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ABSTRACT

This paper presents a design method of Auxetic Bending-Active Gridshells (ABAGs), which are curved surfaces 
generated from the initial flat grid with 2-dimensional auxetic patterns. One of the mechanical properties of 
ABAGs is that a dome-like shape of a curved surface can be easily obtained by bending a grid due to negative 
Poisson’s ratio for in-plane deformation. Shapes of auxetic patterns are relevant to Poisson’s ratio. Non-periodic 
and/or hybrid 2-dimensional auxetic patterns are developed for designing the initial flat grid of ABAGs. Shape 
parameters are the sizes of each plane unit for tuning its reentrant pattern, and two types of reentrant shapes are 
mixed on an initial flat grid. Using the non-uniform patterns, we can obtain an asymmetric and more complex 
free-form surface of ABAGs than those composed of a uniform reentrant pattern. Discrete Gaussian curvature at 
each node on a curved surface is computed for quantitatively evaluating the properties of shapes of the obtained 
surfaces. Possibility of ABAGs as a new design tool is demonstrated by showing that various shapes are generated 
through large deformation analysis with the forced displacements at the supports.

Keywords: bending-active structure, auxetic structure, gridshell, form-finding, discrete differential geometry

1. INTRODUCTION
Poisson’s ratio is the ratio of the compressive strain 

to the tensile strain in the orthogonal direction in the 

uniaxial stress state. If the sign of Poisson’s ratio is 
positive, a uniaxially compressed/stretched structure 

expands/shrinks in the transverse direction. By 

contrast, the structures with negative Poisson’s ratio, 

which are called auxetic structures, have different 
mechanical properties than those with positive 

Poisson’s ratio. A uniaxial compressed/stretched 

auxetic structure shrink/expand in the transverse

direction [1 3].

Due to the negative Poisson’s ratio for in-plane 
deformation, one of the structural properties of 

auxetic structures is that they can generate curved 

surfaces mainly with positive Gaussian curvature 
when subjected to out-of-plane bending 

deformation. This property of auxetic structures is 

well-known in the field of metamaterial design. On 

the other hand, elastic gridshell is one of the bending-
active structures, and its curved surface is composed 

of actively bent flexible beams from the initial flat 

grids [4-6]. Here, Auxetic Bending-Active Gridshell 
(ABAG) represents a bending-active gridshell, 

whose initial flat grid is designed as 2-dimensional 

auxetic pattern. Compared with the previous 

methods for designing a dome-like shape of an 
architectural roof, ABAG can be a useful tool 

because it enables us to generate easily free-form 

surface by elastically bending without assembly 
process, leading to reduction of construction time 

and cost.

Naboni et al. [7 9] carried out parametric study for 
designing ABAGs and analyzed them by using 

particle-spring method and finite element analysis.
Moreover, they state in Ref. [7] that initial flat grids 

of ABAGs can be generated by using additive 

manufacturing technique, i.e., 3D printing.
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(a) (b)

Figure 1: 2-dimensional reentrant units composed of chevron rods (blue line) and tie rods (red line) for realizing auxetic 
behaviors; (a) reentrant honeycomb, (b) reentrant triangle

Therefore, the connection between members is 

designed as rigid joint without any hinge joints.

La Magna and Knippers [10] proposed a method for 

arranging honeycomb patterns with gradually 

increasing Poisson’s ratio from negative to positive 
on an initial flat plane using Schwartz-Christoffel 

mapping. The method in Ref. [10] enables us to 

obtain a curved surface which has Gaussian 
curvatures desired by designers. However, there 

have been still few researches addressing the design 

of ABAGs in the scale of architectural roof. 
Therefore, the further investigations of the structural 

properties of ABAGs are needed for its realization.

In this paper, we present a method for designing non-

periodic and/or hybrid ABAGs. 2-dimensional 

auxetic patterns are usually periodic because of their 

uniform reentrant shape. Reentrant honeycomb and 
reentrant triangle are the well-known 2-dimensional 

auxetic patterns and have also been used for design 

of various types of auxetic structures because of their 
structural simplicity and ease of arrangement. 

However, there is a limitation of obtained shapes of 

ABAGs generated from the conventional patterns.

We design non-periodic ABAGs composed of 

different patterns of reentrant honeycomb or 

reentrant triangle without periodicity. Hybrid 
ABAGs are also designed by mixing patterns of the 

two reentrant patterns. The two reentrant patterns are 

arranged in the direction perpendicular to the 
chevron rods, as illustrated in Fig. 1. Using non-

uniform patterns, we can obtain an asymmetric and 

more complex free-form surfaces of ABAGs than 

those composed of a uniform reentrant pattern. 

