
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

EISENSTEIN COHOMOLOGY AND
CM CONGRUENCES (Automorphic
forms, Automorphic
representations, Galois
representations, and its related
topics)

BERGER, TOBIAS

BERGER, TOBIAS. EISENSTEIN COHOMOLOGY AND CM CONGRUENCES (Automorphic forms, Automorphic
representations, Galois representations, and its related topics). 数理解析研究所講究録 2021, 2204: 159-165

2021-12

http://hdl.handle.net/2433/267817



159

EISENSTEIN COHOMOLOGY AND CM CONGRUENCES 

TOBIAS BERGER 
UNIVERSITY OF SHEFFIELD 

ABSTRACT. This note announces results on congruences between base changed 
Eisenstein cohomology classes and cuspidal cohomology classes over imaginary 
quadratic fields generalizing [Ber09]. 

1. INTRODUCTION 

This note is based on my talk given at the RIMS conference on "Automorphic 
forms, automorphic representations, Galois representations, and its related topics" 
on 28 January 2021 and reports on ongoing joint work with Adel Betina (University 
of Vienna). 

For K/Q imaginary quadratic let 'ljJ: AK/K*--+ C* be a Hecke character with 
'ljJ00 (z) = z-1 . Define 'l/Jc(x) := 'l/J(x) and write 'l/J- := 'ljJ/'ljJc. 

Consider p split in K/Q. Under some other mild conditions Hida proved in 
[Hid82] that if p I Lint(l, 'l/J-) then there exists a classical cuspidal eigenform f of 
weight 2 without CM such that f = J,;, mod p (where the latter denotes the CM 
form associated to 'l/J). Base changing to K this gives a congruence between the 
cuspidal Bianchi form BC(!) and an Eisenstein series with Hecke eigenvalues given 
by 'ljJ +'l/Jc. Since the p-adic Galois representation Pi: Gal(Q/Q)--+ GL2 (Qp) asso­
ciated to f stays irreducible under restriction to GK := Gal( K / K) one can apply 
Ribet's lattice construction from [Rib76] to construct extensions of ,(!Jc by 'VJ (where 
the tilde denotes the corresponding p-adic Galois characters). In particular, one 
obtains that p divides the order of a Selmer group associated to ,(!J-, in accordance 
with the Bloch-Kato conjecture for these Galois characters. This approach led to 
the proof of the anticyclotomic main conjecture (see e.g. [HT94]); for recent in­
vestigations of such CM congruences see [CWEHar] Theorem 4.2.2, and Corollary 
A.2.5. 

We prove the Eisenstein congruences over the imaginary quadratic fields directly, 
which also allows us to treat the case of p inert in K/Q. The integral structure 
we use is that of the Betti cohomology of the 3-manifolds r\H3 . Following Harder 
[Har87] we construct suitable Eisenstein cohomology classes in H 1 (f\H3 , Qp) for 
a pair of Hecke characters (c/Ji, </!2). The integrality properties of these classes, in 
particular, lower bounds on their denominators were studied in [Ber08]. In [Ber09] 
this was used to prove congruences between the Eisenstein and cuspidal cohomology 
classes in terms of L(O, cf;i/cf;2 ). Due to the existence of torsion in H;(r\H3 , Zp) 
[Ber09] proved unconditional results only when cf;i/ cf;2 was unramified. In this note 
we explain how in the anticyclotomic case c/>2 = 'ljJ and c/>1 = cf;~ · I · I (when the 
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Eisenstein cohomology class corresponds to the base change of the classical CM­
form associated to 'I/J) we can treat 'l/J of any conductor and therefore recover and 
generalize Hida's result for the Bloch-Kato conjecture for ,J;-. 

2. NOTATION 

We consider K -I Q ( i), Q ( H) an imaginary quadratic field with class number 
1 (for simplicity in this note). Let p > 3 split or inert in K/Q. We fix embeddings 
QYQPYC. 

