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Abstract

In comparison to 2D image data, 3D information is more closely related to

the human visual perception and helps intelligent machines better understand

the world. 3D information prediction and understanding, such as structure pre-

diction and semantic analysis, play significant roles in 3D visual perception.

Specific to the 3D structure, like depth data, although we can acquire it from

various 3D sensors, there still have been tremendous attempts made to predict

it from a single image, a video sequence, stereo data, or multi-modal data in

machine learning frameworks. The main reason is that the 3D sensors are usu-

ally costly and the captured 3D data is generally sparse and noisy. Moreover,

there are also numerous images in the website, of which we expect to obtain

the depth map. Recent studies have demonstrated the superiority of deep neural

networks, like deep convolutional neural networks (DCNNs), in relevant tasks.

Despite the great success of deep learning, there are still many challenging is-

sues to be solved. For example, although supervised deep learning has prompted

the great performance improvements of the depth estimation model, the demand

for amounts of ground truth depth data is hardly to satisfy in many scenarios.

Therefore, unsupervised learning strategy is required for training 3D structure

estimation model. In this thesis, we take a well-known specific task, i.e., monoc-

ular depth estimation, as an example to study this problem. To reduce the de-

mand for ground truth depth, we investigate the domain adaptation technique for

learning depth model on synthetic data and explore the geometric information

in real data to make the domain adaptation process aware of the geometric struc-

ture in real domain. Apart from the prediction from a single image or multiple

images, we can also estimate the depth from multi-modal data, such as RGB

viii
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image data coupled with 3D laser scan data. To achieve this, some challenging

issues need to be addressed. For example, since the 3D data is usually sparse

and irregularly distributed, we are required to model the contextual information

from the sparse data and fuse the multi-modal features. In this thesis, we ex-

amine the issues by studying the depth completion task. In specific, we propose

to adopt graph propagation to capture the observed spatial contexts and intro-

duce the symmetric gated fusion strategy to effectively combine the extracted

multi-modal features.

Currently, various classical DCNNs have been proposed to process the 2D

image data for various analyses, like semantic understanding. In contrast, for 3D

point set, which is a significant 3D information representation, due to the spar-

sity and property to be unordered, instead of the conventional convolution, new

operations which can model the local shape are required in order to understand

the semantic contents. In this thesis, we select the point sets as the represen-

tation of 3D data, i.e., 3D point cloud, and then design a basic operation for

point cloud analysis. Previous works mainly consider the relation between each

pair of adjacent points for feature aggregation but ignore the relation between

edges, which encodes the local shape structure. To provide a remedy, we intro-

duce a novel adaptive edge-to-edge interaction learning module. Besides, due

to the diversity in configurations of the 3D laser scanners, the captured 3D data

often varies from dataset to dataset in object size, density, and viewpoints. As

a result, the domain generalization in 3D data analysis is also a critical prob-

lem. However, to our best knowledge, this problem is still under-explored. To

provide a preliminary exploration into this issue, we also study domain gener-

alization in 3D shape classification by proposing an entropy regularization term

that measures the dependency between the learned features and class labels.

Through studying four specific tasks, this thesis focuses on several crucial

issues in deep 3D information prediction and understanding, including model

designing, multi-modal fusion, sparse data analysis, unsupervised learning, do-

main adaptation, and domain generalization, as introduced above.
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CHAPTER 1

Introduction

We live in a 3D world. We naturally understand the scene we are seeing, such as

objects, scene structure, and object relation, through parsing the 3D information

we directly capture from the 3D world. For an intelligent machine, it can also

infer rich knowledge from the data containing 3D information, e.g., geomet-

ric structure, which has been exploited in various scenarios, like autonomous

driving (Chen et al., 2017b), indoor navigation (Zhu et al., 2019), robot manip-

ulation (Mousavian et al., 2019), augmented reality (Stekovic et al., 2020), and

virtual try-on (Pons-Moll et al., 2017). We can obtain the 3D structure infor-

mation using different sensors, such as Kinect, LiDAR, and RADAR. However,

these sensors are usually costly and the captured 3D data is generally sparse

and noisy. More importantly, there are numerous single images and video se-

quences in the website. Therefore, it is worth studying how to extract the 3D

structure, such as depth information, from them, which can be further utilized to

serve the downstream tasks, like object detection (You et al., 2019), room layout

estimation (Zhang et al., 2020), and saliency detection (Zhang et al., 2021b).

Previous studies show that the human visual system can perceive specific 3D

forms in single 2D contour images through associating 2D pictures with 3D

structures (Sinha and Poggio, 1996). However, it is a challenging task for ma-

chine to capture the 3D information from single or multiple images. Traditional

solutions to this target generally rely on handcrafted features, e.g., HOG (Dalal

and Triggs, 2005), SURF (Bay et al., 2008), and SIFT (Lowe, 1999), and typi-

cal machine learning algorithms, like PGMs (Saxena et al., 2006; Saxena et al.,

1
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2009). Past several decades have witnessed the advancement gained by these

conventional approaches for various computer vision tasks, including 3D struc-

ture estimation. However, designing suitable features for specific tasks itself

is a tricky problem, and decoupling the feature engineering and model learn-

ing might cause that we cannot extract discriminative knowledge from the input

data, like images. Luckily, in the deep learning era, these awkward issues have

been alleviated greatly.

In 2012, a noteworthy work, AlexNet (Krizhevsky et al., 2012), was proposed,

which outperformed previous object recognition methods by a large margin.

The presences of AlexNet and several classical networks (e.g., VGGNet (Si-

monyan and Zisserman, 2015), GoogleNet (Szegedy et al., 2015), and ResNet (He

et al., 2016)) following it have prompted the impressive development of DCNNs

in the computer vision research community, especially for the 2D image under-

standing tasks. Despite being efficient for various computer vision tasks, these

networks still have limitations in, such as, dense pixel prediction, sparse data

representation, context modeling, and sequence modeling to name a few. To

provide remedies, various strategies and modules are proposed to integrate with

or replace the 2D convolution in those classical networks, such as, Atrous Spa-

tial Pyramid Pooling (ASPP) (Chen et al., 2017a), Sparse Convolution (Graham

et al., 2018), Deformable Convolution (Dai et al., 2017b), Transformer / Atten-

tion (Vaswani et al., 2017), and Convolutional LSTM (ConvLSTM) (Xingjian

et al., 2015).

The early study on deep learning for computer vision mainly focuses the 2D

image analysis, including object detection (Girshick et al., 2014), semantic seg-

mentation (Long et al., 2015), and 3D structure prediction from images (Eigen

et al., 2014). Relying on DCNNs, remarkable performance improvements have

been achieved for 3D structure prediction, like depth estimation. In recent years,

both academic and industrial circles attempt to make the autonomous driving

and robotics existing our imagination become true. In these intelligent systems,
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one key computer vision problem is estimating the 3D structure in a learning

framework, while another is processing and understanding the data containing

3D information captured from the equipped sensors, like 3D laser scan data, or

estimated using machine learning algorithms, like depth map. In comparison

with 2D image analysis, the selection of deep networks for 3D information un-

derstanding relies more on the data format. For example, the RGB-D saliency

detection (Peng et al., 2014) and RGB-D segmentation (Wang and Neumann,

2018) tasks often take an RGB image and a depth map as input, which can be

processed by the standard 2D convolution separately (Fu et al., 2020) or jointly

by the 3D convolution (Chu et al., 2018). In comparison to the typical RGB-D

saliency detection and RGB-D segmentation, in some scenarios where 3D laser

scanners are available, we are often required to process the raw 3D information,

like 3D point cloud, which is sparse and irregularly distributed, directly. Due

to the sparsity and irregular characteristic, it is difficult to apply the standard

2D or 3D convolution into the raw 3D data. As a result, existing works often

first select a specific representation for 3D data, such as voxels (Choy et al.,

2019), meshes (Hanocka et al., 2019), and points (Qi et al., 2017a), and then

design or select suitable operations, like sparse convolutions (Choy et al., 2019),

mesh convolutions (Hanocka et al., 2019), graph convolutions (Zhang and Rab-

bat, 2018), and multi-layer perceptron (Qi et al., 2017b), to extract features for

high-level semantic analysis.

Designing suitable networks for specific tasks using the domain knowledge, im-

proving the robustness and generalization capabilities of deep models, and un-

derstanding the theory behind the deep learning are crucial issues for building

future intelligent systems and are still ongoing. In this thesis, we study two prob-

lems in 3D vision, including 3D information prediction and understanding, and

show our efforts to investigate the former two key issues in these two problems.

Our research on the first problem could help the industries develop efficient 3D

structure prediction deep networks by mining the specific domain knowledge,
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while the study on the second could provide some solutions to the issues in

real world applications, such as the lack of ground truth data and distribution

inconsistency.

1.1 Depth Prediction and Point Cloud Analysis

There are various ways to obtain the 3D structure, which can be divided two

main categories, i.e., sensors and learning. In specific, a direct way to capture

the structure is using sensors, such as Kinect for indoor and LiDAR for outdoor.

However, these devices are usually costly and the captured 3D data is gener-

ally sparse and noisy. Moreover, in some scenarios, we expect to extract the

structure information from images. To this end, lots of traditional machine al-

gorithms (e.g., HOG+PGMs) and deep learning algorithms have been proposed

for relevant tasks. Since depth data is a significant 3D structure representation,

a large number of previous works focus on the depth prediction task. Due to the

strong capability of modeling the discriminative features, deep learning, espe-

cially DCNNs, has dominated the depth estimation community. For example,

Eigen et al. (Eigen et al., 2014) make the first attempt to apply DCNNs for depth

estimation from a single image. In comparison with single images, stereo data,

multi-modal data (e.g., RGB image+sparse depth data), and video data contain

more geometric information, which is helpful to promote the performance in

depth estimation. In detail, deep stereo matching (or disparity estimation) mod-

els can be trained from a set of stereo images (Chang and Chen, 2018; Cheng

et al., 2020b). Moreover, exploiting the epipolar geometry, we can also learn a

monocular depth estimation model from stereo data in a unsupervised learning

framework (Garg et al., 2016; Godard et al., 2017). In this way, we can reduce

the dependency on amounts of ground truth data. Structure-from-motion (SFM)

is an essential computer vision problem, which aims at inferring the geometric

structure from the motion information contained in a video sequence. In recent

years, various unsupervised deep learning methods have been proposed to learn
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the depth, camera pose, and optical flow jointly from videos (Yin and Shi, 2018;

Ranjan et al., 2019). In autonomous driving, as the RGB data and sparse 3D

laser scan data are available simultaneously, how to recover a dense depth map

from the multi-modal data, which is also called Depth Completion (Uhrig et

al., 2017), has attracted interests from researchers recently. Two key points for

depth completion include sparse data processing and multi-modal data fusion,

while most of previous methods only attempt to solve one of them (Jaritz et al.,

2018; Eldesokey et al., 2019; Van Gansbeke et al., 2019).

Different from depth estimation, which mainly takes 2D image or sequence as

input, analyzing data containing 3D information, such as 3D point cloud and

depth data, might involve multiple selections of input data format. As a result, in

many cases, we are required to design novel operations for specific data format

to analyze the input data instead of using the standard 2D and 3D convolutions.

