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Abstract 

In this paper, we analyze a continuous-time analog of the optimal trade execution problem 
with generalized price impacts, which was recently discussed in [11] for a discrete-time setting. 
The market model considers transient price impacts of random trade execution volumes posed 
by small traders as well as a large trader. 

Our problem is formulated as a stochastic continuous control problem over a finite horizon of 
maximizing the expected utility from the final wealth of the large trader with Constant Absolute 
Risk Aversion (CARA) von Neumann-Morgenstern (vN-M) utility function. By examining the 
Hamilton-Jacobi-Bellman (HJB) equation, we characterize the optimal value function and opti­
mal trade execution strategy, and conclude that the trade execution strategy is a time-dependent 
affine function of three state variables: the remained trade execution volume of the large trader 
and, so-called, the residual effects of past price impacts caused by both of the large trader 
and other small traders and the small traders' aggregate volume of orders itself. Further, the 
time-dependent coefficients could be derived from a solution of a system of ordinary differential 
equations (ODEs) with terminal conditions, which is numerically tractable. 

1 Introduction 

The optimal execution problem, which stems from the costs of trading a large volume of orders, 
has received much attention over a few decades. The so-called "high-frequency trading (HFT)" 
or "algorithmic trading (AT)" account for the problem as the trading systems are undergoing a 
revolution in terms of technological changes and the trading venues have diversified over a few 
decades. In a real market, institutional traders (or large traders) usually have a great influence on 
the market or the market price of traded (risky) assets they buy or sell through their own (large) 
order submission. Therefore, large traders have to take into account the "price impact," which can 
be seen as a kind of trading cost when constructing an execution strategy. On the other hand, small 
traders are generally assumed not to influence the market price as individual traders. The aggregate 
volume of orders submitted by them may have, however, have some impact on risky assets they 
trade through their submission. [39] statistically show that the small trades have relatively by far 
larger impacts on the price than that of large trades. 

The last decades have witnessed a huge (and worldwide) change in the trading system on stock 
exchanges. For example, as stated in [33], the regulatory development of the HFT was accelerated 
over the 1990s for the financial market to be more competitive among market participants. The 
related regulation, Regulation ATS (alternative trading systems; Reg ATS) in 2000, enforced in 
the U. S., enabled sorts of non-exchange competitors to enter into the marketplace. However, 
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the Regulation National Market System (Reg NMS) in 2007 and Market in Financial Instrument 
Directive (MiFID) in 2007, enforced in the U.S. and Europe, respectively, brought about a negative 
outcome: even though these regulations are designed for encouraging new competition and trading 
venues, equity markets in the U.S. and Europe fragmented since tradings spread out among sorts 
of exchanges and financial markets. 

In the light of the emergence of MiFID in 2007, considerable concerns about the "dark pool" have 
arisen among practitioners and researchers. Since after the MiFID was enforced in Europe, there 
has been a rapid rise in the use of dark pools among institutional traders, such as a pension fund 
manager, where the execution of a large block of orders are not informed to the market participants 
and the trader of smaller orders are assured to be more protected. Then, the question "how traders 
act in the dark pool" and "to what extent the dark pool affects the market quality and market 
efficiency" has attracted both empirical and theoretical researchers in the last decade. The results 
obtained from [23] solve a cost minimization problem of trading at the traditional exchange and 
dark pool employing a multidimensional Poisson process to express the situation of dark pool and 
derive a relevant matrix differential equation. For more detail, see [28]. 

To address the difficulties large traders face in the paradigm mentioned above, this paper inves­
tigates a continuous-time execution problem associated with the interaction among a large trader 
and non-large traders ( small traders hereafter) from a theoretical point of view. This research is an 
extension of [11]. The papers [27], [34], [35], [11], and [37] theoretically examine how the existence 
of small traders affects the execution strategy and trade performance of large traders through the 
following two models: a single-large-trader Markov decision model, and a two-large-trader Markov 
game model. These models then yield the optimal execution strategy and an equilibrium execution 
strategy at a Markov perfect equilibrium. These investigations reveal that both strategies are not 
necessarily deterministic, although a multitude of researches show that optimal and equilibrium 
execution strategies often become deterministic. Incorporating the price impact caused by small 
traders into the price impact modeling is the novelty of these researches. The formulation of an 
execution problem as a game model is also a significant factor in analyzing how the existence of 
other large traders affects the execution strategy of a large trader. 

We conduct our research in line with previous researches such as the ones mentioned in the 
last paragraph: consider an execution problem where a risk-averse large trader maximizes his/her 
expected utility arising from the terminal wealth in a finite time interval. The price impact is 
supposed to be not only temporary or permanent but also transient. A multitude of researches 
prevail the importance of considering the transient price impact model from both theoretical and 
empirical points of view. Also, the aggregate order submission posed by small traders (which are 
assumed to be random), as well as the order submitted by a large trader, invoke the price impact in 
our assumption. This is the result of reflecting the research of [39]. This research includes similar 
results as [27], [35], and [11]: the optimal execution strategy for the large trader is obtained in 
explicit form and is not necessarily deterministic, and the aggregate orders posed by small traders 
have an indirect impact on the optimal execution strategy through the residual effect. What makes 
this research different from the existing researches is that the aggregate volume posed by small 
traders also have a direct impact on the optimal execution strategy. We will explain this point in 
more detail in Section 3. 

