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Spot Dynamics of a Reaction-Diffusion System on the Surface of a Torus\ast 

Takashi Sakajo\dagger and Penghao Wang\dagger 

Abstract. Quasi-stationary states consisting of localized spots in a reaction-diffusion system are considered on
the surface of a torus with major radius R and minor radius r. Under the assumption that these
localized spots persist stably, the evolution equation of the spot cores is derived analytically based on
the higher-order matched asymptotic expansion with the analytic expression of the Green's function
of the Laplace--Beltrami operator on the toroidal surface. Owing to the analytic representation, one
can investigate the existence of equilibria with a single spot, two spots, and the ring configuration
where N localized spots are equally spaced along a latitudinal line with mathematical rigor. We show
that localized spots at the innermost/outermost locations of the torus are equilibria for any aspect
ratio \alpha = R

r
. In addition, we find that there exists a range of the aspect ratio in which localized

spots stay at a special location of the torus. The theoretical results and the linear stability of these
spot equilibria are confirmed by solving the nonlinear evolution of the Brusselator reaction-diffusion
model by numerical means. We also compare the spot dynamics with the point vortex dynamics,
which is another model of spot structures.

Key words. reaction-diffusion system, Brusselator model, surface of a torus, the Green's function, pattern
formation, matched asymptotic expansion

AMS subject classifications. 35K57, 35B36, 35C20
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1. Introduction. Self-organizing beautiful patterns of localized spot-like structures ap-
pear ubiquitously in many natural phenomena. A regular/irregular lattice of spot structures
is formed in Bose--Einstein condensates (BECs) [1, 13]. Interaction between fluid and mag-
netic fields gives rise to various stationary lattice configurations of small magnetic discs on a
liquid-air interface [16]. We can find more examples such as the formation of lattice patterns of
magnetically confined electron spots in non-neutralized plasma [11], and a ring configuration
of a vortex structure of an electron [12]. In chemical reaction systems, it is experimentally ob-
served that such localized spot patterns emerge in a ferrocyanide-iodate-sulphite reaction [18],
a chlorine dioxide-iodine-malonic acid reaction [10], and a gas charge system [3, 4]. More ex-
amples are also found in [38].

In order to understand self-organization of spot patterns theoretically, it is helpful to con-
struct phenomenological models describing the dynamics of those localized spot structures.
A well-known model is vortex dynamics, which is derived from the Euler equations for in-
compressible and inviscid fluid flows in two-dimensional space. Suppose that the vorticity,
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which is defined as the curl of the velocity field, is concentrated in discrete points like Dirac's
measures. We then obtain a system of ODEs describing the evolution [24]. It is efficiently
utilized to understand many stationary pattern formations, called vortex crystals or vortex
lattices, in superfluids, BECs, fluids, and plasmas. See the survey of the history of vortex
lattice theory by Newton and Chamoun [20]. Another model for interacting localized spot
structures is obtained from reaction-diffusion (RD) systems, in which spatially homogeneous
steady states self-organize into localized spot structures due to Turing instability [34]. The
evolution equation describing the interactions among those spot structures is derived from
two-dimensional RD equations with the asymptotic analysis [9, 17].

Dynamics and pattern formations of localized spot structures can be considered on two-
dimensional Riemannian manifolds. A mathematical formulation of vortex dynamics on closed
surfaces is found in the survey by Turner, Vitelli, and Nelson [35]. RD systems on growing
surfaces are derived in [22], in which the curvature and growth effects on the stability of
patterns are observed numerically. In particular, owing to the geophysical and biological
relevance, there are many studies on pattern formations of localized spot structures on the
surface of a sphere. For example, it is shown in [21] that point vortices become a vortex crystal
when they are placed on the vertices of regular polyhedrons, and the relation between the
configurations and the optimal packing problem is discussed. The linear stability analysis of
a ring configuration of point vortices along the line of a latitude [25] and the nonintegrability
of the system [30, 31] have been investigated. On the other hand, pattern formations of
localized spots in RD systems on a growing sphere are used as a model of tumor growth [8]
and of evolving biological surfaces [6]. Formation of Turing patterns on a growing/nongrowing
sphere have been studied numerically [14, 39]. The spherical surface is geometrically simple
since it has a constant curvature.

In the meantime, another remarkable geometric feature of compact surfaces is the existence
of handle structures. Hence, it is interesting to investigate how the handles affect the dynamics
and the stability of localized spot patterns. One of the simplest compact surfaces is a toroidal
surface with major radius R and minor radius r. Different from the surface of a sphere, it
has not only nonconstant curvature but also a handle that is measured by the aspect ratio
\alpha = R/r. Towards the applications to superfluids, the evolution equation of vortex dynamics
on the toroidal surface has been derived in [28], in which some vortex crystals are constructed,
and the dynamics of one and two point vortices are investigated. It has also been shown in [29]
that the stability of a ring configuration of N point vortices changes depending on the sign of
curvature and the modulus \alpha . More vortex crystals on the toroidal surface have recently been
constructed [26, 27]. On the other hand, in RD systems, S\'anchez-Gardu\~no et al. [32] have
considered Turing--Hopf bifurcations in the FitzHugh--Nagumo RD model on a growing torus
and sphere. Recently, Tzou and Tzou [36] have proposed an analytic-numerical method for
computing the Green's function for Helmholtz operators on curved surfaces, which is applied
to derive an ODE describing a slow dynamics of N localized spots for the Schnakenberg RD
model. With this model, they numerically investigate the stability of one and two localized
spots.
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In the present paper, we consider an RD system of the following form on a surface \scrM :

ut = \epsilon 2\bigtriangleup \scrM u+ \epsilon 2A+ F u(u, v), \tau vt = \bigtriangleup \scrM v +B +
1

\epsilon 2
F v(u, v),(1.1)

where \bigtriangleup \scrM is the Laplace--Beltrami operator on \scrM , and F u(u, v) and F v(u, v) represent the
reaction terms specified as (2.2). The parameters are A, B \in \BbbR , \tau > 0, and 0 < \epsilon \ll 1. One
of the examples is the Brusselator RD (BRD) model, which is used as a mathematical model
of some chemical reactions [2, 18, 23]. It is specified by

(1.2) ut = \epsilon 2\bigtriangleup \scrM u+ \epsilon 2A - u+ fu2v, \tau vt = \bigtriangleup \scrM v +
1

\epsilon 2
(u - u2v),

in which F u(u, v) =  - u + fu2v, F v(u, v) = u  - u2v, A > 0, and B = 0 in (1.1) with a
parameter 0 < f < 1 satisfying \tau = 1

f2 . Note that the model is considered on a bounded

domain of a plane [7, 37] as well as on the unit sphere [23, 33]. Another example of this type
is the Schnakenberg model [36], in which \tau > 0, A = 0, B > 0, F u(u, v) =  - u + u2v, and
F v(u, v) =  - u2v.

Our analysis is based on the higher-order matched asymptotic expansion used in [23, 33,
36]. In section 2, we derive an ODE describing the slow dynamics of localized spot cores in
quasi-equilibrium solutions of the RD system (1.1) on a toroidal surface. In section 3, using the
ODE, we investigate the existence of equilibria having one spot, two spots, and N -ring spots,
and we then discuss their linear stability. In the derivation, we utilize the explicit analytic
formula of the Green's function of the Laplace--Beltrami operator on the toroidal surface [28].
This is different from the derivation by Tzou and Tzou [36], in which the Helmholtz Green's
function is constructed numerically. Owing to the analytic formula, one can conduct a rigorous
mathematical analysis of the spot dynamics. We also carry out numerical simulations of the
BRD system, which are compared with our theoretical results. The last section is a summary.

2. Quasi-stationary spot solution on the surface of a torus.

2.1. Construction of localized spots. Let \BbbT R,r denote the toroidal surface with major
radius R and minor radius r that is embedded in the Euclidean space \BbbE 3:

(2.1) \BbbT R,r = \{ \bfitx \in \BbbE 3 | \bfitx = ((R - r cos \theta ) cos\varphi , (R - r cos \theta ) sin\varphi , r sin \theta )\} ,

where (\theta , \varphi ) \in (\BbbR /2\pi \BbbZ ) \times (\BbbR /2\pi \BbbZ ) is the toroidal coordinates. We consider the RD model
(1.1) on the torus \scrM = \BbbT R,r, where the Laplace--Beltrami operator and the reaction terms
are specified by

\bigtriangleup \BbbT R,r
=

1

r2(R - r cos \theta )

\partial 

\partial \theta 

\biggl( 
(R - r cos \theta )

\partial 

\partial \theta 

\biggr) 
+

1

(R - r cos \theta )2
\partial 2

\partial \varphi 2

and

(2.2) F u(u, v) = a1u+ u2
n\sum 

i,j=0

ai,ju
ivj , F v(u, v) = b1u+ u2

n\sum 
i,j=0

bi,ju
ivj .
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Here, we assume that a1 < 0, \tau > 0, n \in \BbbN 0, A,B, b1, ai,j , bi,j \in \BbbR are independent of \epsilon . We
define the parameter E = B  - b1

a1
A > 0 for later use.

Following the asymptotic analysis in [23], we construct a quasi-stationary solution of the
RD model (1.1) on the toroidal surface in the limit of \epsilon \rightarrow 0. Suppose that the solution at a
scaled time \sigma = \epsilon 2t consists of N localized spots located at (\theta j(\sigma ), \varphi j(\sigma )), j = 1, . . . , N . We
then introduce a local coordinate \bfity = (y1, y2) of \scrO (\epsilon ) around the jth spot as follows:

(2.3) y1(\theta , \sigma ) = r\epsilon  - 1(\theta  - \theta j(\sigma )), y2(\varphi , \sigma ) = (R - r cos \theta j(\sigma ))\epsilon 
 - 1(\varphi  - \varphi j(\sigma )).

It follows from

1

r2(R - r cos \theta )

\partial 

\partial \theta 

\biggl( 
(R - r cos \theta )

\partial 

\partial \theta 

\biggr) 
=

1

\epsilon 

sin \theta 

R - r cos \theta 

\partial 

\partial y1
+

1

\epsilon 2
\partial 2

\partial y21
,

1

(R - r cos \theta )2
\partial 2

\partial \varphi 2
=

(R - r cos \theta j)
2

\epsilon 2(R - r cos \theta )2
\partial 2

\partial y22
=

1

\epsilon 2

\biggl( 
1 - 2 sin \theta 

R - r cos \theta 
\epsilon y1 +\scrO 

\bigl( 
\epsilon 2
\bigr) \biggr) \partial 2

\partial y22
,

sin \theta 

R - r cos \theta 
=

sin \theta j
R - r cos \theta j

+\scrO (\epsilon )

that we obtain

\bigtriangleup \BbbT R,r
=

1

\epsilon 2

\biggl( 
\partial 2

\partial y21
+

\partial 2

\partial y22
+

\epsilon sin \theta j
R - r cos \theta j

\partial 

\partial y1
 - 2\epsilon y1 sin \theta j
R - r cos \theta j

\partial 2

\partial y22
+\scrO (\epsilon 2)

\biggr) 
=

1

\epsilon 2
\bigl( 
\bigtriangleup \bfity + \epsilon \scrN j +\scrO 

\bigl( 
\epsilon 2
\bigr) \bigr) 
,

(2.4)

where \bigtriangleup \bfity = \partial 2

\partial y21
+ \partial 2

\partial y22
and

\scrN j =
sin \theta j

R - r cos \theta j

\biggl( 
\partial 

\partial y1
 - 2y1

\partial 2

\partial y22

\biggr) 
.

With the local coordinates \bfity = (y1, y2) and the scaled time \sigma in the inner region of the jth
spot, the solutions u and v of RD model (1.1) are expressed by u(y1, y2, \sigma ) and v(y1, y2, \sigma ).
Owing to | \varphi  - \varphi j | \leq \scrO (\epsilon ) in the jth inner spot, we obtain

\partial u

\partial t
=

\partial u

\partial y1

\partial y1
\partial \sigma 

\partial \sigma 

\partial t
+
\partial u

\partial y2

\partial y2
\partial \sigma 

\partial \sigma 

\partial t
+
\partial u

\partial \sigma 

\partial \sigma 

\partial t

=  - r\epsilon \partial \theta j
\partial \sigma 

\partial u

\partial y1
 - (R - r cos \theta j)\epsilon 

\partial \varphi j

\partial \sigma 

\partial u

\partial y2
+ \epsilon (\varphi  - \varphi j)r sin \theta j

\partial \theta j
\partial \sigma 

\partial u

\partial y2
+ \epsilon 2

\partial u

\partial \sigma 

= \epsilon \scrL u+\scrO (\epsilon 2)(2.5)

and similarly
\partial v

\partial t
= \epsilon \scrL v +\scrO (\epsilon 2),

where

(2.6) \scrL =  - 
\biggl( 
r
\partial \theta j
\partial \sigma 

, (R - r cos \theta j)
\partial \varphi j

\partial \sigma 

\biggr) 
\cdot \nabla \bfity , \nabla \bfity =

\biggl( 
\partial 

\partial y1
,
\partial 

\partial y2

\biggr) 
.
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The solutions of (1.1) near the jth spot are expanded with respect to \epsilon as follows:

(2.7) u(y1, y2, \sigma ) =

\infty \sum 
n=0

\epsilon nujn, v(y1, y2, \sigma ) =

\infty \sum 
n=0

\epsilon nvjn.

We here define \bfitw jn = (ujn, vjn)
T . In the inner region near the jth spot, substituting (2.4),

(2.5), and (2.7) into (1.1), we obtain the equation for the quasi-steady solution at the leading
order of \epsilon on \bfity \in \BbbR 2:

(2.8) \bigtriangleup \bfity uj0 + F u(uj0, vj0) = 0, \bigtriangleup \bfity vj0 + F v(uj0, vj0) = 0.

At the next order, by introducing \scrP = \bigtriangleup \bfity +\scrM j , where \scrM j =

\biggl( 
\partial Fu

\partial u
(uj0,vj0)

\partial Fu

\partial v
(uj0,vj0)

\partial Fv

\partial u
(uj0,vj0)

\partial Fv

\partial v
(uj0,vj0)

\biggr) 
, the

following equation for \bfitw j1 is derived:

(2.9) \scrP \bfitw j1 = \bigtriangleup \bfity \bfitw j1 +\scrM j\bfitw j1 =  - \scrN j\bfitw j0 +

\biggl( 
\scrL uj0
0

\biggr) 
.

In order to construct radially symmetric localized solutions uj0(\rho ) and vj0(\rho ) of (2.8) where
\rho = | \bfity | , we consider the following boundary value problem:

\bigtriangleup \rho uj0 + F u(uj0, vj0) = 0, \bigtriangleup \rho vj0 + F v(uj0, vj0) = 0, 0 < \rho <\infty ,

u\prime j0(0) = v\prime j0(0) = 0, uj0 \rightarrow 0, vj0 \sim Sj log \rho + \chi (Sj) + o(1) as \rho \rightarrow \infty ,
(2.10)

where \chi (Sj) is a constant independent of \rho , \bigtriangleup \rho = \partial \rho \rho +
1
\rho \partial \rho , and uj0 is exponentially small as

\rho \rightarrow \infty . This is called the core problem, in which Sj is referred to as the strength of the jth
spot. On the other hand, we consider the solutions of RD model (1.1) in the region outside of
the spot with the scale of \scrO (\epsilon ). The Taylor expansion of \bfitx (\theta , \varphi ) in the neighborhood of \bfitx j =
((R - r cos \theta j) cos\varphi j , (R - r cos \theta j) sin\varphi j , r sin \theta j) is given by | \bfitx  - \bfitx j | 2 = \epsilon 2(\bfity TMT

j Mj\bfity ) +

\scrO (\epsilon 3), where \bfitx (\theta , \varphi ) = ((R - r cos \theta ) cos\varphi , (R - r cos \theta ) sin\varphi , r sin \theta ) and Mj is defined by

Mj =

\left(  cos\varphi j sin \theta j  - sin\varphi j

sin\varphi j sin \theta j cos\varphi j

cos \theta j 0

\right) 
.(2.11)

It follows from MT
j Mj = I and \bfity T\bfity = \rho 2 that we obtain | \bfitx  - \bfitx j | = \epsilon \rho + \scrO (\epsilon 2). Owing to

the quasi-stationarity of the solution, u should satisfy ut = 0 and \bigtriangleup \BbbT R,r
u = 0 in the region

separated from \scrO (\epsilon ) neighborhoods of the localized spots at \{ \bfitx 1, . . . ,\bfitx N\} . In the outer region

of the spots, since the nonlinear term is negligible, we obtain u \sim  - \epsilon 2A
a1

. Combining the inner
and the outer approximations of u, we have the following asymptotic expression of u in the
outer region:

u \sim  - \epsilon 2 A
a1

+
N\sum 
j=1

uj0.