For instance, for typical RGB-D saliency task, we can directly exploit the 2D

convolution (Peng et al., 2014), while for point cloud analysis, an extensively

studied problem, we might need to first represent the points in a suitable way and

then develop new operations. In detail, in (Hanocka et al., 2019), the mesh rep-

resentation is adopted and then two novel operations, i.e., mesh convolution and

mesh pooling, are proposed to process the irregular triangular meshes. In com-

parison, voxelization is a more general operation for point cloud representation,

and the voxelized points can be processed by the 3D convolution (Maturana and

Scherer, 2015) directly or sparse convolution (Choy et al., 2019) which is spe-

cially designed for the sparse data. However, due to the low resolution caused

by voxelization, the voxel-based approaches might suffer from quantization loss

of the structure. To alleviate this issue, another representation, i.e., point sets,

is widely adopted. In this way, different functions for associating the adjacent

points to represent the local shape are proposed, such as EdgeConv (Wang et

al., 2018b), RSConv (Liu et al., 2019d), and KPConv (Thomas et al., 2019).
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Whether for deep learning based depth prediction or point cloud understand-

ing, one key issue is the performance drop caused by domain shifts, which oc-

cur when the testing target data is sampled from a different distribution to the

source training data. According to the specific settings, two important research

problems, i.e., domain adaptation (Pan and Yang, 2009) and domain general-

ization (Blanchard et al., 2011), are defined. In detail, in domain adaptation,

we have access to one or multiple source domains with ground truth data and

one target domain without ground truth data, while in domain generalization,

we only have multiple source domains and no distribution information about

the target. The differences between domain adaptation and generalization cause

the different solutions to them. For example, in domain adaptation, since the

target data is available, we can directly learn a mapping between the source and

target domains (Saenko et al., 2010; Sun and Saenko, 2016) or use the self-

paced curriculum learning to generate pseudo-labels for model training (Zou

et al., 2018). In comparison, when we have no access to the target data, we

can address domain generalization through learning domain-invariant features

from the source domains (Li et al., 2018d) or exploiting the data augmentation

strategy (Xu et al., 2021b). Specific to 3D structure prediction and point cloud

data understanding, there are many works studying domain adaptation in depth

prediction, 3D object detection, and semantic segmentation. For instance, At-

apour et al. (Atapour-Abarghouei and Breckon, 2019b) train a monocular depth

estimation on synthetic dataset, and use image style transfer task as domain

adaptation technique to minimize the domain discrepancy between synthetic

and real data. To cope with domain adaptation in stereo matching, Sakuma et

al. (Sakuma and Konishi, 2021) propose an attention mechanism for the ag-

gregation of features in the left and right views, which is incorporated into an

image-to-image translation network for preserving the geometric structure dur-

ing image translation. For 3D data analysis, the domain shifts often result from

the geometric characteristics changes, like point cloud density, object scale, and

distance of an object to the sensors. To deal with the issues, Zhang et al. (Zhang
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et al., 2021a) propose to align the features at multiple scales with the distance

information for 3D object detection, while Yi et al. (Yi et al., 2021) design a

sparse voxel completion network to address the domain gap caused by different

3D point sampling strategy for 3D semantic segmentation. Although domain

adaptation techniques in 3D structure prediction and analysis have been stud-

ied well, to our best knowledge, domain generalization in these relevant tasks,

especially point cloud analysis, is still under-examined.

As we introduced above, 3D information prediction and understanding involve

various specific tasks and issues. In this thesis, we take two well-known prob-

lems, i.e., depth prediction and point cloud analysis, to show our studies and

efforts on deep 3D information prediction and understanding, respectively. In

detail, through studying four specific tasks, including monocular depth estima-

tion, depth completion, point cloud representation, and domain generalization,

we aims at investigating several crucial issues, i.e., 1) depth estimation from a

single image with domain adaptation in a unsupervised learning framework; 2)

dense depth recovery from a single RGB image and sparse depth data; 3) local

shape representation for point cloud analysis; and 4) domain generalization in

3D shape classification. In the following, we briefly introduce these tasks and

review some related works.

1.1.1 Monocular Depth Estimation

Monocular depth estimation is a straightforward way to predict 3D structure

from a single image using (deep) learning algorithms. Relying on the pow-

erful capability of modeling the contextual information, DCNNs have domi-

nated the research community in monocular depth estimation. In specific, Eigen

et al. (Eigen et al., 2014) develop the first deep network for monocular depth

estimation, which consists of two components, i.e., a global coarse-scale sub-

network and a local fine-scale sub-network. The global one predicts the overall

depth map structure, while the local one aligns the global representation with
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local details, such as object and wall edges, to refine the coarse prediction. The

whole model is trained on datasets containing labeled pairs of aligned RGB and

depth images in an end-to-end fashion using a scale-invariant regression loss,

which is adopted to address the scale ambiguous of objects. Following (Eigen

et al., 2014), various networks with the encoder-decoder structure have been

proposed. For example, in (Laina et al., 2016), the novel up-projection block

containing a residual connection (He et al., 2016) is introduced to replace the

unpooling operation (Dosovitskiy et al., 2015b) for increasing the spatial resolu-

tion of feature maps. In comparison with unpooling, up-projection is beneficial

to yielding more accurate depth maps. Considering the continuous nature of the

depth values, Liu et al. (Liu et al., 2016a) explore the capacity of DCNNs and

continuous conditional random field (CRF) jointly in an end-to-end deep net-

work. To model the inherent ordinal correlation of depth values, Fu et al. (Fu

et al., 2018) consider depth estimation as an ordinal regression problem instead

of a regression problem and propose an ordinary regression loss. The proposed

model outperforms all previous methods. These methods yield high-performing

depth maps, benefiting from the supervision of amounts of ground truth data.

However, labelling ground truth depths is both costly and difficult. To reduce

the demand of ground-truth training data, various unsupervised monocular depth

estimation approaches (Godard et al., 2017; Garg et al., 2016) have been pro-

posed. The main clue they exploit is the epipolar geometry constraint existing

in the rectified stereo data. Such strategy only requires rectified stereo pairs

without ground truth depths during training, which are easier to collect than

the pair of RGB image and depth map. Similar clue can be also found in later

works which train unsupervised monocular depth estimation network on video

sequences (Zhan et al., 2018; Yin and Shi, 2018).
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Another solution to avoiding labelling the depth map for each image is using

synthetic images with ground truth depth, which can be acquired from the vir-

tual environment easily, like GTAV 1. However, due to the domain shifts from

synthetic data to real-world data, the model trained on synthetic data generally

suffers performance drop on real data. To address this issue, domain adaptation

techniques (Pan and Yang, 2009) are exploited through minimizing the domain

gap. A typical solution to transferring knowledge from synthetic images with

ground truth depth is exploiting the image-to-image translation technique to im-

plement image style transfer and then feeding the transferred images into the

depth estimation model (Atapour-Abarghouei and Breckon, 2019b; Zheng et

al., 2018). However, the image-to-image translation process often introduces

undesirable distortions, which can degrade the performance of successive depth

prediction, due to the lack of paired images during the training stage of im-

age translation. To deal with this issue, in this thesis, we propose to explore

the labels in the synthetic data and epipolar geometry in the real data jointly,

which we prove that can be of benefit to better image style transfer and better

depth prediction performance through conducting comprehensive experiments

and ablations.

1.1.2 Depth Completion

In fact, estimating depth from a single image is always a very challenging task.

Luckily, in some scenarios, we have access to multiple data sources, which can

be exploited jointly for depth estimation. For instance, in an autonomous driving

system, we can capture the RGB image using the camera, and the 3D laser scan

data containing the depth and reflectance information using LiDAR. Projecting

the laser scan onto a 2D image plane results in a 2D depth map, which contains

sparse depth information. To make the depth data denser, we can integrate the

1https://github.com/aitorzip/DeepGTAV
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sparse depth map with the dense RGB image data and then train a depth esti-

mation model on them. Such task is called depth completion, which aims to

recover a dense depth map from a pair of RGB image and aligned sparse depth

map (Uhrig et al., 2017). Considering that the depth data is sparse and irregu-

larly distributed, some of previous works propose new convolution operations

specific for sparse depth data processing. For example, Uhrig et al. (Uhrig et al.,

2017) propose a sparsity-invariant convolution, which, in comparison with the

standard convolution, evaluates only pixels with depth values by exploiting bi-

nary validity masks. Instead of using the binary masks, Eldesokey et al. (Eldes-

okey et al., 2019) propose an algebraically-constrained normalized convolution,

where learned confidence maps with values ranging from 0 to 1 are used to nor-

malize the feature maps. Another way to exploit the sparsity is propagating the

depths directly. For example, Cheng et al. (Cheng et al., 2018) propose to learn

an affinity matrix for spatial depth propagation, while Park et al. (Park et al.,

2020), inspired by deformable convolution (Dai et al., 2017b), propose to prop-

agate the depth non-locally by learning the locations of the neighbours dynami-

cally. Besides, there are some works which do not consider the sparsity specially

and instead focus more on the multi-modal fusion or geometric constraints. For

instance, Jaritz et al. (Jaritz et al., 2018) study two fusion strategy, namely early

fusion (concatenate the input maps) and late fusion (concatenate the intermedi-

ate feature maps), and the experiments show that the later one performs better.

Gansbeke et al. (Van Gansbeke et al., 2019) design two sub-networks for global

and local information extraction and exploit the RGB image as guidance to help

the local branch detect the noises in the LiDAR data. To utilize the 3D geometry

information to regularize the depth completion, both Xu et al. (Xu et al., 2019)

and Qiu et al. (Qiu et al., 2019) associate the surface normal information with

the depth information within a sub-network.
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Previous works mainly exploit the convolution with fixed-size kernel to pro-

cess the sparse depth map, which cannot utilize the observed contextual infor-

mation effectively. In addition, these works usually consider either sparsity or

multi-modal fusion, while not both of them. In this thesis, we exploit the graph

propagation strategy to capture the multi-modal contexts adaptively and further

propose a symmetric gated fusion strategy for better multi-modal fusion.

1.1.3 Point Cloud Processing

Point cloud generally refers to a point set containing N unordered 3D points

{(pi, fi)}Ni=1, wherefi denotes the feature vector of point pi ∈ R3. Point cloud

processing aims to learn a local representation for each sampled point, which

can then be used for various tasks, such as classification (Wu et al., 2015), se-

mantic segmentation (Armeni et al., 2016), and point cloud completion (Tchapmi

et al., 2019). Due to the sparse, irregular and unordered structure of point cloud,

it is difficult to directly apply the standard 2D and 3D convolutions, which have

been widely applied on 2D image data, for point cloud processing. To tackle

this issue, current works mainly design deep networks from two perspectives,

namely generic operation and concrete task. In detail, some works aim to de-

sign a novel basic operation to represent the local shape effectively and the op-

eration can be stacked into a deep network for classification and segmentation

like the 2D convolution. In comparison, some other works do not develop new

basic operations and instead they focus more on task-relevant learning strategy,

such as the boundary information modeling for semantic segmentation (Gong et

al., 2021), candidate generation for instance segmentation (Jiang et al., 2020b;

Jiang et al., 2020a), and self-supervised learning for unlabelled point cloud

data (Sauder and Sievers, 2019). In this thesis, we follow the former route,

i.e., developing a new basic operation for local shape representation.
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Although it is challenging to apply the standard convolution into the point cloud

data directly, we can achieve it by voxelizing the points. The volumetric repre-

sentation can then be fed into the conventional 3D CNNs (Maturana and Scherer,

2015). In fact, as the volumetric representation is still sparse, to reduce compu-

tational costs and memory requirements, sparse convolutions (Choy et al., 2019)

are proposed as the basic operation, where only the occupied voxels are calcu-

lated. To avoid voxelization, which causes low resolution and then the loss of

the structure information, various works aiming at learning representations from

the raw point cloud directly have been proposed. For this solution, the basic op-

eration is required to be permutation-invariant, since the points are unordered.

PointNet (Qi et al., 2017a), the first attempt to this clue, utilize the MLP as

the basic operation to process each point and then use the max-pooling opera-

tion to get the global representation. Following this work, lots of approaches

are proposed to improve the basic local shape representation operation through,

such as, considering the local structure (Qi et al., 2017b), modeling the rela-

tion between adjacent points (Liu et al., 2019d; Wang et al., 2018b), exploiting

robust sampling strategy (Yan et al., 2020; Yang et al., 2019a), adopting the at-

tention mechanism (Wang et al., 2019b), or introducing kernel points (Thomas

et al., 2019; Xu et al., 2021a). A common operation in most of these works

is modeling the point-to-point relation, which is used to associate the features

of adjacent points. However, they often model the relation for each pair of ad-

jacent points solely, which might make the learned representation for the edge

lack the local structure information and thus not robust and discriminative. To

alleviate this issue, we propose a novel module to model the edge-to-edge inter-

action, which can enhance the point-to-point relation and then improve the local

structure representation. Experiments on several public datasets demonstrate

the effectiveness of our methods.
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1.1.4 Domain Adaptation and Generalization

An ideal situation for deep learning is the training data and the testing data

come from the same distribution. However, this condition might not hold true in

many cases, i.e., the training and testing data are sampled from different distri-

butions respectively. Due to dataset bias (Gretton et al., 2009), a typical model

trained on the training (source) data often fails to generalize well to the test-

ing (target) data, and domain adaptation aims to address such an issue. We can

achieve domain adaptation through learning a domain-invariant feature repre-

sentation (Ganin and Lempitsky, 2015; Ganin et al., 2016) or learning a map-

ping between the source and target domains (Gong et al., 2012; Saenko et al.,

2010). A typical solution to learning domain-invariant representations is intro-

ducing a gradient reversal layer and minimizing the domain gap between source

and target domains in an adversarial way (Ganin et al., 2016). Domain mapping

aims to transfer the data in one domain to a space where the source and target

domains have similar distributions. For example, we can use image-to-image

translation technique (Zhu et al., 2017) to make the images in source domain

have the same style to target domain. Domain shift is a common issue existing

in computer vision. As a result, domain adaptation techniques have been stud-

ied for various tasks, such as segmentation (Li et al., 2020b; Zhang et al., 2017;

ZHANG et al., 2019a), object detection (Chen et al., 2018; Khodabandeh et al.,

2019), and re-identification (Deng et al., 2018; Bak et al., 2018). In this thesis,

we study the domain adaptation problem in a well-known 3D structure predic-

tion task, i.e., monocular depth estimation, by exploring the geometric structure

of natural images.