This paper proceeds as follows. In Section 2, we construct a market model which characterizes 
the generalized price impact model through the definition of the price impact caused by the aggregate 
orders which small traders pose. Then we solve the maximization problem of the expected utility of a 
risk-averse large trader with Constant Absolute Risk Aversion (CARA) von Neumann-Morgenstern 
(vN-M) utility (or negative exponential utility) from the wealth at the maturity in section 3. This 
leads to an optimal execution strategy. Finally, Section 4 concludes. 
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1.1 Related Literature 

Much of the researches have been conducted to search for the optimal trading performance with 
trading costs. The classical paper [38] argues the cost of trading (i.e., market impact or price impact) 
and the cost of not trading (i.e., adverse selection). [15] and [16] theoretically consider portfolio 
selection problems with transaction costs (which can be seen as price impact) by assuming the 
quadratic trading costs for the trading shares. They show that the optimal trading strategies, under 
the maximization problem of the sum of the all future expected return with the penalty for the risks 
and transaction cost, becomes a weighted average of the existing portfolio and the "aim portfolio," 
which is the weighted average of the current Markowitz portfolio and the expected Markowitz 
portfolio of the remaining infinite future horizon. Another research [31] further investigates these 
works when a CARA investor executes a large amount of orders in a finite time horizon and shows 
that the CARA investor is sensitive to the risk which the return-predicting factor causes while it is 
not the case in the above model. Moreover, [3] develop a model of a market where heterogeneous 
traders with mean-variance preference continuously trade with quadratic trading costs, which yields 
a unique equilibrium return using a system of coupled but linear forward-backward stochastic 
differential equations. 

Another research derives the optimal ( or best) execution strategies for institutional traders. 
The pioneering theoretical study for optimal execution strategy is done by [2] which address the 
optimization problem of minimizing the expected execution cost in a discrete-time framework via 
a dynamic programming approach and show that the optimal execution strategy is the one equally 
split over (finite) time horizon under the presence of temporary price impact. Subsequently, [1] 
derive an optimal execution strategy by considering both the execution cost and volatility risk, 
which entails the analysis with a mean-variance approach. [4] incorporates the price impact caused 
by other traders into the construction of the midprice process, showing that the optimal execution 
strategies are different from the one obtained in [1] when the price impacts caused by small traders 
and coincide with the one obtained in [1] when small traders are assumed to have no influence on 
the midprice. As an extension of this research, [6] demonstrates a multi-assets execution problem. 

As in the analysis of [2], some researches apply a method of dynamic programming approach. 
For example, [5] study the optimal execution strategies considering the VWAP as well as the market 
order-flow and provide an optimal execution speed (and strategies) in explicit forms. On the other 
hand, [18] focuses on constructing a model which explains a guaranteed VWAP strategy with risk 
mitigating and finds that optimal trading speed for a guaranteed VWAP strategy is characterized 
with a Hamiltonian system (through Legendre transform). [6] consider a correlated multi-asset 
liquidation problem with the information of untraded assets incorporated into the price dynamics. 
[25] and [26] construct models for an investor to maximize an expected utility payoff from the final 
wealth at the maturity via a dynamic programming approach. In a discrete-time setting, these 
papers explicitly derive an optimal execution strategy in a deterministic and nonrandomized class 
under the assumption that there exists a residual effect of the transient price impact which dissipates 
over the trading time window. Our analysis is also involved in these kinds of works. 

The modeling of the price impact plays an indispensable role in the research of optimal execution 
strategies. A number of empirical and theoretical researches investigate whether the "transient price 
impact" modeling is compatible with the real situation. [14], [21] and [42] consider the so-called 
"no-arbitrage" condition under the transient price impact model. The famous paper [32] shows that 
the resilience effect of the limit order book does affect the optimal execution strategies. For multiple 
large traders' optimal execution problems, [30] and [41] derive equilibrium execution strategies under 
a transient price impact model. These execution strategies are in a deterministic and static class, 
whereas the optimal execution strategies obtained from our model are random and dynamic. On 
the contrary, the temporary and permanent price impact are incorporated into consideration (from 
the classical works to the emerging papers). These researches, however, do not study the whole 
effect on the optimal (or equilibrium) execution strategies caused by the temporary, permanent and 
transient price impact. 
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1.2 Notation 

We use the notation ]Rn to denote the set of all n-dimensional real-valued column vectors and 
.$tn,m(lR) to denote the set of all n x m real-valued matrices. In stands for then x n identity matrix. 
For an n x m real-valued matrix ( or vector) A, we denote by AT the transpose of the matrix ( or 
vector). For any n-dimensional squared matrix A E .$tn,n(lR), IAI stands for the determinant of A 
and tr (A) is the trace of A defined as a map from .$tn,n(lR) to lR such that 

(
an 

tr (A) = tr : 

an1 

2 Dynamics of Market Model 

n 

== Laii• 
i=l 

(1.1) 

We assume a (risk-averse) large trader with the risk-aversion parameter,> 0 in a financial market. 
He/she purchases D(E JR) volume of a risky asset in the time window [O,T]. Let Qt(E JR) be the 
cumulative purchase up to time t E [O, T] of a large trader. Then, the number of shares that 
remained to purchase at time t E [O, T] is described as 

(2.1) 

with the initial and terminal conditions: Q0 = ,Q and QT = 0. We consider a continuous trading 
strategy: 

(2.2) 

Here it is assumed that Qt is continuously differentiable in time t E [O, T]. We denote by the 
positive and negative CJt the acquisition and liquidation of the risky asset, respectively. This leads 
to a similar setup for a selling problem. The execution price of an asset P is assumed to follow a 
linear price impact model as follows: 

(2.3) 

where Pt( E JR) represents the market price of the asset at time t E [O, T] and >-t( E JR) is a price 
impact coefficient at time t E [O, T]. Here Vt represents the aggregate volume of instantaneous order 
submitted by non-large traders (or small traders) and Kt the price impact per unit at time t E [O, T] 
caused by the submission of small traders. 

Remark 2.1 (Implication of Kt)• We consider a different (or an extended) price impact coefficient 
for aggregate orders posed by small traders compared with the one for the large trader from the 
following perspective: the price impact coefficient for small traders is assumed to include the effect 
of history about trading order flow. 