Regarding the equation (1.1) for v in the outer region, we have B + 1
\epsilon 2
F v \sim B + b1

\epsilon 2
u \sim E in

the outer region of spots, since the nonlinear terms are negligibly small. Since | \bfitx  - \bfitx j | \sim \epsilon \rho ,
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uj \sim uj0, and vj \sim vj0 in the inner region of the jth spot, the contribution in 1
\epsilon 2
F v(u, v) from

the jth localized spots to the outer region is approximated by the delta function b\delta (\bfitx  - \bfitx j)
whose weight b is obtained by integrating the nonlinear term in the disk of radius \epsilon \rho around
the jth spot:

b = \epsilon 2
\int 2\pi 

0
d\theta 

\int \infty 

0
F v(uj0, vj0)\rho d\rho =  - 2\pi \epsilon 2

\int \infty 

0
(\rho \partial \rho \rho vj0 + \partial \rho vj0)d\rho 

=  - 2\pi \epsilon 2 [\rho \partial \rho vj0]
\infty 
0 =  - 2\pi \epsilon 2Sj .

Hence, by combining the inner and outer approximations for B + 1
\epsilon 2
F v(u, v), we obtain

B +
1

\epsilon 2
F v(u, v) \sim E  - 2\pi 

N\sum 
j=1

Sj\delta (\bfitx  - \bfitx j).(2.12)

Using (2.12) and the far-field behavior of the inner solution (2.10), we finally obtain the
following outer problem for v subject to the matching condition:

\bigtriangleup \BbbT R,r
v + E = 2\pi 

N\sum 
j=1

Sj\delta (\bfitx  - \bfitx j), | \bfitx  - \bfitx j | > \scrO (\epsilon ), j = 1, . . . , N,(2.13)

v \sim vj0 + \epsilon vj1 \sim Sj log \rho + \chi (Sj) + \epsilon vj1 + o(1), | \bfitx  - \bfitx j | \rightarrow \scrO (\epsilon ), j = 1, . . . , N.(2.14)

To solve (2.13), we make use of the Green's function G(\bfitx ;\bfitx 0) associated with the toroidal
surface, satisfying

\bigtriangleup \BbbT R,r
G(\bfitx ;\bfitx 0) =  - \delta (\bfitx  - \bfitx 0) +

1

4\pi 2Rr
, G(\bfitx ,\bfitx 0) = G(\bfitx 0,\bfitx ).(2.15)

According to [15, 28], the Green's function on the toroidal surface is explicitly represented by

G(\bfitx ;\bfitx 0) =  - 1

2\pi 
log

\bigm| \bigm| \bigm| \bigm| P \biggl( \zeta 

\zeta 0

\biggr) \bigm| \bigm| \bigm| \bigm|  - F (\theta ) - F (\theta 0) - 
1

4\pi 2\scrA 
K(\theta )K(\theta 0) +

1

4\pi 
K(\theta ) - 1

4\pi 
K(\theta 0),

(2.16)

where
(2.17)

K(\theta ) =  - 
\int \theta 

0

d\eta 

\alpha  - cos \eta 
, F (\theta ) =  - 1

4\pi 2\alpha 

\int \theta 

0

\alpha \eta  - sin \eta 

\alpha  - cos \eta 
d\eta , \zeta (\theta , \varphi ) = ei\varphi exp (K(\theta )) \in \BbbC ,

and \scrA = (\alpha 2 - 1) - 1/2 with \alpha = R/r. Note that the variables \bfitx , (\theta , \varphi ), and \zeta are related to each
other through the relations (2.1) and (2.17). In (2.16), the function P (\zeta ) denotes the Schottky--
Klein prime function associated with the annular domain D\zeta = \{ \zeta \in \BbbC | e - 2\pi \scrA < | \zeta | < 1\} ,

P (\zeta ) = (1 - \zeta )
\prod 
n\geq 1

\bigl( 
1 - e - 2n\pi \scrA \zeta 

\bigr) \bigl( 
1 - e - 2n\pi \scrA \zeta  - 1

\bigr) 
.(2.18)
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If Sj satisfies
\sum N

j=1 Sj = 2\pi rRE, the solution of (2.13) is expressed by

v =  - 2\pi 
N\sum 
j=1

SjG(\bfitx ;\bfitx j) + v(2.19)

with a constant v to be determined. In order to compute v, we match the behavior of the
outer solution (2.19) as | \bfitx  - \bfitx j | \rightarrow \scrO (\epsilon ) and the far-field behavior of the inner solution (2.14)
of the jth spot as \rho \rightarrow \infty . Let us rewrite Gj(\bfitx ) = G(\bfitx ;\bfitx j) for j = 1, 2, . . . , N , which is
divided into three parts:

2\pi Gj(\bfitx ) =  - log

\bigm| \bigm| \bigm| \bigm| 1 - \zeta (\theta , \varphi )

\zeta (\theta j , \varphi j)

\bigm| \bigm| \bigm| \bigm|  - logWj(\theta , \varphi ) - Qj(\theta ),(2.20)

where

Wj(\theta , \varphi ) =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\prod 
n\geq 1

\biggl( 
1 - e - 2n\pi \scrA \zeta (\theta , \varphi )

\zeta (\theta j , \varphi j)

\biggr) \Biggl( 
1 - e - 2n\pi \scrA 

\biggl( 
\zeta (\theta , \varphi )

\zeta (\theta j , \varphi j)

\biggr)  - 1
\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| ,(2.21)

Qj(\theta ) = 2\pi 

\biggl( 
F (\theta ) + F (\theta j) +

1

4\pi 2\scrA 
K(\theta )K(\theta j) - 

1

4\pi 
K(\theta ) +

1

4\pi 
K(\theta j)

\biggr) 
.(2.22)

As \bfitx \rightarrow \bfitx j , it follows from (A.2) in Appendix A that we obtain

log

\bigm| \bigm| \bigm| \bigm| 1 - \zeta (\theta , \varphi )

\zeta (\theta j , \varphi j)

\bigm| \bigm| \bigm| \bigm| = log \rho + log \epsilon  - log (R - r cos \theta j) - 
\epsilon (1 + sin \theta j)y1
2(R - r cos \theta j)

+
\epsilon sin \theta jy1y

2
2

2\rho 2(R - r cos \theta j)

+\scrO (\epsilon 2).

Owing to (2.23) and (A.7) in Appendix A, we also have

logWj(\theta , \varphi ) = logWj(\theta j , \varphi j) +
\partial (logWj(\theta , \varphi j))

\partial \theta 

\bigm| \bigm| \bigm| \bigm| 
\theta =\theta j

(\theta  - \theta j)

+
\partial (logWj(\theta j , \varphi ))

\partial \varphi 

\bigm| \bigm| \bigm| \bigm| 
\varphi =\varphi j

(\varphi  - \varphi j) +\scrO (\epsilon 2)

=k +\scrO (\epsilon 2),

Qj(\theta ) =Qj(\theta j) +
\partial Qj

\partial \theta 

\bigm| \bigm| \bigm| \bigm| 
\theta =\theta j

(\theta  - \theta j) +\scrO (\epsilon 2) = qj +Q\prime 
j(\theta j)

\epsilon y1
r

+\scrO (\epsilon 2),

where k = logWj(\theta j , \varphi j) = 2 log (
\prod 

n\geq 1(1 - e - 2n\pi \scrA )), qj = Qj(\theta j), and

(2.23) Q\prime 
j(\theta j) =  - 1

2\pi \alpha 

\alpha \theta j  - sin \theta j
\alpha  - cos \theta j

+
1

2\pi \scrA 
K(\theta j)

\biggl( 
 - 1

\alpha  - cos \theta j

\biggr) 
+

1

2

1

\alpha  - cos \theta j
.

Hence, as \bfitx \rightarrow \bfitx j , we have

2\pi Gj(\bfitx j) = - log \rho  - log \epsilon + log (R - r cos \theta j) +
\epsilon (1 + sin \theta j)y1
2(R - r cos \theta j)

 - \epsilon sin \theta jy1y
2
2

2\rho 2(R - r cos \theta j)

 - k  - qj  - Q\prime 
j(\theta j)

\epsilon y1
r

+\scrO (\epsilon 2).
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On the other hand, by Taylor expansion, as \bfitx \rightarrow \bfitx i for i \not = j, we have

2\pi Gj(\bfitx ) \sim 2\pi Gj(\bfitx i) + 2\pi 
\partial Gj(\theta , \varphi )

\partial \theta 

\bigm| \bigm| \bigm| \bigm| 
(\theta ,\varphi )=(\theta i,\varphi i)

(\theta  - \theta i) + 2\pi 
\partial Gj(\theta , \varphi )

\partial \varphi 

\bigm| \bigm| \bigm| \bigm| 
(\theta ,\varphi )=(\theta i,\varphi i)

(\varphi  - \varphi i)

=  - 
\biggl( \widetilde Gji + \nabla (\theta ,\varphi )

\widetilde Gj

\bigm| \bigm| \bigm| 
(\theta ,\varphi )=(\theta i,\varphi i)

\cdot 
\biggl( 
\epsilon y1
r
,

\epsilon y2
R - r cos \theta i

\biggr) \biggr) 
,

where \widetilde Gj =  - 2\pi Gj , \widetilde Gji = \widetilde Gj(\bfitx i), and \nabla (\theta ,\varphi ) = ( \partial 
\partial \theta ,

\partial 
\partial \varphi ). Then, as | \bfitx  - \bfitx j | \rightarrow \scrO (\epsilon ), by

matching the outer solution (2.19) of v and the far-field behavior of the inner solution (2.14)
of the jth spot, we have

 - 2\pi 
N\sum 
i=1

SiGi(x) + v \sim Sj log \rho + \chi (Sj) + \epsilon vj1, | \bfitx  - \bfitx j | \rightarrow \scrO (\epsilon ),

which implies

Sj

\biggl( 
log \rho + log \epsilon  - log (R - r cos \theta j) - 

\epsilon (1 + sin \theta j)y1
2(R - r cos \theta j)

+
\epsilon sin \theta jy1y

2
2

2\rho 2(R - r cos \theta j)

\biggr) 
+ Sjk + Sjqj

+
\epsilon Sj
r
Q\prime 

j(\theta j)y1 +

N\sum 
i=1
i\not =j

Si

\biggl( \widetilde Gij + \nabla (\theta ,\varphi )
\widetilde Gi

\bigm| \bigm| \bigm| 
(\theta ,\varphi )=(\theta j ,\varphi j)

\cdot 
\biggl( 
\epsilon y1
r
,

\epsilon y2
R - cos \theta j

\biggr) \biggr) 
+ v

\sim Sj log \rho + \chi (Sj) + \epsilon vj1.

(2.24)

Matching the leading order, we obtain

\chi (Sj) = Sj(log \epsilon  - log (R - r cos \theta j) + k + qj) + v +

N\sum 
i\not =j

Si \widetilde Gij , j = 1, 2, . . . , N.(2.25)

Let us recall that the expression (2.19) is valid under the assumption that

N\sum 
j=1

Sj = 2\pi rRE.(2.26)

Hence, the matrix form of (2.25) and (2.26) is given by

(2.27) \bfitchi (\bfitS ) - (\scrG + (log \epsilon )I  - \scrP +\scrK +\scrQ )\bfitS = v\bfite , \bfite T\bfitS = 2\pi rRE,
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where

\bfitS =

\left( 
S1
...
SN

\right) 
, \bfite =

\left( 
1
...
1

\right) 
, \bfitchi (\bfitS ) =

\left( 
\chi (S1)

...
\chi (SN )

\right) 
, \scrG =

\left( 
0 \widetilde G12 \cdot \cdot \cdot \widetilde G1N\widetilde G21

. . .
...

...\widetilde GN1 \cdot \cdot \cdot 0

\right) 
,

\scrP =

\left( 
p1 0

p2
. . .

0 pN

\right) 
, \scrK =

\left( 
k 0

k
. . .

0 k

\right) 
, \scrQ =

\left( 
q1 0

q2
. . .

0 qN

\right) 
.

(2.28)

Here, pj = log (R - r cos \theta j) and qj = Qj(\theta j) for j = 1, 2, . . . , N . Since \bfite T\bfitS =
\sum N

j=1 Sj =

2\pi rRE and \bfite T\bfite = N , by taking the inner product between \bfite T and the first equation of (2.27),
we have the following formula deriving the constant v from \bfitS and \bfitchi (\bfitS ):

v =
1

N
(\bfite T\bfitchi (\bfitS ) - (\bfite T\scrG + (log \epsilon )\bfite T I  - \bfite T\scrP + \bfite T\scrK + \bfite T\scrQ )\bfitS )

= - 2\pi rRE log \epsilon 

N
+

1

N
(\bfite T\bfitchi (\bfitS ) - (\bfite T\scrG  - \bfite T\scrP + \bfite T\scrK + \bfite T\scrQ )\bfitS ).(2.29)

Substituting (2.29) into (2.27), we have

(2.30) \bfitS +
1

log \epsilon 
(I  - \bfite 0)(\scrG  - \scrP +\scrK +\scrQ )\bfitS =

1

log \epsilon 
(I  - \bfite 0)\bfitchi (\bfitS ) +

2\pi rRE

N
\bfite ,

where \bfite 0 = 1
N \bfite \bfite T is the matrix whose components are all 1

N . The equation (2.30) gives rise
to a nonlinear equation \bfitg (\bfitS ) = 0 for \bfitS . Suppose that there exist solutions Sj , uj0(\rho ), vj0(\rho ),
j = 1, . . . , N , of (2.30) and (2.10) for given N spot centers (\theta j , \varphi j). In addition, if the solutions
uj0(\rho ) and vj0(\rho ) are spot-shaped for j = 1, 2 . . . , N , then the localized spot solutions u\mathrm{q}\mathrm{e} and
v\mathrm{q}\mathrm{e} of RD model (1.1) are represented by

u\mathrm{q}\mathrm{e} \sim  - \epsilon 2 A
a1

+
N\sum 
j=1

uj0(\epsilon 
 - 1| \bfitx  - \bfitx j | ),(2.31)

v\mathrm{q}\mathrm{e} \sim 

\left\{   vj0(\epsilon  - 1| \bfitx  - \bfitx j | ), | \bfitx  - \bfitx j | \leq \scrO (\epsilon ),

 - 2\pi 
N\sum 
j=1

SjG(\bfitx ;\bfitx j) + v, | \bfitx  - \bfitx j | > \scrO (\epsilon ).
(2.32)

2.2. Stability of localized spots. We assume that the quasi-equilibrium solution of (2.31)
and (2.32) is stable up to eigenvalues of \scrO (1) when we derive the evolution equation for spot
cores in the next section. Hence, we discuss the stability of the quasi-stationary spot solutions
u\mathrm{q}\mathrm{e} and v\mathrm{q}\mathrm{e} based on the analysis in [23]. Substituting u = u\mathrm{q}\mathrm{e}+ e\lambda t\psi , v = v\mathrm{q}\mathrm{e}+ e\lambda t\phi into RD
model (1.1) and linearizing the equation, we obtain the following eigenvalue problem:

\epsilon 2\bigtriangleup \BbbT R,r
\psi +

\partial F u

\partial u
(u\mathrm{q}\mathrm{e}, v\mathrm{q}\mathrm{e})\psi +

\partial F u

\partial v
(u\mathrm{q}\mathrm{e}, v\mathrm{q}\mathrm{e})\phi = \lambda \psi ,

\bigtriangleup \BbbT R,r
\phi +

1

\epsilon 2

\biggl( 
\partial F v

\partial u
(u\mathrm{q}\mathrm{e}, v\mathrm{q}\mathrm{e})\psi +

\partial F v

\partial v
(u\mathrm{q}\mathrm{e}, v\mathrm{q}\mathrm{e})\phi 

\biggr) 
= \tau \lambda \phi .