In comparison with domain adaptation, domain generalization is more challeng-

ing, due to the lack of target data. In detail, in the setting of domain general-

ization, we only have multiple source domains available but have no access to

the target domain, and the model trained on the source domains is required to

generalize well to the target. Since multiple source domains are available, a
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classic solution for domain generalization is learning a domain-invariant feature

representation across source domains (Li et al., 2018d; Muandet et al., 2013).

For example, Li et al. (Li et al., 2018d) exploit the adversarial learning to min-

imize the domain gap across the source domains for each category. Recently,

another effective solution, i.e., data augmentation, has been widely studied in

many works (Zhou et al., 2020a; Xu et al., 2021b; Zhou et al., 2020b). For

instance, Xu et al. (Xu et al., 2021b) propose a Fourier-based data augmenta-

tion strategy, motivated by the property of the Fourier transformation that the

phase component of Fourier spectrum contains the high-level semantic infor-

mation and the amplitude component contains the low-level information. By

using the MixUp strategy (Zhang et al., 2018a) to perturb the amplitude in-

formation in the original images, new images are generated, which are then

used to train the model together with the original data. 2D object classification

task is commonly used to evaluate the generalization capability in the domain

generalization literature, while recently some works have studied the domain

generalization in more complex tasks, such as semantic segmentation (Yue et

al., 2019; Choi et al., 2021) and re-identification (Zhao et al., 2021). Domain

shifts also exist in 3D data, like point cloud data, and domain adaption on 3D

point cloud has been studied in many works (Yi et al., 2021; Achituve et al.,

2021). However, to the best of my knowledge, there is no work studying the

typical domain generalization problem for point cloud tasks, like shape clas-

sification. To provide an initial exploration to this problem, in this thesis, we

study the domain generalization problem in 3D shape classification. Consider-

ing the dependency between the learned features and the category, we propose

an entropy-regularization approach, which ensures the conditional invariance of

learned features and then improves the domain generalization capabilities. We

validate the effectiveness of our method on both 3D and 2D object classification

datasets.
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1.2 Outline

In the first chapter, we first present the problem of deep 3D information predic-

tion and understanding, then introduce four specific tasks, including monocular

depth estimation, depth completion, point cloud analysis, and domain gener-

alization. Through studying these tasks, we investigate several crucial issues,

such as multi-modal fusion, unsupervised learning, and model generalization,

in deep 3D information prediction and understanding. The reminder of this the-

sis is organized as five chapters, and the outline is as follows:

• Chapter 2 This chapter studies the domain adaptation technique and

unsupervised learning in 3D structure prediction by examining the well-

known monocular depth estimation task. We study how to explore the

geometric structure of natural images to improve the performance of

image-to-image translation and depth estimation model.

• Chapter 3 This chapter studies the sparse data representation and

multi-modal fusion in 3D structure prediction by investigating the depth

completion task. We present how to exploit graph propagation strategy

to capture rich contextual information for the sparse data, and intro-

duce an effective strategy for multi-modal fusion.

• Chapter 4 This chapter studies how to design novel operations for

sparse data representation in understanding data containing 3D infor-

mation by exploring the relation learning in point cloud analysis. We

propose a novel edge-to-edge interactive learning module to enhance

the point-to-point relation for point cloud processing.
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• Chapter 5 This chapter studies the challenging domain generaliza-

tion problem in processing data containing 3D information. We inves-

tigate the naive adversarial training for domain-invariant representa-

tions, and propose an entropy regularization approach to guarantee the

conditional invariance of learned features. The method is evaluated on

both 3D and 2D object classification datasets.

• Chapter 6 This chapter concludes our thesis and suggests some fu-

ture research possibilities.

1.3 Contributions

The main contributions of the thesis are summarized as follows:

• In Chapter 2, we propose an end-to-end domain adaptation framework

for unsupervised monocular depth estimation. We explore the labels

in the synthetic data and epipolar geometry in the real data jointly to

preserve the geometric structure during image translation. By conduct-

ing experiments, we show that training the monocular depth estima-

tor using ground truth depth in the synthetic domain coupled with the

epipolar geometry in the real domain can boost the performance. We

demonstrate the effectiveness of our method on KITTI dataset (Menze

and Geiger, 2015) and the generalization performance on Make3D

dataset (Saxena et al., 2009).

• In Chapter 3, we introduce the proposed co-attention guided graph

propagation for depth completion, which is adaptive to the sparsity pat-

terns of sparse depth input and thus enables the unobserved pixels to

capture useful observed contextual information more effectively. To

fuse the multi-modal contextual information better, we further present
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the symmetric gated fusion strategy, which can learn the heterogene-

ity of the two modalities adaptively. We demonstrate the effective-

ness of our model on two benchmarks, i.e., KITTI Depth Completion

dataset (Geiger et al., 2012a) and NYU-v2 dataset (Silberman et al.,

2012).

• In Chapter 4, we propose an adaptive edge-to-edge interaction learning

module for point cloud analysis, i.e., AE2IL, which is able to enhance

the learned point-to-point relation and makes it more aware of the local

structure. We further extend the AE2IL to a symmetric version, namely

SymAE2IL, for better capturing the local shape information. Then, we

exploit the proposed modules to design models for point cloud classi-

fication and segmentation. We conduct experiments on several public

point cloud datasets, and the results show that our methods outperform

previous approaches and achieve state-of-the-art performance.

• In Chapter 5, we first revisit the typical domain-invariant feature rep-

resentation learning methods for domain generalization, and then ar-

gue that the naive adversarial training can only guarantee the invariant

marginal distribution across source domains. To improve the domain

generalization capability, we propose an entropy regularization term to

ensure the conditional invariance. Together with the adversarial train-

ing on the marginal distribution, our method achieves better general-

ization capabilities in both 3D shape classification task and 2D object

recognition task.



CHAPTER 2

Geometry-Aware Symmetric Domain Adaptation for

Monocular Depth Estimation

Supervised depth estimation has achieved high accuracy due to the advanced

deep network architectures. Since the groundtruth depth labels are hard to ob-

tain, recent methods try to learn depth estimation networks in an unsupervised

way by exploring unsupervised cues, which are effective but less reliable than

true labels. An emerging way to resolve this dilemma is to transfer knowledge

from synthetic images with ground truth depth via domain adaptation tech-

niques. However, these approaches overlook specific geometric structure of

the natural images in the target domain (i.e., real data), which is important for

high-performing depth prediction. Motivated by the observation, we propose a

geometry-aware symmetric domain adaptation framework (GASDA) to explore

the labels in the synthetic data and epipolar geometry in the real data jointly.

Moreover, by training two image style translators and depth estimators symmet-

rically in an end-to-end network, our model achieves better image style transfer

and generates high-quality depth maps. The experimental results demonstrate

the effectiveness of our proposed method and comparable performance against

the state-of-the-art.

2.1 Introduction

Monocular depth estimation (Saxena et al., 2006; Saxena et al., 2009; Eigen

et al., 2014; Ladicky et al., 2014) has been an active research area in the field
18
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of computer vision. Recent years have witnessed the great strides in this task,

especially after DCNNs were exploited to estimate depth from a single image

successfully (Eigen et al., 2014). Until now, there have been lots of follow-up

works (Liu et al., 2016b; Laina et al., 2016; Eigen and Fergus, 2015; Li et al.,

2015; Xu et al., 2017; Wang et al., 2015; Fu et al., 2018) improving or ex-

tending this work. However, since the proposed deep models are trained in a

fully supervised fashion, they require a large amount of data with ground truth

depth, which is expensive to acquire in practice. To address this issue, unsu-

pervised monocular depth estimation has been proposed (Godard et al., 2017;

Zhan et al., 2018; Garg et al., 2016; Xie et al., 2016), using geometry-based

cues and without the need of image-depth pairs during training. Unfortunately,

this kind of method tends to be vulnerable to illumination change, occlusion

and blurring and so on. Compared to real-world data, synthetic data is much

easier to obtain the depth map. As a result, some works propose to exploit syn-

thetic data for visual tasks (Lai et al., 2017; Long et al., 2013; Dosovitskiy et

al., 2015a). However, due to domain shift from synthetic to real, the model

trained on synthetic data often fails to perform well on real data. To deal with

this issue, domain adaptation techniques are utilized to reduce the discrepancy

between datasets/domains 1 (Atapour-Abarghouei and Breckon, 2018; Chen et

al., 2018; Long et al., 2013).

Existing works (Atapour-Abarghouei and Breckon, 2018; Kundu et al., 2018;

Zheng et al., 2018) using synthetic data via domain adaptation have achieved

impressive performance for monocular depth estimation. These approaches typ-

ically perform domain adaptation either based on synthetic-to-realistic transla-

tion or inversely. However, due to the lack of paired images, the image transla-

tion function usually introduces undesirable distortions in addition to the style

change. The distorted image structures significantly degrade the performance of

1We will use domain and dataset interchangeably for the same meaning in most cases of
this chapter.
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Real Image Synthetic Image

Real2Syn Image Syn2Real Image

Ground Truth GASDA

Figure 2.1. Estimated Depth by GASDA. Top to bottom: input real image in the target
domain (KITTI dataset (Menze and Geiger, 2015)) and synthetic image for training
(vKITTI dataset (Gaidon et al., 2016)), intermediate generated images in our approach,
ground truth depth map and estimated depth map using proposed GASDA.

successive depth prediction. Fortunately, the unsupervised cues in the real im-

ages, for example, stereo pairs, produces additional constraints on the possible

depth predictions. Therefore, it is essential to simultaneously explore both syn-

thetic and real images and the corresponding depth cues for generating higher-

quality depth maps.

Motivated by the above analysis, we propose a Geometry-Aware Symmetric

Domain Adaptation Network (GASDA) for unsupervised monocular depth

estimation. This framework consists of two main parts, namely symmetric style

translation and monocular depth estimation. Inspired by CycleGAN (Zhu et al.,

2017), our GASDA employs both synthetic-to-realistic and realistic-to-synthetic
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Figure 2.2. Different frameworks for monocular depth estimation using domain adap-
tation. First row to second row: basic pipeline, approach proposed in (Kundu et al.,
2018), (Zheng et al., 2018) and this work, respectively. S, T, F, S2T (T2S) and D
represent the synthetic data, real data, extracted feature, generated data, and estimated
depth. AL and MDE mean adversarial loss and monocular depth estimation, respec-
tively. Compared with existing methods, our approach utilizes real stereo data and
takes into account synthetic-to-real as well as real-to-synthetic during translation.

translations coupled with a geometry consistency loss based on the epipolar ge-

omery of the real stereo images. Our network is learned by groundtruth labels

from the synthetic domain as well as the epipolar geometry of the real domain.

Additionally, the learning process in the real and synthetic domains can be reg-

ularized by enforcing consistency on the depth predictions. By training the style

translation and depth prediction networks in an end-to-end fashion, our model is

able to translate images without distorting the geometric and semantic content,

and thus achieves better depth prediction performance.

2.2 Related Work

Monocular Depth Estimation has been intensively studied over the past decade

due to its crucial role in 3D scene understanding. Typical approaches sought

the solution by exploiting probabilistic graphical models (e.g., MRFs) (Saxena

et al., 2009; Saxena et al., 2006; Liu et al., 2010), and non-parametric tech-

niques (Liu et al., 2014; Karsch et al., 2014; Liu et al., 2011). However, these
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methods showed some limitations in performance and efficiency because of the

employment of hand-crafted features and the low inference speed.

Recent studies demonstrated that high-performing depth estimators can be ob-

tained relying on DCNNs (Eigen et al., 2014; Liu et al., 2016b; He et al., 2018b;

Xu et al., 2018a; Repala and Dubey, 2018; Qi et al., 2018; Cao et al., 2016;

Laina et al., 2016; Roy and Todorovic, 2016; Chen et al., 2016). Eigen et

al. (Eigen et al., 2014) developed the first end-to-end deep model for depth es-

timation, which consists of a coarse-scale network and a fine-scale network. To

exploit the relationships among image features, Liu et al. (Liu et al., 2016b)

proposed to integrate continuous CRFs with DCNNs at super-pixel level. While

previous works considered depth estimation as a regression task, Fu et al. (Fu et

al., 2018) solved depth estimation in the discrete paradigm by proposing an or-

dinal regression loss to encourage the ordinal competition among depth values.

