear region. We tested 1024, 2048, and 4096 points
and chose the 4096 points for better visual quality.

After nose tip detection and downsampling, we used a
threshold-based technique proposed by Gautam Kumar [58]
to label the ear points. The threshold value was selected
empirically. We observed that the distance between ear
and nose was around 26 mm. The ear points were present
within 20 mm width and 35 mm height. The training data
preparation is summarized in Figure 1.
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FIGURE 1. Block diagram of training data generation.

B. GROUND-TRUTH LABELING
Data labeling is a crucial task in deep learning. This work
proposes a novel approach that involves labeling 3D public
data sets where corresponding co-registered 2D images are
available. The purpose of the data labeling process is to
evaluate the quantitative performance of the proposed ear
detection model. Our data labeling process was divided into
two stages. Firstly, the ear region was detected on 2D profile
face images using the Mask R-CNN [52]. The Mask R-CNN
is an extended version of the Faster R-CNN [59], adding
a segment to predict an object mask within the detection
bounding box detected by Faster R-CNN. The purpose of
using Mask R-CNN was to localize the pixels belonging to
the ear region instead of just bounding boxes. The output of
the Mask R-CNN is a 2D binary mask of a given 2D color
profile face image. Secondly, the detectedmaskwas projected
to the co-registered 3D data for labeling. We labeled ‘1’ for
points that belong to the ear and ‘0’ for points that belong to
the non-ear. The block diagram of the ground-truth labeling
on real data is illustrated in Figure 2.

The Mask R-CNN implemented by Waleed et al. [60] was
used in this study. To train the Mask R-CNN, we randomly
selected a few sample images from each data set mentioned
in Section IV-A. The total number of images for training
and testing was 200 and 40, respectively. The VGG Image
Annotator (VIA) [61] was used for labeling the 2D color
images. We trained the 2D ear detection Mask R-CNN start-
ing from pre-trained COCO weights [60]. The results show
an intersection over union score of 90.32% on 40 test images.
Therefore, we visually checked all the predicted ear regions
and corrected them manually if needed.

C. EAR DETECTION NETWORK (EarNet)
The proposed EarNet is a deep neural network customized to
PointNet++ [26] layers for ear detection. The PointNet++
part segmentation network was designed for 16 different
classes with 50 parts, whereas we trained our proposed
EarNet for 1 class with 2 parts. Therefore, a smaller net-
work with a lower number of parameters can learn the
variations. For this reason, we empirically dropped some
of the MLP layers in [26]. As a result, the execution time
was significantly reduced without decreasing the accuracy.
In addition, a data augmentation block was added to rotate
the full 3D point cloud with respect to the x and y axes.
The purpose of this augmentation was to provide more
understanding of a given object. This addition of augmenta-
tion improved the performance of ear detection in 3D point

FIGURE 2. Block diagram of ground-truth labeling procedure on real data.
Here, the input 2D color image passes through the Mask R-CNN. The
output of the network is the detected 2D mask of the ear. This masked
image is transferred to the co-registered 3D point cloud.

TABLE 2. The network architecture of the proposed EarNet. Here, SA, FP,
DP and FC represent as set abstraction, feature propagation, dropout, and
fully connected layers respectively.

clouds. We also demonstrated that in the presence of pose
variations on 3D profile face data, EarNet performed bet-
ter than PointNet++. The architecture of our ear detection
model is shown in Table 2.