In the sequel of this paper, we assume that the buy- and sell-trade of the large trader induce 
the same (instantaneous) price impact, although it would be different in the real market. We can, 
however, justify this assumption from the statistical analysis of market data shown by [4] and [5]. 
These works estimate the permanent and temporary price impact by conducting a linear regression 
of price changes on net order-flow using trading data obtained from Nasdaq. This estimation and 
the relevant statistics reveal that the linear assumption of the price impact is compatible with the 
real stock market and that the price impact caused by both buy and sell trades are the same from 
the statistical point of view. The large trader's wealth process at time t E [O, T], denoted by Wt, 
evolves as 

(2.4) 
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Besides the above temporary price impact, we assume permanent and transient parts of the market 
impact. The residual effect of the transient part is defined, with the deterministic linear temporary 
impact coefficient °'t, as 

(2.5) 

or 

(2.6) 

We define this transient price impact employing the exponential decay kernel Gt defined as: 

(2.7) 

where p E (0.oo] stands for the deterministic resilience speed. 1 This residual effect indicates that the 
price impact decays gradually over the course of the trading epoch [0, T]. Ro is assumed to be zero 
in the following analysis. It is quite plausible to assume this from the fact that the traders have no 
price impact on any risky asset before liquidating/acquiring the risky asset, and thereby there exist 
no residual effects caused by traders on the price before their execution. Note that at(>..tCJt + KtVt) 
represents the temporary price impact. 

The market price is assumed to consist of the sum of two components: 

Pt= P/ +Rt, (2.8) 

where P/ for t E [0, T] stands for the fundamental price defined by 

(2.9) 

Note that f3t(>..tCJt + KtVt) represents the permanent price impact. Zt represents the effect of some 
public news/information about the economic situation which may affect the market price (or quoted 
price). 

The more mathematically formal setting of the above model is as follows. Let (!1, .F, {Fth2=0, IP') 
be a filtered probability space, where the processes of the aggregate volume Vt of the orders submitted 
by small traders and the effect Zt caused by public news or information on the (quoted) price are 
defined as follows: 

dvt = (af - bf Vt) dt + uf dB[; 

dZt = µfdt + ufdBf, 

(2.10) 

(2.11) 

where Bf and Bf stand for standard Brownian motions with B~ = 0, Bt = 0.2 Then, the filtration 
{ .Ft}t2:o is generated by (Bf, Bf) and satisfies the usual conditions: 

Ft= u{(B~,Bf),s E [0,tl}. (2.12) 

1 Much of theoretical analysis, such as in [32], [44], deal with a ( deterministic and) constant resilience speed. Many 
empirical kinds of research, however, demonstrate that the liquidity is variable over time, suggesting that the resilience 
speed is time-dependent. Our analysis allows the time-dependence for the resilience speed, i.e., p, for all t E [O, TI, as 
considered in [13]. Notwithstanding a meaningful extension from the viewpoint of real market analysis, we henceforth 
formulate the model without time-dependent parameter (i.e., with p) since the dependence will not offer additional 
intriguing results in the following analysis. 

2 Eq. (2.10) is an Ornstein-Uhlenbeck (OU) type process. This indicates that traders including both the large 
trader and small traders can access at time t + dt the information about the orders submitted by small traders at 
time t. This asumption is also compatible with a number of empirical literatures which emphasize the importance of 
taking the autocorrelattion of order flow into account. (see [19], [20], [7], [8].) 
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We assume that the quadratic co-variation of Bf and Bf takes the following form: 

d(Bv,BZ)t = pv,Zdt, (2.13) 

which implies that these two processes are correlated with each other. Note that af, b¥, µf, uf, uf 
in the above dynamicss of Vt and Zt are all deterministic in time t. 

If we assume that the information flow accessible for the large trader is carried by the filtration 
{ Ft}t2;0 then the executed volume Qt of the large trader by time t E [O, T] is an Ft-measurable 
(real-valued) random variable. Thus, the set of admissible execution strategies is defined as follows: 

A:= {{QthE[D,T]: {FthE[D,T]-adapted process with differentiable path,Qo = O,Qr = D}. (2.14) 

It turns out that, according to the dynamics of the market model, the wealth process, price dynamics, 
remaining execution volume, and residual effect depend on the process of the cumulative purchase 
(or liquidation) denoted by Q = {Qs}sE[D,t]: 

Q ~Q ~Q . ( Q . ) . 
dWt = -Pt dQt = -Pt Qtdt = - Pt + >.tQt + "'tVt Qtdt; 

dPtQ = f3t ( >.tCJtdt + "'tVtdt) + dZt + d.lliQ; 

dQ~ = -dQt = -Qtdt; 

d.lliQ = -pR~dt + at ( >.tQtdt + "'tVtdt) . 

However, to simplify the notations, we suppress the superscript Q in the above expressions repre­
senting the dependence on Q to each state variable, and simply use the ones (Wt, Pt, Qt, Rt) defined 
in the previous description except the cases when we should emphasize the dependence explicitly. 

Remark 2.2 (Markov Property of the Residual Effect). Eq. (2.5) and Eq. (2.6) show the recursive­
ness of the residual effect. dRt depends on only Rt and the price impact at(>.tdQt + "'tdVt), which 
indicates that Rt has a Markov property in this settings. This Markov property of the residual 
effect arises thanks to the assumption of the exponantial decay kernel. 

The Markov property of the residual effect also induces the Markov property of the price dynam­
ics, which plays a fundamental role in constructing the value function and the related Hamilton­
Jacobi-Bellman (HJB) equation. 

3 Performance Criteria and HJB Equation 

In this section, we formulate and solve an HJB equation, from which we obtain an optimal execution 
and a value function where the price impact caused by small traders exists. 