Furthermore, we compute discrete Gaussian 
curvature at each node on a curved surface of 

ABAGs without using parametric forms of the 

surface [11]. The non-parametric curved shape can 

be easily discretized into a triangulated surface, and 
its property can be evaluated by the simple technique 

developed in the field of discrete differential 

geometry [12, 13]. Finally, in the numerical 
examples, parametric study of large-deformation 

analysis is carried out to show that the proposed 

method can be regarded as a new design tool of 

ABAGs.

2. 2-DIMENSIONAL AUXETIC PATTERNS: 
REENTRANT HONEYCOMB AND REENTRANT 
TRIANGLE

A 2-dimensional auxetic structure, which has a 

negative Poisson’s ratio for in-plane deformation, is 
composed of multiple periodic uniform patterns, 

which can completely fill a plane [14]. In this paper, 

we apply the reentrant honeycomb and reentrant 
triangle for designing an initial plane of ABAGs. 

Reentrant shapes consist of two types of beams: 

chevron rod (blue line) and tie rod (red line), as 
shown in Fig. 1. Let i denote the number of chevron 

rods, and i (i = 1, ..., m), w, and d represent the 
angles between x-axis and the left end of the ith 

chevron rod in the initial state, and the sizes along x-

and y-axes of each unit, respectively. We define the 
angle so that anti-clockwise direction is positive for 

i. To avoid contacting or crossing of the members, 
the following constraints on reentrant honeycomb 

are to be satisfied:
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(a) (b) (c)

Figure 2: Comparison of relationships between Poisson’s ratios and Gaussian curvatures; (a) > 0, (b) 0, (c) < 0
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Similarly, the constraints on reentrant triangle are 
formulated as

1tan tan
2

0
1

.i id w (2)

Note that the term tan i+1 in Eq. (2) is needed because
the size d represents the distance between the both 

ends of neighboring chevron rods.

Sign of the Gaussian curvature on a curved surface 

generated by bending the initial plane of ABAG is 
dependent on the sign of Poisson’s ratio for in-plane 

deformation [3]. Figure 2 shows the relationships 

between the obtained curved surfaces and Poisson’s 

ratios. Poisson’s ratios in Figs. 2 (a), (b), and (c) 
are positive, almost 0, and negative, respectively. 
The obtained Gaussian curvatures on the 

corresponding surfaces are mainly negative, almost 

0, and positive, respectively.

3. NON-PERIODIC AND HYBRID ABAGS

In this section, we propose a non-periodic and/or 

hybrid ABAGs. Simple uniform reentrant patterns 
are useful to design initial flat grids of ABAGs. 

However, uniform patterns can only generate simple 

and symmetric shapes of curved surface of ABAG. 

To overcome the limitation in the uniform reentrant 
units, we utilize various shapes and arrangements of 

reentrant units in an initial flat grid of ABAG. By 

sacrificing the simplicities of reentrant patterns, 
more complex shapes of curved surfaces are 

obtained.

3.1. Non-periodic ABAGs
We assign shape parameters k to an initial flat grid 
with k sub-domains. The initial flat grid of a non-

periodic ABAG can be generated by tuning the size 

w of each reentrant unit multiplied by shape 

parameters k without changing the lengths of tie 

rods and connectivity of nodes and rods. Figure 3 
shows the initial flat planes with four sub-domains 

separated by the y-directional lines. Shape

parameters , , , and are assigned, respectively, 
in the corresponding sub-domains. In Fig. 3(a) and 

the numerical examples in Sec. 5, we set / 6i

, (i = 1, ..., m) for reentrant patterns.

(a) (b)

Figure 3: Tuning the size w of reentrant units by parameter k (k = 1, …, 4); (a) periodic initial flat grid, (b) non-periodic 
initial flat grid
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       (a) (b)

Figure 4: Initial flat grids of conventional and hybrid ABAGs; (a) conventional ABAG composed of uniform reentrant 
triangular units, (b) hybrid ABAG composed of reentrant honeycombs (yellow) and reentrant triangles (blue)

3.2. Hybrid ABAGs

A hybrid ABAG can have non-uniform Poisson’s 
ratio of an initial flat grid, since it is composed of the 

two different reentrant units which have different 

Poisson’s ratios. Initial flat grids of ABAGs are 
conventionally designed by using a single type of 

reentrant unit. We propose a simple method for 

designing initial flat grids filled with two different 
patterns in Fig. 1.