(2.33)
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Since we are concerned with the stability of a localized spot in the inner region of the jth
spot, we expand

u\mathrm{q}\mathrm{e}(y1, y2, \sigma ) =

\infty \sum 
n=0

\epsilon nujn, v\mathrm{q}\mathrm{e}(y1, y2, \sigma ) =

\infty \sum 
n=0

\epsilon nvjn.(2.34)

Note that we have u\mathrm{q}\mathrm{e} \sim uj0 and v\mathrm{q}\mathrm{e} \sim vj0 in the inner region of the jth spot with the strength
Sj at the leading order. Let uj0(\rho ) and vj0(\rho ) denote the solutions of the core problem (2.10).
Using the local coordinates (2.3) and (2.4) in the inner region of the jth spot, the eigenvalue
problem (2.33) is reduced to

\bigtriangleup \bfity \psi +
\partial F u

\partial u
(uj0, vj0)\psi +

\partial F u

\partial v
(uj0, vj0)\phi +\scrO (\epsilon ) = \lambda \psi ,

\bigtriangleup \bfity \phi +
\partial F v

\partial u
(uj0, vj0)\psi +

\partial F v

\partial v
(uj0, vj0)\phi +\scrO (\epsilon ) = \epsilon 2\tau \lambda \phi .

(2.35)

Furthermore, we assume \tau \lambda \ll \scrO (\epsilon  - 2) and neglect the \scrO (\epsilon ) term. Then, we obtain the
eigenvalue problem at the leading order,

\bigtriangleup \bfity \psi +
\partial F u

\partial u
(uj0, vj0)\psi +

\partial F u

\partial v
(uj0, vj0)\phi = \lambda \psi ,

\bigtriangleup \bfity \phi +
\partial F v

\partial u
(uj0, vj0)\psi +

\partial F v

\partial v
(uj0, vj0)\phi = 0.

(2.36)

By the separation of variables with \psi = \widehat \psi (\rho )ei\omega m and \phi = \widehat \phi (\rho )ei\omega m around the inner region
of the jth spot in the coordinates \bfity = (y1, y2) = (\rho cos\omega , \rho sin\omega ) and m = 0, 1, 2 . . . , the
equations (2.36) are reduced to those for the shape of the jth spot,

\bigtriangleup \rho 
\widehat \psi  - m2

\rho 2
\widehat \psi + (a1  - \lambda ) \widehat \psi +

\partial (u2fu)

\partial u
(uj0, vj0) \widehat \psi +

\partial F u

\partial v
(uj0, vj0)\widehat \phi = 0,

\bigtriangleup \rho 
\widehat \phi  - m2

\rho 2
\widehat \phi +

\partial F v

\partial u
(uj0, vj0) \widehat \psi +

\partial F v

\partial v
(uj0, vj0)\widehat \phi = 0,

(2.37)

where fu(u, v) =
\sum n

i,j=0 ai,ju
ivj . Owing to the existence of (a1  - \lambda ) \widehat \psi in the first equation of

(2.37), we impose that \widehat \psi \rightarrow 0 as \rho \rightarrow \infty if Re\lambda > a1. Hence, the far-field condition for \widehat \psi is
given by \widehat \psi \prime (0) = 0 and \widehat \psi \rightarrow 0 as \rho \rightarrow \infty . In what follows, we consider the modes m \geq 2,
since ( \widehat \psi , \widehat \phi ) = (\partial \rho uj0, \partial \rho vj0) is the solution of (2.37) corresponding to \lambda = 0 for m = 1, which

is obtained by differentiating core problem (2.10). Hence, owing to the existence of  - m2

\rho 2
\widehat \phi in

the second equation of (2.37), the boundary condition for \widehat \phi is given by \widehat \phi \prime (0) = 0 and \widehat \phi \rightarrow 0
as \rho \rightarrow \infty for m \geq 2. By solving the eigenvalue problem (2.37) numerically, we observe the
stability of the jth spot.

2.3. Derivation of evolution equation for spot cores. Based on the asymptotic analysis
in [33], the evolution equation of N spot centers is derived from the second-order inner core
problem (2.9) with the operator \scrL containing the temporal derivative in terms of \sigma . The
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boundary condition of vj1(y1, y2, \sigma ) as \rho \rightarrow \infty is obtained by matching the next order \scrO (\epsilon ) in
(2.24).

vj1 =Sj

\biggl( 
1

r
Q\prime 

j(\theta j)y1  - 
(1 + sin \theta j)y1
2(R - r cos \theta j)

+
sin \theta jy1y

2
2

2\rho 2(R - r cos \theta j)

\biggr) 
+

N\sum 
i=1
i\not =j

Si\nabla (\theta ,\varphi )
\widetilde Gi(\theta j , \varphi j) \cdot 

\biggl( 
y1
r
,

y2
R - r cos \theta j

\biggr) 

=Yj +
Sj sin \theta jy1y

2
2

2\rho 2(R - r cos \theta j)
, j = 1, 2, . . . , N,(2.38)

where

Yj = Sj

\biggl( 
1

r
Q\prime 

j(\theta j)y1  - 
(1 + sin \theta j)y1
2(R - r cos \theta j)

\biggr) 
+

N\sum 
i=1
i\not =j

Si\nabla (\theta ,\varphi )
\widetilde Gi(\theta j , \varphi j) \cdot 

\biggl( 
y1
r
,

y2
R - r cos \theta j

\biggr) 
.

Regarding the boundary condition of uj1(y1, y2, \sigma ), owing to u \sim  - \epsilon 2A/a1 as \rho \rightarrow \infty , the
\scrO (\epsilon ) term of u in (2.7) becomes uj1 = 0 as \rho \rightarrow \infty for \bfitw j1 = (uj1, vj1)

T . This gives rise to
the following boundary value problem:

\scrP \bfitw j1 = \bigtriangleup \bfity \bfitw j1 +\scrM j\bfitw j1 =  - \scrN j\bfitw j0 +

\biggl( 
\scrL uj0
0

\biggr) 
, \bfity = (y1, y2) \in \BbbR 2,

\bfitw j1 \sim 

\Biggl( 
0

Sj

2\rho 2
\mathrm{s}\mathrm{i}\mathrm{n} \theta j

R - r \mathrm{c}\mathrm{o}\mathrm{s} \theta j
y1y

2
2 + Yj

\Biggr) 
as \rho = | \bfity | \rightarrow \infty .

(2.39)

We solve this equation by considering the decomposition of \bfitw j1,

\bfitw j1 =

\biggl( 
uj1
vj1

\biggr) 
= \bfitw e

j1 +\bfitw d
j1, \bfitw e

j1 =

\biggl( 
uej1
vej1

\biggr) 
, \bfitw d

j1 =

\biggl( 
udj1
vdj1

\biggr) 
,(2.40)

where \bfitw e
j1 and \bfitw d

j1 satisfy the following inhomogeneous boundary value problems:

\scrP \bfitw e
j1 =  - \scrN j\bfitw j0, \scrP \bfitw d

j1 =

\biggl( 
\scrL uj0
0

\biggr) 
, \bfity \in \BbbR 2,(2.41)

\bfitw e
j1 \sim 

\Biggl( 
0

Sj

2\rho 2
\mathrm{s}\mathrm{i}\mathrm{n} \theta j

R - r \mathrm{c}\mathrm{o}\mathrm{s} \theta j
y1y

2
2

\Biggr) 
, \bfitw d

j1 \sim 
\biggl( 

0
\bfitalpha j \cdot \bfity 

\biggr) 
, \rho = | y| \rightarrow \infty .(2.42)

Here, the function \bfitalpha j = (\alpha j,1, \alpha j,2)
T is introduced so that \bfitalpha j \cdot \bfity = Yj for j = 1, 2, . . . , N . Each

\bfitalpha j is a function from (\theta 1, \theta 2, . . . , \theta N , \varphi 1, \varphi 2, . . . \varphi N ) \in \BbbR 2N to \BbbR 2, and it is explicitly given by

\bfitalpha j =

\biggl( 
\alpha j,1

\alpha j,2

\biggr) 
=

N\sum 
i=1
i\not =j

Si

\Biggl( 
1
r
\partial \widetilde Gi
\partial \theta 

1
R - r \mathrm{c}\mathrm{o}\mathrm{s} \theta j

\partial \widetilde Gi
\partial \varphi 

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
(\theta ,\varphi )=(\theta j ,\varphi j)

+ Sj

\Biggl( 
1
rQ

\prime 
j(\theta j) - 

(1+\mathrm{s}\mathrm{i}\mathrm{n} \theta j)
2(R - r \mathrm{c}\mathrm{o}\mathrm{s} \theta j)

0

\Biggr) 
.(2.43)
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Let us notice that \bfitalpha is determined from the Green's function only. As shown in [36],

we
j1 =

\mathrm{s}\mathrm{i}\mathrm{n} \theta j
R - r \mathrm{c}\mathrm{o}\mathrm{s} \theta j

( - y22
2

\partial wj0

\partial y1
+ y1y2

\partial wj0

\partial y2
) is the solution of the first equation. Since it contains no

temporal derivative term, it has nothing to do with the spot dynamics. Hence, we construct
the evolution equation for the jth spot by solving the second equation of (2.41) for \bfitw d

j1. By

differentiating (2.8), we obtain \scrP \partial \bfitw j0

\partial yi
= 0 for j = 1, 2, which means the dimension of the

null-space of the adjoint operator \scrP \ast = (\bigtriangleup \bfity + \scrM T
j ) is at least two. Let us consider the

homogeneous adjoint problem \scrP \ast \Psi = 0. This is solved by the separation of variables in terms
of the local coordinates \bfity = (\rho cos\omega , \rho sin\omega )T ,

\Psi (\rho , \omega ) = \bfitP (\rho )T (\omega ), \bfitP (\rho ) =

\biggl( 
P1(\rho )
P2(\rho )

\biggr) 
,(2.44)

where T (\omega ) = cos\omega or sin\omega . Substituting (2.44) into the equation, we obtain the following
equation for \bfitP (\rho ):

\bigtriangleup \rho \bfitP  - 1

\rho 2
\bfitP +\scrM T

j \bfitP = 0, \bfitP (0) = 0, \bfitP \sim 
\biggl( 
 - b1
a1\rho 

,
1

\rho 

\biggr) T

, \rho \rightarrow \infty .(2.45)

The boundary condition of \bfitP as \rho \rightarrow \infty is obtained as follows. Owing to (2.9) with uj0 \rightarrow 0
and uj0vj0 \rightarrow 0 as \rho \rightarrow \infty , \scrM T

j should satisfy

\scrM T
j \rightarrow 

\biggl( 
a1 b1
0 0

\biggr) 
, \rho \rightarrow \infty .(2.46)

This yields \bigtriangleup \rho P2  - \rho  - 2P2 = 0 as \rho \rightarrow \infty , and we thus have P2 = \scrO (\rho  - 1) as \rho \rightarrow \infty .
Normalizing \bfitP so that P2 \sim 1

\rho as \rho \rightarrow \infty , we have P1 \sim  - b1
a1\rho 

as \rho \rightarrow \infty . Hence, we obtain

another boundary condition \bfitP \sim ( - b1
a1\rho 
, 1\rho )

T as \rho \rightarrow \infty .

Let B\kappa = \{ \bfity | | \bfity | \leq \kappa \} . By using Green's second identity to \bfitw d
j1 and \Psi , we obtain

\Lambda = lim
\kappa \rightarrow \infty 

\int 
B\kappa 

\Bigl[ 
\Psi T\scrP \bfitw d

j1  - (\bfitw d
j1)

T\scrP \ast \Psi 
\Bigr] 
d\bfity (2.47)

= lim
\kappa \rightarrow \infty 

\int 
B\kappa 

\Bigl[ 
\Psi T (\bigtriangleup \bfity +\scrM j)\bfitw 

d
j1  - (\bfitw d

j1)
T (\bigtriangleup \bfity +\scrM T

j )\Psi 
\Bigr] 
d\bfity 

= lim
\kappa \rightarrow \infty 

\int 2\pi 

0

\Bigl( 
\Psi T\partial \rho \bfitw 

d
j1  - (\bfitw d

j1)
T\partial \rho \Psi 

\Bigr) \bigm| \bigm| \bigm| 
\rho =\kappa 

\rho d\omega .(2.48)

Using the far-field asymptotic behavior as \rho \rightarrow \infty ,

\bfitw d
j1 \sim 

\biggl( 
0

\bfitalpha j \cdot \bfity 

\biggr) 
=

\biggl( 
0

\alpha j,1\rho cos\omega + \alpha j,2\rho sin\omega 

\biggr) 
, \Psi \sim 

\Biggl( 
1
\rho 
1
\rho 

\Biggr) 
T (\omega ),(2.49)

we calculate (2.48) as

\Lambda =

\int 2\pi 

0
(2\alpha j,1 cos\omega + 2\alpha j,2 sin\omega )T (\omega )d\omega =

\Biggl\{ 
2\pi \alpha j,1 if T (\omega ) = cos\omega ,

2\pi \alpha j,2 if T (\omega ) = sin\omega .
(2.50)
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On the other hand, since \scrP \ast \Psi = 0, substituting (2.41) into the left-hand side of (2.47) and

using
\partial uj0

\partial y1
=

\partial uj0

\partial \rho cos\omega ,
\partial uj0

\partial y2
=

\partial uj0

\partial \rho sin\omega , we obtain

\Lambda = lim
\kappa \rightarrow \infty 

\int 
B\kappa 

\Bigl[ 
\Psi T\scrP \bfitw d

j1

\Bigr] 
d\bfity =

\int \infty 

0

\int 2\pi 

0
\rho P1(\rho )T (\omega )\scrL uj0d\rho d\omega 

=  - 
\int \infty 

0

\int 2\pi 

0
\rho P1(\rho )T (\omega )

\biggl( 
r
\partial \theta j
\partial \sigma 

\partial uj0
\partial \rho 

cos\omega + (R - r cos \theta j)
\partial \varphi j

\partial \sigma 

\partial uj0
\partial \rho 

sin\omega 

\biggr) 
d\rho d\omega 

=

\Biggl\{ 
 - r\pi \scrC j \partial \theta j\partial \sigma if T (\omega ) = cos\omega ,

 - (R - r cos \theta j)\pi \scrC j \partial \varphi \partial \sigma if T (\omega ) = sin\omega .