3.1 Performance Criteria of the Large Trader: A Hard Constraint 

We first define the state of the process at time t E [O, T]. The state, denoted by St, is a 5-tuple and 
is defined as 

( - )T 5 St := Wt, Pt, Qt, Rt, Vt E lR ( = lR X lR X lR X lR X JR) =: s. (3.1) 

Each component of the state is, as we have mentioned above, dependent on the process of the 
cumulative purchase/liquidation: Qs, s E [O, t]. 

The utility function of the large trader is assumed to take a form of a Constant Absolute 
Risk Aversion (CARA) van Neumann-Morgenstern (vN-M) utility function. The utility payoff (or 
reward) arises only from the terminal wealth at the maturity: 

( ) {
-exp{-,Wr} 

gr sr := 
-oo 

if Qr= O; 

if QT=/= 0. 
(3.2) 
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We define the (conditional) expected utility of the large trader at time t E [O, T] on an execution 
strartegy Q = {Qt}os;t:,;T as 

¼,Q := lE [gr(s~)IFt] = lE [-exp {-,w~}- i{Q~=O} + (-oo) · 1{Q~#o}IFt], t E [O,T], (3.3) 

where 1A (A E F) represents the indicator function of the event A. 
Let the optimal (expected utility) value from time t E [O, T] by 

½ := ess sup ¼,Q, t E [O, T]. (3.4) 
QEA 

Then ½ depends on the history or information Ft only through the (controlled) state: St = 
(Wt, Pt, Qt, Rt, Vt) T E S = JR.5 and we denote this functional dependence by the optimal value 
function as 

(3.5) 

3.2 In the Case with Target Close Order: A Soft Constraint 

Here we consider a model with a closing price. The time framework t E [O, T] is the same in the 
model mentioned above. However, we add an assumption that a large trader can execute his/her 
remaining execution volume at the terminal, Qr, with closing price Pr. We further assume that 
the trading at time T imposes the large trader to pay the additive cost XT per unit of the remaining 
volume. 

According to the above settings, the value function at maturity becomes 

V [T, sr] = -exP{ - ,[Wr - (Pr+ xrQr)Qr] }, 

and the conditional expectational utility at time t E [O, T] is defined by 

¼,Q := lE [-exp { - ,[Wr - (Pr+ xrQr)Qr]} I Ft]• 

(3.6) 

(3.7) 

This formulation is similar to [4] and [5], which incorporates the (quadratic) cost of trading the 

remaining execution at maturity into the performance criteria. The term xrQ~ corresponds to a 
quadratic transaction cost emerging at the terminal. A multitude of researches formulate a model 
with quadratic transaction costs and give it some economic meaning. For example, [15] and [16] 
solve a portfolio selection problem with quadratic transaction costs, meaning that the buying or 
selling a unit of risky asset incurs an additional cost proportional to the number of buying/sell 
assets (which we can regard as price impact). A plausible interpretation for the formulation of Eq. 
(3.6) would seem to be that the large trader can execute the orders remaining at the terminal T 
in a dark pool. Consider the following case that a brokerage has to buy .Q( E JR.) volume which a 
client asked him/her to manage in a daily lit market. These insights infer that the analysis of the 
optimal execution strategies in the soft constraint case lays the foundation of how a large trader 
should allocate the execution volumes ( or speeds) in the lit and dark pool. 

Formulating the terminal condition as Eq. (3.6) also plays an indispensable role from a mathe­
matical viewpoint. Changing the terminal condition from Eq. (3.2) to Eq. (3.6) makes a system of 
(Riccati type) ordinary differential equations (ODE) (accompanied by the derivation of optimal ex­
ecution strategies) analytically tractable. The relationship between the two formulations explained 
above concludes this subsection. 

Remark 3.1 (Relationship between Hard and Soft Constraints). We can obtain the optimal exe­
cution strategies for the primary problem (the optimal execution problem with a hard constraint) 
by XT ➔ oo in the following problem (the optimal execution problem with a soft constraint). If 
the additional trading cost XT goes to infinity, then the large trader will not use the dark pool and 
execute only in the lit pool, as shown in [26]. The statement indicates that the large trader does 
not rely on a dark pool with too much high trading costs (commitment fee), even if the dark pool 
protects the leakage of the information about his/her trading in the venue. 
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3.3 HJB Equation 

The optimal value function denoted by V [t, Bt] := V [t, Wt, Pt, Qt, Rt, Vt] with the terminal condi­
tion: 

(3.8) 

satisfies, from the dynamic programming principle, the following Hamilton-Jacobi-Bellman (HJB) 
equation (or dynamic programming equation) for the optimal (policy) function Q: 

sup [atV - (Pt+ >..tCJt + KVt)Ot8wV + { - pRt +(at+ f3t)(>..tCJt + KtVt) + µf}8pV - Otf¾V 
Q,EIR 

+ { - pRt + at(>-tOt + KtVt) }aRv + (at' - bfvt)8vV 

+ ~ {(a-f) 28ppV + 2aJaf pv,ZaPvV + (at') 28vvV}] = 0, 0 St< T (3.9) 

if we assume that the function V: [0, T] x S ➔ R is in C1•2 , that is, V is continuously differentiable 
with respect to time t and continuously twice differentiable with respect to each state variable. The 
above HJB equation stems from the following (stochastic) differential equations: 

dWt =-(Pt+ >-tOt + KtVt)CJtdt; 

dPt = dP/ + dRt 

= -pRtdt +(at+ f3t)(>..tCJt + KtVt)dt + µf dt + af dBf; 

dQt = -Qtdt; 

dRt = {-pRt + at(>..tCJt + KtVt)}dt; 

dvt = (af - bfvt)dt + afdB%, 

Thus, rewriting this results in 

sup [-(Pt+ >-tOt + KtVt)Ot8wV +(at+ f3t)>-tCJt8pV -CJtf¾V + at>-tOtaRv] 
Q,EIR 

(3.10) 

+ 8tV + { - pRt +(at+ f3t)KtVt + µf}8pV + (-pRt + atKtVt)aRv + (at' - bt'vt)8vV 

+ ~{ (af) 28ppV + 2af af pv,zaPv V + (at') 28vv V} = 0, 0 St< T. (3.11) 

Then we can derive the optimal execution strategy and its associated value function of Eq. 
(3.5) explicitly by appropriately guessing the form of the value function and verifying the obtained 
solution. 

