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K3 SURFACES WITH INVOLUTION, EQUIVARIANT ANALYTIC

TORSION, AND AUTOMORPHIC FORMS ON THE MODULI

SPACE IV: THE STRUCTURE OF THE INVARIANT

SHOUHEI MA AND KEN-ICHI YOSHIKAWA

Abstract. In [46], a holomorphic torsion invariant of K3 surfaces with invo-
lution was introduced. In this paper, we completely determine its structure
as an automorphic function on the moduli space of such K3 surfaces. On
every component of the moduli space, it is expressed as the product of an ex-
plicit Borcherds lift and a classical Siegel modular form. We also introduce its

twisted version. We prove its modularity and a certain uniqueness of the mod-
ular form corresponding to the twisted holomorphic torsion invariant. This is

used to study an equivariant analogue of Borcherds’ conjecture.
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Introduction

In [46], a holomorphic torsion invariant of K3 surfaces with involution was in-
troduced by the second-named author. The purpose of the present paper is to
completely determine the structure of this invariant as a function on the moduli
space of such K3 surfaces. We will express it using Borcherds products and Siegel
modular forms. Let us explain our result in detail.

A pair consisting of a K3 surface and an anti-symplectic involution is called a
2-elementary K3 surface. By Nikulin [34], the deformation type of a 2-elementary
K3 surface is determined by the isometry class of the invariant lattice of the induced
involution on the second integral cohomology. There exist 75 deformation types,
labeled by primitive 2-elementary Lorentzian sublattices of the K3 lattice LK3.

1
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2 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

Let M ⊂ LK3 be one such sublattice of rank r. Its orthogonal complement Λ =
M⊥∩LK3 is a 2-elementary lattice of signature (2, 20−r). Let Ω+

Λ be the Hermitian
domain of type IV of dimension 20− r associated to Λ and let O+(Λ) be the index
2 subgroup of the orthogonal group of Λ preserving Ω+

Λ . Via the period map, the
moduli space of 2-elementary K3 surfaces of type M is isomorphic to the quotient

M0
Λ = (Ω+

Λ −DΛ)/O
+(Λ),

where DΛ is the discriminant divisor. Hence M0
Λ is a Zariski open subset of a

modular variety of orthogonal type of dimension 20− r.
In [46], a holomorphic torsion invariant of 2-elementary K3 surfaces was defined

as follows. Let (X, ι) be a 2-elementary K3 surface of type M . Write Xι for the
set of fixed points of ι. Depending on M , Xι is either empty or the disjoint union
of smooth curves of total genus g = g(M). (See §3.2 for a formula for g.) When Xι

is empty, the corresponding type is unique and is called exceptional, in which case
(X, ι) is the universal covering of an Enriques surface endowed with the non-trivial
covering transformation. Take an ι-invariant Ricci-flat Kähler form γ on X (cf.
[45]) and a holomorphic 2-form η 6= 0 on X. Let τZ2

(X, γ)(ι) be the equivariant
analytic torsion of (X, γ) with respect to the ι-action and let τ(Xι, γ|Xι) be the
analytic torsion of (Xι, γ|Xι) (cf. [35], [6]). Then the real number

τM (X, ι) = Vol(X, γ)
14−r

4 τZ2(X, γ)(ι)Vol(X
ι, γ|Xι)τ(Xι, γ|Xι)

depends only on the isomorphism class of (X, ι), so that it gives rise to a function
τM on M0

Λ. The goal of this paper is to give an explicit expression of τM in terms
of modular forms. It turns out that τM is expressed by two types of modular forms:
Borcherds products and Siegel modular forms. Let us explain these modular forms.

Let ρΛ : Mp2(Z) → GL(C[AΛ]) be the Weil representation attached to the dis-
criminant group AΛ of Λ, where C[AΛ] is the group ring of AΛ. By Borcherds
[8], given an O+(Λ)-invariant elliptic modular form f of type ρΛ and of weight
1−(20−r)/2 with integral Fourier expansion, we can take its Borcherds lift ΨΛ(·, f).
This is a (possibly meromorphic) automorphic form for O+(Λ) with infinite prod-
uct expansion, and its Petersson norm ‖ΨΛ(·, f)‖ descends to a function on M0

Λ.
To express τM , the Borcherds lift of the following elliptic modular form will be
used. Let η(τ) be the Dedekind η-function and let θA+

1
(τ) be the theta series of the

A1-lattice. We put

φΛ(τ) = η(τ)−8η(2τ)8η(4τ)−8 θA+
1
(τ)r−10.

This induces the following modular form of type ρΛ (cf. [9], [38], [48]):

FΛ =
∑

γ∈Γ̃0(4)\Mp2(Z)

φΛ|γ ρΛ(γ−1) e0,

where |γ is the Petersson slash operator and e0 ∈ C[AΛ] is the vector corresponding
to 0 ∈ AΛ. Except for two types, the Borcherds lift of (2g−1+ δr,10)FΛ will be used
in the expression of τM , where δi,j denotes the Kronecker delta.

On the other hand, Siegel modular forms also yield functions onM0
Λ. The period

map for the fixed curves of 2-elementary K3 surfaces induces a holomorphic map

JM : M0
Λ → Ag,

where Ag is the Siegel modular variety of degree g. Then the pullback of the
Petersson norm of a Siegel modular form by JM is a function on M0

Λ. The following
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K3 SURFACES WITH INVOLUTION IV 3

Siegel modular forms of weights 2g+1(2g + 1) and 2(2g − 1)(2g + 2) will be used to
express τM :

χ8
g =

∏
(a,b) even

θ8a,b, Υg = χ8
g

∑
(a,b) even

θ−8
a,b,

where θa,b is the Riemann theta constant with even characteristic (a, b). Let ‖χg‖2
and ‖Υg‖2 be their Petersson norms. Hence J∗

M‖χ8
g‖ and J∗

M‖Υg‖ are functions on

M0
Λ. For convenience, if M is exceptional, we set g = 1 and J∗

M‖Υg‖ = 1.
The main result of this paper is the following (Theorems 8.6, 9.2, 9.4, 9.5, 9.10).

Theorem 0.1. Let M ⊂ LK3 be a primitive 2-elementary Lorentzian sublattice
of rank r with orthogonal complement Λ and let δ ∈ {0, 1} be the parity of its
discriminant form. Then there exists a constant CM > 0 depending only on M
such that the following equality of functions on M0

Λ holds:

(1) If (r, δ) 6= (2, 0), (10, 0), then

τ
−2g(2g+1)
M = CM

∥∥ΨΛ(·, 2g−1FΛ + fΛ)
∥∥ · J∗

M

∥∥χ8
g

∥∥ .
(2) If (r, δ) = (2, 0) or (10, 0), then

τ
−(2g−1)(2g+2)
M = CM

∥∥ΨΛ(·, 2g−1FΛ + fΛ)
∥∥ · J∗

M ‖Υg‖ .
Here fΛ is the elliptic modular form of type ρΛ given by fΛ = δr,10 FΛ for r 6= 2
and by (9.5), (9.19) below for r = 2.

The majority is the case (1), which covers 67 types. The case (2) covers 8 types.
The formula of (1) does not hold in case (2) because J∗

Mχg vanishes identically
there. In [46], [49], the automorphy of τM was proved (cf. (0.2) below), but the
corresponding modular form was given explicitly only for the exceptional M . In
[48], the elliptic modular form FΛ was introduced and (1) was proved for r ≥ 10.
Theorem 0.1 completes this series of work. As a by-product of Theorem 0.1, we
prove the quasi-affinity of M0

Λ when r > 6 (Theorem 9.16).
The invariant τM is closely related to the BCOV invariant τBCOV of Calabi-Yau

threefolds, which was introduced in [14] after the prediction of Bershadsky-Cecotti-
Ooguri-Vafa [5] on the mirror symmetry at genus one. On the moduli space of
Calabi-Yau threefolds of Borcea-Voisin associated to 2-elementary K3 surfaces of
type M and elliptic curves, one has the following equality of functions (cf. [50])

(0.1) τBCOV = CM τ−4
M ‖η24‖2,

where CM is a constant depending only on M . By Theorem 0.1 and (0.1), τBCOV

for Borcea-Voisin threefolds of type M is given by the product of the Petersson
norms of the modular forms ΨΛ(·, FΛ), χ

8
g (or Υg) and η. Since

F1 = − log τBCOV

is the genus one string amplitude F1 in B-model (cf. [5], [14]), Theorem 0.1 gives
an exact result of F1 in B-model for all Borcea-Voisin threefolds.

In Theorem 0.1, the automorphic form corresponding to τM splits into two fac-
tors. It is natural to ask if this factorization is realized at the level of holomorphic
torsion invariants of 2-elementary K3 surfaces. Thanks to the spin-1/2 bosoniza-
tion formula [2], [12], [15], we have an affirmative answer to this question. Let us
introduce the following twisted version of τM

τ spinM (X, ι) =
∏

Σ2=KXι , h0(Σ)=0

Vol(X, γ)
14−r

4 τZ2
(X, γ)(ι) τ(Xι,Σ; γ|Xι)−2,
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4 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

where Σ runs over all ineffective theta characteristics on Xι and τ(Xι,Σ; γ|Xι)

is the analytic torsion of Σ with respect to γ|Xι . It turns out that τ spinM (X, ι) is
independent of the choice of an ι-invariant Ricci-flat Kähler form γ and gives rise to
a function τ spinM on M0

Λ. Our second result is stated as follows (cf. Theorem 10.2):

Theorem 0.2. Let HΛ ⊂ MΛ be the characteristic Heegner divisor (cf. Section 2).
Then there exists a constant C ′

M > 0 depending only on M such that the following
equality of functions on M0

Λ \ HΛ holds:

τ spinM = C ′
M ‖ΨΛ(·, 2g−1FΛ + fΛ)‖−1/2.

We remark that if HΛ 6= ∅, then τ spinM jumps along HΛ and thus τ spinM is a
discontinuous function on M0

Λ. For an explicit relation between the constants in
Theorems 0.1 and 0.2, see Section 10.2 below. After Theorem 0.2, it is very likely
that C ′

M can be determined up to an algebraic number by an Arakelov geometric
study of 2-elementary K3 surfaces with maximal Picard number. This subject
will be discussed elsewhere. Theorem 0.2 can be interpreted as a formula for the
equivariant determinant of Laplacian (with certain correction term) on the space of
invariant Ricci-flat metrics on a K3 surface with involution. In Section 11, we use
this interpretation to study an equivariant analogue of Borcherds’ conjecture [8].

According to Theorem 0.2, the invariant τ spinM is elliptic modular in the sense that
it is the Borcherds lift of an elliptic modular form. When DΛ 6= ∅, the corresponding
modular form is determined by τ spinM in a canonical manner (cf. Theorem 10.5).
In this way, there is a natural one-to-one correspondence between the holomorphic
torsion invariants τ spinM and the elliptic modular forms 2g−1FΛ + fΛ. A conceptual
account for this unexpected elliptic modularity as well as the geometric meaning of
the corresponding modular forms is strongly desired.

Let us explain the outline of the proof of Theorem 0.1. For the sake of simplicity,
we explain only the major case δ = 1. Since τM was determined in [48] when g ≤ 2,
we assume 3 ≤ g ≤ 10. The strategy is summarized as follows:

(a) Reduce Theorem 0.1 to determining the divisor of J∗
Mχ

8
g.

(b) Determine the support of the divisor of J∗
Mχ

8
g for certain key lattices Mg,0.

(c) Determine inductively from (b) the support of the divisor of J∗
Mχ

8
g for all

M and prove sharp estimates for its coefficients.
(d) Deduce Theorem 0.1 from the estimates in step (c).

Let us see each step in more detail.
(a) From the theory of Quillen metrics [7], [6], [27], the automorphy of τM

follows ([46], [49]): There exist ` ∈ Z>0 and an automorphic form ΦM on Ω+
Λ with

(0.2) τM = ‖ΦM‖−1/2ℓ, wtΦM = ((r − 6)`, 4`), div ΦM = `DΛ.

(We will eventually see that ` can be taken to be 2g−1(2g + 1).) By construction,

the automorphic form ΨΛ(·, 2g−1 FΛ)
ℓ⊗J∗

Mχ
8ℓ
g has the same weight as Φ

2g−1(2g+1)
M .

Hence by the Koecher principle, it is sufficient to show that

(0.3) div(ΨΛ(·, 2g−1 FΛ)
ℓ ⊗ J∗

Mχ
8ℓ
g ) ≥ div(Φ

2g−1(2g+1)
M ).

The divisor of ΨΛ(·, 2g−1 FΛ) is calculated by the theory of Borcherds products [8],
so the problem is reduced to calculating the divisor of J∗

Mχ
8
g.

Since δ = 1, the isometry class of M is determined by g and the number k+1 of
the components of the fixed curve. (See Section 3.2 for the formula for the invariants
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K3 SURFACES WITH INVOLUTION IV 5

g = g(M) and k = k(M).) Write Mg,k for the lattice with these invariants and set
Λg,k = M⊥

g,k. Let DΛg,k
= D+

Λg,k
+ D−

Λg,k
be the decomposition according to the

type of (−2)-vectors of Λg,k, and let HΛg,k
be the characteristic Heegner divisor

(cf. Section 2). We will proceed inductively on k.
(b) We first study the series k = 0 by a geometric approach (Section 6). Curves

with vanishing theta constants are characterized by the existence of certain half-
canonical bundle. By analyzing bi-anticanonical sections of Del Pezzo surfaces with
such property, we prove that the support of div(J∗

Mg,0
χ8
g) on M0

Λg,0
coincides with

HΛg,0 . Hence there exist integers ag, bg, cg ≥ 0 such that

(0.4) div(J∗
Mg,0

χ8
g) = ag D−

Λg,0
+ bgHΛg,0 + cg D+

Λg,0
.

(c) We have a natural inclusion of lattices Λg,k+1 ⊂ Λg,k, which induces an
inclusion of domains i : ΩΛg,k+1

↪→ ΩΛg,k
. Then we show that JMg,k

◦ i = JMg,k+1

outside a locus of codimension 2 and that i∗HΛg,k
= 2HΛg,k+1

and similar relation

between D±
Λg,k

and D±
Λg,k+1

(cf. Sections 2 and 3). This enables us to inductively

extend (0.4) to the case k ≥ 1 (Section 8):

div(J∗
Mg,k

χ8
g) = ag,k D−

Λg,k
+ bg,kHΛg,k

+ cg,k D+
Λg,k

,

where ag,k, bg,k, cg,k are integers satisfying

ag,k = ag, bg,k = 2kbg, cg,k = 0 (g < 10).

By using a formula in [48] and the formula [42] for the thetanull divisor on the
moduli space of curves, we also prove the estimates ag ≥ 22g−1 and bg ≥ 24.

(d) Substituting these relations and estimates in the left-hand side of (0.3),
we obtain the desired inequality when g < 10. In case g = 10, an extra argument
is required. See Section 8. Note that HΛ vanishes if r ≥ 10, which explains why
the proof of Theorem 0.1 is much simpler in the range r ≥ 10, (r, δ) 6= (10, 0) (cf.
[48]). As a by-product of the proof, we determine an explicit formula for the divisor
of J∗

Mχ
8
g as a Heegner divisor on Ω+

Λ for all M , which is a result of independent
interest. See Theorem 9.13 for the details.

This paper is organized as follows. Sections 1-5 are mainly preliminaries. In
Section 6 (resp. 7), we study the even theta characteristics of the fixed curve for
2-elementary K3 surfaces with δ = 1 (resp. δ = 0). In Section 8 (resp. 9), we prove
Theorem 0.1 when δ = 1 (resp. δ = 0). In Section 10, we introduce the twisted

holomorphic torsion invariant τ spinM and prove Theorem 0.2. In Section 11, we study
an equivariant analogue of Borcherds’ conjecture.
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partially supported by JSPS KAKENHI Grant Numbers 16H03935 and 16H06335.
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fessor Riccardo Salvati Manni for answering his questions. The authors are grateful
to the referee for the careful reading of the paper and helpful comments.

1. Lattices

A free Z-module of finite rank endowed with a non-degenerate, integral, symmet-
ric bilinear form is called a lattice. The rank and signature of a lattice L are denoted
by r(L) and sign(L) = (b+(L), b−(L)), respectively. For a lattice L = (Zr, 〈·, ·〉) and
an integer k ∈ Z \ {0}, we define L(k) := (Zr, k〈·, ·〉). The group of isometries of L
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6 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

is denoted by O(L). The set of roots of L is defined as ∆L := {d ∈ L; 〈d, d〉 = −2}.
For the root systems Ak, Dk, Ek, the corresponding negative-definite root lattices
are denoted by Ak, Dk, Ek, respectively. We set A+

1 := A1(−1) etc. The hyperbolic
plane U is the even unimodular lattice of signature (1, 1).

For an even lattice L, its dual lattice is denoted by L∨. The finite abelian group
AL := L∨/L is called the discriminant group of L, which is equipped with the
Q/2Z-valued quadratic form qL called the discriminant form and the Q/Z-valued
bilinear form bL called the discriminant bilinear form. The automorphism group of
(AL, qL) is denoted by O(qL).

A lattice L is 2-elementary if there exists l ∈ Z≥0 with AL ∼= (Z/2Z)⊕l. For a
2-elementary lattice L, we set l(L) := dimF2

AL. When L is an even 2-elementary
lattice, the parity of qL is denoted by δ(L) ∈ {0, 1}. By Nikulin [33, Th. 3.6.2],
the isometry class of an indefinite even 2-elementary lattice L is determined by the
triplet (sign(L), l(L), δ(L)). For an even 2-elementary lattice L, there is a unique
element 1L ∈ AL, called the characteristic element, such that bL(γ,1L) = qL(γ)
mod Z for all γ ∈ AL. Then g(1L) = 1L for all g ∈ O(qL). By definition, 1L = 0 if
and only if δ(L) = 0.

The K3-lattice is defined as the even unimodular lattice of signature (3, 19)

LK3 := U⊕ U⊕ U⊕ E8 ⊕ E8.

It is classical that LK3 is isometric to the second integral cohomology lattice of a
K3 surface. For a sublattice Λ ⊂ LK3, we define Λ⊥ := {l ∈ LK3; 〈l,Λ〉 = 0}.

A primitive 2-elementary Lorentzian sublattice of LK3 isometric to U(2)⊕E8(2)
is said to be exceptional. (For the reason why this is exceptional, see § 3.2 below.) Its
orthogonal complements in LK3, i.e., U⊕U(2)⊕E8(2) is also said to be exceptional.

Proposition 1.1. The isometry classes of primitive 2-elementary sublattices Λ of
LK3 with signature (2, r(Λ)−2) consist of the following 75 classes in Table 1, where

g(Λ) := {r(Λ)− l(Λ)}/2.

Table 1. Primitive 2-elementary sublattices of LK3 with b+ = 2

g δ = 1 δ = 0

0 (A+
1 )

⊕2 ⊕ A⊕t
1 (0 ≤ t ≤ 9) U(2)⊕2

1 U⊕ A+
1 ⊕ A⊕t

1 (0 ≤ t ≤ 9) U⊕ U(2), U(2)⊕2 ⊕ D4,
U⊕ U(2)⊕ E8(2)

2 U⊕2 ⊕ A⊕t
1 (1 ≤ t ≤ 9) U⊕2, U⊕ U(2)⊕ D4, U⊕2 ⊕ E8(2)

3 U⊕2 ⊕ D4 ⊕ A⊕t
1 (1 ≤ t ≤ 6) U⊕2 ⊕ D4, U⊕ U(2)⊕ D⊕2

4

4 U⊕2 ⊕ D6 ⊕ A⊕t
1 (0 ≤ t ≤ 5) U⊕2 ⊕ D⊕2

4

5 U⊕2 ⊕ E7 ⊕ A⊕t
1 (0 ≤ t ≤ 5) U⊕2 ⊕ D8

6 U⊕2 ⊕ E8 ⊕ A⊕t
1 (1 ≤ t ≤ 5) U⊕2 ⊕ E8, U⊕2 ⊕ D4 ⊕ D8

7 U⊕2 ⊕ D4 ⊕ E8 ⊕ A⊕t
1 (1 ≤ t ≤ 2) U⊕2 ⊕ D4 ⊕ E8

8 U⊕2 ⊕ D6 ⊕ E8 ⊕ A⊕t
1 (0 ≤ t ≤ 1)

9 U⊕2 ⊕ E7 ⊕ E8 ⊕ A⊕t
1 (0 ≤ t ≤ 1) U⊕2 ⊕ D8 ⊕ E8

10 U⊕2 ⊕ E⊕2
8 ⊕ A1 U⊕2 ⊕ E⊕2

8

Proof. See e.g. [16, p.705 Table 2 and p.706 Table 3]. Notice that the representative
of each isometry class is not necessarily identical to the one in [16, p.705 Table 2
and p.706 Table 3]. �

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



K3 SURFACES WITH INVOLUTION IV 7

For a primitive 2-elementary Lorentzian sublattice M ⊂ LK3 and a root d ∈
∆M⊥ , the smallest sublattice of LK3 containing M and d is given by

[M ⊥ d] := (M⊥ ∩ d⊥)⊥.
Then [M ⊥ d] is again a primitive 2-elementary Lorentzian sublattice of LK3 with
[M ⊥ d]⊥ =M⊥ ∩ d⊥.

2. Domains of type IV and modular varieties of orthogonal type

In Section 2, Λ is assumed to be an even 2-elementary lattice with sign(Λ) =
(2, r(Λ)− 2). We define the complex manifold ΩΛ with projective O(Λ)-action by

ΩΛ := {[x] ∈ P(Λ⊗C); 〈x, x〉 = 0, 〈x, x̄〉 > 0}.
Then ΩΛ has two connected components Ω±

Λ , each of which is isomorphic to a
bounded symmetric domain of type IV of dimension r(Λ) − 2. The orthogonal
modular variety MΛ associated to Λ is defined as the analytic space

MΛ := ΩΛ/O(Λ) = Ω+
Λ/O

+(Λ),

where

O+(Λ) := {g ∈ O(Λ); g(Ω±
Λ ) = Ω±

Λ}.
We denote by M∗

Λ the Baily–Borel–Satake compactification of MΛ, which is an
irreducible normal projective variety of dimension r(Λ)−2 with dim(M∗

Λ\MΛ) ≤ 1.

