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Spot Dynamics of a Reaction-Diffusion System on the Surface of a Torus*

Takashi Sakajo' and Penghao Wang'

Abstract. Quasi-stationary states consisting of localized spots in a reaction-diffusion system are considered on
the surface of a torus with major radius R and minor radius . Under the assumption that these
localized spots persist stably, the evolution equation of the spot cores is derived analytically based on
the higher-order matched asymptotic expansion with the analytic expression of the Green’s function
of the Laplace—Beltrami operator on the toroidal surface. Owing to the analytic representation, one
can investigate the existence of equilibria with a single spot, two spots, and the ring configuration
where N localized spots are equally spaced along a latitudinal line with mathematical rigor. We show
that localized spots at the innermost/outermost locations of the torus are equilibria for any aspect
ratio a = g. In addition, we find that there exists a range of the aspect ratio in which localized
spots stay at a special location of the torus. The theoretical results and the linear stability of these
spot equilibria are confirmed by solving the nonlinear evolution of the Brusselator reaction-diffusion
model by numerical means. We also compare the spot dynamics with the point vortex dynamics,

which is another model of spot structures.

Key words. reaction-diffusion system, Brusselator model, surface of a torus, the Green’s function, pattern
formation, matched asymptotic expansion
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1. Introduction. Self-organizing beautiful patterns of localized spot-like structures ap-
pear ubiquitously in many natural phenomena. A regular/irregular lattice of spot structures
is formed in Bose-Einstein condensates (BECs) [1, 13]. Interaction between fluid and mag-
netic fields gives rise to various stationary lattice configurations of small magnetic discs on a
liquid-air interface [16]. We can find more examples such as the formation of lattice patterns of
magnetically confined electron spots in non-neutralized plasma [11], and a ring configuration
of a vortex structure of an electron [12]. In chemical reaction systems, it is experimentally ob-
served that such localized spot patterns emerge in a ferrocyanide-iodate-sulphite reaction [18],
a chlorine dioxide-iodine-malonic acid reaction [10], and a gas charge system [3, 4]. More ex-
amples are also found in [38].

In order to understand self-organization of spot patterns theoretically, it is helpful to con-
struct phenomenological models describing the dynamics of those localized spot structures.
A well-known model is vortexr dynamics, which is derived from the Euler equations for in-
compressible and inviscid fluid flows in two-dimensional space. Suppose that the vorticity,
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1054 TAKASHI SAKAJO AND PENGHAO WANG

which is defined as the curl of the velocity field, is concentrated in discrete points like Dirac’s
measures. We then obtain a system of ODEs describing the evolution [24]. It is efficiently
utilized to understand many stationary pattern formations, called vortex crystals or vortex
lattices, in superfluids, BECs, fluids, and plasmas. See the survey of the history of vortex
lattice theory by Newton and Chamoun [20]. Another model for interacting localized spot
structures is obtained from reaction-diffusion (RD) systems, in which spatially homogeneous
steady states self-organize into localized spot structures due to Turing instability [34]. The
evolution equation describing the interactions among those spot structures is derived from
two-dimensional RD equations with the asymptotic analysis [9, 17].

Dynamics and pattern formations of localized spot structures can be considered on two-
dimensional Riemannian manifolds. A mathematical formulation of vortex dynamics on closed
surfaces is found in the survey by Turner, Vitelli, and Nelson [35]. RD systems on growing
surfaces are derived in [22], in which the curvature and growth effects on the stability of
patterns are observed numerically. In particular, owing to the geophysical and biological
relevance, there are many studies on pattern formations of localized spot structures on the
surface of a sphere. For example, it is shown in [21] that point vortices become a vortex crystal
when they are placed on the vertices of regular polyhedrons, and the relation between the
configurations and the optimal packing problem is discussed. The linear stability analysis of
a ring configuration of point vortices along the line of a latitude [25] and the nonintegrability
of the system [30, 31] have been investigated. On the other hand, pattern formations of
localized spots in RD systems on a growing sphere are used as a model of tumor growth [8]
and of evolving biological surfaces [6]. Formation of Turing patterns on a growing/nongrowing
sphere have been studied numerically [14, 39]. The spherical surface is geometrically simple
since it has a constant curvature.

In the meantime, another remarkable geometric feature of compact surfaces is the existence
of handle structures. Hence, it is interesting to investigate how the handles affect the dynamics
and the stability of localized spot patterns. One of the simplest compact surfaces is a toroidal
surface with major radius R and minor radius r. Different from the surface of a sphere, it
has not only nonconstant curvature but also a handle that is measured by the aspect ratio
a = R/r. Towards the applications to superfluids, the evolution equation of vortex dynamics
on the toroidal surface has been derived in [28], in which some vortex crystals are constructed,
and the dynamics of one and two point vortices are investigated. It has also been shown in [29]
that the stability of a ring configuration of N point vortices changes depending on the sign of
curvature and the modulus o. More vortex crystals on the toroidal surface have recently been
constructed [26, 27]. On the other hand, in RD systems, Sédnchez-Garduno et al. [32] have
considered Turing—Hopf bifurcations in the FitzHugh—Nagumo RD model on a growing torus
and sphere. Recently, Tzou and Tzou [36] have proposed an analytic-numerical method for
computing the Green’s function for Helmholtz operators on curved surfaces, which is applied
to derive an ODE describing a slow dynamics of IV localized spots for the Schnakenberg RD
model. With this model, they numerically investigate the stability of one and two localized
spots.

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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SPOT DYNAMICS ON A TORUS 1055
In the present paper, we consider an RD system of the following form on a surface M:
1
(1.1) up = A pmu+ €A+ F(u,v), TUt = Apv + B+ 5 F(u,v),
€

where Ay, is the Laplace—Beltrami operator on M, and F"(u,v) and F¥(u,v) represent the
reaction terms specified as (2.2). The parameters are A, B € R, 7 > 0, and 0 < ¢ < 1. One
of the examples is the Brusselator RD (BRD) model, which is used as a mathematical model
of some chemical reactions [2, 18, 23]. It is specified by

1
(1.2) up = A pu + €A —u+ fuo, TV = AMU—F—Q(U—U%),
€

in which F*(u,v) = —u + fu?v, F'(u,v) = u —u*v, A > 0, and B = 0 in (1.1) with a
parameter 0 < f < 1 satisfying 7 = # Note that the model is considered on a bounded
domain of a plane [7, 37] as well as on the unit sphere [23, 33]. Another example of this type
is the Schnakenberg model [36], in which 7 > 0, A = 0, B > 0, F%(u,v) = —u + u?v, and
FY(u,v) = —u?v.

Our analysis is based on the higher-order matched asymptotic expansion used in [23, 33,
36]. In section 2, we derive an ODE describing the slow dynamics of localized spot cores in
quasi-equilibrium solutions of the RD system (1.1) on a toroidal surface. In section 3, using the
ODE, we investigate the existence of equilibria having one spot, two spots, and N-ring spots,
and we then discuss their linear stability. In the derivation, we utilize the explicit analytic
formula of the Green’s function of the Laplace-Beltrami operator on the toroidal surface [28].
This is different from the derivation by Tzou and Tzou [36], in which the Helmholtz Green’s
function is constructed numerically. Owing to the analytic formula, one can conduct a rigorous
mathematical analysis of the spot dynamics. We also carry out numerical simulations of the
BRD system, which are compared with our theoretical results. The last section is a summary.

2. Quasi-stationary spot solution on the surface of a torus.
2.1. Construction of localized spots. Let Tg, denote the toroidal surface with major
radius R and minor radius r that is embedded in the Euclidean space E3:

(2.1) Tr, ={z € E3 |z = ((R — 7 cosf) cos @, (R — 1 cosf) sin @, 7sin )},

where (0, ) € (R/27Z) x (R/27Z) is the toroidal coordinates. We consider the RD model
(1.1) on the torus M = Tg,, where the Laplace-Beltrami operator and the reaction terms
are specified by

1 d 0 1 ok
A = - — ~
Trr ™ 12(R —rcosf) 00 <(R r cos 6) 89) * (R — 7 cos0)? Op?
and
(2.2) FU(u,v) = aju + u? Z a; ju'v?, FY(u,v) = byu + u? Z bi ju'v.

1,7=0 4,7=0

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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Here, we assume that a; < 0, 7 >0, n € No, A, B,b1,a;;,b;; € R are independent of e. We
define the parameter £ = B — %A > 0 for later use.

Following the asymptotic analysis in [23], we construct a quasi-stationary solution of the
RD model (1.1) on the toroidal surface in the limit of € — 0. Suppose that the solution at a
scaled time o = €%t consists of N localized spots located at (0;(c),j(0)), j=1,...,N. We
then introduce a local coordinate y = (y1, y2) of O(e) around the jth spot as follows:

(2.3) y1(0,0) =re (0 —0;(0),  y2(p,0) = (R—rcosh;(0))e (¢ — p;(0)).
It follows from
1 o) 9] 1 sinf 9 1 9?
- _“((r- 0)— |\ =-—""7 Z L -
r2(R — rcosf) 90 (( reos )89> € R —rcosf oy ta oy?’
1 0? R— ;)% 9* 1 2sin o
2952 (2 = ])272:*2 - = e +0(f)) 55,
(R—rcosf)? 0y €e2(R—rcosf)?0y; ¢ R —rcosé 0ys5
sin 0 sin 0
R—rcosh R —rcost; +0()
that we obtain
1 [ 0? 0? esiné; 0 2ey; sinf; 02
(2.4) Trr = 2 (83/% + y3 * R —rcosb; dy1 R —rcosb; Oy3 +0(€)
1
_G—Q(Ay+e/\/j+(9(e2)),
2 2
where A, = gyg + 5975 and

sin 6; 0 0?
= (T 9y T )
A R —rcost; <(9y1 u c?y%)

With the local coordinates y = (y1,y2) and the scaled time o in the inner region of the jth
spot, the solutions v and v of RD model (1.1) are expressed by u(y1,y2,0) and v(y1,y2,0).
Owing to |p — ¢;| < O(e) in the jth inner spot, we obtain

Ou  Oudyido = Ou dy2 00 = Ou 8£

9t Oy 0o 0t Oy 00 Ot | 00 O

B 00; Ou | Opj Ou N 005 0u 5 0u
= e o (R—rcosfj)e 30 91 + e — pj)rsinb; 0 9y +€ o
(2.5) = eLu+ O(e?)
and similarly
ov 9
i eLv + O(€),
where
00 0p; o 0
(2.6) L (7" 80’(R 1 cos ;) 80> Vy, Vy <8y1’ 8y2>

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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The solutions of (1.1) near the jth spot are expanded with respect to € as follows:

oo o0
(27) u(y17y2’0') = Zﬁnujrh ’U(yl,yQ,O') = Zenvjn.
n=0 n=0

We here define wj, = (ujn, an)T. In the inner region near the jth spot, substituting (2.4),
(2.5), and (2.7) into (1.1), we obtain the equation for the quasi-steady solution at the leading
order of € on y € R?:

(2.8) Ayujo + Fu(u]'(), ’Uj(]) =0, Ayvjo + FU(UJ'(), ’Ujo) = 0.

oF" oF"
S (wj0,950) 55 (wjo,v50)

. . 92 (ujo,vj0) 2 (ujo,vj0)
At the next order, by introducing P = Ay + M;, where M; = ( 2« o , the

following equation for wj; is derived:

(2.9) Pwj = Ay'wﬂ + Mjw; = —./\/‘j’w]'o + (ﬁgjo) .