Each unit of the both reentrant patterns has two 

chevron rods. A reentrant triangle can be simply 

generated by arranging parallelly a uniform shape of 
chevron rod, while reentrant honeycomb is 

composed of two chevron rods which are symmetric 

with each other. The type of reentrant unit is defined 
based on the geometrical relationships of chevron 

rods. The signs of i and i+1 define the geometrical 
relationship between the ith and (i+1)th chevron 

rods. If the product i i+1 is negative, then reentrant 
honeycombs are generated between the ith and 

(i+1)th chevron rods; otherwise, we obtain reentrant 

triangles between them. Figure 4(a) shows an initial 
flat grid composed of uniform reentrant triangles. 

Blue lines represent extra tie rods, which are 

assigned to the both ends of the mth chevron rod so 
that it is not isolated. This procedure enables us to 

avoid the numerical difficulties during large-

deformation analysis due to instability caused by 
isolated elements. Figure 4(b) shows a hybrid 

ABAG. Yellow and blue filled areas represent 

reentrant honeycomb and reentrant triangle, 

respectively.

4. DISCRETE GAUSSIAN CURVATURE

Discrete Gaussian curvature is defined for 

computing the curvature at nodes on a polyhedral 
discrete surface [12]. First, we discretize a curved 

surface of ABAG by triangulation. For simplicity, 

nodes are assumed to be located on the connections 

between chevron rods and tie rods. Then, we 
generate hexagonal cones at all nodes except those

on boundaries and their neighboring nodes. Figure 5 

shows triangular meshes on a curved surface. 
Circular and triangular marks represent the nodes on 

the connections and the additional nodes which are 

not on the connections, respectively. The position 
vectors of additional nodes q2, q3, q5, and q6 are 

defined as the average of the position vectors of their 

neighboring four nodes. For example, q2 is defined 

by nodes p, q1, B, and D. The grey areas in Fig. 5 
represent hexagonal meshes composed of six 

triangles on a curved surface.

Figure 5: Hexagonal meshes composed of six triangles of 
each node on a curved surface of ABAG

Figure 6: Hexagonal cone corresponding to node p, which 
is composed of six triangles defined with nodes qv (v = 1, 

…, 6), and Voronoi region (grey) for computing angle 
defect
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Discrete Gaussian curvature at each node with six 

triangular meshes is formulated by angle defect from 

a flat plane. We use it as a measure for evaluating the 

amount of convexity and concavity of the generated 
curved surface. Figure 6 shows a hexagonal cone 

composed of nodes p and qv (v = 1, …, 6). The grey 

area in Fig. 6 represents a Voronoi region generated
by connecting the centers of the circumcircles 

surrounding triangles. Angle defect is defined as the 

difference between the sum of the outer angles v and 

2 . Note that the sum of v is equal to the sum of 
inner angles of each triangular mesh on node p.

Using the vector ev, which directs to node qv from p,
the discrete Gaussian curvature Kp is, therefore, 

computed as

6
1 1

1 1

2 cos v v
p

v v v

K e e
e e

(3)

For the cases of Kp > 0, Kp = 0, and Kp < 0, we obtain 

a cone, a flat plane, or a saddle, respectively.

5. NUMERICAL EXAMPLES

In this section, we investigate the generated shapes 

of curved surfaces of non-periodic and/or hybrid 
ABAGs using discrete Gaussian curvature. Large-

deformation analysis is carried out using Abaqus 

2018 [15]. All numerical examples shown in this 

section have the same boundary conditions. Shape of 
the boundary of an ABAG is rectangle in the initial 

state of large-deformation analysis. The both ends of 

chevron rods are roller-supported, which can move 

along x-axis. All connections between tie rods and 

the first and the mth chevron rods are also roller-

supported, which can move on xy-plane. Figure 7 

shows the process of large-deformation analysis for 
bending the initial flat grids. First, upward virtual 

load equivalent to self-load is applied to all members 

to avoid numerical difficulties due to a bifurcation 
buckling. Then, forced displacements along x-axis 

are given at the both ends of all chevron rods and the 

virtual vertical loads are released. In the following 
examples, we investigate the properties of ABAGs 

with five different patterns.

We use a material with Young’s modulus 25 GPa 

and Poisson’s ratio 0.221. It is assumed to use glass 
fiber reinforced polymer (GFRP), which is a suitable 

material for bending-active structures because of its 

lightness, high strength, and flexibility [4, 5]. The 

beam has a rectangle section with 0.01 0.10 (m).

5.1. Non-periodic ABAGs
In this section, two curved surfaces of non-periodic 
ABAGs proposed in Sec. 3.1 are investigated. 