3.4 Optimal Execution Strategy and Optimal Value Function 

The optimal dynamic execution strategy is acquired by solving the above equation (3.11). We 
obtain the following theorem. 

Theorem 3.1 (Optimal Execution Strategy and Optimal Value Function). Under a set ofregularity 
conditions: 

1. The optimal execution speed at time t E [O, T], denoted as Q;, becomes an affine function 
of the remaining execution volume Qt and the cumulative residual effect Rt and the orders 
posed by small traders Vt at time t: 

(3.12) 
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2. The optimal value function V[t, St] := V[t, W, P, Q, R, Vt] at time t E [O, T] is represented as 
follows: 

V[t, Wt, Pt, Qt, Rt, vt] = - exp {-,[Wt - PtQt + Gt<J; + HtQt + ItQtRt + ltR; + LtRt 

+ MtQtVt + NtRtVt + Xtv; + Ytvt + Kt] }, (3.13) 

where at, bt, ct, dt; Gt, Ht, It, lt, Lt, Mt, Nt, Xt, Yt, Kt fort E [O, T] are deterministic functions of time 
t which are dependent on the model parameters, and these are assumed to exist as a unique solution 
of a simultaneous system of ordinary differential equations derived in the proof. 

Proof. See Appendix A □ 

As for the system of ODEs, we have the following concise representation. 

Proposition 3.1 (Concise Representation of ODEs). These conditions are represented via the 
following three Riccati-type (matrix) differential equations: 

nt = -nl Atilt+ nlBt+ BlOt+ Ct; (3.14) 

tt = Dtrt + Ft; 

· 1 2 T lT T (T ) Kt = - 4>-t («I>trt) - Wt rt+ !l :EI: r + Tr :Et Ot:Et . 

with the terminal conditions: 

Ur~(! 
0 0 0 

!) rn 
0 -1/2 0 

-1/2 -xr 0 rr:= Kr=O. 
0 0 0 
0 0 0 

Proof. See Appendix C 

(3.15) 

(3.16) 

(3.17) 

□ 

Eq. (3.14), (3.15) and (3.16) are Eq. (B.13), (B.14) and (B.15), respectively, which we derive 
in Appendix B. In the appendix, we show how to obtain the matrix representation of the optimal 
execution strategy (or Eq. (3.12) and (3.13).) Here we assume that the solution of the Riccati-type 
(matrix) differencial equations uniquely exist under a set of regularity consitions. 

It remains to show that the above system of ODEs exists uniquely. 
From the theorem above, the optimal execution volume Q; depends on the state St = (Wt, Pt, Qt, Rt, Vt) 

of the controlled process only through the remaining execution volume Qt, the cumulative residual 
effect Rt and the aggregate volume submitted by small traders Vt, not through the wealth Wt or 
market price Pt. In addition, by the definition of residual effect Rt and the aggregate volume sub­
mitted by small traders, the optimal execution volume Qt includes a nondeterministic term (random 
variable) thorough the (aggregate) volume Vt submitted by small traders at time t E [O, T] in the 
residual effect Rt and itself. This fact indicates that Vt affects the optimal execution strategies both 
directly and indirectly, which makes the optimal execution strategy a stochastic one. Therefore, 
we can obtain a deterministic execution strategy if the total execution volume of small traders are 
deterministic for all trading time window [O, T]. 

Corollary 3.1. If the orders posed by small traders Vt for t E [O, T] are deterministic, the optimal 
execution volumes Q; at time t E [O, T] also become deterministic functions of time in a class of the 
static (and non-randomized) execution strategy. 

This is our contribution to the field of the optimal execution problem. A large number of 
researches that focus on execution problems of a single large trader derive an optimal execution 
strategy in a deterministic class. For example, [40] considers an execution problem of a large trader 
in a continuous-time setting and derives an optimal execution strategy in a deterministic class. 
However, we can confirm from our analysis that the optimal execution strategy does not always 
become a deterministic one when focusing on a single large trader's execution problem. 
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4 Conclusion 

We constructed, in a (finite) continuous-time framework, a model focusing on a single large trader. 
The large trader maximizes the expected CARA utility arising from his/her wealth at the end of the 
trading epoch in a market with small traders. By formulating a generalized price impact model, the 
backward induction method of dynamic programming based on the dynamic programming principle 
permitted us to derive the optimal execution strategy. The most important result which emerged 
from this research is as follows. The aggregate orders of small traders have an impact on the 
execution of the large trader. This kind of work concerned with an execution problem through the 
backward induction procedure of dynamic programming will be explored from a more in-depth and 
extensive perspective, which we can expect will also give us a more illuminating insight into all the 
other problems left in this field of research as follows. 

In the above models, we have assumed that the price reversion rate and the resilience speed are 
deterministic. This assumption makes the fundamental price of the risky asset observable for large 
traders before the trading time. The fundamental value of a risky asset is, however, unobservable 
and uncertain in a real market. Therefore, we can evolve the model built in this paper as an 
incomplete state information model, which leads to an analysis in a more realistic situation of the 
marketplace. Developing an incomplete state information model of either single- or multiple-large 
traders will contribute to some developments of a study involved in a trading market. 