In order to construct radially symmetric localized solutions w;o(p) and vjo(p) of (2.8) where
p = |y|, we consider the following boundary value problem:

Ap'u]'o + F“(ujo, ng) =0, Ap'l)jo + FU(Uj(),’UjO) =0, 0<p< oo,

wip(0) = vjp(0) =0, ujo — 0, wjo~ Sjlogp+ x(S;) +0o(l) as p— oo,

(2.10)

where x(.S;) is a constant independent of p, A, = J,,+ %@;, and ujo is exponentially small as
p — oo. This is called the core problem, in which S; is referred to as the strength of the jth
spot. On the other hand, we consider the solutions of RD model (1.1) in the region outside of
the spot with the scale of O(e). The Taylor expansion of (6, ¢) in the neighborhood of x; =
((R—rcosb;)cos pj, (R —rcosb;)sinp;,rsinb;) is given by |z — x;|* = 62(yTMjTij) +
O(e3), where z(0,¢) = (R — rcos ) cos p, (R — 7 cosf) sing, rsinf) and M; is defined by

cospjsinf; —sin (pj\
2.11 M; = | sinp;sinf: cosy;
J Pj J Pj
cos 0; 0

It follows from Mj-TMj = I and yl'y = p? that we obtain |z — z;| = ep + O(¢?). Owing to
the quasi-stationarity of the solution, u should satisfy u; = 0 and Ar, u = 0 in the region

separated from O(e) neighborhoods of the localized spots at {x1,...,zx}. In the outer region
of the spots, since the nonlinear term is negligible, we obtain u ~ —62—;4. Combining the inner

and the outer approximations of u, we have the following asymptotic expression of u in the
outer region:

N
2A
un~—€—+ E Uj0-
ai -
J=1

Regarding the equation (1.1) for v in the outer region, we have B + e%F” ~ B+ i’—;u ~ FE in
the outer region of spots, since the nonlinear terms are negligibly small. Since |z — ;| ~ €p,

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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uj ~ ujo, and v; ~ vjo in the inner region of the jth spot, the contribution in E%F“ (u,v) from
the jth localized spots to the outer region is approximated by the delta function bd(x — x;)
whose weight b is obtained by integrating the nonlinear term in the disk of radius €p around
the jth spot:

2m 00
/ dé?/ Y(ujo, vjo)pdp = —2me? / (POppvj0 + Opvjo)dp
0

= —2m€® [pd,vjol° = —2meS;.

Hence, by combining the inner and outer approximations for B + E%F Y(u,v), we obtain
1 N

2.12 B+ < F" ~FE—-2 S;d

(2.12) + 5 F(u,v) ") Sid(a

Using (2.12) and the far-field behavior of the inner solution (2.10), we finally obtain the
following outer problem for v subject to the matching condition:

N
(213) Ar,v+E=2rY Sid(x—=x;), |z—=x;>0(), j=1,...,N,
j=1
(2.14) v ~wjo+evjr ~ Sjlogp+ x(S;) +evji +0o(1), |x—xj| = O(), j=1,...,N.

To solve (2.13), we make use of the Green’s function G(&;x() associated with the toroidal
surface, satisfying

1

2Ry G(x,xo) = G(zo, ).

(2.15) Ay, G(x;20) = —0(T — T0) +

According to [15, 28], the Green’s function on the toroidal surface is explicitly represented by

(2.16)
1 1 1
Glasan) = —5-tog |P (£ )| F(0) = F(00) — g KOK ) + K (6) - LK)
where
(2.17)
B 0 dn B 1 0 an —sinn o
KO) == [ =t PO =~ [ Tl ((6¢) = ¢ exp (K(0) < C.

and A = (o?—1)"1/2 with a = R/r. Note that the variables x, (#, ¢), and ¢ are related to each
other through the relations (2.1) and (2.17). In (2.16), the function P(¢) denotes the Schottky—
Klein prime function associated with the annular domain D¢ = {¢ € Cle~?™ < |¢| < 1},

(2.18) PQ)=(1-¢ ] @-e?m¢) (1—e2mA¢).

n>1

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



A Self-archived copy in RBAFEHWRY KT R Y

,f?: #B j( % Kyoto University Research Information Repository KU RENAI I{[
Kyolo Uniersity Ressarch Informaton Repositry

KYOTO UNIVERSITY https://repository.kulib.kyoto-u.ac.jp
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If S; satisfies N: S; = 2nrRE, the solution of (2.13) is expressed by
J j=1%7

N
(2.19) v=-2rY S;G(w;x;) + 0
j=1
with a constant v to be determined. In order to compute v, we match the behavior of the
outer solution (2.19) as |x — x| — O(e) and the far-field behavior of the inner solution (2.14)
of the jth spot as p — oco. Let us rewrite Gj(x) = G(x;x;) for j = 1,2,..., N, which is
divided into three parts:

¢(0, )
2.20 21Gj(x) = —log |1 — =——"~| —log W; Q
(220) (@) s (6, 0) ~ Q3(6),
where
—onra C(8,%) onra [ C(80) N7

2.21 Wi (0, p) = (1 —e A ST ) (1 e tmA [ SR ,
(2.22) _on (F(0 L koyk©,) - LK0)+ LK0,

' - 4772A I Ag 4 M)
As © — x;, it follows from (A.2) in Appendix A that we obtain

c0,0) | B B y €L +sinb;)y esin0;y1y3
log |1 7@_(%7%) =log p + log e — log (R — 7 cos ;) 2R —roost;) " 2p2(R —rcosy)

+ O(€?).
Owing to (2.23) and (A.7) in Appendix A, we also have
O(log W;(0, ¢;))

log W;(0,¢) =log W;(6;, ;) + 90 (6 —0;)
0=0;
O(log W;(8;,
+ ( gaj(J(P)) (QD—QOj)+O(€2)
¥ P=0;
=k + 0(62)7
0Q; €y
Qi(0) =Q(8) + | (0= 6;) +O() = g+ Qj(6) 7 + O,
=0;
where k = log W;(6;, ;) = 2log ([T, (1 — e7*"™)), ¢; = Q;(6;), and
, 1 ab; —sind; 1 1 1 1
. . L) = — K 1 - a .
(2 23) Q](HJ) QMo o — COoS 0]- - 27 A (9]) o — COS Hj + 2 o — cos 0]‘
Hence, as £ — xj, we have
€(1+sin ;) esin 013

2nGj(x;j) = —logp — loge + log (R — rcos ;) +

2(R —rcosf;) 2p%(R—rcosb,)
€
k= a; = Q4(6) 7+ O(E).

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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On the other hand, by Taylor expansion, as & — x; for ¢ # j, we have

9G;(6, )

o 9G;(0, ¢)
i (0 —0;) +2r — L7

(0,0)=(0:,05) o
- - e ep
<Gﬂ * V(G’SO)G]‘(O,SD):(@#M) < r " R—rcos GZ>> 7

where é] = —2nGj, éﬂ é
matching the outer solution (2.
of the jth spot, we have

2rG(x) ~ 2mGy () 4 2 (¢ — i)

(0,0)=(0i,4)

i), and V(g ) = (599,%). Then, as | — z;| — O(e), by

(z
19) of v and the far-field behavior of the inner solution (2.14)

—QWZSG )+~ Sjlogp+ x(S;) + evjn, x—x;| = Oe),

which implies

(2.24)
e(1 + sinb;)y, e sin 0;y1y3
2(R—rcosbj)  2p*(R —rcosby)

s, e e\
Qg Y1 +ZS’ < Z]+v9§0)G (0,0)=(0;.,) (r ’R—C089j>>+v

Z#J
~ S;logp + x(S;) + evj1.

S; (logp+loge—1og (R —1rcosb;) — ) + Sk + S;q;

Matching the leading order, we obtain
N ~
(2.25)  x(S;) = Sj(loge —log (R —rcos0;) + k+q;) +7+ Y _SiGij, j=1,2,...,N.
i#]
Let us recall that the expression (2.19) is valid under the assumption that
N
(2.26) > 8;=2nrRE.
j=1

Hence, the matrix form of (2.25) and (2.26) is given by

(2.27) x(S)—(G+ (loge)l —P+ K+ Q)S = ve, e’'S = 21rRE,

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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where

0 Gia -+ Gin
52(531\7 e_/?\ ) _/@)\ _/621 E\
o 1 X(Sn) 5
(2.28) G .

/ b1
b2

P = . ; K = . ) Q=

0 DN 0 k 0 qN
Here, p; = log (R — rcosf;) and q; = Q;(0;) for j = 1,2,...,N. Since eI S = Zjvzl S; =
27rRE and e’e = N, by taking the inner product between e’ and the first equation of (2.27),
we have the following formula deriving the constant T from S and x(.S):

7 :%(eTX(S) (€76 + (loge)e’T — &'P + 'K + " Q)S)

2rrREloge 1

(2.29) = i + N< Tx(8) — (TG — TP + 'K + €1 Q)S).
Substituting (2.29) into (2.27), we have

1 1 2rrRE
(2300 S+ ——(I—e)(G-P+K+Q)S = ——(I—eq)x(S)+ e,

log e log e N

where eg = %eeT is the matrix whose components are all % The equation (2.30) gives rise
to a nonlinear equation g(S) = 0 for S. Suppose that there exist solutions S;, ujo(p), vjo(p),
j=1,...,N,of (2.30) and (2.10) for given N spot centers (6;, ¢;). In addition, if the solutions
ujo(p) and vjo(p) are spot-shaped for j =1,2..., N, then the localized spot solutions uqe and
vge of RD model (1.1) are represented by

N
A
(231) Uge ~ —62;1 + Z’LLJ'()(E_1|CC - a:j|),
j=1
! vjo(e @ — a;]), @ — ] < O(e),
2.32 e ™ N
(2:32) Ya —27 ZlSjG(m;mj) +7, |z —x;| > O(e).
J:

2.2. Stability of localized spots. We assume that the quasi-equilibrium solution of (2.31)
and (2.32) is stable up to eigenvalues of O(1) when we derive the evolution equation for spot
cores in the next section. Hence, we discuss the stability of the quasi-stationary spot solutions
Uge and vqe based on the analysis in [23]. Substituting u = uge + M, v = Vge + e into RD
model (1.1) and linearizing the equation, we obtain the following eigenvalue problem:

u U
D+ 0 (e v+ 5 (e ) = N,
oOF" oOF"
v

(2.33) ,
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Since we are concerned with the stability of a localized spot in the inner region of the jth
spot, we expand

00 )
(234) Uge (y17 Y2, U) = Z 6nujnv Vqe (yla Y2, U) = Z 6nvjn-
n=0 n=0

Note that we have uge ~ ujo and vqe ~ vjo in the inner region of the jth spot with the strength
S; at the leading order. Let u;o(p) and vjo(p) denote the solutions of the core problem (2.10).
Using the local coordinates (2.3) and (2.4) in the inner region of the jth spot, the eigenvalue
problem (2.33) is reduced to

oOF™“ oF™“
Byt + 5= (w50, vj0)t + 5= (50, vjo)¢ + Ole) = Ao,
(2.35) OFv OFY
Ay¢ + E(Ujo, Uj())’¢ + W(Ujo, Ujo)(z) + 0(6) = 627')\¢.