2.1. Discriminant locus. For λ ∈ Λ with 〈λ, λ〉 < 0, we define

Hλ := {[x] ∈ ΩΛ; 〈x, λ〉 = 0}.
Then Hλ is a nonzero divisor on ΩΛ. For any root d ∈ ∆Λ, we have the relation

(2.1) Hd = ΩΛ∩d⊥ .

The discriminant locus of ΩΛ is the reduced divisor of ΩΛ defined by

DΛ :=
∑

d∈∆Λ/±1

Hd.

We define the O(Λ)-invariant Zariski open subset Ω0
Λ of ΩΛ by

Ω0
Λ := ΩΛ \ DΛ.

We set

DΛ := DΛ/O(Λ), M0
Λ := Ω0

Λ/O(Λ) = MΛ \ DΛ.

2.2. Some subloci of DΛ. We define the decomposition ∆Λ = ∆+
Λ q∆−

Λ by

∆+
Λ := {d ∈ ∆Λ, d/2 ∈ Λ∨}, ∆−

Λ := {d ∈ ∆Λ, d/2 6∈ Λ∨}.

Then ∆±
Λ are O(Λ)-invariant. We define the O(Λ)-invariant reduced divisors D±

Λ

on ΩΛ and the corresponding divisors D±
Λ on MΛ by

D±
Λ :=

∑
d∈∆±

Λ /±1

Hd, D±
Λ := D±

Λ /O(Λ).

Proposition 2.1. Let d ∈ ∆+
Λ . Let i : ΩΛ∩d⊥ = Hd ↪→ ΩΛ be the inclusion. Then

the following equalities of divisors on ΩΛ∩d⊥ hold:

i∗(D+
Λ −Hd) = D+

Λ∩d⊥ , i∗D−
Λ = D−

Λ∩d⊥ .
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8 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

Proof. Let δ ∈ ∆Λ \ {±d}. Then Hd ∩ Hδ 6= ∅ if and only if L := Zd + Zδ is
negative-definite. Since the Gram matrix of L with respect to the basis {d, δ} is
given by −2

(
1 a
a 1

)
where a = −〈δ, d/2〉 ∈ Z, we conclude that Hd ∩ Hδ 6= ∅ if and

only if a = 0, i.e., δ ∈ ∆Λ ∩ d⊥ = ∆Λ∩d⊥ . Since ∆±
Λ ∩ d⊥ = ∆±

Λ∩d⊥ , we get

i∗(D+
Λ−Hd) =

∑
δ∈(∆+

Λ\{±d})/±1

i∗Hδ =
∑

δ∈∆+
Λ∩d⊥/±1

i∗Hδ =
∑

δ∈∆+

Λ∩d⊥
/±1

Hδ = D+
Λ∩d⊥ ,

i∗D−
Λ =

∑
δ∈∆−

Λ /±1

i∗Hδ =
∑

δ∈∆−
Λ∩d⊥/±1

i∗Hδ =
∑

δ∈∆−
Λ∩d⊥

/±1

Hδ = D−
Λ∩d⊥ .

This proves the result. �

For d ∈ ∆Λ, we define a non-empty Zariski open subset H0
d ⊂ Hd by

H0
d := Hd \

⋃
δ∈∆Λ\{±d}Hδ.

We set

D0,±
Λ :=

∑
d∈∆±

Λ /±1

H0
d , D0

Λ := D0,+
Λ +D0,−

Λ =
∑

d∈∆Λ/±1

H0
d .

Then Ω0
Λ qD0

Λ is a Zariski open subset of ΩΛ, whose complement has codimension
≥ 2 when r(Λ) ≥ 4 and is empty when r(Λ) ≤ 3.

2.3. Characteristic Heegner divisor. Set

εΛ := {12− r(Λ)}/2.

We define the characteristic Heegner divisor of ΩΛ as the reduced divisor

HΛ = HΛ(εΛ,1Λ) :=
∑

λ∈Λ∨/±1, λ2=εΛ, [λ]=1Λ

Hλ,

where [λ] := λ+Λ ∈ AΛ. Since 1Λ is O(qΛ)-invariant, HΛ is O(Λ)-invariant. Since
εΛ ≥ 0 when r(Λ) ≤ 12, we get HΛ = 0 if r(Λ) ≤ 12.

Proposition 2.2. Let d ∈ ∆+
Λ . Let i : ΩΛ∩d⊥ = Hd ↪→ ΩΛ be the inclusion. Then

the following equality of divisors on ΩΛ∩d⊥ holds

i∗HΛ = 2HΛ∩d⊥ .

Proof. Since r(Λ) ≤ 21, we get εΛ ≥ − 9
2 . Set Λ′ := Λ ∩ d⊥. Since d ∈ ∆+

Λ , we
deduce from [16, Prop. 3.1] that Λ and Λ′ ⊕ Zd have the same invariants (r, l, δ).
Hence we get the orthogonal decomposition Λ = Λ′ ⊕Zd. Let λ ∈ Λ∨ be such that
λ2 = εΛ and [λ] = 1Λ. Then we can write λ = λ′ + a(d/2), where λ′ ∈ (Λ′)∨ and
a = −〈λ, d〉 ∈ Z. Since [λ] = 1Λ, we get a ≡ 1 mod 2. Hence a = 2k + 1 for some
k ∈ Z and λ′ ∈ 1Λ′ . Since Hλ′ 6= ∅ if and only if (λ′)2 < 0, we get i∗Hλ = Hλ′ 6= ∅
if and only if 0 > (λ′)2 = λ2 + a2/2 = (εΛ + 1

2 ) + 2k(k + 1). Since εΛ ≥ − 9
2 and

hence −2 ≤ −1−
√
−2εΛ

2 < −1+
√
−2εΛ

2 ≤ 1, we see that (εΛ + 1
2 ) + 2k(k + 1) < 0 if

and only if k = 0,−1. This proves that

(2.2) i∗Hλ = Hλ′ 6= ∅ ⇐⇒ λ = λ′ ± (d/2).
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K3 SURFACES WITH INVOLUTION IV 9

When λ = λ′± (d/2), we get (λ′)2 = εΛ+ 1
2 = εΛ′ . This, together with (2.2), yields

that

i∗HΛ =
∑

λ∈Λ∨/±1, λ2=εΛ, [λ]=1Λ

i∗Hλ =
∑

λ′∈(Λ′)∨/±1, (λ′)2=εΛ′ , [λ′]=1Λ′

i∗Hλ′±(d/2)

= 2
∑

λ′∈(Λ′)∨/±1, (λ′)2=εΛ′ , [λ′]=1Λ′

Hλ′ = 2HΛ′ .

This proves the proposition. �

3. 2-elementary K3 surfaces and the Torelli map

3.1. 2-elementary K3 surfaces. A K3 surface X equipped with a holomorphic
involution ι : X → X is called a 2-elementary K3 surface if ι is anti-symplectic:

(3.1) ι∗|H0(KX) = −1.

The possible deformation types of 2-elementary K3 surfaces were determined by
Nikulin. (See [1, Sect. 2.3] and the references therein.) Let α : H2(X,Z) ∼= LK3 be
an isometry of lattices. Set H2(X,Z)± := {l ∈ H2(X,Z); ι∗l = ±l} and

(3.2) M := α(H2(X,Z)+), Λ :=M⊥ = α(H2(X,Z)−).

Then M ⊂ LK3 must be a primitive 2-elementary Lorentzian sublattice. Con-
versely, for any primitive 2-elementary Lorentzian sublatticeM ⊂ LK3, there exists
a 2-elementary K3 surface with (3.2). For a 2-elementary K3 surface (X, ι), the
isometry class of H2(X,Z)+ is called the type of (X, ι). By an abuse of notation,
the sublattice itself α(H2(X,Z)+) ⊂ LK3 is also called the type of (X, ι). Then
there is a one-to-one correspondence between the deformation types of 2-elementary
K3 surfaces and the triplets (r, l, δ). Since the latter consists of 75 points, there
exist mutually distinct 75 deformation types of 2-elementary K3 surfaces. For a
given primitive 2-elementary Lorentzian sublattice M ⊂ LK3, the moduli space of
2-elementary K3 surfaces of type M is given as follows.

Let (X, ι) be a 2-elementary K3 surface of type M and let α : H2(X,Z) ∼= LK3

be an isometry satisfying (3.2). Since H2,0(X,C) ⊂ H2(X,Z)− ⊗ C by (3.1), we
get

πM (X, ι, α) := [α(H2,0(X,C))] ∈ Ω0
Λ.

Its O(Λ)-orbit is called the Griffiths period of (X, ι) and is denoted by

πM (X, ι) := O(Λ) · πM (X, ι, α) ∈ M0
Λ.

By [46, Th. 1.8], [48, Prop. 11.2], the coarse moduli space of 2-elementary K3 sur-
faces of type M is isomorphic to M0

Λ via the period map πM . In the rest of this
paper, we identify the point πM (X, ι) ∈ M0

Λ with the isomorphism class of (X, ι).

3.2. The Torelli map for 2-elementary K3 surfaces.

3.2.1. The set of fixed points. For a 2-elementary K3 surface (X, ι) of type M , set

Xι := {x ∈ X; ι(x) = x}.
Then Xι = ∅ if and only if M is exceptional, i.e., M ∼= U(2)⊕ E8(2). In this case,
the quotient X/ι is an Enriques surface and (X, ι) is the universal covering of an
Enriques surface endowed with the non-trivial covering transformation. When M
is non-exceptional, by Nikulin [34, Th. 4.2.2], we have

(3.3) Xι = C(g(M)) q E1 q · · · q Ek(M)
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10 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

forM 6∼= U(N)⊕E8(2) (N = 1, 2) and we have Xι = C
(1)
1 qC(1)

2 forM ∼= U⊕E8(2),

where C(g) is a projective curve of genus g and Ei ∼= P1 and

g(M) := {22− r(M)− l(M)}/2, k(M) := {r(M)− l(M)}/2.

Since r(Λ) = 22− r(M) and l(Λ) = l(M), we have the following relations

g(M) = {r(Λ)− l(Λ)}/2, k(M) = {22− r(Λ)− l(Λ)}/2.

As we defined g(Λ) = (r(Λ) − l(Λ))/2 in Proposition 1.1, we have g(M) = g(Λ).
Notice that, when M ∼= U(2)⊕E8(2) and hence Xι is empty, g(M) = g(Λ) = 1 has
no geometric meaning.

3.2.2. The Torelli map. For g ≥ 0, let Sg be the Siegel upper half-space of degree
g and let Sp2g(Z) be the symplectic group of degree 2g over Z. We define

Ag := Sg/Sp2g(Z).

The Satake compactification of Ag is denoted by A∗
g.

For a 2-elementary K3 surface (X, ι) of type M , the period of Xι is denoted by

Ω(Xι) ∈ Ag(M). We define a map J
0

M : M0
Λ → Ag(M) by

J
0

M (X, ι) = J
0

M (πM (X, ι)) := Ω(Xι).

Let ΠΛ : ΩΛ → MΛ be the projection. The Torelli map is the O(Λ)-equivariant
holomorphic map J0

M : Ω0
Λ → Ag(M) defined by

J0
M := J

0

M ◦ΠΛ|Ω0
Λ
.

In Theorem 3.3 below, we will extend J0
M to a certain Zariski open subset of

ΩΛ containing Ω0
Λ ∪ D0

Λ and prove its compatibility with respect to the inclusion
ΩΛ∩d⊥ = Hd ↪→ ΩΛ for d ∈ ∆Λ. For this, we introduce a stratification on ΩΛ.

3.2.3. A stratification of ΩΛ. For a primitive sublattice L ⊂ Λ generated by ∆L,
we define

HL :=
⋂
d∈∆L

Hd, H0
L := HL \

⋃
δ∈∆Λ\∆L

Hδ.

Then HL 6= ∅ if and only if L is negative-definite, i.e., L is a root lattice. If HL 6= ∅,
thenH0

L is a non-empty dense Zariski open subset ofHL. By definition, it is obvious
that if r(L) = r(L′) and L 6= L′, then H0

L ∩H0
L′ = ∅. Set

ΩkΛ := qL⊂Λ, r(L)=kH
0
L, Ω≥k

Λ := ql≥kΩlΛ =
⋃
L⊂Λ, r(L)=kHL,

where L runs over the set of all primitive root sublattices of Λ of rank k. Then Ω≥k
Λ

is a Zariski closed subset of ΩΛ of pure codimension k, and ΩΛ \ Ω≥k+1
Λ is a dense

Zariski open subset of ΩΛ, whose complement has codimension k + 1. We have

DΛ = Ω≥1
Λ =

∑
d∈∆Λ/±1Hd, Ω0

Λ = ΩΛ \ DΛ.

For a root lattice K, let K(Λ) be the set of primitive sublattices of Λ isometric
to K. Since a root lattice of rank 2 is either A⊕2

1 or A2, we have

Ω≥2
Λ = (

⋃
L∈A⊕2

1 (Λ)HL) ∪ (
⋃
L∈A2(Λ)HL).

We set

D1,+
Λ :=

⋃
L∈A⊕2

1 (Λ)H
0
L, D1,−

Λ :=
⋃
L∈A2(Λ)H

0
L.
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K3 SURFACES WITH INVOLUTION IV 11

Then D1,+
Λ qD1,−

Λ = Ω2
Λ and we have the stratification

(3.4) ΩΛ \ Ω≥3
Λ = Ω0

Λ qD0
Λ qD1,+

Λ qD1,−
Λ

such that DΛ \ Ω≥3
Λ = D0

Λ qD1,+
Λ qD1,−

Λ is a divisor of ΩΛ \ Ω≥3
Λ .

Lemma 3.1. If d ∈ ∆+
Λ , then Hd \ Ω≥3

Λ = Ω0
Λ∩d⊥ qD0

Λ∩d⊥ .

Proof. (Step 1) By the definition of D0
Λ, we have H0

d = Hd ∩ D0
Λ. Since d ∈ ∆+

Λ ,
we have Hd ∩ Hδ 6= ∅ for δ ∈ ∆Λ \ {±d} if and only if δ ∈ ∆Λ∩d⊥ . Hence
Hd ∩ D0

Λ = H0
d = Hd \

⋃
δ∈∆Λ\{±d}Hδ = Hd \

⋃
δ∈∆

Λ∩d⊥
Hδ = Ω0

Λ∩d⊥ .

(Step 2) Assume Hd∩D1,−
Λ 6= ∅. Then there exist L ∈ A2(Λ) and [η] ∈ Hd∩H0

L.
By the definition of H0

L, we have d ∈ ∆L. Since L ∼= A2, there exists δ ∈ ∆L with
〈d, δ〉 = 1. Since d ∈ ∆+

Λ , this yields the contradiction 〈d, δ〉 = 2〈(d/2), δ〉 ∈ 2Z.

This proves Hd ∩ D1,−
Λ = ∅.

(Step 3) Assume Hd ∩ D1,+
Λ 6= ∅. Then there exists L ∈ A⊕2

1 (Λ) with [η] ∈
Hd ∩H0

L. By the definition of H0
L, we get d ∈ ∆L. Hence ∆L = {±d,±δ} for some

δ ∈ ∆Λ∩d⊥ . Thus

Hd ∩ D1,+
Λ =

⋃
L∈A⊕2

1 (Λ), d∈L

Hd ∩H0
L =

⋃
δ∈∆

Λ∩d⊥

{(Hd ∩Hδ) \
⋃

ϵ∈∆Λ\{±d,±δ}

Hϵ}

=
⋃

δ∈∆
Λ∩d⊥

{(Hd ∩Hδ) \
⋃

ϵ∈∆
Λ∩d⊥\{±δ}

Hϵ} = D0
Λ∩d⊥ .

Since d ∈ ∆+
Λ , the third equality follows from the fact that Hd ∩ Hϵ 6= ∅ for

ε ∈ ∆Λ \ {±d} if and only if ε ∈ ∆Λ∩d⊥ . This proves Hd ∩ D1,+
Λ = D0

Λ∩d⊥ .

(Step 4) Since Hd ∩ Ω0
Λ = ∅, the result follows from (Steps 1-3) and (3.4). �

3.2.4. The local structure of Ω0
Λ near D1

Λ. Let ∆ ⊂ C be the unit disc and set
∆∗ := ∆ \ {0}. Let L0 ⊂ ∆2 be the diagonal locus and set L1 := {0} × ∆ and
L2 := ∆ × {0}. Then L0, L1, L2 are lines with Li ∩ Lj = {0} for any i 6= j. We
have (∆∗)2 = ∆2 \ (L1 ∪ L2). Set L

∗
i := Li \ {(0, 0)}.

Lemma 3.2. Let [η] ∈ D1,+
Λ qD1,−

Λ and set n := dimΩΛ. Then the following hold.

(1) If [η] ∈ D1,+
Λ , then there is a neighborhood U of [η] in ΩΛ \ Ω≥3

Λ such that

U∩Ω0
Λ
∼= (∆∗)2×∆n−2, U∩D0

Λ
∼= (L∗

1qL∗
2)×∆n−2, U∩D1,+

Λ
∼= {(0, 0)}×∆n−2.

(2) If [η] ∈ D1,−
Λ , then there is a neighborhood U of [η] in ΩΛ \ Ω≥3

Λ such that
U \ DΛ

∼= (∆2 \ L0 ∪ L1 ∪ L2)×∆n−2.

Proof. Since [η] ∈ D1,+
Λ qD1,−

Λ , there exist L ∈ A⊕2
1 (Λ)qA2(Λ) and a neighborhood

U of [η] in ΩΛ \ Ω≥3
Λ such that U ∩ DΛ = U ∩

⋃
d∈∆L

Hd.

(1) Assume [η] ∈ D1,+
Λ . Then L ∈ A⊕2

1 (Λ). There exists d1, d2 ∈ ∆L with
〈d1, d2〉 = 0 such that U ∩ DΛ = U ∩ (Hd1 ∪ Hd2). Replacing U by a smaller
neighborhood if necessary, there exist a system of coordinates (z1, z2, w), w =
(w1, . . . , wn−2), on U such that Hd1 = div(z1), Hd2 = div(z2). The isomorphism
ψ : (U, [η]) ∼= (∆n, 0) induced by (z1, z2, w) has the desired property.

(2) Assume [η] ∈ D1,−
Λ . Since L ∈ A2(Λ), there exist d0, d1, d2 ∈ ∆L with

d0 = d1+d2 and 〈d1, d2〉 = 1 such that U∩DΛ = U∩(Hd0∪Hd1∪Hd2). Replacing U
by a smaller neighborhood if necessary, there exist a system of coordinates (z1, z2, w)
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on U such that Hd1 = div(z1), Hd2 = div(z2), Hd0 = div(z1+z2). The isomorphism
ψ : (U, [η]) ∼= (∆n, 0) induced by (z1, z2, w) has the desired property. �
3.2.5. Inclusion of lattices and the Torelli map. Recall that for d ∈ ∆+

Λ , it follows

from Lemma 3.1 the equality of sets Hd \ Ω≥3
Λ = Ω0

Λ∩d⊥ ∪ D0
Λ∩d⊥ . By Lemma 3.2

(1), Ω0
Λ ∪ D0

Λ ∪ D1,+
Λ is a Zariski open subset of ΩΛ \ Ω≥3

Λ .

Theorem 3.3. J0
M extends to a holomorphic map from Ω0

Λ ∪ D0
Λ ∪ D1,+

Λ to A∗
g.

Proof. Set n := dimΩΛ. Let [η] ∈ D0
Λ ∪ D1,+

Λ . By Lemma 3.2 (1), there is a

neighborhood U of [η] in ΩΛ such that either U \ (D0
Λ ∪ D1,+

Λ ) ∼= ∆∗ × ∆n−1 or

U \ (D0
Λ∪D1,+

Λ ) ∼= (∆∗)2×∆n−2. By Borel [11], J0
M extends to a holomorphic map

from U to A∗
g. Since [η] ∈ D0

Λ ∪ D1,+
Λ is an arbitrary point, we get the result. �

Remark 3.4. By Lemma 3.2 (2), Borel’s extension theorem does not apply to J0
M

near D1,−
Λ . This explains why JM does not extend to ΩΛ \ Ω≥3

Λ in general.

Denote the extension of J0
M by

JM : Ω0
Λ ∪ D0

Λ ∪ D1,+
Λ → A∗

g

and call it again the Torelli map. By [48, Th. 2.5], the following equality holds

JM |H0
d
= J[M⊥d]|Ω0

Λ∩d⊥

for all d ∈ ∆Λ. The following refinement is crucial for the proof Theorem 0.1.

Theorem 3.5. If d ∈ ∆+
Λ , then

(3.5) JM |
Hd\Ω≥3

Λ
= J[M⊥d]|Ω0

Λ∩d⊥
∪D0

Λ∩d⊥
.

Proof. Since both JM |
Hd\Ω≥3

Λ
and J[M⊥d]|Ω0

Λ∩d⊥
∪D0

Λ∩d⊥
are holomorphic maps from

Ω0
Λ∩d⊥ ∪ D0

Λ∩d⊥ to A∗
g by Lemma 3.1 and Theorem 3.3, it suffices to prove the

equality on Ω0
Λ∩d⊥ . Since this was proved in [48, Th. 2.5], we get the result. �

3.3. Hyperelliptic linear system. This subsection is the technical basis for Sec-
tions 6 and 7. We advise the reader to skip for the moment and return when
necessary. We prepare some tools to realize a given 2-elementary K3 surface as a
double cover of P2 or a Hirzebruch surface.

We will use the following notation: For n ≥ 0 let

Fn = P(OP1 ⊕OP1(n))

be the n-th Hirzebruch surface, equipped with the natural projection π : Fn → P1.
When n > 0, denote by Σ ⊂ Fn its unique (−n)-section. We write La,b for the line
bundle on Fn of π-degree a with (La,b,Σ) = b. In particular, we have π∗OP1(1) '
L0,1, OFn

(Σ) ' L1,−n and KFn
' L−2,−2+n.

Let (X, ι) be a 2-elementary K3 surface. A line bundle L on X with (L,L) =
2d > 0 is called hyperelliptic ([36]) if the linear system |L| contains a smooth
hyperelliptic member. In that case, L is base point free and every smooth member
of |L| is hyperelliptic of genus d+ 1. The associated morphism

(3.6) φL : X → |L|∨ ' Pd+1

is generically two-to-one onto its image, mapping a smooth member of |L| to a
rational normal curve in a hyperplane of |L|∨. According to Saint-Donat ([36] §5),
we have the following possibilities for the image surface φL(X).
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(I) φL(X) coincides with |L|∨ ' P2: this is the case d = 1.
(II) φL(X) is a Veronese surface in |L|∨ ' P5: this happens when L = 2L′ for

L′ ∈ Pic(X) with (L′, L′) = 2.
(III) φL(X) is a rational normal scroll, that is, the embedding image of Fn by a

line bundle L1,m with m > 0 and n+ 2m = d.
(IV) φL(X) is a cone over a rational normal curve, that is, the image of Fd by

the bundle L1,0. In this case φL lifts to a morphism X → Fd, and we must
have 2 ≤ d ≤ 4.