A weakness of supervised depth estimation is the heavy requirement of anno-

tated training images. To mitigate the issue, several notable attempts have in-

vestigated depth estimation in an unsupervised manner by means of stereo cor-

respondence. Xie et al. (Xie et al., 2016) proposed the Deep3D network for

2D-to-3D conversion by minimizing the pixel-wise reconstruction error. This

work motivated the development of subsequent unsupervised depth estimation

networks (Garg et al., 2016; Godard et al., 2017; Yin and Shi, 2018; Zhou et

al., 2017). In specific, Garg et al. (Garg et al., 2016) showed that unsupervised

depth estimation could be recast as an image reconstruction problem according

to the epipolar geometry. Following Garg et al. (Garg et al., 2016), several later

works improved the structure by exploiting left-right consistency (Godard et al.,

2017), learning depth in a semi-supervised way (Kuznietsov et al., 2017), and

introducing temporal photometric constraints (Zhan et al., 2018).
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Domain Adaptation (Pan et al., 2010) aims to address the problem that the

model trained on one dataset fails to generalize to another due to dataset bias (Tor-

ralba and Efros, 2011). In this community, previous works either learn the

domain-invariant representations on a feature space (Ganin and Lempitsky, 2015;

Ganin et al., 2016; Long et al., 2013; Ajakan et al., 2014; Gong et al., 2016;

Gong et al., 2018; Li et al., 2018d) or learn a mapping between the source and

target domains at feature or pixel level (Saenko et al., 2010; Sun and Saenko,

2016; Gong et al., 2012; Zhang et al., 2013). For example, Long et al. (Long

et al., 2013) aligned feature distribution across the source and target domains

by minimizing a Maximum Mean Discrepancy (MMD) (Gretton et al., 2012).

Tzeng et al. (Tzeng et al., 2014) proposed to minimize MMD and the classifi-

cation error jointly in a DCNN framework. Sun et al. (Sun and Saenko, 2016)

proposed to match the mean and covariance of the two domain’s deep features

using the Correlation Alignment (CORAL) loss (Sun et al., 2016).

Coming to domain adaptation for depth estimation, Atapour et al. (Atapour-

Abarghouei and Breckon, 2018) developed a two-stage framework. In specific,

they first learned a translator to stylize the natural images so as to make them

indistinguishable with the synthetic images, and then trained a depth estimation

network using the original synthetic images in a supervised manner. Kundu et

al. (Kundu et al., 2018) proposed a content congruent regularization method to

tackle the model collapse issue caused by domain adaptation in high dimen-

sional feature space. Recently, Zheng et al. (Zheng et al., 2018) developed an

end-to-end adaptation network, i.e. T2Net, where the translation network and

the depth estimation network are optimized jointly so that they can improve

each other. However, these works overlooked the geometric structure of the nat-

ural images from the target domain, which has been demonstrated significant

for depth estimation (Godard et al., 2017; Garg et al., 2016). Motivated by

the observation, we propose a novel geometry-aware symmetric domain adap-

tation network, i.e., GASDA, by exploiting the epipolar geometry of the stereo
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images. The differences between GASDA and previous depth adaptation ap-

proaches (Kundu et al., 2018; Zheng et al., 2018) are shown in Figure 2.2.

2.3 Method

2.3.1 Method Overview

Given a set of N synthetic image-depth pairs {(xis, yis)}Ni=1 (i.e., source domain

Xs), our goal here is to learn a monocular depth estimation model which can

accurately predict depth for natural images contained inXt (i.e., target domain).

It is difficult to guarantee the model generalize well to the real data (Atapour-

Abarghouei and Breckon, 2018; Zheng et al., 2018) due to the domain shift. We

thus provide a remedy by exploiting the epipolar geometry between stereo im-

ages and developing a geometry-aware symmetric domain adaptation network

(GASDA). Our GASDA consists of two main parts like existing works, includ-

ing the style transfer network and the monocular depth estimation network.

Specifically, unlike (Atapour-Abarghouei and Breckon, 2018; Zheng et al., 2018;

Kundu et al., 2018), we consider both synthetic-to-real (Zheng et al., 2018) and

real-to-synthetic translations (Atapour-Abarghouei and Breckon, 2018; Kundu

et al., 2018). As a result, we can train two depth estimators Fs and Ft on the

original synthetic data (Xs) and the generated realistic data (Gs2t(Xs)) using the

generator Gs2t in supervised manners, respectively. These two models are com-

plementary, since Fs has clean training set Xs but dirty test set Gt2s(Xt) gener-

ated by the generator Gt2s with noises, such as distortion and blurs, caused by

unsatisfied translation, and vise verse for Ft. Nevertheless, because the depth in-

formation is rather relevant to specific scene geometry which might be different

between source and target domains, the models trained on Xs or Gs2t(Xs) still

could fail to perform well on Gt2s(Xt) or Xt. To provide a solution, we exploit

the epipolar geometry of real stereo pairs {(xitl , x
i
tr)}

M
i=1 (xitl and xitr represent
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Figure 2.3. The proposed framework. It consists of two main parts: image style trans-
lation and monocular depth estimation. i) Style translation network, incorporating two
generators (i.e., Gs2t and Gt2s) and two discriminators (i.e., Dt and Ds), is based on
CycleGAN. ii) Monocular depth estimation network contains two complementary sub-
networks (i.e., Fs and Ft). We omit the side outputs, for brevity. More details can be
found in Section 2.3, Section 2.4.1.

the left and right image respectively2) during training to encourage Ft and Fs

to capture the relevant geometric structure of target/real data. In addition, we

introduce an additional depth consistency loss to enforce the predictions from

Ft and Fs are consistent in local regions. The overall framework of GASDA is

illustrated in Figure 2.3. For simplicity, we will omit the superscript i in most

cases.

2.3.2 GASDA

Bidirectional Style Transfer Loss Our goal here is to learn the bidirectional

translators Gs2t and Gt2s to bridge the gap between the source domain (syn-

thetic) Xs and the target domain (real) Xt. Specifically, taking Gs2t as an exam-

ple, we expect the Gs2t(xs) to be indistinguishable from real images in Xt. We

2We will omit the subscript l of tl for the left image in most cases of this chapter.
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thus employ a discriminator Dt, and train Gs2t and Dt in an adversarial fash-

ion by performing a minimax game following (Goodfellow et al., 2014). The

adversarial losses are expressed as:

Lgan(Gs2t, Dt, Xt, Xs) =Ext∼Xt [Dt(xt)− 1]+

Exs∼Xs [Dt(Gs2t(xs))],

Lgan(Gt2s, Ds, Xt, Xs) =Exs∼Xs [Ds(xs)− 1]+

Ext∼Xt [Ds(Gt2s(xt))].

(2.1)

Unluckily, the vanilla GANs suffer from mode collapse. To provide a rem-

edy and ensure the input images and the output images paired up in a mean-

ingful way, we utilize the cycle-consistency loss (Zhu et al., 2017). Specifi-

cally, when feeding an image xs to Gs2t and Gt2s orderly, the output should

be a reconstruction of xs, and vice versa for xt, i.e. Gt2s(Gs2t(xs)) ≈ xs and

Gs2t(Gt2s(xt)) ≈ xt. The cycle consistency loss has the form as:

Lcyc(Gt2s, Gs2t) = Exs∼Xs [||Gt2s(Gs2t(xs))− xs||1]

+ Ext∼Xt [||Gs2t(Gt2s(xt))− xt||1].
(2.2)

Apart from the adversarial loss and cycle consistency loss, we also employ an

identity mapping loss (Taigman et al., 2016) to encourage the generators to

preserve geometric content. The identity mapping loss is given by:

Lidt(Gt2s, Gs2t, Xs, Xt) = Exs∼Xs [||Gt2s(xs)− xs||1]

+ Ext∼Xt [||Gs2t(xt)− xt||1].
(2.3)
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The full objective for the bidirectional style transfer is as follow:

Ltrans(Gt2s, Gs2t, Dt, Ds) = Lgan(Gs2t, Dt, Xt, Xs)

+ Lgan(Gt2s, Ds, Xt, Xs)

+ λ1Lcyc(Gt2s, Gs2t)

+ λ2Lidt(Gt2s, Gs2t, Xt, Xs)

(2.4)

where λ1 and λ2 are the trade-off parameters.

Depth Estimation Loss We can now render the synthetic images to the “style"

of the target domain (KITTI), and then capture a new dataset Xs2t = Gs2t(Xs).

We train a depth estimation network Ft on Xs2t in a supervised manner using

the provided ground truth depth in the synthetic domain Xs. Here, we minimize

the ℓ1 distance between the predicted depth ỹts and ground truth depth ys:

Ltde(Ft, Gs2t) = ||ys − ỹts||. (2.5)

In addition to Ft, we also train a complementary depth estimator Fs on Xs di-

rectly with the ℓ1 loss:

Lsde(Fs) = ||ys − ỹss|| (2.6)

where ỹss = Fs(xs) is the output of Fs. Both the Fs and Ft are important

backbones to alleviate the issue of geometry and semantic inconsistency coupled

with the subsequent losses. The full depth estimation loss is expressed as:

Lde(Ft, Fs, Gs2t) = Lsde(Fs) + Ltde(Ft, Gs2t). (2.7)

Geometry Consistency Loss Combining the components above, we have al-

ready formulated a naive depth adversarial adaptation framework. However,

the Gs2t and Gt2s are usually imperfect, which would make the predictions

ỹst = Fs(Gt2s(xt)) and ỹtt = Ft(xt) unsatisfied. Besides, previous depth adap-

tation approaches overlook the specific physical geometric structure which may



2.3 METHOD 28

vary from scenes/datasets. Our main objective is to accurately estimate depth

for real scenes, so we consider the geometric structure of the target data in the

training phase. To this end, we present a geometric constraint on Ft and Fs by

exploiting the epipolar geometry of real stereo images and unsupervised cues.

Specifically, we generate an inverse warped image from the right image using

the predicted depth, to reconstruct the left. We thus combine an ℓ1 with single

scale SSIM (Wang et al., 2004) term as the geometry consistency loss to align

the stereo images:

Ltgc(Ft) = η
1− SSIM(xt, x

′
tt)

2
+ µ||xt − x

′

tt||,

Lsgc(Fs, Gt2s) = η
1− SSIM(xt, x

′
st)

2
+ µ||xt − x

′

st||,

Lgc(Ft, Fs, Gt2s) = Ltgc(Ft) + Lsgc(Fs, Gt2s)

(2.8)

where Lgc represents the full geometry consistency loss, Ltgc and Lsgc denote

the geometry consistency loss of Ft and Fs respectively. x′
tt (x′

st) is the inverse

warp of xtr using bilinear sampling (Jaderberg et al., 2015) based on the esti-

mated depth map ytt (yst), the baseline distance between the cameras and the

camera focal length (Godard et al., 2017). In our experiments, η is set to be

0.85, and µ is 0.15.

Depth Smoothness Loss To encourage depths to be consistent in local homo-

geneous regions, we exploit an edge-aware depth smoothness loss:

Lds(Ft, Fs, Gt2s) = e−∇xt ||∇ỹtt||+ e−∇xt||∇ỹst|| (2.9)

where ∇ is the first derivative along spatial directions. We only apply the

smoothness loss to Xt and Xt2s (real data), since Xs and Xs2t (synthetic data)

have full supervision.

Depth Consistency Loss We find that the predictions for xt, i.e., Ft(xt) and

Fs(Gt2s(xt)), show inconsistency in many regions, which is in contrast to our

intuition. One of the possible reason is that Gt2s might fail to translate xt with

details. To enforce such coherence, we introduce an ℓ1 depth consistency loss
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Figure 2.4. Inference Phase (Section 2.3.3).

with respect to ỹtt and ỹst as follows:

Ldc(Ft, Fs, Gt2s) = ||ỹtt − ỹst||. (2.10)

Full Objective Our final loss function has the form as:

L(Gs2t, Gt2s, Dt, Ds, Ft, Fs)

= Ltrans(Gs2t, Gt2s, Dt, Ds) + γ1Lde(Ft, Fs, Gs2t)

+ γ2Lgc(Ft, Fs, Gt2s) + γ3Ldc(Ft, Fs, Gt2s)

+ γ4Lds(Ft, Fs, Gt2s)

(2.11)

where γn(n ∈ {1, 2, 3, 4}) are trade-off factors. We optimize this objective

function in an end-to-end deep network.