(2.51)

Here, the constant \scrC j is defined by

\scrC j =
\int \infty 

0
\rho 
\partial uj0
\partial \rho 

P1(\rho )d\rho .(2.52)

We note that since the solution uj0 of (2.10) depends on the strength Sj and the reaction
terms F u, F v, so does \scrC j . Equating (2.50) and (2.51) for T (\omega ) = cos\omega and T (\omega ) = sin\omega , we
obtain the equation of the jth spot,

(2.53)
\partial \theta j
\partial \sigma 

=  - 2\alpha j,1

r\scrC j
,

\partial \varphi j

\partial \sigma 
=  - 2\alpha j,2

(R - r cos \theta j)\scrC j
.

The evolution equation is valid as long as the localized spots of RD model (1.1) with the
strengths \bfitS persist stably for a long time, and the constant \scrC j has a fixed sign independently
of Sj . These conditions are validated numerically for BRD model (1.2) in the next section.

2.4. Validation of the theory for Brusselator reaction-diffusion system. We construct
quasi-stationary solutions u\mathrm{q}\mathrm{e} and v\mathrm{q}\mathrm{e} for BRD model (1.2) by numerical means to validate the
existence of stable localized spots. That is to say, we determine the source strength \bfitS \in \BbbR N ,
\bfitchi \in \BbbR N , and v \in \BbbR so that they satisfy (2.10), (2.29), and (2.30) and check their stability.
Let us first consider the following boundary value problem on 0 \leq \rho \leq \rho 0 for \rho 0 \gg 1 for a
given scalar S:

\bigtriangleup \rho \widehat u - \widehat u+ f\widehat u2\widehat v = 0, \bigtriangleup \rho \widehat v + \widehat u - \widehat u2\widehat v = 0, 0 < \rho \leq \rho 0,

\widehat u\prime (0) = \widehat v\prime (0) = 0, \widehat u(\rho 0) = 0, and \widehat v\prime (\rho 0) = S

\rho 0
.

(2.54)

Taking \rho 0 = 20, we solve this equation with the COLNEW method [5] in the bvpSolve
R library [19]. We then set \chi (S) = \widehat v(\rho 0)  - S log \rho 0. This defines a map \chi : S \in \BbbR \mapsto \rightarrow 
\chi (S) \in \BbbR . Then, for the jth component Sj of \bfitS , we obtain the approximation \chi (Sj) \approx \chi (Sj).
Consequently, \widehat u and \widehat v are the approximate solutions uj0 and vj0 of (2.10) with Sj . In addition,
it is important to observe that the shape of the solution depends on the parameters f and S.
Figure 1(a) shows that the radial solution \widehat u(\rho ) is localized when S = 2, but it tends to be
volcano-shaped as S increases for f = 0.7. As a matter of fact, it is numerically confirmed
that the radial solution remains localized for S \leq 3.44. Since the solution is assumed to be
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(a) (b)

Figure 1. (a) Numerical solution \widehat u(\rho ) of the approximate core problem (2.54) for BRD model (1.2) with
f = 0.7 and various S. (b) The constant \chi (S) in (2.10) that is obtained by solving \bfitg (\bfitS ) = \bfzero numerically for
f = 0.3, 0.5, 0.7, 0.9 and S \in [0.1, 8.0].

localized in the present asymptotic analysis, we need to restrict our attention to small S. The
algorithm solving \bfitg (\bfitS ) = 0 is described in Appendix B. The plot of \chi (S) for various f is
shown in Figure 1(b). Note that Figure 1(a) and (b) are the same as those in [23], although
the chosen parameters are different.

Next we confirm the stability of the localized spot solutions of BRD model (1.2) described
in subsection 2.2. With F u(u, v) =  - u+ fu2v and F v(u, v) = u - u2v, the linearized problem
(2.37) is reduced to

(2.55) \bigtriangleup \rho 
\widehat \psi  - m2

\rho 2
\widehat \psi  - (1+\lambda ) \widehat \psi +2fuj0vj0 \widehat \psi +fu2j0\widehat \phi = 0, \bigtriangleup \rho 

\widehat \phi  - m2

\rho 2
\widehat \phi + \widehat \psi  - 2uj0vj0 \widehat \psi  - u2j0\widehat \phi = 0.

The boundary condition is given by \widehat \psi \prime (0) = \widehat \phi \prime (0) = 0, \widehat \psi \rightarrow 0, and \widehat \phi \rightarrow 0 as \rho \rightarrow \infty . For the
approximate solutions uj0 and vj0 of the core problem (2.10) and given m, we solve (2.55) by
using the finite central differences on 0 < \rho < \rho 0 = 20, which gives rise to a generalized matrix
eigenvalue problem. We pay attention to the eigenvalue of (2.55) having the largest real part,
say the principal eigenvalue \lambda max. Figure 2(a) shows the real part of \lambda max for fixed f = 0.7
and m = 2, 3, 4, which is the same plot as that in [23]. It indicates that \lambda max is negative for
small S and gets larger as S increases monotonically, and it finally becomes positive for large
S. Hence, there exists a unique threshold, denoted by \Sigma m(f), where the principal eigenvalue
becomes zero. If S > \Sigma m(f), since the real part of the principal eigenvalue is positive, the
spot becomes unstable, while it is stable for S < \Sigma m(f). Since \Sigma 2(f) < \Sigma 3(f) < \Sigma 4(f) for
f = 0.7, the spot is stable for the modes of perturbations with m \geq 2 if S < \Sigma 2(f). It is
important to notice that the stability of the localized spot depends not on the locations but
on the strength \bfitS , the parameter f , and the mode m.

Finally, the value of Cj is computed. We solve the following boundary value problem on
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(a) (b)

Figure 2. (a) Plots of the real part of the principal eigenvalue \lambda max of (2.55) when f = 0.7 and Sj \in [0.01, 8]
for m = 2, 3, 4. (b) Plot of \scrC (S) of BRD model (1.2) for f = 0.7 and S \in [0.1, 8]. The vertical dotted line
represents S = \Sigma 2(f), which determines the stability of the quasi-steady spot solution. For S > \Sigma 2(f), it is
unstable. For 0 < S < \Sigma 2(f), we observe \scrC < 0.

0 \leq \rho \leq \rho 0 with \rho 0 \gg 1 to approximate (P1, P2) satisfying (2.45):

\bigtriangleup \rho 
\widehat P1  - 

1

\rho 2
\widehat P1 + (2f\widehat u\widehat v  - 1)\widehat P1 + (1 - 2\widehat u\widehat v)\widehat P2 = 0, \bigtriangleup \rho 

\widehat P2  - 
1

\rho 2
\widehat P2 + f\widehat u2\widehat P1  - \widehat u2\widehat P2 = 0,

\widehat P1(0) = \widehat P2(0) = 0, \widehat P1(\rho 0) =
1

\rho 0
, \widehat P2(\rho 0) =

1

\rho 0
.

(2.56)

With \widehat P1 and \widehat u\prime obtained in this way, we can define a map \scrC : S \in \BbbR \mapsto \rightarrow \scrC (S) \in \BbbR by

\scrC =

\int \rho 0

0
\rho \widehat u\prime (\rho )\widehat P1(\rho )d\rho .(2.57)

We thus have \scrC j \approx \scrC (Sj) for given Sj . Figure 2(b) shows the plot of \scrC (S) of BRD model (1.2)
with f = 0.7, which is the same plot as that in [33]. Let us note that \scrC j is independent of the
location of the jth spot by construction, and it is negative for 0 < S < \Sigma 2(0.7). Consequently,
we conclude that the stable localized spots with 0 < S < \Sigma 2(0.7) with a negative \scrC exist,
where the equation (2.53) of the spot cores remains valid.

3. Dynamics of quasi-stationary localized spots. Suppose that localized N spots persist
stably and \scrC j < 0, j = 1, . . . , N . Based on (2.53), we then find equilibrium states, meaning
that N spots of RD model (1.1) are in a quasi-equilibrium state moving very slowly with
\scrO (\epsilon  - 2) time scale. The stationary N localized spots at (\theta j , \varphi j) exist if and only if \alpha j,1 =
\alpha j,2 = 0, j = 1, . . . , N . It is important to remember that \alpha j,1 and \alpha j,2 are independent of the
choice of the reaction terms F u and F v, and so is the existence of the stationary spot cores.
On the other hand, we need to specify the reaction terms to discuss the linear stability, since
the matrix generally depends on

\partial Sj

\partial \theta i
and

\partial Sj

\partial \varphi i
, i, j = 1, 2, . . . , N , except the one-spot case. The

theoretical results are compared with the nonlinear evolutions of BRD model (1.2) that are
obtained numerically.
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3.1. A single spot. Suppose that the spot is located at (\theta 1, \varphi 1) with the strength S1 on
the toroidal surface. For one spot, S1 = 2\pi rRE is the solution of (2.30) and independent of
(\theta 1, \varphi 1). We then find the equilibrium state, in which the spot is in a quasi-equilibrium state
moving very slowly with \scrO (\epsilon  - 2) time scale. This is the solution of

\alpha 1,1(\theta 1) =
S1

r(\alpha  - cos \theta 1)

\biggl( 
 - \alpha \theta 1  - sin \theta 1

2\pi \alpha 
 - K(\theta 1)

2\pi \scrA 
 - sin \theta 1

2

\biggr) 
, \alpha 1,2(\theta 1) = 0,

where K(\theta 1) =  - 2\scrA arctan (
\sqrt{} 

\alpha +1
\alpha  - 1 tan

\theta 1
2 ). Since \alpha 1,2 always vanishes, it is sufficient to solve

the equation \alpha 1,1(\theta 1) = 0 for \theta 1.

Theorem 3.1. There exists a unique \alpha s > 1 such that the following holds. For 1 < \alpha < \alpha s,
there exists a unique \vargamma s(\alpha ) \in (0, \pi ) such that the single spots at \theta 1 = 0, \vargamma s(\alpha ), \pi , 2\pi  - \vargamma s(\alpha )
are equilibria. Then the spots at \theta 1 = 0 and \pi are unstable, while those at \theta 1 = \vargamma s(\alpha ) and
2\pi  - \vargamma s(\alpha ) are stable. On the other hand, for \alpha s \leq \alpha , there exist the stable spot at \theta 1 = 0 and
the unstable spot at \theta 1 = \pi .

Proof. When the spot is located at the innermost and the outermost points of the torus,
i.e., \theta 1 = 0 and \theta 1 = \pi , it is easy to confirm that \alpha 1,1(0) = \alpha 1,1(\pi ) = 0 owing to K(0) = 0
and K(\pi ) =  - \pi \scrA . We now find the other equilibrium. Let us rewrite

\alpha 1,1(\theta 1) =
S1\beta 1(\theta 1)

r(\alpha  - cos \theta 1)
, \beta 1(\theta 1) =  - \alpha \theta 1  - sin \theta 1

2\pi \alpha 
 - K(\theta 1)

2\pi \scrA 
 - sin \theta 1

2
.

The zeros of \beta 1(\theta 1) = 0 are equivalent to those of \alpha 1,1(\theta 1) = 0 owing to \alpha  - cos \theta 1 > 0. It
follows from

(3.1) \beta \prime 1(\theta 1) =  - \alpha  - cos \theta 1
2\pi \alpha 

+
1

2\pi \scrA 
1

\alpha  - cos \theta 1
 - cos \theta 1

2

that there exists \theta b \in [0, 2\pi ) satisfying \beta \prime 1(\theta b) = 0 if and only if \theta = \theta b satisfies

(3.2) \alpha  - \scrA (\alpha  - cos \theta )2  - \pi \alpha \scrA cos \theta (\alpha  - cos \theta ) = 0.

With x = cos \theta , it gives rise to the quadratic equation \alpha  - \scrA (\alpha  - x)2  - \pi \alpha \scrA x(\alpha  - x) = 0. It
has the solutions x1 =

\sqrt{} 
\gamma + \delta 2 + \delta and x2 =  - 

\sqrt{} 
\gamma + \delta 2 + \delta , where

\gamma =
\alpha 2  - \alpha 

\surd 
\alpha 2  - 1

\pi \alpha  - 1
> 0, \delta =

\pi \alpha 2  - 2\alpha 

2(\pi \alpha  - 1)
> 0.

Note that x2 < x1. Hence, owing to the one-to-one correspondence between x \in [ - 1, 1]
and \theta \in [0, \pi ] and the symmetry x = cos \theta = cos(2\pi  - \theta ), (3.2) has two solutions at most
in \theta \in (0, \pi ) and two solutions at most in \theta \in (\pi , 2\pi ) corresponding to x1 and x2. It is
easy to see that x2 =  - 

\sqrt{} 
\gamma + \delta 2 + \delta < 0 < 1. Since x2 =  - 

\sqrt{} 
\gamma + \delta 2 + \delta >  - 1, it is

reduced to 1 + 2\delta > \gamma , which is equivalent to  - \alpha 
\surd 
\alpha 2  - 1 < (\alpha + 1)((\pi  - 1)\alpha  - 1). This

inequality always holds true owing to (\alpha + 1)((\pi  - 1)\alpha  - 1) > 0 for \alpha > 1. Hence, we obtain
 - 1 < x2 < 1. We then consider the range of \alpha where x1 < 1. Let us first confirm that \delta < 1
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for 1 < \alpha <
\sqrt{} 
1 + 1

\pi 2 + 1+\pi 
\pi \approx 2.3677. In this range, x1 < 1 is reduced to \gamma < 1  - 2\delta , which

is equivalent to

(\alpha  - 1)((\pi 2 + 2\pi )\alpha 3  - (2 + \pi )2\alpha 2 + (3 + 2\pi )\alpha  - 1) < 0.

Since the cubic equation (\pi 2 + 2\pi )\alpha 3  - (2 + \pi )2\alpha 2 + (3 + 2\pi )\alpha  - 1 = 0 has only one real
solution, say \alpha = \alpha s \approx 1.2010, we obtain x1 < 1 for \alpha \in (1, \alpha s). Hence, owing to  - 1 <
x2 < 1 \leq x1 for \alpha \geq \alpha s, the equation \beta \prime 1(\theta b) = 0 has the solutions \theta b = cos - 1 x2 \in (0, \pi ) and
2\pi  - cos - 1 x2 \in (\pi , 2\pi ). Accordingly, since \beta 1(0) = \beta 1(\pi ) = 0, there is no solution of \beta 1(\theta ) = 0
except \theta = 0, \pi . In addition, it follows from \beta \prime 1(0) \leq 0 and \beta \prime 1(\pi ) > 0 for \alpha \geq \alpha s that the spot
at \theta 1 = 0 is stable and that at \theta 1 = \pi is unstable. On the other hand, since  - 1 < x2 < x1 < 1
for \alpha \in (1, \alpha s), (3.2) has two solutions in (0, \pi ) and the other two solutions in (\pi , 2\pi ), which
indicates that there exists \vargamma s(\alpha ) \in (0, \pi ) such that one-spot solutions at \theta 1 = 0, \vargamma s(\alpha ), \pi ,
and 2\pi  - \vargamma s(\alpha ) are the solutions of \beta 1(\theta 1) = 0 by the continuity of \beta 1. Owing to \beta \prime 1(\pi ) > 0,
we also obtain \beta \prime 1(0) > 0, \beta \prime 1(\vargamma s(\alpha )) < 0, and \beta \prime 1(2\pi  - \vargamma s(\alpha )) < 0. Hence, the single spots at
\theta 1 = 0 and \pi are unstable, while those at \vargamma s(\alpha ), 2\pi  - \vargamma s(\alpha ) are stable.