Put G = ResK;Q(GL2) and write B for its Borel subgroup and T for its maximal 
split torus. Let K 00 = U(2) · C* C GL2(C). The Lie algebra fl = Lie(G/Q) is a 
Q-vector space and we define 900 = fl ®Q ResK/Q. It carries a positive semidefinite 
K 00-invariant form, the Killing form 

1 
(X, Y) = 16 trace(adX · adY), 

and with respect to this form we have an orthogonal decomposition 900 = £00 E9 p, 
where £00 = Lie(K00 ) and 

p = RH E9 ResK/Q E1 E9 ResK/Q E2 := R (~ ~l) E9 Re ~) E9 R ( ~i ~) · 

Puts±:= 1/2 ( ± (~ ~) 0R 1- ( ~i ~) 0R i) E Pc, 

3. EISENSTEIN COHOMOLOGY 

In this section we briefly recap the theory of Eisenstein cohomology classes. For 
more detail please see [Har87] and [Ber08]. 

For KC G(AJ) compact open with det(KJ) = Ok we have 

XK1 = G(Q)\G(A)/K1K00 = Xr = r\H3 
for r = K 1 n G(Q) and there is a long exact sequence of Betti cohomology groups 

(3.1) ... ----+ HJ(Xr, 0)----+ H 1(Xr, 0) ~ H 1 (8Xr, 0) ~ H;(Xr, 0)----+ ... , 

where X r is the Borel-Serre compactification and O is the ring of integers in a 
finite extension of Qp, 

Theorem 3.1 (Harder [Har87] Theorem 1). We have an isomorphism of G(A1 )­
modules 

(3.2) 1(8- Q) ffi K1 K1 H XKJ, = w v,t, E9 VWo-<P' 
,t, 

where the sum is over all c/; = (c/;1, c/;2) : T(Q)\T(A) ----+ C* with c/;00 (z) = (z, z-1) 
and wa.c/; = (c/;21 · I, c/;1 I· 1-1) and 

V,t, = lnd~/!~;Q,t, = {W: G(A1)----+ QIW(bg) = ef;(b)W(g)\/b E B(A1 )}. 

We write 9Jti for the conductor of ef;i, i = 1, 2 and put 9Jt = 9Jt19Jt2. By Casselman 
[Cas73] we know that 

(3.3) 
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where 

K 1(9Jl) = { (~ ~) E GL2(0K),d-1,c = 0 mod 9Jl} 

and i;r,new = IT i;r,new with 
</, V V 

(3.4) 

'li~=(g) ~ { :,,.(,;")1,,.(a)1,,c(d) 

otherwise, 

where 1r~ IIM2 and 1ri IIM1M2. 
Employing relative Lie algebra cohomology Harder constructs particular bound­

ary classes in 

H 1(8XKl('JJt), C) ~ H 1(goo, Koo, C00 (B(Q)\G(A)/C* K 1(9Jl))) 

realizing the isomorphism (3.2): 
Define 

as 

(3.5) Wq, (g) 

if </J 00 (z) = (z,z-1), 

if </J 00 (z) = (z,:Z- 1 ). 

Here K 00 acts on JJc by the adjoint action. We write [wq,] E H 1(8XK1('JJt), C) for 
the corresponding cohomology class. 

Using meromorphic continuation one can define 

-yEB(Q)\G(Q) 

[Har87] Theorem 2 shows that this defines a holomorphic closed form in 

H1(XK1('JJt), C) ~ H 1(900 , K 00 , C00 (G(Q)\G(A)/C* K1(M))) 

and we write [Eis(wq,)] for the corresponding cohomology class. 

Lemma 3.2. For v f M1M2 the class [Eis(wq,)] is an eigenvector for Tnv with 
eigenvalue <P1 ( 1r v) l1r v I; 1 + <P2 ( 1r v) 

4. CONSTANT TERM OF EISENSTEIN CLASS 

Harder showed in [Har87] that the image of [Eis(wq,)] under 

H 1 (Xr, C) ~ H 1 (8Xr, C) 

is given by 

(4.1) ([E. )]) ,T,new L(-1, </Ji/</J2)T (•T,new) 
res 1swq, = 'l' 1' + * L(O, <Pi/ <P2) q, 'l' 1' , 

where* is some non-zero factor and Tq, : V<P~t ➔ v;;/1' 1 is an intertwining operator. 