2.3.3 Inference

In the inference phase, we aim to predict the depth map for a given image in

real domain (e.g. KITTI dataset (Menze and Geiger, 2015)) using the resultant

models. In fact, there are two paths acquiring predicted depth maps: xt →

Ft(xt) → ỹtt and xt → Gt2s(xt) → xt2s → Fs(xt2s) → ỹst, as shown in

Figure 2.4, and the final prediction is the average of ỹtt and ỹst:

ỹt =
1

2
(ỹtt + ỹst). (2.12)
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Figure 2.5. All the convolution operations in each block are with the same feature
channels, kernel size and stride size, as presented in Table 2.2 and Table 2.1. Conv/dn
denotes the n-dilated convolution operation (Yu and Koltun, 2015), and CA represents
the concatenation operation.

2.4 Experiments

In this section, we first present the details about our network architecture and the

learning strategy. Then, we perform GASDA on one of the largest dataset in the

context of autonomous driving, i.e., KITTI dataset (Menze and Geiger, 2015).

We also demonstrate the generalization capabilities of our model to other real-

world scenes contained in Make3D (Saxena et al., 2009). Finally, we conduct

various ablations to analyze GASDA.

2.4.1 Implementation Details

Network Architecture Our proposed framework consists of six sub-networks,

which can be divided into three groups: Gs2t and Gt2s for image style transla-

tion, Dt and Ds for discrimination, Ft and Fs for monocular depth estimation.
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Depth Estimator Ft/Fs

Incex Layer Input FC KS SS
1 Conv+BN+PReLU Image 64 7 1
2 Pooling 1 64 2 2
3 Conv+BN+PReLU 2 128 3 1
4 Conv+BN+PReLU 3 128 3 1
5 Pooling 4 128 2 2
6 Conv+BN+PReLU 5 256 3 1
7 Conv+BN+PReLU 6 256 3 1
8 Pooling 7 256 2 2
9 Conv+BN+PReLU 8 256 3 1

10 Conv+BN+PReLU 9 256 3 1
11 Pooling 10 256 2 2
12 Conv+BN+PReLU 11 512 3 1
13 Conv+BN+PReLU 12 512 3 1
14 Pooling 13 512 2 2
15 IPBlock 14 512 3 1
16 IPBlock 15 512 3 1
17 IPBlock 16 512 3 1
18 Conv+BN+PReLU 17 512 3 1
19 DeConv+BN+PReLU 18 256 3 2
20 CA+Conv+BN+PReLU 19,8 512 3 1
21 DeConv+BN+PReLU 20 128 3 2
22 CA+Conv+Tanh 19,8 1 3 1
23 Upsample (×2) 22 1 - -
24 CA+Conv+BN+PReLU 21,5,23 256 3 1
25 DeConv+BN+PReLU 24 64 3 2
26 CA+Conv+Tanh 21,5,23 1 3 1
27 Upsample (×2) 26 1 - -
28 CA+Conv+BN+PReLU 25,2,27 128 3 1
29 DeConv+BN+PReLU 28 32 3 2
30 CA+Conv+Tanh 25,2,27 1 3 1
31 Upsample (×2) 30 1 - -
32 CA+Conv+Tanh 29,31 1 3 1

Table 2.1. The depth estimators employed in our experiment. CA: concatenation. BN:
batch normalization (Ioffe and Szegedy, 2015). PReLU: parametric rectified linear
unit (He et al., 2015). FC, KS and SS refer to the feature channel, kernel size, and stride
size, respectively. IPBlock, denoting the inception block, is showed in Figure 2.5.

The detailed configurations of image translator, discriminator and depth estima-

tor are shown in Table 2.2 and Table 2.1. The networks in each group share the

identical network architecture but are with different parameters. Specifically,
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Image Translator Gs2t/Gt2s

Layer Feature Channel Kernel Size Stride Size
Conv+IN+ReLU 64 7 1
Conv+IN+ReLU 128 3 2
Conv+IN+ReLU 256 3 2

ResBlock 256 3 1
ResBlock 256 3 1
ResBlock 256 3 1
ResBlock 256 3 1
ResBlock 256 3 1
ResBlock 256 3 1
ResBlock 256 3 1
ResBlock 256 3 1
ResBlock 256 3 1

Deconv+IN+ReLU 128 3 2
Deconv+IN+ReLU 64 3 2

Conv+Tanh 3 7 1
Discriminator Ds/Dt

Layer Feature Channel Kernel Size Stride Size
Conv+LReLU 64 4 2

Conv+IN+LReLU 128 4 2
Conv+IN+LReLU 256 4 2
Conv+IN+LReLU 512 4 1

Conv 512 4 1
Table 2.2. The generators and discriminators for image style translation employed
in our experiment. IN: instance normalization (Ulyanov et al., 2017). LReLU:
LeakyReLU (Maas et al., 2013) respectively. ResBlock, referring to the residual block,
is showed in Figure 2.5.

Input Image Ground Truth (Eigen et al., 2014) (Zheng et al., 2018) GASDA

Figure 2.6. Qualitative comparison of our results against methods proposed by Eigen
et al. (Eigen et al., 2014) and Zheng et al. (Zheng et al., 2018) on KITTI. Ground truth
has been interpolated for visualization. To facilitate comparison, we mask out the top
regions, where ground truth depth is not available. Our approach preserves more details
and yields high-quality depth maps.
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Method Sup. Dataset Cap.
Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs RelSq RelRMSERMSE logδ < 1.25δ < 1.252 δ < 1.253

(Eigen et al., 2014) Yes K 80m 0.203 1.548 6.307 0.282 0.702 0.890 0.958
(Liu et al., 2016b) Yes K 80m 0.202 1.614 6.523 0.275 0.678 0.895 0.965
(Zhou et al., 2017) No K 80m 0.208 1.768 6.856 0.283 0.678 0.885 0.957
(Zhou et al., 2017) No K+CS 80m 0.198 1.836 6.565 0.275 0.718 0.901 0.960

(Kuznietsov et al., 2017) Semi K 80m 0.113 0.741 4.621 0.189 0.862 0.960 0.986
(Godard et al., 2017) No K 80m 0.148 1.344 5.927 0.247 0.803 0.922 0.964

All synthetic(baseline1) No S 80m 0.253 2.303 6.953 0.328 0.635 0.856 0.937
All real(baseline2) No K 80m 0.158 1.151 5.285 0.238 0.811 0.934 0.970
(Kundu et al., 2018) No K+S(DA) 80m 0.214 1.932 7.157 0.295 0.665 0.882 0.950
(Kundu et al., 2018) Semi K+S(DA) 80m 0.167 1.257 5.578 0.237 0.771 0.922 0.971

GASDA No K+S(DA) 80m 0.149 1.003 4.995 0.227 0.824 0.941 0.973
(Kuznietsov et al., 2017) Yes K 50m 0.117 0.597 3.531 0.183 0.861 0.964 0.989

(Garg et al., 2016) No K 50m 0.169 1.080 5.104 0.273 0.740 0.904 0.962
(Godard et al., 2017) No K 50m 0.140 0.976 4.471 0.232 0.818 0.931 0.969

All synthetic(baseline1) No S 50m 0.244 1.771 5.354 0.313 0.647 0.866 0.943
All real(baseline2) No K 50m 0.151 0.856 4.043 0.227 0.824 0.940 0.973
(Kundu et al., 2018) No K+S(DA) 50m 0.203 1.734 6.251 0.284 0.687 0.899 0.958
(Kundu et al., 2018) Semi K+S(DA) 50m 0.162 1.041 4.344 0.225 0.784 0.930 0.974
(Zheng et al., 2018) No K+S(DA) 50m 0.168 1.199 4.674 0.243 0.772 0.912 0.966

GASDA No K+S(DA) 50m 0.143 0.756 3.846 0.217 0.836 0.946 0.976

Table 2.3. Results on KITTI dataset using the test split suggested in (Eigen et
al., 2014). For the training data, K represents KITTI dataset, CS is CityScapes
dataset (Cordts et al., 2016), and S is vKITTI dataset. Sup. refers to Supervised. Meth-
ods, which apply domain adaptation techniques, are marked by the gray.

Method Dataset
Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs RelSq RelRMSERMSE logδ < 1.25δ < 1.252 δ < 1.253

(Godard et al., 2017) K 0.124 1.388 6.125 0.217 0.841 0.936 0.975
(Godard et al., 2017) K+CS 0.104 1.070 5.417 0.188 0.875 0.956 0.983

(Atapour-Abarghouei and Breckon, 2018) K+S∗ 0.101 1.048 5.308 0.184 0.903 0.988 0.992
GASDA K+S 0.106 0.987 5.215 0.176 0.885 0.963 0.986

Table 2.4. Results on 200 training images of KITTI stereo 2015 benchmark. S∗ is
captured from GTA5, and more similar to real data than vKITTI. Our approach yields
lower errors than state-of-the-art approaches, and achieve competitive accuracy com-
pared with (Atapour-Abarghouei and Breckon, 2018).

we employ generators (Gs2t and Gt2s) and discriminators (Ds and Dt) provided

by CycleGAN (Zhu et al., 2017). For monocular depth estimators Ft and Fs, we

utilize the standard encoder-decoder structures with skip-connections and side

outputs as (Zheng et al., 2018).

Datasets The target domain is KITTI (Menze and Geiger, 2015), which is a real-

world computer vision benchmark consisting of 42, 382 rectified stereo pairs in

the resolution about 375 × 1242. In our experiments, the ground truth depth

maps provided by KITTI are only for evaluation purpose. The source domain is
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Figure 2.7. Iteratively updating stage. We learn our model by iteratively updating im-
age style translators and depth estimators, i.e., freezing the module with dashed box
while updating the one with solid line box. See main text for details. We omit Dt and
Ds for brevity.

Real Image CycleGAN GASDA

Synthetic Image CycleGAN GASDA

Figure 2.8. Qualitative image style translation results of our approach and CycleGAN.
First row: real-to-synthetic translation; Second row: synthetic-to-real translation. Our
method can preserve geometric and semantic content better for both synthetic-to-real
translation and the inverse one. Note that, the translation result is a by-product of
GASDA. The improvement is marked by the yellow box.

Virtual KITTI (vKITTI) (Gaidon et al., 2016), which contains 50 photo-realistic

synthetic videos with 21, 260 image-depth pairs of size 375×1242. Additionally,

in order to study the generalization performance of our approach, we also apply

the trained model to Make3D dataset (Saxena et al., 2009). Since Make3D does
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Method
Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Domain Adaptation
SYN 0.253 2.303 6.953 0.328 0.635 0.856 0.937

SYN2REAL 0.229 2.094 6.530 0.294 0.691 0.886 0.951
SYN2REAL-E2E 0.220 1.969 6.377 0.284 0.703 0.895 0.956

Geometry Consistency
REAL 0.158 1.151 5.285 0.238 0.811 0.934 0.970

SYN-GC 0.156 1.123 5.255 0.235 0.814 0.937 0.971
SYN2REAL-GC 0.153 1.112 5.213 0.233 0.819 0.938 0.972

SYN2REAL-GC-E2E 0.152 1.130 5.227 0.231 0.821 0.939 0.972
Symmetric Domain Adaptation

REAL2SYN-SYN-GC-E2E 0.160 1.226 5.412 0.240 0.806 0.933 0.969
GASDA-w/oDC 0.151 1.098 5.136 0.230 0.822 0.940 0.972

GASDA-Ft 0.150 1.014 5.041 0.228 0.824 0.941 0.973
GASDA-Fs 0.156 1.087 5.157 0.235 0.813 0.936 0.971

GASDA 0.149 1.003 4.995 0.227 0.824 0.941 0.973

Table 2.5. Quantitative results for ablation study on KITTI dataset using the test split
suggested in (Eigen et al., 2014). SYN, REAL, REAL2SYN, and SYN2REAL repre-
sent the model trained on Xs, Xt, Gt2s(Xt), and Gs2t(Xs); E2E represents the end-
to-end training; GC and DC denote the geometry consistency and depth consistency,
respectively; GASDA-Ft (Fs) represents the output of Ft (Fs) in GASDA.

not offer stereo images, we directly evaluate our model on the test split without

training or further fine-tuning.

