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K3 SURFACES WITH INVOLUTION, EQUIVARIANT ANALYTIC
TORSION, AND AUTOMORPHIC FORMS ON THE MODULI
SPACE 1IV: THE STRUCTURE OF THE INVARIANT

SHOUHEI MA AND KEN-ICHI YOSHIKAWA

ABSTRACT. In [46], a holomorphic torsion invariant of K3 surfaces with invo-
lution was introduced. In this paper, we completely determine its structure
as an automorphic function on the moduli space of such K3 surfaces. On
every component of the moduli space, it is expressed as the product of an ex-
plicit Borcherds lift and a classical Siegel modular form. We also introduce its
twisted version. We prove its modularity and a certain uniqueness of the mod-
ular form corresponding to the twisted holomorphic torsion invariant. This is
used to study an equivariant analogue of Borcherds’ conjecture.
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INTRODUCTION

In [46], a holomorphic torsion invariant of K3 surfaces with involution was in-
troduced by the second-named author. The purpose of the present paper is to
completely determine the structure of this invariant as a function on the moduli
space of such K3 surfaces. We will express it using Borcherds products and Siegel
modular forms. Let us explain our result in detail.

A pair consisting of a K3 surface and an anti-symplectic involution is called a
2-elementary K3 surface. By Nikulin [34], the deformation type of a 2-elementary
K3 surface is determined by the isometry class of the invariant lattice of the induced
involution on the second integral cohomology. There exist 75 deformation types,
labeled by primitive 2-elementary Lorentzian sublattices of the K3 lattice Ls.
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2 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

Let M C Lgs be one such sublattice of rank r. Its orthogonal complement A =
M~+NLgj is a 2-elementary lattice of signature (2,20—7). Let QX be the Hermitian
domain of type IV of dimension 20 — r associated to A and let O*(A) be the index
2 subgroup of the orthogonal group of A preserving QX Via the period map, the
moduli space of 2-elementary K3 surfaces of type M is isomorphic to the quotient

M, = (Qf — Da) /07 (4),

where Dy is the discriminant divisor. Hence MY is a Zariski open subset of a
modular variety of orthogonal type of dimension 20 — r.

In [46], a holomorphic torsion invariant of 2-elementary K3 surfaces was defined
as follows. Let (X,:) be a 2-elementary K3 surface of type M. Write X* for the
set of fixed points of ¢. Depending on M, X" is either empty or the disjoint union
of smooth curves of total genus g = g(M). (See §3.2 for a formula for g.) When X*
is empty, the corresponding type is unique and is called exceptional, in which case
(X, ¢) is the universal covering of an Enriques surface endowed with the non-trivial
covering transformation. Take an t-invariant Ricci-flat Kéhler form v on X (cf.
[45]) and a holomorphic 2-form 1 # 0 on X. Let 7z,(X,v)(¢) be the equivariant
analytic torsion of (X,v) with respect to the t-action and let 7(X*, v|x.) be the
analytic torsion of (X*,~|x:) (cf. [35], [6]). Then the real number

(X, 0) = Vol(X,7) "7 72, (X, 7) (1) Vol(X*, 5| x ) (X", )
depends only on the isomorphism class of (X, ¢), so that it gives rise to a function
7o on MQ. The goal of this paper is to give an explicit expression of 75/ in terms
of modular forms. It turns out that 7y, is expressed by two types of modular forms:
Borcherds products and Siegel modular forms. Let us explain these modular forms.

Let pa: Mpy(Z) — GL(C[A4]) be the Weil representation attached to the dis-
criminant group Ax of A, where C[A4] is the group ring of Ax. By Borcherds
[8], given an O (A)-invariant elliptic modular form f of type pp and of weight
1—(20—r)/2 with integral Fourier expansion, we can take its Borcherds lift U, (-, f).
This is a (possibly meromorphic) automorphic form for O*(A) with infinite prod-
uct expansion, and its Petersson norm ||W, (-, f)|| descends to a function on M.
To express 757, the Borcherds lift of the following elliptic modular form will be
used. Let n(7) be the Dedekind n-function and let QAT (1) be the theta series of the
Aj-lattice. We put

oA () = n(r) "> n(27)*n(47) =5 0,4 (1)~ 10.

This induces the following modular form of type pa (cf. [9], [38], [48]):
Fy = > Paly pa(y™) eo,

v€T0(4)\Mp,(2)
where |, is the Petersson slash operator and ey € C[A,] is the vector corresponding
to 0 € Ax. Except for two types, the Borcherds lift of (297! 4 6,.19) Fa will be used
in the expression of 7as, where 0; ; denotes the Kronecker delta.
On the other hand, Siegel modular forms also yield functions on M{. The period
map for the fixed curves of 2-elementary K3 surfaces induces a holomorphic map

JMZ M([)\ — Ag,

where A, is the Siegel modular variety of degree g. Then the pullback of the
Petersson norm of a Siegel modular form by Jy is a function on M{. The following
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K3 SURFACES WITH INVOLUTION IV 3

Siegel modular forms of weights 2971(29 + 1) and 2(29 — 1)(29 + 2) will be used to

express Ts:
8 8 8 -8
Xg = H ea,lﬂ Tg = Xg Z 9a7ba

(a,b) even (a,b) even
where 6, is the Riemann theta constant with even characteristic (a,b). Let x4 ]|?
and Y 4[|* be their Petersson norms. Hence Ji/|[x5|| and J3, [T | are functions on
MQ. For convenience, if M is exceptional, we set g = 1 and J},|| T || = 1.

The main result of this paper is the following (Theorems 8.6, 9.2, 9.4, 9.5, 9.10).

Theorem 0.1. Let M C Lgs be a primitive 2-elementary Lorentzian sublattice
of rank r with orthogonal complement A and let 6 € {0,1} be the parity of its
discriminant form. Then there exists a constant Cyy > 0 depending only on M
such that the following equality of functions on MY holds:

(1) If (r,8) # (2,0),(10,0), then
mor B = Oy [|0a (29 E + £ Ta G-
(2) If (r,0) = (2,0) or (10,0), then
VD Oy w2y )| Ty T

Here fa is the elliptic modular form of type pa given by fa = 0r 10 Fa for r # 2
and by (9.5), (9.19) below for r = 2.

The majority is the case (1), which covers 67 types. The case (2) covers 8 types.
The formula of (1) does not hold in case (2) because Jj;x, vanishes identically
there. In [46], [49], the automorphy of 75; was proved (cf. (0.2) below), but the
corresponding modular form was given explicitly only for the exceptional M. In
[48], the elliptic modular form Fa was introduced and (1) was proved for r > 10.
Theorem 0.1 completes this series of work. As a by-product of Theorem 0.1, we
prove the quasi-affinity of M% when r > 6 (Theorem 9.16).

The invariant 7 is closely related to the BCOV invariant 7gcoy of Calabi-Yau
threefolds, which was introduced in [14] after the prediction of Bershadsky-Cecotti-
Ooguri-Vafa [5] on the mirror symmetry at genus one. On the moduli space of
Calabi-Yau threefolds of Borcea-Voisin associated to 2-elementary K3 surfaces of
type M and elliptic curves, one has the following equality of functions (cf. [50])
(0.1) mBoov = Cu 73 07417,
where Cj is a constant depending only on M. By Theorem 0.1 and (0.1), Tscov
for Borcea-Voisin threefolds of type M is given by the product of the Petersson
norms of the modular forms W (-, Fa), x§ (or Ty) and 7. Since

Fy = —log TBcov
is the genus one string amplitude F; in B-model (cf. [5], [14]), Theorem 0.1 gives
an exact result of F; in B-model for all Borcea-Voisin threefolds.

In Theorem 0.1, the automorphic form corresponding to 7, splits into two fac-
tors. It is natural to ask if this factorization is realized at the level of holomorphic
torsion invariants of 2-elementary K3 surfaces. Thanks to the spin-1/2 bosoniza-
tion formula [2], [12], [15], we have an affirmative answer to this question. Let us
introduce the following twisted version of 757

spin 1d—r _
T]\? (X7 L) = H VOI(nyY) 4 Tzz(Xﬁ)(L) T<XL7Z;’V|X’/) 27
$2=K ., hO(2)=0
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4 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

where ¥ runs over all ineffective theta characteristics on X* and 7(X*, X;7|x:)
is the analytic torsion of ¥ with respect to y|x.. It turns out that 730" (X, ) is
independent of the choice of an t-invariant Ricci-flat Kahler form ~ and gives rise to
a function Ti}[)in on MY. Our second result is stated as follows (cf. Theorem 10.2):
Theorem 0.2. Let Hy C My be the characteristic Heegner divisor (cf. Section 2).
Then there exists a constant C'y; > 0 depending only on M such that the following
equality of functions on MO\ Ha holds:

T = Ol WA (297 Fa 4 fa)l| Y2

We remark that if Ha # 0, then 73°™ jumps along H, and thus 73°™ is a

discontinuous function on MY. For an explicit relation between the constants in
Theorems 0.1 and 0.2, see Section 10.2 below. After Theorem 0.2, it is very likely
that C, can be determined up to an algebraic number by an Arakelov geometric
study of 2-elementary K3 surfaces with maximal Picard number. This subject
will be discussed elsewhere. Theorem 0.2 can be interpreted as a formula for the
equivariant determinant of Laplacian (with certain correction term) on the space of
invariant Ricci-flat metrics on a K3 surface with involution. In Section 11, we use
this interpretation to study an equivariant analogue of Borcherds’ conjecture [8].

According to Theorem 0.2, the invariant Tzsvljin is elliptic modular in the sense that
it is the Borcherds lift of an elliptic modular form. When Dy # 0, the corresponding
modular form is determined by 737" in a canonical manner (cf. Theorem 10.5).
In this way, there is a natural one-to-one correspondence between the holomorphic
torsion invariants 73> and the elliptic modular forms 29~1Fx + fa. A conceptual
account for this unexpected elliptic modularity as well as the geometric meaning of
the corresponding modular forms is strongly desired.

Let us explain the outline of the proof of Theorem 0.1. For the sake of simplicity,
we explain only the major case § = 1. Since 7); was determined in [48] when g < 2,

we assume 3 < g < 10. The strategy is summarized as follows:

(a) Reduce Theorem 0.1 to determining the divisor of J3,x5.

(b) Determine the support of the divisor of J;, X? for certain key lattices Mg o.

(¢) Determine inductively from (b) the support of the divisor of J3,x§ for all

M and prove sharp estimates for its coefficients.

(d) Deduce Theorem 0.1 from the estimates in step (c).

Let us see each step in more detail.
(a) From the theory of Quillen metrics [7], [6], [27], the automorphy of 75,

follows ([46], [49]): There exist ¢ € Z~( and an automorphic form ®,; on Q} with

(0.2) = ||®ar]| TV, wt @y = ((r—6)4,46),  div®y = £Dy.

(We will eventually see that ¢ can be taken to be 2971(29 + 1).) By construction,
9—1(99
the automorphic form Wy (-, 297! Fy ) ® J}\*/[XZK has the same weight as @?M (2°+1),

Hence by the Koecher principle, it is sufficient to show that
(03) div(Ua (2771 Fy)’ @ T3 > div(el;, 7).

The divisor of Wy (-, 2971 Fyy) is calculated by the theory of Borcherds products [8],
so the problem is reduced to calculating the divisor of J]’(/Ixj

Since § = 1, the isometry class of M is determined by ¢ and the number k£ + 1 of
the components of the fixed curve. (See Section 3.2 for the formula for the invariants
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K3 SURFACES WITH INVOLUTION IV 5

g=g(M) and k = k(M).) Write M, ;, for the lattice with these invariants and set
Agr = J\/I;:k. Let Dy, , = D[J{M + Dy, be the decomposition according to the
type of (—2)-vectors of Ay, and let Hu , be the characteristic Heegner divisor
(cf. Section 2). We will proceed inductively on k.

(b) We first study the series k = 0 by a geometric approach (Section 6). Curves
with vanishing theta constants are characterized by the existence of certain half-
canonical bundle. By analyzing bi-anticanonical sections of Del Pezzo surfaces with
such property, we prove that the support of div(Jj\‘A,gL0 X?]) on /\/l(,)\g,o coincides with
Ha,,- Hence there exist integers ay, by, cy > 0 such that

(0.4) div(J3z, o Xy) = ag Dy, + by Ha, o + ¢ DY .

(c) We have a natural inclusion of lattices Ag 11 C Agx, which induces an
inclusion of domains i: Qx ., < Qa,,. Then we show that Jy;, , 01 = Jy, .,
outside a locus of codimension 2 and that i*H,, , = 2Ha, ,,, and similar relation
between ngwk and D/jxtg,kﬂ (cf. Sections 2 and 3). This enables us to inductively
extend (0.4) to the case k > 1 (Section 8):

. 8 —
div(Jyg, , Xg) = agk Dy, +bgk Ha,, +cor DY .
where ag i, bg 1, Cg,1 are integers satisfying
Qg k = Gg, by = 25b,, cg ke =0 (g < 10).

By using a formula in [48] and the formula [42] for the thetanull divisor on the
moduli space of curves, we also prove the estimates a, > 2291 and by > 24,

(d) Substituting these relations and estimates in the left-hand side of (0.3),
we obtain the desired inequality when g < 10. In case g = 10, an extra argument
is required. See Section 8. Note that Hp vanishes if » > 10, which explains why
the proof of Theorem 0.1 is much simpler in the range r > 10, (r, ) # (10,0) (cf.
[48]). As a by-product of the proof, we determine an explicit formula for the divisor
of JJT4X_18; as a Heegner divisor on Qj{ for all M, which is a result of independent
interest. See Theorem 9.13 for the details.

This paper is organized as follows. Sections 1-5 are mainly preliminaries. In
Section 6 (resp. 7), we study the even theta characteristics of the fixed curve for
2-elementary K3 surfaces with 6 =1 (resp. 6 = 0). In Section 8 (resp. 9), we prove
Theorem 0.1 when 6 = 1 (resp. § = 0). In Section 10, we introduce the twisted
holomorphic torsion invariant 750" and prove Theorem 0.2. In Section 11, we study
an equivariant analogue of Borcherds’ conjecture.

Acknowledgements The first-named author is partially supported by JSPS
KAKENHI Grant Numbers 17K14158 and 20H00112. The second-named author is
partially supported by JSPS KAKENHI Grant Numbers 16H03935 and 16H06335.
He is grateful to Professor Jean-Michel Bismut for helpful discussions and to Pro-
fessor Riccardo Salvati Manni for answering his questions. The authors are grateful
to the referee for the careful reading of the paper and helpful comments.

1. LATTICES

A free Z-module of finite rank endowed with a non-degenerate, integral, symmet-
ric bilinear form is called a lattice. The rank and signature of a lattice L are denoted
by r(L) and sign(L) = (b*(L),b™ (L)), respectively. For a lattice L = (Z", (-,-)) and
an integer k € Z \ {0}, we define L(k) := (Z",k(-,-)). The group of isometries of L
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6 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

is denoted by O(L). The set of roots of L is defined as A, := {d € L; {d,d) = —2}.
For the root systems Ay, Dy, Ej, the corresponding negative-definite root lattices
are denoted by Ay, Dy, Ey, respectively. We set A := A;(—1) etc. The hyperbolic
plane U is the even unimodular lattice of signature (1,1).

For an even lattice L, its dual lattice is denoted by LY. The finite abelian group
Ap := LY/L is called the discriminant group of L, which is equipped with the
Q/2Z-valued quadratic form gy, called the discriminant form and the Q/Z-valued
bilinear form by, called the discriminant bilinear form. The automorphism group of
(Ar,qr) is denoted by O(qr).

A lattice L is 2-elementary if there exists | € Z> with A = (Z/2Z)®!. For a
2-elementary lattice L, we set [(L) := dimp, A;,. When L is an even 2-elementary
lattice, the parity of gz is denoted by 6(L) € {0,1}. By Nikulin [33, Th.3.6.2],
the isometry class of an indefinite even 2-elementary lattice L is determined by the
triplet (sign(L),l(L),0(L)). For an even 2-elementary lattice L, there is a unique
element 1, € Ay, called the characteristic element, such that by (v,11) = qr(7)
mod Z for all v € Ap. Then g(11) = 1y, for all g € O(q.). By definition, 1, = 0 if
and only if 6(L) = 0.

The K3-lattice is defined as the even unimodular lattice of signature (3, 19)

LK3 :U@U@U@ES@ES
It is classical that L is isometric to the second integral cohomology lattice of a
K3 surface. For a sublattice A C L3, we define A+ := {l € Lgs; (I, A) = 0}.

A primitive 2-elementary Lorentzian sublattice of L3 isometric to U(2) @ Eg(2)
is said to be exceptional. (For the reason why this is exceptional, see § 3.2 below.) Its
orthogonal complements in L3, i.e., UdU(2) DEg(2) is also said to be exceptional.

Proposition 1.1. The isometry classes of primitive 2-elementary sublattices A of
L3 with signature (2,7(A) —2) consist of the following 75 classes in Table 1, where

g(A) = {r(A) = 1(A)}/2.

TABLE 1. Primitive 2-elementary sublattices of Lxs with bT = 2

g 0=1 =0

0 (AN)F2 o AT? (0<t<9) U(2)%2

1 Ua AT & AP (0<t<9) UaU(2), UR)®PZ @Dy,
U U(2) ®Es(2)

2 U2 g AP (1<t<9)|U®2, UaU(2) @Dy, U2 Eg(2)

3 U2 oD, 0 AV (1<t<6) U®2 @ D,, UeU(2) ®DJ?

4 U®2 oD @ AY? (0<t<5) U%? ¢ DY?

5 U2 o E; @ AP (0<t<5) U%? ¢ Dy

6 U92 o Eg @ AP (1<t<bh) U®? o Eg, U®2 @D,y & Dy

7 | UP2oD,0Es @ AP (1<t<2) U2 ¢ D, & Eg

8 | UM aDsaEs ATT (0<t<1)

9 U R, 0Es 0 AY" (0<t<1) U2 ¢ Dg @ Eg

10| UPZQET @ Ay U®2 g E?

Proof. See e.g. [16, p.705 Table 2 and p.706 Table 3]. Notice that the representative
of each isometry class is not necessarily identical to the one in [16, p.705 Table 2
and p.706 Table 3]. O
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K3 SURFACES WITH INVOLUTION IV 7

For a primitive 2-elementary Lorentzian sublattice M C Lgs and a root d €
Ajpri, the smallest sublattice of L3 containing M and d is given by

(M L d]:=(M*+ndb)*.
Then [M L d] is again a primitive 2-elementary Lorentzian sublattice of Ly3 with

[M Ld*t=Mtndt.