To confirm the linear stability of the one-spot case, we solve BRD model (1.2) numerically
for the initial condition (2.31) and (2.32) having one spot on the torus of (R, r) = (1.1, 1.0)
and (R, r) = (1.3, 1.0). The numerical parameters are given by \varepsilon = 0.05, f = 0.7, S1 = 3 <
\Sigma 2(0.7), and A = S1

2\pi Rr . After computing the solution up to t = 100 when the localized spot
is formed, we add a 2\% random perturbation to the solution. For \alpha = 1.1 < \alpha s, the present
theory expects that the spot at \vargamma s(1.1) \approx 0.64295 is stable, whereas that at \theta = 0 and \pi are
unstable. Figure 3 shows that the spot centered at \theta 1 = 0 is moving toward the stable one
spot at \theta 1 = \vargamma s(1.1) after the perturbation. When \alpha = 1.3 > \alpha s, the spot at \theta 1 = 0 is stable
and that at \theta 1 = \pi is unstable. Figure 4 confirms that the spot centered at \theta 1 = \pi is moving
toward \theta 1 = 0 after a long-time evolution.

3.2. The \bfitN -ring configuration. Let us consider the ring configuration of N spots located
at \theta j = \vargamma N and \varphi j = (2j  - 1)\pi /N for j = 1, . . . , N on the toroidal surface, which we call the
N -ring at \vargamma N . Then the strengths of the N spots become identical according to (2.30) and
are set as Sj = Sc = 2\pi rRE

N . This means that the existence of the N -ring is independent of
the choice of the reaction terms F u and F v. It follows from (2.43) with (A.4) and (A.6) that
we have

(3.3) \alpha j,2 =
Sc

R - r cos \theta j

N\sum 
i=1
i\not =j

\left(  \partial log
\bigm| \bigm| \bigm| 1 - \zeta (\theta j ,\varphi )

\zeta (\theta i,\varphi i)

\bigm| \bigm| \bigm| 
\partial \varphi 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\varphi =\varphi j

+
\partial logWi(\theta j , \varphi )

\partial \varphi 

\bigm| \bigm| \bigm| \bigm| 
\varphi =\varphi j

\right) 
= 0.

From (2.43), we have

\alpha j,1 =
Sc
r

N\sum 
i=1
i\not =j

\left(  \partial log
\bigm| \bigm| \bigm| 1 - \zeta (\theta ,\varphi j)

\zeta (\theta i,\varphi i)

\bigm| \bigm| \bigm| 
\partial \theta 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\theta =\theta j

+
\partial logWi(\theta , \varphi j)

\partial \theta 

\bigm| \bigm| \bigm| \bigm| 
\theta =\theta j

+Q\prime 
i(\theta j)

\right) 

+
Sc
r

\biggl( 
Q\prime 

j(\theta j) - 
1 + sin \theta j

2(\alpha  - cos \theta j)

\biggr) 
.
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Figure 3. Evolution of BRD model (1.2) from a one-spot initial condition (2.31) and (2.32) centered at
\theta 1 = 0 and \varphi 1 = \pi on the torus of R = 1.1 and r = 1.0, i.e., \alpha = 1.1. The numerical parameters are \varepsilon = 0.05,
f = 0.7, S1 = 3, A = S1

2\pi Rr
. The red horizontal dotted line represents the reference lines of \vargamma s(1.1) \approx 0.64295.

Since the spot is unstable, it starts moving toward \vargamma s(1.1).

Figure 4. Evolution of BRD model (1.2) from a one-spot initial condition (2.31) and (2.32) centered at
\theta 1 = \pi and \varphi 1 = \pi on the torus of R = 1.3 and r = 1.0, i.e., \alpha = 1.3. The numerical parameters are the same
as those for Figure 3. The unstable spot starts moving toward the stable spot at \theta = 0 as expected.
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From (A.3) and (A.5) with \theta i = \theta j , we obtain

\partial logWi(\theta , \varphi j)

\partial \theta 

\bigm| \bigm| \bigm| \bigm| 
\theta =\theta j

= 0,
\partial log

\bigm| \bigm| \bigm| 1 - \zeta (\theta ,\varphi j)
\zeta (\theta i,\varphi i)

\bigm| \bigm| \bigm| 
\partial \theta 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\theta =\theta j

=  - 1

2(\alpha  - cos \theta j)
.

Substituting \theta j = \vargamma , we have

\alpha j,1(\vargamma ) =
Sc
r

\biggl( 
N

\biggl( 
Q\prime 

1(\vargamma ) - 
1

2(\alpha  - cos\vargamma )

\biggr) 
 - sin\vargamma 

2(\alpha  - cos\vargamma )

\biggr) 
=
Sc
r

1

\alpha  - cos\vargamma 

\biggl( 
 - N

2\pi \alpha 
(\alpha \vargamma  - sin\vargamma ) - N

2\pi \scrA 
K(\vargamma ) - 1

2
sin\vargamma 

\biggr) 
.

It is easy to see that if \vargamma = 0 or \pi , \alpha j,1 = 0 for j = 1, 2, . . . , N . Hence, the N -ring at
the innermost/outermost location of the torus becomes an equilibrium state for any \alpha > 1.
For \vargamma \not = 0, \pi , it is sufficient to consider the existence of stationary N -rings at \vargamma \in (0, \pi ) by
symmetry. We have the following theorem.

Theorem 3.2. The N -rings at \vargamma = 0 and \pi are equilibria for any \alpha > 1. In addition,
for N \geq 2, there are \alpha m(N) and \alpha M (N) with 1 < \alpha m(N) < \alpha M (N) for which the fol-
lowing is satisfied. For \alpha \in (\alpha m(N), \alpha M (N)), there exists a unique \vargamma N (\alpha ) \in (0, \pi ) such
that the N -ring at \vargamma N (\alpha ) becomes an equilibrium. Moreover, lim\alpha \searrow \alpha m(N) \vargamma N (\alpha ) = \pi and
lim\alpha \nearrow \alpha M (N) \vargamma N (\alpha ) = 0.

Proof. Let us define \beta N (\theta ) =  - N
2\pi \alpha (\alpha \theta  - sin \theta ) - N

2\pi \scrA K(\theta ) - 1
2 sin \theta . Owing to 1

\alpha  - \mathrm{c}\mathrm{o}\mathrm{s} \theta \not = 0
for \alpha > 1, \alpha j,1(\theta ) = 0 is equivalent to \beta N (\theta ) = 0. Owing to

\beta \prime N (\theta ) =
1

\alpha  - cos \theta 

\biggl( 
 - N

2\pi \alpha 
(\alpha  - cos \theta )2 +

N

2\pi \scrA 
 - 1

2
cos \theta (\alpha  - cos \theta )

\biggr) 
,

we introduce mN (x, \alpha ) =  - N
2\pi \alpha (\alpha  - x)

2+ N
2\pi \scrA  - 1

2x(\alpha  - x) by the change of variable, x = cos \theta .
Then mN (x, \alpha ) = 0 becomes a quadratic equation with respect to x, whose discriminant
\scrD (N,\alpha ) is given by

\scrD (N,\alpha ) =

\biggl( 
N

\pi 
 - 1

2
\alpha 

\biggr) 2

 - N

\pi 

\biggl( 
1 - N

\pi \alpha 

\biggr) \biggl( 
1

\scrA 
 - \alpha 

\biggr) 
(3.4)

=
1

4
\alpha 2  - 

\biggl( 
1 - N

\pi \alpha 

\biggr) 
N

\pi \scrA 
.(3.5)

When \alpha > N
\pi , it follows from (3.4) that \scrD (N,\alpha ) > 0 owing to 1

\scrA < \alpha . On the other hand,
for \alpha \leq N

\pi , (3.5) yields \scrD (N,\alpha ) > 0. Hence, mN (x) = 0 has two real solutions, and so
does \beta \prime N (\theta ) = 0 for \theta \in [0, \pi ] owing to \alpha  - cos \theta \in [\alpha  - 1, \alpha + 1]. Hence, it follows from
\beta N (0) = \beta N (\pi ) = 0 that \beta N (\theta ) = 0 has one unique solution \vargamma N (\alpha ) \in (0, \pi ) if and only if
\beta \prime N (0)\beta \prime N (\pi ) > 0. This condition is confirmed by checking mN ( - 1, \alpha )mN (1, \alpha ) > 0 owing to
\alpha  - cos \theta > 0. Since

mN (1, \alpha ) =  - N

2\pi \alpha 
(\alpha  - 1)2+

N

2\pi \scrA 
 - 1

2
(\alpha  - 1), mN ( - 1, \alpha ) =  - N

2\pi \alpha 
(\alpha +1)2+

N

2\pi \scrA 
+
1

2
(\alpha +1),
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we have

d

d\alpha 
mN (1, \alpha ) =  - N

2\pi 
+

N

2\pi \alpha 2
+

N\alpha 

2\pi 
\surd 
\alpha 2  - 1

 - 1

2
,

d

d\alpha 
mN ( - 1, \alpha ) =  - N

2\pi 
+

N

2\pi \alpha 2
+

N\alpha 

2\pi 
\surd 
\alpha 2  - 1

+
1

2
,

and
d2

d\alpha 2
mN (1, \alpha ) =

d2

d\alpha 2
mN ( - 1, \alpha ) =

N

2\pi 

\biggl( 
 - 2

\alpha 3
 - (\alpha 2  - 1) - 

3
2

\biggr) 
< 0.

On the other hand, it follows from

lim
\alpha \searrow 1

mN (1, \alpha ) = 0, lim
\alpha \rightarrow \infty 

mN (1, \alpha ) =  - \infty ,

lim
\alpha \searrow 1

d

d\alpha 
mN (1, \alpha ) = \infty , lim

\alpha \rightarrow \infty 

d

d\alpha 
mN (1, \alpha ) =  - 1

2

that there exists a unique \alpha M (N) > 1 such that mN (1, \alpha ) > 0 for 1 < \alpha < \alpha M (N), while
mN (1, \alpha ) < 0 for \alpha > \alpha M (N). Similarly, since

lim
\alpha \searrow 1

mN ( - 1, \alpha ) =  - 2N

\pi 
+ 1 < 0, lim

\alpha \rightarrow \infty 
mN ( - 1, \alpha ) = \infty ,

lim
\alpha \searrow 1

d

d\alpha 
mN ( - 1, \alpha ) = \infty , lim

\alpha \rightarrow \infty 

d

d\alpha 
mN ( - 1, \alpha ) =

1

2
,

there exists a unique \alpha m(N) > 1 such that mN ( - 1, \alpha ) < 0 for 1 < \alpha < \alpha m(N), and
mN ( - 1, \alpha ) > 0 for \alpha > \alpha m(N).

With \alpha 0 =
2N
\pi > 1 for N \geq 2, we have

mN (1, \alpha 0) =  - N

2\pi \alpha 0
(\alpha 0  - 1)2 +

N
\sqrt{} 
\alpha 2
0  - 1

2\pi 
 - 1

2
(\alpha 0  - 1)

=
\pi \alpha 0

2

\biggl( 
 - 1

2\pi \alpha 0
(\alpha 0  - 1)2 +

1

2\pi 

\sqrt{} 
\alpha 2
0  - 1

\biggr) 
 - 1

2
(\alpha 0  - 1)

=  - 1

4
(\alpha 0  - 1)2 +

\alpha 0

4

\sqrt{} 
\alpha 2
0  - 1 - 1

2
(\alpha 0  - 1) =

1

4

\biggl( 
 - (\alpha 2

0  - 1) + \alpha 0

\sqrt{} 
\alpha 2
0  - 1

\biggr) 
> 0.

Recalling that mN (1, \alpha ) > 0 for 1 < \alpha < \alpha M (N), we have \alpha 0 = 2N
\pi < \alpha M (N). On the other

hand, let us notice that mN ( - 1, \alpha M (N)) = mN ( - 1, \alpha M (N))  - mN (1, \alpha M (N)) = \alpha M (N)  - 
2N
\pi > 0. We thus have \alpha m(N) < \alpha M (N), since mN ( - 1, \alpha ) is monotone increasing. Moreover,
by mN ( - 1, \alpha ) = 0 at \alpha = \alpha m(N) and mN (1, \alpha ) = 0 at \alpha = \alpha M (N), it is easy to see that
lim\alpha \searrow \alpha m(N) \vargamma N (\alpha ) = \pi and lim\alpha \nearrow \alpha M (N) \vargamma N (\alpha ) = 0 owing to the one-to-one correspondence
of x = cos \theta for \theta \in [0, \pi ].

We observe the linear stability of the N -ring configuration of BRD model (1.2) for N =
2, . . . , 6 on the torus of (R, r) = (\alpha 2 ,

1
2) with \alpha = [1.01, 10] by numerical means. The parameters

are \varepsilon = 0.05, f = 0.7, Sc = 1.5 < \Sigma 2(0.7), and A = NSc
2\pi Rr . We compute the eigenvalues of

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

SPOT DYNAMICS ON A TORUS 1073

the linearized matrix of
\partial \theta j
\partial \sigma and

\partial \varphi j

\partial \sigma (2.53) for j = 1, 2, . . . , N at the equilibria, thereby
observing the principal eigenvalue, say \lambda max. We note that 0 is always an eigenvalue of this
equilibrium originated from the invariance of the infinitesimal translation of the torus in the
\varphi direction. Figure 5(a) shows the real part of the principal eigenvalue, indicating that there
exists \alpha s(N) such that the N -ring at \vargamma = 0 is neutrally stable for \alpha > \alpha s(N), and it is unstable
otherwise. Figure 5(b) shows that the N -ring at \vargamma = \pi is always unstable. The real part of the
principal eigenvalue \lambda max(\alpha ) for the N -ring at \vargamma N (\alpha ) \in (0, \pi ) with N = 2, . . . , 6 in the range
of \alpha \in (\alpha m(N), \alpha M (N)) is shown in Figure 5(c). This indicates that it is unstable. Let us
compare the result with that of the one-spot case in the previous section, which is equivalent
to the 1-ring. According to Theorem 3.1, we find that the stable 1-ring at \vargamma 1(\alpha ) = \vargamma s(\alpha ) exists
for 1 < \alpha M (1) = \alpha s(1) = \alpha s, although \alpha m(1) is not defined. On the other hand, Figure 5
indicates that \alpha m(N) < \alpha M (N) < \alpha s(N) for N \geq 2. Moreover, the stability of the 1-ring at
\vargamma 1(\alpha ) is stable, whereas the N -ring at \vargamma N (\alpha ) for N \geq 2 is unstable.

We solve BRD model (1.2) numerically for the localized 5-ring initial condition (2.31)
and (2.32) on the torus of (R, r) = (1.7, 0.5), (R, r) = (2.1, 0.5), and (R, r) = (2.2, 0.5) with
\varepsilon = 0.05, f = 0.7, Sc = 1.5, and A = NSc

2\pi Rr . After solving the equations until the localized
spots are formed, we add a 2\% random perturbation to the solution. For the 5-ring, the
parameters are \alpha m(5) \approx 2.990, \alpha M (5) \approx 3.495, \alpha s(5) \approx 4.296. Let us remember that the 5-
ring at \vargamma = \pi is always unstable, and that at \vargamma = 0 is stable for \alpha = 4.4 > \alpha s(5). As a matter
of fact, Figure 6 shows that the spots centered at \vargamma = \pi are moving toward those at \vargamma = 0
after a long-time evolution. On the other hand, since the 5-ring at \vargamma = 0 becomes unstable
for \alpha = 4.2 < \alpha s(5), the spots centered at \vargamma = 0 initially are moving toward another quasi-
equilibrium solution consisting of nonsymmetric spot centers after the perturbation as shown
in Figure 7. When \alpha = 3.4 \in (\alpha m(5), \alpha M (5)) where an unstable 5-ring at \vargamma 5(\alpha ) exists, we
confirm in Figure 8 that the unstable 5-ring at \vargamma 5(\alpha ) moves toward another quasi-equilibrium
state.