The EarNet consists of several layers, including set abstrac-
tion, feature propagation, and segmentation layers. In the set
abstraction layers, sampling and grouping were conducted
using point convolutions and the furthest point sampling
method. Skip link concatenation was used for feature prop-
agation to the next layers of the network. In the segmenta-
tion block, a fully connected layer was utilized to estimate
the per-point class scores for every point in the input data.
We used the same notation as [26] for describing the architec-
ture of EarNet, where set abstraction is SA(K , r, [l1, . . . , ld ])
K number of local regions in radius r and [l1, . . . , ld ] is the
fully connected layers with li(i = 1, . . . , d) output channels.
FP([l1, . . . , ld ]) represents the feature propagation layer that
has d fully connected layers. Further,MLP([l1, . . . , ld ]) is the
multi-layer perceptron. Three consecutiveMLPs of size (128,
128), (128, 128), and (128, n) were then used to propagate the
output of the feature extraction block. Here, n is the number
of parts, which is two in this case. In all layers, the ReLU
activation was executed. In the last two layers, dropout was
applied.
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D. EVALUATION METRICS
The performance of the proposed ear detection model
was evaluated using two commonly used metrics, namely
Accuracy, and intersection over union (IoU ). These metrics
were calculated using five different variables: true positive
(TP), false positive (FP), true negative (TN ), false negative
(FN ), and Total. Here, TP represents ear points correctly
classified as part of an ear, while TN represents non-ear
points classified as non-ear points. FP represents non-ear
points classified as ear points, and FN represents ear points
classified as non-ear points. Total is the number of points that
exist in a given point cloud data. Accuracy is estimated using
the following equation,

Accuracy =
TP+ TN
Total

(1)

The intersection over union (IoU ) is calculated as follows:

IoU =
TP

TP+ FP+ FN
(2)

IV. EXPERIMENTS
A. DATA
Three publicly available 3D profile face data sets, namely
UND F [62], UND G [63], and UND J2 [64] were used
to evaluate the performance of the proposed ear detection
model. These data sets were developed by the University
of Notre Dame and have been used as benchmark data sets
within the ear biometrics community. The 3D scans were
captured at different times, and the number of subjects (UND
J2 is the largest and UND G is the smallest) varies among
these data sets. The UNDG data set was comprised of images
with significant pose variations compared to the other two.
A brief description of these data sets is explained below.

The UND F data set consists of 942 3D profile face scans
with co-registered 2D color images. The total number of
subjects is 302 (176 males and 126 females). The distribution
of scans for each subject is not uniform. There are 562 scans
of male subjects, and 380 scans of female subjects.

The UND J2 data set comprises a total of 1800 3D scans
from 415 different subjects (178 females and 237 males).
Each subject has a different number of images with scale and
pose variations. Some images include occlusion by hair and
earrings. In this study, a set of randomly selected 415 scans
was kept separated for transfer learning of the proposed
model and other purposes (see Sections IV-B and IV-C4), and
the remaining 1385 scans were used for model evaluation.

The UND G data set includes 738 3D profile face
scans with yaws of 45, 60, 75, and 90 degrees. There
are 437 left-side and 301 right-side profile face scans. In this
work, we only used the left side profile face scans.

Apart from the UND data set, we also acquired 3D pro-
file face data from the University of Western Australia
(UWA) [65]. The authors collected data from 50 subjects
using a Minolta Vivid 910 range scanner. All these images
contain earphones.

B. TRAINING
Firstly, we trained the proposed EarNet from scratch using
20,000 synthetic data (80% training and 20% testing). The
hyperparameters were selected empirically. The optimal
batch size was 16. We observed that the model failed to
run if the batch size was greater than the chosen size. The
number of data points of each scan was selected as 4096. The
optimizer was selected as Adam [66] with a momentum of
0.9. The initial learning rate was set to 10−3. This work used
the default values for optimizer and learning rate from [26].

Secondly, we applied transfer learning to the network
using 150 real 3D scans. These scans were randomly selected
and separated from the total 415 scans in the UND J2 data set.
In addition, we separated another 50 scans randomly from the
remaining scans to evaluate the transfer learning technique.
During transfer learning, we applied rotation augmentation.
The total number of data became 3000 (each image con-
tains 20 rotations) after the augmentation. In this work, all
experiments were performed in the Lamda Balde machine
with GPU 8× 1080 Ti GeForce GTX 1080 Ti. The cod1 was
implemented in PyTorch version 1.3.1.