Training Details We implement GASDA in PyTorch. We train our model in a

two-stage manner, i.e., a warming up stage and end-to-end iteratively updating

stage. In the warming up stage, we first optimize the style transfer networks for

10 epochs with the momentum of β1 = 0.5, β2 = 0.999, and the initial learning

rate of α = 0.0002 using the ADAM solver (Kingma and Ba, 2014b). Then

we train Ft on {Xt, Gs2t(Xs)}, and Fs on {Xs, Gt2s(Xt)} for around 20 epochs

by setting β1 = 0.9, β2 = 0.999, and α = 0.0001. To make style translators

generate high-quality images, so as to improve the subsequent depth estimators,

we fine-tune the network in an end-to-end iteratively updating fashion as shown

in Figure 2.7. In specific, we optimize Gs2t and Gt2s with the supervision of Ft

and Fs for m epochs, and then train Fs and Ft for n epochs. We set m = 3 and

n = 7 in our experiments, and repeat this process until the network converges

(around 40 epochs). In this stage, we employ the same momentum and solver as

the first stage with the learning rates of 2e−6 and 1e−5 for the two respectively.
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Input Image Ground Truth GASDA

Figure 2.9. Qualitative results on Make3D dataset. Left to right: input image, ground
truth depth, and our result.

The trade-off factors are set to λ1 = 10, λ2 = 30, γ1 = 50, γ2 = 50 and γ3 = 50

and γ4 = 0.5. In the training phase, we down-sample all the images to 192 ×

640, and increase the training set size using some common data augmentation

strategies, including random horizontal flipping, rotation with the degrees of

[−5◦, 5◦], and brightness adjustment.

2.4.2 KITTI Dataset

We test our models on the 697 images extracted from 29 scenes, and use all the

23, 488 images contained in other 32 scenes for training (22, 600) and validation

(888) (Eigen et al., 2014; Godard et al., 2017). To make a comparison with

previous works, we evaluate our results in the regions with the ground truth

depth less than 80m or 50m using standard error and accuracy metrics (Go-

dard et al., 2017; Zheng et al., 2018). Note that, the maximum depth value in

vKITTI is 655.35m instead of 80m in KITTI, but unlike (Zheng et al., 2018),

we do not clip the depth maps of vKITTI to 80m during training. In Table 2.3,

we report the benchmark scores on the Eigen split (Eigen et al., 2014) where

the training sets are only KITTI and vKITTI. GASDA obtains a convincible

improvement over previous state-of-the-art methods. Specifically, we make the
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Method Trained* Error Metrics (lower, better)
Abs Rel Sq Rel RMSE

(Karsch et al., 2014) Yes 0.398 4.723 7.801
(Laina et al., 2016) Yes 0.198 1.665 5.461
(Kundu et al., 2018) Yes 0.452 5.71 9.559
(Godard et al., 2017) No 0.505 10.172 10.936
(Kundu et al., 2018) No 0.647 12.341 11.567

(Atapour-Abarghouei and Breckon, 2018) No 0.423 9.343 9.002
GASDA No 0.403 6.709 10.424

Table 2.6. Results on 134 test images of Make3D. Trained* indicates whether the
model is trained on Make3D or not. Errors are computed for depths less than 70m
in a central image crop (Godard et al., 2017). It can be observed that our approach is
comparable with those trained on Make3D.

comparisons with two baselines, i.e., All synthetic (baseline1, trained on labeled

synthetic data) and All real (baseline2, trained on real stereo pairs), and the lat-

est domain adaptation methods (Zheng et al., 2018; Kundu et al., 2018) and

(semi-)supervised/unsupervised methods (Eigen et al., 2014; Liu et al., 2016b;

Kuznietsov et al., 2017; Garg et al., 2016; Godard et al., 2017; Zhou et al.,

2017). The significant improvements in all the metrics demonstrate the supe-

riority of our method. Note that, GASDA yields higher scores than (Kundu et

al., 2018) which employs additional ground truth depth maps for natural im-

ages contained in KITTI. GASDA cannot outperform (Atapour-Abarghouei and

Breckon, 2018) in the Eigen split. The main reason is that the synthetic im-

ages employed in (Atapour-Abarghouei and Breckon, 2018) are captured from

GTA5 3, and the domain shift between GTA5 and KITTI is not that signifi-

cant than the one between vKITTI and KITTI. In addition, the training set size

in (Atapour-Abarghouei and Breckon, 2018) is about three times than ours.

However, GASDA performs competitively on the official KITTI stereo 2015

dataset (Geiger et al., 2012b) and Make3D compared with (Atapour-Abarghouei

and Breckon, 2018), as reported in Table 2.4 and Table 2.6. Apart from quanti-

tative results, we also show some example outputs in Figure 2.6. Our approach

preserves more details, and is able to recover depth information of small objects,

such as the distant cars and rails, and generate clear boundaries.
3https://github.com/aitorzip/DeepGTAV.
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2.4.3 Make3D Dataset

To discuss the generalization capabilities of GASDA, we evaluate our approach

on Make3D dataset (Saxena et al., 2009) quantitatively and qualitatively. We do

not train or further fine-tune our model using the images provide by Make3D. As

shown in Table 2.6 and Figure 2.9, although the domain shift between Make3D

and KITTI is large, our model still performs well. Compared with state-of-the-

art models (Kundu et al., 2018; Karsch et al., 2014; Laina et al., 2016) trained on

Make3D in a supervised manner and others using domain adaptation (Kundu et

al., 2018; Atapour-Abarghouei and Breckon, 2018), GASDA obtains impressive

performance.

2.4.4 Ablation Study

Here, we conduct a series of ablations to analyze our approach. Quantitative

results are shown in Table 2.5, and some sampled results for style transfer are

shown in Figure 2.8.

Domain Adaptation We first demonstrate the effectiveness of domain adap-

tation by comparing two simple models, i.e. SYN (Fs trained on Xs) and

SYN2REAL (Ft trained on Gs2t(Xs)). As shown in Table 2.5, SYN cannot

capture satisfied scores on KITTI due to the domain shift. After the translation,

the domain shift is reduced which means that the synthetic data distribution is

relative closer to real data distribution. Thus, SYN2REAL is able to general-

ize better to real images. Further, we train the style translators (Gs2t and Gt2s)

and the depth estimation network (Ft) in an end-to-end fashion (SYN2REAL-

E2E), which guides to a further improvement as compared to SYN2REAL. As a

conclusion, the depth estimation network can improve the style transfer by pro-

viding a pixel-wise semantic constraint to the translation networks. Moreover,

we can also observe the improvement in Figure 2.8 by comparing the translation

results of original CycleGAN (Zhu et al., 2017) with ours.
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Geometry Consistency We then study the significance of the geometric con-

straint coming from stereo images based on the epipolar geometry. In spe-

cific, we employ the stereo images provided by KITTI when optimizing Ft in

SYN2REAL-E2E. We enforce the geometry consistency between the stereo im-

ages as a constraint as stated in Eq. 2.8. The model SYN2REAL-GC-E2E out-

performs SYN2REAL-E2E by a large margin, which demonstrates that the ge-

ometry consistency constraint can significantly improve standard domain adap-

tation frameworks. On the other hand, the comparisons among SYN2REAL-

GC, SYN-GC (trained on real data and synthetic data without domain adapta-

tion) and REAL (Ft trained on real stereo images without extra data) can show

the significance of synthetic data with ground truth depth and domain adapta-

tion.

Symmetric Domain Adaptation In contrast to previous works, we expect to

fully take advantage of the bidirectional style translators Gs2t and Gt2s. Thus,

we learn REAL2SYN-SYN-GC-E2E whose network architecture is symmetri-

cal to the aforementioned SYN2REAL-GC-E2E. We jointly optimized the two

coupled with a depth consistency loss. As shown in Table 2.5, GASDA is su-

perior than GASDA-w/oDC which demonstrates the effectiveness of the depth

consistency loss. In addition, the comparisons (GASDA-Ft v.s. SYN2ERAL-

GC-E2E and GASDA-Fs v.s. REAL2SYN-GC-E2E) show that the two can

benefit each other in the jointly training.

2.4.5 More Qualitative Results

Lastly, we show other qualitative results on the KITTI Eigen Split (Eigen et al.,

2014) (Figure 2.10) and CityScapes dataset (Cordts et al., 2016) (Figure 2.11).
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Input Image Ground Truth Eigen et al. Zheng et al. GASDA

Figure 2.10. Qualitative comparisons of our results with methods proposed by Eigen
et al. (Eigen et al., 2014) and Zheng et al. (Zheng et al., 2018) on the KITTI Eigen
Split. The model is trained on KITTI using the split of Eigen et al. (Eigen et al., 2014).
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2.5 Conclusion

In this chapter, we present an unsupervised monocular depth estimation frame-

work GASDA, which trains the monocular depth estimation model using the

labelled synthetic data coupled with the epipolar geometry of real stereo data in

a unified and symmetric deep learning network. Our main motivation is learn-

ing a depth estimation model from synthetic image-depth pairs in a supervised

fashion, and at the same time taking into account the specific scene geome-

try information of the target data. Moreover, to alleviate the issues caused by

domain shift, we reduce the domain discrepancy using the bidirectional image

style transfer. Finally, we implement image translation and depth estimation in

an end-to-end network so that then can improve each other. Experiments on

KITTI and Make3D datasets show GASDA is able to generate desirable results

quantitatively and qualitatively, and generalize well to unseen datasets.
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Input Image GASDA Input Image GASDA

Figure 2.11. Qualitative results on CityScapes dataset. The model is trained on KITTI
using the split of Eigen et al. (Eigen et al., 2014) without further fine-tuning.



CHAPTER 3

Adaptive Context-Aware Multi-Modal Network for Depth

Completion

Taking advantage of domain adaptation techniques, last chapter explores 3D

structure information prediction from a single image, i.e., monocular depth es-

timation. In this chapter, we study depth completion, which aims to recover a

dense depth map from the sparse depth data and the corresponding single RGB

image, i.e., multi-modal data. The observed pixels provide the significant guid-

ance for the recovery of the unobserved pixels’ depth. However, due to the spar-

sity of the depth data, the standard convolution operation, exploited by most of

existing methods, is not effective to model the observed contexts with depth val-

ues. To address this issue, we propose to adopt the graph propagation to capture

the observed spatial contexts. Specifically, we first construct multiple graphs

at different scales from observed pixels. Since the graph structure varies from

sample to sample, we then apply the attention mechanism on the propagation,

which encourages the network to model the contextual information adaptively.

Furthermore, considering the mutli-modality of input data, we exploit the graph

propagation on the two modalities respectively to extract multi-modal represen-

tations. Finally, we introduce the symmetric gated fusion strategy to exploit the

extracted multi-modal features effectively. The proposed strategy preserves the

original information for one modality and also absorbs complementary infor-

mation from the other through learning the adaptive gating weights. Our model,

named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the

43
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RGB Image Sparse Depth Map

Ground Truth Depth Map Recovered Dense Depth Map

Figure 3.1. Depth Completion from LiDAR Data and RGB Image by ACMNet. Top:
RGB image and sparse LiDAR data; Bottom: ground truth depth map and dense depth
map obtained by our approach.

state-of-the-art performance on two benchmarks, i.e., KITTI and NYU-v2, and

at the same time has fewer parameters than latest models.

3.1 Introduction

Depth information is crucial for 3D vision tasks, e.g., 6D object pose estima-

tion (Wang et al., 2019a), 3D object detection (Xu et al., 2018b), and hu-

man pose estimation (Moon et al., 2018). To complete these tasks, various

depth sensors such as LiDAR have been invented to acquire depth information.

However, current depth sensors are not able to obtain dense maps for outdoor

scenes, which are essential in various applications, especially autonomous driv-

ing. Therefore, depth completion from sparse depth maps1 and RGB images

has attracted intensive attention. Depth completion is a challenging problem

because the depth values obtained by sensors are highly sparse and irregularly

spaced. For example, in the KITTI dataset (Geiger et al., 2012a), there are

only 5.9% pixels with depth information obtained by the Velodyne HDL-64e

1The sparse depth map is generated by projecting the LiDAR data to the image plane, and
the value in locations without depth information is 0.
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(64 layers) LiDAR in the whole image space, as shown in Figure 3.1. Tradi-

tional methods (Ferstl et al., 2013; Herrera et al., 2013; Schneider et al., 2016)

rely on handcrafted features and global constraints on the output depth values,

which are inaccurate. Recent studies (Zhang and Funkhouser, 2018; Uhrig et al.,

2017; Ma and Karaman, 2018; Jaritz et al., 2018; Imran et al., 2019; Atapour-

Abarghouei and Breckon, 2019b; Cheng et al., 2019; Chen et al., 2019; Zhong

et al., 2019; Eldesokey et al., 2020; Lu et al., 2020) have demonstrated great

advantages of deep Convolutional Neural Networks (CNNs) on depth comple-

tion. By extending the convolutional operation with sparsity-invariance (Uhrig

et al., 2017; Huang et al., 2020; Eldesokey et al., 2019) or introducing more

geometric information (Qiu et al., 2019; Xu et al., 2019), these deep methods

can achieve way better performance than traditional methods.

