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Existence of radially symmetric 
stationary solutions for the 

corn pressi ble N avier-Stokes equation 

I tsuko Hashimoto 
Kanazawa University /OGAMI, 

College of Science and Engineering 

(joint work with Prof. Akitaka Matsumura, Osaka university) 

1 Introduction and main theorem 

This is a short survey of our recent results announced in [5] on the existence 
of radially symmetric stationary solutions for exterior problems in Rn(n 2: 2) 
to the compressible Navier-Stokes equation: 

{ Pt + div(pU) = 0, 
(pU)t + div(pU ® U) + 'vp = v L. U + (v + .\)'v(divU), (1.l) 

t > 0, x E n, where n = {x E :!Rn (n 2: 2); lxl > r 0 } (r0 is a positive con­
stant), p = p(t, x) > 0 is the mass density, U = (u1(t, x), · · · , un(t, x)) is the 
fluid velocity, and p = p(p) is the pressure given by a smooth function of p 
satisfying p'(p) > 0 (p > 0). Furthermore, v and ,\ are the shear and bulk 
viscosity coefficients respectively, which are assumed to be constants satisfy­
ing v > 0, 2v + n,\ > 0. We focus our attention on the radially symmetric 
solutions, which have the form 

p(t, x) = p(t, r), 
X 

U(t, x) = - u(t, r), r = lxl, 
r 

(1.2) 

where u(t, r) is a scalar function. By plugging (1.2) to (1.1), we can rewrite 
(1.1) as in the form 

{ 
(rn-lP)t + (rn-lpu)r = 0, 

pu2 (rn-lu) 
(pu)t + (pu2 + p(p))r + (n - 1)--;- = µ( rn-1 r)r, t > 0, r > ro, 

(1.3) 
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whereµ= 2v + >.. Now, we consider the initial boundary value problems to 
(1.3) under the initial condition 

(p, u)(0, r) = (Po, uo)(r), r > ro, 

the far field condition 

lim (p, u)(t, r) = (P+, u+), t > 0, 
r--+oo 

(1.4) 

(1.5) 

and also the following two types of boundary conditions depending on the 
sign of the velocity on the boundary 

{ 
(p,u)(t,~o) = (p_,u_), 

u(t, r0 ) - u_, t > 0, 

t>0, (u_>0), 

(u_ :::; 0), 
(1.6) 

where P± > 0, U± are given constants. The case u_ > 0 is known as "inflow 
problem", the case u_ = 0 as "impermeable wall problem", and the case 
u_ > 0 as "outflow problem". For these initial boundary value problems, 
when the space dimension is one ( n = 1), there have been many results on 
the existence of time-global solutions and their asymptotic behaviors toward 
various nonlinear waves depending on the far field and boundary conditions, 
for example, toward stationary waves, rarefaction waves, viscous shock waves, 
and even their composite waves (cf. [3],[6],[7],,, etc.). On the other hand, 
when the problems are multi-dimensional (n ~ 2), there seem no results 
except the case U± = 0 studied by Jiang [2] and Nakamura-Nishibata-Yanagi 
[8]. They study more general compressible N avier-Stokes equation, describing 
the motion of viscous polytropic idea gas, Jiang [2] first showed the global 
asymptotic stability of the constant states, and later Nakamura-Nishibata­
Yanagi [8] extended the results to the case with external potential forces. As 
the first one step to study the multi-dimensional problems in more general 
cases u_ -/=- 0 or u+ -/=- 0, we showed in [5] the existence of the stationary 
solution in a suitably small neighborhood of the far field state, by using the 
similar arguments as in Germain-Iwabuchi [1]. In this survey we present the 
overview of our paper [5]. 