3.3. Quasi-stationary two spots. Suppose that two spots are centered at (\theta 1, \varphi 1) and
(\theta 2, \varphi 2) on the toroidal surface. Then the source strengths S1 and S2 > 0 satisfy S1 + S2 =
2\pi RrE owing to (2.26). It follows from (2.43) with (A.4) and (A.6) that \alpha 1,2 is given by

\alpha 1,2 =
S2

R - r cos \theta 1

\partial \widetilde G2

\partial \varphi 

\bigm| \bigm| \bigm| \bigm| \bigm| 
(\theta ,\varphi )=(\theta 1,\varphi 1)

=
S2

R - r cos \theta 1

E2,1 sin (\varphi 1  - \varphi 2)

(1 - E2,1 cos (\varphi 1  - \varphi 2))2 + E2
2,1 sin

2 (\varphi 1  - \varphi 2)
+

S2
R - r cos \theta 1

\infty \sum 
n=1

w2,1,n,(3.6)

where

w2,1,n =
sin (\varphi 1  - \varphi 2)s

n
\Bigl( \Bigl( 
E2,1 + E - 1

2,1

\Bigr) 
(1 + s2n) - 4s2n cos (\varphi 1  - \varphi 2)

\Bigr) 
(1 + s2n  - sn cos (\varphi 1  - \varphi 2)(E2,1 + E - 1

2,1))
2 + (sn(E2,1  - E - 1

2,1) sin (\varphi 1  - \varphi 2))2

with s = exp( - 2\pi \scrA ) < 1. Since (E2,1+E
 - 1
2,1)(1+s

2n) - 4s2n cos (\varphi 1  - \varphi 2) \geq 2(1+s2n) - 4s2n >
0, we obtain \alpha 1,2 = 0 if and only if \varphi 1  - \varphi 2 = k\pi , k \in \BbbZ . Similarly, we have \alpha 2,2 = 0 if and
only if \varphi 1  - \varphi 2 = k\pi , k \in \BbbZ . This means that the quasi-stationary two spots are located at
either (\varphi 1, \varphi 2) = (\pi , 0) or (\pi , \pi ) without loss of generality.
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(a)

(b)

(c)

Figure 5. The real part of the principal eigenvalue \lambda max(\alpha ) for the N-ring for N = 2, . . . , 6 on the torus
of (R, r) = (\alpha 

2
, 1
2
), \alpha \in [1.01, 10]. The numerical parameters are \varepsilon = 0.05, f = 0.7, Sc = 1.5 < \Sigma 2(0.7), and

A = NSc
2\pi Rr

. (a) \lambda max(\alpha ) for the N-ring at \vargamma = 0. (b) \lambda max(\alpha ) for the N-ring at \vargamma = \pi . (c) Each curve is the
plot of \lambda max(\alpha ) for the N-ring at \vargamma N (\alpha ) \in (0, \pi ) in the range of \alpha \in (\alpha m(N), \alpha M (N)). The plots of \lambda max(\alpha )
in Figure 5(a) and (b) are shown for reference.
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Figure 6. Evolution of BRD model (1.2) from the 5-ring initial condition (2.31) and (2.32) centered at

\theta j = \pi and \varphi j = (2j - 1)\pi 
5

, j = 1, 2, . . . , 5, on the torus of R = 2.2 and r = 0.5. The numerical parameters are
\varepsilon = 0.05, f = 0.7, Sc = 1.5, A = 5Sc

2\pi Rr
. The spots approach a quasi-stationary state having spots at \theta j = 0,

j = 1, 2, . . . , 5.

Figure 7. Evolution of BRD model (1.2) from the 5-ring initial condition (2.31) and (2.32) centered at

\theta j = 0 and \varphi j = (2j - 1)\pi 
5

, j = 1, 2, . . . , 5, on the torus of R = 2.1 and r = 0.5. The numerical parameters are
the same as those for Figure 6. The 5-ring at \vargamma = 0 starts moving toward another equilibrium point, since it
is unstable.
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Figure 8. Evolution of BRD model (1.2) from the 5-ring initial condition (2.31) and (2.32) centered at

\theta j = 1.1 and \varphi j = (2j - 1)\pi 
5

, j = 1, 2, . . . , 5, on the torus of R = 1.7 and r = 0.5. The numerical parameters
are the same as those for Figure 6. At t = 2000, the solution is close to the 5-ring at \vargamma 5(3.4) \in (0, \pi ). The
unstable 5-ring starts moving toward another equilibrium state, since it is unstable.

3.3.1. Case of (\bfitvarphi \bfone , \bfitvarphi \bftwo ) = (\bfitpi , 0). Substituting \varphi 1 = \pi and \varphi 2 = 0 into (2.43) and (2.53)
with (A.3), (A.5), and (2.23), we have the following equations for \theta 1 and \theta 2:

\alpha 1,1(\theta 1, \theta 2, \pi , 0) =
S2
r

\biggl( 
 - 1

\alpha  - cos \theta 1

E2,1

1 + E2,1
+

1

\alpha  - cos \theta 1
h2,1 +Q\prime 

2(\theta 1)

\biggr) 
+
S1
r

\biggl( 
Q\prime 

1(\theta 1) - 
1 + sin \theta 1

2(\alpha  - cos \theta 1)

\biggr) 
=
S2
r

1

\alpha  - cos \theta 1

\biggl( 
 - E2,1

1 + E2,1
+ h2,1  - 

1

2\pi \alpha 
(\alpha \theta 1  - sin \theta 1) - 

1

2\pi \scrA 
K(\theta 2) +

1

2

\biggr) 
+
S1
r

1

\alpha  - cos \theta 1

\biggl( 
 - 1

2\pi \alpha 
(\alpha \theta 1  - sin \theta 1) - 

1

2\pi \scrA 
K(\theta 1) +

1

2
 - 1 + sin \theta 1

2

\biggr) 
,

\alpha 2,1(\theta 1, \theta 2, \pi , 0) =
S1
r

1

\alpha  - cos \theta 2

\biggl( 
 - E1,2

1 + E1,2
+ h1,2  - 

1

2\pi \alpha 
(\alpha \theta 2  - sin \theta 2) - 

1

2\pi \scrA 
K(\theta 1) +

1

2

\biggr) 
+
S2
r

1

\alpha  - cos \theta 2

\biggl( 
 - 1

2\pi \alpha 
(\alpha \theta 2  - sin \theta 2) - 

1

2\pi \scrA 
K(\theta 2) +

1

2
 - 1 + sin \theta 2

2

\biggr) 
,
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where E2,1 = exp( - 
\int \theta 1
\theta 2

\mathrm{d}\eta 
\alpha  - \mathrm{c}\mathrm{o}\mathrm{s} \eta ) and

h2,1 =  - h1,2 = (\alpha  - cos \theta 1)
\sum 
n\geq 1

h2,1,n(\theta 1, \theta 2, \pi , 0)

=
\sum 
n\geq 1

sn(E - 1
2,1  - E2,1)

1 + s2n + sn(E2,1 + E - 1
2,1)

=
\sum 
n\geq 1

\Biggl( 
1

1 + snE2,1
 - 1

1 + snE - 1
2,1

\Biggr) 
.

When \theta 1 = \theta 2, the configuration is the 2-ring, which has been considered in Theorem 3.2.
That is to say, \theta 1 = \theta 2 = 0 and \pi are always equilibria for all \alpha , and there exists \vargamma 2(\alpha ) \in (0, \pi )
such that the two spots at \theta 1 = \theta 2 = \vargamma 2(\alpha ) become an equilibrium for \alpha \in (\alpha m(2), \alpha M (2)).
We now consider equilibria with the symmetry \theta 2 = 2\pi  - \theta 1 with \theta 1 \not = k\pi , k \in \BbbZ . Owing
to the symmetry, the strengths of the two spots are identical from (2.30), and we thus set
S1 = S2 = Sc. Since \alpha 1,1(2\pi  - \theta , \theta , \pi , 0) =  - \alpha 1,1(\theta , 2\pi  - \theta , \pi , 0) and \alpha 1,1(\theta , 2\pi  - \theta , \pi , 0) =
\alpha 2,1(2\pi  - \theta , \theta , \pi , 0) =  - \alpha 2,1(\theta , 2\pi  - \theta , \pi , 0), the two spots at (\theta 1, \theta 2) = (\vargamma c, 2\pi  - \vargamma c) and
(2\pi  - \vargamma c, \vargamma c) are equilibria if and only if \alpha 1,1(\vargamma c, 2\pi  - \vargamma c, \pi , 0) = 0. Hence, it is sufficient to
consider the equation

\alpha 1,1(\theta , 2\pi  - \theta , \pi , 0) =
Sc
r

1

\alpha  - cos \theta 

\biggl( 
 - E2,1(\theta )

1 + E2,1(\theta )
+ h2,1(\theta ) - 

1

\pi \alpha 
(\alpha \theta  - sin \theta ) +

3

2
 - 1

2
sin \theta 

\biggr) 
= 0

for \theta \in (0, \pi ), where

E2,1(\theta ) = exp

\biggl( 
 - 
\int \theta 1

\theta 2

d\eta 

\alpha  - cos \eta 

\biggr) 
= exp

\biggl( \int 2\pi  - \theta 

\theta 

d\eta 

\alpha  - cos \eta 

\biggr) 
,

h2,1(\theta ) = (\alpha  - cos \theta )
\sum 
n\geq 1

h2,1,n(\theta , 2\pi  - \theta , \pi , 0).

Let us here introduce the function \beta 2(\theta , \alpha ) by

\beta 2(\theta , \alpha ) =
d\alpha 1,1(\theta , 2\pi  - \theta , \pi , 0)

d\theta 

=
Sc

r(\alpha  - cos \theta )2
e(\theta , \alpha ) +

d
\Bigl( 
Sc
r

1
\alpha  - \mathrm{c}\mathrm{o}\mathrm{s} \theta 

\Bigr) 
d\theta 

\biggl( 
 - E2,1

1 + E2,1
+ h2,1  - 

1

\pi \alpha 
(\alpha \theta  - sin \theta ) +

3

2
 - 1

2
sin \theta 

\biggr) 
,

where

e(\theta , \alpha ) = - 1

\pi \alpha 
(\alpha  - cos \theta )2  - 1

2
cos \theta (\alpha  - cos \theta ) +

2E2,1(\theta )

(1 + E2,1(\theta ))2

+
\sum 
n\geq 1

\Biggl( 
2snE2,1(\theta )

(1 + snE2,1(\theta ))2
+

2snE - 1
2,1(\theta )

(1 + snE - 1
2,1(\theta ))

2

\Biggr) 
.

Notice that \alpha 1,1(\theta , 2\pi  - \theta , \pi , 0) vanishes at \theta = 0, \pi , and it is a continuous function of \theta . Hence,
if \beta 2(0, \alpha )\beta 2(\pi , \alpha ) > 0, there must exist \vargamma c(\alpha ) \in (0, \pi ) such that \alpha 1,1(\vargamma c(\alpha ), 2\pi  - \vargamma c(\alpha ), \pi , 0) =
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0. The condition is equivalent to e(0, \alpha )e(\pi , \alpha ) > 0 owing to \beta 2(0, \alpha ) = Sc
r(\alpha  - 1)2

e(0, \alpha )

and \beta 2(\pi , \alpha ) = Sc
r(\alpha +1)2

e(\pi , \alpha ). The plots of e(0, \alpha ) and e(\pi , \alpha ) in Figure 9 indicate that

e(0, \alpha )e(\pi , \alpha ) > 0 for 1 < \alpha < \alpha 1 \approx 1.890, in which there exist quasi-stationary states
consisting of two spots at (\theta 1, \theta 2) = (\vargamma c(\alpha ), 2\pi  - \vargamma c(\alpha ), \pi , 0) and (2\pi  - \vargamma c(\alpha ), \vargamma c(\alpha ), \pi , 0).

(a) (b)

Figure 9. Plots of e0(\alpha ) = e(0, \alpha ) and e\pi (\alpha ) = e(\pi , \alpha ) for 1 < \alpha \leq 10. The functions e\pi (\alpha ) > 0 and e0(\alpha )
are monotone decreasing.

The linear stability of these equilibria of BRD model (1.2) is observed. Figure 10(a) shows
\lambda max for (\theta 1, \theta 2) = (0, 0), (\pi , \pi ), (\vargamma 2(\alpha ), \vargamma 2(\alpha )), (\vargamma c(\alpha ), 2\pi  - \vargamma c(\alpha )) on the torus of (R, r) =
(\alpha 2 ,

1
2) for \alpha \in [1.01, 2.5] and S1 = S2 = 1.5 < \Sigma 2(0.7). The two spots at (\theta 1, \theta 2) = (\pi , \pi )

are always unstable. The unstable two spots at (\theta 1, \theta 2) = (\vargamma 2(\alpha ), \vargamma 2(\alpha )) exist for \alpha between
\alpha m(2) \approx 1.173 and \alpha M (2) \approx 1.687. The two spots at (\theta 1, \theta 2) = (\vargamma c(\alpha ), 2\pi  - \vargamma c(\alpha )) are stable
for 1 < \alpha < \alpha 3 \approx 1.273 and \alpha 2 \approx 1.761 < \alpha < \alpha 1, whereas they are unstable for \alpha 3 < \alpha < \alpha 2.
At \alpha = \alpha 1, a supercritical pitchfork bifurcation occurs as shown in Figure 10(b). Then, the
two-spot equilibrium at (\theta 1, \theta 2) = (0, 0) changes its linear stability.

When the two spots are not on the same latitude, S1 and S2 no longer have the same
value in general, which makes the situation more complicated. So we here consider one simple
case where they are on the antipodal locations, \theta 1 = 0, \theta 2 = \pi , \varphi 1 = \pi , and \varphi 2 = 0. Owing
to limk\rightarrow \infty 

1
1+sk

= 1 and E2,1 = E - 1
1,2 = exp (\pi \scrA ) = s - 

1
2 , (A.3), (A.5), and (2.23) yield

\alpha 1,1(0, \pi , \pi , 0) =
S2
r

1

\alpha  - 1

\left( 
 - 1

1 + s
1
2

+
\sum 
n\geq 1

\biggl( 
1

1 + sn - 
1
2

 - 1

1 + sn+
1
2

\biggr) 
+ 1

\right) 
= 0,

\alpha 2,1(0, \pi , \pi , 0) =
S1
r

1

\alpha + 1

\left( 
 - 1 +

1

1 + s
1
2

+
\sum 
n\geq 1

\biggl( 
1

1 + sn+
1
2

 - 1

1 + sn - 
1
2

\biggr) \right) 
= 0.

Hence, if there exist S1 and S2 satisfying (2.30) for \theta 1 = 0, \theta 2 = \pi , \varphi 1 = \pi , \varphi 2 = 0, then the
two spots are in an equilibrium state. We compute the strengths of two spots for BRD model
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(a) (b)

Figure 10. Linear stability of the quasi-stationary states of two spots of BRD model (1.2) on the torus
of (R, r) = (\alpha 

2
, 1
2
) for \alpha \in [1.01, 2.5]. The numerical parameters are \varepsilon = 0.05, f = 0.7, S1 = S2 = 1.5,

and A = 3
2\pi Rr

. (a) The real part of the principal eigenvalue \lambda max for two spots equilibria (\theta 1, \theta 2) =
(0, 0), (\pi , \pi ), (\vargamma 2(\alpha ), \vargamma 2(\alpha )), and (\vargamma c(\alpha ), 2\pi  - \vargamma c(\alpha )). (b) A supercritical pitchfork bifurcation at \alpha = \alpha 1 \approx 1.890,
showing that the equilibrium at \theta 1 = 0 changes its linear stability, and the stable equilibria at (\vargamma c(\alpha ), 2\pi  - \vargamma c(\alpha ))
and (2\pi  - \vargamma c(\alpha ), \vargamma c(\alpha )) appear for \alpha < \alpha 1.