Surfaces 1 and 2 are composed of 242 reentrant 

honeycombs and 232 reentrant triangles, 

respectively. These reentrant units are tuned by 

shape parameters k (k = 1, …, 8) for the eight sub-
domains of each initial flat grid. Shape parameters 

k of Surfaces 1, 2, and 3 are defined, as shown in 
Table 1. Although Surface 3 is a non-periodic 

ABAG, it is also classified into hybrid ABAG 

explained in Sec. 3.2. Therefore, the results of 
Surface 3 are shown in Sec. 5.3.

(a) (b)

Figure 7: Loading conditions and forced displacements for a curved surface of periodic ABAG with reentrant honeycomb; 
(a) virtual upward load to all members, (b) giving forced-displacements at the ends of chevron rods

Table 1: Shape parameters k (k = 1, …, 8) assigned to the eight sub-domains along y-direction of initial flat grids of 
Surfaces 1, 2, and 3

1 2 3 4 5 6 7 8

Surface 1 1.00 0.50 1.20 0.80 0.50 1.00 0.50 0.80

Surface 2 1.00 2.00 1.00 2.00 1.00 0.50 1.00 0.50

Surface 3 1.00 0.75 1.50 0.50 0.75 1.25 0.50 1.00
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(a) (b)

(c) (d)

Figure 8: Surface 1, which is a non-periodic ABAG with 242 reentrant honeycombs; (a) curved surface, (b) xy-plane with 
the distribution of discrete Gaussian curvature, (c) xz-plane, (d) yz-plane

(a) (b)

(c) (d)

Figure 9: Surface 2, which is a non-periodic ABAG with 232 reentrant triangles; (a) curved surface, (b) xy-plane with the 
distribution of discrete Gaussian curvature, (c) xz-plane, (d) yz-plane

We set sizes of each unit of Surfaces 1 and 2 as w =

0.75 and d = 0.75. Forced displacements 0.30 m are 
given at the both ends of chevron rods along x-axis. 

The results of large-deformation analysis of Surfaces 

1 and 2 are shown in Figs. 8 and 9, respectively. 

Figures 8(a), (b), (c), and (d) are a curved surface of 

Surface 1, projection to xy-plane with a distribution

of discrete Gaussian curvature at each node, 
projection to xz-plane, and projection to yz-plane, 

respectively. As shown in Fig. 8(b), larger values of 

discrete Gaussian curvature are obtained at nodes in

the sub-domains to which smaller k are assigned. 
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The largest values of discrete Gaussian curvature 

appear in the sub-domain assigned as 2 = 0.50. 
Distribution of discrete Gaussian curvature is 

symmetric with respect to the plane in x-direction. 

Asymmetric and symmetric shapes of Surface 1 are 
seen in the elevations Figs. 8(c) and (d). Figures 9(a), 

(b), (c), and (d) show the results of Surface 2. It is 

confirmed from Figure 9(b) that we can obtain larger 
values of discrete Gaussian curvature at nodes in 

sub-domains where assigned k are smaller, except 
boundaries.

5.2. Hybrid ABAGs

In this section, hybrid ABAGs are generated, and 
discrete Gaussian curvature is computed at each 

node on the curved surfaces. Surfaces 4 and 5 are 

composed of the both two reentrant patterns. Surface 

4 has 145 reentrant honeycombs and 261 reentrant 
triangles. On the other hand, Surface 5 has 115 

reentrant honeycombs and 252 reentrant triangles, 

which are arranged alternately. We set the sizes w =
0.75 and d = 0.75 for Surfaces 4 and 5. Forced 

displacements 0.30 m are given at the both ends of 

chevron rods. Figures 10 and 11 show the results of 
large-deformation analysis of Surfaces 4 and 5, 

respectively. Figure 10(a) shows the surface shape. 

Figure 10(b) is the projection to xy-plane with marks 

representing the values of discrete Gaussian 
curvature, which are symmetric with respect to a 

plane parallel with the y-axis, because the reentrant 

units are periodic in x-direction. Figures10(c) and (d) 

show the projection to xz- and yz-planes of Surface 4. 

The results of Section 5 are shown in Fig. 11 in the 

same manner as Surface 4 in Fig. 10. Figure 11(b) 

shows the symmetric distribution of discrete 
Gaussian curvature of the surface of Surface 5, 

which is also composed of periodic reentrant units in 

x-direction. Furthermore, Surface 5 has the 
symmetry properties of reentrant units with respect 

to the two planes parallel to x- and y-axes.