We now assume that the hyperelliptic bundle L is ι-invariant, in the sense that
there exists an isomorphism

ι∗L ' L.

Although ι may not necessarily act on L equivariantly, it does so on the morphism
(3.6). We then obtain an ι-equivariant morphism

(3.7) φ : X → Y

with Y = P2 in cases (I), (II), and Y = Fn, Fd in cases (III), (IV).
It will be useful to have a purely lattice-theoretic method for finding an ι-

invariant hyperelliptic bundle. This is based on the following lemmas. Denote
by H+ = H2(X,Z)+ the invariant lattice of (X, ι).

Lemma 3.6. Let L ∈ H+ be nef with (L,L) = 2d > 0. Assume that

(a) there exists E ∈ Pic(X) with (E,E) ≥ 0 and (E,L) = 2, and
(b) there is no F ∈ H+ with (F, F ) = 0 and (F,L) = 1.

Then L is hyperelliptic.

Proof. We first show that L is base point free. Otherwise, by [31] Proposition 5 the
linear system |L| would be of the form |(d+ 1)F |+ Γ where F is a smooth elliptic
curve and Γ is a (−2)-curve with (F,Γ) = 1. Since ι acts on |L|, the class of F
is ι-invariant and then would violate the assumption (b). Hence L is free, and a
general member C ∈ |L| is smooth and irreducible of genus d + 1. We show that
C is hyperelliptic. Since g(C) = 2 when d = 1, we may assume d > 1. Let E be
a divisor as in the assumption (a). Since h0(−E) = 0, we have h0(E) ≥ 2 by the
Riemann-Roch inequality. Consider the exact sequence

(3.8) 0 → H0(E − L) → H0(E) → H0(E|C) → · · ·
Since (E−L,L) < 0, we have h0(E−L) = 0 by the nefness of L. Hence h0(E|C) ≥
h0(E) ≥ 2 and E|C gives a g12 on C. �

The conditions (a) and (b) are purely arithmetic. To meet the nefness condition
is always possible by the following.

Lemma 3.7. Let W (X) be the Weyl group of Pic(X) generated by the reflections
with respect to (−2)-vectors in Pic(X). Let L ∈ H+ be a line bundle with (L,L) ≥ 0
and (L,L0) > 0 for some ample class L0. Then there exists w ∈ W (X) such that
w ◦ ι = ι ◦ w and w(L) is nef.

Proof. The same argument as in [4] Proposition 21.1 applies with few minor mod-
ification. We leave it to the reader. �

Thus we can obtain an ι-equivariant morphism (3.7) by just finding a vector in
H+ with the arithmetic conditions (a) and (b). The ι-equivariant Weyl group action
as in Lemma 3.7 would then carry this vector to a class of hyperelliptic bundle.
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14 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

We are interested in when ι acts by the covering transformation of φ : X → Y ,
in which case (X, ι) may be recovered from Y and the branch curve of φ. Let g
denote the genus of the main component of the fixed curve Xι.

Lemma 3.8. The involution ι acts trivially on Y when
(1) g ≥ 3 in case Y = P2,
(2) g ≥ 4 in case Y = P1 ×P1, and
(3) g ≥ n+ 2 in case Y = Fn with n > 0.

Proof. We may assume that g > 0. Let B ⊂ Y be the branch curve of φ, which
belongs to | − 2KY |. Suppose that ι acts nontrivially on Y ; then the genus g
component of Xι is the normalization of the double cover of a curve component D
of Y ι branched over B|D. When Y = P2, D must be a line and so intersects with
B at six points. When Y = P1×P1, D is either a ruling fiber or a smooth bidegree
(1, 1) curve, which satisfies (D,B) ≤ 8. Finally, let Y = Fn with n > 0. If ι acts
nontrivially on the (−n)-section Σ, then D is a ruling fiber so that (D,−2KY ) = 4.
If ι acts trivially on Σ, we have Y ι = H+Σ for a smooth H ∈ |L1,0| because ι must
preserve every fiber of Fn and hence induces a non-trivial involution on every fiber.
Then (Σ, B) = (Σ,−2KY ) ≤ 2 and (H,B) = (H,−2KY ) = 2n + 4. This gives us
the estimate 2g + 2 ≤ (D,B) ≤ 2n+ 4. �

This criterion is coarse, but will suffice for our purpose.

4. Automorphic forms on the period domain

4.1. Siegel modular forms. Recall that the line bundle on Ag associated with

the automorphic factor Sp2g(Z) 3
(
AB
CD

)
7→ det(CΩ+D) ∈ O(Sg), Ω ∈ Sg is called

the Hodge line bundle on Ag and is denoted by Fg in this paper. A holomorphic
section of F⊗q

g is identified with a Siegel modular form of weight q, and F⊗q
g is

equipped with the Hermitian metric ‖ · ‖F⊗q
g

called the Petersson norm: For any

Siegel modular form S of weight q, we define ‖S(Ω)‖2F⊗q
g

:= (det=Ω)q|S(Ω)|2.
In this paper, the following Siegel modular forms on Sg play crucial roles:

χg(Ω)8 :=
∏

(a,b) even

θa,b(Ω)8,

Υg(Ω) := χg(Ω)8
∑

(a,b) even

θa,b(Ω)−8.

Here

θa,b(Ω) :=
∑
n∈Zg

exp{π
√
−1t(n+ a)Ω(n+ a) + 2π

√
−1t(n+ a)b}

is the theta constant with even characteristic (a, b), where a, b ∈ {0, 1/2}g and
4tab ≡ 0 mod 2. For g = 0, we set χ0 = Υ0 = 1. Note that Υg(Ω) is the
elementary symmetric polynomial of degree 2g−1(2g+1)−1 = (2g−1+1)(2g−1) in
the even theta constants θa,b(Ω)8. By [23, p.176 Cor. and p.182 Th. 3], χ8

g (resp.

Υg) is a Siegel modular form of weight 2g+1(2g + 1) (resp. 2(2g − 1)(2g + 2)). The
locus of vanishing thetanull θnull,g is the reduced divisor on Ag defined by χg

θnull,g := {[Ω] ∈ Ag; χg(Ω) = 0}.
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K3 SURFACES WITH INVOLUTION IV 15

Lemma 4.1. There exist at least two distinct vanishing even theta constants at
Ω ∈ Sg if and only if χg(Ω) = Υg(Ω) = 0. In particular, a smooth projective
curve C of genus g has at least two effective even theta characteristics if and only
if χg(Ω(C)) = Υg(Ω(C)) = 0.

Proof. Assume χg(Ω) = Υg(Ω) = 0. Since χg(Ω) = 0, there is an even pair (a, b)
with θa,b(Ω) = 0. Then Υg(Ω) =

∏
(c,d)̸=(a,b) θc,d(Ω)8, where (c, d) ∈ {0, 1/2}2g

runs over all even pairs distinct from (a, b). Since Υg(Ω) = 0, we get θc,d(Ω) = 0 for
some even pair (c, d) 6= (a, b). Thus θa,b(Ω) = θc,d(Ω) = 0. The converse is trivial.
The second assertion follows from the Riemann singularity theorem [3, p.226]. �

For the proof of Theorem 0.1 (2), (3), we need an estimate for the vanishing
order of Υg for certain ordinary singular families of curves.

Lemma 4.2. Let p : C → ∆ be an ordinary singular family of curves of genus
g > 0 with irreducible C0 := p−1(0). Namely, p : C → ∆ is a proper surjective
holomorphic function from a complex surface C to the unit disc ∆ without critical
points on C \ C0 and with a unique, non-degenerate critical point on C0. Assume

that χg(Ω(Ct)) = 0 and Υg(Ω(Ct)) 6= 0 for all t ∈ ∆∗ and that χg−1(Ω(Ĉ0)) 6= 0,

where Ĉ0 is the normalization of C0. Then there exists h(t) ∈ O(∆) such that

log ‖Υg(Ω(Ct))‖2 = (22g−2 − 1) log |t|2 + log |h(t)|2 +O
(
log log |t|−1

)
(t→ 0).

Proof. We follow [48, Proof of Lemma 4.1]. For Ω ∈ Sg, write Ω =
(
z tω
ω Z

)
, where

z ∈ H, ω ∈ Cg−1, Z ∈ Sg−1. For t ∈ ∆∗, we can express

Ω(Ct) =

[
log t

2πi
A+ ψ(t)

]
∈ Ag, A =

(
1 t0g−1

0g−1 Og−1

)
,

where ψ(t) is a holomorphic function on ∆ with values in complex symmetric g×g-
matrices such that ψ(0) =

(
ψ0

tω0

ω0 Z0

)
, Z0 ∈ Sg−1, Ω(Ĉ0) = [Z0] ∈ Ag−1.

By the assumption χg(Ω(Ct)) = 0, Υg(Ω(Ct)) 6= 0 for all t ∈ ∆∗ and Lemma 4.1,
Ct has a unique effective even theta characteristic for t ∈ ∆∗. By fixing a marking
of a reference curve, there is a unique even pair (a, b), a, b ∈ {0, 1/2}g such that
θa,b(Ω(Ct)) = 0 on ∆ and θc,d(Ω(Ct)) 6= 0 on ∆∗ for all even (c, d) 6= (a, b). Write
a = (a1, a

′) and b = (b1, b
′). If a1 = 0, then we get θa′,b′(Z0) = 0 for the even

pair (a′, b′), a′, b′ ∈ {0, 1/2}g−1 by [48, Eq. (4.4)], which contradicts the assumption

χg−1(Z0) = χg−1(Ω(Ĉ0)) 6= 0. Thus a1 = 1/2.
By [48, Eqs.(4.3), (4.4)], there is a holomorphic function Fa,b(ζ, ω, Z) such that∏

(c,d)̸=(a,b)

θc,d(Ω) = (eπiz/4)2
2(g−1)−1 Fa,b(e

πiz, ω, Z).

Hence there is a holomorphic function φ(ζ, ω, Z) such that

Υg(Ω) = (e2πiz)2
2(g−1)−1 φ(eπiz, ω, Z).

Since Υg(Ω) is a Siegel modular form and hence Υg(Ω+A) = Υg(Ω), φ(ζ, ω, Z) is
an even function in ζ. There exists a holomorphic function h(t) ∈ O(∆) such that

Υg((log t/2πi)A+ ψ(t)) = t2
2g−2−1h(t).

This, together with [48, (4.7)], implies the result. �

As a consequence of Lemma 4.2, we get the following.
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16 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

Lemma 4.3. Let M ⊂ LK3 be a primitive 2-elementary Lorentzian sublattice and
set Λ =M⊥. Let γ : ∆→ MΛ be a holomorphic curve with γ(∆∗) ⊂ M0

Λ intersect-

ing D0

Λ transversally at γ(0) ∈ D0

Λ. Let γ̃ : ∆→ ΩΛ be its lift with γ(t2) = ΠΛ ◦ γ̃(t)
and let d ∈ ∆−

Λ be such that γ̃(0) ∈ Hd. If χg(JM (γ̃(t))) = 0 and Υg(JM (γ̃(t))) 6= 0
for all t ∈ ∆∗ and if χg−1(J[M⊥d](γ̃(0))) 6= 0, then

ordt=0γ̃
∗(J∗

MΥg) ≥ 2(22(g−1) − 1).

Proof. Let JM : M0
Λ ∪ D0

Λ → A∗
g be the extension of J

0

M : M0
Λ → Ag. By [48,

Theorem 2.3 (1), (2)], there is an ordinary singular family of curves p : C → ∆ of
genus g with irreducible C0 and with period map JM ◦ γ. By Lemma 4.2, we get

ordt=0γ
∗(J

∗
MΥg) ≥ 22(g−1) − 1,

which, together with JM (γ(t2)) = JM (γ̃(t)), yields the result. �

4.2. Automorphic forms on ΩΛ. Let M ⊂ LK3 be a primitive 2-elementary
Lorentzian sublattice and set Λ = M⊥ as before. Let q ∈ Z>0 be such that F⊗q

g

extends to a very ample line bundle on A∗
g. Let i : Ω

0
Λ ∪D0

Λ ↪→ ΩΛ be the inclusion

and define λqM as the trivial extension of J∗
MF⊗q

g(M) from Ω0
Λ ∪ D0

Λ to ΩΛ, i.e.,

λqM := i∗OΩ0
Λ∪D0

Λ

(
J∗
MF⊗q

g(M)

)
.

Since ΩΛ\(Ω0
Λ∪D0

Λ) has codimension 2 in ΩΛ, λ
q
M is an O(Λ)-equivariant invertible

sheaf on ΩΛ. On Ω0
Λ, λ

q
M is equipped with the Hermitian metric

‖ · ‖λq
M

:= J∗
M‖ · ‖F⊗q

g
.

Fix lΛ ∈ Λ ⊗ R with 〈lΛ, lΛ〉 ≥ 0. Define jΛ(γ, ·) ∈ O∗
ΩΛ

, γ ∈ O(Λ) and
KΛ(·) ∈ C∞(ΩΛ) by

jΛ(γ, [η]) :=
〈γ(η), lΛ〉
〈η, lΛ〉

, KΛ([η]) :=
〈η, η〉

|〈η, lΛ〉|2
.

Let p, q ∈ Z. Then F ∈ H0(ΩΛ, λ
q
M ) is called an automorphic form on ΩΛ for O(Λ)

of weight (p, q) if it satisfies the following functional equation on ΩΛ:

(4.1) F (γ · [η]) = jΛ(γ, [η])
p γ(F ([η])), ∀ γ ∈ O(Λ).

The notion of automorphic forms on Ω+
Λ for O+(Λ) of weight (p, q) is defined in the

same way. In the rest of this paper, the vector space of automorphic forms on ΩΛ

for O(Λ) of weight (p, q) is identified with the vector space of automorphic forms
on Ω+

Λ for O+(Λ) of weight (p, q) via the restriction map

H0(ΩΛ, λ
q
M ) 3 F → F |Ω+

Λ
∈ H0(Ω+

Λ , λ
q
M ).

We define the Petersson norm of an automorphic form F on ΩΛ for O(Λ) of
weight (p, q) as the O(Λ)-invariant C∞ function on Ω0

Λ defined as

‖F ([η])‖2 := KΛ([η])
p · ‖F ([η])‖2λq

M
.
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K3 SURFACES WITH INVOLUTION IV 17

5. The invariant τM and its automorphic property

Let (X, ι) be a 2-elementaryK3 surface of typeM . Let γ be an ι-invariant Kähler
form on X. The Laplacian acting on (0, q)-forms on X is denoted by �0.q. Write
σ(�0,q) for the spectrum of �0,q and E0,q(λ) for eigenspace of �0,q corresponding
to λ ∈ σ(�0,q). Since ι preserves γ, ι acts on E0,q(λ). The equivariant zeta function
of �0,q is defined as the following convergent series for s ∈ C with <s� 0:

ζ0,q(ι)(s) :=
∑

λ∈σ(□0,q)\{0}

Tr (ι|E0,q(λ))λ
−s.

Then ζ0,q(ι)(s) extends meromorphically to C and is holomorphic at s = 0. We
define the equivariant analytic torsion [6] of (X, γ) as

τZ2
(X, γ)(ι) := exp[−

∑
q≥0

(−1)qq ζ ′0,q(ι)(0)].

Let η ∈ H0(X,KX) \ {0} and set ‖η‖2L2 := (2π)−2
∫
X
η ∧ η̄. For a compact Kähler

manifold (V, ω), define Vol(V, ω) := (2π)− dimV
∫
V
ωdimV /(dimV )!.

When Xι 6= ∅, write Xι = qiCi for the decomposition into the connected
components. Let τ(Ci, γ|Ci

) be the analytic torsion [35] of (Ci, γ|Ci
). We define

τ(Xι, γ|Xι) :=
∏
i

τ(Ci, γ|Ci), Vol(Xι, γ|Xι) :=
∏
i

Vol(Ci, γ|Ci).

When Xι = ∅, we set τ(Xι, γ|Xι) = Vol(Xι, γ|Xι) = 1. Let c1(X
ι, γ|Xι) be the

first Chern form of (Xι, γ|Xι). By [46, Th. 5.7], the real number

τM (X, ι) := Vol(X, γ)
14−r(M)

4 τZ2
(X, γ)(ι)Vol(Xι, γ|Xι)τ(Xι, γ|Xι)

× exp

[
1

8

∫
Xι

log

(
η ∧ η
γ2/2!

· Vol(X, γ)
‖η‖2L2

)∣∣∣∣
Xι

c1(X
ι, γ|Xι)

]
is determined by the isomorphism class of (X, ι) and hence the period πM (X, ι).
For the arithmetic counterpart of the invariant τM (X, ι), we refer to [29].

We set Λ = M⊥ and we regard τM as the O(Λ)-invariant function on Ω0
Λ or

equivalently the function on M0
Λ defined by

τM (πM (X, ι)) := τM (X, ι).

As an application of the theory of (equivariant) Quillen metrics [7], [6], [27], the
automorphy of τM was established.

Theorem 5.1 ([46], [48], [49]). There exist ` ∈ Z>0 and an automorphic form ΦM
on ΩΛ for O(Λ) of weight (`(r(M)− 6), 4`) with

(5.1) τM = ‖ΦM‖−
1
2ℓ , div ΦM = `DΛ.

In the rest of this paper, we determine ΦM for all M . Since it was done for
exceptional M in [46], M is assumed to be non-exceptional in what follows.

6. The locus of vanishing theta-null: the case δ = 1

In the rest of this paper, for a primitive 2-elementary Lorentzian sublatticeM ⊂
LK3, we write r, l, δ, g, k for r(M), l(M), δ(M), g(M), k(M), respectively, when
there is no possibility of confusion. Recall that these invariants are introduced in
Sections 1 and 3.2.1. We write

Λ =M⊥.
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18 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

Let Mg be the moduli space of smooth curves of genus g ≥ 1. In Sections 6 and
7, we study the Torelli map JM : Ω0

Λ → Ag from the geometric point of view. We
here view the Torelli map rather as a morphism

µΛ : M0
Λ → Mg

from the moduli space of 2-elementary K3 surfaces to that of curves, which asso-
ciates to (X, ι) the genus g component of Xι. Our main purpose here is to describe
the inverse image of a certain geometric locus in Mg as a Heegner divisor of M0

Λ

in a few cases. This will be the first and necessary step toward a more complete
description, Theorem 9.13, which will be obtained in the final part of the paper.

Recall that the characteristic Heegner divisor HΛ of ΩΛ was defined in Section
2.3, and that the thetanull divisor θnull,g of Ag was defined in Section 4.1. We
denote by

HΛ ⊂ MΛ

the reduced algebraic divisor corresponding to HΛ, and

M′
g = θnull,g ∩Mg

the reduced thetanull divisor in Mg. It is well-known that M′
g ⊂ Mg is the locus

of curves C having an effective even theta characteristic, namely an effective line
bundle L with L⊗2 ' KC and h0(L) even.

In the present section we treat the moduli spaces in the following two series:

• k = 0, δ = 1, 3 ≤ g ≤ 10,
• k = 1, 6 ≤ g ≤ 9.

Notice that in the second series we have δ = 0 only when g = 6. We will prove the
following.

Theorem 6.1. If 3 ≤ g ≤ 10 and (k, δ) = (0, 1), the Heegner divisor HΛ is
irreducible and the following set-theoretic equality of (reduced) divisors of M0

Λ holds:

µ−1
Λ (M′

g) = HΛ ∩M0
Λ.

The same assertion also holds for the second series when δ = 1, but the following
weaker version will suffice for the rest of the paper.

Proposition 6.2. If 6 ≤ g ≤ 9 and k = 1, µΛ(M0
Λ) is not contained in M′

g.

These results will be used in Section 8. Theorem 6.1 will be proved in Sections
6.1–6.3, and Proposition 6.2 in Section 6.5.

6.1. Proof of Theorem 6.1: the strategy. Let us first explain the outline of
the proof of Theorem 6.1, reducing it to the construction of certain elliptic curves.

As the first step we see the irreducibility of HΛ, which holds in a wider range.

Lemma 6.3. When δ = 1 and r ≤ 9, HΛ is an irreducible divisor of MΛ.

Proof. This is restated as the property that vectors l ∈ Λ∨ with (l, l) = εΛ and
[l] = 1Λ are all equivalent under O+(Λ). Consider the vector l′ = 2l in Λ. Since 1Λ

is of order 2, l′ is primitive in Λ and satisfies

div(l′) = 2, [l′/div(l′)] = 1Λ ∈ AΛ, (l′, l′) = 4εΛ.

When (r, l) 6= (9, 9), the lattice Λ contains U ⊕ U, and then we can resort to the
Eichler criterion (cf. [37]) which says that the O+

0 (Λ)-equivalence class of a primitive
vector l′ ∈ Λ depends only on the norm (l′, l′) and the element [l′/div(l′)] ∈ AΛ.
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K3 SURFACES WITH INVOLUTION IV 19

Hence the above vectors l′ = 2l are all O+
0 (Λ)-equivalent. When (r, l) = (9, 9),

HΛ is defined by (−2)-vectors l′ ∈ Λ with Λ = Zl′ ⊕ (l′)⊥. The isometry class of
(l′)⊥ is uniquely determined by [33], namely (l′)⊥ ' U⊕2 ⊕ E8(2), so that these
(−2)-vectors l′ are all O+(Λ)-equivalent. �

With the irreducibility of HΛ verified, the proof of Theorem 6.1 is reduced to
showing the non-emptiness of µ−1

Λ (M′
g) and the inclusion

(6.1) µ−1
Λ (M′

g) ⊂ HΛ.

We only need to verify (6.1) outside a locus of codimension ≥ 2 of M0
Λ. Our

approach will be based on the following geometric observation.

Proposition 6.4. Let (X, ι) be a 2-elementary K3 surface. If X has a smooth
elliptic curve E with E + ι(E) ∼ Xι, then the period of (X, ι) is contained in the
Heegner divisor HΛ.