(1.2) on the torus of (R, r) = (\alpha 2 ,
1
2) for \alpha \in [1.01, 2] numerically with the parameters f = 0.7

and A = 3
2\pi Rr , i.e., S1 +S2 = 3. Figure 11(a) shows that the strength S1(\alpha ) is not unique for

\alpha > \alpha 4 \approx 1.021. For each value of S1(\alpha ) on this curve, the largest real part of the eigenvalue
\lambda max is shown in Figure 11(b).

(a) (b)

Figure 11. (a) The strength S1(\alpha ) of the first spot at (\theta 1, \varphi 1) = (0, \pi ) of BRD model (1.2) on the torus of
(R, r) = (\alpha 

2
, 1
2
) for \alpha \in [1.01, 2]. They are obtained by solving (2.30) numerically with the parameters \varepsilon = 0.05,

f = 0.7, and A = 3
2\pi Rr

, satisfying S1(\alpha ) +S2(\alpha ) = 3. When \alpha > \alpha 4 \approx 1.021, we have three solutions. (b) The
real part of the principal eigenvalue \lambda max corresponding to the strength in Figure 11(a).
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We confirm the asymptotic analysis by solving BRD model (1.2) for the initial condition
(2.31) and (2.32) of two spots at \varphi 1 =

\pi 
2 and \varphi 2 =

3\pi 
2 on the torus. The numerical parameters

are \varepsilon = 0.05, f = 0.7, and A = 3
2\pi Rr . The radii of the torus are (R, r) = (0.825, 0.5)

(\alpha 3 < \alpha = 1.65 < \alpha 2) and (R, r) = (0.925, 0.5) (\alpha 2 < \alpha = 1.85 < \alpha 1). After the localized
two spots are formed, we add a 2\% random perturbation to observe the stability. Figure 12
shows that, when \alpha = 1.85, the 2-ring at \theta 1 = \theta 2 = 0 is unstable and moves toward the stable
quasi-stationary state of two spots at (\theta 1, \theta 2) = (\vargamma c(1.85), 2\pi  - \vargamma c(1.85)) as expected. On
the other hand, when \alpha = 1.65, the spots at (\theta 1, \theta 2) = (\vargamma c(1, 65), 2\pi  - \theta c(1.65)) are moving
toward a quasi-stationary state of two spots at the antipodal locations (\theta 1, \theta 2) = (\pi , 0) after a
long-time evolution as shown in Figure 13. This is consistent with the linear stability analysis
for the quasi-stationary state of two spots at (\theta 1, \theta 2) = (\vargamma c(1.65), 2\pi  - \vargamma c(1.65)), which is
unstable as in Figure 10(a), and (\theta 1, \theta 2) = (\pi , 0), which is stable as in Figure 11(b).

Figure 12. Evolution of BRD model (1.2) for the initial condition (2.31) and (2.32) consisting of two
spots centered at \theta 1 = \theta 2 = 0 and \varphi 1 = \pi 

2
, \varphi 2 = 3\pi 

2
on the torus of R = 0.925 and r = 0.5. The numerical

parameters are \varepsilon = 0.05, f = 0.7, A = Sc
\pi Rr

, and Sc = 1.5. The 2-ring starts moving toward (\theta 1, \theta 2) =
(\vargamma c(1.85), 2\pi  - \vargamma c(1.85)). The horizontal dotted line represents the reference lines of \vargamma c(1.85) \approx 0.3067 and
2\pi  - \vargamma c(1.85) \approx 5.9765.

3.3.2. Case of (\bfitvarphi \bfone , \bfitvarphi \bftwo ) = (\bfitpi , \bfitpi ). When the two spots are on the same section \varphi = \pi of
the torus, they should satisfy \theta 1 \not = \theta 2 + 2k\pi , k \in \BbbZ . By (2.43) with (A.3), (A.5), and (2.23),
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Figure 13. Evolution of BRD model (1.2) from the initial condition (2.31) and (2.32) consisting of two
spots centered at (\theta 1, \theta 2) = (\theta 0, 2\pi  - \theta 0) and \varphi 1 = \pi 

2
, \varphi 2 = 3\pi 

2
on the torus of R = 0.825 and r = 0.5, where

\theta 0 \approx 0.7378 is the solution of \alpha 1,1(\theta 0, 2\pi  - \theta 0, \pi , 0) = 0. The numerical parameters are \varepsilon = 0.05, f = 0.7,
Sc = 1.5, and A = Sc

\pi Rr
. At first, the two spots move toward a quasi-stationary state of two spots at (\vargamma c, 2\pi  - \vargamma c).

The two spots become unstable and start moving toward (\theta 1, \theta 2) = (\pi , 0).

we obtain

\alpha 1,1(\theta 1, \theta 2, \pi , \pi ) =
S2
r

\biggl( 
1

\alpha  - cos \theta 1

E2,1

1 - E2,1
+

1

\alpha  - cos \theta 1
h2,1 +Q\prime 

2(\theta 1)

\biggr) 
+
S1
r

\biggl( 
Q\prime 

1(\theta 1) - 
1 + sin \theta 1

2(\alpha  - cos \theta 1)

\biggr) 
=
S2
r

1

\alpha  - cos \theta 1

\biggl( 
E2,1

1 - E2,1
+ \widetilde h2,1  - 1

2\pi \alpha 
(\alpha \theta 1  - sin \theta 1) - 

1

2\pi \scrA 
K(\theta 2) +

1

2

\biggr) 
+
S1
r

1

\alpha  - cos \theta 1

\biggl( 
 - 1

2\pi \alpha 
(\alpha \theta 1  - sin \theta 1) - 

1

2\pi \scrA 
K(\theta 1) +

1

2
 - 1 + sin \theta 1

2

\biggr) 
,(3.7)

\alpha 2,1(\theta 1, \theta 2, \pi , \pi ) =
S1
r

1

\alpha  - cos \theta 2

\biggl( 
E1,2

1 - E1,2
+ \widetilde h1,2  - 1

2\pi \alpha 
(\alpha \theta 2  - sin \theta 2) - 

1

2\pi \scrA 
K(\theta 1) +

1

2

\biggr) 
+
S2
r

1

\alpha  - cos \theta 2

\biggl( 
 - 1

2\pi \alpha 
(\alpha \theta 2  - sin \theta 2) - 

1

2\pi \scrA 
K(\theta 2) +

1

2
 - 1 + sin \theta 2

2

\biggr) 
,(3.8)

where \widetilde h2,1 =  - \widetilde h1,2 = (\alpha  - cos \theta 1)
\sum 
n\geq 1

h2,1,n(\theta 1, \theta 2, \pi , \pi )

=
\sum 
n\geq 1

 - sn(E - 1
2,1  - E2,1)

1 + s2n  - sn(E2,1 + E - 1
2,1)

=
\sum 
n\geq 1

\Biggl( 
1

1 - snE2,1
 - 1

1 - snE - 1
2,1

\Biggr) 
.(3.9)
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Figure 14. The strength of the first spot S1(\alpha ) at (\theta 1, \theta 2, \varphi 1, \varphi 2) = (0, \pi , \pi , \pi ) of BRD model (1.2) for
\alpha \in [1.01, 3]. It is obtained numerically by solving (2.30) with the parameters \varepsilon = 0.05, f = 0.7, and A = 3

2\pi Rr
.

The strength of the second spot is given by S2(\alpha ) = 3 - S1(\alpha ).

When \theta 1 = 0 and \theta 2 = \pi , we have K(\pi ) =  - \pi \scrA and E2,1 = exp(\pi \scrA ) = s - 
1
2 . Since

limk\rightarrow \infty 
1

1 - sk
= 1 owing to s < 1, we obtain

\alpha 1,1(0, \pi , \pi , \pi ) =
S2
r

1

\alpha  - 1

\left( 
 - 1

1 - s
1
2

+
\sum 
n\geq 1

\biggl( 
1

1 - sn - 
1
2

 - 1

1 - sn+
1
2

\biggr) 
+ 1

\right) 
= 0,

\alpha 2,1(0, \pi , \pi , \pi ) =
S1
r

1

\alpha + 1

\left( 
 - 1 +

1

1 - s
1
2

+
\sum 
n\geq 1

\biggl( 
1

1 - sn+
1
2

 - 1

1 - sn - 
1
2

\biggr) \right) 
= 0.

We need to check whether there exist S1 and S2 > 0 satisfying (2.30) for \theta 1 = 0, \theta 2 = \pi , and
\varphi 1 = \varphi 2 = \pi to show the existence of quasi-stationary states. We solve (2.30) for the BRD
model. The parameters are given by f = 0.7 and A = 3

2\pi Rr with S1 + S2 = 3. The strength
S1(\alpha ) of the first spot at (\theta 1, \varphi 1) = (0, \pi ) on the torus of (R, r) = (\alpha 2 ,

1
2) for \alpha \in [1.01, 3] is

shown in Figure 14. When \alpha < \alpha 1 \approx 1.021, we have only one solution, while there are three
solutions for \alpha 1 < \alpha < \alpha 2 \approx 1.270. After having only one solution for \alpha 2 < \alpha < \alpha 3 \approx 1.874
again, we have new solutions for \alpha > \alpha 3.

Let us find the two spots that are not on the antipodal locations with the symmetry
\theta 2 = 2\pi  - \theta 1. The strengths of the two spots are then identical from (2.30), i.e., S1 = S2 = Sc.
It follows from \alpha 1,1(\theta , 2\pi  - \theta , \pi , \pi ) =  - \alpha 2,1(\theta , 2\pi  - \theta , \pi , \pi ) that two spots at (\theta 1, 2\pi  - \theta 1, \pi , \pi )
are in an equilibrium state if and only if \alpha 1,1(\theta 1, 2\pi  - \theta 1, \pi , \pi ) = 0. Substituting \theta 1 = \theta and
\theta 2 = 2\pi  - \theta into (3.7), we have the equation

\alpha 1,1(\theta , 2\pi  - \theta , \pi , \pi ) =
Sc
r

1

\alpha  - cos \theta 

\biggl( 
E2,1(\theta )

1 - E2,1(\theta )
+ \widetilde h2,1(\theta ) - 1

\pi \alpha 
(\alpha \theta  - sin \theta ) +

3

2
 - 1

2
sin \theta 

\biggr) 
= 0
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for \theta \in (0, \pi ), where \widetilde h2,1(\theta ) =
\sum 

n\geq 1(
1

1 - snE2,1(\theta )
 - 1

1 - snE - 1
2,1(\theta )

) =
\sum 

n\geq 1 hn and E2,1(\theta ) =

exp(
\int 2\pi  - \theta 
\theta 

\mathrm{d}\eta 
\alpha  - \mathrm{c}\mathrm{o}\mathrm{s} \eta ). Owing to E2,1(\theta ) \in (1, s - 1) and E - 1

2,1(\theta ) \in (s, 1) for \theta \in (0, \pi ), hn > 0 is
well defined for n \geq 2. Hence,

hn+1

hn
=

(1 - snE2,1(\theta ))(1 - snE - 1
2,1(\theta ))

(1 - sn+1E2,1(\theta ))(1 - sn+1E - 1
2,1(\theta ))

s < s < 1

yields that \widetilde h2,1  - h1 is convergent. Owing to E2,1 \nearrow s - 1 as \theta \searrow 0, we have h1 \rightarrow +\infty . Since
the other terms in \alpha 1,1 remain bounded as \theta \searrow 0, we obtain \alpha 1,1(\theta , 2\pi  - \theta , \pi , \pi ) \rightarrow +\infty .
Similarly, since E2,1(\theta ) \searrow 1 as \theta \nearrow \pi , 1

1 - E2,1
\rightarrow  - \infty and the other terms in \alpha 1,1 are bounded.

Hence, lim\theta \nearrow \pi \alpha 1,1(\theta , 2\pi  - \theta , \pi , \pi ) \rightarrow  - \infty . Since \alpha 1,1(\theta , 2\pi  - \theta , \pi , \pi ) is a continuous function
of \theta , there exists \vargamma d(\alpha ) \in (0, \pi ) such that \alpha 1,1(\vargamma d(\alpha ), 2\pi  - \vargamma d(\alpha ), \pi , \pi ) = 0 for any \alpha > 1.

The linear stability of these configurations is unstable as long as \varphi 1 = \varphi 2 = \pi . Indeed,
with a small perturbation to the spot centers at (\theta 1, \theta 2, \varphi 1 = \Delta \varphi ,\varphi 2 =  - \Delta \varphi ) where \Delta \varphi > 0,
by (3.6), we have \alpha 1,2 > 0 and \alpha 2,2 < 0. Hence, the two spots thus tend to \varphi 1 - \varphi 2 = \pi , which
means they are unstable. To confirm the existence of a quasi-stationary state and the linear
stability of this configuration, we solve BRD model (1.2) numerically for the initial condition
(2.31) and (2.32) consisting of two spots on the torus of (R, r) = (0.6, 0.5). The center of the
two spots at the initial moment is (\theta 1, \theta 2, \pi 1, \pi 2) = (\theta 0, 2\pi  - \theta 0, \pi , \pi ) with \theta 0 \approx 0.8934, which
is the numerical solution of \alpha 1,1(\theta 0, 2\pi  - \theta 0, \pi , \pi ) = 0. The numerical parameters are \varepsilon = 0.05,
f = 0.7, A = 3

2\pi Rr , \varphi 1 = \pi 
2 , \varphi 2 = 3\pi 

2 , and S1 = S2 = 1.5. As shown in Figure 15, the two
spots are moving towards a stable quasi-stationary state (\theta 1, \theta 2) = (\vargamma d(1.2), 2\pi  - \vargamma d(1.2)) and
(\varphi 1, \varphi 2) = (3\pi 2 ,

\pi 
2 ).

4. Summary. We have constructed quasi-stationary states consisting of localized spots
appearing in the RD system (1.1) on the surface of a torus. Under the assumption that
these localized spots persist stably for a long time, we describe the dynamics of the spot
cores in the slow-time scale. Utilizing the analytic expression of the Green's function of the
Laplace--Beltrami operator on the toroidal surface, we derive the ODEs analytically, thereby
investigating the existence of equilibria with a mathematical rigor. We have considered the
three kinds of spot configurations: a single spot, two spots, and the ring configuration where
N localized spots are equally spaced along a latitudinal line. The theoretical results agree
with nonlinear evolutions of the BRD model that are obtained by numerical means. They are
summarized and compared with the dynamics of point vortices as follows.