2. DOMAINS OF TYPE IV AND MODULAR VARIETIES OF ORTHOGONAL TYPE

In Section 2, A is assumed to be an even 2-elementary lattice with sign(A) =
(2,7(A) — 2). We define the complex manifold 25 with projective O(A)-action by
Qp :={[z] e P(A® C); (x,z) =0, (x,T) > 0}.

Then Q4 has two connected components Qf, each of which is isomorphic to a
bounded symmetric domain of type IV of dimension r(A) — 2. The orthogonal
modular variety M associated to A is defined as the analytic space

My = Qx/O(A) = Q1 /0T (),
where
OF(A) := {g € O(A); g(F) = Q).
We denote by M7 the Baily-Borel-Satake compactification of My, which is an
irreducible normal projective variety of dimension 7(A)—2 with dim(M3\Mju) < 1.

2.1. Discriminant locus. For A € A with (A, ) < 0, we define

H)y := {[z] € Qn; (x, ) = 0}.
Then H) is a nonzero divisor on 4. For any root d € Ay, we have the relation
(2.1) Hg=Qpnge-

The discriminant locus of 5 is the reduced divisor of (25 defined by

DA = Z Hd.

deAp /%1
We define the O(A)-invariant Zariski open subset Qf of Q4 by
Q% :=Qp \ Da.

We set
Dy :=Da/O(N), MY :=08/0(A) = My \ Da.
2.2. Some subloci of Dy. We define the decomposition Ay = AX II A} by
Al :={d€ Ay, d/2 €N}, Ay ={de€ Ay, d/2¢& A},
Then A are O(A)-invariant. We define the O(A)-invariant reduced divisors D3
on 25 and the corresponding divisors ff on My by
I~
Dy:= Y Hy Dy :=Dy/OA).
deAT /41
Proposition 2.1. Let d € AX, Let i: Qpangr = Hg — Qp be the inclusion. Then
the following equalities of divisors on Q2znqqL hold:

i*(DX — Hq) =D} .. i*Dy =Dy
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8 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

Proof. Let § € Ap \ {£d}. Then HyN Hs # 0 if and only if L := Zd + Z4 is
negative-definite. Since the Gram matrix of L with respect to the basis {d,d} is
given by —2(1%) where a = —(3,d/2) € Z, we conclude that Hy N Hj # 0 if and

only if a = 0, i.e., § € Ay Nd+ = Apxnge. Since Af Nnd*+ = A[j\EmH7 we get
(DY —Hy) = > *Hs= Y  i"Hy= >  Hs=Df ..,
se(Af\{£d})/£1 seAfndt/+1 seat | /+1
foi- Y fH- Y iH- Y Ho-D.
SeAY /+1 seAyNdt/+1 SEAL . /*1
This proves the result. (I

For d € Ay, we define a non-empty Zariski open subset H} C Hy by
HY :=Hg\ Useanfzay Hs-
We set

DyT= > H), DY=Dyt4+DyT = > H)
deAT/+1 dEAL/+1

Then Q4 I DY is a Zariski open subset of 24, whose complement has codimension
> 2 when r(A) > 4 and is empty when r(A) < 3.

2.3. Characteristic Heegner divisor. Set
epn ={12 —r(A)}/2.

We define the characteristic Heegner divisor of Q5 as the reduced divisor

Ha =Halea, 1a) == > Hy,

AEAV /1, X2=¢p, [\]=11

where [A] := A+ A € Ap. Since 1, is O(qa)-invariant, Hy is O(A)-invariant. Since
ex > 0 when r(A) < 12, we get Hy =0 if r(A) < 12.

Proposition 2.2. Let d € AY. Leti: Qpnqr = Hq < Qa be the inclusion. Then
the following equality of divisors on Qpqgr holds

i*HA =2 HAde_ .

Proof. Since r(A) < 21, we get e > —%. Set A’ := ANdt. Since d € AX, we
deduce from [16, Prop.3.1] that A and A’ & Zd have the same invariants (r,[,d).
Hence we get the orthogonal decomposition A = A’ ¢ Zd. Let A € AV be such that
A? = ¢gp and [A\] = 15. Then we can write A = X + a(d/2), where X\ € (A’)Y and
a=—(\d) € Z. Since [A\] =14, we get a =1 mod 2. Hence a = 2k + 1 for some
k€ Z and N € 15,. Since Hy # ) if and only if (\)? < 0, we get i*Hy = Hy # 0
if and only if 0 > (V)? = A? + a?/2 = (e + 3) + 2k(k + 1). Since 5 > —3 and
hence —2 < 717{25‘\ < 71J”2725A < 1, we see that (ep + %) +2k(k+1) <0if
and only if £ = 0, —1. This proves that

(2.2) FHy=Hy £0 <  A=N%(d/2).
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K3 SURFACES WITH INVOLUTION IV 9

When A = X £ (d/2), we get (X')? = 5+ 1 = epr. This, together with (2.2), yields
that
i*HA - Z i*H)\ = Z i*H)\’:I:(d/Z)
AEAY/+1,X2=¢,, [\]=14 NE(A)Y /41, (M)2=ep/, [N]=14/
=2 > Hy =2Hy.
NE(A)Y /41, (N)2=e,/, [N]=1,/

This proves the proposition. O

3. 2-ELEMENTARY K3 SURFACES AND THE TORELLI MAP

3.1. 2-elementary K3 surfaces. A K3 surface X equipped with a holomorphic
involution ¢: X — X is called a 2-elementary K3 surface if ¢ is anti-symplectic:

(3.1) L*|H0(KX) =—1.
The possible deformation types of 2-elementary K3 surfaces were determined by

Nikulin. (See [1, Sect.2.3] and the references therein.) Let a: H?(X,Z) = Lgs be
an isometry of lattices. Set H*(X,Z)4 = {l € H*(X,Z); t*l = +l} and

(3.2) M :=a(H*(X,Z),), A:=M"=a(H*(X,Z) ).

Then M C Lgs must be a primitive 2-elementary Lorentzian sublattice. Con-
versely, for any primitive 2-elementary Lorentzian sublattice M C Ls, there exists
a 2-elementary K3 surface with (3.2). For a 2-elementary K3 surface (X,:), the
isometry class of H?(X,Z), is called the type of (X,¢). By an abuse of notation,
the sublattice itself a(H?(X,Z);) C Lgs is also called the type of (X,:). Then
there is a one-to-one correspondence between the deformation types of 2-elementary
K3 surfaces and the triplets (r,l,4). Since the latter consists of 75 points, there
exist mutually distinct 75 deformation types of 2-elementary K3 surfaces. For a
given primitive 2-elementary Lorentzian sublattice M C L3, the moduli space of
2-elementary K3 surfaces of type M is given as follows.

Let (X,t) be a 2-elementary K3 surface of type M and let a: H*(X,Z) = Lg3
be an isometry satisfying (3.2). Since H*°(X,C) C H?(X,Z)_ ® C by (3.1), we
get

(X, 1, a) = [a(H*P(X, C))] € OX.
Its O(A)-orbit is called the Griffiths period of (X, ) and is denoted by
T (X, 1) := O(A) - (X, 1, ) € MY

By [46, Th.1.8], [48, Prop. 11.2], the coarse moduli space of 2-elementary K3 sur-
faces of type M is isomorphic to M9 via the period map 7. In the rest of this
paper, we identify the point 7/ (X, ¢) € MQ with the isomorphism class of (X, ¢).

3.2. The Torelli map for 2-elementary K3 surfaces.

3.2.1. The set of fized points. For a 2-elementary K3 surface (X,¢) of type M, set
X' i={z e X; 1(zx) =z}

Then X* = 0 if and only if M is exceptional, i.e., M = U(2) ¢ Eg(2). In this case,

the quotient X /¢ is an Enriques surface and (X, ¢) is the universal covering of an

Enriques surface endowed with the non-trivial covering transformation. When M
is non-exceptional, by Nikulin [34, Th. 4.2.2], we have

(3.3) X' =CUME -1 By
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10 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

for M % U(N)@®Es(2) (N = 1,2) and we have X* = CVT1CLY for M = UsEq(2),
where C9) is a projective curve of genus g and E; = P! and

g(M) := {22 —r(M) = I(M)}/2, k(M) := {r(M) —1(M)}/2.
Since r(A) = 22 — (M) and I(A) = (M), we have the following relations

g(M) = {r(A) =1(M)}/2, k(M) = {22 —r(A) = I(A)}/2.

As we defined g(A) = (r(A) — I(A))/2 in Proposition 1.1, we have g(M) = g(A).
Notice that, when M = U(2) & Eg(2) and hence X* is empty, g(M) = g(A) =1 has
no geometric meaning.

3.2.2. The Torelli map. For g > 0, let &, be the Siegel upper half-space of degree
g and let Sp, (Z) be the symplectic group of degree 2g over Z. We define

Ag = GQ/SPQQ(Z)'
The Satake compactification of A, is denoted by Aj.
For a 2-elementary K3 surface (X,¢) of type M, the period of X* is denoted by
2(X") € Ag(my- We define a map j?w: MY = Ay by

Tor(X,0) = T, @ (X,0)) = (XY,

Let ITp: Qn — My be the projection. The Torelli map is the O(A)-equivariant
holomorphic map J9,: Qf — Ag(rry defined by

0 =0
= o .
Jar = I 0 1n|ag

In Theorem 3.3 below, we will extend JY, to a certain Zariski open subset of
Q containing Q3 U DY and prove its compatibility with respect to the inclusion
Qpnar = Hqg — Qp for d € Ap. For this, we introduce a stratification on 2, .

3.2.3. A stratification of Q. For a primitive sublattice L C A generated by Ap,
we define
Hyp = ndeAL Hg, Hg = Hp \ UéeAA\AL Hs.
Then Hy, # 0 if and only if L is negative-definite, i.e., L is a root lattice. If Hy, # (),
then H? is a non-empty dense Zariski open subset of Hy,. By definition, it is obvious
that if r(L) = r(L') and L # L', then H? N HY, = 0. Set
>k
OF o= Trea, r)=kHL, Q5" =Wk = Urca, p)=r Hr

where L runs over the set of all primitive root sublattices of A of rank k. Then Q/Z\k

is a Zariski closed subset of 25 of pure codimension k, and Q4 \ Q%kﬂ is a dense

Zariski open subset of 25, whose complement has codimension k + 1. We have
Dy = Qfl = ZdEAA/il Hg, Q(/)x = QA \ Da.

For a root lattice K, let K(A) be the set of primitive sublattices of A isometric
to K. Since a root lattice of rank 2 is either Aiez or As, we have

>2
Q3" = (ULGA?Z(A) Hp) U (Upeaqa) He)-
We set
1L+ 1,— . _
Dy" = Upreaseay H2, Dy~ = Urea,) H2-
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Then Dy 11Dy~ = Q3 and we have the stratification

(3.4) o\ = D Dyt Dy

such that Dy \ Q%g =D} IIDYTII Dki is a divisor of Q4 \ Q/Z\B.
Lemma 3.1. Ifd € A}, then Hy\ Q7" = Q% ., IIDY ..

Proof. (Step 1) By the definition of DY, we have H = H,; N DY. Since d € Af,
we have Hy N Hs # (0 for § € Ay \ {£d} if and only if 6 € Apqgr. Hence
HyNDY = Hg = Hg \ UéGAA\{:I:d} Hs = Hqa\ UaeAAmL H;s = Q?\mdr

(Step 2) Assume HyNDy~ # (). Then there exist L € Ay(A) and [n] € HgNHY.
By the definition of H?, we have d € Ay. Since L = Ay, there exists § € Ay with
(d,6) = 1. Since d € A}, this yields the contradiction (d,d) = 2((d/2),8) € 2Z.
This proves Hg N Dkf = .

(Step 3) Assume Hy NDyT # 0. Then there exists L € AP*(A) with [n] €
HyN HY. By the definition of HY, we get d € Ar. Hence Af, = {#d, 4} for some
6 € Apngr- Thus

HnDy = |y HnHY= | {HunH)\ | H)
LeaP?(A),deL SEA g1 c€ANN{£d, 16}
= U {#HanHs)\ U  H} =D
SEAL 1 €A1 \{£5}

Since d € A}, the third equality follows from the fact that Hq N H. # 0 for
e € Ap \ {£d} if and only if € € Apnge. This proves Hy N D/l\"" =D] e
(Step 4) Since Hy N QY = 0, the result follows from (Steps 1-3) and (3.4). O

3.2.4. The local structure of Q} near D). Let A C C be the unit disc and set
A* := A\ {0}. Let Ly C A? be the diagonal locus and set L := {0} x A and
Ly := A x {0}. Then Ly, Li, Ly are lines with L; N L; = {0} for any i # j. We
have (A*)? = A%\ (L1 U Lg). Set L} := L; \ {(0,0)}.

Lemma 3.2. Let [n] € Dy TIIDY ™ and set n := dim Qx. Then the following hold.
(1) If [n] € DY, then there is a neighborhood U of [n] in Qa \ Q3> such that

UNOY = (A")2x A2 UNDY = (LITILE) x A"2, UNDytT 2 {(0,0)} x A"2.

(2) If [n] € DY, then there is a neighborhood U of [n] in Qa '\ Q%P) such that
U\DA = (AQ\L(]ULl ULQ) x A2,

Proof. Since [] € DYDY ™, there exist L € AP?(A)ITAy(A) and a neighborhood
U of [n] in Qx \ Q5% such that UNDy = U N Udea, Ha-

(1) Assume [5] € DyF. Then L € AP?(A). There exists di,dy € Ap with
(d1,d2) = 0 such that UNDy = U N (Hy, U Hg,). Replacing U by a smaller
neighborhood if necessary, there exist a system of coordinates (z1,z22,w), w =
(w1,...,wp—2), on U such that Hy, = div(z1), Hg, = div(z2). The isomorphism
¥ (U, [n]) = (A™,0) induced by (z1, 22, w) has the desired property.

(2) Assume [n] € ’Dll\’_. Since L € Ag(A), there exist do,d1,ds € Ap with
dp = dy+dz and (dy,ds) = 1 such that UNDp = UN(Hy,UHg, UH4,). Replacing U
by a smaller neighborhood if necessary, there exist a system of coordinates (z1, z2, w)
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on U such that Hy, = div(z1), Hg, = div(z2), Hg, = div(z1+22). The isomorphism
v: (U,[n]) = (A™,0) induced by (z1, 22, w) has the desired property. O

3.2.5. Inclusion of lattices and the Torelli map. Recall that for d € AX, it follows
from Lemma 3.1 the equality of sets Hy \ Q%S = Q?\mdi U D?\mdr By Lemma 3.2

(1), QQ uDY U D/l\’+ is a Zariski open subset of Q4 \ Q/Z\?’.
Theorem 3.3. JY, extends to a holomorphic map from Q3 UD] U D/l\’+ to A;.

Proof. Set n := dimQ,. Let [5] € D} U D,l\’+. By Lemma 3.2 (1), there is a
neighborhood U of [] in 2 such that either U \ (DQ UDyT) =2 A* x A1 or
U\ (DQUDYT) = (A%)2 x A™=2. By Borel [11], J§, extends to a holomorphic map
from U to A. Since [n] € D} U D/l\’+ is an arbitrary point, we get the result. [

Remark 3.4. By Lemma 3.2 (2), Borel’s extension theorem does not apply to J5,
near D/I\’_. This explains why Jy; does not extend to 4 \ Q%S in general.

Denote the extension of J¢, by
Jar: QQUD UDYT — A
and call it again the Torelli map. By [48, Th. 2.5], the following equality holds

Imlug = Jralas

for all d € Ap. The following refinement is crucial for the proof Theorem 0.1.
Theorem 3.5. Ifd e Aj{, then

(3.5) JI\/I|Hd\Q[2\3 = JmLq |ngL uDd -

Proof. Since both Jus|y \ >3 and Jprigloe | upo are holomorphic maps from
a\ Q% AndL And-L

Q(/)\ﬂdi U D?&ndL to A7 by Lemma 3.1 and Theorem 3.3, it suffices to prove the
equality on Q9 ;.. Since this was proved in [48, Th.2.5], we get the result. O

3.3. Hyperelliptic linear system. This subsection is the technical basis for Sec-
tions 6 and 7. We advise the reader to skip for the moment and return when
necessary. We prepare some tools to realize a given 2-elementary K3 surface as a
double cover of P? or a Hirzebruch surface.

We will use the following notation: For n > 0 let

F, = P(Opl D Opl(n))

be the n-th Hirzebruch surface, equipped with the natural projection = : F,, — P!,
When n > 0, denote by ¥ C F,, its unique (—n)-section. We write L, for the line
bundle on F,, of m-degree a with (L, X) = b. In particular, we have 7*Op1(1) ~
L(),l, OFn (E) ~ Ll,—n and KF,I, ~ L—2,—2+n-

Let (X,¢) be a 2-elementary K3 surface. A line bundle L on X with (L,L) =
2d > 0 is called hyperelliptic ([36]) if the linear system |L| contains a smooth
hyperelliptic member. In that case, L is base point free and every smooth member
of |L| is hyperelliptic of genus d + 1. The associated morphism

(3.6) 6 X — |L|Y ~ P!
is generically two-to-one onto its image, mapping a smooth member of |L| to a

rational normal curve in a hyperplane of |L|¥. According to Saint-Donat ([36] §5),
we have the following possibilities for the image surface ¢, (X).
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(I) ¢r(X) coincides with |L|¥Y ~ P2: this is the case d = 1.
(I1) ¢1(X) is a Veronese surface in |L|Y ~ P5: this happens when L = 2L’ for
L’ € Pic(X) with (L', L") = 2.
(III) ¢r(X) is a rational normal scroll, that is, the embedding image of F,, by a
line bundle L; ,,, with m > 0 and n+2m =d.
(IV) ¢r(X) is a cone over a rational normal curve, that is, the image of Fy by
the bundle L; o. In this case ¢y, lifts to a morphism X — Fy, and we must
have 2 < d < 4.
We now assume that the hyperelliptic bundle L is t-invariant, in the sense that
there exists an isomorphism
L~ L.
Although ¢ may not necessarily act on L equivariantly, it does so on the morphism
(3.6). We then obtain an t-equivariant morphism

(3.7) $: X oY

with Y = P2 in cases (I), (II), and Y = F,,, F, in cases (III), (IV).

It will be useful to have a purely lattice-theoretic method for finding an ¢-
invariant hyperelliptic bundle. This is based on the following lemmas. Denote
by H, = H?(X,Z), the invariant lattice of (X, ).

Lemma 3.6. Let L € Hy be nef with (L,L) =2d > 0. Assume that
(a) there erists E € Pic(X) with (E,E) >0 and (E,L) =2, and
(b) there is no F € Hy with (F,F) =0 and (F,L) =1.