Proof. Let H± denote the ι-(anti-)invariant lattices of (X, ι). The cycle D± :=
E ± ι(E) is contained in H± respectively. We will show that D− satisfies

(6.2) (D−, D−) = 2r − 20, D−/2 ∈ H∨
−, [D−/2] = 1H− ∈ AH− .

The presence of such an anti-invariant cycle in the Picard lattice means that the
period of (X, ι) lies in HΛ.

Since E is an elliptic curve and hence its class in H2(X,Z) is isotropic, the first
equality of (6.2) follows from

(6.3) 2(E, ι(E)) = (D+, D+) = (Xι, Xι) = 20− 2r.

The second property in (6.2) holds because

(D−,H−) = (D− +D+,H−) = (2E,H−) ⊂ 2Z.

To see the last equality of (6.2), we note that the anti-isometry λ : AH+
→ AH−

induced from the relation H+ = (H−)
⊥∩H2(X,Z) maps [D+/2] to [D−/2] because

D+/2 + D−/2 = E is contained in H2(X,Z). Since [D+/2] is the characteristic
element of AH+

by Lemma 6.5 below, so is [D−/2] in AH− . �

Lemma 6.5. For any 2-elementary K3 surface (X, ι) the element [Xι/2] ∈ AH+

is the characteristic element.

Proof. Let f : X → Y be the quotient map by ι, and let B ⊂ Y be the branch
curve. Every element of the dual lattice H∨

+ can be written as f∗L/2 for some
L ∈ Pic(Y ). Then

(Xι/2, f∗(L/2)) = (B,L)/4 = (−KY , L)/2.

We can see that (L+KY , L) ∈ 2Z from the Riemann-Roch formula. Therefore

(Xι/2, f∗(L/2)) ≡ (L,L)/2 = (f∗(L/2), f∗(L/2)) mod Z,

which means that Xι/2 ∈ H∨
+ and that [Xι/2] is characteristic. �

In Sections 6.2 and 6.3, we will construct an elliptic curve E as in Proposition 6.4.
The non-emptiness of µ−1

Λ (M′
g) will be seen in the course of proof.
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20 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

6.2. Proof of Theorem 6.1: the case g = 3. We begin with the case g = 3.
Recall that a smooth curve of genus 3 has an effective even theta characteristic
precisely when it is hyperelliptic. So let (X, ι) be a 2-elementary K3 surface with
(g, k) = (3, 0) such that Xι is hyperelliptic. Consider the degree 4 line bundle
L = OX(Xι), which is hyperelliptic in the sense of Section 3.3. By Saint-Donat’s
classification, L defines a degree 2 morphism

φ : X → Q

onto a quadric Q ⊂ P3. We may assume that L is ample, because the locus where
Xι is hyperelliptic and OX(Xι) is non-ample has codimension ≥ 2 in M0

Λ. In that
case Q is smooth.

Claim 6.6. ι acts on Q by switching the two rulings on it.

Proof. First note that ι acts on Q nontrivially, for the branch curve of φ is a member
of | − 2KQ| and hence has genus 9. Then ι fixes the curve φ(Xι), which by the
definition of φ has bidegree (1, 1). It is easily verified that any non-trivial involution
of Q fixing a smooth bidegree (1, 1) curve must switch the two rulings. �

We choose a ruling line l on Q and put E = φ∗l. Then E is a smooth elliptic
curve on X for a general choice of l and satisfies the linear equivalence

E + ι(E) ∼ φ∗OQ(1, 1) ∼ Xι.

By Proposition 6.4, we get the inclusion (6.1).
The non-emptiness of µ−1

Λ (M′
3) can be seen by reversing this construction: choose

a bidegree (4, 4) curve B ⊂ P1 ×P1 preserved by the switch involution of P1 ×P1

and take the double cover X → P1 × P1 branched over B. The switch involution
can be lifted to X so that its fixed curve is the preimage of the diagonal of P1×P1,
which is hyperelliptic of genus 3. Thus Theorem 6.1 is proved in case g = 3. �

6.3. Proof of Theorem 6.1: the case 4 ≤ g ≤ 10. We next treat the case 4 ≤
g ≤ 10 in Theorem 6.1. Let (X, ι) be a 2-elementary K3 surface with 4 ≤ g ≤ 10,
k = 0 and δ = 1. Let Y = X/ι be the quotient surface and C ⊂ Y be the branch
−2KY -curve. The quotient map X → Y gives the canonical identification

C ' Xι.

The anti-canonical model Ȳ ⊂ Pg−1 of Y is a Gorenstein del Pezzo surface of degree
g−1, and Y is its minimal resolution. Note that ifX → X̄ is the contraction of (−2)-
curves disjoint from Xι, we naturally have Ȳ ' X̄/ι. We may view C also as lying
on the smooth locus of Ȳ . By the adjunction formula we have −KY |C ' KC , and
the restriction map | −KY | → |KC | is isomorphic because h0(KY ) = h1(KY ) = 0.
Therefore the composition of inclusions

C ⊂ Ȳ ⊂ Pg−1

gives the canonical embedding of C, and we can identify Pg−1 with |KC |∨. This
also shows that C is non-hyperelliptic.

Lemma 6.7. If C has an effective even theta characteristic L, then h0(L) = 2.

Proof. If h0(L) 6= 2, then h0(L) ≥ 4. By Clifford’s theorem we have

6 ≤ 2dim|L| < deg(L) = g − 1.
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This holds only when g ≥ 8 and h0(L) = 4. Actually the case g = 8 can be excluded
because a blow-down of Y presents C as a plane sextic with two double points and
hence C has Clifford index 2. The case g = 10, where C is a smooth plane sextic,
is treated in [3] Exercise VI. B-3. In case g = 9, presenting C as plane sextic with
a node or cusp, we can argue similarly. �

Proposition 6.8. There exists a locus Z ⊂ M0
Λ of codimension ≥ 2 with the fol-

lowing property: When (X, ι) lies outside Z, the curve C has a theta characteristic
L with h0(L) = 2 if and only if C can be cut out from Ȳ by a quadric Q ⊂ Pg−1 of
rank 3. In this case, L is base point free.

Proof. (Step 1) Assume that C ⊂ Ȳ is cut out by a quadric Q of rank 3. The vertex
of Q, a (g−4)-plane, is disjoint from Ȳ ; otherwise C would be singular. The pencil
of (g−3)-planes in Q gives C a theta characteristic L with h0(L) ≥ 2, which is free
because C is disjoint from the vertex. We have h0(L) = 2, for |L| = |KC − L| is
identified with the linear system of hyperplanes of Pg−1 containing a (g− 3)-plane,
which is a pencil.

(Step 2) Conversely, suppose that C has a complete half-canonical pencil |L|.
Choose a basis α, β of H0(L) and write |L| = |L0|+D0 with |L0| the free part and
D0 the fixed part. The divisor D0 is defined by α = β = 0. If we set

u1 = α2, u2 = β2, u3 = αβ ∈ H0(KC) = H0(OPg−1(1)),

then C is contained in the rank 3 quadric Q ⊂ Pg−1 defined by u1u2 = u23. The
vertex of Q is the (g− 4)-plane V defined (set-theoretically) by (u1 = u2 = 0)∩Q.
The free part |L0| is given by the pencil of (g − 3)-planes in Q through V , and the
fixed part D0 is defined by

(6.4) 2D0 = (u1 = u2 = 0)|C .

In order to show that this quadric Q cuts out C from Ȳ , it suffices to prove Ȳ 6⊂ Q,
for then C and Q|Ȳ are both −2KȲ -curves on Ȳ .

(Step 3) Suppose the contrary: Ȳ ⊂ Q. We then have three linearly independent
sections ũ1, ũ2, ũ3 ∈ H0(−KY ) on Y with ũ1ũ2 = ũ23 and ui = ũi|C . Choose a blow-
down π : Y → P2 and let Z ⊂ P2 be the blown-up points (which possibly contain
infinitely near ones). We have #Z = 10− g. The image π(C) of C is a plane sextic
having double points at Z and no other singularities. Via the mapping

(6.5) | −KY | → |OP2(3)|, D 7→ π(D),

we can identify | −KY | with the linear system of plane cubics through Z, and D is
recovered from Γ = π(D) byD = π∗Γ−π−1(Z). Now by our assumption ũ1ũ2 = ũ23,
the divisors of ũ1, ũ2, ũ3 correspond to three linearly independent cubics Γ1, Γ2,
Γ3 with Γ1 + Γ2 = 2Γ3. This equality can hold only when

Γ1 = 2l1 + l, Γ2 = 2l2 + l, Γ3 = l1 + l2 + l

for some distinct lines l1, l2, l. Let p = l1∩l2. The net spanned by Γ1,Γ2,Γ3 consists
of splitting cubics l+ l′ + l′′ where l′, l′′ are lines through p. In particular, its base
locus is p ∪ l. Recall that the restriction of this net to C, after the transformation
(6.5), is equal to P〈u1, u2, u3〉 = PSym2H0(L).

(Step 4) For a plane curve Γ we write Γ̂ for its strict transform in Y . We also
denote E = π−1(p). We observe the following:

(1) Z lies on p ∪ l;
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(2) p ∈ Z and p /∈ l;
(3) the free part |L0| is given by the projection from p;
(4) the fixed part D0 is given by

(6.6) 2D0 = (l̂ + E)|C .

(1) is obvious. We can see (3) by noticing that φL0
: C → P1 coincides with the

projection from p after composing them with the conic embedding P1 ↪→ P2, the
composition being the resolution of the rational map defined by Sym2H0(L). Under

(2), we have div(ũi) = 2l̂i + E + l̂ for i = 1, 2, so that (4) follows from (6.4). It
remains to see (2). Firstly, if p /∈ π(C), then L0 ∼ π∗OP2(1)|C which is absurd.
If p ∈ π(C) but p /∈ Z = Sing(π(C)), then L0 ∼ π∗OP2(1)|C − π−1(p) by (3) and
D0 3 π−1(p) by (6.4). It follows that L ≥ π∗OP2(1)|C , and hence dim|L| ≥ 2, a
contradiction. Therefore p ∈ Z. Next assume p ∈ l∩Z. Then both Γ1 and Γ2 have

multiplicity 3 at p, so that div(ũi) = 2l̂i+2E+ l̂ for i = 1, 2. Then 2D0 = (2E+ l̂)|C
by (6.4). Since L0 ∼ π∗OP2(1)|C −E|C by (3), we have L ≥ π∗OP2(1)|C , the same
contradiction as before. This verifies (2).

(Step 5) Now since the 9 − g points Z\p lie on l and since no four points of
Z can be collinear by the nefness of −KY , we must have |Z \ p| ≤ 3 and thus
6 ≤ g ≤ 9. The right hand side of (6.6) is divisible by 2 only if π(C) is totally
tangent to l outside Z = Sing(π(C)) and π(C) has a cusp at p. The cusp condition
defines a divisor in the moduli space; when 7 ≤ g ≤ 9 (resp. g = 6), the tangency
condition (resp. the collinear condition on the three points Z \ p) defines another
divisor. These two divisors, both Heegner and irreducible, defines a codimension 2
locus Z in the moduli space. If (X, ι) 6∈ Z, then (6.6) cannot hold and thus Ȳ 6⊂ Q.
By (Step 2), this implies that C is cut out from Ȳ by Q when (X, ι) 6∈ Z. �

Since the intersection of a general Del Pezzo surface Y ⊂ Pg−1 and a quadric
Q ⊂ Pg−1 of rank 3 is a smooth curve, we see the non-emptiness of µ−1

Λ (M′
g).

Now let C ⊂ Ȳ be cut out by a quadric Q of rank 3. We take the double cover

π : Q̃→ Pg−1

branched over Q. The (contracted) quotient map X̄ → Ȳ by ι can be identified with
the restriction π−1(Ȳ ) → Ȳ of π. We again denote by ι the covering transformation

of π : Q̃→ Pg−1. We also view X̄ ⊂ Pg naturally. Note that Q̃ is a quadric of rank
4 in Pg and hence is the cone over a smooth quadric surface Q0 ' P1 × P1 with
vertex Pg−4. Let f : Q̃ 99K Q0 be the projection from the vertex. Then the pencils
f∗|OQ0(1, 0)| and f∗|OQ0(0, 1)| are P1-families of (g− 2)-planes that sweep out Q̃.
As is easily verified, ι switches these two rulings. Restricted to X̄ = π−1(Ȳ ), the
pencil f∗|OQ0

(1, 0)| induces an elliptic fibration on X, say |E|. The cycle E+ ι(E)
is a hyperplane section of X̄ ⊂ Pg. On the other hand, Xι ⊂ X̄ is the ramification
divisor of X̄ → Ȳ and hence also cut out by a hyperplane of Pg. Therefore E+ι(E)
is linearly equivalent to Xι on X. By Proposition 6.4, Theorem 6.1 is proved in
case 4 ≤ g ≤ 10. �

Remark 6.9. In the above construction, the given half-canonical pencil on C ' Xι

coincides with the restriction of the elliptic fibration |E|: this follows because |E| is
the restriction of a Pg−2-ruling on Q̃, which in turn is a component in the pullback
of the family of hyperplanes in Pg−1 that cut out doubly from Q the Pg−3-ruling.
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Remark 6.10. A general member of µ−1
Λ (M′

g) has a unique effective even theta
characteristic, because the period of those (X, ι) having several elliptic curve classes
[E] with E + ι(E) ∼ Xι lie in (the image of) the intersection of at least two
components of HΛ.

6.4. Trigonal curves. This section is preliminaries for the subsequent Sections 6.5
and 7. A smooth projective curve C of genus g ≥ 5 is said to be trigonal if it has
a degree 3 morphism to P1. Such a morphism, if exists, is unique up to Aut(P1).
Let us summarize some properties of trigonal curves (cf. [30]).

It is classically known that a trigonal curve C can be canonically embedded in
a Hirzebruch surface. This is due to the fact that the canonical model of C is
contained in a unique rational normal scroll, namely the image of a Hirzebruch
surface Fn by a bundle L1,m with m > 0 (see Section 3.3 for the notation). The
integer n is called the scroll invariant, and m the Maroni invariant of C. As
a curve on Fn, C belongs to the linear system |L3,b| with b = m − n + 2 by
the adjunction formula. The trigonal map of C is given by the restriction of the
projection Fn → P1. We have the genus formula g = 3n + 2b − 2, which gives
the relation of n and m. These (equivalent) invariants give a stratification of the
moduli space of trigonal curves. By the canonicity of the embedding C ⊂ Fn, the
isomorphism classes of trigonal curves of genus g and Maroni invariantm correspond
to the Aut(Fn)-orbits in the locus of smooth curves in |L3,b|.

Maroni described the variety W r
d (C) ⊂ Picd(C) of line bundles L of degree d

and h0(L) ≥ r+1 (see [30, Prop. 1]). We need his description in the case d = g−1.

Proposition 6.11 (Maroni). Let T = L0,1|C be the trigonal bundle and write
W+ = rT +Wg−1−3r(C), where Wg−1−3r(C) :=W 0

g−1−3r(C). Then

W r
g−1(C) =W+ ∪ (KC −W+).

Using this description, we can give a geometric characterization of trigonal curves
having effective theta characteristics.

Lemma 6.12. A trigonal curve C of scroll invariant n and Maroni invariant m
has a theta characteristic L with h0(L) ≥ r + 1 if and only if there exists a curve
H ∈ |L1,m−2r| on Fn such that H|C = 2D for a divisor D of degree g − 1− 3r on
C. In that case, the divisor rT +D gives such a theta characteristic.

Proof. A line bundle L is a theta characteristic with h0(L) ≥ r + 1 if and only
if it is a fixed point of the residual involution on W r

g−1(C). Such L should be
contained in W+ ∩ (KC −W+) by Proposition 6.11, so we can write L = rT +D
for some D ∈ Wg−1−3r(C). Since L ∼ KC − L, we have 2D ∼ KC − 2rT . The
restriction map |L1,m−2r| → |KC −2rT | is isomorphic because hi(KFn −L0,2r) = 0
for i = 0, 1. Thus there exists H ∈ |L1,m−2r| with H|C = 2D. Conversely, if we
have such H and D, then L = rT +D is a theta characteristic with h0(L) ≥ r + 1
by Proposition 6.11. �

6.5. Proof of Proposition 6.2. We will show that a general member C of µΛ(M0
Λ)

has no effective even theta characteristic when k = 1 and 6 ≤ g ≤ 9, using the de-
scription of C given in [26].

We first consider the case δ = 1, where 6 ≤ g ≤ 9. In this case C is a general
trigonal curve of genus g with Maroni invariant 2, which can be realized as a general
member of the linear system |L3,10−g| on Fg−6 ([26] Corollaries 6.2 and 7.6). By
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Lemma 6.12, C has a theta characteristic L with h0(L) ≥ 2 if and only if there
exists a curve H ∈ |L1,0| totally bitangent to C. However, it is readily seen that a
general member of |L3,10−g| has no such tangent curve.

When δ = 0, we have g = 6. In this case C is a plane quintic ([26] Corollary 7.3).
Then our assertion follows from the classical fact that any smooth plane quintic
has no effective even theta characteristic: indeed, according to [3] p.211 we have

W 1
5 (C) = { OC(p− q)⊗OP2(1) | p, q ∈ C }.

The residual involution acts on this W 1
5 (C) by switching p and q. It has no fixed

point other than OP2(1)|C , which is an odd theta characteristic. Thus Proposition
6.2 is proved. �

7. The locus of vanishing theta-null: the case δ = 0

We continue the geometric study of the Torelli map, still viewed as a morphism
µΛ : M0

Λ → Mg between the moduli spaces. In this section we treat the following
two series:

• r = 2, δ = 0 (g = 9, 10),
• r = 10, δ = 0, 4 ≤ g ≤ 6.

In these cases, µΛ(M0
Λ) is contained in M′

g because a general member of µΛ(M0
Λ)

possesses a rather apparent effective even theta characteristic.
For the first series, we will show that an analogue of Theorem 6.1 holds by

replacing M′
g with the (reduced) divisor

M′′
g := div(Υg) ∩M′

g

of M′
g, where Υg is the Siegel modular form introduced in Section 4.1. Geometri-

cally this locus parametrizes curves having at least two effective even theta charac-
teristics. (See Lemma 4.1.)

Proposition 7.1. When (r, δ) = (2, 0) and g = 10, the Heegner divisor HΛ is
irreducible and equal to µ−1

Λ (M′′
10). In particular, the genus 10 component of Xι

has a unique effective even theta characteristic if the period of (X, ι) lies outside
HΛ.

In case (r, l, δ) = (2, 2, 0), the Heegner divisor HΛ is reducible, reflecting the
fact that norm −4 vectors l ∈ Λ are divided into two classes according to whether
div(l) = 1 or 2. We accordingly write HΛ = H1 +H2.

Proposition 7.2. When (r, δ) = (2, 0) and g = 9, the component H1 is irreducible
and equal to µ−1

Λ (M′′
9). In particular, Xι has a unique effective even theta charac-

teristic if the period of (X, ι) lies outside HΛ.

For the second series, we will prove the following.

Lemma 7.3. If (r, δ) = (10, 0) and g = 4, 5, then µΛ(M0
Λ) is not contained in the

hyperelliptic locus.

Lemma 7.4. If (r, δ) = (10, 0) and g = 6, then a general member of µΛ(M0
Λ) has

exactly one effective even theta characteristic.

In Section 9, these results will be used to prove Theorem 0.1 (2), (3). Lemmas
7.3 and 7.4 will be strengthened in Corollary 9.14 by an argument of modular form
(a geometric proof is also possible).
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7.1. Proof of Proposition 7.1. The line of the proof of Proposition 7.1 (and 7.2)
is similar to Theorem 6.1. We begin by checking the irreducibility of the Heegner
divisor HΛ, which is defined by norm −4 vectors in Λ.

Lemma 7.5. When (r, l, δ) = (2, 0, 0), HΛ is irreducible.

Proof. Since Λ ' U⊕2 ⊕ E⊕2
8 is unimodular, by the Eichler criterion the O+(Λ)-

equivalence class of a primitive vector of Λ is determined by its norm. �
We describe the members of M0

Λ following the construction in Section 6.1 of
[26]. We consider curves on the Hirzebruch surface F4. Let U ⊂ |L3,0| be the open
locus of smooth curves. We have a morphism p : U → M0

Λ by associating to C ∈ U
the double cover of F4 branched over C +Σ.

Lemma 7.6. There exists a geometric quotient U/Aut(F4) and the period map
p descends to a biregular isomorphism P : U/Aut(F4) → M0

Λ. In particular, the
Torelli map M0

Λ → Mg is given by P−1 and is injective, with the image the trigonal
locus of Maroni invariant 2.

Proof. The p-fibers are the Aut(F4)-orbits because the Aut(F4)-orbits correspond
to the isomorphism classes of trigonal curves of Maroni invariant 2, and the Torelli
map recovers these isomorphism classes. Since M0

Λ is normal, then [32] Proposition
0.2 tells that the image of p is identified with the geometric quotient of U by
Aut(F4). It remains to show the surjectivity of p.

Let (X, ι) be an arbitrary member ofM0
Λ, and let {e, f} be the natural hyperbolic

basis of its invariant lattice H+ ' U. The vector 2(e + f) satisfies the arithmetic
conditions in Lemma 3.6 and hence gives an ι-invariant hyperelliptic bundle of
degree 8. This defines a generically two-to-one morphism X → Y where Y = P2

or F2n with n ≤ 2, on which ι acts by the covering transformation by Lemma 3.8.
Among these possibilities of Y , the branch −2KY -curve can contain a component
of genus 10 only when Y = P2 or F4. The case Y = P2 cannot happen because it
would be (r, l, δ) = (1, 1, 1) in that case. Hence Y = F4. Since |−2KF4 | = Σ+|L3,0|
and since L3,0 has arithmetic genus 10, the branch curve should be of the form Σ+C
with smooth C ∈ |L3,0|. Thus (X, ι) = p(C). �

Let C be a member of U . Since C is disjoint from Σ, the bundle L1,−4|C is
trivial so that KC ' L1,2|C ' L0,6|C . Hence L0,3|C is a theta characteristic with
h0(L0,3|C) = 4. This shows that µΛ(M0

Λ) ⊂ M′
10. We are interested in the locus

µΛ(M0
Λ) ∩M′′

10 where C has another effective even theta characteristic.

Lemma 7.7. The curve C has an effective even theta characteristic different from
L0,3|C if and only if there exists a smooth member H of |L1,0| such that H|C = 2D
for some divisor D of degree 6 on C.