Furthermore, we assume 7A < O(e~2) and neglect the O(e) term. Then, we obtain the
eigenvalue problem at the leading order,

oOFY OFY
Dyth + W(ujOa Vo) + W(uj()a vjo)¢ = A,
(2.36) o ,
Ayo + E(uy‘oa vjo)Y + W(Ujoa vjo)¢ = 0.

By the separation of variables with ¢ = QZ(p)eiwm and ¢ = <$(,0)ei‘“m around the inner region
of the jth spot in the coordinates y = (y1,y2) = (pcosw, psinw) and m = 0,1,2..., the
equations (2.36) are reduced to those for the shape of the jth spot,

App — =5+ (a1 = A + M(u]-o, vjo) + —5 (0, vjo)¢ = 0,
ou ov
(2.37) )
. m2 ~ 8Fv Y v ~
Dpgp — ?¢ + %(Ujo, vjo)Y + W(Uﬂb vj0)¢ =0,

where f*(u,v) =31, a; ju'v?. Owing to the existence of (a3 — A)J in the first equation of
(2.37), we impose that z/p\/\—> 0 as p — oo if ReA > a;. Hence, the far-field condition for 1//1\ is
given by }y’ (0) =0 and ¢ — 0 as p — oo. In what follows, we consider the modes m > 2,
since (¢, ¢) = (0,uj0,0pvj0) is the solution of (2.37) corresponding to A = 0 for m = 1, which
is obtained by differentiating core problem (2.10). Hence, owing to the existence of —’;}—;A in

the second equation of (2.37), the boundary condition for $ is given by 5’(0) =0 and gg =0
as p — oo for m > 2. By solving the eigenvalue problem (2.37) numerically, we observe the
stability of the jth spot.

2.3. Derivation of evolution equation for spot cores. Based on the asymptotic analysis
in [33], the evolution equation of N spot centers is derived from the second-order inner core
problem (2.9) with the operator £ containing the temporal derivative in terms of o. The
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boundary condition of vj1(y1, y2,0) as p — oo is obtained by matching the next order O(e) in

(2.24).
1 (14 siné;)y; sin 01193
=S 200y — J 7222
U]l J <TQ]( ])yl Q(R—TCOSGJ‘) 2p2(R_740080])
N
=~ Y1 Y2
+ ) SiVi, Gz‘@'#ﬂ')'(a)
; (0.0) 42 %3 r’ R—rcosb;
i#£]
S sin 6y, y3 .
(2.38) J+2p2(R—rcos¢9j)7 J Y
where
e (Y (1+sin6;)y 1 Y2
=5 (00 g ) + 25t gy )
1753

Regarding the boundary condition of w;i(y1,y2,0), owing to u ~ —e2A/ay as p — oo, the
O(e) term of u in (2.7) becomes uj; = 0 as p — oo for w;1 = (uj1,v;1)7. This gives rise to
the following boundary value problem:

Lu;
Pwji = Dywj1 + Mjwj = —N'j'wjo + < OJO> , Y= (y1,y2) € R2,

(2.39) 0
wir ~ | S 0;
’ <2p]2 R Slrncose y1y2 + Y)

We solve this equation by considering the decomposition of wj1,

Uj1 d usy d Udl

— — e e __ —

(2.40) wj1 = vi1) © Wi+ Wy, Wi = Uél y Wi = vgll )
J J

where wf; and w;il satisfy the following inhomogeneous boundary value problems:

as p=|y| — oo.

Lo
(241) ije-l = _ij07 Pw;il = ( 15]0) ) UAS R27
(2.42) w$ S (e]) w? < 0 ) p=lyl = o0
‘ i 2/;2 R si‘%os@ y1y3 7 ;- y)’ '
Here, the function a; = («j 1, a;2)7 is introduced so that aj-y = Y; for j = 1,2,..., N. Each

a; is a function from (61,02,...,0N,¢1,92,...¢N) € R2N to R?, and it is explicitly given by

laéi lQl(Q) o (14sin6;)
(243) o = (Oé > E S; IB@ 9G, +S] rvgNtd 2(R—rcosb;) |
752 s e
)

R—rcosf; Oy 0

(0.0)=(05.;
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Let us notice that « is determined from the Green’s function only. As shown in [36],
in0. 2 g .

ws; = R_Slrncijs 7 (-2 88“; 2+ Y1y 3{;2 2%) is the solution of the first equation. Since it contains no

temporal derivative term, it has nothing to do with the spot dynamics. Hence, we construct

the evolution equation for the jth spot by solving the second equation of (2.41) for wfl. By

differentiating (2.8), we obtain 7785270 = 0 for j = 1,2, which means the dimension of the

null-space of the adjoint operator P* = (A, + ./\/lf) is at least two. Let us consider the
homogeneous adjoint problem P*W = (. This is solved by the separation of variables in terms

of the local coordinates y = (pcosw, psinw)?,

(2.44) W(p) = POTE). Pl = (1))

where T'(w) = cosw or sinw. Substituting (2.44) into the equation, we obtain the following
equation for P(p):

1 b 1\"
(2.45) LpyP— <P+ MJTP =0, P0)=0, P~ <—1, > , p—oo.

p aip p
The boundary condition of P as p — oo is obtained as follows. Owing to (2.9) with ujo — 0
and u;ovjo — 0 as p — oo, MJT should satisfy

T ar b
(2.46) M; —><O O)’ p — 0.
This yields A,P, — p~ 2P, = 0 as p — oo, and we thus have P, = O(p~!) as p — oo.
Normalizing P so that Py ~ ?1) as p — 0o, we have P; ~ —%p as p — oo. Hence, we obtain
another boundary condition P ~ (—%, %)T as p — oo.

Let B, = {y||y| < x}. By using Green’s second identity to w?l and ¥, we obtain

(2.47) A= lim [\IITPw;ﬁ - (wf’l)TP*\I'} dy
K—> 00 BN
= lim |28y + My~ ()T (By + M) dy
;ﬂ— T d d \T
(2.48) = Hll)n;o ; <\Il dpwi — (why) 8,,\11> ’p:,i pdw.

Using the far-field asymptotic behavior as p — oo,

1
(2.49) wl ~ < 0 > = ( 0 : ) W~ (’1’) T (w),
-y Q1P COSW + Qj2pSinw 5

we calculate (2.48) as

2m 9 ' T _
(2.50) A= / (25,1 cosw + 2aj 2 sinw) T (w)dw = Tag1 1 (W) C?S w,
0 21ao  if T(w) = sinw.
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On the other hand, since P*¥ = 0, substituting (2.41) into the left-hand side of (2.47) and

using %1510 = 8320 cosw, %1;20 = Oggo sin w, we obtain
2
A= Hli_)nolo . [\IITPwﬂ dy = / / pP1(p)T (w)Lujodpdw
(2.51) = / /27r pPi(p < p. 88,0 cosw + (R — rcosb; )aai] 86 sinw> dpdw
B {—mcjaa if T(w) = cosw,
| =(R—rcos Hj)wcjg—ﬁ if T(w) = sinw.

Here, the constant C; is defined by

(2.52) &= [ oGP
0

We note that since the solution wjo of (2.10) depends on the strength S; and the reaction
terms F*, F"Y, so does C;. Equating (2.50) and (2.51) for T'(w) = cosw and T'(w) = sinw, we
obtain the equation of the jth spot,

69j . 20[j71 6gpj _ 2013"2

2. e __ ,
(2.53) do rC; ' do (R —rcosb;)C;

The evolution equation is valid as long as the localized spots of RD model (1.1) with the
strengths S persist stably for a long time, and the constant C; has a fixed sign independently
of S;. These conditions are validated numerically for BRD model (1.2) in the next section.

2.4. Validation of the theory for Brusselator reaction-diffusion system. We construct
quasi-stationary solutions uge and vge for BRD model (1.2) by numerical means to validate the
existence of stable localized spots. That is to say, we determine the source strength S € RV,
x € RV, and 7 € R so that they satisfy (2.10), (2.29), and (2.30) and check their stability.
Let us first consider the following boundary value problem on 0 < p < pg for pg > 1 for a
given scalar S:

A, — U+ fu*o =0, A0+ — 10 =0, 0< p<po,
S
Po

(2.54) ., " N
u'(0) =7'(0) =0, u(po) =0, and '(pg) =

Taking pp = 20, we solve this equation with the COLNEW method [5] in the bvpSolve
R library [19]. We then set X(S) = v(po) — Slogpo. This defines a map ¥ : S € R —
X(S) € R. Then, for the jth component S; of S, we obtain the approximation x(S;) ~ X(5;).
Consequently, u and v are the approximate solutions u;o and vjg of (2.10) with S;. In addition,
it is important to observe that the shape of the solution depends on the parameters f and S.
Figure 1(a) shows that the radial solution u(p) is localized when S = 2, but it tends to be
volcano-shaped as S increases for f = 0.7. As a matter of fact, it is numerically confirmed
that the radial solution remains localized for S < 3.44. Since the solution is assumed to be
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Figure 1. (a) Numerical solution u(p) of the approzimate core problem (2.54) for BRD model (1.2) with
f = 0.7 and various S. (b) The constant X(S) in (2.10) that is obtained by solving g(S) = 0 numerically for
£=10.3,0.5,0.7,0.9 and S € [0.1,8.0].

localized in the present asymptotic analysis, we need to restrict our attention to small S. The
algorithm solving g(S) = 0 is described in Appendix B. The plot of X(S) for various f is
shown in Figure 1(b). Note that Figure 1(a) and (b) are the same as those in [23], although
the chosen parameters are different.

Next we confirm the stability of the localized spot solutions of BRD model (1.2) described
in subsection 2.2. With F%(u,v) = —u+ fu?v and F?(u,v) = u —u?v, the linearized problem
(2.37) is reduced to

~ m2 ~ ~ ~ ~ ~ m2 ~ o~ ~ ~
(2.55) AMD—F@D—(1+)\)1/J+2fu]‘01)jm/1+fu?0¢) =0, Ap(b—?qb-f—lﬁ—QUjovjow—u?Ogb =0.