Then L is hyperelliptic.

Proof. We first show that L is base point free. Otherwise, by [31] Proposition 5 the
linear system |L| would be of the form |(d 4+ 1)F| 4+ I where F is a smooth elliptic
curve and T" is a (—2)-curve with (F,T") = 1. Since ¢ acts on |L|, the class of F'
is t-invariant and then would violate the assumption (b). Hence L is free, and a
general member C € |L| is smooth and irreducible of genus d + 1. We show that
C' is hyperelliptic. Since g(C) = 2 when d = 1, we may assume d > 1. Let E be
a divisor as in the assumption (a). Since h®(—E) = 0, we have h°(E) > 2 by the
Riemann-Roch inequality. Consider the exact sequence

(3.8) 0— H(E—L)— H(E) - H°(E|c) — -
Since (E— L, L) < 0, we have h%(E — L) = 0 by the nefness of L. Hence h'(E|c) >
hO(E) > 2 and E|¢ gives a g3 on C. O

The conditions (a) and (b) are purely arithmetic. To meet the nefness condition
is always possible by the following.

Lemma 3.7. Let W(X) be the Weyl group of Pic(X) generated by the reflections
with respect to (—2)-vectors in Pic(X). Let L € H be a line bundle with (L, L) >0
and (L, Lg) > 0 for some ample class Ly. Then there exists w € W(X) such that
wor=rtow and w(L) is nef.

Proof. The same argument as in [4] Proposition 21.1 applies with few minor mod-

ification. We leave it to the reader. O

Thus we can obtain an t-equivariant morphism (3.7) by just finding a vector in
H with the arithmetic conditions (a) and (b). The t-equivariant Weyl group action
as in Lemma 3.7 would then carry this vector to a class of hyperelliptic bundle.
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We are interested in when ¢ acts by the covering transformation of ¢ : X — Y,
in which case (X,¢) may be recovered from Y and the branch curve of ¢. Let g
denote the genus of the main component of the fixed curve X*.

Lemma 3.8. The involution v acts trivially on Y when
(1) g >3 in case Y = P2,
(2) g >4 in case Y =P x P!, and
3)g>n+2incaseY =F, withn > 0.

Proof. We may assume that g > 0. Let B C Y be the branch curve of ¢, which
belongs to | — 2Ky|. Suppose that ¢ acts nontrivially on Y; then the genus g
component of X* is the normalization of the double cover of a curve component D
of Y* branched over B|p. When Y = P2, D must be a line and so intersects with
B at six points. When Y = P! x P!, D is either a ruling fiber or a smooth bidegree
(1,1) curve, which satisfies (D, B) < 8. Finally, let Y = F,, with n > 0. If ¢ acts
nontrivially on the (—n)-section X, then D is a ruling fiber so that (D, —2Ky) = 4.
If © acts trivially on X, we have Y* = H +X for a smooth H € |L; o| because ¢ must
preserve every fiber of F,, and hence induces a non-trivial involution on every fiber.
Then (X,B) = (¥,-2Ky) <2 and (H,B) = (H,—2Ky) = 2n + 4. This gives us
the estimate 2g + 2 < (D, B) < 2n + 4. O

This criterion is coarse, but will suffice for our purpose.

4. AUTOMORPHIC FORMS ON THE PERIOD DOMAIN

4.1. Siegel modular forms. Recall that the line bundle on A, associated with
the automorphic factor Spy,(Z) > (é g) — det(CR2+D) € O(6,), 2 € G, is called
the Hodge line bundle on A, and is denoted by F, in this paper. A holomorphic
section of F29 is identified with a Siegel modular form of weight ¢, and F27 is
equipped with the Hermitian metric || - || Fou called the Petersson norm: For any

§_®q = (det S 02)7|S(02)%.
g
In this paper, the following Siegel modular forms on &, play crucial roles:

Xo(2% = ] bas(2)%,

(a,b) even

Ty(Q) = xo(2° Y s

(a,b) even

Siegel modular form S of weight ¢, we define ||S(2)||

Here

Oop(2) := Z exp{mv/—=1'(n + a)2(n + a) + 27V —1"(n + a)b}
nez9I
is the theta constant with even characteristic (a,b), where a,b € {0,1/2}9 and
4'ab = 0 mod 2. For g = 0, we set xo = To = 1. Note that YT,(£2) is the
elementary symmetric polynomial of degree 2971(29+1)—1 = (2971 +1)(29—1) in
the even theta constants 6,5(£2)®. By [23, p.176 Cor. and p.182 Th. 3], x5 (resp.
T,) is a Siegel modular form of weight 2971(29 + 1) (resp. 2(29 —1)(29 +2)). The
locus of vanishing thetanull 6,11 ¢4 is the reduced divisor on A, defined by x4

enull,g = {[Q] € .Ag; Xg(Q) = O}
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Lemma 4.1. There exist at least two distinct vanishing even theta constants at
2 € Gy if and only if x4(2) = Ty(2) = 0. In particular, a smooth projective
curve C of genus g has at least two effective even theta characteristics if and only

if XQ(Q(C)) = TQ(‘Q(C)) =0.

Proof. Assume x4(§2) = T4(£2) = 0. Since x4(f2) = 0, there is an even pair (a,b)
with 0,,5(£2) = 0. Then Yy(2) = [T(0.a)2(ap) Pe.a(2)%, where (c,d) € {0,1/2}%
runs over all even pairs distinct from (a,b). Since T, (£2) = 0, we get 0. 4(2) = 0 for
some even pair (c,d) # (a,b). Thus 6,(2) = 0..4(2) = 0. The converse is trivial.
The second assertion follows from the Riemann singularity theorem [3, p.226]. O

For the proof of Theorem 0.1 (2), (3), we need an estimate for the vanishing
order of T, for certain ordinary singular families of curves.

Lemma 4.2. Let p: C — A be an ordinary singular family of curves of genus
g > 0 with irreducible Cy := p~1(0). Namely, p: C — A is a proper surjective
holomorphic function from a complex surface C to the unit disc A without critical
points on C \ Cy and with a unique, non-degenerate critical point on Cy. Assume
that xo(2(Cy)) = 0 and Y,(2(Cy)) # 0 for all t € A* and that x,—1(2(Co)) # 0,

~

where Cy is the normalization of Cy. Then there exists h(t) € O(A) such that
log || T4(2(Co)|I* = (2297 = 1) log [t|* + log [h(t)|* + O (loglog[t|™) (¢t — 0).

Proof. We follow [48, Proof of Lemma 4.1]. For {2 € &4, write {2 = (i}t;), where
Z2€EH,weCI, Z € Sy_1. For t € A*, we can express

logt 1 t0,4
C) = |—A t A= g
(€)= | S A+ vio) < A, (o, o)
where 9 (t) is a holomorphic function on A with values in complex symmetric g x g-
matrices such that ¢(0) = (fg tg’é’), Zy € &y, 2(Co) = [Zo] € Ag—1.

By the assumption x,(£2(C})) = 0, T,(£2(C;)) # 0 for all t € A* and Lemma 4.1,
C} has a unique effective even theta characteristic for t € A*. By fixing a marking
of a reference curve, there is a unique even pair (a,b), a,b € {0,1/2}9 such that
0ap(£2(C)) =0 on A and 6. 4(£2(Ct)) # 0 on A* for all even (c,d) # (a,b). Write
a = (aj,a’) and b = (b1,). If a3 = 0, then we get 0, 1 (Zp) = 0 for the even
pair (a/,b'), a’,b' € {0,1/2}971 by [48, Eq. (4.4)], which contradicts the assumption

Xg—l(ZO) = Xg—l(Q(CO)) 7& 0. Thus a; = 1/2
By [48, Eqgs.(4.3), (4.4)], there is a holomorphic function F, ;(¢,w, Z) such that

H O0.a(2) = (em'z/4)22(-‘7_1)71 Fa,b(emz,w, 7).
(e,d)#(asb)
Hence there is a holomorphic function ¢(¢,w, Z) such that
Ty(2) = (7)1 g w, 2).

Since Y4(92) is a Siegel modular form and hence Y,(£24+ A) = Y4(2), ¢((,w, Z) is
an even function in ¢. There exists a holomorphic function h(t) € O(A) such that

Y, ((logt/2mi) A + ¥(t)) = 2" " Th(t).
This, together with [48, (4.7)], implies the result. O

As a consequence of Lemma 4.2, we get the following.
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Lemma 4.3. Let M C Lg3 be a primitive 2-elementary Lorentzian sublattice and
set A= M=L. Lety: A — My be a holomorphic curve with v(A*) C MY intersect-

ing @?\ transversally at v(0) € 5?\. Lety: A — Qq be its lift with v(t?) = 15 o7(t)
and let d € A} be such that ¥(0) € Hq. If xg(Jm(F(t))) =0 and Yo(Jamr((t))) #0
for allt € A% and if xg—1(Jpr1q(7(0))) # 0, then

ords—o¥* (J3;Tg) > 2(22971 1),

Proof. Let Jp: MQ UDy — A be the extension of Tor: M = A, By [48,
Theorem 2.3 (1), (2)], there is an ordinary singular family of curves p: C — A of
genus g with irreducible Cy and with period map Jj; oy. By Lemma 4.2, we get

ordi—oy* (TpTy) > 220970 — 1,

which, together with Jas(7(¢?)) = Jar(5(¢)), yields the result. O

4.2. Automorphic forms on Qy. Let M C Lgj3 be a primitive 2-elementary
Lorentzian sublattice and set A = M~ as before. Let ¢ € Z~ be such that Fg‘?q
extends to a very ample line bundle on Aj. Let i: Q. UDY — Qx be the inclusion

and define A%, as the trivial extension of J&fﬁ%) from Q UDY to Qa, ie.,

. * ®
Ay = .00 i (JM]-'Q(%) :
Since 24\ (2§ UDR) has codimension 2 in Q4, A%, is an O(A)-equivariant invertible
sheaf on Q4. On 23, A%, is equipped with the Hermitian metric
I llxg, == Jarll - ll o

Fix Iy € A ® R with (Iz,la) > 0. Define ja(v,-) € OF,, v € O(A) and
Ka() € C=(2a) by

: _ )l _ _(n.m)
nobl= Ty e e

Let p,q € Z. Then F € H(Qx, \%,) is called an automorphic form on Q. for O(A)
of weight (p,q) if it satisfies the following functional equation on 4:

(4.1) F(y-[) = jaly, )P v(F (), Vv e€O(A).

The notion of automorphic forms on QF for OF(A) of weight (p, ¢) is defined in the
same way. In the rest of this paper, the vector space of automorphic forms on 2,
for O(A) of weight (p,q) is identified with the vector space of automorphic forms
on QF for OF(A) of weight (p, q) via the restriction map

HO(Qp,N) D F — Flot € HO(Qf,\%).

We define the Petersson norm of an automorphic form F' on Qa for O(A) of
weight (p, ) as the O(A)-invariant C*° function on Q% defined as

IE([DI1* = Ka(ll)? - 1E (DI, -

RBAFEFHERY LS b

Kyoto University Research Information Ref

il



KYOTO UNIVERSITY

A Self-archived copy in
Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp

K3 SURFACES WITH INVOLUTION IV 17

5. THE INVARIANT Tp; AND ITS AUTOMORPHIC PROPERTY

Let (X, ¢) be a 2-elementary K3 surface of type M. Let y be an t-invariant Kéhler
form on X. The Laplacian acting on (0, ¢)-forms on X is denoted by Og .. Write
o(0o,q) for the spectrum of Oy , and Ep 4(\) for eigenspace of Oy, corresponding
to A € 0(0g,q4). Since ¢ preserves v, ¢ acts on Eg 4(A). The equivariant zeta function
of Op,q is defined as the following convergent series for s € C with Rs > 0:

CO,q(’/)(S) = Z Tr (L‘Eo,q()\))/\is.
A€o (Uo,q)\{0}

Then (o q(¢)(s) extends meromorphically to C and is holomorphic at s = 0. We
define the equivariant analytic torsion [6] of (X,~v) as

72,(X,7)(1) := exp[= > _(=1)% ¢y ,(1)(0)].
>0

Let n € H*(X, Kx) \ {0} and set ||n||3. := (2m)~2 [ n A 7. For a compact Kahler
manifold (V,w), define Vol(V,w) := (2m)~ dlmvf wdmV /(dim V).

When X*¢ # ), write X* = II;C; for the decomposition into the connected
components. Let 7(Cy,7y|¢,) be the analytic torsion [35] of (C;,v|c,). We define

X'yl xe) = HT Civle)),  Vol(X*,y|x:) i= HVol Civle,)-

When X* = (), we set T(XL,'7|XL) = Vol(X*, v|x.) = 1. Let c1(X*, v|x:) be the
first Chern form of (X*,~|x.). By [46, Th.5.7], the real number

14—r(M)
TM(X7L) = VO].(X,’}/) 4 TZQ(X7A/)(L)VOI(Xba’Y‘XL)T(XL7’Y‘XL)

1 AT Vol(X,w))’ .
X exp 7/ log ( . c1 (X v xe)
[8 Jor et T )]

is determined by the isomorphism class of (X,¢) and hence the period 7y (X, ¢).
For the arithmetic counterpart of the invariant 75/ (X, ¢), we refer to [29].

We set A = M+ and we regard 7); as the O(A)-invariant function on Qf or
equivalently the function on MY defined by

™ (f]\/[(X, L)) = 7’]\/[()(7 L).

As an application of the theory of (equivariant) Quillen metrics [7], [6], [27], the
automorphy of 75, was established.

Theorem 5.1 ([46], [48], [49]). There exist £ € Z~¢ and an automorphic form @
on Qp for O(A) of weight (£(r(M) — 6),4£) with

(5.1) ™M = H(I)M||7i, diV@]y[ZKDA.
In the rest of this paper, we determine ¥, for all M. Since it was done for

exceptional M in [46], M is assumed to be non-exceptional in what follows.

6. THE LOCUS OF VANISHING THETA-NULL: THE CASE 6 =1

In the rest of this paper, for a primitive 2-elementary Lorentzian sublattice M C
Lks, we write r, I, §, g, k for 7(M), I(M), 6(M), g(M), k(M), respectively, when
there is no possibility of confusion. Recall that these invariants are introduced in
Sections 1 and 3.2.1. We write

A= Mt
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18 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

Let 901, be the moduli space of smooth curves of genus g > 1. In Sections 6 and
7, we study the Torelli map Jys : Q% — A, from the geometric point of view. We
here view the Torelli map rather as a morphism
Ty s MY — 9,

from the moduli space of 2-elementary K3 surfaces to that of curves, which asso-
ciates to (X, ¢) the genus g component of X*. Our main purpose here is to describe
the inverse image of a certain geometric locus in 9, as a Heegner divisor of MR
in a few cases. This will be the first and necessary step toward a more complete
description, Theorem 9.13, which will be obtained in the final part of the paper.

Recall that the characteristic Heegner divisor H, of Q25 was defined in Section
2.3, and that the thetanull divisor @1,y of A, was defined in Section 4.1. We
denote by

ﬂ/\ C My

the reduced algebraic divisor corresponding to H,, and

93?;] = Gnuu’g N f)ﬁg

the reduced thetanull divisor in M . It is well-known that zm’g C 9y is the locus
of curves C having an effective even theta characteristic, namely an effective line
bundle L with L®2 ~ K and h°(L) even.
In the present section we treat the moduli spaces in the following two series:

e k=0,6=1,3<g<10,

e k=1,6<g<09.
Notice that in the second series we have é = 0 only when g = 6. We will prove the
following.

Theorem 6.1. If 3 < g < 10 and (k,8) = (0,1), the Heegner divisor Hy is
irreducible and the following set-theoretic equality of (reduced) divisors of MY holds:
Ty () = Ha N M§.

The same assertion also holds for the second series when § = 1, but the following
weaker version will suffice for the rest of the paper.

Proposition 6.2. If6 < g <9 and k =1, iy (MY) is not contained in M.

These results will be used in Section 8. Theorem 6.1 will be proved in Sections
6.1-6.3, and Proposition 6.2 in Section 6.5.

6.1. Proof of Theorem 6.1: the strategy. Let us first explain the outline of
the proof of Theorem 6.1, reducing it to the construction of certain elliptic curves.
As the first step we see the irreducibility of H, which holds in a wider range.

Lemma 6.3. When 6 =1 and r <9, Hya is an irreducible divisor of M.

Proof. This is restated as the property that vectors | € AY with (I,1) = e and
[l] = 1, are all equivalent under O*(A). Consider the vector I’ = 21 in A. Since 1,
is of order 2, I’ is primitive in A and satisfies

div(l'y =2, [I'/div(l")] = 1x € Ay,  (I',1") = 4e.
When (r,1) # (9,9), the lattice A contains U @ U, and then we can resort to the

Eichler criterion (cf. [37]) which says that the Of (A)-equivalence class of a primitive
vector I’ € A depends only on the norm (I,1’) and the element [I'/div(l)] € A,.
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Hence the above vectors I' = 2[ are all Of (A)-equivalent. When (r,1) = (9,9),
Hp is defined by (—2)-vectors I' € A with A = ZI’ @ (I')1. The isometry class of
(I')* is uniquely determined by [33], namely (I)* ~ U®? @ Eg(2), so that these
(—2)-vectors I" are all O"(A)-equivalent. O

With the irreducibility of Ha verified, the proof of Theorem 6.1 is reduced to
showing the non-emptiness of Exl(ﬂﬁ;) and the inclusion

(6.1) Ty () C Ha

We only need to verify (6.1) outside a locus of codimension > 2 of M%. Our
approach will be based on the following geometric observation.

Proposition 6.4. Let (X,.) be a 2-elementary K3 surface. If X has a smooth
elliptic curve E with E + o(E) ~ X*, then the period of (X,t) is contained in the
Heegner divisor Ha.

Proof. Let Hy denote the t-(anti-)invariant lattices of (X,¢). The cycle Dy :=
E £ (FE) is contained in Hy respectively. We will show that D_ satisfies

(6.2) (D_,D_)=2r—20, D_/2€HY, [D_/2=1y € Apy_.

The presence of such an anti-invariant cycle in the Picard lattice means that the
period of (X, ¢) lies in H.

Since E is an elliptic curve and hence its class in H?(X,Z) is isotropic, the first
equality of (6.2) follows from

(6.3) 2(E,u(F)) = (Dy,Dy) = (X", X*) =20 — 2r.
The second property in (6.2) holds because
(D_,H_)=(D_+ Dy, H_) = (2E,H_) C 2Z.