Proof. By Lemma 6.12, C has a theta characteristic L with h0(L) ≥ 2 if and
only if there exists H ∈ |L1,0| with H|C divisible by 2, in which case L is given
by (H|C)/2 + L0,1|C . If H is singular, it contains Σ as a component and hence

can be written as H = Σ +
∑4
i=1 Fi for some L0,1-fibers F1, · · · , F4. Since H|C =∑4

i=1 Fi|C , after renumbering we must have F1 = F2 and F3 = F4. Thus L = L0,3|C
in this case. �

We can now complete the proof of Proposition 7.1. Since µΛ(M0
Λ) ⊂ M′

10, the

inverse image µ−1
Λ (M′′

10) is a divisor in M0
Λ. It can be easily checked with Lemma
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7.7 that µΛ(M0
Λ) ∩ M′′

10 is non-empty. Hence it remains to prove the inclusion

µ−1
Λ (M′′

10) ⊂ HΛ. Let (X, ι) be a 2-elementary K3 surface with (g, k) = (10, 1)
such that µΛ(X, ι) ∈ M′′

10. By Lemmas 7.6 and 7.7, we have (X, ι) = p(C) for a
curve C as in Lemma 7.7. Let H be a smooth L1,0-curve with H|C divisible by 2.
The pullback of H by the covering map π : X → F4 splits into two (−2)-curves:
π∗H = E + ι(E). Therefore X has the ι-anti-invariant cycle

D− = E − ι(E)

of norm −16. Let H− ⊂ H2(X,Z) be the anti-invariant lattice of (X, ι). Since

(D−,H−) = (D− + E + ι(E),H−) = 2(E,H−) ⊂ 2Z

and since H− is unimodular, D− is divisible by 2 in H−. Therefore Pic(X) contains
the anti-invariant cycle D−/2 of norm −4, which implies that the period of (X, ι)
lies in HΛ. This proves Proposition 7.1. �
7.2. Proof of Proposition 7.2. In this subsection we prove Proposition 7.2. We
first explain the decomposition of the Heegner divisorHΛ. Recall thatHΛ is defined
by norm −4 vectors l in Λ ' U ⊕ U(2) ⊕ E⊕2

8 . Since Λ cannot contain 〈−4〉 as an
orthogonal direct summand, we have either div(l) = 1 or 2. By the Eichler criterion,
each type of norm −4 vectors consist of a single O+

0 (Λ)-orbit (in case div(l) = 2,
[l/2] ∈ AΛ is the unique element of norm ≡ 1 mod 2Z). We accordingly obtain the
decomposition

HΛ = H1 +H2

where Hi is defined by those l with div(l) = i, and each Hi is irreducible.

We next recall a (well-known) construction of members of M0
Λ. Let Ũ be the

parameter space of smooth (2, 4) complete intersections in P3. For each C ∈ Ũ

the quadric containing it is unique; Ũ is thus stratified according to whether the
quadric is smooth or a quadratic cone. In the first case C is a smooth bidegree
(4, 4) curve on Y = P1 × P1, and in the latter case C is a smooth L4,0-curve on

Y = F2. We have a period map p : Ũ → M0
Λ by associating to C the double cover

of Y branched over C.

Lemma 7.8. The period map p descends to a biregular isomorphism Ũ/PGL4 →
M0

Λ from the geometric quotient Ũ/PGL4.

Proof. This is similar to Lemma 7.6, so we only indicate minimal ingredients of the
argument: (1) using the natural norm 4 vector in the invariant lattice U(2), we can
realize a given (X, ι) as a double cover of a quadric so that p is surjective; (2) the
p-fibers are PGL4-orbits either by an argument modeled in Section 4.3 of [26] or
by observing that the PGL4-orbits correspond to the isomorphism classes of curves
(cf. [3] Exercise IV. F-2). �

In the proof of Proposition 7.2 we restrict ourselves to the generic case, namely
the smooth quadric case. The quadratic cone case can be dealt with similarly. So
let Y = P1 × P1 and consider the open locus U ⊂ |OY (4, 4)| of smooth bidegree
(4, 4) curves. If C ∈ U , thenKC ' OY (2, 2)|C and the restriction map |OY (2, 2)| →
|KC | is isomorphic. In particular, an effective divisor D of degree 8 on C satisfies
2D ∼ KC if and only if there exists a bidegree (2, 2) curve H on Y with H|C = 2D.
We have one apparent theta characteristic, OY (1, 1)|C , which has h0 = 4. This is
the case where H is a double bidegree (1, 1) curve. By [3] Exercise IV. F-2, any
other effective even theta characteristic of C, if exist, must satisfy h0 = 2.
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Now let V ⊂ U be the locus where C has a theta characteristic with h0 = 2.
By the same argument as in Section 7.1, the proof of Proposition 7.2 is reduced
to showing the inclusion p(V ) ⊂ H1. So let C ∈ V and (X, ι) = p(C). We write
π : X → Y for the covering map. The curve C admits a 1-dimensional family
{Ht}t∈P1 of “totally tangent” curves of bidegree (2, 2), i.e., Ht|C = 2Dt for some
divisors Dt of degree 8 on C, which are not double bidegree (1, 1) curves. Then
{Dt}t∈P1 is a (complete) half-canonical pencil of C. Note that this pencil can also
be obtained by picking up t = 0 and considering the linear system of bidegree (2, 2)
curves passing through D0, which intersect C at D0 +Dt.

Claim 7.9. A general member of {Ht}t∈P1 is smooth.

Proof. If Ht is reducible, its irreducible components are smooth rational curves
intersecting C transversely at at most two points and tangent to C elsewhere. Their
pullback to X split into two (−2)-curves. So if a general member is reducible, then
the K3 surface X would be covered by rational curves, which is absurd. By the
same reason, a general (irreducible) member cannot be singular. �

Let H be a general member of {Ht}t∈P1 . Since H is totally tangent to C at 8
points, its pullback to X splits into two smooth elliptic curves: π∗H = E + ι(E).
Hence (X, ι) possesses the ι-anti-invariant cycle of norm −16:

D− = E − ι(E).

Claim 7.10. D− is divisible by 2 in the anti-invariant lattice H− and satisfies
(D−/2,H−) = Z.

Proof. Since D−/2 = E − π∗OY (1, 1) is contained in H2(X,Z), we have D−/2 ∈
H−. If (D−/2,H−) 6= Z, then (D−/2,H−) ⊂ 2Z so that D−/4 would be contained
in the dual lattice H∨

−. Recall that the discriminant forms AH+
, AH− are isometric

to AU(2). As elements of AH− and AH+
, [D−/4] and [π∗OY (1, 1)/2] are respectively

the unique elements of norm ≡ 1 mod 2Z. By Nikulin [33], then E/2 = D−/4 +
π∗OY (1, 1)/2 would be contained in H2(X,Z). This contradicts the well-known
fact that the class of a smooth elliptic curve is primitive in Pic(X). �

To sum up, if a smooth bidegree (4, 4) curve C ⊂ Y has a theta characteris-
tic with h0 = 2, then the associated 2-elementary K3 surface (X, ι) has an anti-
invariant cycle D−/2 of norm −4 and with (D−/2,H−) = Z in its Picard lattice.
Hence the period of (X, ι) lies in the component H1 of HΛ. This finishes the proof
of Proposition 7.2. �

7.3. Proof of Lemmas 7.3 and 7.4. Lemma 7.3 is an immediate consequence
of the following known description of general members of µΛ(M0

Λ). When g = 4,
they are general curves in M′

4 by [26, Cor. 9.10]; when g = 5, they are general
trigonal curves with vanishing thetanull by Kondō [25]. Since these curves are not
hyperelliptic, Lemma 7.3 follows. �

For the proof of Lemma 7.4 we use the generic description given in [26, Cor. 7.11].
Let C be a smooth curve on F2 belonging to the linear system |L3,1| such that the
L0,1-fiber F through the point C ∩ Σ intersects C with multiplicity 3 there. By
taking the resolution of the double cover of F2 branched over C+F+Σ, we obtain a
2-elementary K3 surface with (r, l, δ) = (10, 0, 0). This construction covers general
members of M0

Λ, so a general member of µΛ(M0
Λ) is a curve C as above.
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Denote p := C ∩ Σ and T := L0,1|C . Since

KC ' L1,1|C ∼ 3T +Σ|C ∼ 2T + 4p,

the divisor T + 2p gives a theta characteristic of C with h0(T + 2p) ≥ 2. By
Lemma 6.12, we have h0(T + 2p) = 2. Conversely, suppose we have a theta char-
acteristic L on C with h0(L) ≥ 2. By Lemma 6.12 we can find a curve H ∈ |L1,−1|
with H|C = 2D for some divisor D satisfying L ∼ T+D. Since |L1,−1| = Σ+ |L0,1|,
H is of the form H = Σ+F ′ for some F ′ ∈ |L0,1|. The condition (Σ+F ′)|C = 2D
forces F ′ to pass through p = Σ ∩ C. Therefore F = F ′ and 2D = 4p. Thus L is
uniquely determined as L ∼ T + 2p. This proves Lemma 7.4. �

8. The structure of τM : the case δ = 1

In Section 8, we determine the structure of ΦM when δ = 1.

8.1. Borcherds products for 2-elementary lattices. Recall that the Dedekind
η-function and the Jacobi theta series θA+

1 +ϵ/2(τ), (ε = 0, 1) are the holomorphic

functions on the complex upper half-plane H

η(τ) := q1/24
∞∏
n=1

(1− qn), θA+
1 +ϵ/2(τ) :=

∑
m∈Z+ϵ/2

qm
2

, q := e2πiτ .

Let Λ ⊂ LK3 be a primitive 2-elementary sublattice of signature (2, r(Λ) − 2).
We set

φΛ(τ) := η(τ)−8η(2τ)8η(4τ)−8 θA+
1
(τ)12−r(Λ),

ψΛ(τ) := −16η(2τ)−16η(4τ)8θA+
1 + 1

2
(τ)12−r(Λ).

Let {eγ}γ∈AΛ be the standard basis of the group ring C[AΛ]. For 0 ≤ j ≤ 3, set
vj :=

∑
γ∈AΛ, qΛ(γ)≡j/2 eγ . By [48, Def. 7.6, Th. 7.7], the C[AΛ]-valued function

FΛ(τ) := φΛ(τ) e0 + 2g(Λ)−2
3∑
j=0

3∑
k=0

φΛ

(
τ + k

4

)
i−jk vj + ψΛ(τ) e1Λ

is a modular form for Mp2(Z) of weight 1 − b−(Λ)/2 with respect to the Weil
representation ρΛ : Mp2(Z) → GL(C[AΛ]) attached to Λ ([8]), where Mp2(Z) is the
metaplectic cover of SL2(Z). By [48, Eq.(7.9)], the principal part of FΛ is given by

(8.1)
P≤0[FΛ] :={q−1 + 2(16− r(Λ))} e0 + 2g(Λ)+1{16− r(Λ)}v0

+ 2g(Λ)q−
1
4v3 − 216−r(Λ)q

12−r(Λ)
4 {1 + (28− r(Λ))q2} e1Λ

.

By (8.1), we easily see that P≤0[FΛ] = 0 if and only if (r(Λ), δ(Λ)) = (16, 0).

Let ` ∈ Z>0 be such that 2r(Λ)−16|` for all Λ. Then ` FΛ(τ) has integral Fourier
expansion at +i∞. Define ΨℓΛ as the Borcherds lift of ` FΛ(τ) (cf. [8, Th. 13.3]):

ΨℓΛ := ΨΛ(·, ` FΛ).

If r(Λ) ≤ 16, then ΨΛ(·, FΛ) is well defined and ΨℓΛ = ΨΛ(·, ` FΛ) = ΨΛ(·, FΛ)
ℓ in

the ordinary sense. Since O(Λ) (equivalently O(qΛ)) acts trivially on ` FΛ by [48,
Th. 7.7 (2)], ΨℓΛ is an automorphic form on ΩΛ for O+(Λ) by [8, Th. 13.3]. Recall
that the divisors D+

Λ , D
−
Λ and HΛ were introduced in Sections 2.2 and 2.3.

Theorem 8.1. The weight and the divisor of ΨℓΛ are given as follows:
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(1) If r(Λ) ≤ 20, then

wt(ΨℓΛ) =


(16− r(Λ))(2g(Λ) + 1)` (r(Λ) 6= 12, 20),

(16− r(Λ))(2g(Λ) + 1)`− 8(1− δ(Λ))` (r(Λ) = 12),

(16− r(Λ))(2g(Λ) + 1)`− (28− r(Λ))215−r(Λ)(1− δ(Λ))` (r(Λ) = 20),

div(ΨℓΛ) = ` {D−
Λ + (2g(Λ) + 1)D+

Λ − 216−r(Λ) HΛ}.
(2) If r(Λ) = 21, then

wt(ΨℓΛ) = (16− r(Λ))(2g(Λ) + 1)` = −53 · 41`,

div(ΨℓΛ) = ` [D−
Λ + (2g(Λ) + 1)D+

Λ − 216−r(Λ){HΛ + (28− r(Λ))D+
Λ}]

= 2−5` · {32D−
Λ + 3 · 17 · 643 · D+

Λ −HΛ}.

Proof. By using (8.1), the result follows from [8, Th. 13.3]. �
The Petersson norm ‖ΨℓΛ‖ = ‖ΨΛ(·, ` FΛ)‖ is an O(Λ)-invariant function on ΩΛ.

We identify ‖ΨℓΛ‖ with the corresponding function on MΛ and set

‖ΨΛ(·, FΛ)‖ := ‖Ψ(·, ` FΛ)‖1/ℓ.
Then ‖ΨΛ(·, FΛ)‖ is independent of the choice of ` ∈ Z>0 with 2r(Λ)−16|`. If
r(Λ) ≤ 16, then ‖ΨΛ(·, FΛ)‖ is the ordinary Petersson norm of ΨΛ(·, FΛ).

8.2. The structure of ΦM : the case δ = 1. Write Mg,k for a primitive 2-
elementary Lorentzian sublattice of LK3 such that

(g(Mg,k), k(Mg,k), δ(Mg,k)) = (g, k, 1).

Then Mg,0
∼= A+

1 ⊕ A⊕10−g
1 and (r, l, δ) = (11− g, 11− g, 1) for Mg,0. Set

Λg,k :=M⊥
g,k.

Lemma 8.2. There exist mutually perpendicular roots d1, . . . , dk ∈ ∆+
Λg,0

with

Λg,0 = Λg,k ⊕ Zd1 ⊕ · · · ⊕ Zdk.

In particular, if Mg,k exists, one has ΩΛg,k
= ΩΛg,k−1

∩Hdk .

Proof. The result follows from the classification in Table 1 in Proposition 1.1. �
By Theorem 6.1, there exist integers ag, bg, cg ∈ Z≥0 for 3 ≤ g ≤ 10 with

(8.2) div(J∗
Mg,0

χ8
g) = ag D−

Λg,0
+ bgHΛg,0

+ cg D+
Λg,0

.

Lemma 8.3. The following inequalities and equality hold:

ag > 0, bg > 0 (3 ≤ g ≤ 10), cg = 0 (3 ≤ g ≤ 9).

Proof. We get ag > 0 by [48, Prop. 4.2 (2)] and bg > 0 by Theorem 6.1. Let

6 ≤ g ≤ 9. Recall that the Zariski open subset D0,+
Λ (resp. D0,−

Λ ) of D+
Λ (resp. D−

Λ )

was defined in Section 2.2. By (3.5) and Proposition 6.2, we get JMg,0(D
0,+
Λg,0

) =

JMg,1
(Ω0

Λg,1
) 6⊂ θnull,g, which implies cg = 0 for 6 ≤ g ≤ 9. Let 1 ≤ g ≤ 5. By [48,

Prop. 4.2 (1)], JMg,g
(Ω0

Λg,g
) 6⊂ θnull,g. Since JMg,g−1

(D0,+
Λg,g−1

) = JMg,g
(Ω0

Λg,g
) by

(3.5) and Lemma 8.2, we get JMg,g−1
(Ω0

Λg,g−1
) 6⊂ θnull,g because D0,+

Λg,g−1
⊂ ΩΛg,g−1

.

By (3.5) and Lemma 8.2 again, we get JMg,g−2(D
0,+
Λg,g−2

) = JMg,g−1(Ω
0
Λg,g−1

) 6⊂
θnull,g. In the same way, we get inductively JMg,k

(D0,+
Λg,k

) 6⊂ θnull,g for k ≤ g − 1.

This proves cg = 0 for 3 ≤ g ≤ 5. �

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



30 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

Proposition 8.4. If 3 ≤ g ≤ 10, the following equality of divisors on ΩΛg,k
holds:

(8.3) div(J∗
Mg,k

χ8
g) = ag D−

Λg,k
+ 2kbgHΛg,k

+ cg D+
Λg,k

.

Proof. When g = 10, Mg,k makes sense only for k = 0 by Proposition 1.1 . Hence
the assertion is obvious by (8.2) when g = 10. We must prove (8.3) when g ≤ 9.
We will prove by induction the existence of integers ag,k, bg,k ∈ Z with

(8.4) div(J∗
Mg,k

χ8
g) = ag,k D−

Λg,k
+ bg,kHΛg,k

.

When k = 0, the assertion follows from (8.2) and Lemma 8.3. We assume (8.4)
for Mg,k. By Lemma 8.2, there exists d ∈ ∆+

Λg,k
such that Λg,k = Λg,k+1 ⊕ Zd.

Then ΩΛg,k+1
= Hd ∩ΩΛg,k

. Let i : ΩΛg,k+1
= Hd ∩ΩΛg,k

↪→ ΩΛg,k
be the inclusion.

By the compatibility of Torelli maps (3.5), we get the equality of holomorphic maps

(8.5) JMg,k+1
|Ω0

Λg,k+1
∪D0

Λg,k+1

= JMg,k
◦ i|Ω0

Λg,k+1
∪D0

Λg,k+1

.

Hence we get the equality of holomorphic sections on Ω0
Λg,k+1

∪ D0
Λg,k+1

(8.6) J∗
Mg,k+1

χ8
g = (JMg,k

◦ i)∗χ8
g = i∗J∗

Mg,k
χ8
g.

Since ΩΛg,k+1
\ (Ω0

Λg,k+1
∪D0

Λg,k+1
) has codimension ≥ 2 in ΩΛg,k+1

, we deduce from

(8.4) and (8.6) the equation of divisors on ΩΛg,k+1

(8.7)
div(J∗

Mg,k+1
χ8
g) = div(i∗J∗

Mg,k
χ8
g) = i∗div(J∗

Mg,k
χ8
g) = i∗(ag,kD−

Λg,k
+ bg,kHΛg,k

)

= ag,kD−
Λg,k+1

+ 2bg,kHΛg,k+1
.

Here the last equality follows from Propositions 2.1 and 2.2. This proves (8.4) for
Mg,k+1. By induction, (8.4) holds for all Mg,k.

Since ag,k+1 = ag,k and bg,k+1 = 2bg,k for k ≥ 0 by (8.4), (8.7), we get

(8.8) ag,k = ag, bg,k = 2kbg

for g ≤ 9 and k ≥ 0. This proves the result. �
Proposition 8.5. If 3 ≤ g ≤ 10, then the following inequalities hold:

ag ≥ 22g−1, bg ≥ 24.

Proof. The inequality ag ≥ 22g−1 follows from [48, Prop. 4.2 (2)]. (To confirm
JM (Ω0

Λ) 6⊂ θnull,g, it is assumed either r > 10 or (r, δ) = (10, 1) there. Since the
same proof of [48, Prop. 4.2 (2)] works under the same assumption JM (Ω0

Λ) 6⊂ θnull,g
and since JMg,0

(Ω0
Λg,0

) 6⊂ θnull,g for 3 ≤ g ≤ 10 by Theorem 6.1, the same conclusion

as in [48, Prop. 4.2 (2)] still holds for Mg,0.) Let us prove the second inequality.
Let j : Mg 3 C → Jac(C) ∈ Ag be the Torelli map. By [42, Prop. 3.1] or [43,

p.542 Proof of Th. 1], we get the equality of divisors on Mg

(8.9) div(j∗χg)|Mg = 2M′
g.

Set Λ := Λg,0 and µ0
Λ := µΛ ◦ ΠΛ|Ω0

Λ
, where ΠΛ : ΩΛ → MΛ is the projection.

Since JMg,0
|Ω0

Λ
= j ◦ µ0

Λ, we get by (8.9) the following equality of divisors on Ω0
Λ

(8.10) div(J∗
Mg,0

χ8
g)|Ω0

Λ
= (µ0

Λ)
∗div(j∗χ8

g)|Mg
= 24(µ0

Λ)
∗M′

g.

Since Supp((µ0
Λ)

∗M′
g) ⊂ HΛ∩Ω0

Λ and since HΛ is irreducible by Theorem 6.1, there

exists βg ∈ Z>0 such that the following equality of divisors on Ω0
Λ holds

(8.11) (µ0
Λ)

∗M
′
g = βg · HΛ|Ω0

Λ
.
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By (8.10), (8.11), we get the equality of divisors on Ω0
Λ

(8.12) div(J∗
Λχ

8
g)|Ω0

Λ
= 24βg · HΛ|Ω0

Λ
.

Comparing (8.2) with (8.12), we get bg = 24βg ≥ 24. This completes the proof. �
Theorem 8.6. There exists a constant Cg,k,ℓ depending only on g, k, ` such that
the following equality of automorphic forms on ΩΛg,k

holds:

Φ
2g−1(2g+1)
Mg,k

= Cg,k,ℓΨ
2g−1ℓ
Λg,k

⊗ J∗
Mg,k

χ8ℓ
g .

In particular, there exists a constant Cg,k depending only on g, k such that

τ
−2g(2g+1)
Mg,k

= Cg,k
∥∥ΨΛg,k

(·, 2g−1FΛg,k
)
∥∥ · J∗

Mg,k

∥∥χ8
g

∥∥ .
Proof. Since the result was proved in [48, Th. 9.1] in the case g ≤ 2, we assume
g ≥ 3 in what follows. Set M := Mg,k and Λ := Λg,k. Then r(Λ) ≥ 5 and hence
M∗

Λ \ MΛ has codimension ≥ 2 in M∗. By definition, M = Mg,k has invariants
r(M) = 11+k−g, l(M) = 11−k−g, so that r(Λ) = 11−k+g and l(Λ) = 11−k−g.