By combining [Har87] Theorem 2 and [Sch02] Proposition 2.2.2 we get: 
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Theorem 4.1 (Berger-Betina). We have 

res(Eis(w,t,)) = W,t, + c(cp)ww0 .,t,, 

where 

and 

where 
if .-\lo· = 1 

Kv 

if .-\lo· -=I- 1 
Kv 

with 'lj;: K\Ax-+ C* the standard additive character given by 'l/;q o Trx/Q· 

Using standard properties of epsilon factors and the functional equation for the 
Hecke L-values (and noting that c/Ji/c/J2 = (c/Ji/c/J2)c for this choice of (cp1, cp2)) we 
calculate: 

Proposition 4.2 (Berger-Betina). For cp2 : K*\AK -+ C* with c/J2,00 (z) = z-1 

put c/J1 := c/J~ ·I· I- Then 

so 

c(,1-,) = L(O, ~) W(,1-, /,1, ) .. rNm(9J1) . ±1 - ±1 
'+' L(O, c/Ji/c/J2) '+'l '+'2 V JNm(9J1) - ' 

and 
res(Eis(w,t,)) = W,t, ± W,t,c, 

5. DENOMINATOR OF EISENSTEIN CLASS 

For O the ring of integers in a sufficiently large finite extension E of Qp ( con­
taining e.g. the values of c/JilA• , i = 1, 2) and j.l its maximal ideal one can prove 

K,f 

the following p-integrality statement for the boundary class, as in [Ber08] Lemma 
15 but without the assumption that 9J119J12 is coprime top (note that c/J1 (9J12) E O* 
if j.l f 9J12O): 

Lemma 5.1. 
c/J1(9J12). [w,t,] E H 1(8Xr, O)\pH1(8Xr, 0). 

Harder proved that [Eis(w,t,)] E H 1(Xr, E) see e.g. [Ber08] Proposition 13. We 
define the denominator of [Eis(w,t,)] as follows: 

8([Eis(w,t,)]) := {a E Ola· [Eis(w,t,)] E H 1(Xr, 0) '-+ H 1(Xr, E)} 

By analogous calculations to those proving Proposition 18 in [Ber08] we can 
evaluate our Eisenstein cohomology class on the homology class corresponding to 
the modular symbol connecting the cusps 0 and oo: 

Proposition 5.2. 

{
00 Eis(w,t,) ((t 0)) (H) dt = !L(O,cp1)L(O,cp21)_ 

} 0 0 1 2 t 2 L(0,c/Ji/c/J2) 
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As the proposition calculates the evaluation pairing of the Eisenstein cohomology 
class against an integral cycle its value provides a lower bound on the denominator: 

Let n E C be the complex period of a Neron differential of an elliptic curve E 
defined over some number field such that E has complex multiplication by OK, 
E has good reduction at the place above p and w is a non-vanishing invariant 
differential on the reduced curve E. We define 

and 

Lint(l, c/>2) := Lin\o, ef>i/c/>2) := L(O, ~~/c/>2). 

We refer the reader to [Ber08] Theorem 3 for results on the p-integrality of these 
normalisations. 

Theorem 5.3 (Berger-Betina). For ef>2 : K*\AK --+ C* with ef>2,00 (z) = z-1 put 
c/>1 := c/>2 ·I· I and assume Lint(l, c/>2) E O*. Then 

J([Eis(w<t,)]) ~ (Lint(l, ef>2)). 

6. EISENSTEIN CONGRUENCES 

To recap, we have constructed [Eis(w<t,)] E H 1 (Xr, E) with 

res([Eis(w<t,)]) = [w<t,] ± [w<t,c] E H 1 (8Xr, 0) 

if p f 9Jt2 , and J • [Eis(w<t,)] E H 1 (Xr, O)/tors for (J) = J([Eis(w<t,)]) C 0. 
By the long exact sequence (3.1) we know 

J • fJ(res([Eis(w<t,)]) = 0 E H;(Xr, 0). 

However, H;(Xr, O)tors is often non-trivial, see the discussion in [Ber09] 4.4. 
As explained in [Ber09] Proposition 9, if there exists C<t, E H 1 (Xr, 0) with 

res(c<t,) = res([Eis(w<t,)]) E H 1 (8Xr, 0) 

then dq, := J • (c<t, - [Eis(w<t,)]) E HJ(Xr, 0) satisfies 

dq, = [Eis(w<t,)]J mod J. 