The boundary condition is given by J’(O) = $’(0) =0,% — 0, and ¢ — 0 as p — oo. For the
approximate solutions ujo and vjo of the core problem (2.10) and given m, we solve (2.55) by
using the finite central differences on 0 < p < pg = 20, which gives rise to a generalized matrix
eigenvalue problem. We pay attention to the eigenvalue of (2.55) having the largest real part,
say the principal eigenvalue Ajqq. Figure 2(a) shows the real part of Ajqe for fixed f = 0.7
and m = 2,3,4, which is the same plot as that in [23]. It indicates that A, is negative for
small S and gets larger as .S increases monotonically, and it finally becomes positive for large
S. Hence, there exists a unique threshold, denoted by 3,,(f), where the principal eigenvalue
becomes zero. If S > ¥,,(f), since the real part of the principal eigenvalue is positive, the
spot becomes unstable, while it is stable for S < X,,(f). Since 32(f) < X3(f) < Za(f) for
f = 0.7, the spot is stable for the modes of perturbations with m > 2 if S < ¥a(f). It is
important to notice that the stability of the localized spot depends not on the locations but
on the strength S, the parameter f, and the mode m.

Finally, the value of C} is computed. We solve the following boundary value problem on
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Figure 2. (a) Plots of the real part of the principal eigenvalue Amaz of (2.55) when f = 0.7 and S; € [0.01, §]
for m = 2,3,4. (b) Plot of C(S) of BRD model (1.2) for f = 0.7 and S € [0.1,8]. The vertical dotted line
represents S = 3a(f), which determines the stability of the quasi-steady spot solution. For S > 3a(f), it is
unstable. For 0 < S < Xa(f), we observe C < 0.

0 < p < po with po > 1 to approximate (P;, P») satisfying (2.45):
(2.56)
1~ - e 1 - - -
ApPr— =P+ (2fu — 1)Py + (1 - 2u0) P, =0, APy — —Py+ fu*PL— 0P, =0,
p p

— —~ —~ 1 —~ 1
P1(0) = P»(0) =0, Pi(po) = s Ps(po) = P

With P; and @ obtained in this way, we can define a map C: S € R+ C(S) € R by

PO _—
(2.57) C= /0 pt'(p)Pr(p)dp.

We thus have C; ~ C(S;) for given S;. Figure 2(b) shows the plot of C(S) of BRD model (1.2)
with f = 0.7, which is the same plot as that in [33]. Let us note that C; is independent of the
location of the jth spot by construction, and it is negative for 0 < .S < ¥5(0.7). Consequently,
we conclude that the stable localized spots with 0 < S < 33(0.7) with a negative C exist,
where the equation (2.53) of the spot cores remains valid.

3. Dynamics of quasi-stationary localized spots. Suppose that localized N spots persist
stably and C; < 0,5 = 1,...,N. Based on (2.53), we then find equilibrium states, meaning
that IV spots of RD model (1.1) are in a quasi-equilibrium state moving very slowly with
O(e72) time scale. The stationary N localized spots at (6, ;) exist if and only if aj; =
aj2=0,7=1,...,N. It is important to remember that «;; and ;2 are independent of the
choice of the reaction terms F* and FY, and so is the existence of the stationary spot cores.
On the other hand, we need to specify the reaction terms to discuss the linear stability, since
the matrix generally depends on % and g—ijj, 1,7 =1,2,..., N, except the one-spot case. The
theoretical results are compared with the nonlinear evolutions of BRD model (1.2) that are
obtained numerically.
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3.1. A single spot. Suppose that the spot is located at (61, 1) with the strength S; on
the toroidal surface. For one spot, S; = 2nrRE is the solution of (2.30) and independent of
(61, p1). We then find the equilibrium state, in which the spot is in a quasi-equilibrium state
moving very slowly with O(¢~2) time scale. This is the solution of

S afp —sinf K(6 sin 6
ar1(6r) = 1 (_ 1 1 K(6) sinfy

2ror oA 2 ) a1,2(61) =0,

r(a — cos )

where K (61) = —2Aarctan (/2 tan %1) Since a1 2 always vanishes, it is sufficient to solve

the equation aj 1(0;) = 0 for 6;.

Theorem 3.1. There exists a unique as > 1 such that the following holds. For 1 < a < ag,
there exists a unique 9s(a) € (0,7) such that the single spots at 01 = 0,9s(a), m, 21w — Js(c)
are equilibria. Then the spots at 01 = 0 and m are unstable, while those at 61 = Ys(a) and
21 —Vg(a) are stable. On the other hand, for as < «, there exist the stable spot at 81 = 0 and
the unstable spot at 01 = 7.

Proof. When the spot is located at the innermost and the outermost points of the torus,
ie., #; =0 and 6; = , it is easy to confirm that a;,1(0) = aq,1(7) = 0 owing to K(0) =0
and K (m) = —mA. We now find the other equilibrium. Let us rewrite

S181(601)

r(a —cosfy)’

_04(91 —sin01 _ K((91) _ sin91

on1(0) = o o7 A 2

pi(01) =

The zeros of $1(61) = 0 are equivalent to those of v 1(61) = 0 owing to a — cosf; > 0. It
follows from

o — cos by n 1 1 cos b
2ro 27 A o — cos by 2

(3.1) Bi(b1) = —

that there exists ), € [0, 27) satisfying S81(6,) = 0 if and only if = 6, satisfies
(3.2) a— Ala — cosb)? — maAcosB(a — cosh) = 0.

With o = cos @, it gives rise to the quadratic equation o — A(a — 7)? — raAz(a — ) = 0. It

has the solutions 1 = \/v + 62 + ¢ and 29 = —/v + 6% + §, where
a? —ava?—1 ma? — 2o

7= mTa—1
Note that x2 < z;. Hence, owing to the one-to-one correspondence between z € [—1,1]
and 0 € [0,7] and the symmetry z = cosf = cos(2m — 0), (3.2) has two solutions at most
in @ € (0,7) and two solutions at most in # € (m,2m) corresponding to z; and zg. It is
easy to see that xo = —\/7y+d2+06 < 0 < 1. Since 29 = —\/7y+862+6 > —1, it is
reduced to 1+ 2§ > v, which is equivalent to —ava? —1 < (o + 1)((m — 1)a — 1). This
inequality always holds true owing to (o + 1)((w — 1)a — 1) > 0 for o > 1. Hence, we obtain
—1 < x9 < 1. We then consider the range of o where 1 < 1. Let us first confirm that § < 1
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for 1 <a<4/1+ % + HT” ~ 2.3677. In this range, 1 < 1 is reduced to v < 1 — 24, which
is equivalent to

(a—1)((7* + 27)a® — (2+ 7m)%a? + (3 + 2m)a — 1) < 0.

Since the cubic equation (72 + 27)a® — (2 4+ 7)2a? 4+ (3 + 27)a — 1 = 0 has only one real
solution, say a = as =~ 1.2010, we obtain 27 < 1 for o € (1,5). Hence, owing to —1 <
x9 < 1 <z for a > ay, the equation /3](6,) = 0 has the solutions 6, = cos lay € (0,7) and
2m —cos ! a9 € (7, 27). Accordingly, since 81(0) = B1(7) = 0, there is no solution of 51 (6) = 0
except § = 0, 7. In addition, it follows from £](0) < 0 and B1(7) > 0 for o > a5 that the spot
at #; = 0 is stable and that at 8; = 7 is unstable. On the other hand, since —1 < z9 < z1 < 1
for @ € (1, ), (3.2) has two solutions in (0,7) and the other two solutions in (7, 27), which
indicates that there exists ¥5(a) € (0,7) such that one-spot solutions at 6; = 0, Js(«), ,
and 27 — ¥s(«) are the solutions of 81(61) = 0 by the continuity of $;. Owing to 3}(m) > 0,
we also obtain £1(0) > 0, 8] (9s(a)) < 0, and 3} (27 — Js(cr)) < 0. Hence, the single spots at
61 = 0 and 7 are unstable, while those at ¥4(«), 2m — ¥4() are stable. [ ]

To confirm the linear stability of the one-spot case, we solve BRD model (1.2) numerically
for the initial condition (2.31) and (2.32) having one spot on the torus of (R,r) = (1.1,1.0)
and (R,7) = (1.3,1.0). The numerical parameters are given by ¢ = 0.05, f = 0.7, 1 =3 <
¥2(0.7), and A = 5 f}%. After computing the solution up to ¢ = 100 when the localized spot
is formed, we add a 2% random perturbation to the solution. For a = 1.1 < ay, the present
theory expects that the spot at J4(1.1) ~ 0.64295 is stable, whereas that at § = 0 and 7 are
unstable. Figure 3 shows that the spot centered at #; = 0 is moving toward the stable one
spot at 1 = ¥4(1.1) after the perturbation. When o = 1.3 > «, the spot at ; = 0 is stable
and that at 1 = 7 is unstable. Figure 4 confirms that the spot centered at 6; = 7 is moving

toward 6; = 0 after a long-time evolution.

3.2. The N-ring configuration. Let us consider the ring configuration of IV spots located
at 0;j = Uy and ¢; = (2j — 1)7/N for j =1,..., N on the toroidal surface, which we call the
N-ring at ¢¥n. Then the strengths of the N spots become identical according to (2.30) and

are set as S; = S. = w. This means that the existence of the N-ring is independent of
the choice of the reaction terms F'* and F". It follows from (2.43) with (A.4) and (A.6) that
we have
¢(0;,¢)
Se al (810g ‘1 o 4(9;,%) 0log W;(0;, ¢) \l
(3.3) 2 =g 7 3 + — 90 =0.
T reestiia v _ v =0;
i P=0;

From (2.43), we have

¢(0,05)
Se iv: (8log ‘1 B C(@:gi)

N dlog W;(8, ;)

/
— (0
Otj71 r 8(9 89 9—o. JVQ%( ])
=1 J
i£] 6=0;
Se ( 1+ sin 6;
T (Qj(ej) ~ 2(a— cosﬁj)> '
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Figure 3. Ewolution of BRD model (1.2) from a one-spot initial condition (2.31) and (2.32) centered at
01 =0 and p1 = 7w on the torus of R=1.1 and r = 1.0, i.e., « = 1.1. The numerical parameters are € = 0.05,
=07, 5=3 A= 25}%. The red horizontal dotted line represents the reference lines of ¥5(1.1) ~ 0.64295.
Since the spot is unstable, it starts moving toward 9,(1.1).

a=13,t=0 a=1.3,t=6000
v v
2n 2n
0.8 12 0.8 12
3n | £ 10
0.6 2 10 0.6 2
© I g © 8
0.4 04
6 6
n| m]
0.2 7 a 02 53 4
0 . . . £ 0 . . . 4
0 T m 3 2nm 0 I @m 3 2m 0O I m 3 2m
2 ) 2 2 2
4 14 14
a=1.3,t=9000 a=1.3,t=12000
v ; v
10 m ];0
08 : 08 3r 8
0.6 7 06 7
@ 6 S 4 8
0.4 N 0.4 5
LS a L 4
0.2 2 5 02 V3 .
00 0 2 0.0 0 2
0 gom 3 2n 0 gom o3 2n
4

Figure 4. Ewolution of BRD model (1.2) from a one-spot initial condition (2.31) and (2.32) centered at
01 =7 and 1 = 7 on the torus of R =1.3 and r = 1.0, i.e., « = 1.3. The numerical parameters are the same
as those for Figure 3. The unstable spot starts moving toward the stable spot at 0 = 0 as expected.
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From (A.3) and (A.5) with 6; = 6;, we obtain

<(07§0')
Olog ‘1 n C(inﬁpji) 1

00, B 06 - ~ 2(a—cosb;)
-

Olog Wi (0, ¢;)
00

Substituting ¢; = ¥, we have

a1 (d) = % (N <Q/1(?9) - 2(a —1c0819)) - Q(O‘Sin;is 19))

Se 1 N . N 1.
alre— <—27ra(on9—s1n19) - mK(ﬁ) - 281n19> .