The stationary problem corresponding to the problem (1.3)-(1.6) is writ­
ten as 

r > r0 , 

(1. 7) 
lim (p, u)(r) = (P+, u+), 

r--+oo 

(p, u)(r0 ) = (P-, u_) (u_ > 0), u(r0 ) = u_ (u_ :::; 0). 
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From the first equation in ( 1. 7), we easily see it holds 

r ?: r0 , (1.8) 

for some constant E, and it also holds from the boundary conditions that 

n-l 
E = r0 p_u_ (u_ > 0), n-l ( ) E = r0 p r0 u_ (u_::; 0), (1.9) 

where note that in the case u_ < 0, E includes the unknown p(r0 ) which 
should be determined later. The formula (1.8) implies that if n ?: 2, 

u+ = lim u(r) = lim E1 = 0. 
r---too r---too rn- P+ 

(1.10) 

Hence, we need to assume u+ = 0 for the existence of multi-dimensional 
stationary solutions. Now we are ready to state the main results. 

Theorem 1.1. Let n ?: 2 and u+ = 0. Then, for any P+ > 0, there exist 
positive constants Eo and C satisfying the following: 

(I) Let u_ > 0. If lu- I+ IP- - P+ I ::; Eo, there exists a unique smooth solution 
(p, u) of the problem (1. 7) satisfying 

lp(r) - P+I ::; cr-(n-ll(lu-1 2 + IP- - P+I), 
(1.11) 

Furthermore, for any positive constant h, there exists a positive constant Ch 
such that it holds 

sup lp(r) - P+I::; Chlu-l 2 - (1.12) 
r2ro+h 

(II) Let u_ ::; 0. If lu- I ::; Eo, there exists a unique smooth solution (p, u) of 
the problem (1. 7) satisfying 

lp(r) - P+I::; cr-2(n-l)lu-l 2 , 

c-1r-(n-l)lu-l::; lu(r)I::; cr-(n-l)lu-1, r ?: ro. 
(1.13) 
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2 Preliminary 

In this section, we reformulate the problem (1.7). First, we assume u_ =/- 0 
in what follows. We also assume r0 = 1 without of loss of generality. Next, 
introduce the specific volume v by v = 1/ p (accordingly, denote V± by 1/ P±)­
Then, by (1.8) and (1.9), the velocity u is given in terms of v as 

E 
u(r) = - 1 v(r), r ~ 1, rn- (2.1) 

where E = u_/v_ (u_ > 0), and E = u_/v(l) (u_ :s; 0). Substituting (2.1) 
into the second equation of (1.7), and introducing a new unknown function 
rJ, as the deviation of v from the far field state v+, by 

rJ(r) = v(r) - v+, r ~ 1, (2.2) 

we obtain the following differential equation in terms of rJ(r) in the following 
reformulated problem: 

n-1 
rJr = _r - (fi( V+ + rJ) - P( V+)) 

Eµ 

+ EV+ _1_ + __!!J_ _ E( n - 1 )rn-l 100 rJ( s) ds 
2µ rn-1 µrn-1 µ r s2n-1 ' r > 1, 

{ 
lim rJ(r) = 0, 

r--+oo 

rJ(l) = rJ- := v_ - v+ (u_ > 0), 
no boundary condition (u_ < 0), 

(2.3) 

where E = u_/v_ (u_ > 0), and E = u_/(v+ + rJ(l)) (u_ < 0). We note 
p(v) := p(l/v), and it holds p'(v) < 0 (v > 0) by the assumption on p(v). 

Once the desired solution rJ of (2.3) is obtained, the velocity u is imme­
diately obtained by (2.1) as 

( ) - u_(v++rJ(r)) ( ) ( )- u_(v++rJ(r)) ( ) ( ) u r - 1 , u_ > 0 , u r - ( ( )) 1 , u_ < 0 . 2.4 V_rn- V+ + rJ 1 rn-

The theorem for the reformulated problem (2.3) which we need to prove is 

Theorem 2.1. Let n ~ 2. Then, for any V+ > 0, there exist positive con­
stants Eo and C satisfying the following: 

(I) Let u_ > 0. If lu- I + lrJ-1 :s; Eo, there exists a unique smooth solution rJ 
of the problem (2.3) satisfying 

r ~ l. (2.5) 
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Furthermore, for any positive constant h, there exists a positive constant Ch 
satisfying 

sup l77(r)I ~ Chlu-1 2 - (2.6) 
r:2'.ro+h 

(II) Let u_ < 0. If lu- I ~ Eo, there exists a unique smooth solution rJ of the 
problem (2.3) satisfying 

r?. l. (2.7) 

We can easily see that the main Theorem 1.1 is a direct consequence by 
Theorem 2.1, the formula (2.4). 