Adding to the possibility of extending our research to an incomplete state information model, 
there would be room for formulating an execution problem as a stochastic differential game of 
multiple large traders. In our current research, we assume that there is a single large trader in 
a security market, although multiple large traders participate in a real market. The assumption 
may be relaxed by assuming that multiple large traders influence the execution price with each 
other. This makes us capable of formulating the problem as a stochastic differential game played by 
multiple large traders. The formulation is, however, intractable in terms of obtaining an analytical 
solution. Thus, there might be room for searching for a more tractable model of an execution 
problem concerned with multiple large traders which yields a semi-analytical or, if possible, an 
analytical solution. 
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Appendix 

A Proof of Theorem 3.1 

From the discrete time analogue [11], we guess the objective (or value) function as follows: 

V [t, Wt, Pt, Qt, Rt, vt] = -exp{-, [Wt - PQt + GtQ; + Ht<Jt + ItCJtRt + ltRi + LtRt 

+ MtQtVt + NtRtVt + Xtv; + Ytvt + Kt] }, (A.l) 

with the terminal condition: 

The partial differentiation of V [t, Wt, Pt, Qt, Rt, Vt] with respect to time and each state variable is 
calculated as follows: 

BtV = - 1 { Gt(Qt)2 + lftQt + jtQtRt + jtRi + LtRt + MtQtvt + NtRtVt + Xtv; + Ytvt + Kt} V; 

8wV= -,V; 

8pV =,QtV; 

8cJV =-,(-Pt+ 2GtCJt + Ht + ItRt + Mtvt) V; 

8RV = - 1 (ItQt + 2JtRt +Lt+ Ntvt) V; 

8v V = -,(MtQt + NtRt + 2XtVt + Yt)V; 
2-2 

8ppV=, QtV; 

8pv V = -,Qt(MtQt + NtRt + 2XtVt + Yt)V; 

BvvV = -2XtV + , 2 (-Pt+ 2GtQt + Ht + ItRt + Mtvt)2 V. 

Therefore, by substituting these into Eq. (3.11), we have 

sup ,[>..tQ; +[{(at+ f3t)>..t - at>..tit + 2Gt}Qt +{(at+ f3t)>..t + Lt - 2at>..tlt}R 
Q,ElR 

+ (Kt + Mt - at>..tNt)Vt + (Ht - at>..tLt)] Ot l V 

+ ,{ - Gt + ~,(af) 2 - ,a[ af pv,zMt + ~,(a[)2Ml}Q;v 

+ ,{ - Ht + µz - af Mt - ,a[af pv,ZYt + ,(an2MtYt }QtV 

+ ,{ - jt - p + pit - ,a[ af pv,z Nt + 1( an 2 MtNt }QtRt V 

+ ,{ - jt + 2plt + ~,( an 2 Nl} R;V 

+ ,{ - Lt+ pLt - af Nt + ,(an2 NtYt }RtV 

+,{ - Mt+ (at+ f3t)Kt - at1,,tlt + bf Mt - 2,a[af pv,Zxt + 2,(an 2MtXt }QtVtV 

+ ,{ - Nt + pNt - 2atKtlt + bf Nt + 2,( an2 NtXt} RtVt V 

+ ,{ - Xt - atKtNt + 2bf Xt + ,( an 2 x; }v;V 

+,{ - Yt - atKtLt - 2afXt + bfYt + 2,(an 2XtYt }vtV 

+ ,{ - Kt - afYt - ( an 2 Xt + ~,( an2Y/} V 

= 0. (A.3) 
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Since we assume the negative exponential utility function above, 

sup , [ >-tQ; + [ { ( at + f3t)>-t + 2Gt - at>-tft }Qt + {It - 2at>-tJt} Rt 
Q,EIR 

+ (Kt + Mt-at>-tNt)vt + (Ht - at>-tLt)]Qt]v 

= V _inf , [>-tQZ + [ { (at+ f3t)>-t + 2Gt - at>-tit }Qt + {It - 2at>-tJt} Rt 
Q,EIR 

+ (Kt + Mt - O:tAtNt)Vt + (Ht - O:tAtLt)]Q] 

= V inf, [ atQZ + [btQt + CtRt + dtVt + et] Qt], (A.4) 
Q, 

where 

at:= >-t; 

bt :=(at+ f3t)>-t + 2Gt - at>-tit; 

ct := It - 2at>-dt; 
dt := Kt + Mt - O:tAtNt, 

et := Ht - at>-tLt. 

Therefore, Eq. (A.4) attains the infimum at the optimal execution speed: 

where 

and 

and the value of Eq. (A.4) at the infimum becomes 

(A.5) 

(A.6) 

(A.7) 

(A.8) 
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Substituting this into Eq. (A.3) yields 

sup 1 [ >-tQ; + [ { ( at + f3t)>-t - at>-tlt + 2Gt }Qt + { (at+ f3t)>-t + Lt - 2at>-tJt} R 
Q,Effi. 

+ (Kt + Mt - at>-tNt)vt + (Ht -at>-tLt)]Qt]v 

+1{ - Gt + ~1(0-fl-10-[o-f pv,ZMt + ~1(0-%)2MnQ;v 

+ 1{ - Ht + µz - af Mt - 10-[ o-f pv,ZYt + 1( o-%) 2 MtYt }cJt V 

+ 1{ - jt - p + plt - 10-[o-f pv,z Nt + 1(0-%) 2 MtNt }cJtRtV 

+ 1{ - jt + 2pJt + ~1(0-%) 2 Nl }R;v 

+ 1{ - Lt+ pLt - af Nt + 1 (o-%) 2 NtYt }RtV 

+ 1{ - Mt + ( Oct + f3t)Kt - OctKtft + bf Mt - 210-[ o-f pv,Z Xt + 21( o-%) 2 MtXt }cJtVt V 