To see the last equality of (6.2), we note that the anti-isometry A : Ay, — Ap_
induced from the relation H, = (H_)*NH?(X,Z) maps [D, /2] to [D_ /2] because
Dy /2 + D_/2 = E is contained in H?(X,Z). Since [D, /2] is the characteristic
element of Ay, by Lemma 6.5 below, so is [D_/2] in Ap_. O

Lemma 6.5. For any 2-elementary K3 surface (X,.) the element [X'/2] € Ap,
1s the characteristic element.

Proof. Let f: X — Y be the quotient map by ¢, and let B C Y be the branch
curve. Every element of the dual lattice HY can be written as f*L/2 for some
L € Pic(Y). Then

(X*/2,f*(L/2)) = (B,L)/4 = (-Ky,L)/2.
We can see that (L + Ky, L) € 2Z from the Riemann-Roch formula. Therefore
(X*/2,f*(L/2))=(L,L)/2=(f*(L/2), f*(L/2)) modZ,
which means that X*/2 € HY and that [X*/2] is characteristic. O

In Sections 6.2 and 6.3, we will construct an elliptic curve E as in Proposition 6.4.
The non-emptiness of ﬁgl(zm/g) will be seen in the course of proof.
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6.2. Proof of Theorem 6.1: the case g = 3. We begin with the case g = 3.
Recall that a smooth curve of genus 3 has an effective even theta characteristic
precisely when it is hyperelliptic. So let (X,¢) be a 2-elementary K3 surface with
(9,k) = (3,0) such that X* is hyperelliptic. Consider the degree 4 line bundle
L = Ox(X*), which is hyperelliptic in the sense of Section 3.3. By Saint-Donat’s
classification, L defines a degree 2 morphism

o: X —>Q

onto a quadric Q C P2. We may assume that L is ample, because the locus where
X* is hyperelliptic and Ox (X") is non-ample has codimension > 2 in M. In that
case () is smooth.

Claim 6.6. ¢ acts on Q by switching the two rulings on it.

Proof. First note that ¢ acts on @) nontrivially, for the branch curve of ¢ is a member
of | — 2Kg| and hence has genus 9. Then ¢ fixes the curve ¢(X*), which by the
definition of ¢ has bidegree (1, 1). It is easily verified that any non-trivial involution
of @ fixing a smooth bidegree (1,1) curve must switch the two rulings. O

We choose a ruling line [ on @ and put E = ¢*[. Then E is a smooth elliptic
curve on X for a general choice of [ and satisfies the linear equivalence

E+u(E) ~ ¢*0(1,1) ~ X*.

By Proposition 6.4, we get the inclusion (6.1).

The non-emptiness of ﬁxl (%) can be seen by reversing this construction: choose
a bidegree (4,4) curve B C P! x P! preserved by the switch involution of P! x P!
and take the double cover X — P! x P! branched over B. The switch involution
can be lifted to X so that its fixed curve is the preimage of the diagonal of P! x P!,
which is hyperelliptic of genus 3. Thus Theorem 6.1 is proved in case g = 3. ([l

6.3. Proof of Theorem 6.1: the case 4 < g < 10. We next treat the case 4 <
g <10 in Theorem 6.1. Let (X,¢) be a 2-elementary K3 surface with 4 < g < 10,
k=0and § = 1. Let Y = X/. be the quotient surface and C C Y be the branch
—2Ky-curve. The quotient map X — Y gives the canonical identification

C~ X"
The anti-canonical model Y € P97 of Y is a Gorenstein del Pezzo surface of degree
g—1, and Y is its minimal resolution. Note that if X — X is the contraction of (—2)-
curves disjoint from X*, we naturally have Y ~ X /i. We may view C also as lying
on the smooth locus of Y. By the adjunction formula we have —Ky|c ~ K¢, and
the restriction map | — Ky | — |K¢/| is isomorphic because h°(Ky) = h'(Ky) = 0.
Therefore the composition of inclusions

CcYcpdy!

gives the canonical embedding of C, and we can identify P9~ with |K¢|Y. This
also shows that C' is non-hyperelliptic.

Lemma 6.7. If C has an effective even theta characteristic L, then h°(L) = 2.
Proof. 1f h%(L) # 2, then h°(L) > 4. By Clifford’s theorem we have
6 < 2dim|L| < deg(L) =g — 1.
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This holds only when g > 8 and h°(L) = 4. Actually the case g = 8 can be excluded
because a blow-down of Y presents C' as a plane sextic with two double points and
hence C has Clifford index 2. The case g = 10, where C' is a smooth plane sextic,
is treated in [3] Exercise VI. B-3. In case g = 9, presenting C' as plane sextic with
a node or cusp, we can argue similarly. ([l

Proposition 6.8. There exists a locus Z C MY of codimension > 2 with the fol-
lowing property: When (X, 1) lies outside Z, the curve C has a theta characteristic
L with h°(L) = 2 if and only if C can be cut out from Y by a quadric Q C P9~ of
rank 3. In this case, L is base point free.

Proof. (Step 1) Assume that C' C Y is cut out by a quadric @ of rank 3. The vertex
of Q, a (g —4)-plane, is disjoint from Y'; otherwise C' would be singular. The pencil
of (g — 3)-planes in @ gives C' a theta characteristic L with h°(L) > 2, which is free
because C' is disjoint from the vertex. We have h%(L) = 2, for |L| = |K¢ — L] is
identified with the linear system of hyperplanes of P9~! containing a (g — 3)-plane,
which is a pencil.

(Step 2) Conversely, suppose that C' has a complete half-canonical pencil |L|.
Choose a basis «, 8 of H(L) and write |L| = |Lo| + Do with |Lg| the free part and
Dy the fixed part. The divisor Dy is defined by a = g = 0. If we set

U = 042, Uy = 52, Uz = OZB € H(](Kc) = H()(Opg—l(l)),

then C is contained in the rank 3 quadric @ C P91 defined by ujus = u3. The
vertex of @ is the (g —4)-plane V' defined (set-theoretically) by (u; = uz = 0)N Q.
The free part |Lg| is given by the pencil of (g — 3)-planes in Q through V, and the
fixed part Dy is defined by

(6.4) 2Dg = (u1 = uz = 0)|c.

In order to show that this quadric @ cuts out C from Y, it suffices to prove Y ¢ Q,
for then C' and Q|y are both —2Ky-curves on Y.

(Step 3) Suppose the contrary: Y C Q. We then have three linearly independent
sections i1, g, i3 € HO(—Ky) on Y with 1@z = 4% and u; = @;|c. Choose a blow-
down 7 : Y — P? and let Z C P? be the blown-up points (which possibly contain
infinitely near ones). We have #7 = 10 — g. The image 7(C) of C is a plane sextic
having double points at Z and no other singularities. Via the mapping

(6.5) | — Ky| — |Op2(3)], D — w(D),

we can identify | — Ky| with the linear system of plane cubics through Z, and D is
recovered from I' = 71(D) by D = 7*I' -7~ 1(Z). Now by our assumption @ iis = 43,
the divisors of u1, g, g correspond to three linearly independent cubics I'y, T's,
I's with 'y + I's = 2I'3. This equality can hold only when

I'y =2 +1, I'y =2+ 1, I's=0L+1+1

for some distinct lines I, l2,[. Let p = [1Nls. The net spanned by I'1,I's, I's consists
of splitting cubics I + 1’ + 1" where I’,1” are lines through p. In particular, its base
locus is p Ul. Recall that the restriction of this net to C', after the transformation
(6.5), is equal to P(uy, ug, uz) = PSym? HO(L).

(Step 4) For a plane curve I we write I' for its strict transform in Y. We also
denote E = 7~ *(p). We observe the following:

(1) Z lieson pUl;
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(2) peZandp ¢l
(3) the free part |Lg| is given by the projection from p;
(4) the fixed part Dy is given by

(6.6) 2Dy = (I + E)|c.

(1) is obvious. We can see (3) by noticing that ¢, : C — P! coincides with the
projection from p after composing them with the conic embedding P! — P2, the
composition being the resolution of the rational map defined by Sym?*H 9(L). Under
(2), we have div(@;) = 2l; + E +1 for i = 1,2, so that (4) follows from (6.4). It
remains to see (2). Firstly, if p ¢ 7(C), then Ly ~ 7*Op2(1)|c which is absurd.
If pe n(C) but p ¢ Z = Sing(n(C)), then Ly ~ 7*Opz(1)|c — 7 (p) by (3) and
Doy > m=Y(p) by (6.4). It follows that L > 7*Opz(1)|c, and hence dim|L| > 2, a
contradiction. Therefore p € Z. Next assume p € [N Z. Then both I'y and I's have
multiplicity 3 at p, so that div(@;) = 2[;+2E+1 for i = 1,2. Then 2Dy = (2E+1)|¢
by (6.4). Since Lo ~ 7*Op2(1)|c — E|c by (3), we have L > 7*Opz(1)|¢, the same
contradiction as before. This verifies (2).

(Step 5) Now since the 9 — g points Z\p lie on ! and since no four points of
Z can be collinear by the nefness of —Ky, we must have |Z \ p| < 3 and thus
6 < g < 9. The right hand side of (6.6) is divisible by 2 only if 7(C) is totally
tangent to [ outside Z = Sing(n(C)) and 7 (C) has a cusp at p. The cusp condition
defines a divisor in the moduli space; when 7 < g < 9 (resp. g = 6), the tangency
condition (resp. the collinear condition on the three points Z \ p) defines another
divisor. These two divisors, both Heegner and irreducible, defines a codimension 2
locus Z in the moduli space. If (X,¢) ¢ Z, then (6.6) cannot hold and thus Y ¢ Q.
By (Step 2), this implies that C' is cut out from Y by Q when (X,¢) & Z. |

Since the intersection of a general Del Pezzo surface Y C P97! and a quadric
Q C P91 of rank 3 is a smooth curve, we see the non-emptiness of ﬁ;l(sm’g).
Now let C' C Y be cut out by a quadric Q of rank 3. We take the double cover

W:Q%ngl

branched over Q. The (contracted) quotient map X — Y by ¢ can be identified with
the restriction 771(Y) — Y of m. We again denote by ¢ the covering transformation
of 7:Q — P91, We also view X C P¥ naturally. Note that Q is a quadric of rank
4 in P9 and hence is the cone over a smooth quadric surface Qo ~ P! x P! with
vertex P94, Let f: Q --» Q be the projection from the vertex. Then the pencils
F*10g,(1,0)| and f*|Og,(0,1)| are P'-families of (g — 2)-planes that sweep out Q.
As is easily verified, + switches these two rulings. Restricted to X = 7= 1(Y), the
pencil f*|Og,(1,0)| induces an elliptic fibration on X, say |E|. The cycle E+ «(E)
is a hyperplane section of X C P9. On the other hand, X* C X is the ramification
divisor of X — Y and hence also cut out by a hyperplane of P9. Therefore E+.(E)
is linearly equivalent to X* on X. By Proposition 6.4, Theorem 6.1 is proved in
case 4 < g < 10. O

Remark 6.9. In the above construction, the given half-canonical pencil on C' ~ X*
coincides with the restriction of the elliptic fibration |E|: this follows because |E| is
the restriction of a P9~2-ruling on @, which in turn is a component in the pullback
of the family of hyperplanes in P9~! that cut out doubly from Q the P9~3-ruling.
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Remark 6.10. A general member of ﬁxl(ﬂﬁ;) has a unique effective even theta
characteristic, because the period of those (X, ¢) having several elliptic curve classes
[E] with E + «(E) ~ X' lie in (the image of) the intersection of at least two
components of H,.

6.4. Trigonal curves. This section is preliminaries for the subsequent Sections 6.5
and 7. A smooth projective curve C of genus g > 5 is said to be trigonal if it has
a degree 3 morphism to P'. Such a morphism, if exists, is unique up to Aut(P%).
Let us summarize some properties of trigonal curves (cf. [30]).

It is classically known that a trigonal curve C can be canonically embedded in
a Hirzebruch surface. This is due to the fact that the canonical model of C is
contained in a unique rational normal scroll, namely the image of a Hirzebruch
surface F,, by a bundle L, ,, with m > 0 (see Section 3.3 for the notation). The
integer n is called the scroll invariant, and m the Maroni invariant of C. As
a curve on F,, C belongs to the linear system |Ls;| with b = m —n + 2 by
the adjunction formula. The trigonal map of C' is given by the restriction of the
projection F,, — P!. We have the genus formula g = 3n + 2b — 2, which gives
the relation of n and m. These (equivalent) invariants give a stratification of the
moduli space of trigonal curves. By the canonicity of the embedding C' C F,,, the
isomorphism classes of trigonal curves of genus g and Maroni invariant m correspond
to the Aut(F,,)-orbits in the locus of smooth curves in |Lg ).

Maroni described the variety W (C) C Pic?(C) of line bundles L of degree d
and h°(L) > r+1 (see [30, Prop. 1]). We need his description in the case d = g — 1.

Proposition 6.11 (Maroni). Let T = Lo i|c be the trigonal bundle and write
Wy =rT +Wy_1-3.(C), where Wy_y_5,(C) := W2, _3,.(C). Then

T (C) =W, U (Ko — W)

Using this description, we can give a geometric characterization of trigonal curves
having effective theta characteristics.

Lemma 6.12. A trigonal curve C' of scroll invariant n and Maroni invariant m
has a theta characteristic L with h°(L) > r + 1 if and only if there exists a curve
H € |L1,m—2r| on Fy, such that H|c = 2D for a divisor D of degree g — 1 — 3r on
C. In that case, the divisor rT + D gives such a theta characteristic.

Proof. A line bundle L is a theta characteristic with h°(L) > 7 + 1 if and only
if it is a fixed point of the residual involution on W;_;(C). Such L should be
contained in W, N (K¢ — W) by Proposition 6.11, so we can write L = rT + D
for some D € Wy_1_3,(C). Since L ~ K¢ — L, we have 2D ~ K¢ — 2rT. The
restriction map | L1 m—2r| = |Kc —2rT| is isomorphic because hi(Kg, — Lo2,) =0
for i = 0,1. Thus there exists H € |Ly y—2r| with H|c = 2D. Conversely, if we
have such H and D, then L = rT + D is a theta characteristic with h°(L) > r + 1
by Proposition 6.11. ]

6.5. Proof of Proposition 6.2. We will show that a general member C of fi, (M)
has no effective even theta characteristic when £k =1 and 6 < g < 9, using the de-
scription of C' given in [26].

We first consider the case § = 1, where 6 < g < 9. In this case C' is a general
trigonal curve of genus g with Maroni invariant 2, which can be realized as a general
member of the linear system |L3 10—4| on Fy_g ([26] Corollaries 6.2 and 7.6). By
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Lemma 6.12, C has a theta characteristic L with h°(L) > 2 if and only if there
exists a curve H € |Ly o] totally bitangent to C. However, it is readily seen that a
general member of | L3 10—4| has no such tangent curve.

When 6 = 0, we have g = 6. In this case C' is a plane quintic ([26] Corollary 7.3).
Then our assertion follows from the classical fact that any smooth plane quintic
has no effective even theta characteristic: indeed, according to [3] p.211 we have

W5(C) ={Oc(p—q) @ Op=(1) | p,g € C }.
The residual involution acts on this Wi (C) by switching p and ¢. It has no fixed

point other than Op2(1)|c, which is an odd theta characteristic. Thus Proposition
6.2 is proved. O

7. THE LOCUS OF VANISHING THETA-NULL: THE CASE 6 =0

We continue the geometric study of the Torelli map, still viewed as a morphism
Ty MY — M, between the moduli spaces. In this section we treat the following
two series:

er=20=0 (¢9=09,10),

e r=10,6=0,4<g<6.
In these cases, iy (M3) is contained in 9N, because a general member of i, (M3 )
possesses a rather apparent effective even theta characteristic.

For the first series, we will show that an analogue of Theorem 6.1 holds by
replacing M with the (reduced) divisor

My = div(Ty) NN,
of My, where T, is the Siegel modular form introduced in Section 4.1. Geometri-

cally this locus parametrizes curves having at least two effective even theta charac-
teristics. (See Lemma 4.1.)

Proposition 7.1. When (r,8) = (2,0) and g = 10, the Heegner divisor Hy is
wrreductble and equal to ﬁ;l(sm’l’o). In particular, the genus 10 component of X*
has a unique effective even theta characteristic if the period of (X,1) lies outside
Ha.

In case (r,1,6) = (2,2,0), the Heegner divisor H, is reducible, reflecting the
fact that norm —4 vectors | € A are divided into two classes according to whether
div(l) = 1 or 2. We accordingly write Hp = H; + Ha.

Proposition 7.2. When (r,0) = (2,0) and g = 9, the component H; is irreducible
and equal to ﬁ;l(img), In particular, X* has a unique effective even theta charac-
teristic if the period of (X, 1) lies outside Hy.

For the second series, we will prove the following.

Lemma 7.3. If (r,8) = (10,0) and g = 4,5, then fiy(MQ) is not contained in the
hyperelliptic locus.

Lemma 7.4. If (r,0) = (10,0) and g = 6, then a general member of fiy (M%) has
exactly one effective even theta characteristic.

In Section 9, these results will be used to prove Theorem 0.1 (2), (3). Lemmas
7.3 and 7.4 will be strengthened in Corollary 9.14 by an argument of modular form
(a geometric proof is also possible).
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7.1. Proof of Proposition 7.1. The line of the proof of Proposition 7.1 (and 7.2)
is similar to Theorem 6.1. We begin by checking the irreducibility of the Heegner
divisor H,, which is defined by norm —4 vectors in A.

Lemma 7.5. When (r,1,8) = (2,0,0), Ha is irreducible.

Proof. Since A ~ U®? @ EZ? is unimodular, by the Eichler criterion the OF(A)-
equivalence class of a primitive vector of A is determined by its norm. O

We describe the members of MY following the construction in Section 6.1 of
[26]. We consider curves on the Hirzebruch surface Fy. Let U C | L3 | be the open
locus of smooth curves. We have a morphism p: U — M by associating to C € U
the double cover of F4 branched over C' + X.

Lemma 7.6. There exists a geometric quotient U/Aut(F4) and the period map
p descends to a biregular isomorphism P: U/Aut(Fy) — MS. In particular, the
Torelli map M — M, is given by P~ and is injective, with the image the trigonal
locus of Maroni invariant 2.

Proof. The p-fibers are the Aut(F,)-orbits because the Aut(Fy4)-orbits correspond
to the isomorphism classes of trigonal curves of Maroni invariant 2, and the Torelli
map recovers these isomorphism classes. Since MY is normal, then [32] Proposition
0.2 tells that the image of p is identified with the geometric quotient of U by
Aut(F4). It remains to show the surjectivity of p.