In spite of the encouraging progress, existing depth completion methods suf-

fer from a significant issue, which limits the depth completion performance.

Specifically, the conventional convolutional operation applies kernels with reg-

ular structure (e.g., 3×3) at all locations, which ignores the fact that the observed

depth values are irregularly distributed in a sparse depth map and associates

limited observed contexts for the unobserved, as shown in Figure 3.2. Thus,

CNN-based methods are not adaptive to the pattern of observed spatial contex-

tual information in a sparse depth map, resulting in a sub-optimal prediction of

depth in unobserved locations.

To address this issue and further boost depth completion accuracy, we propose

an Adaptive Context-Aware Multi-Modal Network (ACMNet, shown in Fig-

ure 3.3). Firstly, inspired by recent works on point cloud analysis (Wang et al.,

2018b), we model the observed contextual information adaptively by applying

attention based graph propagation within multiple graphs constructed from ob-

served pixels. Based on the efficient graph propagation, the model can associate

the spatial context with observed depth values and then enhance the features

of the unobserved pixels. To illustrate this, we provide a simple example in
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Convolution Graph Propagation, Convolution

Figure 3.2. Illustration of convolution and graph propagation. Left: convolution (3×3
kernel); Right: graph propagation (2-nearest neighbours) and convolution (3×3 kernel).
The observed pixels are marked by the yellow, while the unobserved are marked by the
gray.

Figure 3.2. Compared to the sole convolutional operations, the proposed graph

propagation (followed by a convolution) can make the unobserved pixels cap-

ture more related observed contextual information.

Furthermore, since we have multi-modality data, we need to reconsider the

novel graph propagation in a multi-modal setting. Firstly, to better learn the

relationship between observed pixels (nodes), we use the co-attention mecha-

nism (Lu et al., 2016) to propagate the multi-modal information of observed

pixels in a symmetric structure. This step is conducted in the encoder to ex-

tract multi-scale and multi-modal features. However, this mechanism does not

consider the fusion of multi-modal contextual information. A simple way to

fuse the multi-modal data is by applying the simple concatenation or element-

wise summation operation on the extracted feature maps, which was used by

most of the existing works, e.g., (Jaritz et al., 2018; Qiu et al., 2019). How-

ever, this type of fusion strategy cannot fully explore the heterogeneity of the

two modalities. To address the issue, we further present the symmetric gated

fusion strategy to combine the depth and RGB information in the decoder. In

specific, the presented fusion strategy consists of two branches. One branch
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focuses on fusing the RGB information as supplementary into the depth infor-

mation through learning an adaptive gating function, and the other one does the

opposite. Therefore, each branch can maintain its own information and benefit

from supplementary information from the other. Benefiting from the adaptive

co-attention guided graph propagation and symmetric gated multi-modal feature

fusion, our ACMNet is able to generate high-quality dense depth maps.

3.2 Related Work

Depth Completion. Traditional approaches solve the depth completion prob-

lem by formulating the task as an energy function optimization problem (Ferstl

et al., 2013; Barron and Poole, 2016; Herrera et al., 2013; Schneider et al.,

2016). However, these works showed some limitations in performance due to

the employment of hand-crafted features.

Currently, CNNs have been a dominant solution for depth completion (Qiu et

al., 2019; Chodosh et al., 2018; Cheng et al., 2018; Tang et al., 2019; Van Gans-

beke et al., 2019; Ma et al., 2019; Yang and Soatto, 2018; Huang et al., 2020;

Atapour-Abarghouei and Breckon, 2019a; Cheng et al., 2020a; Eldesokey et

al., 2020; Lu et al., 2020; Liao et al., 2017; Li et al., 2020a), outperforming

traditional methods by a wide margin. In specific, to learn representations of

the irregular and sparse LiDAR data, Uhrig et al. (Uhrig et al., 2017) proposed

the sparsity-invariant convolutional operation. Following this work, some vari-

ants of the sparse convolution are introduced (Eldesokey et al., 2019; Huang et

al., 2020; Eldesokey et al., 2020). In the case of additional RGB data, Jaritz

et al. (Jaritz et al., 2018) showed that the late fusion strategy outperformed

the early fusion. Ma et al. (Ma et al., 2019) utilized self-supervised learning

on sparse LiDAR data coupled with the stereo image pair to mitigate the need

for ground truth dense depth. Yang et al. (Yang et al., 2019b) exploited the

Conditional Prior Network (Yang and Soatto, 2018) to learn a depth prior on
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synthetic images. Additionally, there are also a bunch of works (Zhang and

Funkhouser, 2018; Van Gansbeke et al., 2019; Xu et al., 2019) exploring other

cues. For example, Zhang et al. (Zhang and Funkhouser, 2018) trained a net-

work to predict local surface normals for indoor scene depth completion, and

later an extension for outdoor scenes was introduced in their latest work (Qiu et

al., 2019). Similarly, Xu et al. (Xu et al., 2019) also explored the surface nor-

mal information to improve the performance by introducing a diffusion mod-

ule. Cheng et al. (Cheng et al., 2018; Cheng et al., 2020a) proposed to learn

affinities between adjacent pixels for the spatial propagation of the depth infor-

mation. Following the two works, a recent work (Park et al., 2020) improved

the propagation strategy through concentrating on the non-local neighbors and

introducing a learnable affinity normalization. Inspired by the guided image

filtering, Tang et al. (Tang et al., 2019) designed a guided convolution mod-

ule, which generates dynamic spatially-variant kernels using the image features,

to extract the depth image features. In comparison, a recent work (Xiong et

al., 2020) proposed to dynamically learn the filter by applying the Graph Neural

Network (GNN) (Zhou et al., 2018) on the graph constructed from the predicted

dense depth map. In a nutshell, existing works mainly exploit the standard con-

volutional operation or its variations to extract the contextual information. In

specific, they first model the representation for the RGB and sparse depth data

separately, and then fuse them together in a single path. In contrast to these

approaches, out work applies the graph propagation strategy (CGPM) on the

observed points so that the unobserved pixels can capture more useful observed

contextual information. In addition, taking advantage of the proposed symmet-

ric gated fusion strategy, our method can make better use of the multi-modal

information (SGFM). Finally, it is worth pointing out that although the latest

work (Xiong et al., 2020) also exploits the graph models, there are many differ-

ences between it and ours. For example, it aims to consider the neighborhood

relationship of the points in the 3D space through constructing a 3D graph from

the dense depth map, which is obtained using a deep model. To arrive at this,
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it applies the dynamic kernel, which is learned through using a typical GNN

model on the constructed graph, on the dense features at 1/8 of original scale.

In comparison, in this chapter we study the propagation of the contexts with

observed depth values at multiple scales in a multi-modal setting to enhance the

features of the unobserved pixels.

Monocular Depth Estimation. From approaches based on probabilistic graph-

ical models (e.g., MRFs) with hand-crafted features (Saxena et al., 2006; Saxena

et al., 2009) to the deep learning-based (Fu et al., 2018; Liu et al., 2016b; Go-

dard et al., 2017; Eigen et al., 2014; Zhou et al., 2017; Garg et al., 2016; He

et al., 2018a; Kim et al., 2018; Cao et al., 2018; Wang et al., 2020; Yang et

al., 2020a; Zhang et al., 2018b), the improvement of performance for monocu-

lar depth estimation has been pushed forward. Eigen et al. (Eigen et al., 2014)

were the first to develop deep models for depth estimation. Following their

work, a lot of supervised approaches (Laina et al., 2016; Liu et al., 2016a; Fu et

al., 2018; Eigen and Fergus, 2015) have been proposed. However, these meth-

ods rely on large quantities of ground truth depth data, which is hard to acquire.

To address this issue, Garg et al. (Garg et al., 2016) and Godard et al. (Go-

dard et al., 2017) proposed to predict depth maps from stereo pair images by

exploring unsupervised cues, while some recent works tried to utilize synthetic

data (Atapour-Abarghouei and Breckon, 2018; Zhao et al., 2019b; Zheng et

al., 2018; Nath Kundu et al., 2018; PNVR et al., 2020) based on the domain

adaptation technique (Pan and Yang, 2009).

Graph-based Models. Conventional deep learning modules, such as CNNs,

do not perform well on graphs. To model the graph data efficiently, Graph

Models have been applied on various computer vision tasks (Shi et al., 2019;

Ji et al., 2020; Wu et al., 2020), such as action recognition (Shi et al., 2019;

Yan et al., 2018), point cloud analysis (Wang et al., 2019b; Wang et al., 2018b),

few-shot image classification (Garcia and Bruna, 2017; Kim et al., 2019), and

person re-identification (Wu et al., 2020). Graph Models are able to learn the
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representation of each target node by propagating its neighborhood information

in a data-driven way and thus associate the contextual information. In this work,

we design an attention-based graph propagation module and then extend it to the

co-attention guided graph propagation for multi-modal data, which is capable

of learning an efficient multi-modal representation for the input data through

encouraging the adaptive contextual interactions.

Multi-modal Information Fusion. Multi-modal information fusion has been

studied in various computer vision tasks, such as visual question answering (Ben-

Younes et al., 2017), video action recognition (Simonyan and Zisserman, 2014),

3D object detection (Yoo et al., 2020), and many more. A simple approach to

fuse the multi-modal data is applying concatenation or summation operation

into the input data or extracted feature maps (Jaritz et al., 2018; Simonyan and

Zisserman, 2014). However, for a specific task, different modalities often pro-

vide different information, and therefore, the naive fusion strategy might fail

to combine them effectively. To address this issue, some works, e.g., (Yoo et

al., 2020; Hori et al., 2018), proposed to exploit the attention mechanism to

improve the performance. As for depth completion, current works mainly em-

ployed the naive fusion strategy. In fact, both naive strategy and attention based

approaches fuse the multi-modal features in a single way, which is not enough

to extract complementary information and then limits the performance. In con-

trast, we present the symmetric gated fusion strategy consisting of two fusion

paths, each of which only focuses on one modal and extracts useful information

adaptively from the other.
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3.3 Our Approach

3.3.1 Problem Formulation

Our goal is to recover a dense depth map from the observed sparse depth data

and a single RGB image. Mathematically, given a set of paired RGB image and

sparse depth map {(XI ,XS)i}N−1
i=0 , we expect to learn a mapping function f(·)

that satisfies Y = f(XS,XI), where XS ∈ RH×W , XI ∈ R3×H×W , and Y ∈

RH×W represent the sparse depth map, the RGB image, and the ground truth

depth map, respectively. To achieve this target, we develop a high-performing

depth completion network (ACMNet) building on two novel modules, including

a co-attention guided graph propagation module (CGPM) and a symmetric gated

fusion module (SGFM), as shown in Figure 3.3. In specific, we first employ

a series of CGPMs to effectively extract contextual information from XS and

XI . Then we exploit SGFMs to learn the complementarity between contextual

representations from multi-modalities. In the following, we will present our

network architecture and the proposed modules in detail.

3.3.2 Network Architecture

Our overall network architecture follows a two-stream encoder-decoder fash-

ion as previously (Van Gansbeke et al., 2019; Ma et al., 2019; Jaritz et al.,

2018; Atapour-Abarghouei and Breckon, 2019b), but with the improvement by

integrating the novel CGPM and SGFM. We show the whole framework in Fig-

ure 3.3, and briefly explain the encoder and the decoder right here.

Encoder. The encoder targets learning discriminative multi-scale features from

both the sparse depth and the RGB image. While researchers reached a consen-

sus that standard convolutional operations can perform well in the image data,

how to extract rich information from observed spatial contexts is still an open

problem due to the extreme sparsity (Uhrig et al., 2017; Eldesokey et al., 2019;
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Figure 3.3. The proposed ACMNet in this chapter. Left upper part: Encoder; Right
upper part: Decoder. In encoding stage, we extract multi-scale multi-modal features
using a stack of CGPMs (Marked by blue dotted box, Sec. 3.3.3), and the adaptive
attentional weights are learnt from spatial locations, depth features and RGB features.
In decoding stage, we fuse the multi-modal features progressively by exploiting the
SGFMs, represented by red dotted boxes (Sec. 3.3.4). Lastly, final output is calculated
from the dense maps and confidence maps produced by the two branches of the decoder
or predicted using the intermediate fused features maps, shown in the green dotted box
(Sec. 3.3.5). Note that, the yellow dotted box denotes that there is no ResBlock behind
the initial fusion (see Sec. 3.3.4) in the SGFM. Blue arrow: convolution; Gray arrow:
graph propagation; Black arrow: summation/multiplication/concatenation.