+ 1 { - Nt + pNt - 2atKtJt + bf Nt + 21( o-%) 2 NtXt} RtVt V 

+ 1{ - Xt - OctKtNt + 2bf Xt + 1( o-%) 2 x'f }v'f V 

+1{ - Yt - OctKtLt - 2afXt + bfYt + 21(0-%) 2XtYt }vtV 

+ 1{ - Kt - afYt - (o-%) 2 Xt + ~1 (o-%) 2Yt2 } V 

= 1 {-at + ~1( o-f )2 - 10-[ o-f pv,Z Mt+ ~1( o-%) 2 Ml - :!t} Q;v 

{ H. Z vM v Z vZv ( v)2Mv btet}-Q V +1 - t+µ -at t-10'tO'tP' Lt+10-t ut-- t 
2at 

+ I {-jt - P + plt - 10'[ o-f pv,Z Nt + 1( o-%) 2 MtNt - btCt} QtRt V 
2at 

+ 1 { _jt + 2pJt + ~1(0-%)2 Nl - 4~t} R;V 

+ 1 {-Lt+ pLt - af Nt + 1(0-%)2 NtYt - ctet} RtV 
2at 

+ 1 {-Mt+ ( Oct + f3t)Kt - OctKtlt + bf Mt - 210-[ o-f pv,Z Xt + 21( o-%) 2 MtXt - btdt} QtVt V 
2at 

+ 1 {-Nt + pNt - 2atKtJt + bf Nt + 21 ( o-%) 2 NtXt - ~::} RtVt V 

+ 1 {-Xt - °'t"'tNt + 2bf Xt + 1( o-%) 2 x'f - d; } v'f V 
4at 

{ · v v ( v)2 dtet} +1 -Yt-atKtLt-2atXt+btYt+21 O't XtYt-- VtV 
2at 

{ · v ( v)2 1 ( v)2 2 e; } + 1 - Kt - at Yi - o-t Xt + -1 o-t Yt - - V 
2 4at 

= 0. (A.9) 
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This equation holds for all states, and hence we can derive the following conditions: 

with the terminal conditions: 

Gr= -xr; Hr = Ir = lr = Lr = Mr = Nr = Xr =Yr= Kr = 0. 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

Then, by substituting the dynamics of at, bt, Ct, dt, et into the condition derived above and rearrang­
ing, we obtain a system of ordinary differential equations consisting of Gt, Ht, It, Jt, Lt, Mt, Nt, Xt, Yt, Zt. 

□ 

B Matrix Representation of the Optimal Execution Strategy 

We here show that the optimal execution problem considered above can be rewritten with a matrix 
representation. The matrix representation allows us to clearly understand the relationships between 
state variables and also prevails the interaction of the deterministic functions of time ( expressed the 
equations from (A.10) to (A.19)) explicitly. Then we can examine a set of weak sufficient conditions 
satisfied by the system of ODEs with more ease than directly carrying out the analysis of equations 
from (A.10) to (A.19). To this end, let us first redefine the state process and the ansatz of the 
corresponding value function. 

B.1 State Process: Revisited 

The dynamics of the state process is, based on the argument in Section 2, reformed in the following 
stacked form: 

(!~) (-pRt: ~: ;:~;t~~:t1t~; + µfJ (crf 
dst = dQt = -Qt dt+ 0 

dRt -pRt + Ctt(>-.tCJt + K,tVt) O 
dvt (a¥ - bfvt) 0 

=: µt( St, Qt)dt + ftdBt, (B.l) 
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where 

(t ~); 
UV t 
0 

We can rewrite dBt with a Brownian motion orthogonal to Bf, denoted by Bfj_, as 

dBt == (~~n = e ✓1 ~ p2) (d~L) == pdBt-

Plugging Eq. (B.2) into Eq. (B.l), we have 

dst = µt(Bt, (?t)dt + E~pdB~ = µt(Bt, Qt)dt + EtdBt, 

where Et := EiP E Ats,2(1R.). 

B.2 HJB Equation: Revisited 

(B.2) 

(B.3) 

From the dynamic programming principle, the optimal value function, V [t, St] := V [t, Wt, Pt, Qt, Rt, Vt], 
with the terminal condition: 

V [t, sr] = V [T, Wr, Pr, Qr, Rr, vr] = -exp{ - , [Wr - (Pr + xrQr )Qr]}, (B.4) 

satisfies the following HJB equation (or dynamic programming equation) for the optimal (policy) 
function Q: 

sup [atV +µt(St,Qt)TasV + ~tr (ET8ssTvE)] = 0, 
QEIR 

Here µt(Bt, Qt) also has another description associated with Qt: 

where 

(

0 0 0 
0 0 0 

Ilt := 0 0 0 
0 0 0 
0 0 0 

~p (at +°f3t)"'t) 
0 0 ; 

-p Ctt/,,t 
0 -bf 

Putting Eq. (B.2) and (B.6) together with Eq. (B.5) yields 

(B.5) 