Let (X, ¢) be an arbitrary member of M%, and let {e, f} be the natural hyperbolic
basis of its invariant lattice H; ~ U. The vector 2(e + f) satisfies the arithmetic
conditions in Lemma 3.6 and hence gives an t-invariant hyperelliptic bundle of
degree 8. This defines a generically two-to-one morphism X — Y where Y = P?
or Fy,, with n < 2, on which ¢ acts by the covering transformation by Lemma 3.8.
Among these possibilities of Y, the branch —2Ky-curve can contain a component
of genus 10 only when Y = P? or F4. The case Y = P? cannot happen because it
would be (r,1,d) = (1,1,1) in that case. Hence Y = Fy4. Since | —2Kg,| = X+|L3 0
and since L3 o has arithmetic genus 10, the branch curve should be of the form ¥4C
with smooth C' € |L3o|. Thus (X,:) = p(C). O

Let C be a member of U. Since C is disjoint from ¥, the bundle Ly _4|c is
trivial so that K¢ ~ Ly 2|c ~ Los|c. Hence Lo s|c is a theta characteristic with
h9(Loslc) = 4. This shows that 1, (M) C 9M,. We are interested in the locus
Tip (MQ) N, where C has another effective even theta characteristic.

Lemma 7.7. The curve C' has an effective even theta characteristic different from
Lo s|c if and only if there exists a smooth member H of |L1 o| such that H|c = 2D
for some divisor D of degree 6 on C.

Proof. By Lemma 6.12, C' has a theta characteristic L with h°(L) > 2 if and
only if there exists H € |L1 | with H|c divisible by 2, in which case L is given
by (H|c)/2 + Lo1|c. If H is singular, it contains ¥ as a component and hence
can be written as H = X + Z?zl F; for some Lo i-fibers Fi,--- , Fy. Since H|¢c =
Z?:l F;|c, after renumbering we must have F} = F5 and F3 = F,. Thus L = Ly 3¢
in this case. O

We can now complete the proof of Proposition 7.1. Since fi, (MQ) C 9}, the
inverse image ﬁXl(Dﬁ/l’O) is a divisor in M{. Tt can be easily checked with Lemma
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7.7 that 11y (M%) N 9MY, is non-empty. Hence it remains to prove the inclusion
Ay (ONYy) € Ha. Let (X,1) be a 2-elementary K3 surface with (g,k) = (10,1)
such that 7, (X,¢) € MY,. By Lemmas 7.6 and 7.7, we have (X,¢) = p(C) for a
curve C' as in Lemma 7.7. Let H be a smooth L, g-curve with H|c divisible by 2.
The pullback of H by the covering map = : X — F, splits into two (—2)-curves:
7*H = E 4 ((E). Therefore X has the t-anti-invariant cycle

D_=FE—.FE)
of norm —16. Let H_ C H?(X,Z) be the anti-invariant lattice of (X, ). Since
(D_ H_)=(D_+E+uE),H_)=2E,H_) C 2Z

and since H_ is unimodular, D_ is divisible by 2 in H_. Therefore Pic(X) contains
the anti-invariant cycle D_ /2 of norm —4, which implies that the period of (X, )
lies in H . This proves Proposition 7.1. (Il

7.2. Proof of Proposition 7.2. In this subsection we prove Proposition 7.2. We
first explain the decomposition of the Heegner divisor H . Recall that H, is defined
by norm —4 vectors [ in A ~ U @ U(2) @ EZ?. Since A cannot contain (—4) as an
orthogonal direct summand, we have either div(l) = 1 or 2. By the Eichler criterion,
each type of norm —4 vectors consist of a single Of (A)-orbit (in case div(l) = 2,
[1/2] € Ap is the unique element of norm = 1 mod 2Z). We accordingly obtain the
decomposition
Ha = Hi + Ho

where H; is defined by those [ with div(l) = i, and each H, is irreducible.

We next recall a (well-known) construction of members of MQ. Let U be the
parameter space of smooth (2,4) complete intersections in P2, For each C € U
the quadric containing it is unique; U is thus stratified according to whether the
quadric is smooth or a quadratic cone. In the first case C is a smooth bidegree
(4,4) curve on Y = P! x P!, and in the latter case C' is a smooth Ly g-curve on
Y = F,. We have a period map p: U — MQ by associating to C' the double cover
of Y branched over C.

Lemma 7.8. The period map p descends to a biregular isomorphism U/PGL4 —
MY from the geometric quotient U /PGLy.

Proof. This is similar to Lemma 7.6, so we only indicate minimal ingredients of the
argument: (1) using the natural norm 4 vector in the invariant lattice U(2), we can
realize a given (X, ¢) as a double cover of a quadric so that p is surjective; (2) the
p-fibers are PGLy-orbits either by an argument modeled in Section 4.3 of [26] or
by observing that the PGL4-orbits correspond to the isomorphism classes of curves
(cf. [3] Exercise IV. F-2). O

In the proof of Proposition 7.2 we restrict ourselves to the generic case, namely
the smooth quadric case. The quadratic cone case can be dealt with similarly. So
let Y = P! x P! and consider the open locus U C |Oy (4,4)| of smooth bidegree
(4,4) curves. If C € U, then K¢ ~ Oy (2,2)|¢ and the restriction map |Oy (2,2)| —
|K¢| is isomorphic. In particular, an effective divisor D of degree 8 on C' satisfies
2D ~ K¢ if and only if there exists a bidegree (2,2) curve H on Y with H|c = 2D.
We have one apparent theta characteristic, Oy (1,1)|c, which has h® = 4. This is
the case where H is a double bidegree (1,1) curve. By [3] Exercise IV. F-2, any
other effective even theta characteristic of C, if exist, must satisfy h® = 2.
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Now let V' C U be the locus where C' has a theta characteristic with h® = 2.
By the same argument as in Section 7.1, the proof of Proposition 7.2 is reduced
to showing the inclusion p(V) C Hy. Solet C € V and (X,:) = p(C). We write
m: X — Y for the covering map. The curve C' admits a 1-dimensional family
{H¢}iepr of “totally tangent” curves of bidegree (2,2), i.e., H¢|c = 2D; for some
divisors D; of degree 8 on C, which are not double bidegree (1,1) curves. Then
{Ds¢}iepr is a (complete) half-canonical pencil of C. Note that this pencil can also
be obtained by picking up ¢ = 0 and considering the linear system of bidegree (2, 2)
curves passing through Dy, which intersect C' at Dy + Dy.

Claim 7.9. A general member of {H;}iepr is smooth.

Proof. If H; is reducible, its irreducible components are smooth rational curves
intersecting C' transversely at at most two points and tangent to C' elsewhere. Their
pullback to X split into two (—2)-curves. So if a general member is reducible, then
the K3 surface X would be covered by rational curves, which is absurd. By the
same reason, a general (irreducible) member cannot be singular. O

Let H be a general member of {H,;};ep1. Since H is totally tangent to C at 8
points, its pullback to X splits into two smooth elliptic curves: 7*H = E + ((E).
Hence (X, ¢) possesses the t-anti-invariant cycle of norm —16:

D_ =E —(E).

Claim 7.10. D_ is divisible by 2 in the anti-invariant lattice H_ and satisfies
(D_/2,H_)=1Z.

Proof. Since D_/2 = E — 1*Oy(1,1) is contained in H*(X,Z), we have D_/2 €
H_.If(D_/2,H_) # Z, then (D_/2,H_) C 2Z so that D_/4 would be contained
in the dual lattice HY. Recall that the discriminant forms Ay ., Am_ are isometric
to Ay(z). Aselements of Ay and Ay, [D_ /4] and [1*Oy (1, 1)/2] are respectively
the unique elements of norm = 1 mod 2Z. By Nikulin [33], then F/2 = D_/4 +
70y (1,1)/2 would be contained in H?(X,Z). This contradicts the well-known
fact that the class of a smooth elliptic curve is primitive in Pic(X). (]

To sum up, if a smooth bidegree (4,4) curve C' C Y has a theta characteris-
tic with h° = 2, then the associated 2-elementary K3 surface (X,:) has an anti-
invariant cycle D_/2 of norm —4 and with (D_/2, H_) = Z in its Picard lattice.
Hence the period of (X, ) lies in the component H; of H. This finishes the proof
of Proposition 7.2. O

7.3. Proof of Lemmas 7.3 and 7.4. Lemma 7.3 is an immediate consequence
of the following known description of general members of fi, (M%). When g = 4,
they are general curves in M) by [26, Cor.9.10]; when g = 5, they are general
trigonal curves with vanishing thetanull by Kondo [25]. Since these curves are not
hyperelliptic, Lemma 7.3 follows. d
For the proof of Lemma 7.4 we use the generic description given in [26, Cor. 7.11].
Let C be a smooth curve on Fy belonging to the linear system |Ls 1| such that the
Lo 1-fiber F' through the point C'N X intersects C' with multiplicity 3 there. By
taking the resolution of the double cover of F5 branched over C'+ F'+ 3, we obtain a
2-elementary K3 surface with (r,[,d) = (10,0,0). This construction covers general
members of MY, so a general member of 7y (M?) is a curve C as above.
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Denote p:=CNX¥ and T := Lo 1|c. Since
Ko ~ L171|c ~ 3T + E|C ~ 2T + 4p,

the divisor T+ 2p gives a theta characteristic of C' with h°(T + 2p) > 2. By
Lemma 6.12, we have h°(T + 2p) = 2. Conversely, suppose we have a theta char-
acteristic L on C with h°(L) > 2. By Lemma 6.12 we can find a curve H € |L;,_1|
with H|c = 2D for some divisor D satisfying L ~ T+ D. Since |Lq,_1| = X+ |Lo 1],
H is of the form H = ¥+ F’ for some F’ € |Lg1]. The condition (¥ + F')|¢c = 2D
forces I to pass through p = ¥ N C. Therefore F = F' and 2D = 4p. Thus L is
uniquely determined as L ~ T + 2p. This proves Lemma 7.4. [

8. THE STRUCTURE OF T)s: THE CASE § = 1

In Section 8, we determine the structure of ®,; when § = 1.

8.1. Borcherds products for 2-elementary lattices. Recall that the Dedekind
n-function and the Jacobi theta series 9A1++€/2 (1), (e = 0,1) are the holomorphic
functions on the complex upper half-plane $)

oo
2 .
n(r) =g/ [JA=a",  Opipn)= > o™,  q=e
n=1 meZ+e/2

Let A C Lks be a primitive 2-elementary sublattice of signature (2,7(A) — 2).
We set

B2 (r) = n(r)Sn(@r)n(dr) S 0, (1)),
Ya(7) == =167(27) " 1On(4r)*0 5 1 (1)1

Let {ey}yeca, be the standard basis of the group ring C[A,]. For 0 < j < 3, set
Vii= ) cAn an(y)=j/2 €+ BY [48, Def. 7.6, Th.7.7], the C[A,]-valued function

3 3
_ T+EY ._;
FA) = o) #2002 525 S (T ) i s i,
7=0 k=0
is a modular form for Mp,(Z) of weight 1 — b~ (A)/2 with respect to the Weil
representation p: Mpy(Z) — GL(C[A,]) attached to A ([8]), where Mpy(Z) is the
metaplectic cover of SLo(Z). By [48, Eq.(7.9)], the principal part of F} is given by
Poo[Fa] :={q7 4+ 2(16 — (M)} e + 29116 — (M)} v
+ 200 g vy — 216 4 (28— r(0))g e,

By (8.1), we easily see that P<o[Fa] = 0 if and only if (r(A),d(A)) = (16,0).

Let £ € Z+¢ be such that 2" =16|¢ for all A. Then ¢ Fx(7) has integral Fourier
expansion at +ico. Define U4 as the Borcherds lift of ¢ Fx(7) (cf. [8, Th.13.3]):

T = Up(-, L FY).

If r(A) < 16, then Wa (-, Fy) is well defined and W4 = W, (-, £ Fp) = Up(+, FA)* in
the ordinary sense. Since O(A) (equivalently O(gp)) acts trivially on £ F by [48,
Th. 7.7 (2)], ¥4 is an automorphic form on Q4 for OT(A) by [8, Th.13.3]. Recall
that the divisors D]\L, D, and H, were introduced in Sections 2.2 and 2.3.

(8.1)

Theorem 8.1. The weight and the divisor of \Ilf\ are given as follows:
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(1) If r(A) <20, then
(16 — r(A))(29™) +1)¢ (r(A) # 12,20)
wt(Uh) = (16 — r(A)) (29 4+ 1)0 — 8(1 — §(A))¢ (r(A) = 12),
(16 — 7(A)) (29N £ 1)0 — (28 — 7(A))25 ") (1 = §(A))¢  (r(A) = 20),
div(T4) = £{Dy + (29N 4 1) Df — 21677 M 3, 1.
(2) If r(A) = 21, then
wt(Th) = (16 — (M) (290 +1)¢ = —5° - 414,
div(T4) = £[Dy + (29M + 1) D — 2107713y, + (28 — () DL}
=275 {32D; +3-17-643 - D — Hap}.
Proof. By using (8.1), the result follows from [8, Th. 13.3]. O
The Petersson norm ||W4 || = [|¥a(+, £ Fy)| is an O(A)-invariant function on Q.

We identify || W4 || with the corresponding function on My and set
1A, Fa)ll = [[2(, € Fa) "

Then || WA (-, Fp)|| is independent of the choice of ¢ € Zso with 27N)=16)¢ Tf
r(A) < 16, then | Ua (-, Fp)l| is the ordinary Petersson norm of Wa (-, Fp).

8.2. The structure of ®;;: the case § = 1. Write M, for a primitive 2-
elementary Lorentzian sublattice of L3 such that

(g(Mg,k), k"(Mg,k)a 5(Mg,k)) = (97 k7 1)
Then M, o = Af @ A?lo_g and (r,1,0) = (11 — g,11 — g,1) for My . Set

Ag = Mg{‘k.
Lemma 8.2. There exist mutually perpendicular roots dy, . ..,dy € AXM with
Ago=ANg, ®Zd1 ® - ® Zdy,.
In particular, if Mgy exists, one has Qn,, = Qa,,_, N Hg, .

Proof. The result follows from the classification in Table 1 in Proposition 1.1. [

By Theorem 6.1, there exist integers agq, by, cq € Z>g for 3 < g < 10 with
(8.2) diV(JZTJQYOXg) =agDy  +bgHa,, + ¢ DXQ,O'
Lemma 8.3. The following inequalities and equality hold:
ag > 0, by >0 (3<g<10), cg =0 (3<g<9).

Proof. We get a, > 0 by [48, Prop.4.2 (2)] and b, > 0 by Theorem 6.1. Let
6 < g <9. Recall that the Zariski open subset D?\’+ (resp. D?X’*) of DY (resp. Dy)
was defined in Section 2.2. By (3.5) and Proposition 6.2, we get JMg,o(Dj)\’:ro) =
JMQJ(Q?\“) Z Onun,g, which implies ¢, = 0 for 6 < g < 9. Let 1 < g < 5. By [48,
Prop.4.2 (1)], Ju, ,(Q% vo) & bnung. Since JMg,g—l(D?\jg,l) = Ju,, (QO ,) by
(3 5) and Lemma 8 2, we get I, o (Q(,)\g o—1) & Onung because D?\’j C QAq a1

y (3.5) and Lemma 8.2 again, we get Jy Do:rg ,) = JIn, 1(QA ) ¢

Qnuug In the same way, we get inductively Jay, k(DO’+ ) & Onun,g for k < g —1.
This proves ¢y = 0 for 3 < g <5. (]

9:9— 2( g,9—1
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Proposition 8.4. If 3 < g <10, the following equality of divisors on S, , holds:
(8.3) div(J3y, Xg) = ag Dy, + 25by Ha, , + g Dy .-

Proof. When g = 10, M, makes sense only for k£ = 0 by Proposition 1.1 . Hence
the assertion is obvious by (8.2) when g = 10. We must prove (8.3) when g < 9.
We will prove by induction the existence of integers ag , by 1 € Z with

(8.4) diV(JX/[g’kxg) =gk Dy, + g Hag

When k = 0, the assertion follows from (8.2) and Lemma 8.3. We assume (8.4)
for My . By Lemma 8.2, there exists d € A;\"glk such that Ay, = Agr11 @ Zd.
Then Qp,, ., = HaNQp,,. Leti: Q= HaNQx,, < Qy,, be the inclusion.
By the compatibility of Torelli maps (3.5), we get the equality of holomorphic maps

= JM 0 1|no 0 .
9ok |QAg,k+1UDAg,1«+1

0
U DAg,kH

(85) JMg’k+1|Q9\g,k+1UD?\g,k+1

Hence we get the equality of holomorphic sections on Qlo\g it

(8.6) Tty ra Xy = (Taay , 00)" X5 = " J3p, X5
Since Q4 .\, \ (R, ,,,UD] ,.,) has codimension > 2 in Q4
(8.4) and (8.6) the equation of divisors on 4,
(8.7)

div(J@ngXg) = div(i*J]*wgka?I) = i*div(J}&gykxi) =1"(ag Dy, , +bgrHa,,)

= ag’kDAg7k+1 + 2bg7kHAng+l'

sii1s We deduce from

Here the last equality follows from Propositions 2.1 and 2.2. This proves (8.4) for
Mg +1. By induction, (8.4) holds for all M, j.
Since ag k41 = ag,) and by g1 = 2bg 1 for £ > 0 by (8.4), (8.7), we get
(8.8) agr =ag, by =2Fb,
for ¢ <9 and k > 0. This proves the result. O

Proposition 8.5. If 3 < g < 10, then the following inequalities hold:
ag>2%971 b, >2%

Proof. The inequality a, > 229! follows from [48, Prop.4.2 (2)]. (To confirm
I (3) & Onun g, it is assumed either » > 10 or (r,d) = (10,1) there. Since the
same proof of [48, Prop. 4.2 (2)] works under the same assumption Ju;(23) Z Onun g
and since Jyy, , (Q%g,o) ¢ Onun,g for 3 < g < 10 by Theorem 6.1, the same conclusion
as in [48, Prop.4.2 (2)] still holds for M, ¢.) Let us prove the second inequality.

Let j: My, 5 C — Jac(C) € A,y be the Torelli map. By [42, Prop.3.1] or [43,
p.542 Proof of Th. 1], we get the equality of divisors on 91,

(8.9) div(j*xg)|om, = 201,

Set A := Ay and pl =T, o HAIQ?U where II5: Q4 — My is the projection.
Since Jar, o laa = Jj o p}, we get by (8.9) the following equality of divisors on Qf
(8.10) div( 3y, o Xg)lag = (H3)*div(j*xg)la, = 2*(u3)* 9.