C. RESULTS AND DISCUSSIONS
1) DETECTION ACCURACY
The average accuracy of our proposed EarNet on different
public data sets is reported in Table 3. We obtained consis-
tent accuracy throughout the data sets. Sample ear detection
results on each data set are illustrated in Figure 3. The ear
points are shown in blue, and the non-ear points are shown in
red.

TABLE 3. The mean accuracy of the proposed EarNet on different publicly
available real (non-synthetic) profile face data sets.

We also examined the cases where no ear points were
present in the profile face point clouds. The results demon-
strated the correctness of our network, which does not detect
any ear points in this test data. A sample outcome is shown
in Figure 4.

The robustness to occlusions due to earrings is illustrated in
Figure 5. The results show that ear points were detected cor-
rectly even in the presence of earrings. We also demonstrated
the robustness of our model in the presence of earphones. Our
ear detection model achieved 98.89% accuracy on the UWA
ear data set. A sample result is shown in Figure 6.

We also compared the performance of our approach
on the UND J2 data set with recently published work
by Zhu et al. [50]. They used 415 scans (one scan per
all 415 subjects) for transfer learning of the basic

1https://github.com/doctormachine/EarDetection
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FIGURE 3. Sample ear detection results on various real (non-synthetic)
data sets (best seen in color).

FIGURE 4. A test sample with a missing ear and corresponding detection
result using our proposed approach demonstrating robustness to false
positive.

FIGURE 5. Sample prediction results in the presence of earrings. The 2D
color images are presented to illustrate the occlusion (best seen in color).

PointNet++ network, and reported an accuracy of 93% on
the remaining 1385 scans. On the other hand, our approach
achieved an accuracy of 98.62% by using only 150 scans in
the transfer learning. The better performance of our approach
may be explained as follows. The learned weights of the
basic PointNet++ were established by training 16 different
objects, where each object contained 50 parts. However, the
UND J2 data set is entirely different from the data used to

FIGURE 6. Sample prediction results in the presence of earphones. The 2D
color images are presented to illustrate the occlusion (best seen in color).

train the PointNet++. Our proposed EarNet also outperforms
EpNet [49] which was based on PointNet. The performance
comparison is summarized in Table 4.

TABLE 4. The ear detection accuracy of our proposed approach compared
to the existing ear detection methods on the UND J2 profile face data set
(non-synthetic).

To validate our detection accuracy, we compared our
approach with the ear detection approach proposed by
Islam et al. [65] using bounding boxes. Figure 7 shows that
evenwith the lowest (<60%) IoU value, our detection is inside
the bounding box, where the ear shape is significantly visible.

2) MEAN IoU
The mean IoU results on different data sets achieved by
our model and those by PointNet and PointNet++ mod-
els are reported in Table 5. Our approach shows higher
mIoUs for all data sets. We observed five failure cases on
the UND G data set using both PointNet and PointNet++,
as illustrated in Figure 8. These images contain significant
pose variations. The first column is the ground-truth labels,
whilst the remaining columns are the prediction of different
models. It is worth noting here that all these images have
significant pose variations. We see that PointNet captures
the global shape but misses the local understanding of the
shape. Although PointNet++ captures the local shape, it still
lacks an understanding of the global structure. Therefore, our
model captures both global and local shapes and does not
have any complete failure cases.

To demonstrate robustness to the data point resolution of
our proposed ear detectionmodel, we conducted experiments
on the test images with various resolutions. A sample result
is illustrated in Figure 9, where the point cloud resolution is
shown in descending order (top to bottom).

VOLUME 9, 2021 164981
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FIGURE 7. Sample test results while comparing the ear data points
detected by our model with those in a bounding box proposed by
Islam et al. [65] (best seen in color).

TABLE 5. Quantitative comparison of ear detection on different data sets
(non-synthetic).

Although our model demonstrates considerable robustness
against occlusion due to hair, we noticed that in the four cases
where our model obtained mIoU less than 50%, a portion of
the ear was covered by hair. These cases are illustrated in
Figure 10. The corresponding 2D images (bottom row) show
that these cases have hair over the ear (last two images) along
with significant pose variations (the first two images).