(B.6) 

~~~[(-AQ2 +(0s+~)Qf asv] +atV+(Ils+w)TasV+~tr(ETassTvE) =0. (B.7) 

We can then derive the matrix representation of the optimal execution strategy and its associated 
value function explicitly by appropriately guessing the form of the value function and verifying the 
obtained solution. 
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B.3 Matrix Representation of Optimal Execution Strategy and Optimal Value 
Function 

Theorem B.1 (Matrix Representation of Optimal Execution Strategy and Optimal Value Func­
tion). Under a set of regularity conditions: 

1. The optimal execution volume at time t E [0, T], denoted as Q;, becomes an affine function 
of the remaining execution volume Qt and the cumulative residual effect Rt and the orders 
posed by small traders Vt at time t: 

where at, bt, Ct, dt are the ones defined in Section 3. 

2. The optimal value function V[t, St] at time t E [0, T] is represented as follows: 

where 

~ ~ (1 
0 
0 

-1/2 
0 
0 

with the terminal conditions: 

0 
-1/2 
-xr 

0 
0 

0 0 ,LJ -1/2 0 
Gt 1/2It 

1/2It lt 1/2Nt 
1/2Mt 1/2Nt Xt 

0 0 0 0) 
0 0 E .,/ts,s(lR); 
0 0 
0 0 

r,~m 
Kr=O, 

and Gt, Ht, It, lt, Lt, Mt, Nt, Xt, Yt, Kt fort E [0, T] are the ones defined in Section 3. 

Proof. Writing the ansatz (A.l) in matrix form yields Eq. (B.9). Here we have 

atV [t, s] = V [t, s]{ -,[s T Os +i's+ K}; 

as V [t, s] = V [t, s]{-,[20s + r]}; 

ass TV [t, s] = V [t, s] {-,[20s + r]}{-,[20s + r]} T + V [t, s] {-,[20]} 

Thus, by substituting the above equations into the HJB equation (B.7), we obtain 

sup [(-AQ2 + (0s + il>)Q) TV [t, s] {-,[20s + r]}] 
QEIR 

+ V [t, s] {-,[s T Os +i's+ k} + (Ils + "iJ!) TV [t, s] {-,[20s + r]} 

+ ~tr (ET [v [t, s]{-1 [20s +r]}{-1 [20s +r]}T + V [t, s]{-1 [20]}] E) = 0. 

(B.8) 

(B.9) 
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Rearranging the equation results in 

sup V [t, s] (-,) [(-Ac;'.?2 + (0s + ~)Q f {[20s + r]}] 
QEIR 

+ V [t,s] {-,[s Tns +i's+ k} + (Ils +w)T V [t, s] {-,[20s +r]} 

+ ~tr (ET [ V [t, s] { -,[20s + r]}{ -,[20s + rn T + V [t, s] { -,[20]}] E) 

= sup V [t, s] (-1 ) [- ( 2A Tos +A Tr) Q2 + (0s + ~)T[20s +r]Q] 
QER 

+ V [t, s] (-,) [ s T !ls+ i' T s + k + (Ils + w) T [20s + r] 

+ ~(-,)tr (ET [-,[20s + rl[20s + r]T] E + ET [20] E)] = 0. (B.10) 

The first-order condition becomes 

Therefore, the optimal execution speed is 

In the derivation of the optimal trading speed, we have used the following facts: 

1. A"[Ot = 0 E .A1,5(JR): 

Al<H~ o o o o) (1 
0 0 0 

1/L,) ~ (o o o o o), 
0 -1/2 0 

-1/2 Gt 1/2It 
0 1/2It Jt 1/2Nt 
0 1/2Mt 1/2Nt Xt 

2. e"[ot = o E .A5,5(JR): 

( 0 0 0 0 0) (° 0 0 0 0 ) (0 0 0 0 0) -1 0 0 0 0 0 0 -1/2 0 0 0 0 0 0 0 
e"[ot = o o o 0 0 0 -1/2 Gt 1/2It 1/2Mt = 0 0 0 0 0 . 

0 0 0 0 0 0 0 1/2It Jt 1/2Nt O O O O 0 
-K,t O 0 0 0 0 0 1/2Mt 1/2Nt Xt O O O O 0 

These relationships make the optimal execution speed an affine function of the state process. Then, 
Eq. (B.10) becomes 

V[t,s](-1 )4~ ((2~To+rTe)s+~Tr)2 

+v [t,s] (-,) [s Tns +i'T s + k + (Ils +w)T [20s +r] 

+~v [t,s] (-,) tr (ET [-,[2ns +rl[20s +rJT] E +ET [20JE)] = 0. (B.12) 
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Here we have 

tr (1:T [-,[20s +rl[20s +rJT] E + 21:ToE) 

= - ,tr (ET[20s +rl[20s +r]TE) + 2tr (1:To1:) 

= - 1tr ([20s +r]TEET[20s +r]) +2tr (1:ToE) 

EIR 

= - ,[20s +r]TEET[20s +r] + 2tr (1:ToE) 

= - 4,s ToEETOs - 2,rTEETOs - 2,s ToEETr _ ,rTEETr + 2tr (1:To1:). 

Substituting this equation into Eq. (B.12) and rearranging yields 

Therefore, for the above equation to be satisfied for all St E S, the following three equations 
must hold: 

1. with respect to Ot E .4l5,5(R): 

flt = o[ ( 2,EtEi - ;t <)t<)i) Ot - o[ ( Ilt+ ;t <)tr i et) - ( Ilt+ ;t <)tr i et) T Ot 

1 T T - >..t et rtrt et; (B.13) 

2. with respect to rt E R5: 

(B.14) 

(B.15) 

As these equations show, the relationships which Ot,rt, and Kt satisfy are represented by a system 
of matrix Riccati equations. If Ot and rt uniquely exist, then Kt are also determined uniquely by 
integrating Kt: 

due to the terminal condition: Kr = 0. □ 
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C Proof of Proposition 3.1 

Calculating elrt yields 

(0 -1 0 0 {)TH ( 0 

0 0 0 

~)H (t) 
0 0 0 0 -1 0 0 0 

elrt= 0 0 0 0 

_t 
0 0 0 E lll5. (C.1) 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

Therefore, the vector elrt becomes a one whose elements are all constant (in time t) and so does the 
matrix 0lrtri0t. Therefore, Eq. (B.13) satisfies the following ordinary matrix Riccati differential 
equation: 

(C.2) 

with the terminal condition: 

~ ~ (! 
0 0 0 

!) E ~,,(R), 

0 -1/2 0 
-1/2 -xr 0 

0 0 0 
0 0 0 

where 

T 1 T 
At := -2,EtEt + At <l>t<l>t E .4t5,5(lll); 

1 
Bt := -IIt - 2At <I>trlet E .4'5,5(lll); 

l T T 
Ct := - At et rtrt 0t E At5,5(lll), (C.3) 

and At, Bt and Ct are all constant matrices (in time t). □ 