It is easy to see that if ¥ = 0 or m, aj; = 0 for j = 1,2,..., N. Hence, the N-ring at
the innermost/outermost location of the torus becomes an equilibrium state for any o > 1.
For 9 # 0,m, it is sufficient to consider the existence of stationary N-rings at ¢ € (0,7) by
symmetry. We have the following theorem.

Theorem 3.2. The N-rings at ¥ = 0 and w are equilibria for any o > 1. In addition,
for N > 2, there are apy(N) and ay(N) with 1 < a,(N) < ay(N) for which the fol-
lowing is satisfied. For a € (am(N),an(N)), there exists a unique In(a) € (0,7) such
that the N-ring at Iy (a) becomes an equilibrium. Moreover, limy~ 4, (v)InN(a) = 7 and
hma/‘aM(N) 19N(a) =0.

Proof. Let us define By (0) = — 52 (af —sinf) — %K(G) — 1sinf. Owing to —2— #0

2ra

for a > 1, a;1(0) = 0 is equivalent to By (6) = 0. Owing to

1 N N 1
B (0) = p——; (_27ra(a — cos0)? + aaA 38 0(a — cos 9)> ,
we introduce my(z, a) = —%(a —x)%+ % — x(a—1) by the change of variable, 2 = cos 6.

Then my(z,a) = 0 becomes a quadratic equation with respect to x, whose discriminant
D(N, «) is given by

(3.4) D(N,a) = (f _ ;a>2 _ % (1 - 7‘2;) (}4 - a)
(3.5) _ Ll (1 _ N) N

When a > %, it follows from (3.4) that D(N,«) > 0 owing to %\ < a. On the other hand,
for a < &, (3.5) yields D(N,a) > 0. Hence, my(z) = 0 has two real solutions, and so
does 3 (0) = 0 for § € [0,7] owing to a — cosf € [a — 1, + 1]. Hence, it follows from
Bn(0) = Bn(m) = 0 that By(f#) = 0 has one unique solution Jy () € (0,7) if and only if
B (0)B%(m) > 0. This condition is confirmed by checking my(—1,a)my(1,«) > 0 owing to
a —cosf > 0. Since

N 1

N N N 1
La)= - (a—124 -~ — ~(a—1 1) = -2 (a1 S (at1
mn(1, @) 27r04(0é ) +27rA 2(a ), mn(=1,0) 27ra(a+ ) +27TA+2(OH_ ),

© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



A Self-archived copy in

—Ea Y, ) RBAFFHER)FD b
) #B j( ? Kyoto University Research Information Repository KKp RENAlkﬁll
yoto University Resaarch Information Repostory

KYOTO UNIVERSITY https://repository.kulib.kyoto-u.ac.jp
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we have
d (1,0) N n N n Na 1
—m a)=—— - =
do NS 2w 2ma? 27V — 1 2’
d (—1,0a) N n N N Na n 1
—my(—1l,a) = —— -
da NV or ' 21ma? | onva? —1 | 2
and ) )
d d N 2 _3
WmN(l,Oé) = WWN(—LOZ) = or <_oz3 — (a2 -1) 2> < 0.
On the other hand, it follows from
il\‘nll my(1,a) =0, O}l_)rrolomN(l,a) = —00,
il\‘ml %mN(l,a) = 00, ahﬁngo %mN(l,a) =3

that there exists a unique ap/(N) > 1 such that my(1,a) > 0 for 1 < a < ap(N), while
mny (1, ) <0 for o > apr(NV). Similarly, since

2N
I “la)=-—""+1<0, I “1,0) =
al\mlmN( , Q) - +1<0, agI;OmN( , Q) = 00,

Olél\‘nﬁ %mN(_LO‘) = 00, ah—>ngo @mN(_laa) = 9’
there exists a unique a,,(N) > 1 such that my(—1,a) < 0 for 1 < a < an,(N), and
my(—1,a) > 0 for a > a,;,(N).

With o = % > 1 for N > 2, we have

Nyao2—-1 1
my(1,a9) = — 7T0[0(040—1)21L 27? —5(040—1)
Ty 1 9 1 5 1
== —1)2 4+ — —1) = (ag—1
( 27ra0( 0 ) +27T @0 (ao )

Recalling that my(1,a) > 0 for 1 < a < ap(N), we have ag = % < ap(N). On the other
hand, let us notice that my(—1,ap(N)) = my(—1,ap(N)) — my (1, ap(N)) = ap(N) —
% > 0. We thus have o, (N) < ap(N), since my(—1, ) is monotone increasing. Moreover,
by my(—1,a) = 0 at @« = a(N) and my(1l,a) = 0 at a« = ap(N), it is easy to see that
limeN a,, (V) In(a) = 7 and lim, Aan(N) Yn(a) = 0 owing to the one-to-one correspondence
of z = cosf for 6 € [0, 7]. [ |

We observe the linear stability of the N-ring configuration of BRD model (1.2) for N =

2,...,6 on the torus of (R,r) = (%, ) with a = [1.01, 10] by numerical means. The parameters

are ¢ = 0.05, f = 0.7, S. = 1.5 < ¥9(0.7), and A = g}g{r We compute the eigenvalues of
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the linearized matrix of % and % (2.53) for j = 1,2,..., N at the equilibria, thereby

observing the principal eigenvalue, say M. We note that 0 is always an eigenvalue of this
equilibrium originated from the invariance of the infinitesimal translation of the torus in the
¢ direction. Figure 5(a) shows the real part of the principal eigenvalue, indicating that there
exists as(N) such that the N-ring at 9 = 0 is neutrally stable for o > a(N), and it is unstable
otherwise. Figure 5(b) shows that the N-ring at ¢ = 7 is always unstable. The real part of the
principal eigenvalue \p,q. () for the N-ring at 9x(a) € (0,7) with N = 2,...,6 in the range
of a € (am(N),aps(N)) is shown in Figure 5(c). This indicates that it is unstable. Let us
compare the result with that of the one-spot case in the previous section, which is equivalent
to the 1-ring. According to Theorem 3.1, we find that the stable 1-ring at ¥; () = J(«) exists
for 1 < ap(1) = as(1) = ag, although (1) is not defined. On the other hand, Figure 5
indicates that o, (N) < ap(N) < as(N) for N > 2. Moreover, the stability of the 1-ring at
Y1 () is stable, whereas the N-ring at ¥ (a) for N > 2 is unstable.

We solve BRD model (1.2) numerically for the localized 5-ring initial condition (2.31)
and (2.32) on the torus of (R,r) = (1.7,0.5), (R,r) = (2.1,0.5), and (R,r) = (2.2,0.5) with
e=0.05 f=07 5 =15 and A = 2]1%7". After solving the equations until the localized
spots are formed, we add a 2% random perturbation to the solution. For the 5-ring, the
parameters are oy, (5) ~ 2.990, an(5) ~ 3.495, as(5) ~ 4.296. Let us remember that the 5-
ring at ¥ = 7 is always unstable, and that at ¥ = 0 is stable for @ = 4.4 > a,(5). As a matter
of fact, Figure 6 shows that the spots centered at ¥ = m are moving toward those at 4 = 0
after a long-time evolution. On the other hand, since the 5-ring at ¥ = 0 becomes unstable
for « = 4.2 < a5(5), the spots centered at ¥ = 0 initially are moving toward another quasi-
equilibrium solution consisting of nonsymmetric spot centers after the perturbation as shown
in Figure 7. When o = 3.4 € (am(5), anr(5)) where an unstable 5-ring at J5(a) exists, we
confirm in Figure 8 that the unstable 5-ring at ¥5(«) moves toward another quasi-equilibrium
state.

3.3. Quasi-stationary two spots. Suppose that two spots are centered at (61, ¢;1) and
(62, p2) on the toroidal surface. Then the source strengths S; and Se > 0 satisfy S; + So =
27 RrE owing to (2.26). It follows from (2.43) with (A.4) and (A.6) that ;2 is given by

So  0G,
R —rcosfy Oy

a1,2 =

(0,0)=(01,1)

52 Ey8in (01 — ¢2) Sy
3.6) = : n ’
( ) R — rcosf, (1 — E2,1 cos (901 — @2))2 + E%,l sin2 ((Pl _ @2) R —rcosf, E w2,1,n

n=1

sin (o1 — p2)s™ ((Eg,l + E2_11> (14 s2") — 452 cos (1 — cp2)>
(14 52" — 57 cos (p1 — a) (Ba1 + Ey1))? + (s"(B2,1 — By 1) sin (o1 — 92))?
with s = exp(—2m.A) < 1. Since (E3, +E2_711)(1—|—32”)—482" cos (1 — p2) > 2(1+52") —452" >
0, we obtain a2 = 0 if and only if ¢1 — @2 = km, k € Z. Similarly, we have a2 = 0 if and

only if 1 — w9 = km, k € Z. This means that the quasi-stationary two spots are located at
either (¢1,p2) = (m,0) or (m, ) without loss of generality.

w2 1,n =
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/\max

0.0
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=2
LI T | R T
o s WwWwN
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==z

0.8 4
Amax

0.6

0.4 4

0.2 4

0.0 T T T T = T
10 15 2.0 2.5 3.0 35 4.0 4.5

Figure 5. The real part of the principal eigenvalue Amqz(ct) for the N-ring for N = 2,...,6 on the torus
of (R,r) = (%5, %), a € [1.01,10]. The numerical parameters are € = 0.05, f = 0.7, Sc = 1.5 < ¥2(0.7), and
A= 21:77‘;3. (a) Amaz(@) for the N-ring at 9 = 0. (b) Amaz() for the N-ring at 9 = 7. (c) Each curve is the
plot of Amaz(ct) for the N-ring at In () € (0,7) in the range of a € (m(N), anr(N)). The plots of Amaz ()

in Figure 5(a) and (b) are shown for reference.
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a=4.4,t=0 a=4.4,t=18000
u v v
2n 2n . 2n 2n .
an 0.8 3n . E 0.8 3 .
’ 0.6 2 4 i 2
© © 1 . ' . . ‘ > o o . >
0.4 4 0.4 ”
g 0.2 %' 5 % 0.2 %' .
0 0 0 0
0 g moo3m 2 0 I m 3 2n 0 I n 3 2n 0 I 3n 2m
2 2 2 2 2 2
4
a=4.4,t=50000 a=4.4,t=180000
u v v
2n 2n 5 2n 2n 7
3m o8 3n 6 3n 08 3n 6
2 06 2 . ] s 2 .
© @ n @ I @ n
0.4 2 0.4 4
g 0.2 % 3 g 02 % 3
0 0 0 0
0 o m 3 2n 0 I o 3 2n 0o 3 2
2 2 2
4