5.3. Nonperiodic and hybrid ABAGs

In this section, we investigate an example of the 
mixed non-periodic and hybrid ABAG. The mixed 

method is important because we can easily obtain 

more complex and asymmetric free-form surfaces of 
ABAGs than those in Secs. 5.1 and 5.2. We set the 

sizes w = 0.75 and d = 0.75 for the units. Forced 

displacements 0.30 m are given at both ends of 

chevron rods. Shape parameters k (k = 1, …, 8) are 
shown in Table 1. Surface 3 has 218 reentrant 
honeycombs and 232 reentrant triangles. Figure 12 

shows the results of large-deformation analysis. 

Figures 12(a), (b), (c), and (d) are a curved surface 

of Surface 3, projection to xy-plane with a 
distribution of discrete Gaussian curvature at each 

node, projection to xz-plane, and projection to yz-

plane, respectively. The distribution of discrete 
Gaussian curvature at each node is asymmetric; 

larger values of discrete Gaussian curvature are 

obtained at nodes in sub-domains whose shape 
parameters smaller than 1.

(a) (b)

(c) (d)

Figure 10: Surface 4, which is a hybrid ABAG with 145 reentrant honeycombs and 261 reentrant triangles; (a) curved 
surface, (b) xy-plane with the distribution of discrete Gaussian curvature, (c) xz-plane, (d) yz-plane

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Vol. 61 (2020) No. 4 December n. 206

282

(a) (b)

(c) (d)

Figure 11: Surface 5, which is a hybrid ABAG with 115 reentrant honeycombs and 252 reentrant triangles; (a) curved 
surface, (b) xy-plane with the distribution of discrete Gaussian curvature, (c) xz-plane, (d) yz-plane

(a) (b)

(c) (d)

Figure 12: Surface 3, which is a non-periodic and hybrid ABAG with 218 reentrant honeycombs and 232 reentrant 
triangles; (a) curved surface, (b) xy-plane with the distribution of discrete Gaussian curvature, (c) xz-plane, (d) yz-plane

6. CONCLUSIONS

This paper presents a method for designing a new 

type of bending-active gridshell with negative 
Poisson’s ratio for in-plane deformation, which is 

called non-periodic and/or hybrid ABAG. Using the 

proposed methods without any difficult design 

process of initial flat grids, we can obtain more 
complex shapes of curved surfaces than those

composed of uniform reentrant units. We computed 

discrete Gaussian curvature for investigating the 

amount of convexity and concavity at each node on 
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the obtained surfaces. Gaussian curvature can be 

used as a measure to avoid an unfavorable in view of 

structural or aesthetical properties. Since ABAG 

consists of discrete members, i.e., chevron rods and 
tie rods, it is natural to use discrete Gaussian 

curvature rather than continuous Gaussian curvature. 

Large-deformation analysis is carried out using 
Abaqus 2018 to generate various complex surfaces. 

Forced displacements are given at the supports 

actively to deform ABAG from a flat plane to a 
curved free-form surface.

Five parametric studies are conducted as the 

numerical examples. In all numerical examples, the

obtained free-form surfaces of ABAGs show the 
auxetic behavior, which is confirmed by 

deformations projected to xy-plane. A non-periodic 

ABAG has various shape parameters k for reentrant 
units in the sub-domains. The obtained shape of a 

curved surface of non-periodic ABAG loses 
symmetry of discrete Gaussian curvature with 

respect to a plane parallel to y-axis. Moreover, we 

obtain larger values of discrete Gaussian curvature at 

nodes in sub-domains where smaller k are assigned. 
On the other hand, hybrid ABAG is composed of the 

both types of reentrant patterns, and various 

distributions of Poisson’s ratio can be generated by 

arranging the sub-domains of different reentrant 
patterns. Therefore, a symmetric surface with respect 

to a plane parallel to y-axis is obtained. In the case of 

alternative arrangements of the two reentrant units, 
we can obtain a symmetric surface with respect to 

two planes parallel to x- and y-axes. Compared with 

non-periodic ABAGs, hybrid ABAGs have the 

simple distributions of positive values of discrete 
Gaussian curvature. The reason for this property may 

be their simple arrangements of two different 

reentrant units as shown in Surfaces 4 and 5. The 
numerical examples showed that free-form surfaces 

of ABAGs are generated easily using the two 

proposed methods. The mixed method combining 
non-periodic and hybrid patterns was also 

investigated to show that an asymmetric free-form 

surface can be obtained. The distribution of discrete 

Gaussian curvature of Surface 3 clearly shows its 
complexity of a shape of a curved surface. The 

largest value of discrete Gaussian curvature of 

Surface 3 is obtained at a node in small k in the 
similar manner as non-periodic ABAGs.

This paper is a first attempt to analyze and evaluate 
the properties of ABAG utilizing discrete differential 

geometry. Furthermore, our proposed method can 

lead to future works of design of ABAG and its 

realization in an architectural scale.
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