Since wt(χg) = 2g−2(2g+1) and wt(ΨℓΛ) = {16−r(Λ)}(2g+1)` by Theorem 8.1,
we get

(8.13) wt(Ψ2g−1ℓ
Λ ⊗ J∗

Mχ
8ℓ
g ) = 2g−1(2g + 1)` · (16− r(Λ), 4).

Since wt(ΦΛ) = `(16− r(Λ), 4) by Theorem 5.1, we get by (8.13)

(8.14) wt((Ψ2g−1

Λ ⊗ J∗
Mχ

8
g)
ℓ/Φ

2g−1(2g+1)
Λ ) = (0, 0).

By (8.14),

ϕΛ := (Ψ2g−1ℓ
Λ ⊗ J∗

Mχ
8ℓ
g )/Φ

2g−1(2g+1)
Λ .

descends to a meromorphic function on MΛ. Since M∗
Λ is normal and since

dimM∗
Λ \MΛ ≤ dimM∗

Λ − 2, ϕΛ extends to a meromorphic function on M∗
Λ.

(1) Let r(M) ≥ 2. Hence r(Λ) ≤ 20. By Theorem 8.1 and Proposition 8.4,
(8.15)

div(Ψ2g−1

Λ ⊗ J∗
Mχ

8
g) = 2g−1{D−

Λ + (2g + 1)D+
Λ − 216−r(Λ)HΛ}+ agD−

Λ + 2kbgHΛ

= (2g−1 + ag)D−
Λ + 2g−1(2g + 1)D+

Λ + 2k(bg − 24)HΛ.

Since div(ΦΛ) = `DΛ, we deduce from (8.15) that

(8.16) div(ϕΛ) = (ag − 22g−1)`D−
Λ + 2k(bg − 24)`HΛ.

Since ag ≥ 22g−1 and bg ≥ 24 by Proposition 8.5, the divisor of ϕΛ is effective by
(8.16). Since ϕΛ is a holomorphic function on M∗

Λ, ϕΛ must be a constant function
on M∗

Λ, which implies that

(8.17) ag = 22g−1, bg = 24.

This completes the proof when r(M) ≥ 2.
(2) Assume r(M) = 1. Then M = A+

1 and r(Λ) = 21, g = 10, k = 0, δ = 1. By
Theorem 8.1 (2), Proposition 8.4 and the equality (g − 1) + 16− r(Λ) = 4, we get
(8.18)

div(Ψ2g−1ℓ
Λ ⊗ J∗

Mχ
8ℓ
g )

= 2g−1`{D−
Λ + (2g + 1)D+

Λ − 216−r(Λ) HΛ − 216−r(Λ)(28− r(Λ))D+
Λ}

+ ` {ag D−
Λ + bgHΛ + cg D+

Λ}
= `{(2g−1 + ag)D−

Λ + (bg − 24)HΛ}+ ` {(22g−1 + 2g−1 + cg)− 24 · 7)}D+
Λ .
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Since div(ΦΛ) = `DΛ, we get by (8.18)

(8.19) div(ϕΛ) = ` {(ag − 22g−1)D−
Λ + (bg − 24)HΛ}+ `(cg − 24 · 7)D+

Λ .

Since ag ≥ 22g−1 and bg ≥ 24 by Proposition 8.5, it follows from (8.19) that ϕΛ

is a non-zero holomorphic function on MΛ \ D+

Λ . By Lemma 8.7 below, ϕΛ is a
non-zero constant. This completes the proof of Theorem 8.6. �

Lemma 8.7. WhenM ' A+
1 , any holomorphic function on MΛ\D

+

Λ is a constant.

Proof. Let U ⊂ |OP2(6)| be the space of smooth plane sextics, and let V ⊂ |OP2(6)|
be that of sextics with at most one node. By the stability criterion for plane sextics
[40], we have a geometric quotient V/PGL3 of V by PGL3, which contains U/PGL3

as an open set. It is well-known that M0
Λ is isomorphic to U/PGL3 by associating

to a smooth plane sextic the double covers of P2 branched over it. Shah [40] has
shown that this isomorphism extends to an open embedding V/PGL3 ↪→ MΛ and

that its image is contained in MΛ \D
+

Λ . Hence a holomorphic function on MΛ \D
+

Λ

gives one on V/PGL3, which in turn is pulled-back to V . Since the complement of
V in |OP2(6)| is of codimension 2 in |OP2(6)|, a holomorphic function on V extends
to |OP2(6)| holomorphically and so is a constant. �

Remark 8.8. Let (g, k) = (10, 0). Since ϕΛ is constant when Λ = (A+
1 )

⊥, we get

(8.20) a10 = 22g−1 = 219, b10 = 24, c10 = 24 · 7

by (8.19). In particular, J∗
A+

1

χ10 vanishes on D+
Λ . Since U = [A+

1 ⊕ Zd] for any

d ∈ ∆+
Λ , this, together with (3.5), implies that J∗

Uχ10 vanishes identically on ΩU⊥ .

9. The structure of τM : the case δ = 0

In Section 9, M ⊂ LK3 is assumed to be a primitive 2-elementary Lorentzian
sublattice with δ = 0. As before, we set Λ =M⊥.

9.1. The structure of ΦM : the case r 6= 2, 10 and δ = 0.

Lemma 9.1. Let Λ ∼= U⊕U(k)⊕D4⊕E8 with k = 1, 2. Then the following equality
of divisors on ΩΛ holds:

div(J∗
Mχ

8
g) = 2g−1(2g + 1)DΛ.

Proof. Recall that the lattice Λg,k was defined in Section 8. Since Λg,k−1
∼= Λ⊕A1

by comparing the invariants (r, l, δ), there is a root d ∈ ∆+
Λg,k−1

with Λg,k−1∩d⊥ ∼=
Λ. Since d ∈ ∆+

Λg,k−1
, we get by (8.3), (8.8), (8.17) and Propositions 2.1 and 2.2

div(J∗
Mχ

8
g) = div(J∗

Mg,k−1
χ8
g)|ΩΛ = {22g−1D−

Λg,k−1
+ 2k+3HΛg,k−1

}|ΩΛ

= 22g−1D−
Λ + 2k+4HΛ = 2g−1(2g + 1)DΛ.

To get the last equality, we used g− 1 = k+4, D+
Λ = 0 and HΛ = DΛ for Λ, where

the last two equalities follow from εΛ = −2, δ(Λ) = 0 and 1Λ = 0. �

Theorem 9.2. If r 6= 2, 10 and δ = 0, there is a constant CM,ℓ > 0 depending only
on M and ` such that the following equality of automorphic forms on ΩΛ holds

Φ
2g−1(2g+1)
M = CM,ℓΨ

2g−1ℓ
Λ ⊗ J∗

Mχ
8ℓ
g .
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In particular, there is a constant CM > 0 depending only on M such that the
following equality of automorphic forms on ΩΛ holds:

τ
−2g(2g+1)
M = CM

∥∥ΨΛ(·, 2g−1FΛ)
∥∥ · J∗

M

∥∥χ8
g

∥∥ .
Proof. When r > 10, the result was proved in [48, Th. 9.1]. We may assume
2 < r < 10 and δ = 0. By Proposition 1.1, we get r = 6 and Λ ∼= U⊕U(k)⊕D4⊕E8,
k = 1, 2. Since δ(Λ) = 0, we have D+

Λ = 0 and 1Λ = 0. Since r(Λ) = 16, we have
εΛ = −2, which, together with 1Λ = 0, yields that HΛ = DΛ. By Theorem 8.1, we
get wt(ΨℓΛ) = 0 and

div(ΨℓΛ) = ` (D−
Λ − 216−r(Λ)HΛ) = ` (DΛ −DΛ) = 0,

which implies that ΨΛ is a non-zero constant function on ΩΛ.

Set ϕΛ := Ψ2g−1ℓ
Λ ⊗ J∗

Mχ
8ℓ
g /Φ

2g−1(2g+1)
M . Since ΨΛ is a non-zero constant, we

deduce from Lemma 9.1 and wt(ΦM ) = (0, 4`), div(ΦM ) = `DΛ that

(9.1) wt(ϕΛ) = (0, 0), div(ϕΛ) = 0.

Hence ϕΛ is a holomorphic function on MΛ by (9.1) and extends holomorphically
to M∗

Λ. Thus ϕΛ is a non-zero constant. �

9.2. The structure of ΦM : the case (r, δ) = (10, 0). In this subsection, we
assume that M is non-exceptional and

(r, δ) = (10, 0).

Then 0 ≤ l ≤ 8 and 2 ≤ g ≤ 6. Since J∗
Mχg vanishes identically on ΩΛ (e.g. [48,

Prop. 9.3]), Theorem 8.6 does not hold in this case. Identify Mg with its image
by the Torelli map j : Mg ↪→ Ag. Then JM : Ω0

Λ → Ag is identified with the map
µΛ = j−1 ◦ JM : Ω0

Λ → Mg. Write Hhyp,g ⊂ Mg for the hyperelliptic locus.

Proposition 9.3. Let M be non-exceptional with (r, δ) = (10, 0). Then J∗
MΥg does

not vanish identically on Ω0
Λ. Moreover, for any d ∈ ∆Λ, J

∗
[M⊥d]χg−1 is nowhere

vanishing on Ω0
Λ∩d⊥ .

Proof. For the first assertion, it suffices to prove µΛ(Ω
0
Λ) 6⊂ div(Υg) ∩ Mg. Since

Υ2 is nowhere vanishing on the diagonal locus of S2 and since µΛ(Ω
0
Λ) is the image

of the diagonal locus by the projection S2 → A2, we get div(Υ2) ∩ µΛ(Ω
0
Λ) = ∅.

Similarly, we have div(Υ3) ∩ µΛ(Ω
0
Λ) = ∅ by [22, Lemma 11]. Let g = 4. Since

µΛ(Ω
0
Λ) ⊂ div(χ4), the inclusion µΛ(Ω

0
Λ) ⊂ div(Υ4) ∩M4 would imply µΛ(Ω

0
Λ) ⊂

div(χ4)∩div(Υ4)∩M4. Since the right hand side coincides with Hhyp,4 by [24, p.544
Cor.], this last inclusion contradicts Lemma 7.3. Thus µΛ(Ω

0
Λ) 6⊂ div(Υ4)∩M4. Let

g = 5. Let F5 be the Schottky form in genus 5 (cf. [21, p.1018]), whose zero divisor
characterizes the (closure of) trigonal locus of M5 (cf. [21, Cor. 18]). By [25], a
general point of µΛ(Ω

0
Λ) is contained in the intersection of the thetanull divisor and

the trigonal locus. Then the inclusion µΛ(Ω
0
Λ) ⊂ div(Υ5) ∩M5 would imply

µΛ(Ω
0
Λ) ⊂ div(F5) ∩ div(χ5) ∩ div(Υ5) ∩M5.

Since the right hand side coincides with Hhyp,5 by [17, p.67], this last inclusion
contradicts Lemma 7.3. Thus µΛ(Ω

0
Λ) 6⊂ div(Υ5) ∩ M5. When g = 6, we get

µΛ(Ω
0
Λ) 6⊂ div(Υ6) ∩ M6 by Lemma 4.1 and Lemma 7.4. This proves the first

assertion. Since r([M ⊥ d]) > 10, the second assertion follows from [48, Prop. 4.2
(1)]. This completes the proof. �
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Theorem 9.4. Let M be non-exceptional with (r, δ) = (10, 0). Then there is a
constant CM,ℓ > 0 depending only on M and ` such that the following equality of
automorphic forms on ΩΛ holds

Φ
(2g−1+1)(2g−1)
M = CM,ℓΨ

(2g−1+1)ℓ
Λ ⊗ J∗

MΥℓg.

In particular, there is a constant CM > 0 depending only on M such that

τ
−(2g+2)(2g−1)
M = CM

∥∥ΨΛ(·, (2g−1 + 1)FΛ)
∥∥ · J∗

M ‖Υg‖ .

Proof. Since (r, δ) = (10, 0), we get (r(Λ), δ(Λ)) = (12, 0). By [48, Th. 8.1],

(9.2) wt(ΨΛ) = (4(2g − 1), 0), div(ΨΛ) = DΛ.

Since J∗
MΥg does not vanish identically on Ω0

Λ by Proposition 9.3 and since DΛ is
irreducible, there exists a ∈ Z≥0 and an effective divisor EΛ on ΩΛ such that

(9.3) wt(J∗
MΥg) = (0, 4(2g−1 + 1)(2g − 1)), div(J∗

MΥg) = aDΛ + EΛ.

Set ϕΛ := Ψ
(2g−1+1)ℓ
Λ ⊗J∗

MΥℓg/Φ
(2g−1+1)(2g−1)
M . Comparing (9.2), (9.3) and wt(ΦM ) =

(4`, 4`), div(ΦM ) = `DΛ, we get

(9.4) wt(ϕΛ) = (0, 0), div(ϕΛ) = ` {a− 2(22(g−1) − 1)}DΛ + ` EΛ.

By Proposition 9.3, we can apply Lemma 4.3 to a general curve γ : ∆ → MΛ

intersecting D0

Λ transversally. Since a ≥ 2(22(g−1) − 1) by Lemma 4.3, we get
div(ϕΛ) ≥ 0. By the Koecher principle, ϕΛ is a non-zero constant. �

In the rest of this section, we determine ΦM for the remaining M , i.e., those M
with (r, δ) = (2, 0). Then, either M ∼= U or U(2).

9.3. The structure of ΦU. In Section 9.3, we set

M := U, Λ =M⊥ := U⊕2 ⊕ E⊕2
8 .

Then g = 10 and J∗
Mχ10 vanishes identically on Ω0

Λ.
Let E4(τ) = θE+

8
(τ) = 1 + 240q + · · · be the Eisenstein series of weight 4 (or

equivalently the theta series of E+
8 ) and set

(9.5) fΛ(τ) := E4(τ)/η(τ)
24 = q−1 + 264 +O(q).

Then fΛ(τ) is a modular form of weight −8. In Section 9.3, we prove the following:

Theorem 9.5. There exists a constant CM,ℓ > 0 such that

Φ
(2g−1+1)(2g−1)
M = CM,ℓΨΛ(·, 2g−1FΛ + fΛ)

ℓ ⊗ J∗
MΥℓg.

In particular, there is a constant CM > 0 depending only on M = U such that

τ
−(2g−1)(2g+2)
M = CM

∥∥ΨΛ(·, 2g−1FΛ + fΛ)
∥∥ · J∗

M ‖Υg‖ .

For the proof of Theorem 9.5, we first prove the following:

Lemma 9.6. J∗
MΥ10 is nowhere vanishing on Ω0

Λ \ HΛ.

Proof. Let (X, ι, α) be an arbitrary marked 2-elementaryK3 surface of typeM = U
with period in ΩΛ\HΛ. Let C be the component of genus 10 ofXι. Fix a symplectic
basis of H1(C,Z), so that Ω(C) ∈ S10, where Ω(C) is the period of C with respect
to the symplectic basis. By Proposition 7.1, there is a unique even pair (a0, b0),
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a0, b0 ∈ {0, 12}
10 such that θa0,b0(Ω(C)) = 0 and θa,b(Ω(C)) 6= 0 for all even pair

(a, b) with (a, b) 6= (a0, b0). Hence we get

J∗
MΥ10(X, ι) = Υ10(Ω(C)) =

∏
(a,b) ̸=(a0,b0)

θa,b(Ω(C))8 6= 0.

This proves the lemma. �

By Lemma 9.6, there exist α, β ∈ Z>0 such that

(9.6) div(J∗
MΥ10) = αDΛ + βHΛ.

To prove Theorem 9.5, we must determine β. We use the following notation: Set

L := U⊕ U⊕ E8 ⊕ E8 ⊕ A1 = Λ⊕ A1.

Let d ∈ ∆+
L be a generator of A1. Then Λ = L ∩ d⊥, L⊥ = A+

1 and AL = {0,1L},
where 1L = [d/2]. As before, we make the identification

Hd = ΩL∩d⊥ = ΩΛ.

Let [η] ∈ H0
d be an arbitrary point. Let U ∼= ∆19 be a small neighborhood of

[η] in ΩL equipped with a system of coordinates (t, s1, . . . , s18) such that U ∩DL =
U ∩ Hd = U ∩ ΩΛ = {(t, s) ∈ U ; t = 0} ∼= ∆18. Since d ∈ ∆+

L and hence
g(L) = g(Λ) = 10 by [48, Lemma 11.5], the Torelli map JA+

1
is a holomorphic map

from U to A10 by Theorem 3.5. Let Π : S10 → A10 be the projection. Since U
is contractible, JA+

1
: U → A10 is liftable. Namely, there exists a holomorphic map

J̃A+
1
: U → S10 such that

JA+
1
= Π ◦ J̃A+

1
.

Since J̃A+
1

takes its values in S10, the value θa,b(J̃A+
1
(t, s)) makes sense for all

(s, t) ∈ U and even (a, b), a, b ∈ {0, 1/2}10. Since J̃∗
A+

1

χ10 =
∏

(a,b) even J̃
∗
A+

1

θa,b is

nowhere vanishing on U \ (DL ∪ HL) and since there exists by Proposition 7.1 a
unique even theta constant θa0,b0 vanishing identically on Hd, we get the following:

• U ∩Hd is a component of U ∩ div(J̃∗
A+

1

θa0,b0);

• U ∩Hd is not a component of U ∩div(J̃∗
A+

1

θa,b) for any even (a, b) 6= (a0, b0).

Thus there exist c ∈ Z>0, ca,b(λ) ∈ Z≥0 such that for (a, b) = (a0, b0)

(9.7) div(J̃∗
A+

1
θ8a0,b0)|U = cHd +

∑
λ∈L∨/±1, λ2=−9/2, |⟨λ,d⟩|=1, [λ]=1L

ca0,b0(λ)Hλ

and such that for all (a, b) 6= (a0, b0)

(9.8) div(J̃∗
A+

1
θ8a,b)|U =

∑
λ∈L∨/±1, λ2=−9/2, |⟨λ,d⟩|=1, [λ]=1L

ca,b(λ)Hλ.

Let sd ∈ O(L) be the reflection with respect to d. Since JA+
1
◦ sd = JA+

1
, we have

s∗d ◦ (J̃A+
1
)∗ = (J̃A+

1
)∗, which implies the following equality for every even pair (a, b)

(9.9) ca,b(sd(λ)) = ca,b(λ).

Lemma 9.7. Let λ ∈ L∨ be such that λ2 = −9/2, |〈λ, d〉| = 1, [λ] = 1L. If
ca0,b0(λ) > 0, then ca,b(λ) = 0 for all (a, b) 6= (a0, b0).
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Proof. Assume ca0,b0(λ) > 0 and ca′,b′(λ) > 0 for some even (a′, b′) 6= (a0, b0).
Then, for every 2-elementary K3 surface (X, ι) of type A+

1 whose period lies in
U∩Hλ\Hd, X

ι has two distinct effective even half canonical bundles corresponding
to (a0, b0) and (a′, b′). This contradicts Remark 6.10. �

Recall that i : ΩΛ ↪→ ΩL is the inclusion induced by that of lattices Λ = L∩d⊥ ⊂
L. On H0

d ∩ U , set

(9.10) J̃M := J̃A+
1
|U∩H0

d
.

By (3.5), we have JM = Π ◦ J̃M .
Since U ∩Hd ⊂ H0

d = Ω0
Λ, we have the following equality of divisors on U ∩ Ω0

Λ

by (9.6)

(9.11) div(J̃∗
MΥ10)|U∩Hd

= β
∑

µ∈Λ/±1, µ2=−4

Hµ.

Lemma 9.8. For every λ ∈ L∨ with λ2 = −9/2, 〈λ, d〉 = ±1, λ ≡ 1L mod L, the
following equalities hold

ca0,b0(λ) = 0,
∑

(a,b)̸=(a0,b0)

ca,b(λ) = β/2.

Proof. Since J̃∗
A+

1

(χ10/θa0,b0)
8 |U∩Hd

= J̃∗
A+

1

Υ10|U∩Hd
by the definitions of Υg and

θa0,b0 , we get the equality of divisors on U ∩ Ω0
Λ

(9.12) i∗div(J̃∗
A+

1
(χ10/θa0,b0)

8 |U ) = i∗div(J̃∗
A+

1
Υ10|U ) = div(J̃∗

MΥ10),

where the second equality follows from (9.10). On the other hand, we get by (9.8)

div(J̃∗
A+

1
(χ10/θa0,b0)

8 |U ) =
∑

λ∈L∨/±1, λ2=−9/2, |⟨λ,d⟩|=1, [λ]=1L

(
∑

(a,b)̸=(a0,b0)

ca,b(λ))Hλ,

which, together with (2.2), yields the following equality of divisors on U
(9.13)

i∗div

(
J̃∗
A+

1

(
χ10

θa0,b0

)8

|U

)
=

∑
µ∈Λ/±1, µ2=−4

∑
(a,b)̸=(a0,b0)

{ca,b(µ+
d

2
)+ca,b(µ−

d

2
)}Hµ.

Substituting (9.11), (9.13) into (9.12) and comparing the coefficients of Hµ, we get

(9.14)
∑

(a,b)̸=(a0,b0)

{ca,b(µ+
d

2
) + ca,b(µ− d

2
)} = β.

Since ca,b(µ + d
2 ) = ca,b(µ − d

2 ) by (9.9), we get
∑

(a,b)̸=(a0,b0)
ca,b(λ) = β/2 by

(9.14). If ca0,b0(λ) > 0, then
∑

(a,b)̸=(a0,b0)
ca,b(λ) = 0 by Lemma 9.7. Since β > 0,

this contradicts the equality
∑

(a,b)̸=(a0,b0)
ca,b(λ) = β/2. Thus ca0,b0(λ) = 0. �

Lemma 9.9. One has the equality β = 25.

Proof. By (9.7), (9.8) and Lemma 9.8, we get on U

div(J̃∗
A+

1
θ8a0,b0) = cHd, div(J̃∗

A+
1
(χ10/θa0,b0)

8) = (β/2) · HL,

which yields the equality of divisors div(J∗
A+

1

χ8
10) = cD+

L + (β/2) · HL on U . By

Remark 8.8, we get c = c10 = 24 · 7 and β/2 = b10 = 24. Thus β = 25. �
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Proof of Theorem 9.5 By Theorem 8.1 (1), we have

(9.15) wt(Ψ24

Λ ) = −4(25 + 1)(29 − 24 + 1), div(Ψ24

Λ ) = 24 DΛ −HΛ.