Figure 6. FEvolution of BRD model (1.2) from the 5-ring initial condition (2.31) and (2.32) centered at
0; =7 and p; = 2T

=, =1,2,...,5, on the torus of R = 2.2 and r = 0.5. The numerical parameters are
€= 0.05, f=0.7,S. =15, A= QiSR“T. The spots approach a quasi-stationary state having spots at 6; = 0,
i=12,...,5.
a=42,t=0 a=4.2,t=40000
2n - 2n J 7 2m 2n J 7
3n- i“ | | BJ OIS | |
2 2 2 2
0.6 s o8 5
o © © o n
0.4 4 0.4 2
s n s Lt
2 0.2 2 3 2 0.2 2 3
0 0 0 0
0 2 m 3 2n 0 I nm 3 2n 0 & nm 3 2m 0 I nm 3@ 2n
2 2 2 2 2
14 4
a=4.2,t=60000 a=4.2,t=100000
2 o 2n Y 7 2 = 2 v 7
£ 08 3n 6 3 08 3 6
2 2 2 2
0.6 5 0.6 5
o © © o n
0.4 2 0.4 4
s n m n
2 0.2 z 3 Zz 0.2 2 3
0 0 0 0
0 2 m 3 2nm 0 I nm 3 2n 0 I nm 3 2m 0 I nm 3 2n
2 2 2 2 2 2 2
[ (4 14

Figure 7. Ewvolution of BRD model (1.2) from the 5-ring initial condition (2.31) and (2.32) centered at

0; =0 and p; = (2] 1)”, j=1,2,...,5, on the torus of R = 2.1 and r = 0.5. The numerical parameters are
the same as those for Figure 6. The 5-ring at ¥ = 0 starts moving toward another equilibrium point, since it
is unstable.
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a=3.4,t=2000
v v
2n 5 2n 2n 7
3 - S 08 3 | .
2 2 2
5 0.6 5
S 4 o  m
4 o 4
n m m
: g : - R
0 T T T 0 0 " T .
0 ° m 3 21 0 © m 33 2n 0 ® n 33 2n¢ 0 ° m 3 21
2 2 2 2 2 2 2 2
4 14
a=3.4,t=30000 a=3.4,t=100000
v v
21 7 10 2n 7
0.8 3 | 6 08 3 6
2 2
0.6 5 0.6 5
I o n
0.4 . 2 04 2
) . 4
0.2 2 3 0.2 2 3
[oF: 0
0 © m 3 2n 0 ° ;g 3 21
2 2 2 2
14

Figure 8. FEvolution of BRD model (1.2) from the 5-ring initial condition (2.31) and (2.32) centered at
- I ©7 f DL
0; = 1.1 and ¢; = =",

i =1,2,...,5, on the torus of R = 1.7 and r = 0.5. The numerical parameters
are the same as those for Figure 6. At t = 2000, the solution is close to the 5-ring at 95(3.4) € (0,7). The
unstable 5-ring starts moving toward another equilibrium state, since it is unstable.

3.3.1. Case of (y1,92) = (m,0). Substituting ¢; = 7 and ¢ = 0 into (2.43) and (2.53)
with (A.3), (A.5), and (2.23), we have the following equations for #; and 6s:

SQ 1 E21 1 /
01,0 0)=—{(— : h 6
a1,1(01,02,m,0) = < a—c05911+E2,1+a—cosel 2,1 + Q5(01)

S , 1+ sin 6,
* r (Ql(el) 2 — 00891)>

S 1 2.1 1 . 1 1
== — : ho1 — —(aby —sinf) — — K (0 -
r o — cosfy ( 1+ FE>q + R 27ra(a 1~ sinf) (62) +

2 A 2
S1 1 1 ) 1 1 1+4sin6;
21 - 01 —sinby) — ——K(0)) + = — — om0

s a — cos b < 27T()é(a 1= sinby) 21 A (61) + 2 2 >’

S 1 E 1 . 1 1

@2,1(01, 6, 7,0) :7104 — cos By <_1 +LE21 9 RECE m(a% —sinf) - ﬂle) + 2)
S 1 1 ) 1 1 1+sinbs
22 - By — sinf) — —— K () + = — — o

5 a — cos by ( 27Ta(a 2~ sinby) 21 A (62) + 2 2 )’
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) and

where Fy 1 = exp(— f02

a— cosr]

hoy = —hi = (a —cos 1) Z ha,1,n(61,02,7,0)

n>1
Ey;q)

1 1
_Zl+52n+5n(E21+E21) ;(1—1—3”1?271_14—5”]5’2’11)'

When 6; = 65, the configuration is the 2-ring, which has been considered in Theorem 3.2.
That is to say, 61 = 02 = 0 and 7 are always equilibria for all «, and there exists J2(«) € (0,7)
such that the two spots at §; = 03 = ¥2(«) become an equilibrium for a € (@, (2), arr(2)).
We now consider equilibria with the symmetry 0o = 27 — 07 with 0y # kn,k € Z. Owing
to the symmetry, the strengths of the two spots are identical from (2.30), and we thus set
Sl = SQ = SC. Since a1,1(27r — 9,9,7T,0) = —a171(9, 2m — (9,7T,0) and a1,1(9, 2m — 9,7T,0) =
az1(2m — 0,0,7,0) = —ap1(6,2m — 0,7,0), the two spots at (61,02) = (J¢,2m — ¥.) and
(2m — ¥¢,V.) are equilibria if and only if oy ;(J., 2 — Y¢, m,0) = 0. Hence, it is sufficient to
consider the equation

1 FEo1(6 1 1
ai1(0,2mr —6,7,0) = e <— 21(0) +h21(9)—(a@—sin9)+3—sin9>

r a—cosf 1+ E21(0) ’ T 2 2
=0

for 0 € (0, 7), where

01 d 27 —0 d
PNy I B L
9, Q— COST 0 a — cosT

ha1(0) = (o — cos0) Y hg1n(0, 27 — 60,7,0).

n>1
Let us here introduce the function £2(0, ) by

da1,1(6, 2r — 9, ™, 0)
de

,32(9, a) =

Sc 1
Sc d (7 a—cos@) E2 1 1 3 1
S — —— hot — —(af —sin®) + = — - sin

r(a—cos@)2e( )+ de ( 1+ Ey; +h2 Wa(a S )+2 g oM )’

where

2E51(0)
(14 Es,1(0))?

25" Ey1(0) 25" E5 1 (6)
+nz>:1 <(1 T B ()7 (1+ snElel(e)y) '

Notice that aq,1(0,27r—6, 7,0) vanishes at § = 0, 7, and it is a continuous function of §. Hence,
if 52(0, o) B2 (7, ) > 0, there must exist ¥.(a) € (0, 7) such that a1 (Ve(), 2m — (), 7,0) =

e(f,a) = — %(a — cos 0)? — %cos@(a —cosf) +
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0. The condition is equivalent to e(0,a)e(m, a) > 0 owing to [2(0,a) = 7"(045%1)26(0,&)
and fao(m,a) = T(asﬁe(ﬂ,a). The plots of e(0,«) and e(m, «) in Figure 9 indicate that
e(0,a)e(m,a) > 0 for 1 < a < a3 =~ 1.890, in which there exist quasi-stationary states

consisting of two spots at (01,62) = (9.(«), 27 — J.(), 7,0) and (27 — V.(a), I(), 7, 0).

en

Figure 9. Plots of eo(a) = e(0,a) and ex(a) = e(m,a) for 1 < a < 10. The functions ex(a) > 0 and eo()
are monotone decreasing.

The linear stability of these equilibria of BRD model (1.2) is observed. Figure 10(a) shows
Amaz for (01,02) = (0,0), (7, 7), (Y2(a),d2(a)), (Fe(),2m — Y.(a)) on the torus of (R,r) =
(%,1) for @ € [1.01,2.5] and Sy = So = 1.5 < ¥£9(0.7). The two spots at (61,62) = (m, )
are always unstable. The unstable two spots at (61,602) = (92(a),¥2()) exist for a between
am(2) ~ 1.173 and aps(2) ~ 1.687. The two spots at (61,62) = (Vc(),2m — V() are stable
forl < a < az=~1.273 and as &~ 1.761 < a < a1, whereas they are unstable for a3 < a < as.
At o = oy, a supercritical pitchfork bifurcation occurs as shown in Figure 10(b). Then, the
two-spot equilibrium at (01, 62) = (0,0) changes its linear stability.

When the two spots are not on the same latitude, S; and Ss no longer have the same
value in general, which makes the situation more complicated. So we here consider one simple
case where they are on the antipodal locations, 8, = (1), Oy = m, p1 = m, and s = 0. Owing
to limg— o0 ﬁ =1land Ey; = El_% =exp(mA) =s"2, (A.3), (A.5), and (2.23) yield

S 1 / 1 1 1 \
041,1(0,77,71',0):—2 - T+ < 1 1)+1 -
r a—1 1 + 52 1 1 + sn_i 1 + Sn+§

oz2,1(0,7r,7r,0):é 1 /—1—1— 1 —|—Z( 1 - 1 1>\:0.

roatl 1457 S\1+s"2 145773

Hence, if there exist S; and Sy satisfying (2.30) for 61 = 0,60, = 7,1 = m,p2 = 0, then the
two spots are in an equilibrium state. We compute the strengths of two spots for BRD model
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(61, 62) = (0,0) S~ae (61,62) =(0,0)
(61, 62) = (m, m) Tceil e, 61,6,)=(0,0
(61, 62) = (62, 62) 04 T :91192;—:6' 2) 6c)
(61,62) = (6c, 21— 8) N~ T v 02) = (O 217 B
.
0.2 4 \\
~
Y
\\
91 0.0 ssrsrrrresriiicsreiiiiassiie !
1
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2.2 24 25 175 1.80 1.85 190 195 2.00
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Figure 10. Linear stability of the quasi-stationary states of two spots of BRD model (1.2) on the torus
of (R,r) = (2,1) for a € [1.01,2.5]. The numerical parameters are ¢ = 0.05, f = 0.7, S; = S2 = 1.5,

272
and A = 3. (a) The real part of the principal eigenvalue Amax for two spots equilibria (01,02) =

(0,0), (m, ), (V2(c), ¥2()), and (Vc(a),2n—Ic(c)). (b) A supercritical pitchfork bifurcation at o = a1 &~ 1.890,
showing that the equilibrium at 01 = 0 changes its linear stability, and the stable equilibria at (Vc(a), 2m — ()
and (21 — 9.(a), ¥c(a)) appear for a < ai.

(1.2) on the torus of (R,r) = (%, 3) for a € [1.01, 2] numerically with the parameters f = 0.7
and A = T?}zrv i.e., S1+ Sy = 3. Figure 11(a) shows that the strength S;(«) is not unique for

a > ay ~ 1.021. For each value of Si(«) on this curve, the largest real part of the eigenvalue
Amaz 18 shown in Figure 11(b).