Since Supp((u)* M) C HaNQY and since H is irreducible by Theorem 6.1, there
exists 3, € Z~o such that the following equality of divisors on Q% holds

(8.11) ()" My = By - Halag -
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By (8.10), (8.11), we get the equality of divisors on Q%
(5.12) V(T = 2B, - Halog.
Comparing (8.2) with (8.12), we get by = 248, > 2%. This completes the proof. [

Theorem 8.6. There exists a constant Cy . ¢ depending only on g, k, £ such that
the following equality of automorphic forms on Qa, , holds:

2971 (2941) _ 29-1y . 8¢
(I)Mg,k - Cg,k,[ \I/Ag’k Y ‘]Mg,ng .

In particular, there exists a constant Cy ) depending only on g, k such that

T 2 = Oy ([ W, (020 Fn, ) - T, |

Xl -

Proof. Since the result was proved in [48, Th.9.1] in the case g < 2, we assume
g > 3 in what follows. Set M := M, and A := Ay . Then 7(A) > 5 and hence
M} \ Mp has codimension > 2 in M*. By definition, M = M, ; has invariants
r(M)=114k—g, (M) =11—k—g,so that r(A) = 11—k+gand [(A) = 11—k —g.

Since wt(xg) = 2972(29+1) and wt(¥4) = {16 —r(A)}(29 +1)¢ by Theorem 8.1,

we get

(8.13) wt(P3 @ Ji ) = 297129 + 1)E- (16 — (), 4).

Since wt(®,) = (16 — r(A),4) by Theorem 5.1, we get by (8.13)
1 g—1(9g

(8.14) wi(U @ i) /ey @) = (0,0).

By (8.14),

on = (ll,igfle ® J]T/[Xie)/q)ig 1(29+1).
descends to a meromorphic function on Mjy. Since M7} is normal and since
dim M} \ Ma < dim M} — 2, ¢, extends to a meromorphic function on M3.
(1) Let r(M) > 2. Hence r(A) < 20. By Theorem 8.1 and Proposition 8.4,
(8.15)

div(P3 @ JixS) = 291Dy + (29 + )P — 219" WA} 4 0Dy + 28b,Ha
= (297" + a,)Dy +2971(29 + 1)DY + 28 (b, — 2*)Ha.
Since div(®p) = ¢ Dp, we deduce from (8.15) that
(8.16) div(pn) = (ag — 2297 Dy + 28 (b, — 290 H .
Since a; > 22971 and b, > 2* by Proposition 8.5, the divisor of ¢, is effective by
(8.16). Since @y is a holomorphic function on M7}, ¢ must be a constant function
on M7}, which implies that
(8.17) ag=2%"1 b, =2"
This completes the proof when r(M) > 2.

(2) Assume (M) =1. Then M = A] and r(A) =21, ¢g=10, k=0, = 1. By
Theorem 8.1 (2), Proposition 8.4 and the equality (¢ — 1) + 16 — r(A) = 4, we get
(8.18)

div(e3 @ Tt

=297 1{Dy + (29 + 1) D — 21677 M 3y, — 216N (28— (A)) DI}
+€{ag Dy +bgHa + ¢y Dy }

=0{(297" + ag) Dy + (by — 2 )Ha} + £{ (297" + 297" 4 ¢,) — 2* - 7)}D}.
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Since div(®,) = £ Dy, we get by (8.18)
(8.19)  div(pa) = £{(ag — 22971 Dy + (b, — 2*) Ha} + b(cy — 2* - 7) D}
Since ag > 229-1 and by > 24 by Proposition 8.5, it follows from (8.19) that @

is a non-zero holomorphic function on My \f}t By Lemma 8.7 below, ¢, is a
non-zero constant. This completes the proof of Theorem 8.6. ]

Lemma 8.7. When M ~ Af, any holomorphic function on MA\5X 15 a constant.

Proof. Let U C |Op2(6)| be the space of smooth plane sextics, and let V' C |Op2(6)|
be that of sextics with at most one node. By the stability criterion for plane sextics
[40], we have a geometric quotient V/PGL3 of V' by PGL3, which contains U/PGLj3
as an open set. It is well-known that M9 is isomorphic to U/PGL3 by associating
to a smooth plane sextic the double covers of P2 branched over it. Shah [40] has
shown that this isomorphism extends to an open embedding V/PGLj3 < M, and

that its image is contained in My \5X Hence a holomorphic function on My \5X
gives one on V/PGL3, which in turn is pulled-back to V. Since the complement of
V in |Op2(6)] is of codimension 2 in |Op=(6)|, a holomorphic function on V' extends
to |Op2(6)| holomorphically and so is a constant. O

Remark 8.8. Let (g,k) = (10,0). Since ¢, is constant when A = (A])+, we get
(8.20) ap = 22971 =219, bio = 24, co=2%7

by (8.19). In particular, JXTXIO vanishes on DF. Since U = [A] @ Zd] for any
d € A}, this, together with (3.5), implies that Ji;x1o vanishes identically on Q..

9. THE STRUCTURE OF T)s: THE CASE § =0

In Section 9, M C LLk3 is assumed to be a primitive 2-elementary Lorentzian
sublattice with § = 0. As before, we set A = M.

9.1. The structure of ®,;: the case r # 2,10 and § = 0.

Lemma 9.1. Let A 2 U U(k) Dy ®Es with k = 1,2. Then the following equality
of divisors on Q2 holds:

div(Jyx5) =2971(29 + 1) Dy.

Proof. Recall that the lattice Ay ), was defined in Section 8. Since Ay 1 = AP A,
by comparing the invariants (r, [, §), there is a root d € Aj\'g.kﬂ with Ag 1 Nd+ =

A. Since d € AXQ ._,» we get by (8.3), (8.8), (8.17) and Propositions 2.1 and 2.2
div(Jyrxg) = div(Jyg, Xy ={297'Dy | + 2" Ha e,
=2%71Dy 2y, = 297129 + 1)D,.

To get the last equality, we used g — 1 = k +4, D/J{ =0 and Hp = Dy for A, where
the last two equalities follow from ey = —2, 6(A) = 0 and 1, = 0. O

Theorem 9.2. Ifr # 2,10 and 6 = 0, there is a constant Cpr e > 0 depending only
on M and ¢ such that the following equality of automorphic forms on QA holds

1 -
@?\; (29+41) _ Cro U2 1Z®J]>\k/[X58]Z-
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In particular, there is a constant Cpy > 0 depending only on M such that the
following equality of automorphic forms on Qa holds:

2 O a2 R )

Proof. When r > 10, the result was proved in [48, Th.9.1]. We may assume
2 <r < 10 and § = 0. By Proposition 1.1, we get r = 6 and A 2 UaU(k)®D, B Es,
k = 1,2. Since §(A) = 0, we have D{ = 0 and 1, = 0. Since 7(A) = 16, we have
en = —2, which, together with 15, = 0, yields that Hy = Dj. By Theorem 8.1, we
get wt(¥4) =0 and

div(¥4) = £(Dy — 217" M H ) = (D) —Dy) =0,
which implies that ¥, is a non-zero constant function on Q4.

291y « 80520 20+ o :
Set pp == V3 @ JyXy /Py . Since ¥, is a non-zero constant, we
deduce from Lemma 9.1 and wt(®ys) = (0,4¢), div(®pr) = £ Dy that

(9.1) wt(pa) = (0,0), div(pa) = 0.

Hence ¢, is a holomorphic function on My by (9.1) and extends holomorphically
to M} . Thus ¢, is a non-zero constant. O

9.2. The structure of ®,;: the case (r,0) = (10,0). In this subsection, we
assume that M is non-exceptional and

(r,6) = (10,0).

Then 0 <1 < 8 and 2 < g < 6. Since J;; x4 vanishes identically on Qx (e.g. [48,
Prop. 9.3]), Theorem 8.6 does not hold in this case. Identify 9, with its image
by the Torelli map j: M, < A,. Then Jyr: Q% — A, is identified with the map
pa =3 tody: O — Mgy. Write Hnyp,g C M, for the hyperelliptic locus.

Proposition 9.3. Let M be non-exceptional with (r,6) = (10,0). Then J;,; T, does

not vanish identically on Q3. Moreover, for any d € Ay, J[’}\“_d]xg,l is nowhere

0

vanishing on QAmdi'

Proof. For the first assertion, it suffices to prove pua (%) ¢ div(Y,) N M,. Since
T2 is nowhere vanishing on the diagonal locus of G5 and since p (23 ) is the image
of the diagonal locus by the projection &5 — Az, we get div(Y2) N ua(Q}) = 0.
Similarly, we have div(T3) N pa(Q%) = 0 by [22, Lemma 11]. Let g = 4. Since
pa(Q%) C div(xa), the inclusion pa(Q%) C div(Y4) N My would imply ua(Q}) C
div(x4)Ndiv(Y4)NMy. Since the right hand side coincides with $nyp 4 by [24, p.544
Cor.], this last inclusion contradicts Lemma 7.3. Thus pa(Q%) ¢ div(Y4)N9,. Let
g = 5. Let F5 be the Schottky form in genus 5 (cf. [21, p.1018]), whose zero divisor
characterizes the (closure of) trigonal locus of 95 (cf. [21, Cor. 18]). By [25], a
general point of i (£2) is contained in the intersection of the thetanull divisor and
the trigonal locus. Then the inclusion px (Q%) C div(Y5) N M5 would imply

/JA(Q?\) C diV<F5) n diV(X5> n diV(T5) N Ms.

Since the right hand side coincides with $nyp 5 by [17, p.67], this last inclusion
contradicts Lemma 7.3. Thus pa(Q}) ¢ div(Y5) N Ms. When g = 6, we get
pa () ¢ div(Ye) N Mg by Lemma 4.1 and Lemma 7.4. This proves the first
assertion. Since r([M L d]) > 10, the second assertion follows from [48, Prop. 4.2
(1)]. This completes the proof. O
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Theorem 9.4. Let M be non-exceptional with (r,6) = (10,0). Then there is a
constant Care > 0 depending only on M and ¢ such that the following equality of
automorphic forms on Q holds

g—1 g_ g—1
@5\?{ +1)(29-1) — CM,Z \1,5\2 +1)¢ ® J&Tg
In particular, there is a constant Cpy > 0 depending only on M such that
—(29+2)(29—1 - *
s T = O WA, @07 + D R T 1T
Proof. Since (r,0) = (10,0), we get (r(A),0(A)) = (12,0). By [48, Th.8.1],
(9.2) wt(Py) = (4(29 - 1),0), div(¥p) = Da.

Since J;; T, does not vanish identically on Qf by Proposition 9.3 and since Dy is
irreducible, there exists a € Z>( and an effective divisor £4 on {24 such that

(9.3) wt(J3 ) = (0,429 +1)(29 — 1)),  div(J3;Ly) = aDa + E.

Set pp = \Ilfgﬂ+1)Z®J}\"/1T§/<I>S\igil+l)(29_l). Comparing (9.2), (9.3) and wt(®pr) =
(4€,40), div(®pr) = £ Dy, we get

(9.4) wt(pa) = (0,0),  div(pa) = £{a —2(2297D —1)}Dy + L&,.

By Proposition 9.3, we can apply Lemma 4.3 to a general curve v: A — My

intersecting 5?\ transversally. Since a > 2(22(9=1) — 1) by Lemma 4.3, we get
div(pa) > 0. By the Koecher principle, ¢, is a non-zero constant. (I

In the rest of this section, we determine ®,; for the remaining M, i.e., those M
with (r,0) = (2,0). Then, either M = U or U(2).

9.3. The structure of ®y. In Section 9.3, we set
M:=U, A=M":=U2gE.

Then g = 10 and J},x10 vanishes identically on Q.
Let Ey4(1) = O+ (1) = 14 240q + - - - be the Eisenstein series of weight 4 (or

equivalently the theta series of EJ) and set
(9.5) fa(r) = Ea(r)/n(1)* = 7" + 264+ O(q).
Then fA(7) is a modular form of weight —8. In Section 9.3, we prove the following:
Theorem 9.5. There exists a constant Car e > 0 such that
g—1 9_
q)g\i +1)(29-1) _ CM,Z \IIA(',QgilFA + fA)Z ® J;/[Tf;
In particular, there is a constant Cpy > 0 depending only on M = U such that
—(29-1)(29+2 - *
s O = O a2 o S| T I
For the proof of Theorem 9.5, we first prove the following:
Lemma 9.6. J;, Y10 is nowhere vanishing on Q% \ Hy.

Proof. Let (X, t, &) be an arbitrary marked 2-elementary K3 surface of type M = U
with period in Qz\H. Let C be the component of genus 10 of X*. Fix a symplectic
basis of Hy(C,Z), so that £2(C) € &9, where £2(C) is the period of C' with respect
to the symplectic basis. By Proposition 7.1, there is a unique even pair (ag, b),
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ao, by € {0, 3319 such that 64,4, (£2(C)) = 0 and 0,,(2(C)) # 0 for all even pair
(a,b) with (a,b) # (ag,by). Hence we get

JuTi0(X,0) =T1(2(C) = [ as(2(0))® #0.
(a,b)#(ao,bo)

This proves the lemma. O

By Lemma 9.6, there exist a, 8 € Z~q such that
(9.6) div(J3;T10) = @D + B Ha.
To prove Theorem 9.5, we must determine 3. We use the following notation: Set
L=UoUdEsDEs @A =ADA;.
Let d € AT be a generator of A;. Then A = LNd*, L+ = AT and A, = {0,1.},
where 17, = [d/2]. As before, we make the identification
Hy=Qraqr = Qa.

Let [n] € HY be an arbitrary point. Let U 2 A! be a small neighborhood of
[7] in 1, equipped with a system of coordinates (¢, s1, ..., s1s) such that UNDp =
UNHy =UNQy = {(t,s) € U;t = 0} = A®. Since d € A} and hence
g(L) = g(A) =10 by [48, Lemma 11.5], the Torelli map JAT is a holomorphic map
from U to Ajg by Theorem 3.5. Let I1: &9 — Ajg be the projection. Since U
is contractible, J At U — Ajy is liftable. Namely, there exists a holomorphic map

JAT: U — &4y such that
JAT =]lo JAT'
Since jAf takes its values in &g, the value 9a’b(jA1+ (t,s)) makes sense for all
(s,t) € U and even (a,b), a,b € {0,1/2}!0. Since jg+X10 = IT(a6) even j&ﬁmb is
1 ’ 1

nowhere vanishing on U \ (Dy, U Hy) and since there exists by Proposition 7.1 a
unique even theta constant 6, p, vanishing identically on H,, we get the following:

e UN H,is a component of U N div(j;+9ao7b0);
1

e UNH; is not a component of UNdiv(J}8,) for any even (a, b) # (ao, bo).
1
Thus there exist ¢ € Zso, ¢q,5(X) € Z>o such that for (a,b) = (ao, bo)
(9.7) div(fgfego,bo)w = cHy+ > Cao.bo (N) H)

AELY /+1,22=—9/2, |(\,d)|=1, [\]=1,,
and such that for all (a,b) # (ag, bo)
(9.8) div (7405 )| = > cas(N) Hy.
1
AELY /41, 22=—9/2, |(\,d)|=1, [A]=1,,
Let sq € O(L) be the reflection with respect to d. Since Jor ©8a = Jut, we have

sho(J AT)* =(J Af)*’ which implies the following equality for every even pair (a,b)
(9.9) Ca,p(8d(N)) = cap(N).

Lemma 9.7. Let X € LY be such that \> = —9/2, [(\,d)| = 1, [\] = 1.. If
Cag.bo (A) > 0, then cqp(N) =0 for all (a,b) # (ag, bo).
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Proof. Assume cq p5,(A) > 0 and ¢4/ pr(A) > 0 for some even (a’,b") # (ao, bo).
Then, for every 2-elementary K3 surface (X,:¢) of type Af whose period lies in
UNH)\ Hy, X* has two distinct effective even half canonical bundles corresponding
to (ag,bg) and (a’,b"). This contradicts Remark 6.10. O

Recall that i: Q4 < Qp is the inclusion induced by that of lattices A = LNd*+ C
L. On Hg NU, set

(910) JM = JAT‘UQH;]'

By (3.5), we have Jy; = IT o Jy;.
Since U N Hy C HY = OY, we have the following equality of divisors on U N QY
by (9.6)

(9.11) div(J5, Y 10) | vnm, = B > H,

HEN/EL, u2=—4
Lemma 9.8. For every A € LY with \> = —9/2, (\,d) = £1, A\=17 mod L, the
following equalities hold

Cayg,bo ()‘) =0, Z Ca,b(/\) = ﬁ/2

(a,b)#(ag,bo)

Proof. Since jgf' (X10/9a07b0)8 lvnm, = j}:TTm\UQHd by the definitions of T, and

Oay b, We get the equality of divisors on U N QY

(9.12) i*cuv(j‘;;l+ (x10/0a0.00)" [07) = i*div(j&rTlow) = div(J3; T10),
where the second equality follows from (9.10). On the other hand, we get by (9.8)
div(T5 (010/Gag)* ) = > (Y )AL

AELY /+1,X2=-9/2, |(\,d)|=1, [N|=1L (a,b)#(ao,bo)

which, together with (2.2), yields the following equality of divisors on U
(9.13)

8

Sk 7e Tk X10 o d d

sy ( () |U> S SR S R I
* PEA/AT, u2=—4 (a,b)#(a0,bo)

Substituting (9.11), (9.13) into (9.12) and comparing the coefficients of H,,, we get

d d
(914) Z {Ca,b(u+§)+ca,b(:u_ 5)} :6
(a,0)#(a0,bo)
Since cap(p + 2) = cap(p — 2) by (9.9), we get 2 (a,b)£(ao,bo) Casb(A) = B/2 by
(9.14). If caq,by (A) > 0, then 3-, 1) (a0 o) Cab(A) = 0 by Lemma 9.7. Since 8 > 0,
this contradicts the equality 3, ;)2 (aq.b9) Caib(A) = B/2. Thus caep,(A) =0. O

Lemma 9.9. One has the equality 3 = 2°.
Proof. By (9.7), (9.8) and Lemma 9.8, we get on U
diV(fng@io,bo) = cHy, diV(jg;r (X10/0a0,60)°) = (B/2) - Mo,
which yields the equality of divisors diV(J*IrXEfO) =D} + (8/2) - Hr on U. By

A
Remark 8.8, we get ¢ = ¢jg = 2* -7 and 3/2 = byg = 2*. Thus 3 = 2°. O
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Proof of Theorem 9.5 By Theorem 8.1 (1), we have
(9.15) wt(U2) = —4(25 +1)(2° — 20+ 1),  div(T%) = 24Dy — Hy.
By [8, Th. 13.3], we get

(9.16) wt (WA (-, fa)) = 22(2° + 1), div(UA (-, fo)) = Da.
By (9.15), (9.16), we get

(9.17) wH(WA (297 Fy + fa)) = —22(2° + 1)(21° — 1),
(9.18) div(Ua (-, 297 Fo + fa)) = (27 + 1)Da — 2°Ha.