By [8, Th. 13.3], we get

(9.16) wt(ΨΛ(·, fΛ)) = 22(25 + 1), div(ΨΛ(·, fΛ)) = DΛ.

By (9.15), (9.16), we get

(9.17) wt(ΨΛ(·, 2g−1FΛ + fΛ)) = −22(29 + 1)(210 − 1),

(9.18) div(ΨΛ(·, 2g−1FΛ + fΛ)) = (29 + 1)DΛ − 25HΛ.

Set ϕΛ := ΨΛ(·, 2g−1FΛ + fΛ)
ℓ ⊗ Υℓg/Φ

(2g−1+1)(2g−1)
M . Since wt(ΦM ) = (−4`, 4`)

and div(ΦM ) = `DΛ, we deduce from (9.17), (9.18) that wt(ϕΛ) = (0, 0) and

div(ϕΛ) = `{α− 2(218 − 1)}DΛ + (β − 25)HΛ = `{α− 2(218 − 1)}DΛ,

where we used Lemma 9.9 to get the second equality. By Lemma 9.6 and Theo-
rem 8.6 for [M ⊥ d], d ∈ ∆Λ, Lemma 4.3 applies to a general curve γ : ∆→ MΛ in-

tersecting D0

Λ transversally. Since α ≥ 2(218−1) by Lemma 4.3, we get div(ϕΛ) ≥ 0.
As before, this implies that ϕΛ is a constant. �

9.4. The structure of ΦU(2). In Section 9.4, we set

M := U(2), Λ =M⊥ := U(2)⊕ U⊕ E8 ⊕ E8.

Then g = 9 and J∗
Mχ9 vanishes identically. Let {e, f} be a basis of M = U(2) with

e2 = f2 = 0 and 〈e, f〉 = 2. Hence (e+f)/2 ∈ AΛ is the unique element with non-zero
norm. Let e00, e01, e10, e11 be the standard basis of C[AΛ] = C[AU(2)], where eαβ
corresponds to (α e + β f)/2 ∈ AΛ. Applying the construction [9, Proof of Lemma
11.1], [38, Th. 6.2] to the modular form η(τ)−8η(2τ)−8, we define

(9.19)
fΛ(τ) := 8

∑
γ∈AΛ

{η
(τ
2

)−8

η(τ)−8 + (−1)qΛ(γ)η

(
τ + 1

2

)−8

η(τ + 1)−8} eγ

+ η(τ)−8η(2τ)−8 e00.

Then fΛ(τ) is an O(AΛ)-invariant modular form of weight −8 and of type ρΛ with
principal part

(9.20) P≤0[fΛ] = (q−1 + 136) e00 + 16q−1/2 e11.

Since O(qΛ) preserves (e+ f)/2, the Heegner divisor of ΩΛ

HΛ(−1, e11) :=
∑

λ∈Λ∨/±1;λ2=−1, [λ]=(e+f)/2 mod Λ

Hλ

is O+(Λ)-invariant. By [8, Th. 13.3], the Borcherds lift ΨΛ(·, fΛ) is an automorphic
form on ΩΛ for O+(Λ) such that

(9.21) wtΨΛ(·, fΛ) = 68 = 26 + 22, divΨΛ(·, fΛ) = DΛ + 24 HΛ(−1, e11).

In this subsection, we prove the following:
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Theorem 9.10. There exists a constant CM,ℓ > 0 such that

Φ
(2g−1+1)(2g−1)
M = CM,ℓΨΛ(·, 2g−1FΛ + fΛ)

ℓ ⊗ J∗
MΥℓg.

In particular, there is a constant CM > 0 depending only on M = U(2) such that

τ
−(2g+2)(2g−1)
M = CM

∥∥ΨΛ(·, 2g−1FΛ + fΛ)
∥∥ · J∗

M ‖Υg‖ .

Define the reduced divisor H1 on ΩΛ as

H1 := HΛ −HΛ(−1, e11) =
∑

λ∈Λ/±1, λ2=−4, div(λ)=1

Hλ.

The divisor H1 ⊂ MΛ in Section 7.2 is obtained as the quotient H1 = H1/O(Λ).

Lemma 9.11. J∗
MΥ9 is nowhere vanishing on Ω0

Λ \ H1.

Proof. By using Proposition 7.2 instead of Proposition 7.1, the proof is parallel to
that of Lemma 9.6. �

By Lemma 9.11, there exist α, β ∈ Z>0 such that

(9.22) div(J∗
MΥ9) = αDΛ + βH1.

Lemma 9.12. One has the inequality β ≥ 24.

Proof. Let λ ∈ Λ be an arbitrary vector such that λ2 = −4 and div(λ) = 1. We set

H0
λ := Hλ \ (DΛ ∪

⋃
λ′∈Λ, (λ′)2=−4, div(λ′)=1

Hλ′).

Then H0
λ is a non-empty Zariski open subset of Hλ. Let [η] ∈ H0

λ be an arbitrary
point. Let U ∼= ∆18 be a small neighborhood of [η] in ΩΛ such that U ∩(H1∪DΛ) =
U ∩H0

λ
∼= ∆17. Since U is small enough, there is a marked family of 2-elementary

K3 surfaces (p : (X , ι) → U,α) of typeM = U(2), whose period map is the inclusion
U ↪→ ΩΛ. Set C := X ι. Then p : C → U is a family of smooth curves of genus 9. Set
Ct := p−1(t)∩ C for t ∈ U . The period map JM |U is a holomorphic map from U to
A9 such that JM (t) = Ω(Ct). Since U is contractible, the local system R1(p|C)∗Z
is trivial and admits a symplectic basis. Hence JM : U → A9 lifts to a holomorphic

map J̃M : U → S9 such that JM = Π ◦ J̃M , where Π : S9 → A9 is the projection.

Since J̃M takes its values in S9, the value of the theta constant θa,b(J̃M (t))
makes sense for all t ∈ U and for every even pair (a, b), a, b ∈ {0, 1/2}9. Moreover,
since the family p : C → U admits a level 4l-structure for any l ∈ Z>0, the square

root J̃∗
M

√
θa,b is a well-defined holomorphic section of a holomorphic line bundle

on U for every even pair (a, b) by [43, Th. 1]. Since any holomorphic line bundle on

U is trivial, we may regard J̃∗
M

√
θa,b ∈ O(U).

We deduce from Proposition 7.2 the existence of a unique even pair (a0, b0) and
at least one even pair (a1, b1) with the following properties:

(1) J̃∗
Mθa0,b0 vanishes identically on U ;

(2) Set-theoretically, U ∩ div(J̃∗
Mθa1,b1) = U ∩Hλ.

By (2) and the fact J̃∗
M

√
θa1,b1 ∈ O(U), there exists c ∈ Z>0 such that on U

div(J̃∗
Mθa1,b1) = 2cHλ.
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By (1) and the definition of Υ9, we have

J̃∗
MΥ9|U =

∏
(a,b)̸=(a0,b0)

J̃∗
Mθ

8
a,b = J̃∗

Mθ
8
a1,b1 ·

∏
(a,b)̸=(a0,b0),(a1,b1)

J̃∗
Mθ

8
a,b.

Setting E := div(
∏

(a,b) ̸=(a0,b0),(a1,b1)
J̃∗
Mθ

8
a,b), we get the equality of divisors on U

div(J̃∗
MΥ9|U ) = 16cHλ + E.

Thus we get the desired inequality β ≥ 16c ≥ 24. �
Proof of Theorem 9.10 By Theorem 8.1 (2), we get

(9.23) wt(ΨℓΛ) = −2−2{24(29 + 1) + 1}`, div(ΨℓΛ) = `
(
DΛ − 2−4HΛ

)
.

By (9.21) and (9.23), we get
(9.24)

wt(Ψ28

Λ ·ΨΛ(·, fΛ)) = −22(28+1)(29−1), div(Ψ28

Λ ·ΨΛ(·, fΛ)) = (28+1)DΛ−24H1.

Since wt(J∗
MΥ9) = (0, 22(28 + 1)(29 − 1)) and since div(J∗

MΥ9) = αDΛ + βH1 by
(9.22), we get

wt
(
ΨΛ(·, 28FΛ + fΛ)⊗ J∗

MΥ9

)
=
(
−4(28 + 1)(29 − 1), 4(28 + 1)(29 − 1)

)
,

div
(
ΨΛ(·, 28FΛ + fΛ)⊗ J∗

MΥ9

)
= (α+ 28 + 1)DΛ + (β − 24)H1.

Since wt(ΦM ) = (−4`, 4`) and div(ΦM ) = `DΛ,

ϕΛ := ΨΛ(·, 28FΛ + fΛ)
ℓ ⊗ J∗

MΥℓ9/Φ
(28+1)(29−1)
M

is a meromorphic function on MΛ with divisor

div(ϕΛ) = `{α− 2(216 − 1)}DΛ + `(β − 24)H1.

By Lemma 9.11 and Theorem 8.6 for [M ⊥ d], d ∈ ∆Λ, Lemma 4.3 applies to a

general curve γ : ∆→ MΛ intersecting D0

Λ transversally. Since α ≥ 2(216 − 1) and
β ≥ 24 by Lemmas 4.3 and 9.12, we get div(ϕΛ) ≥ 0. Thus ϕΛ is a constant. �
9.5. The divisors of J∗

Mχ
8
g and J

∗
MΥg. In Section 9.5, we summarize the formulas

for the divisors of J∗
Mχ

8
g and J∗

MΥg obtained so far. We also give a geometric
interpretation of this result in terms of log Del Pezzo surfaces.

Theorem 9.13. Let M be a non-exceptional primitive 2-elementary Lorentzian
sublattice of LK3 with Λ =M⊥ and invariants (r, l, δ). Then the following holds:
(1) If g = 0, i.e., r + l = 22, then div(J∗

Mχ
8
g) = 0.

(2) If r ≥ 2, δ = 1 and 1 ≤ g ≤ 9, then div(J∗
Mχ

8
g) = 22g−1D−

Λ + 2k+4HΛ.

(3) If (r, δ) = (1, 1), then div(J∗
Mχ

8
g) = 219D−

Λ + 24 · 7D+
Λ + 24HΛ.

(4) If δ = 0 and r 6= 2, 10, then div(J∗
Mχ

8
g) = 2g−1(2g + 1)DΛ.

(5) If (r, δ) = (2, 0) or (10, 0), then J∗
Mχ

8
g vanishes identically on ΩΛ.

(6) If (r, δ) = (10, 0), then div(J∗
MΥg) = 2(22(g−1) − 1)DΛ.

(7) If (r, l, δ) = (2, 0, 0), then div(J∗
MΥ10) = 2(218 − 1)DΛ + 25 HΛ.

(8) If (r, l, δ) = (2, 2, 0), then div(J∗
MΥ9) = 2(216−1)DΛ+24 {HΛ−HΛ(−1, e11)}.

Proof. The assertion (1) is obvious since χg = 1 for g = 0. For g = 1, 2 (resp.
3 ≤ g ≤ 9), we get (2) by [48, Prop. 4.2 (2), (3)] (resp. Lemma 8.3, Proposition 8.4,
(8.17)). We get (3) by Proposition 8.4, (8.17), (8.20). When r > 10 (resp. 2 < r <
10), we get (4) by [48, Eq. (9.3)] and the equality a = E = 0 in [48, Proof of Th. 9.1]
(resp. Lemma 9.1). We get (5) by [48, Prop. 9.3] when r = 10. When r = 2, δ = 0,
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40 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

there are two possible cases: g = 10 and g = 9. In case g = 10, (5) was proved in
Remark 8.8. In case g = 9, (5) was proved in Section 7.2. This proves (5). We get
(6) by (9.3) and the equality a = 2(22(g−1) − 1) in the proof of Theorem 9.4. We
get (7) by (9.6), since β = 25 and α = 2(218 − 1) in the proof of Theorem 9.5. We
get (8) by (9.22), since the equalities α = 2(216 − 1) and β = 24 follow from the
proof of Theorem 9.10. This completes the proof. �

Corollary 9.14. For (r, l, δ) = (10, 2, 0), (10, 4, 0), JM (Ω0
Λ) is disjoint from the

hyperelliptic locus. For (r, l, δ) = (10, 0, 0), every member of JM (Ω0
Λ) has exactly

one effective even theta characteristic.

Proof. Set-theoretically, Hhyp,4 (resp. Hhyp,5) is given by div(χ4) ∩ div(Υ4) (resp.
div(χ5) ∩ div(Υ5) ∩ div(F5)) on M4 (resp. M5). Since J∗

MΥ4 (resp. J∗
MΥ5)

is nowhere vanishing on Ω0
Λ by Theorem 9.13 (6) for (r, l, δ) = (10, 4, 0) (resp.

(10, 2, 0)), we get the first assertion. When (r, l, δ) = (10, 0, 0), J∗
Mχ6 vanishes

identically on Ω0
Λ and J∗

MΥ6 is nowhere vanishing on Ω0
Λ by Theorem 9.13 (5), (6).

This, together with Lemma 4.1, implies the second assertion. �

Let us give a geometric interpretation of Theorem 9.13, where we use the notion
of log Del Pezzo surfaces of index ≤ 2. We refer to [1] for this notion. Let S be
a log Del Pezzo surface of index ≤ 2. By [1, Th. 1.5], the bi-anticanonical system
of S contains a smooth member. For any smooth member C ∈ | − 2KS |, one
can canonically associate a 2-elementary K3 surface (X(S,C), ι(S,C)) whose quotient
X(S,C)/ι(S,C) is the right resolution of S. (See [1, Sect. 2.1].) We define the invariant

δ(S) ∈ {0, 1} as that of the 2-elementary lattice H2(X(S,C),Z)+. Then δ(S) is
independent of the choice of a smooth member C ∈ | − 2KS |.

Corollary 9.15. Let S be a log Del Pezzo surface of index ≤ 2 and let C ∈ |−2KS |
be a smooth member. If S 6∼= F0,P(1, 1, 2), then the following hold:
(1) When (ρ(S), δ(S)) 6= (2, 0), (10, 0), C has an effective even theta characteristic
if and only if the period of (X(S,C), ι(S,C)) lies in the characteristic Heegner divisor.
(2) When (ρ(S), δ(S)) = (2, 0) or (10, 0), C always has an effective even theta
characteristic. Moreover, C has at least two effective even theta characteristics if
and only if the period of (X(S,C), ι(S,C)) lies in the characteristic Heegner divisor.

Proof. Since the period of C is exactly the image of (X(S,C), ι(S,C)) by the Torelli
map, the result follows from Theorem 9.13. �

9.6. The quasi-affinity of M0
Λ. As an application of the results in Sections 8 and

9, we obtain the quasi-affinity of M0
Λ for a wide range of Λ as follows.

Theorem 9.16. If Λ is a primitive 2-elementary sublattice of LK3 with r(Λ) < 16
and signature (2, r(Λ)− 2), then M0

Λ is quasi-affine.

Proof. By [48, Prop. 2.2], J
0

M extends to a meromorphic map from M∗
Λ to A∗

g. We

regard M0
Λ as a Zariski open subset of a subvariety of M∗

Λ×A∗
g via the embedding

idM0
Λ
×J0

M . It suffices to prove the existence of a meromorphic section of an ample

line bundle on M∗
Λ × A∗

g, which is nowhere vanishing on M0
Λ ([20, Prop. 5.1.2]).

Let λΛ be the Hodge bundle on M∗
Λ. By Baily-Borel, the line bundle λ⊗aΛ � F⊗b

g

on M∗
Λ ×A∗

g is ample if a > 0 and b > 0. Under the assumption r > 6, it follows

from Theorems 8.6, 9.2, 9.4 that ΦνM is a meromorphic section of λ⊗aΛ � F⊗b
g for
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some a, b, ν ∈ Z>0. Since ΦνM is nowhere vanishing on M0
Λ by Theorem 5.1, ΦνM is

a desired section. �

By [10], it is known thatM0
Λ is quasi-affine when Λ = U⊕2⊕E⊕2

8 ⊕A1, U⊕2⊕E⊕2
8 .

This, together with Theorem 9.16, implies that M0
Λ is quasi-affine possibly except

for 12 isometry classes of primitive 2-elementary sublattices of LK3.

10. Spin-1/2 bosonization formula and a factorization of τM

In Section 10, we introduce a twisted version τ spinM of τM and give its explicit
formula purely in terms of Borcherds products. The relations (10.5), (10.6) below
provide a factorization of τM at the level of holomorphic torsion invariants.

10.1. Spin-1/2 bosonization formula. Let C be a smooth projective curve of
genus g and let Σ be a theta characteristic. The pair (C,Σ) is called a spin curve.
A theta characteristic Σ is ineffective if h0(Σ) = 0. Let ω be a Kähler form on C.
Then Σ is equipped with the Hermitian metric induced by ω. Let τ(C,Σ;ω) be the
analytic torsion of Σ with respect to ω. Recall that vol(C,ω) =

∫
C
ω/2π. We set

τ̃g(C,Σ) := Vol(C,ω)τ(C,ω)τ(C,Σ;ω)2.

By the anomaly formula for Quillen metrics [7], if Σ is ineffective, τ̃g(C,Σ) is in-
dependent of the choice of a Kähler form ω on C. Thus we get an invariant τ̃g of
ineffective spin curves of genus g. In Section 10.1, we recall the spin-1/2 bosoniza-
tion formula [2], [12], [15], which gives an explicit formula for τ̃g viewed as a function
on the moduli space of ineffective spin curves of genus g with level 2-structure.

Let V be a fixed symplectic vector space of rank 2g over F2 equipped with a fixed
symplectic basis {e1, . . . , eg, f1, . . . , fg}. A level 2-structure on C ∈ Mg is defined as
an isomorphism of symplectic vector spaces α : V ∼= H1(C,F2), where H1(C,F2)
is equipped with the intersection pairing. Let Alb(C)[2] (resp. Pic0(C)[2]) be the
2-division points of the Albanese variety Alb(C) (resp. Picard variety Pic0(C)). By
the canonical isomorphism H1(C,F2) ∼= 1

2H1(C,Z)/H1(C,Z) ∼= Alb(C)[2] and the

Abel-Jacobi isomorphism Pic0(C) ∼= Alb(C), a level 2-structure on C is identified
with a symplectic basis of Pic0(C)[2] with respect to the Weil pairing.

Let Mg(2) be the moduli space of projective curves of genus g with level 2-
structure and let p : Mg(2) → Mg be the natural projection. Let S+

g be the moduli

space of even spin curves of genus g and let π : S+
g → Mg be the natural projection.

We define S+
g (2) as the fiber product S+

g ×Mg Mg(2). The projection from S+
g (2)

to Mg(2) (resp. S+
g ) is denoted again by p (resp. π). The covering p : S+

g (2) →
Mg(2) of degree 2g−1(2g + 1) is trivial as follows. On (C,α) ∈ Mg(2), there is a

distinguished even theta characteristic κ ∈ Picg−1(C) called Riemann’s constant
(e.g. [15, p.6 and Lemma 1.5]). For every even pair (a, b), a, b ∈ {0, 1/2}g, we
define a section σa,b : Mg(2) → S+

g (2) by σa,b(C,α) := (C, κ ⊗ χa,b, α), where

χa,b ∈ Pic0(C)[2] is the point corresponding to
∑
i 2aiei +

∑
j 2bjfj ∈ F2g

2 via the

isomorphism F2g
2

∼= Pic0(C)[2] induced by α. In this way, we get a decomposition
S+
g (2) = q(a,b) evenσa,b(Mg(2)). We set S+,0

g (2) := q(a,b) evenσa,b(Mg(2) \ div(θa,b))
and S+,0

g := π(S+,0
g (2)) =

⋃
(a,b) even π(σa,b(Mg(2)\div(θa,b))). Since h0(κ⊗χa,b) =

0 if and only if θa,b(Ω(C)) 6= 0 for (C,α) ∈ Mg(2), τ̃g is a function on S+,0
g .

On the other hand, for every even pair (a, b), the theta constant θa,b is a section
of a certain line bundle on Mg(2) and its Petersson norm ‖θa,b‖ is a function on
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Mg(2). For g = 0, we define ‖θa,b‖ := 1. Let ζQ(s) be the Riemann zeta function.
By the spin-1/2 bosonization formula [2], [12], [15, Th. 4.9 (i), p.94 Eq. (4.58), p.97
Eq. (5.7)], the following equality of functions on Mg(2) \ div(θa,b) holds:

(10.1) σ∗
a,bπ

∗τ̃g = cg ‖θa,b‖−4, cg := (4π)−ge6(1−g)(2ζ
′
Q(−1)+ζQ(−1)),

where cg is evaluated by the arithmetic Riemann-Roch theorem [18] for g = 0, by
Kronecker’s limit formula and Ray-Singer’s formula [35, Th. 4.1] for g = 1, and by
Wentworth’s formula [44, Eq. (1.1) and Cor. 1.1] for g ≥ 2. In other words,

(10.2) Vol(C,ω)τ(C,ω)τ(C, κ⊗ χa,b;ω)
2 = cg ‖θa,b(Ω(C))‖−4

for all (C,α) ∈ Mg(2) \ div(θa,b) and even pairs (a, b). Notice that the Laplacians
(resp. volume) in [44] differ from ours by the scaling factor 2 (resp. 2π). Hence
Wentworth’s formula [44, Eq. (1.1) and Cor. 1.1] reads

(10.3)
Area(C,ω)2−ζOC

(0)τ(C,ω)2−ζΣ(0)τ(C, κ⊗ χa,b;ω)
2

= (4πe6(2ζ
′
Q(−1)+ζQ(−1)))1−g‖θa,b(Ω(C))‖−4,

where ζOC
(s) (resp. ζΣ(s)) is the spectral zeta function of the Laplacian (∂̄ + ∂̄∗)2

acting on the smooth sections of OC (resp. Σ) and Area(C,ω) :=
∫
C
ω. Since

ζOC
(0) =

χ(C)

6
−h0(OC) = −g + 2

3
, ζΣ(0) =

χ(C)

6
+

1

2
degΣ−h0(Σ) = g − 1

6

by [15, p.37 l.16] and since Vol(C,ω) = Area(C,ω)/2π, we get the value cg in (10.1).
Let us extend the definition of τ̃g to disconnected curves as follows. A line

bundle on a disconnected curve is a theta characteristic if it is a componentwise
theta characteristic. Similarly, a theta characteristic on a disconnected curve is
ineffective if it is componentwise ineffective. In what follows, for a disjoint union
of smooth projective curves C = qi∈ICi with g(Ci) := gi and an ineffective theta
characteristic Σ = {Σi}i∈I on C, we define

τ̃g(C,Σ) :=
∏
i∈I

τ̃gi(Ci,Σi),

where g :=
∑
i∈I gi is the total genus of C.