The single spots at the outermost (\theta 1 = \pi ) and the innermost (\theta 1 = 0) locations are always
equilibria for \alpha > 1. On the other hand, there exist special locations \theta 1 = \vargamma s(\alpha ) \in (0, \pi ) and
2\pi  - \vargamma s(\alpha ) \in (\pi , 2\pi ) at which the single spot becomes an equilibrium for 1 < \alpha < \alpha s \approx 1.201.
The single spot at \theta 1 = \pi is always linearly unstable, and those at \theta 1 = \vargamma s(\alpha ) and 2\pi  - \vargamma s(\alpha )
are stable as long as they exist. The single spot at \theta = 0 is unstable for 1 < \alpha < \alpha s, whereas
its stability changes when \vargamma s(\alpha ) \rightarrow 0 as \alpha \rightarrow \alpha s. It is interesting to consider a geometric or
physical interpretation of this special angle \theta s(\alpha ), which is a future problem. Let us remember
that a single point vortex at any location is always a relative equilibrium rotating at a constant
speed in the longitudinal direction, and it is neutrally stable for any \alpha > 1 [28]. Hence, there
is no special aspect ratio allowing nontrivial equilibria in a vortex crystal, which is different
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Figure 15. Evolution of BRD model (1.2) for the initial condition (2.31) and (2.32) centered at
(\theta 1, \theta 2, \varphi 1, \varphi 2) = (\theta 0, 2\pi  - \theta 0, \pi , \pi ) on the torus of R = 0.6 and r = 0.5, where \theta 0 \approx 0.8934. The numeri-
cal parameters are \varepsilon = 0.05, f = 0.7, Sc = 1.5, and A = 3

2\pi Rr
. The two-spots configuration becomes unstable

and is moving toward \varphi 1 - \varphi 2 = \pi . The horizontal dotted line represents the reference lines of \vargamma c(1.2) \approx 1.0970
and 2\pi  - \vargamma c(1.2) \approx 5.1862, which is the numerical solution of \alpha 1,1(\vargamma c, 2\pi  - \vargamma c, \pi , 0) = 0.

from the single spot dynamics in RD system (1.1).
The N -rings (N \geq 2) at the outermost (\theta = \pi ) and the innermost (\theta = 0) latitudinal lines

are equilibria for \alpha > 1. We also obtain a range of the aspect ratio \alpha \in (\alpha m(N), \alpha M (N)) where
there exists \vargamma N (\alpha ) \in (0, \pi ) such that the N -spots at \vargamma N (\alpha ) and 2\pi  - \vargamma N (\alpha ) are equilibria. We
observe the linear stability of these N -ring configurations of the BRD model. The outermost
N -ring is always unstable, while there exists an aspect ratio \alpha s(N) such that the innermost
one is unstable (resp., neutrally stable) for 1 < \alpha < \alpha s(N) (resp., \alpha > \alpha s(N)). The N -
rings at \vargamma N (\alpha ) and 2\pi  - \vargamma N (\alpha ) are unstable equilibria. This is in contrast to the fact that
the N -ring configuration of point vortices at any location is a relative equilibrium, whose
linear stability is stable (resp., unstable) in the innermost (resp., outermost) region of the
torus for a sufficiently large aspect ratio [29]. Quasi-stationary solutions of the BRD model
consisting of the unstable N -ring are numerically investigated. The unstable N -ring spots are
moving toward stable quasi-stationary states having nonsymmetric configuration of N spots,
indicating the existence of more nontrivial spot equilibria that are globally stable.

Quasi-stationary states consisting of two localized spots are necessarily on the axial section
of the torus, i.e., \varphi 1 = \varphi 2 or \varphi 2 = \varphi 1 + \pi . When \theta 1 = \theta 2 and \varphi 2 = \varphi 1 + \pi , it is equivalent
to the 2-ring. Hence, there exist two-spot equilibria at \theta 1 = \theta 2 = 0 and \pi for \alpha > 1, and at
\theta 1 = \theta 2 = \vargamma 2(\alpha ) and 2\pi  - \vargamma 2(\alpha ) for \alpha m(2) < \alpha < \alpha M (2). The two spots at \theta 1 = \theta 2 = \pi ,
\vargamma 2(\alpha ) and 2\pi  - \vargamma 2(\alpha ) are unstable, while that at \theta 1 = \theta 2 = 0 is stable (resp., unstable) for
\alpha > \alpha s(2) (resp., 1 < \alpha < \alpha s(2)). Moreover, we have found the other two-spot equilibria with
equal strength having the symmetry \theta 2 = 2\pi  - \theta 1 for \alpha > 1. The two spots at \theta 2 = 2\pi  - \theta 1
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and \varphi 2 = \varphi 1+\pi exist for 1 < \alpha < \alpha s(2). A pitchfork bifurcation occurs at \alpha = \alpha s(2), through
which the stable two-spot equilibria with \theta 2 = 2\pi  - \theta 1 disappear and the linear stability of
the two-spot equilibria at \theta 1 = \theta 2 = 0 changes from unstable to stable. On the other hand,
the two-point equilibria at \theta 2 = 2\pi  - \theta 1 and \varphi 1 = \varphi 2 always exist, and they are unstable. We
also obtain the two-spot equilibria at the innermost and outermost antipodal locations, that
is to say, (\theta 1, \theta 2, \varphi 1, \varphi 2) = (0, \pi , \pi , 0) and (0, \pi , \pi , \pi ). Then, the strengths of the two spots are
not identical, nor they are uniquely obtained. The evolution of quasi-stationary solutions of
a BRD model having two localized spots is investigated. The solution having unstable two
spots moves toward a quasi-stationary state consisting of stable two spots after a long time.
In the meantime, the dynamics of two vortex crystals have been investigated [28]. Since the
evolution of two point vortices is integrable, most evolutions of the two point vortices are
periodic, which is different from the two-spot dynamics.

Appendix A. Asymptotic expansions of the Green's function. The asymptotic expansion
of the Green's function (2.16) with respect to \epsilon up to \scrO (\epsilon ) is provided in what follows. Since

\zeta (\theta , \varphi )

\zeta (\theta i, \varphi i)
= ei(\varphi  - \varphi i)exp

\biggl( 
 - 
\int \theta 

\theta i

d\eta 

\alpha  - cos \eta 

\biggr) 
= 1 + i(\varphi  - \varphi i) - 

r

R - r cos \theta i
(\theta  - \theta i) - 

1

2
(\varphi  - \varphi i)

2  - i
r

R - r cos \theta i
(\varphi  - \varphi i)(\theta  - \theta i)

+
1

2

\biggl( 
r2

(R - r cos \theta i)2
+

r2 sin \theta i
(R - r cos \theta i)2

\biggr) 
(\theta  - \theta i)

2 + \cdot \cdot \cdot 

= 1 - \epsilon 

R - r cos \theta i
y1  - 

\epsilon 2

2(R - r cos \theta i)2
y22 +

\epsilon 2(1 + sin \theta i)

2(R - r cos \theta i)2
y21(A.1)

+
i\epsilon 

R - r cos \theta i
y2  - i

\epsilon 2

(R - r cos \theta i)2
y1y2 +\scrO (\epsilon 3),

we obtain, as \bfitx \rightarrow \bfitx i,

log

\bigm| \bigm| \bigm| \bigm| 1 - \zeta (\theta , \varphi )

\zeta (\theta i, \varphi i)

\bigm| \bigm| \bigm| \bigm|  - log \rho 

= log

\bigm| \bigm| \bigm| \bigm|  - y1  - \epsilon y22
2(R - r cos \theta i)

+
\epsilon (1 + sin \theta i)y

2
1

2(R - r cos \theta i)
+ i

\biggl( 
y2  - 

\epsilon y1y2
(R - r cos \theta i)

\biggr) 
+\scrO (\epsilon 2)

\bigm| \bigm| \bigm| \bigm| 
+ log

\bigm| \bigm| \bigm| \bigm| \epsilon 

R - r cos \theta i

\bigm| \bigm| \bigm| \bigm|  - log \rho 

=
1

2
log

\biggl( 
(y21 + y22)

\biggl( 
1 +

\epsilon 

(R - r cos \theta i)(y21 + y22)
( - y1y22  - (1 + sin \theta i)y

3
1 +\scrO (\epsilon ))

\biggr) \biggr) 
+ log \epsilon  - log (R - r cos \theta i) - log \rho 

= log \epsilon  - log (R - r cos \theta i) - 
\epsilon (1 + sin \theta i)y1
2(R - r cos \theta i)

+
\epsilon sin \theta iy1y

2
2

2\rho 2(R - r cos \theta i)
+\scrO (\epsilon 2).(A.2)
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Regarding Wj(\theta , \varphi ), setting Ei,j = exp( - 
\int \theta j
\theta i

\mathrm{d}\eta 
\alpha  - \mathrm{c}\mathrm{o}\mathrm{s} \eta ) and s = exp( - 2\pi \scrA ), we obtain

hi,j,n =

\partial log

\bigm| \bigm| \bigm| \bigm| \Bigl( 1 - e - 2n\pi \scrA \zeta (\theta ,\varphi j)
\zeta (\theta i,\varphi i)

\Bigr) \biggl( 
1 - e - 2n\pi \scrA 

\Bigl( 
\zeta (\theta ,\varphi j)
\zeta (\theta i,\varphi i)

\Bigr)  - 1
\biggr) \bigm| \bigm| \bigm| \bigm| 

\partial \theta 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\theta =\theta j

=
1

\alpha  - cos \theta j

(1 + s2n  - sn cos (\varphi j  - \varphi i)(Ei,j + E - 1
i,j ))( - sn cos (\varphi j  - \varphi i))(E

 - 1
i,j  - Ei,j)

(1 + s2n  - sn cos (\varphi j  - \varphi i)(Ei,j + E - 1
i,j ))

2 + (sn sin (\varphi j  - \varphi i)(E
 - 1
i,j  - Ei,j))2

+
1

\alpha  - cos \theta j

(sn sin (\varphi j  - \varphi i))
2(E - 1

i,j  - Ei,j)(E
 - 1
i,j + Ei,j)

(1 + s2n  - sn cos (\varphi j  - \varphi i)(Ei,j + E - 1
i,j ))

2 + (sn sin (\varphi j  - \varphi i)(E
 - 1
i,j  - Ei,j))2

=
1

\alpha  - cos \theta j

(E - 1
i,j  - Ei,j)

\Bigl( 
 - (1 + s2n)sn cos (\varphi j  - \varphi i) + s2n(E - 1

i,j + Ei,j)
\Bigr) 

(1 + s2n  - sn cos (\varphi j  - \varphi i)(Ei,j + E - 1
i,j ))

2 + (sn sin (\varphi j  - \varphi i)(Ei,j  - E - 1
i,j ))

2
,

(A.3)

wi,j,n =

\partial log

\bigm| \bigm| \bigm| \bigm| \Bigl( 1 - e - 2n\pi \scrA \zeta (\theta j ,\varphi )
\zeta (\theta i,\varphi i)

\Bigr) \biggl( 
1 - e - 2n\pi \scrA 

\Bigl( 
\zeta (\theta j ,\varphi )
\zeta (\theta i,\varphi i)

\Bigr)  - 1
\biggr) \bigm| \bigm| \bigm| \bigm| 

\partial \varphi 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\varphi =\varphi j

=
(1 + s2n  - sn cos (\varphi j  - \varphi i)(Ei,j + E - 1

i,j ))(Ei,j + E - 1
i,j )s

n sin (\varphi j  - \varphi 2)

(1 + s2n  - sn cos (\varphi j  - \varphi i)(Ei,j + E - 1
i,j ))

2 + (sn(Ei,j  - E - 1
i,j ) sin (\varphi j  - \varphi i))2

+
s2n(Ei,j  - E - 1

i,j )
2 sin (\varphi j  - \varphi i) cos (\varphi j  - \varphi i)

(1 + s2n  - sn cos (\varphi j  - \varphi i)(Ei,j + E - 1
i,j ))

2 + (sn(Ei,j  - E - 1
i,j ) sin (\varphi j  - \varphi i))2

=
sin (\varphi j  - \varphi i)s

n
\Bigl( \Bigl( 
Ei,j + E - 1

i,j

\Bigr) 
(1 + s2n) - 4sn cos (\varphi j  - \varphi i)

\Bigr) 
(1 + s2n  - sn cos (\varphi j  - \varphi i)(Ei,j + E - 1

i,j ))
2 + (sn(Ei,j  - E - 1

i,j ) sin (\varphi j  - \varphi i))2
,(A.4)

ti,j =
\partial log

\bigm| \bigm| \bigm| 1 - \zeta (\theta ,\varphi j)
\zeta (\theta i,\varphi i)

\bigm| \bigm| \bigm| 
\partial \theta 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\theta =\theta j

=
(1 - cos (\varphi j  - \varphi i)Ei,j) cos (\varphi j  - \varphi i)Ei,j

1
\alpha  - \mathrm{c}\mathrm{o}\mathrm{s} \theta j

 - sin2 (\varphi j  - \varphi i)Ei,jEi,j
1

\alpha  - \mathrm{c}\mathrm{o}\mathrm{s} \theta j

(1 - cos (\varphi j  - \varphi i)Ei,j)2 + (sin (\varphi j  - \varphi i)Ei,j)2

=
1

\alpha  - cos \theta j

cos (\varphi j  - \varphi i)Ei,j  - E2
i,j

(1 - cos (\varphi j  - \varphi i)Ei,j)2 + (sin (\varphi j  - \varphi i)Ei,j)2
,(A.5)
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and

oi,j =
\partial log

\bigm| \bigm| \bigm| 1 - \zeta (\theta j ,\varphi )
\zeta (\theta i,\varphi i)

\bigm| \bigm| \bigm| 
\partial \varphi 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\varphi =\varphi j

=
(1 - cos (\varphi j  - \varphi i)Ei,j) sin (\varphi j  - \varphi i)Ei,j + sin (\varphi j  - \varphi i) cos (\varphi j  - \varphi i)E

2
i,j

(1 - cos (\varphi j  - \varphi i)Ei,j)2 + (sin (\varphi j  - \varphi i)Ei,j)2

=
sin (\varphi j  - \varphi i)Ei,j

(1 - cos (\varphi j  - \varphi i)Ei,j)2 + (sin (\varphi j  - \varphi i)Ei,j)2
.(A.6)

When \theta i = \theta j , we have that Ei,j = E - 1
i,j = 1 and sin (\varphi j  - \varphi i) = 0 for \varphi i = \varphi j , and (A.3) and

(A.4) yield

\partial logWj(\theta , \varphi j)

\partial \theta 

\bigm| \bigm| \bigm| \bigm| 
\theta =\theta j

= 0,
\partial logWj(\theta j , \varphi )

\partial \varphi 

\bigm| \bigm| \bigm| \bigm| 
\varphi =\varphi j

= 0.(A.7)

Appendix B. An algorithm to solve \bfitg (\bfitS ) = 0. The parameters are set as \Delta S = 10 - 8

and tol = 10 - 8.
(Step 0) Computing \chi (S) for discrete values S = 0.001, 0.002, . . . , 8.000 by solving the

boundary value problem (2.54), we approximate the map \chi (S) by using the cubic spline
interpolation. The initial guess is given by \bfitS (0) = (Sc, . . . , Sc)

T with Sc = 2\pi RrE/N
and set k = 0. This step is done only once.

(Step 1) Compute \bfitchi (\bfitS (k)) and \bfitchi (\bfitS (k)\pm \Delta S\bfite j) for j = 1, . . . , N , where \bfite j is the unit vector
whose jth component is 1. Each component of \bfitchi is obtained from the piecewise cubic
approximation of \chi (S) constructed in Step 0.

(Step 2) Compute the Jacobi matrix \scrJ (\bfitS ) = \{ Jij(\bfitS )\} , i, j = 1, . . . , N , of \bfitg (\bfitS ) at \bfitS = \bfitS (k).
Each entity is approximated by the central finite difference.

Jij

\Bigl( 
\bfitS (k)

\Bigr) 
=
gi
\bigl( 
\bfitS (k) +\Delta S\bfite j

\bigr) 
 - gi

\bigl( 
\bfitS (k)  - \Delta S\bfite j

\bigr) 
2\Delta S

,

in which gi is the ith component of \bfitg .
(Step 3) Solve the linear equation \scrJ (\bfitS (k))\Delta \bfitg = \bfitg (\bfitS (k)) with respect to \Delta \bfitg .
(Step 4) If | \Delta \bfitg | < tol, then \bfitS (k) is the approximate solution of \bfitS , and we go to Step 5.

Otherwise, we set \bfitS (k+1) = \bfitS (k)  - \Delta \bfitg and k = k + 1. Then we go back to Step 1.
(Step 5) The constant v is computed from the approximate solution through (2.29).
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