Set g 1= Wa(- 2971 Fy + fa)f ® TL/OZ D Gince wh(®y) = (—4¢, 40)
and div(®,s) = €Dy, we deduce from (9.17), (9.18) that wt(pa) = (0,0) and

div(pp) = {a — 22" — 1)} Da + (B — 2°)Ha = £{a — 2(2"® — 1)} D4,
where we used Lemma 9.9 to get the second equality. By Lemma 9.6 and Theo-

rem 8.6 for [M L d], d € A, Lemma 4.3 applies to a general curve v: A — M, in-

tersecting 5/0\ transversally. Since v > 2(2'8—1) by Lemma 4.3, we get div(pp) > 0.
As before, this implies that ¢, is a constant. O

9.4. The structure of ®yy). In Section 9.4, we set
M:=U(2), A=M"':=U>2)oUaoEs® Es.

Then g =9 and J;,x9 vanishes identically. Let {e,f} be a basis of M = U(2) with
¢? =f2 =0 and (¢,f) = 2. Hence (e+f)/2 € Ay is the unique element with non-zero
norm. Let ego,€o1, €10, €11 be the standard basis of C[Ax] = C[Ay(z)], where e,
corresponds to (ae + 8f)/2 € Ax. Applying the construction [9, Proof of Lemma
11.1], [38, Th. 6.2] to the modular form n(7)~8n(27)~8, we define

AN - o, (711 h -
ory P08 T @(5) 0 O (T5) w0 e,

+n(7)"*n(27) "% eno.

Then fp(7) is an O(A,)-invariant modular form of weight —8 and of type pp with
principal part

(9.20) Polfal = (¢! + 136) ego + 16¢7 Y e1;.

Since O(gp) preserves (e + f)/2, the Heegner divisor of

’HA(—LeH) = Z H)

AEAV /15 X2=—1, [A]=(e+f)/2 mod A

is O" (A)-invariant. By [8, Th. 13.3], the Borcherds lift W (-, fo) is an automorphic
form on Q, for O*(A) such that

(9.21)  wtWp(, fa) =68 =20+22  divWa(-, fo) = Da +2* Ha(—1,e11).

In this subsection, we prove the following:
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Theorem 9.10. There exists a constant Cyrp > 0 such that
1 B
(I)S\%Ig +1)(29-1) _ CM,Z \I,A(,’QQ*IFA + fA)e ® JJTJTg
In particular, there is a constant Cpy > 0 depending only on M = U(2) such that
TJ\}(29+2)(29,1) =Cuy H\I’A('72g_1FA + fA)H . JJT/I ”TgH )
Define the reduced divisor H; on 2, as

Hl = ’HA*,HA(*LGH): Z H)\.

NEA/E1, A2=—4, div(\)=1
The divisor H; C M, in Section 7.2 is obtained as the quotient H; = H1/O(A).
Lemma 9.11. Jj3, Y9 is nowhere vanishing on Q% \ Hi.

Proof. By using Proposition 7.2 instead of Proposition 7.1, the proof is parallel to
that of Lemma 9.6. O

By Lemma 9.11, there exist «, 8 € Z~¢ such that
(922) le(J]QTg) = CkDA + BHl
Lemma 9.12. One has the inequality 5 > 2*.

Proof. Let A\ € A be an arbitrary vector such that A> = —4 and div(\) = 1. We set

HY = Hy \ (DU U Hy).
NEA, (V)2=—4,div(\)=1

Then HY is a non-empty Zariski open subset of Hy. Let 5] € HY be an arbitrary
point. Let U = A'® be a small neighborhood of [] in Q4 such that UN(H,UDy) =
UnNHY = A7, Since U is small enough, there is a marked family of 2-elementary
K3 surfaces (p: (X,t) — U, a) of type M = U(2), whose period map is the inclusion
U — Qp. Set C := X*. Then p: C — U is a family of smooth curves of genus 9. Set
C; :=p~1(t)NC for t € U. The period map Jys|y is a holomorphic map from U to
Ay such that Jy(t) = 2(Cy). Since U is contractible, the local system R!(p|c).Z
is trivial and admits a symplectic basis. Hence Jy;: U — Ag lifts to a holomorphic
map jM : U = &g such that Jy = I o jM, where IT: G — Ag is the projection.

Since Jys takes its values in &g, the value of the theta constant 6, (Jas (%))
makes sense for all t+ € U and for every even pair (a,b), a,b € {0,1/2}°. Moreover,
since the family p: C — U admits a level 4l-structure for any | € Z~q, the square
root jj"\‘p/ 0a,p is a well-defined holomorphic section of a holomorphic line bundle
on U for every even pair (a,b) by [43, Th. 1]. Since any holomorphic line bundle on
U is trivial, we may regard Ji;\/8ap € O(U).

We deduce from Proposition 7.2 the existence of a unique even pair (ag, by) and
at least one even pair (a1,b;) with the following properties:

(1) J%0a0 ., vanishes identically on U;
(2) Set-theoretically, U N div(J5;0q,,6,) = U N Hy.

By (2) and the fact jj’\"/p/ﬂahbl € O(U), there exists ¢ € Z~( such that on U
Aiv(J5,0a, 0,) = 2¢ Hy,.
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By (1) and the definition of YTy, we have
TuYolo=T[  Jibes=Tabe, s, - II Tirbes
(a,b)#(a0,bo) (a;b)#(ao0,bo),(a1,b1)
Setting £ := div([(4.5)%(a0,b0),(a1,61) j}&@gyb), we get the equality of divisors on U
div(Ji; Yoly) = 16¢ Hy + E.
Thus we get the desired inequality f > 16¢ > 2. a
Proof of Theorem 9.10 By Theorem 8.1 (2), we get
(9.23)  wt(T) =—272{2'(2° + 1)+ 1}¢,  div(T}) = (Dy —27Ha).
By (9.21) and (9.23), we get
(9.24)
Wt(TZ Tp(, fo)) = —22(2841)(2°—1),  div(T2 - WA(-, fa)) = (2541)Da—2%H,.
Since wt(J3;Tg) = (0,2%(2% + 1)(2% — 1)) and since div(J};Y9) = aDa + BH1 by
(9.22), we get
wt (UA(+, 2°Fp + fa) @ J3; L) = (—4(2° +1)(2° — 1),4(28 + 1)(2° — 1)),
div (WA (-, 2°Fp + fa) ® J3;To) = (@ + 2% + 1) Da + (B — 2*) Hs.
Since wt(®pr) = (—44,4¢) and div(®ys) = £ Dy,
pn = Ua(, 2 Fy + fa) @ T3 X6 @ T Y
is a meromorphic function on M, with divisor
div(pa) = €{a —2(2'° = 1)} Dp + (3 — 2Y) H;.
By Lemma 9.11 and Theorem 8.6 for [M L d], d € Ax, Lemma 4.3 applies to a
general curve v: A — M, intersecting f?\ transversally. Since a > 2(2'6 — 1) and

B > 2% by Lemmas 4.3 and 9.12, we get div(¢a) > 0. Thus ¢, is a constant. [

9.5. The divisors of J;,x} and J;;T,. In Section 9.5, we summarize the formulas
for the divisors of JX/IXZ and Jjy; T, obtained so far. We also give a geometric
interpretation of this result in terms of log Del Pezzo surfaces.

Theorem 9.13. Let M be a non-exceptional primitive 2-elementary Lorentzian
sublattice of Lz with A = M+ and invariants (r,1,68). Then the following holds:
(1) If g=0, i.e., r+1 =22, then div(J]’\'}Xg) =0.

(2) Ifr>2,0=1and 1< g <9, then div(Jy;x5) = 22971 Dy + 2" 4H,.

(3) If (r,6) = (1,1), then div(J};x5) = 2'9D) +2*- 7Dy + 2'H,.

(4) If 6 = 0 and r # 2,10, then div(J3;x3) = 2971(29 + 1) Da.

(5) If (r,0) = (2,0) or (10,0), then Jy x5 vanishes identically on Q.

(6) If (r,8) = (10,0), then div(J3;Y,) = 2(229~1) — 1) D,.

(7) If (,1,6) = (2,0,0), then div(J5; T10) = 2(2'8 — 1) D + 25 Ha.

(8) If (r,1,8) = (2,2,0), then div(J;;To) = 2(216 —1) Do + 2 {HA — Ha(—1,e11)}.

Proof. The assertion (1) is obvious since x4 = 1 for ¢ = 0. For g = 1,2 (resp.
3<g<9), weget (2) by [48, Prop.4.2 (2), (3)] (resp. Lemma 8.3, Proposition 8.4,
(8.17)). We get (3) by Proposition 8.4, (8.17), (8.20). When 7 > 10 (resp. 2 <1 <
10), we get (4) by [48, Eq. (9.3)] and the equality a = E = 0 in [48, Proof of Th. 9.1]
(resp. Lemma 9.1). We get (5) by [48, Prop. 9.3] when r = 10. When r =2, § =0,



K 5

KYOTO UNIVERSITY

A Self-archived copy in
Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp

40 SHOUHEI MA AND KEN-ICHI YOSHIKAWA

there are two possible cases: ¢ = 10 and g = 9. In case g = 10, (5) was proved in
Remark 8.8. In case g = 9, (5) was proved in Section 7.2. This proves (5). We get
(6) by (9.3) and the equality a = 2(22(9~1) — 1) in the proof of Theorem 9.4. We
get (7) by (9.6), since 8 = 2° and a = 2(2!® — 1) in the proof of Theorem 9.5. We
get (8) by (9.22), since the equalities a = 2(2'¢ — 1) and 8 = 2* follow from the
proof of Theorem 9.10. This completes the proof. O

Corollary 9.14. For (r,1,0) = (10,2,0),(10,4,0), Ja(Q3) is disjoint from the
hyperelliptic locus. For (r,1,6) = (10,0,0), every member of Jp(Q%) has ezactly
one effective even theta characteristic.

Proof. Set-theoretically, Hnypa (resp. Huyp,s) is given by div(xa) N div(Y4) (resp.
div(xs) N div(Ys) N div(Fs)) on My (resp. Ms). Since Ji, Y4 (vesp. J;;Ts)
is nowhere vanishing on Qf by Theorem 9.13 (6) for (r,1,6) = (10,4,0) (resp.
(10,2,0)), we get the first assertion. When (r,1,6) = (10,0,0), Ji;xe vanishes
identically on Q3 and J;;Y¢ is nowhere vanishing on Q3 by Theorem 9.13 (5), (6).
This, together with Lemma 4.1, implies the second assertion. ([

Let us give a geometric interpretation of Theorem 9.13, where we use the notion
of log Del Pezzo surfaces of index < 2. We refer to [1] for this notion. Let S be
a log Del Pezzo surface of index < 2. By [1, Th. 1.5], the bi-anticanonical system
of S contains a smooth member. For any smooth member C € | — 2Kg|, one
can canonically associate a 2-elementary K3 surface (X (g ¢y, ¢(s,c)) whose quotient
X(s,c)/(s,c) is the right resolution of S. (See [1, Sect. 2.1].) We define the invariant
6(S) € {0,1} as that of the 2-elementary lattice H*(X(g,cy,Z)+. Then §(S) is
independent of the choice of a smooth member C € | — 2Kg]|.

Corollary 9.15. Let S be a log Del Pezzo surface of index < 2 and let C € | —2Kg]|
be a smooth member. If S % Fo,P(1,1,2), then the following hold:

(1) When (p(S),d(S)) # (2,0),(10,0), C has an effective even theta characteristic
if and only if the period of (X(g,cy,(s,c)) lies in the characteristic Heegner divisor.
(2) When (p(S),d(S)) = (2,0) or (10,0), C always has an effective even theta
characteristic. Moreover, C has at least two effective even theta characteristics if
and only if the period of (X(s,c),t(s,c)) lies in the characteristic Heegner divisor.

Proof. Since the period of C' is exactly the image of (X (s ¢y, (g,c)) by the Torelli
map, the result follows from Theorem 9.13. (]

9.6. The quasi-affinity of M{. As an application of the results in Sections 8 and
9, we obtain the quasi-affinity of MQ for a wide range of A as follows.

Theorem 9.16. If A is a primitive 2-elementary sublattice of L with r(A) < 16
and signature (2,7(A) — 2), then MY is quasi-affine.

Proof. By [48, Prop. 2.2], 7(1)\/[ extends to a meromorphic map from M7 to A7. We
regard M9 as a Zariski open subset of a subvariety of M7} x Aj via the embedding
id MQ X j?w. It suffices to prove the existence of a meromorphic section of an ample
line bundle on M} x A7, which is nowhere vanishing on MQ (20, Prop.5.1.2]).
Let Ap be the Hodge bundle on M7}. By Baily-Borel, the line bundle )\jg\’“ X f?b
on M} x Aj is ample if @ > 0 and b > 0. Under the assumption r > 6, it follows
from Theorems 8.6, 9.2, 9.4 that ®%, is a meromorphic section of )\%a X ]-'g)b for
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some a,b,v € Zs. Since ®%, is nowhere vanishing on M9 by Theorem 5.1, ®Y, is
a desired section. O

By [10], it is known that M9 is quasi-affine when A = UP2QES*@A,, UP2QES?,
This, together with Theorem 9.16, implies that M9 is quasi-affine possibly except
for 12 isometry classes of primitive 2-elementary sublattices of Lxs3.

10. SPIN-1/2 BOSONIZATION FORMULA AND A FACTORIZATION OF Tjs

In Section 10, we introduce a twisted version T]S\Ein of Tp; and give its explicit

formula purely in terms of Borcherds products. The relations (10.5), (10.6) below
provide a factorization of 7, at the level of holomorphic torsion invariants.

10.1. Spin-1/2 bosonization formula. Let C be a smooth projective curve of
genus g and let ¥ be a theta characteristic. The pair (C, X)) is called a spin curve.
A theta characteristic X is ineffective if h%(2) = 0. Let w be a Kihler form on C.
Then ¥ is equipped with the Hermitian metric induced by w. Let 7(C, 3;w) be the
analytic torsion of ¥ with respect to w. Recall that vol(C,w) = [, w/2m. We set

7,(C, %) := Vol(C,w)1(C,w)T(C, T;w)?.

By the anomaly formula for Quillen metrics [7], if ¥ is ineffective, 7,(C, %) is in-
dependent of the choice of a Kéhler form w on C. Thus we get an invariant 7, of
ineffective spin curves of genus g. In Section 10.1, we recall the spin-1/2 bosoniza-
tion formula [2], [12], [15], which gives an explicit formula for 7, viewed as a function
on the moduli space of ineffective spin curves of genus g with level 2-structure.

Let V be a fixed symplectic vector space of rank 2g over Fa equipped with a fixed
symplectic basis {e1,...,¢g,f1,...,fg}. A level 2-structure on C' € M, is defined as
an isomorphism of symplectic vector spaces a: V' = Hy(C,F3), where Hi(C,F3)
is equipped with the intersection pairing. Let Alb(C)[2] (resp. Pic’(C)[2]) be the
2-division points of the Albanese variety Alb(C) (resp. Picard variety Pic’(C)). By
the canonical isomorphism H;(C,F2) = 1 H,(C,Z)/H,(C,Z) = Alb(C)[2] and the
Abel-Jacobi isomorphism Pic’(C) 22 Alb(C), a level 2-structure on C is identified
with a symplectic basis of Pic’(C)[2] with respect to the Weil pairing.

Let 9,(2) be the moduli space of projective curves of genus g with level 2-
structure and let p: My(2) — M, be the natural projection. Let S, be the moduli
space of even spin curves of genus g and let 7: S_;‘ — 9, be the natural projection.
We define SF(2) as the fiber product S xan, M, (2). The projection from S (2)
to My(2) (resp. S;) is denoted again by p (resp. m). The covering p: SF(2) —
M, (2) of degree 2971(29 + 1) is trivial as follows. On (C,a) € My(2), there is a
distinguished even theta characteristic £ € Pic?”'(C) called Riemann’s constant
(e.g. [15, p.6 and Lemma 1.5]). For every even pair (a,b), a,b € {0,1/2}9, we
define a section o45: My(2) = SF(2) by dap(C,a) = (C,k @ Xap, @), where
Xap € Pic’(C)[2] is the point corresponding to >, 2a;e; + > 2bif; € F3Y via the
isomorphism Fgg =~ Pic’(C)[2] induced by a. In this way, we get a decomposition
8;_(2) = H(a,b) evenaa,b(gﬁg(2))' We set 8;_70(2) = H(a,b) eveno-a,b(mg(2) \ div(ea,b))
and 570 1= 7(5;°(2)) = U(ap) even T(7a6 (Mg (2)\div(ba,p))). Since A(k@xa) =
0 if and only if 0, ,(2(C)) # 0 for (C,a) € M,(2), 7y is a function on S;F°.

On the other hand, for every even pair (a,b), the theta constant 6, ; is a section
of a certain line bundle on M,(2) and its Petersson norm ||6,| is a function on
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M, (2). For g = 0, we define ||0, ]| := 1. Let (q(s) be the Riemann zeta function.
By the spin-1/2 bosonization formula [2], [12], [15, Th.4.9 (i), p.94 Eq. (4.58), p.97
Eq. (5.7)], the following equality of functions on 9ty(2) \ div(6,,5) holds:

(10.1) 0u s Ty = ¢ 0apll Tt g = (4m) 9O QD)

where ¢, is evaluated by the arithmetic Riemann-Roch theorem [18] for g = 0, by
Kronecker’s limit formula and Ray-Singer’s formula [35, Th. 4.1] for g = 1, and by
Wentworth’s formula [44, Eq. (1.1) and Cor. 1.1] for g > 2. In other words,

(10.2) Vol(C,w)7(C,w)T(C, k ® Xa,b;w)Q =, ||(9a7b(Q(C))||_4

for all (C,a) € My(2) \ div(fa,p) and even pairs (a,b). Notice that the Laplacians
(resp. volume) in [44] differ from ours by the scaling factor 2 (resp. 27). Hence
Wentworth’s formula [44, Eq. (1.1) and Cor. 1.1] reads

Area(C,w)2™ ¢ (O)T(C, w)z%z(o)T(Oa K ® Xap;w)?