3 Proof of theorem 

3.1 Inflow problem 

In this subsection, we consider the case u_ > 0, that is, inflow problem, and 
show the result (I) in the Theorem 1.2. In this case, recalling E = u_/v_ > 0, 
we further rewrite the equation of T/ in (2.3) as in the form 

(3.1) 

where 

F[ ]( ) ·- EV+ 1 ErJ(r) E(n - l)rn-I ioo rJ(s) d rn-IN( ( )) 
rJ r .----+-------- -- s+-- rJr, 

2µ rn-1 µrn-1 µ r s2n-1 µE 

N(TJ) := p(v+ + TJ) - p(v+) - p'(v+)TJ. 

Solving the linear differential equation (3.1) in terms of rJ with the initial 
data rJ(l) = T/- and the inhomogeneous term F, we have, by the Duhamel's 
principle, 

where K, := -p'(v+)/(µn) > 0. Thus, to prove the existence of the solution 
of (2.3) with the decay rate estimate (2.5), we look for a solution of (3.2) in 
the Banach space X, with its norm II · llx, defined by 

X = {TJ E C([l, oo)); sup lrn-lrJ(r)I < oo}, IITJllx = sup lrn-lrJ(r)I- (3.3) 
r:2':1 r:2':1 
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To do that, we construct the approximate sequence { 'T/(m) }m~o by 

To show {'T/(m)}m~o is a Cauchy sequence in X for suitably small lu-1 + l'Tl-1, 
we prepare the following lemma. 

Lemma 3.1. (I) If E :::; nn_'\, then it holds that 

r?.. l. (3.5) 

(II) If E :::; 4(~~1), then there exists a positive constant C which is independent 
of E such that 

r ?._ l, f EX. (3.6) 

The proof is given by elementary calculations. Refer to [5] for the details. 

Now, by using Lemma 3.1, we show the uniform boundedness of 'T/(m) (m?.. 
0) in X for suitably small lu-1 + l'Tl-1• That is, we show that for any fixed 
V+, there exist positive constants Eo and C which are independent of u_ and 
'T/- such that if lu- I + l'Tl-1 :::; Eo, then there exists a positive constant M 
satisfying 

ll'T/(m) llx :::; M:::; C(lu- 12 + l'Tl-1), m?.. 0. (3.7) 

Here and in what follows, we use the letter C and Eo to denote generic positive 
constants which are independent of u_ and 'T/-, but may depend on V+ and 
other fixed constants like µ, n, ... , etc. For the proof, in particular, to use 
Lemma 3.1, we first assume 

V+ 
l'Tl-1 = Iv- - v+I :::; 2' 

nfW+ 
u_:::; 8(n-1)' (3.8) 

which assures 
u_ nK 

E=-<---. 
v_ - 4(n - 1) (3.9) 

Let us show (3.7) by mathematical induction: 

Case m = 0. Due to (3.9), we have from Lemma 3.1 that 
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Hence, we ask the constant M satisfy 

(3.11) 

so that it holds llr/0) llx :::; M. 