(61,62) =(0,m), Case 1
---- (61,82) = (0, m), Case 2
(61,6,) = (0, m), Case 3

S1 e Amax 1.00 4

1.5

1.0

s
4
4
7’
7
/
'
]
]
1
i
054 g 0.25 4

0.0

Figure 11. (a) The strength Si(c) of the first spot at (61, 1) = (0,7) of BRD model (1.2) on the torus of
(R,r) = (%,%) for a € [1.01,2]. They are obtained by solving (2.30) numerically with the parameters e = 0.05,
f=07, and A= %, satisfying S1(a) + Sa(a) = 3. When a > a4 =~ 1.021, we have three solutions. (b) The
real part of the principal eigenvalue Aoy corresponding to the strength in Figure 11(a).
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We confirm the asymptotic analysis by solving BRD model (1.2) for the initial condition
(2.31) and (2.32) of two spots at 1 = 5 and @2 =
are ¢ = 0.05, f = 0.7, and A = 53-. The radu of the torus are (R,7) = (0.825,0.5)
(s < @ = 1.65 < ag) and (R,r) = (0.925,0.5) (a2 < @ = 1.85 < 7). After the localized
two spots are formed, we add a 2% random perturbation to observe the stability. Figure 12
shows that, when o = 1.85, the 2-ring at #; = 62 = 0 is unstable and moves toward the stable
quasi-stationary state of two spots at (61,602) = (9.(1.85),2m — 9.(1.85)) as expected. On
the other hand, when o = 1.65, the spots at (01,602) = (9.(1,65),27 — 0.(1.65)) are moving
toward a quasi-stationary state of two spots at the antipodal locations (61, 62) = (7, 0) after a
long-time evolution as shown in Figure 13. This is consistent with the linear stability analysis
for the quasi-stationary state of two spots at (61,602) = (9.(1.65),21 — 9.(1.65)), which is
unstable as in Figure 10(a), and (01, 62) = (m,0), which is stable as in Figure 11(b).

2% on the torus. The numerical parameters

a=1.85,t=7000
2n

v

2n 2n 2n 7
E'S 0.8 3 6 E 0.8 an 6

2 2 ] 2
0.6 5 0.6 5

@ © n © n
0.4 4 0.4 1

LS n n L4
2 0.2 2 3 2 02 2 3

0 0 0 0

3rr 2n 0 I n 3 2n 0O I m 3 21
2z 2 2 2
[ 4

a=1.85,t=10000

a=1.85,t=20000
2n

2n 1 2n 2n 7
an os n ° an an °

2 2 ] 2
0.6 5 5

SO g D n @ D n
0.4 4 1

s n 8 LS
2 02 2 5 2 7 5

0 0 O 0

0 oo 32," 2n 3rr 2n

37( 2n 3rr 2

Figure 12. Evolution of BRD model (1.2) for the initial condition (2.31) and (2.32) consisting of two

spots centered at 01 = 02 = 0 and 1 = g,apz = %’r on the torus of R = 0.925 and r = 0.5. The numerical
parameters are € = 0.05, f = 0.7, A = W“;ST, and S. = 1.5. The 2-ring starts moving toward (61,02) =
(9:(1.85), 21 — 9.(1.85)).

The horizontal dotted line represents the reference lines of ¥.(1.85) =~ 0.3067 and
27 — 9.(1.85) &~ 5.9765.

3.3.2. Case of (1, p2) = (m, ™). When the two spots are on the same section ¢ = 7 of
the torus, they should satisfy 6, # 02 + 2kw, k € Z. By (2.43) with (A.3), (A.5), and (2.23),
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a=1.65t=1000
2n

\
2n 2n
3r L 3n 08 3r g
2 2 2
5 06 5
> n  n
4 o 4
m m
2 5 2 0.2 g
0 0
moo3n 20 0 T ;g 3 2m Toom 3mo2m
2 2 2 2 2
a=1.65,t=15000 a=1.65,t=90000
' \
10 2m 7 10 21 7
0.8 3n | L 0.8 3 6
Z 2
0.6 5 06 5
D Iy D T .
0.4 4 04 4
| n |
0.2 2z . 3 02 7 3
0+ 0+ L
0 3n 2 0 o @m 3 2¢
2 2 2
[

Figure 13. FEwolution of BRD model (1.2) from the initial condition (2.31) and (2.32) consisting of two
spots centered at (61,02) = (00,27 — o) and 1 = 3,02 = 37" on the torus of R = 0.825 and r = 0.5, where
0o ~ 0.7378 is the solution of ai,1(00,27 — 0o, 7,0) = 0. The numerical parameters are ¢ = 0.05, f = 0.7,
S.=1.5, and A = Wsér. At first, the two spots move toward a quasi-stationary state of two spots at (9e, 2w —19¢).
The two spots become unstable and start moving toward (01,02) = (,0).

we obtain
SQ 1 FEsq 1 ,
0,60 == ’ h 0
a1,1(01, 62,7, 7) r (acos&l 1—FEy; + a — cos by 21+ Q2(01)
Sl , 1 +sin91
21 0,) — UL
+ T <Q1( ) 2(a—cos€1)>
So 1 FEs 1 1 1
== 2 h ——(aby —sinby) — — K (6 =
r o — cosf <1—E21+ 2179 (afy —sin61) 27 A (2)+2>
S1 1 1 . 1 1  1+4sin6;
3.7 — - 01 —sinf;) — — K (0 -
(3.7) T a — cos 0 < 27TCk(a 1= sinby) 21 A ( 1)—1_2 2 ’
S1 1 Eis ~ 1 . 1 1
01,0 =— ) his — —(afy —sinfy) — —— K (0 =
a2,1( 1, 2’7T’7T) r a—Cosez (1—E172 * 12 271’04(a 2 s 2) 2w A ( 1)+ 2)
So 1 1 ) 1 1 1+sinby
3.8 2 - 0y —sinfy) — — K (fy) + = — — 02
(3:8) s a — cos Oy < 27T05(a 2~ sinby) 21 A (62) + 2 2 ’
where
71271 - —TLLQ = (a — cos b)) Z ho1,n(61, 02,7, 7)
n>1
—s"(Ey — Ea,1) 1 1
(3.9) =Y =2\ Trm T T
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4.0
(61,85)=(0,m), Case 1
35 4 —— (61,0;)=(0,m), Case 2
__________ (61,6;)=1(0,m), Case 3
3.0 —_——— (61,65) =(0,n), Case 4
.................... (61,85)=1(0,n), Case 5
251 NG
‘-’.::— ______
ool T
154
1.0
OSAn_
0.0 -
1.00 125 150 175 2.00 2.25 2.50 2.75 3.00
a

Figure 14. The strength of the first spot Si(a) at (01,602, p1,92) = (0,7, 7,7) of BRD model (1.2) for
o € [1.01,3]. It is obtained numerically by solving (2.30) with the parameters e = 0.05, f = 0.7, and A = 3>
The strength of the second spot is given by Sa(a) =3 — S1(«).

When 6; = 0 and 6 = 7, we have K(m) = —nA and Ey; = exp(mA) = s~%. Since
limy, oo ﬁ = 1 owing to s < 1, we obtain

Sy 1 / 1 1 1 \‘
mat0mmn) =2 g A S () e e
n>1 -

roa—1 1— g3

si 1| | ( i i >\
ag1(0, M) = — -1+ + — =0.
24 ( ) ra+l 1—s2 Z 1—s"ts  1—g" 3

We need to check whether there exist S; and Sy > 0 satisfying (2.30) for §; = 0, 62 = 7, and
p1 = p2 = 7 to show the existence of quasi-stationary states. We solve (2.30) for the BRD
model. The parameters are given by f = 0.7 and A = T3Rr with S7 + S2 = 3. The strength
Si(e) of the first spot at (61,¢1) = (0,7) on the torus of (R,r) = (%,1) for a € [1.01,3] is
shown in Figure 14. When o < a; = 1.021, we have only one solution, while there are three
solutions for a1 < a < ag =~ 1.270. After having only one solution for as < a < a3 =~ 1.874
again, we have new solutions for o > as.

Let us find the two spots that are not on the antipodal locations with the symmetry
0o = 2w — 0. The strengths of the two spots are then identical from (2.30), i.e., S} = So = S..
It follows from aq 1 (0,27 — 6, 7w, 7) = —a1(0,2m — 0, 7, ) that two spots at (61,27 — 6,7, 7)
are in an equilibrium state if and only if ay1(61,27 — 61,7, 7) = 0. Substituting 6; = 6 and
0o = 27w — 0 into (3.7), we have the equation

S. 1 E>1(0)
r a—cosf \1— Ey;(0)

a1 (0,2 — 6,7, m) =

+ ho1(0) — %(040 —sinf) + g — 2sin9>

=0
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for 0 € (0,7), where Eg,l(ﬁ) = anl(l_sné’l(m - 175né2,}(0)) = Y p>1hn and E21(0) =
exp( 9%_6 a_dczsn). Owing to Fa1(0) € (1,s7!) and E;ll(G) € (s,1) for 0 € (0,7), hy, > 0 is
well defined for n > 2. Hence,
hr (L= s"Epa(60))(1 — s"Ey1(0))
R, (1= s"H1Ey1(0))(1 — s"t1E51(0))

s<s<1

yields that ?LQJ — hy is convergent. Owing to Ez1 sl as 6\, 0, we have h; — 400. Since
the other terms in «;; remain bounded as 6 \, 0, we obtain «a; (0,27 — 0,7, 7) — +00.
Similarly, since E91(0) \(1as 8 7, ﬁ — —oo and the other terms in a1 are bounded.
Hence, limg »r a1,1(6,27 — 0,7, m) — —00. Since a1,1(0,2m — 6,7, ) is a continuous function
of 0, there exists ¥g(cv) € (0, 7) such that a1 (94(), 2 — (), m,7) = 0 for any a > 1.
The linear stability of these configurations is unstable as long as @1 = @9 = 7. Indeed,
with a small perturbation to the spot centers at (01,62, p1 = Ap, o = —Ap) where Ap > 0,
by (3.6), we have a2 > 0 and a2 < 0. Hence, the two spots thus tend to ¢1 — 2 = m, which
means they are unstable. To confirm the existence of a quasi-stationary state and the linear
stability of this configuration, we solve BRD model (1.2) numerically for the initial condition
(2.31) and (2.32) consisting of two spots on the torus of (R,r) = (0.6,0.5). The center of the
two spots at the initial moment is (01, 2, 71, m2) = (0o, 27w — Oy, 7, ™) With 0y ~ 0.8934, which
is the numerical solution of a1 1(0y, 2w — 6y, m, 7) = 0. The numerical parameters are ¢ = 0.05,
=07 A= T%%w p1 = 5,p2 = 37”, and S;1 = Sy = 1.5. As shown in Figure 15, the two
spots are moving towards a stable quasi-stationary state (61, 62) = (94(1.2), 27 —94(1.2)) and

3w

(o1,02) = (775)-

4. Summary. We have constructed quasi-stationary states consisting of localized spots
appearing in the RD system (1.1) on the surface of a torus. Under the assumption that
these localized spots persist stably for a long time, we describe the dynamics of the spot
cores in the slow-time scale. Utilizing the analytic expression of the Green’s function of the
Laplace—Beltrami operator on the toroidal surface, we derive the ODEs analytically, thereby
investigating the existence of equilibria with a mathematical rigor. We have considered the
three kinds of spot configurations: a single spot, two spots, and the ring configuration where
N localized spots are equally spaced along a latitudinal line. The theoretical results agree
with nonlinear evolutions of the BRD model that are obtained by numerical means. They are
summarized and compared with the dynamics of point vortices as follows.