10.3 ,
1o = (4me®@aUH=DN 17919, , (2(0)) |,

where (o, (s) (resp. (x(s)) is the spectral zeta function of the Laplacian (0 + 0*)?

acting on the smooth sections of O¢ (resp. ¥) and Area(C,w) := [, w. Since
C +2 C -1
00 = X8 _p0e)= 222 =X )+fdeg2—h°<2>:"T

by [15, p.37 1.16] and since Vol(C, w) = Area(C,w)/2m, we get the value ¢4 in (10.1).
Let us extend the definition of 7, to dlsconnected curves as follows. A line
bundle on a disconnected curve is a theta characteristic if it is a componentwise
theta characteristic. Similarly, a theta characteristic on a disconnected curve is
ineffective if it is componentwise ineffective. In what follows, for a disjoint union
of smooth projective curves C' = I, ;C; with g(C;) := ¢g; and an ineffective theta

characteristic ¥ = {X;};e; on C, we define

74(C, %) H’Tg (Ci, 24),
i€l

where g := ), ; g; is the total genus of C.
10.2. A factorization of 75;. We introduce the following twisted version of ;.

Definition 10.1. Let (X,¢) be a 2-elementary K3 surface of type M and let v be
an (-invariant Kéhler form on X. If M 2 U(2) @ Es(2), define

spin la—r . —
)= T Vel ST (X)) (X Silx)
$2=K ., h0(2)=0

1 n AT Vol(Xw))‘ .
X exp 7/ 10g< . & (X 57| ‘ 3
[8 L 220 iz e x:)

where 3 runs over all ineffective theta characteristics on X*. If M = U(2) ¢ Eg(2)
and hence X* = (), define

51Dm(X 0) =1 (X,0)2

Recall that the vector-valued modular form fa of type pa was defined by (9.5),
(9.19) when r = 22 —r(A) = 2. We extend its definition to the case r # 2 by setting

fA = 5r,1o Fi.
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Then Theorem 0.1 is interpreted as the modularity of 732™ as follows.
Theorem 10.2. There exists a constant C; > 0 depending only on M such that
the following equality of functions on MY \ Ha holds:
spin — —1/2

(10.4) 7 = O WA 297 Ry + )]
Proof. For a 2-elementary K3 surface (X, ¢) of type M with (r, [, ) # (10, 10,0), (10, 8,0),
recall that X* consists of a curve of genus g = g(M) and k = k(M) smooth rational
curves (cf. Section 3.2).

(Case 1) If (r,d) # (2,0),(10,0) and X* has no effective even theta character-
istics, we get

(10.5) S S
g o T e
[s2—ry., no(s)=o To(X*, X) H(a,b)cvcncgclgHea,b(Q(Xb))” 4
= earmar (X, 02 D I (2(X))) 2
with
en = (cg—lcak)29*1(2g+1) — {(47T)966(10—r)(2<£;(—1)+c‘o(—1))}—2"*1(2"+1).

Here the first equality of (10.5) follows from Definition 10.1 and the second follows
from (10.2). Comparing Theorem 0.1 and (10.5), we get (10.4) with (C},)? =
c3,;/C in this case.

(Case 2) 1If (r,8) = (2,0),(10,0) with (r,,6) # (10,10,0), (10,8,0) and if X*
has a unique effective even theta characteristic corresponding to a theta constant
40,6, (£2(X*)) with respect to a suitable level 2 structure, we get in the same way
(10.6)

(X, )@ -DET ) T (X, L)(ngl)(zg_lﬂ)

a HEZZKXL,hO(E):o (X4 %) H(a,b)#ao,bo),even ¢ [10a,p(2(X1))
= earrar (X, 0) &7V T (X)) |2

(X0

with

cur = (cakcgl)(zg—n(w*ﬂ) _ {(47.(-)966(10—1')(2C§(—1)+CQ(—1))}—(25—1)(2971-1-1).
By Theorem 0.1 and (10.6), we get (10.4) with (C},)? := ¢3,;/C in this case.

(Case 3) If (r,1,6) = (10,10,0), then X* = (. Since we defined g = 1 in this
case, we get (10.4) with (C4,)? := C};' by Definition 10.1 and Theorem 0.1. If
(r,1,0) = (10,8,0), then X* consists of two disjoint elliptic curves. In the same way
as in (10.6), we get (10.4) with (C4,)? := ¢2,/Cun, car = (¢72)? = (47) '8 in this
case. This completes the proof. (Il

Remark 10.3. Assume Hp # (). As the period of a 2-elementary K3 surface of

type M approaches to a point of Hp, one of the ineffective even theta character-

istics on its fixed curve becomes effective in the limit and the value T]S\ljin jumps

there. Because of this jumping, T;};in is a discontinuous function on MY. Since
| WA(, 297 Fy + fa)| is also discontinuous along Ha by [39, Th.1.1 (i)], it is an

spin

interesting problem of comparing 737" and || (-, 2971 Fx + fA)|| on the locus Hy.

Remark 10.4. As the referee suggests, it is possible to express the invariants 737 (X, ¢)
and 737" (X, ¢) in terms of X. Ma’s orbifold analytic torsions ([28]) for X /¢ and the
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twisted sector X(X/t) = X*. Here X/u is a smooth surface with non-trivial orb-
ifold structure. In this direction, it is possible to construct a holomorphic torsion
invariant for log-Enriques surfaces by making use of orbifold analytic torsion and
give its explicit formula as an automorphic function on the moduli space ([13]).

10.3. A uniqueness of elliptic modular form corresponding to Ti}[)in. Set
(10.7) O = UA(, 29 Fy + fa)-

Since 730 = O, [ @551/, 2 can be identified with 750™. In this subsection,
we study the uniqueness of elliptic modular form whose Borcherds lift is ®3}™".
For a modular form ¢(7) of type pp with weight 1 — b~ (A)/2, we write

p(r) =Y e Y (o)

YEAA nev?/2+Z

for its Fourier expansion. The principal part of ¢ is the Laurent polynomial defined

as
Plel:= Y e Y. c(me)d" € Clg /@ ClA].
YEAA n€evy?/2+7Z,n<0
Notice that we used the notation P<o[p] = >_. c 4, €y D ,cq2/247, n<o ¢ (1 9)g" in
the previous sections. Obviously, P<o[p] — Plg] € C[A4] is the constant term of .
Similarly, for a Heegner divisor H = 3 4 > e 2/247, neo @y (n) H(n,7) on
Qa, where H(n,7) := X ye(y44)/41, 220 Hr, 1 € Q, 7 € Ap, we define

PlH= Y e > am)q" €Clg /@ ClA).

YEAA nev?/2+7Z,n<0

Comparing (8.1), (9.5), (9.20) with Theorem 8.1, (9.18), (9.24), we have the equality
(10.8) P29 Fy + fa] = Bldiv(®3™)]

if A £ 0(2)%2, (A7)%? or equivalently Dy # 0. When A = U(2)%2 or (A])®?2, we
have P[2971Fy + fa] # 0 but B[div(®3};™)] = 0. Thus (10.8) does not hold in these
two cases. Except for them, the elliptic modular form 29 ~LFA + fa is characterized
uniquely by the holomorphic torsion invariant 737" as follows.

Theorem 10.5. If A % U(2)92, (A1)®2, then there exists a unique O(qa)-invariant
elliptic modular form oa of type pa with weight 1 — b~ (A)/2 such that

(10.9) Ploal = BIAiv(®G™)],  co(050n)/2 = wi(23™).
In particular, the O(qa)-invariance and (10.9) characterize 29-1F + fa uniquely.

Proof. Let pp be an O(gp)-invariant modular form satisfying (10.9). Set ¢ :=
©a — (2971 Fy + fa). This is a modular form of type pa and weight 1 — b~ (A)/2
which is holomorphic at the cusp, is O(ga )-invariant, and satisfies ¢(0; 1) = 0. We
must prove ¢ = 0. When b~ (A) > 2, 1 has negative weight and hence ¢ = 0.

Let b= (A) = 2. Then 1 has weight 0, so it must be a constant vector of C[A,].
From [33, Lemma 3.9.1] and [41, Th. 1], we deduce that Mp,(Z) x O(ga)-invariant
vectors in C[A4] are scalar multiple of vyeg + v + vad(A)er, for some vy € Zso,
where vy = Z’y;éo,l/\,'y250 e,. Since ¢y(0; %) = 0, we have ¢ = 0.

Let b~ (A) = 1. By [41, Th. 5 and Th. 9] there is a canonical isomorphism between
the space of modular froms of type py and weight 1/2 with the space of Mp,(Z)-
invariant vectors in C[Aa,] ® C[Ax] ~ C[Aa,@a]- By [41, Th.1], the latter is
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generated by the vectors Iy = ZveU e, where U runs over self-dual isotropic
subgroups of Ax,ga. In this isomorphism the modular form corresponding to Iy
is given by >__ .y 04+ 1+, €y, Where vy = (71,72) € Ap,ea (see [41, Th.8]). Now we
have A =2 AT @U or (A)®2@A,. In the first case, As, g contains a unique nonzero
isotropic element, and the corresponding modular form ¢ has ¢¢(0; @) # 0. In the
second case, Ap, g contains exactly two isotropic subgroups of rank 2, which can
be switched by an element of O(ga). If @1 and ¢y are the corresponding modular
forms, then 1) must be a scalar multiple of p1+y2. Again we have ¢o(0; p1+¢2) # 0,
so ¥ = 0. O

11. AN EQUIVARIANT ANALOGUE OF BORCHERDS’ CONJECTURE

In this section, we study an equivariant analogue of Borcherds’ conjecture [8].
Let us explain briefly this conjecture. Let X g3 be the oriented 4-manifold under-
lying a K3 surface. Let £ be the set of Ricci-flat Riemannian metrics on X3
with normalized volume 1 (cf. [45]). For v € &, let A, be the Laplacian of
(Xks3,7) acting on C*°(Xg3). Let det A, be the regularized determinant of A,.
Then the assignment det A: € 5 v — det A, € R is a function on €. In [8, Ex-
ample 15.2], Borcherds conjectured that det A is given by the automorphic form
L., (-, 1, E4/n**) on G(Lgs3), the period space of £, where E4(7) is the Eisenstein
series of weight 4. To our knowledge, this conjecture is still open. In Section 11,
instead of the original Borcherds’ conjecture, we study its equivariant analogue.

Let 1 X3 — X3 be a C° involution. We define the lattices H?(Xf3,Z)+ as
in the preceding sections. Then ¢ is called hyperbolic if H?(X k3, Z), is Lorentzian.
Let £ be the set of t-invariant Ricci-flat Riemannian metrics on X g3 with volume
1. Since we are interested in an equivariant analogue of Borcherds’ conjecture,
throughout Section 11, we restrict our consideration to those involutions ¢ satisfying

(11.1) £ A0,

By [47, Props. 3.4, 3.6], if ¢ is hyperbolic, then (11.1) is equivalent to the existence
of a complex structure I on Xgg such that ¢ is an anti-symplectic holomorphic
involution on (Xgs, ). In particular, if ¢ is hyperbolic with (11.1), then X4, is a
disjoint union of (possibly empty) smooth compact real surfaces.

Let ¢ be a hyperbolic involution on X3 with (11.1). Its type is defined as the
isometry class of H?(Xgs,Z)y. Let M be the type of ¢ and set A := M=txs.
Then M and A are primitive 2-elementary sublattices of Lgs. To formulate an
equivariant analogue of Borcherds’ conjecture, we construct two functions on £*.

Let v € £'. Let C*°(Xks)+ be the +1-eigenspace of the t-action on C*°(Xks3).
Since A, preserves C°°(Xf3)+, we can define A, 4 := A [coo(x,c,). - Let (+(s) be
the spectral zeta function of A, ;. The equivariant determinant of A, is defined
as (cf. [6])

det 2, Ay (¢) == exp[—¢’, (0) + ¢ (0)].
Assume X3 # 0. Let S, be a spinor bundle on the fixed point set (X3, v|xz.,)-

Let Dg, be the Dirac operator acting on C*°(S,,). Let det D?gw be the regularized
determinant of D~297' If (p2 (s) denotes the spectral zeta function of D?gw7 then

det D§_ := exp(—C’Dgw (0)).
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When X}, = 0, we define det D?g7 := 1. As an equivariant analogue of the function
det A on &£, we consider the following function on £*.

Definition 11.1. For v € £, define

) = ] (detz, A ()7 det DF

S ineffective
where S, runs over the spinor bundles on (X, 7v|x: ) with ker Dg = 0.

Let us construct an automorphic function on the period space of £*. By e.g. [47,
Prop. 3.6], there exists a hyperkéhler structure (I, .J, K) on (Xgs,) such that

(11.2) ted = Iy, ted = —Jty, KK = —Ku,.

By [47, Lemma 3.17], the pair of conjugate points of M, defined as

(11'3) T‘-L(’Y) = [Oé(WJ tv _1WK)]’ Wy = 7('7 J())7 WK = 7(7K())

is independent of the choice of a triplet (I, J, K) satisfying (11.2) and a marking,

i.e., an isometry a: H?(Xgs,Z) — Lg3 satisfying a(H?(X,Z)y) = M. The pair
of conjugate points m,(y) € My is called the period of v € £*.

Lemma 11.2. 77| WA (-, 297 Fp + fa)| is a well defined function on E*.

Proof. Write A = U(—N)®L, N € {1,2}, where L is a Lorentzian lattice. Set Cr, :=
{x € LOR; (x,x) > 0}. Since L is Lorentzian, C, consists of two components C'=
with C} = —C’j. Then LR+ v/—1CL C L ® C is isomorphic to 25 via the map

expy: LOR+V—10L 3 2 — expy(2) := ((1/N, (2,2)/2), 2) € Q4.

Since expy o(—1z) = (ly(—n) @ —11) oexpy and since —17 exchanges the compo-
nents of Cr, ly—n) @ —1z € O(A) exchanges the components of Q4.

Set 1 := a(wy +v—1wg). Let 2 € L@ R ++/—1C[, be such that [n] = expy(2).
Then i) = a(ws—+/—1wk) and [7] = expy(Z). Let QF be the component of 24 such
that [n] € Q. Let Q) be the remaining component. Then Q = Q7 and [f]] € Q}.
Since (ly—n) @ —12)[A] = [(ly-n) @ —11)(expy(2))] = [expy(—2)] € QF, the
point of Q3 /OT(A) corresponding to [7] is represented by [exp (—Z)].

For simplicity, write W(-) for Wx(-,2971Fy + fa). Let w be its weight. Then
U € O(L®R++/—1C}). By the definition of Petersson norm (cf. Section 4.2),

(114) B = (82,92 €L, DI = (3(-2), S(-D)" w2
Since ¥ is a Borcherds product, it is expressed as a Fourier series
(11.5) U(z) = Z a(\) 2t (ze LeR+V-1C}),

AeLV

with a()\) € Z. Since e2mi(l.2) = ¢2™(=2) and a(l) € Z for all | € LV and hence
U(z) = ¥(-2), we deduce from (11.4) and (11.5) that [|[¥([5])||* = [[¥([s])|*>. O

Now we can formulate an equivariant analogue of Borcherds’ conjecture as the
coincidence of the two functions 75 and 77 || WA (-, 2971 Fp + fa)|| on €. By The-
orem 10.2, we have an affirmative answer to this problem.

RBAFEFHERY LS b

Kyoto University Research Information Ref

il



K 5

KYOTO UNIVERSITY

A Self-archived copy in
Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp

K3 SURFACES WITH INVOLUTION IV 47

Theorem 11.3. Let ¢ be a hyperbolic involution on X3 with £ # 0. Then the
following equality of functions on w 1(MQ \ Ha) C E* holds:

TP = WA 297 E A+ fa)ll 7Y,
where CY; is a constant depending only on M.

Proof. Let v € £'. Let (I, J, K) be a hyperkahler structure on (X3, y) with (11.2)
and set Xj := (Xgs,I). Then (X,¢) is a 2-elementary K3 surface of type M. By
[47, Lemma 4.3], we have

(11.6) (det z, A (1)) 72 = 72, (X1,7)(0).

On the other hand, it is classical that Dg_can be identified with the Dolbeault
operator v/2(0+0*) acting on A%* (Xk3,Xs,), where ¥g_ is the theta characteristic
on Xj4 corresponding to S,. Here Xj; is endowed with the complex structure
induced by «. Since D%7 = 2(d + 0*)? by this identification, we have Cpz (s) =

2_5"’1@37 (s), where (s, (s) is the spectral zeta function of (0 + 5*)2|A0,0(257) as
in Section 10.1. Hence

(AL7)  det D =25 Or(X], B 1) 72 = 2% (X B 59g) 72
By (11.6), (11.7) and the definitions of 73" and 75", we get

(11.8) () = 20T (X ),

L

where N(7,¢) is the number of ineffective spinor bundles on (X3, 7).

Let v € m, Y (MQ \ Ha). Since N(v,¢) is a constant function on 7, 1 (MQ \ H,)
by Theorem 9.13 and (11.3) and since m,(y) is given by the pair of 7, (X7, ) and
its conjugate point by (11.3), the result follows from Theorem 10.2 and (11.8). O

As in [47], [48, Sect. 10], we obtain, as a corollary of Theorem 11.3, an interpre-
tation of Theorem 10.2 on the mirror side, i.e., in terms of real K3 surfaces. Recall
that a pair consisting of a K3 surface and an anti-holomorphic involution is called
a real K3 surface. The set of fixed points of the involution on a real K3 surface
is the set of real points. A holomorphic 2-form on a real K3 surface is said to be
defined over R if it is mapped to its complex conjugation by the involution. In
view of mirror symmetry for K3 surfaces with involution [19, Sect. 2], the following
corollary is a counter part of Theorem 10.2 in mirror symmetry.

Corollary 11.4. Let (Y,0) be a real K3 surface. Let M be the type of o and
let « be a marking with a(H?(X,Z)y) = M. Let v be a o-invariant Ricci-flat
Kdhler metric on' Y with volume 1. Let w~ be the Kdhler form of v and let n, be a
holomorphic 2-form on'Y defined over R such that n, N7, = 2w3. Then

I (9) = Oy 1WA (a(S(1) + V=Tw,), 277 Fy + fa)[ 7Y/,

where S(ny) + vV—1w, € H*(Y,R) + v—1Ky is a point of the complezified Kdihler
cone of the Kdhler surface (Y,w,) with B-field 3(n,).

Proof. Set I' = K, JJ = —J, K/ = I, where (I, J, K) is a hyperkéhler structure
on (Xks,y) satisfying (11.2) for 0. Then (I’, J', K') is a hyperkéahler structure on
(Xks3,7) such that o, I' = —1'0y, 0.J = —J'04, 0. K' = K'o. Set Y = (Xgs3,1').
Then ¢ is an anti-holomorphic involution on Y. On the other hand, ¢ is an anti-
symplectic holomorphic involution on (X3, K'). By [19, p.514], we see that (1)
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and ¥(ny) + v —1lw, are a Kéhler form and a holomorphic 2-form on (Xgs, K'),
respectively. From this interpretation and Theorem 11.3, the result follows. (]

Is it possible to prove Corollary 11.4 without passing through algebraic geome-
try? Such a proof will provide a new understanding of Theorem 10.2.
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