We describe in the following how we generalize the result on a p- integral lift of 
res([Eis(w<t,)]) for ef>i/c/>2 unramified ([Ber09] Proposition 12) to Hecke characters ef>2 
and c/>1 = c/>2 · I · I without restrictions on their conductors. 

Lemma 6.1 ([Ber09] Lemma 16). Suppose that we have an orientation reversing 
involution i on Xr such that 

where the superscript E = ±1 indicates the E-eigenspace for i. 
Then the restriction map is surjective onto H 1 (8Xr, O)e. 
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Proof. It suffices to prove the surjectivity of 

H 1 (Xr,0/pn) ~ H 1 (8Xr,0/pn)' 

for each n. 
We take the opportunity to repeat a correction to the proof of [Ber09] Lemma 

16: Instead of the Poincare pairing invoked there we need to use the Pontryagin 
duality pairing (which is non-degenerate also on torsion). 

We have the following diagram: 

X H 1 (Xr, E/0)~-----+ E/0 

lres 

X H 1 (8Xr, E/0)~----+ E/0 

la 
X H;(Xr, E/0)~-----+ E/0 

Here the vertical sequences are exact, the horizontal pairings are perfect and res 
and 8 are adjoint, i.e. 

(res(x),y) = (x,a(y)) 
for all x E H 1 (Xr,O),y E H 1 (8Xr,E/O). As the pairings are induced from the 
cup product and evaluation on the fundamental class (which is inverted by the 
involution i) the +1- and -1-eigenspaces are dual to each other. 

The adjointness of res and 8 and the perfectness of the pairings implies for all n 
that 

im(H1 (Xr, 0/wn) ~ H1(Xr, 0/wn)) = im(res)J_. 

The assumption of the Lemma implies 

H 1(8Xr,O/wn)" C im(res)_1_, 

so together this proves 

□ 

Theorem 6.2 (Serre [Ser70] Theoreme 9). For r = SL2 (0K) and i induced by 
( z, r) E H3 rt (z, r) one has 

1 res1- 1-
H (Xr, 0)---+ H (8Xr, 0)- c H (8Xr, 0). 

Let T (resp. T 0 ) be the 0-algebra generated by the Hecke operators Tv 
for v f 9Jh9Jh acting on H 1 (Xr, 0) (resp. H 1

1 (Xr, 0) := im(HJ(Xr, 0) ---+ 
H 1 (Xr,O)). Let m C T be the maximal ideal containing the Eisenstein ideal J 
generated by {T1rv - </>2(1rv) - cp~(1rv)} (and J° C T 0 defined analogously). 

In the following we assume p f # ( 0 /9Jt2 ) *. We write ip2 for the Hecke character 
with ip2,00 (z) = z-1 such that the p-adic Galois characters (/;2 and J~ are congruent 
modulo p and let J be the ideal generated by {T1rv - 1P2(1rv) - ip~(1rv)}, 

Theorem 6.3 (Berger -Betina). For i induced by (z,r) E H 3 rt (z,r) one has 
1 res1- ± 1-

H (Xr, O)m---+ H (8Xr, O)m c H (8Xr, O)m-
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Sketch of proof. Under our assumptions we have 

H 1 (8Xr, O)m c H 1 (8Xr, E)[J] EB H 1 (8Xr, E)[J]. 

By Theorem 3.1 and Casselman (3.3) we know H 1 (8Xr, E)[J] = Wq, · E EB Wq,c · E. 
Since i(wq,) = Wq,c Proposition 4.2 proves 

H 1 (Xr,E)[J] ~ H 1 (8Xr,E)±. 

The analogous statement (with the same sign) applies to H 1 (Xr,E)[J]. □ 

Together with the analogue of Lemma 6.1 this allows us to prove 

H 1 (Xr, O)m ~ H1(8Xr, O)! 

is surjective. As res([Eis(wq,)]) = [wq,] ± [wq,c] E H 1 ( ax r, O)~ this provides us with 
an integral lift to H 1 (Xr, 0) and we can apply [Ber09] Proposition 9 to prove: 

Theorem 6.4 (Berger-Betina). Assume p f SJJt2#(0/SJJt2)*. If Lint(l, 4>2) E O* 
then we have an 0-algebra surjection 

To /Jo__,, 0/Lint(l, (/)":i,). 
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