The single spots at the outermost (¢; = 7) and the innermost (¢; = 0) locations are always
equilibria for & > 1. On the other hand, there exist special locations #; = V5(a) € (0,7) and
21 —94(a) € (m,27) at which the single spot becomes an equilibrium for 1 < o < a5 & 1.201.
The single spot at #; = 7 is always linearly unstable, and those at 6; = V¥4(«) and 27w — ¥4()
are stable as long as they exist. The single spot at # = 0 is unstable for 1 < a < a;, whereas
its stability changes when J5(a) — 0 as a — a;. It is interesting to consider a geometric or
physical interpretation of this special angle 65(«), which is a future problem. Let us remember
that a single point vortex at any location is always a relative equilibrium rotating at a constant
speed in the longitudinal direction, and it is neutrally stable for any « > 1 [28]. Hence, there
is no special aspect ratio allowing nontrivial equilibria in a vortex crystal, which is different
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Figure 15. Ewolution of BRD model (1.2) for the initial condition (2.31) and (2.32) centered at
(01,02, 01,p2) = (00,2m — Oo, 7w, 7) on the torus of R = 0.6 and r = 0.5, where 6y ~ 0.8934. The numeri-
cal parameters are € = 0.05, f = 0.7, Sc = 1.5, and A = ﬁ. The two-spots configuration becomes unstable
and is moving toward @1 — @2 = w. The horizontal dotted line represents the reference lines of ¥.(1.2) ~ 1.0970
and 21 — 9.(1.2) &~ 5.1862, which is the numerical solution of a1,1(9¢,2m — Ve, 7,0) = 0.

from the single spot dynamics in RD system (1.1).

The N-rings (N > 2) at the outermost (6 = ) and the innermost (6 = 0) latitudinal lines
are equilibria for @ > 1. We also obtain a range of the aspect ratio a € (v, (N), apr(N)) where
there exists Yy (a) € (0,7) such that the N-spots at ¥y («) and 2m — Iy () are equilibria. We
observe the linear stability of these N-ring configurations of the BRD model. The outermost
N-ring is always unstable, while there exists an aspect ratio as(/N) such that the innermost
one is unstable (resp., neutrally stable) for 1 < a < as(N) (resp., a > as(N)). The N-
rings at Yn(a) and 27 — Iy («) are unstable equilibria. This is in contrast to the fact that
the N-ring configuration of point vortices at any location is a relative equilibrium, whose
linear stability is stable (resp., unstable) in the innermost (resp., outermost) region of the
torus for a sufficiently large aspect ratio [29]. Quasi-stationary solutions of the BRD model
consisting of the unstable N-ring are numerically investigated. The unstable N-ring spots are
moving toward stable quasi-stationary states having nonsymmetric configuration of N spots,
indicating the existence of more nontrivial spot equilibria that are globally stable.

Quasi-stationary states consisting of two localized spots are necessarily on the axial section
of the torus, i.e., 1 = @9 or Yo = 1 + . When 01 = 0 and w9 = 1 + 7, it is equivalent
to the 2-ring. Hence, there exist two-spot equilibria at 8; = 63 = 0 and 7 for o > 1, and at
01 = 02 = Y2(a) and 27 — Vo) for a,(2) < a < ap(2). The two spots at 01 = 02 = ,
Ya(ar) and 27 — Y2(ar) are unstable, while that at 6; = 62 = 0 is stable (resp., unstable) for
a > ag(2) (resp., 1 < a < as(2)). Moreover, we have found the other two-spot equilibria with
equal strength having the symmetry 0y = 27 — 61 for @ > 1. The two spots at 6y = 27 — 6;
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and pg = 1+ exist for 1 < o < a4(2). A pitchfork bifurcation occurs at o = «5(2), through
which the stable two-spot equilibria with 3 = 27 — 6 disappear and the linear stability of
the two-spot equilibria at 87 = s = 0 changes from unstable to stable. On the other hand,
the two-point equilibria at 05 = 27 — 01 and ¢ = @9 always exist, and they are unstable. We
also obtain the two-spot equilibria at the innermost and outermost antipodal locations, that
is to say, (01,62, p1,92) = (0,7,m,0) and (0, 7,7, 7). Then, the strengths of the two spots are
not identical, nor they are uniquely obtained. The evolution of quasi-stationary solutions of
a BRD model having two localized spots is investigated. The solution having unstable two
spots moves toward a quasi-stationary state consisting of stable two spots after a long time.
In the meantime, the dynamics of two vortex crystals have been investigated [28]. Since the
evolution of two point vortices is integrable, most evolutions of the two point vortices are
periodic, which is different from the two-spot dynamics.

Appendix A. Asymptotic expansions of the Green’s function. The asymptotic expansion
of the Green’s function (2.16) with respect to € up to O(e) is provided in what follows. Since

4(07 90) i(o—i) < /6 d77 )
=T —¢ 4 exp | — -
C(0:, i) 9, @ —COSN

14 e ) — o i (o= )0 — 6
=1+i(p —¢i) R—TCOSHZ'(H 0i) 2(80 ©i) ZR—TCOSQZ'(SO ©i) (0 — 6;)
1 r? 72 sin 6; 9
+2((R—rcos@i)Q+(R—rcosﬁi)2>(0_9i) L
2 2 :
L € B € 9 €(1+sinb;)
(A-1) =1 R—TCOSQiyl 2(R—rcos¢9i)2y2+2(R—rcos€i)2y1
- 2
i€ €

* R—rcos@i‘y2 Z(R—rcos@i)?ylyg—i_o(6 )

we obtain, as * — x;,

¢(0,¢)
log‘l— —logp
C(0i, i)
2 . 2
Y5 e(l1+sinb;)y; . €Y1Y2 2
:1 —_ _— e —
og‘ 9 2(R—rcosb;) 2(R—rcosb;) teilve (R — rcosb;) +0()
log |[——————| —1
+log R —rcost; 8P

—llo (yi+93) 1+ 6
=3 g W1 T Y (R—rcosei)(y%+?/%)

+loge —log (R — rcosb;) —logp

(Cons — (1 + sin )y} + 0<e>>)>

€(1+sinb;)y; € sin 0iy1y5
2(R—rcosb;) 2p*(R—rcosb;)

(A.2) =loge—log(R—rcosb;)— + O(%).
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Regarding W;(0, ¢), setting E; ; = exp(— f:f d__) and s = exp(—271.A), we obtain

a—cosn

Olog <1 — e 2nmA g((g;ﬂ)» (1 — g 2nmA (éé%foi)))_l)
Pign = a0
=0,
B 1 (14 s — s"cos (pj — i) (Eij + Eijjl))(—s” cos (pj — goi))(E;jl - E;;)
"~ a—cosbj (14 s2" — 5" cos (pj — i) (Eij + EZ-_J-l))2 + (s™sin (@5 — goi)(Eile —E;j))?
Lo (s"sin (¢ — 0i)2(E;} = Eij)(E;} + Eij)
a — cosb; (1+ 521 — s cos (95 — i) (Eij + B ;) + (s"sin (0; — ¢i) (B} — Ei))?
(A.3)
| (B} = Big) (— (4 575" cos () — i) + 5™ (E;} + Fiy))
“a—cos; (14 52 — sncos () — i) (Bij + E; )2+ (smsin (0 — 91) (Eij — E; )%

dlog

(g (- (s0)”)

Wi jn =
J agp

Pp=p;
(1+ 52" — ™ cos (9j — i) (Eig + E; ) (B j + E;j )s" sin () — ¢2)
(14 82" — 5™ cos (p; — i) (Eij + E; )2 + (s"(Eij — E; ) sin (9 — )2
5271

(Bij — E; })?sin (0 — @) cos (9 — ¢i)

+ - T
(142 — s cos (p; — i) (Big + B }))? + (s (Eiy — B ) sin (g5 — 91))?

sin (p; — @;)s" ((Ew + E;;) (1+ 8%") — 4s™ cos (pj — goz))

(A4) = — _ . 9
(1 4 520 — gncos (90], _ @z‘)(Ez;j + Ei,jl))2 + (sn(E,-J — Ei,jl) sin (goj — cpi))z
SO.p5)
b dlog ’1 o C(ei#ji)
b o0
6=0;
B (1 —cos (pj — i) Ei ) cos (¢j — %)Ei,jﬁosej — sin® (g — ‘Pi)E@iE@j#osej
(1 —cos(p; — i)Eij;)? + (sin (@j — @) Es j)?
a5 = 1 cos (pj — wi)Eij — E};

a—cosb; (1 —cos(pj —@i)Ei )%+ (sin(p; — i) Eij)?
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and
0 — Olog ‘1 C(@w%))
,] 880
o=¢p;

(1 — cos (p; — i) i j)sin (9 — i) Bij +sin (p; — ¢i) cos (05 — i) B
(1 —cos (¢pj — ¢i)Ei j)? + (sin (p; — i) E; j)?
(A.6) _ sin (o) — i) Ei '
(1 —cos (v; — i) E; ;)% + (sin (@; — i) Ej j)?
When 6; = 6;, we have that E; ; = Ejjl =1 and sin (¢; — ¢;) = 0 for ; = ;, and (A.3) and
(A.4) yield

Olog Wi, 0j)|  _, dlog W;(85, #)

(A7) = - o

= 0.
=p;

Appendix B. An algorithm to solve g(S) = 0. The parameters are set as AS = 1078

and tol = 1078,

(Step 0) Computing X(S) for discrete values S = 0.001,0.002,...,8.000 by solving the
boundary value problem (2.54), we approximate the map x(S) by using the cubic spline
interpolation. The initial guess is given by $©) = (S,,...,S.)T with S. = 2rRrE/N
and set kK = 0. This step is done only once.

(Step 1) Compute x(S*)) and x(S*) + ASe;) for j = 1,..., N, where e; is the unit vector
whose jth component is 1. Each component of x is obtained from the piecewise cubic
approximation of x(S) constructed in Step 0.

(Step 2) Compute the Jacobi matrix J(S) = {J;;(S)}, 4,5 =1,..., N, of g(S) at S = S*).
Each entity is approximated by the central finite difference.

(S + ASe;) — g; (S®) — ASe;)
(g _ 9 (S + ASej) —gi j
75 (W) = 2AS !

in which g; is the ith component of g.
(Step 3) Solve the linear equation J(S®*))Ag = g(S®*)) with respect to Ag.
(Step 4) If |Ag| < tol, then S() is the approximate solution of S, and we go to Step 5.
Otherwise, we set S 1) = §*) _ Ag and k = k + 1. Then we go back to Step 1.
(Step 5) The constant ¥ is computed from the approximate solution through (2.29).
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