Case m = k + l (k ~ 0). Suppose (3.7) with m = k hold. Here we ask the 
constant M satisfy another assumption 

which, in particular, implies 

M V+ <­
- 2 ' 

(3.12) 

(3.13) 

Then, by using Lemma 3.1, (3.12),(3.13), and also the Taylor's theorem, we 
estimate ryk+l as follows: 

(3.14) 

(3.15) 

(3.16) 

I Cc2(n -1) I 2(n-1) 100 sn-lT/(k)(s) d I Cc2M Cl 12M 
3 :::; ----sup r 3n_2 s :::; - 3-:::; u_ ; 

µ r2".1 r S µ 
(3.17) 
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n-1 
/4 :S CEsuplrn-l(_r -N(r/k)(r)))I 

r21 µE 

:SQ· sup lfi"(t)I · sup(r2(n-l)l1/h)(r)l2) :S CM2 • 

2µ v+/2g9v+/2 r21 

Substituting (3.15)-(3.18) into (3.14), we obtain 

ll77(k+l)llx :S 177-1 + Clu-1 2 + CM2 . 

Therefore, we further assume 

1 
CM<­- 2' 

(3.18) 

(3.19) 

(3.20) 

so that (3.19) gives the desired estimate ll77(k+l) llx :S M. By elementary 
calculations, it is easy to see there exists a positive constant Eo such that if 
177-1 + lu-1 :S Eo, all the assumptions (3.8),(3.11),(3.12), and (3.20) hold, and 
in particular, M can be chosen by 

Thus, the uniform boundedness of 77(m) (m ~ 0) in X with the estimate (3.7) 
is proved. Once (3. 7) is proved, the proof to show { 77(m) }m2:o is a Cauchy 
sequence in X is very standard. In fact, by using Lemma 3.1, we may estimate 

ll77(m+l) - 77(m)llx = sup lrn-l J,r e-~(rn-sn)(F[77(m)] - F[77(m-l)])(s) dsl 
r21 1 

:S CEIIF[77(m)] - F[77(m-1)] llx, m ~ 1, 
(3.22) 

in the same way as in (3.15)-(3.18), and taking Eo suitably small again if 
needed, we can show 

which proves that {77(m)}m2:o is a Cauchy sequence in X. Thus, as the limit, 
the solution 77 of (2.3) with the desired estimate (2.5) is obtained. The 
arguments on the regularity and uniqueness of the solution are also very 
standard, so we omit them. 

Finally, we show the estimate (2.6), that is, the existence of the boundary 
layer for the density. We turn back to the equation in (2.3), and again rewrite 
it as 

a(77)rn-l 
77r - ---77 = q[77], r > 1, 

E 
(3.24) 
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where 

(3.25) 

Here we note that we already know the existence of the solution r, of (3.24) 
with the estimate (2.5). Solving the equation (3.24) in terms of r, with the 
initial data 77(1) = T/-, we have, by the Duhamel's principle, 

(3.26) 

By the estimate (2.5) and the assumption p(v) < 0 (v > 0), it is easy to see 
that there exist positive constants <5 and C satisfying 

-a(77(r)) 2:: <5, lq[r,](r)I S Cc, r 2:: 1. (3.27) 

Therefore, for any positive constant h, if r 2:: 1 + h, it follows from (3.26) 
and (3.27) that 

l77(r)I Se-¾ J; sn-ldsl'Tl-1 + lr e-¾ J; sn-1dslq[77](T)I dT 

S e-¾(r-l)IT/-I + Cc lr e-¾(r-T) dT 

S e-¾hl'Tl-1 + ~ c2 S Chlu-1 2 , 

(3.28) 

which proves the desired estimate (2.6). Thus, the proof for the case u_ > 0 
in Theorem 2.1 is completed. 

3.2 Outflow problem 

In this section, we consider the case u_ < 0, that is, outflow problem, and 
show the result (II) in the Theorem 1.2. In this case, recalling c = u_ / ( V+ + 
77(1)) < 0, we again rewrite the equation of 77 in (2.3) as in the form 

V+f5'(v+) n-l - G[ ] 
T/r - r 77 - 77 ' µu_ 

r > 1, (3.29) 
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where 

G[ ]( ) V+P'(v+)77(r)77(l) n-l u_v+ l 77 r ·= ------r + -------
. µu_ 2µ(v++77(l))rn-l 

u_rJ(r) (n - l)u_rn-l 100 77(s) d +------------ ------ s 
µ(v++ 77 (l))rn-1 µ r (v++ 77 (l))s2n-1 