10.2. A factorization of τM . We introduce the following twisted version of τM .

Definition 10.1. Let (X, ι) be a 2-elementary K3 surface of type M and let γ be
an ι-invariant Kähler form on X. If M 6∼= U(2)⊕ E8(2), define

τ spinM (X, ι) :=
∏

Σ2=KXι , h0(Σ)=0

{
Vol(X, γ)

14−r
4 τZ2(X, γ)(ι) τ(X

ι,Σ; γ|Xι)−2

× exp

[
1

8

∫
Xι

log

(
η ∧ η̄
γ2/2!

· Vol(X, γ)
‖η‖2L2

)∣∣∣∣
Xι

c1(X
ι, γ|Xι)

]}
,

where Σ runs over all ineffective theta characteristics on Xι. If M ∼= U(2)⊕ E8(2)
and hence Xι = ∅, define

τ spinM (X, ι) := τM (X, ι)2.

Recall that the vector-valued modular form fΛ of type ρΛ was defined by (9.5),
(9.19) when r = 22−r(Λ) = 2. We extend its definition to the case r 6= 2 by setting

fΛ := δr,10 FΛ.
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Then Theorem 0.1 is interpreted as the modularity of τ spinM as follows.

Theorem 10.2. There exists a constant C ′
M > 0 depending only on M such that

the following equality of functions on M0
Λ \ HΛ holds:

(10.4) τ spinM = C ′
M

∥∥ΨΛ(·, 2g−1FΛ + fΛ)
∥∥−1/2

.

Proof. For a 2-elementaryK3 surface (X, ι) of typeM with (r, l, δ) 6= (10, 10, 0), (10, 8, 0),
recall that Xι consists of a curve of genus g = g(M) and k = k(M) smooth rational
curves (cf. Section 3.2).

(Case 1) If (r, δ) 6= (2, 0), (10, 0) and Xι has no effective even theta character-
istics, we get
(10.5)

τ spinM (X, ι) =
τM (X, ι)2

g−1(2g+1)∏
Σ2=KXι , h0(Σ)=0 τ̃g(X

ι,Σ)
=

τM (X, ι)2
g−1(2g+1)∏

(a,b) even cgc
k
0‖θa,b(Ω(Xι))‖−4

= cMτM (X, ι)2
g−1(2g+1)‖χg(Ω(Xι))8‖1/2

with

cM := (c−1
g c−k0 )2

g−1(2g+1) = {(4π)ge6(10−r)(2ζ
′
Q(−1)+ζQ(−1))}−2g−1(2g+1).

Here the first equality of (10.5) follows from Definition 10.1 and the second follows
from (10.2). Comparing Theorem 0.1 and (10.5), we get (10.4) with (C ′

M )2 :=
c2M/CM in this case.

(Case 2) If (r, δ) = (2, 0), (10, 0) with (r, l, δ) 6= (10, 10, 0), (10, 8, 0) and if Xι

has a unique effective even theta characteristic corresponding to a theta constant
θa0,b0(Ω(Xι)) with respect to a suitable level 2 structure, we get in the same way
(10.6)

τ spinM (X, ι) =
τM (X, ι)(2

g−1)(2g−1+1)∏
Σ2=KXι , h0(Σ)=0 τ̃(X

ι,Σ)
=

τM (X, ι)(2
g−1)(2g−1+1)∏

(a,b)̸=(a0,b0),even
ck0cg‖θa,b(Ω(Xι))‖−4

= cMτM (X, ι)(2
g−1)(2g−1+1)‖Υg(Ω(Xι))‖1/2

with

cM := (c−k0 c−1
g )(2

g−1)(2g−1+1) = {(4π)ge6(10−r)(2ζ
′
Q(−1)+ζQ(−1))}−(2g−1)(2g−1+1).

By Theorem 0.1 and (10.6), we get (10.4) with (C ′
M )2 := c2M/CM in this case.

(Case 3) If (r, l, δ) = (10, 10, 0), then Xι = ∅. Since we defined g = 1 in this
case, we get (10.4) with (C ′

M )2 := C−1
M by Definition 10.1 and Theorem 0.1. If

(r, l, δ) = (10, 8, 0), then Xι consists of two disjoint elliptic curves. In the same way
as in (10.6), we get (10.4) with (C ′

M )2 := c2M/CM , cM = (c−2
1 )9 = (4π)−18 in this

case. This completes the proof. �

Remark 10.3. Assume HΛ 6= ∅. As the period of a 2-elementary K3 surface of
type M approaches to a point of HΛ, one of the ineffective even theta character-
istics on its fixed curve becomes effective in the limit and the value τ spinM jumps

there. Because of this jumping, τ spinM is a discontinuous function on M0
Λ. Since

‖ΨΛ(·, 2g−1FΛ + fΛ)‖ is also discontinuous along HΛ by [39, Th. 1.1 (i)], it is an

interesting problem of comparing τ spinM and ‖ΨΛ(·, 2g−1FΛ + fΛ)‖ on the locus HΛ.

Remark 10.4. As the referee suggests, it is possible to express the invariants τM (X, ι)

and τ spinM (X, ι) in terms of X. Ma’s orbifold analytic torsions ([28]) for X/ι and the
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twisted sector Σ(X/ι) = Xι. Here X/ι is a smooth surface with non-trivial orb-
ifold structure. In this direction, it is possible to construct a holomorphic torsion
invariant for log-Enriques surfaces by making use of orbifold analytic torsion and
give its explicit formula as an automorphic function on the moduli space ([13]).

10.3. A uniqueness of elliptic modular form corresponding to τ spinM . Set

(10.7) Φspin
M := ΨΛ(·, 2g−1FΛ + fΛ).

Since τ spinM = C ′
M‖Φspin

M ‖−1/2, Φspin
M can be identified with τ spinM . In this subsection,

we study the uniqueness of elliptic modular form whose Borcherds lift is Φspin
M .

For a modular form ϕ(τ) of type ρΛ with weight 1− b−(Λ)/2, we write

ϕ(τ) =
∑
γ∈AΛ

eγ
∑

n∈γ2/2+Z

cγ(n;ϕ)q
n

for its Fourier expansion. The principal part of ϕ is the Laurent polynomial defined
as

P[ϕ] :=
∑
γ∈AΛ

eγ
∑

n∈γ2/2+Z, n<0

cγ(n;ϕ)q
n ∈ C[q−1/4]⊗C[AΛ].

Notice that we used the notation P≤0[ϕ] =
∑
γ∈AΛ

eγ
∑
n∈γ2/2+Z, n≤0 cγ(n;ϕ)q

n in

the previous sections. Obviously, P≤0[ϕ]−P[ϕ] ∈ C[AΛ] is the constant term of ϕ.
Similarly, for a Heegner divisor H =

∑
γ∈AΛ

∑
n∈γ2/2+Z, n<0 aγ(n)H(n, γ) on

ΩΛ, where H(n, γ) :=
∑
λ∈(γ+Λ)/±1, λ2=2nHλ, n ∈ Q, γ ∈ AΛ, we define

P[H] :=
∑
γ∈AΛ

eγ
∑

n∈γ2/2+Z, n<0

aγ(n) q
n ∈ C[q−1/4]⊗C[AΛ].

Comparing (8.1), (9.5), (9.20) with Theorem 8.1, (9.18), (9.24), we have the equality

(10.8) P[2g−1FΛ + fΛ] = P[div(Φspin
M )]

if Λ 6∼= U(2)⊕2, (A+
1 )

⊕2 or equivalently DΛ 6= 0. When Λ ∼= U(2)⊕2 or (A+
1 )

⊕2, we

have P[2g−1FΛ+fΛ] 6= 0 but P[div(Φspin
M )] = 0. Thus (10.8) does not hold in these

two cases. Except for them, the elliptic modular form 2g−1FΛ+ fΛ is characterized
uniquely by the holomorphic torsion invariant τ spinM as follows.

Theorem 10.5. If Λ 6∼= U(2)⊕2, (A+
1 )

⊕2, then there exists a unique O(qΛ)-invariant
elliptic modular form ϕΛ of type ρΛ with weight 1− b−(Λ)/2 such that

(10.9) P[ϕΛ] = P[div(Φspin
M )], c0(0;ϕΛ)/2 = wt(Φspin

M ).

In particular, the O(qΛ)-invariance and (10.9) characterize 2g−1FΛ + fΛ uniquely.

Proof. Let ϕΛ be an O(qΛ)-invariant modular form satisfying (10.9). Set ψ :=
ϕΛ − (2g−1FΛ + fΛ). This is a modular form of type ρΛ and weight 1 − b−(Λ)/2
which is holomorphic at the cusp, is O(qΛ)-invariant, and satisfies c0(0;ψ) = 0. We
must prove ψ = 0. When b−(Λ) > 2, ψ has negative weight and hence ψ = 0.

Let b−(Λ) = 2. Then ψ has weight 0, so it must be a constant vector of C[AΛ].
From [33, Lemma 3.9.1] and [41, Th. 1], we deduce that Mp2(Z)×O(qΛ)-invariant
vectors in C[AΛ] are scalar multiple of νΛe0 + vΛ + νΛδ(Λ)e1Λ for some νΛ ∈ Z>0,
where vΛ =

∑
γ ̸=0,1Λ,γ2≡0 eγ . Since c0(0;ψ) = 0, we have ψ = 0.

Let b−(Λ) = 1. By [41, Th. 5 and Th. 9] there is a canonical isomorphism between
the space of modular froms of type ρΛ and weight 1/2 with the space of Mp2(Z)-
invariant vectors in C[AA1

] ⊗ C[AΛ] ' C[AA1⊕Λ]. By [41, Th. 1], the latter is
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generated by the vectors IU =
∑
γ∈U eγ where U runs over self-dual isotropic

subgroups of AA1⊕Λ. In this isomorphism the modular form corresponding to IU
is given by

∑
γ∈U θA+

1 +γ1
eγ2 where γ = (γ1, γ2) ∈ AA1⊕Λ (see [41, Th. 8]). Now we

have Λ ∼= A+
1 ⊕U or (A+

1 )
⊕2⊕A1. In the first case, AA1⊕Λ contains a unique nonzero

isotropic element, and the corresponding modular form ϕ has c0(0;ϕ) 6= 0. In the
second case, AA1⊕Λ contains exactly two isotropic subgroups of rank 2, which can
be switched by an element of O(qΛ). If ϕ1 and ϕ2 are the corresponding modular
forms, then ψ must be a scalar multiple of ϕ1+ϕ2. Again we have c0(0;ϕ1+ϕ2) 6= 0,
so ψ = 0. �

11. An equivariant analogue of Borcherds’ conjecture

In this section, we study an equivariant analogue of Borcherds’ conjecture [8].
Let us explain briefly this conjecture. Let XK3 be the oriented 4-manifold under-
lying a K3 surface. Let E be the set of Ricci-flat Riemannian metrics on XK3

with normalized volume 1 (cf. [45]). For γ ∈ E , let ∆γ be the Laplacian of
(XK3, γ) acting on C∞(XK3). Let det∆γ be the regularized determinant of ∆γ .
Then the assignment det∆: E 3 γ → det∆γ ∈ R is a function on E . In [8, Ex-
ample 15.2], Borcherds conjectured that det∆ is given by the automorphic form
ΦLK3

(·, 1, E4/η
24) on G(LK3), the period space of E , where E4(τ) is the Eisenstein

series of weight 4. To our knowledge, this conjecture is still open. In Section 11,
instead of the original Borcherds’ conjecture, we study its equivariant analogue.

Let ι : XK3 → XK3 be a C∞ involution. We define the lattices H2(XK3,Z)± as
in the preceding sections. Then ι is called hyperbolic if H2(XK3,Z)+ is Lorentzian.
Let E ι be the set of ι-invariant Ricci-flat Riemannian metrics on XK3 with volume
1. Since we are interested in an equivariant analogue of Borcherds’ conjecture,
throughout Section 11, we restrict our consideration to those involutions ι satisfying

(11.1) E ι 6= ∅.

By [47, Props. 3.4, 3.6], if ι is hyperbolic, then (11.1) is equivalent to the existence
of a complex structure I on XK3 such that ι is an anti-symplectic holomorphic
involution on (XK3, I). In particular, if ι is hyperbolic with (11.1), then Xι

K3 is a
disjoint union of (possibly empty) smooth compact real surfaces.

Let ι be a hyperbolic involution on XK3 with (11.1). Its type is defined as the
isometry class of H2(XK3,Z)+. Let M be the type of ι and set Λ := M⊥LK3 .
Then M and Λ are primitive 2-elementary sublattices of LK3. To formulate an
equivariant analogue of Borcherds’ conjecture, we construct two functions on E ι.

Let γ ∈ E ι. Let C∞(XK3)± be the ±1-eigenspace of the ι-action on C∞(XK3).
Since ∆γ preserves C∞(XK3)±, we can define ∆γ,± := ∆γ |C∞(XK3)± . Let ζ±(s) be
the spectral zeta function of ∆γ,±. The equivariant determinant of ∆γ is defined
as (cf. [6])

det Z2
∆γ(ι) := exp[−ζ ′+(0) + ζ ′−(0)].

Assume Xι
K3 6= ∅. Let Sγ be a spinor bundle on the fixed point set (Xι

K3, γ|Xι
K3

).

Let DSγ be the Dirac operator acting on C∞(Sγ). Let detD2
Sγ

be the regularized

determinant of D2
Sγ
. If ζD2

Sγ
(s) denotes the spectral zeta function of D2

Sγ
, then

detD2
Sγ

:= exp(−ζ ′D2
Sγ

(0)).
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When Xι
K3 = ∅, we define detD2

Sγ
:= 1. As an equivariant analogue of the function

det∆ on E , we consider the following function on E ι.

Definition 11.1. For γ ∈ E ι, define

τ spinι (γ) =
∏

Sγ ineffective

(det Z2
∆γ(ι))

−2 detD2
Sγ
,

where Sγ runs over the spinor bundles on (Xι
K3, γ|Xι

K3
) with kerDSγ

= 0.

Let us construct an automorphic function on the period space of E ι. By e.g. [47,
Prop. 3.6], there exists a hyperkähler structure (I, J,K) on (XK3, γ) such that

(11.2) ι∗I = Iι∗, ι∗J = −Jι∗, ι∗K = −Kι∗.

By [47, Lemma 3.17], the pair of conjugate points of MΛ defined as

(11.3) πι(γ) := [α(ωJ ±
√
−1ωK)], ωJ := γ(·, J(·)), ωK := γ(·,K(·))

is independent of the choice of a triplet (I, J,K) satisfying (11.2) and a marking,
i.e., an isometry α : H2(XK3,Z) → LK3 satisfying α(H2(X,Z)+) = M . The pair
of conjugate points πι(γ) ∈ MΛ is called the period of γ ∈ E ι.

Lemma 11.2. π∗
ι ‖ΨΛ(·, 2g−1FΛ + fΛ)‖ is a well defined function on E ι.

Proof. Write Λ = U(−N)⊕L, N ∈ {1, 2}, where L is a Lorentzian lattice. Set CL :=
{x ∈ L⊗R; 〈x, x〉 > 0}. Since L is Lorentzian, CL consists of two components C±

L

with C−
L = −C+

L . Then L⊗R+
√
−1CL ⊂ L⊗C is isomorphic to ΩΛ via the map

expN : L⊗R+
√
−1CL 3 z → expN (z) := ((1/N, 〈z, z〉/2), z) ∈ ΩΛ.

Since expN ◦(−1L) = (1U(−N) ⊕−1L) ◦ expN and since −1L exchanges the compo-
nents of CL, 1U(−N) ⊕−1L ∈ O(Λ) exchanges the components of ΩΛ.

Set η := α(ωJ +
√
−1ωK). Let z ∈ L⊗R+

√
−1CL be such that [η] = expN (z).

Then η̄ = α(ωJ−
√
−1ωK) and [η̄] = expN (z̄). Let Ω+

Λ be the component of ΩΛ such

that [η] ∈ Ω+
Λ . Let Ω

−
Λ be the remaining component. Then Ω−

Λ = Ω+
Λ and [η̄] ∈ Ω−

Λ .

Since (1U(−N) ⊕ −1L)[η̄] = [(1U(−N) ⊕ −1L)(expN (z̄))] = [expN (−z̄)] ∈ Ω+
Λ , the

point of Ω+
Λ/O

+(Λ) corresponding to [η̄] is represented by [expN (−z̄)].
For simplicity, write Ψ(·) for ΨΛ(·, 2g−1FΛ + fΛ). Let w be its weight. Then

Ψ ∈ O(L⊗R+
√
−1C+

L ). By the definition of Petersson norm (cf. Section 4.2),

(11.4) ‖Ψ([η])‖2 = 〈=z,=z〉w|Ψ(z)|2, ‖Ψ([η̄])‖2 = 〈=(−z̄),=(−z̄)〉w|Ψ(−z̄)|2.

Since Ψ is a Borcherds product, it is expressed as a Fourier series

(11.5) Ψ(z) =
∑
λ∈L∨

a(λ) e2πi⟨λ,z⟩ (z ∈ L⊗R+
√
−1C+

L ),

with a(λ) ∈ Z. Since e2πi⟨l,z⟩ = e2πi⟨l,−z̄⟩ and a(l) ∈ Z for all l ∈ L∨ and hence

Ψ(z) = Ψ(−z̄), we deduce from (11.4) and (11.5) that ‖Ψ([η])‖2 = ‖Ψ([η̄])‖2. �

Now we can formulate an equivariant analogue of Borcherds’ conjecture as the
coincidence of the two functions τ spinι and π∗

ι ‖ΨΛ(·, 2g−1FΛ + fΛ)‖ on E ι. By The-
orem 10.2, we have an affirmative answer to this problem.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



K3 SURFACES WITH INVOLUTION IV 47

Theorem 11.3. Let ι be a hyperbolic involution on XK3 with E ι 6= ∅. Then the
following equality of functions on π−1

ι (M0
Λ \ HΛ) ⊂ E ι holds:

τ spinι = C ′′
M π∗

ι ‖ΨΛ(·, 2g−1FΛ + fΛ)‖−1/2,

where C ′′
M is a constant depending only on M .

Proof. Let γ ∈ E ι. Let (I, J,K) be a hyperkähler structure on (XK3, γ) with (11.2)
and set XI := (XK3, I). Then (XI , ι) is a 2-elementary K3 surface of type M . By
[47, Lemma 4.3], we have

(11.6) (det Z2∆γ(ι))
−2 = τZ2(XI , γ)(ι).

On the other hand, it is classical that DSγ
can be identified with the Dolbeault

operator
√
2(∂̄+∂̄∗) acting on A0,∗(Xι

K3,ΣSγ
), where ΣSγ

is the theta characteristic
on Xι

K3 corresponding to Sγ . Here Xι
K3 is endowed with the complex structure

induced by γ. Since D2
Sγ

= 2(∂̄ + ∂̄∗)2 by this identification, we have ζD2
Sγ
(s) =

2−s+1ζΣSγ
(s), where ζΣSγ

(s) is the spectral zeta function of (∂̄ + ∂̄∗)2|A0,0(ΣSγ ) as

in Section 10.1. Hence

(11.7) detD2
Sγ

= 2
2ζΣSγ

(0)
τ(Xι

I ,ΣSγ
; γ|Xι

I
)−2 = 2

g−1
3 τ(Xι

I ,ΣSγ
; γ|Xι

I
)−2.

By (11.6), (11.7) and the definitions of τ spinM and τ spinι , we get

(11.8) τ spinι (γ) = 2
(g−1)N(γ,ι)

3 τ spinM (XI , ι),

where N(γ, ι) is the number of ineffective spinor bundles on (Xι
K3, γ).

Let γ ∈ π−1
ι (M0

Λ \ HΛ). Since N(γ, ι) is a constant function on π−1
ι (M0

Λ \ HΛ)
by Theorem 9.13 and (11.3) and since πι(γ) is given by the pair of πM (XI , ι) and
its conjugate point by (11.3), the result follows from Theorem 10.2 and (11.8). �

As in [47], [48, Sect. 10], we obtain, as a corollary of Theorem 11.3, an interpre-
tation of Theorem 10.2 on the mirror side, i.e., in terms of real K3 surfaces. Recall
that a pair consisting of a K3 surface and an anti-holomorphic involution is called
a real K3 surface. The set of fixed points of the involution on a real K3 surface
is the set of real points. A holomorphic 2-form on a real K3 surface is said to be
defined over R if it is mapped to its complex conjugation by the involution. In
view of mirror symmetry for K3 surfaces with involution [19, Sect. 2], the following
corollary is a counter part of Theorem 10.2 in mirror symmetry.

Corollary 11.4. Let (Y, σ) be a real K3 surface. Let M be the type of σ and
let α be a marking with α(H2(X,Z)+) = M . Let γ be a σ-invariant Ricci-flat
Kähler metric on Y with volume 1. Let ωγ be the Kähler form of γ and let ηγ be a
holomorphic 2-form on Y defined over R such that ηγ ∧ η̄γ = 2ω2

γ . Then

τ spinσ (γ) = C ′′
M ‖ΨΛ(α(=(ηγ) +

√
−1ωγ), 2

g−1FΛ + fΛ)‖−1/2,

where =(ηγ) +
√
−1ωγ ∈ H2(Y,R) +

√
−1KY is a point of the complexified Kähler

cone of the Kähler surface (Y, ωγ) with B-field =(ηγ).

Proof. Set I ′ = K, J ′ = −J , K ′ = I, where (I, J,K) is a hyperkähler structure
on (XK3, γ) satisfying (11.2) for σ. Then (I ′, J ′,K ′) is a hyperkähler structure on
(XK3, γ) such that σ∗I

′ = −I ′σ∗, σ∗J ′ = −J ′σ∗, σ∗K
′ = K ′σ∗. Set Y = (XK3, I

′).
Then σ is an anti-holomorphic involution on Y . On the other hand, σ is an anti-
symplectic holomorphic involution on (XK3,K

′). By [19, p.514], we see that <(ηγ)
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and =(ηγ) +
√
−1ωγ are a Kähler form and a holomorphic 2-form on (XK3,K

′),
respectively. From this interpretation and Theorem 11.3, the result follows. �

Is it possible to prove Corollary 11.4 without passing through algebraic geome-
try? Such a proof will provide a new understanding of Theorem 10.2.
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