3) DETECTION SPEED
The proposed EarNet achieved faster detection speed com-
pared to PointNet++. The average inference time per 3D
real scan (non-synthetic) was 0.11 s on a GPU GeForce

FIGURE 8. Sample test results of our EarNet compared to the original
PointNet and PointNet++ networks. Notice that our model is able to
detect the ear where other models fail (best seen in color).

GTX1080 Timachine. The detection speed between different
models is reported in Table 6. Although PointNet shows a
faster detection speed, it has less accuracy than the other two
models.

TABLE 6. The mean detection speed comparison between different
models. Here, we tested on 433 left side profile face from the UND G set
(non-synthetic).

4) OTHER EXPERIMENTS
We performed experiments to evaluate the effects of train-
ing data size (synthetic) on network performance. First,
we trained our network with 35,000 synthetic data. Then we
retrained the network multiple times, dropping 5,000 data
each time. Our experiments demonstrated that 20,000 data is
optimal for training (Figure 11).

The quantitative results of our ear detection model trained
on synthetic data only are presented in Table 7. The overall
accuracy on three public data sets (UND J2, UND G, and
UND F) is roughly 90%. The real data has more variabil-
ity, which our trained model was not able to capture. As a
result, we see a lower mIoU value. This result indicates
that there is a possibility to improve the model’s perfor-
mance. Therefore, we also conducted experiments to see the
effects of adding real data from the UND J2 data set using
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FIGURE 9. Sample ear detection results with respect to different point
cloud resolutions (best seen in color).

FIGURE 10. Sample prediction results with lower mIoU (mostly due to
hair covering the ears). The top row is the ground-truth, the middle row is
the prediction, and the bottom row is the corresponding 2D images (best
seen in color).

transfer learning. A total of 415 scans from each subject were
separated from the UND J2 data set. We performed three
experiments selected from the 415 scans: first 50 subjects,
randomly selected 50 subjects, and 50 subjects that seem
hard to detect visually. The data for 50 subjects that were
hard to detect were selected manually as they were visually
challenging data in terms of occlusion. We performed the
experiment three times for the randomly selected data and
reported the average result. As illustrated in Figure 12, the

FIGURE 11. Effect of dropping the number of training data (synthetic
data).

TABLE 7. The ear detection results on the three public data sets before
transfer learning. The model was trained using synthetic data only and
reported results on non-synthetic data.

FIGURE 12. Effect of data selection for adding 50 real (non-synthetic)
data while performing transfer learning (best seen in color).

performance of the network does not depend on how the
set of 50 real data is selected for transfer learning. On the
other hand, although a small number of real data contributes
to a significant improvement in the accuracy, no significant
changes in performance were observed by conducting trans-
fer learning using more than 50 real data (see Figure 13).
Therefore, we used 150 real data randomly selected from the
pool of 415 scans (kept separated from the testing set) for
transfer learning.

We also demonstrated the effects of training from scratch
(including synthetic and real data) compared to training with
synthetic data first and then transfer learning with real data.
Our experiments did not show any significant differences in
terms of accuracy. However, the transfer learning from the
trained network with synthetic data required 2.25 hours less
than training from scratch on the same machine.
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FIGURE 13. Effect of using different number of real (non-synthetic) data
on the accuracy of transfer learning.

V. CONCLUSION
This work aims to detect ears directly on 3D point clouds of
profile face data by applying a deep neural network named
EarNet. A large set of synthetic profile face data was gener-
ated for training the proposed EarNet. Additionally, a novel
approach is proposed to create ground-truth labels on real
3D data with corresponding co-registered 2D images. The
experimental results demonstrate that our model performs
significantly better than existing deep learning models for ear
detection directly from 3D point clouds. A possible direction
for future research is to incorporate the proposed ear detection
model into an ear recognition pipeline. In addition, we aim
to investigate different deep learning-based 2D segmentation
networks for the ground-truth labeling pipeline.
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