+ (v+ + 77(l))rn-l N(77(r)). 
µu_ 

Noting u_ < 0, and solving the equation (3.29) in terms of 77 with the inho­
mogeneous term G and the far field condition 77( oo) = 0, we obtain 

r 2". 1, (3.30) 

where we recall K, = -p' ( V+) / (µn) > 0. This time, to prove the existence 
of the solution of (3.30) with the decay rate estimate (2.7), we look for a 
solution of (3.30) in the Banach space Y, with its norm II· IIY, defined by 

Y = {77 EC([l,oo)); suplr2(n-1)77(r)I < oo}, 
r::>1 

ll77IIY = sup lr2(n-l)77(r)l-
(3.31) 

r::>1 

By the same way as in the last section, we construct the approximate se­
quence { rJ(m) }m>O by 

To show the uniform boundedness, we prepare the following lemma. 

Lemma 3.2. For g EX, it holds that 

r 2(n-l)l100 e-~v~l(sn-rn)g(s)dsl ~ ~suplsn-lg(s)I, r2". l. (3.33) 
r nK,V+ s::>r 

Proof. It holds that 

l oo ,w+ ( n n) loo n1<v+ n-1( ) I r e-~s-r g(s)dsl~ r e-lu=Tr s-rs-(n-l)sCn-l)lg(s)lds 

~ r-2(n-1)~ sup lsn-lg(s)I, r 2". 1. 
nK,V+ s::>r 
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Thus, the proof of Lemma 3.2 is completed. 

By using Lemma 3.2, we can show that for any fixed V+ > 0, there exist 
positive constants Eo and C such that if lu- I :::; Eo, then there exists a positive 
constant M satisfying 

(3.34) 

as in the same manner of proof for the inequality (3.7). So we omit the 
details of the proofs of (3.34) and that {77(m)}m>O forms a Cauchy sequence 
in Y. 

References 

[1] P. Germain, T. Iwabuchi, Self-similar solutions for compressible Navier­
Stokes equations, to appear, arXiv:1903.09958. 

[2] S. Jiang, Global spherically symmetric solutions to the equations of a 
viscous polytropic ideal gas in an exterior domain, Comm. Math. Phys. 
178 (1996), 339-374. 

[3] S. Kawashima, S. Nishibata, and P. Zhu, Asymptotic stability of the 
stationary solution to the compressible Navier-Stokes equations in the 
half space, Comm. Math. Phys. 240 (2003), 483-500. 

[4] I. Hashimoto, A. Matsumura, Asymptotic behavior toward nonlinear 
waves for radially symmetric solutions of the multi-dimensional Burgers 
equation, J. Differential Equations, 266 (2019), 2805-2829. 

[5] I. Hashimoto, A. Matsumura, Existence of radially symmetric station­
ary solutions for the compressible N avier-Stokes equation, to appear in 
Methods and Applications of Analysis. 

[6] A. Matsumura, Inflow and outflow problems in the half space for a 
one-dimensional isentropic model system of compressible viscous gas, 
Methods and Applications of Analysis 8 (2001), 645-666. 

[7] A. Matsumura and K. Nishihara, Large-time behaviors of solutions to 
an inflow problem in the half space for a one-dimensional system of 
compressible viscous gas, Commun. Math. Phys. 222 (2001), 449-474. 

[8] T. Nakamura, S. Nishibata, and S. Yanagi, Large-time behavior of spher­
ically symmetric solutions to an isentropic model of compressible viscous 
fluid in a field of potential forces, Math. Models Methods Appl. Sci. 14 
(2004), 1849-1879. 



119

College of science and engineering 
Kanazawa university /OCAMI 
Kanazawa 920-1192 
JAPAN 
E-mail address: itsuko@se.kanazawa-u.ac.jp 