Huang et al., 2020; Jaritz et al., 2018; Van Gansbeke et al., 2019; Tang et al.,

2019; Xu et al., 2019). In this chapter, we show that the proposed CGPM has the

potential to capture the related contextual information from the observed pixels

with various patterns in an adaptive manner through learning dynamic weights

of the relationship between adjacent nodes in the constructed graph. Specifi-

cally, our encoder consists of two conventional convolutional layers followed

by a stack of CGPMs. The encoded features at each scale {Fl
S}Ll=1 and {Fl

I}Ll=1

can be computed as:

(Fl
S,F

l
I) = f l

e(F
l−l
S ,Fl−1

I ),Fl
S,F

l
I ∈ RCl×H

2l
×W

2l , (3.1)
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where l = 1, 2, ..., L, and f l
e denotes the CGPM at level l, and F0

S and F0
I are

the outputs of the beginning convolutional layers.

Decoder. The decoder aims to predict depth values of unobserved pixels in XS

given multi-scale and multi-modal features generated by the encoder mentioned

above. To this end, one of the commonly studied problems is how to take full

advantage of multi-modal representations. A straightforward idea is to directly

concatenate or sum features progressively at different scales (Jaritz et al., 2018;

Qiu et al., 2019). However, as analyzed before, these naive fusion strategies fail

to model the complementary information between multiple modalities satisfy-

ingly. To alleviate the issue, we propose an adaptive symmetric gated fusion

strategy to fuse the multi-modal contextual representations in a parallel struc-

ture. In specific, we design two parallel branches in the decoder, i.e., the depth

and image branches. The depth branch preserves discriminative information of

the sparse depth modality and meanwhile adaptively captures comprehensive in-

formation from the image model through learning dynamic gating weights, and

vise versa for the image branch. The overall decoder architecture is described

as follows.

As shown in Figure 3.3, at the beginning of the decoder, we feed FL
S coupled

with FL
I into the first SGFM to generate the fused feature QL

SI and QL,↑
SI , which

is acquired by up-sampling QL
SI through one deconvolutional layer. At the fol-

lowing levels l from L − 1 to 0, Ql+1,↑
SI , Fl

S and Fl
I are fed into the SGFM at

level l together. Similarly, we can obtain the intermediate features Ql
IS in the

image branch. The procedure can be expressed as:

(QL
SI ,Q

L
IS,Q

L,↑
SI ,Q

L,↑
IS ) = fL

d (F
L
S ,F

L
I ),

(Ql
SI ,Q

l
IS,Q

l,↑
SI ,Q

l,↑
IS) = f l

d(Q
l+1,↑
SI ,Ql+1,↑

IS ,Fl
S,F

l
I),

(3.2)

where l = L− 1, L− 2, ..., 0, and f l
d represents the SGFM.
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Finally, we present two methods, i.e., end-integration and feature-integration, to

combine the two branches to obtain the final recovered dense depth map, which

will be described in detail in Sec. 3.3.5.

3.3.3 Co-Attention Guided Graph Propagation (CGPM)

The proposed CGPM is composed of a residual connection and a co-attention

guided graph propagation module. First, we introduce the basic graph prop-

agation module, which is employed in CGPM. In specific2, given the spatial

position set P = {p0, p1, ..., pn−1} of n pixels with observed depth values, we

define a graph G(V,E), where V is the vertex (or node) set corresponding to

P , and E ⊆ |V | × |V | is the edge set. For a vertex i, we connect it to the k

nearest neighbours according to the spatial locations. Note that, we build an

individual graph for the CGPM at each scale. Thus, to obtain a specific P l at

level l, which is in lower resolution, we generate Xl
S by applying max-pooling

based down-sampling operation on Xl−1
S . The graph’s construction process can

be found in Figure 3.4. In the following, we first introduce the basic attention

guided graph propagation component at level l by taking the image stream as an

example, then present the full CGPM.

Given the graph G constructed from P l and the input feature maps Fl−1
I , we

expect to learn discriminative Fl
I by both adaptively encoding the contextual

information of scenes and exploiting guidance for unobserved pixels from ob-

served pixels. Specifically, we exploit two efficient stages, i.e., adaptive feature

propagation within observed pixels and feature enhancement of unobserved pix-

els.

At the first stage, we employ one standard convolutional layer to extract F′
I from

Fl−1
I , and denote F′

Io ∈ Rn×C as the feature vectors of all the nodes in G. Then,

2In the following part, we deprecate the scale indexes l to simplify our presentation in some
cases.



3.3 OUR APPROACH 55

M
a
x
 P

o
o
lin

g

Graph Construction

Figure 3.4. Graph Construction. At each scale, we use k (e.g., k is 3 in this example)
nearest neighbour to construct the graph from the observed pixels, represented by gray
circles.

we adaptively aggregate neighboured information for each node i in G as:

αi,j =
exp(Wi,j)∑

k∈Ni
exp(Wi,k)

,

F
′′i
Io =

∑
j∈Ni

αi,jF
′i
Io,

(3.3)

where αi,j is the computed attentional weight, Ni represents the nearest neigh-

bours of the node i, and Wi,j is the adaptive weight between neighboured nodes

i and j. Here, inspired by the works (Wu et al., 2019; Wang et al., 2019b; Li

et al., 2018c) on point cloud, we exploit the self-attention mechanism (Vaswani

et al., 2017) to learn Wi,j adaptively by modeling the relationship between the

connected nodes. Mathematically, the mapping function fw between F′
Io and

Wi,j can be expressed as:

Wi,j = fw([∆p
i,j||∆F

′i,j
Io ]), j ∈ Ni, (3.4)

where [·||·] represents the concatenation operation, ∆pi,j = pj−pi and ∆F
′i,j
Io =

F
′j
Io−F

′i
Io denote the spatial and feature distances between node i and j, respec-

tively. The fw is implemented by a two-layer MLP, the first one followed by

one LeakyReLU activation function (Maas et al., 2013). Note that, permutation
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variant operations like convolution are not allowed here due to the unordered

input. After obtaining F′′
Io, the features of unobserved pixels are enhanced by

a standard convolutional operation. In addition, a residual connection (He et

al., 2016) is also utilized to preserve early information. We can use the same

algorithm to conduct propagation in the depth stream.

As shown in Figure 3.3, in the CGPM in our encoder, we learn the adaptive

weights WS and WI by considering both information from the image stream

and the sparse depth stream, inspired by the co-attention mechanism (Lu et al.,

2016). Therefore, in each CGPM, Eq. 3.4 can be re-written as:

Wi,j
S = fSw([∆p

i,j||[∆F
′i,j
So ||∆F

′i,j
Io ]]), j ∈ Ni,

Wi,j
I = fIw([∆p

i,j||[∆F
′i,j
Io ||∆F

′i,j
So ]]), j ∈ Ni.

(3.5)

3.3.4 Symmetric Gated Fusion (SGFM)

For obtained features FS and FI , we develop an effective fusing strategy to

adaptively absorb complementary information from the multi-modal contextual

representations. For example, depth features encode the scene geometry struc-

ture, e.g., the distance from the camera to partial spatial locations. It contributes

to inferring the depth of unobserved locations directly. In addition, RGB fea-

tures contain semantic information and provide prior appearance knowledge of

unobserved pixels. Instead of concatenating or summing them together directly

with or without attention mechanism, we exploit the proposed SGFM with a

symmetric structure, as shown in Figure 3.3. More specifically, at the beginning

of the decoder, we employ the convolutional operation followed by a Sigmoid

function on FL
S to generate the adaptive gating weight GL

S . By applying the

adaptive attention mechanism, the network can absorb meaningful information

from the RGB branch and filter out the unrelated. Then we we feed the ini-

tial fused feature [FL
S ||GL

S ∗ FL
I ] into the Residual Block (abbr. ResBlock) (He

et al., 2016) to obtain the final fused features QL
SI , which is then fed into a
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Figure 3.5. Different fusion strategies. Note that, in implementation, we consider the
features in both encoder and decoder.

deconvolutional layer to generate QL,↑
SI . Therefore, the depth features can be

improved by the complementary information automatically. At the other levels,

there is a slight difference in learning the adaptive weights. In specific, at level

l ∈ {L − 1, L − 2, ..., 0}, we learn the gating weights Gl
S using Ql+1,↑

SI , rather

than Fl
S . Moreover, we feed the concatenated feature [Ql+1,↑

SI ||[Fl
S||Gl

S ∗ Fl
I ]]

into the ResBlock at l ∈ {L−1, L−2, ..., 1} or one convolutional layer at l = 0

to get the fused feature. Due to the symmetry of the structure, a similar proce-

dure is employed in the image branch. To illustrate the difference between the

proposed fusion strategy and the existing ones, e.g., direct fusion and direct at-

tention fusion, we provide the visual and quantitative comparisons among them

in Figure 3.5 and the ablation study, respectively.
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3.3.5 Branch Integration

By applying the proposed symmetric gated fusion modules, we obtain two sets

of features, one from the image branch and the other from the depth branch.

Here, we consider two methods, i.e., end-integration and feature-integration, to

integrate them together and then obtain the final prediction result.

3.3.5.1 End-integration

For each branch, we can predict a dense depth map, i.e., ŶS, ŶI ∈ RH×W .

Since the two branches focus on different information, the reliability of the two

predictions varies across the whole image plane. To integrate them adaptively,

following (Qiu et al., 2019; Van Gansbeke et al., 2019), we further predict two

confidence maps CS,CI ∈ RH×W , which indicate the reliability of the predic-

tions. Therefore, the final dense depth map can be obtained as follows:

Ŷ =
exp(CS) ∗ ŶS + exp(CI) ∗ ŶI

exp(CS) + exp(CI)
, (3.6)

where ∗ represents the element-wise multiplication.

3.3.5.2 Feature-integration

Apart from the integration in the end, we can also combine the features ex-

tracted by the two branches. In specific, as shown in Figure 3.6, we fuse the

intermediate features QSI and QIS through several convolutional operations to

obtain QF progressively, and lastly obtain the final prediction Ŷ by applying

one convolutional operation on the final integrated features.

3.3.6 Loss Function

The network is mainly driven by a masked mean squared error (MSE) loss be-

tween the ground truth semi-dense depth map Y and the prediction Ŷ, which is
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Figure 3.6. Feature-integration. Note that, we ignore some inputs of the SGFM for
simplicity.

defined as:

Lmse(Y, Ŷ) =
1

Np

∑
i,j

I(Yi,j > 0)(Yi,j − Ŷi,j)2, (3.7)

where I(·) denotes the indication function, and Np represents the number of

labeled pixels. In addition, similar to previous works (Godard et al., 2017),

we also apply an edge-aware smoothness loss to encourage depths to preserve

spatial continuity:

Lsm(Ŷ;XI) =
1

Ns

||∇Ŷ||1e−||∇XI ||1 , (3.8)

where Ns denotes the number of pixels in the whole image space, and ∇ repre-

sents first derivative along spatial directions. Finally, the full objective is:

L(Ŷ, ŶS, ŶI ,Y;XI) =Lmse(Ŷ,Y)+

γ1Lmse(ŶS,Y)+

γ1Lmse(ŶI ,Y)+

γ2Lsm(Ŷ;XI),

(3.9)

where γ1 and γ2 are the trade-off factors, and are set to 0.5 and 0.01 in our

experiments, respectively.
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3.4 Experiments

In this section, we first introduce the datasets (Geiger et al., 2012a; Silberman

et al., 2012) used in our experiments, and the implementation details. Then we

evaluate our method by making comparisons against state-of-the-art methods.

Finally, we conduct several ablations to analyze our framework.

3.4.1 Benchmark Datasets

KITTI Depth Completion Benchmark (Geiger et al., 2012a). It is currently

the main benchmark for depth completion. The dataset consists of over 90, 000

frames with the ground truth semi-dense depth map for training and validation,

and 1, 000 frames without the ground-truth for test. We train depth completion

models on the training set, and then evaluate the performance on the official

selected validation and test sets. During training, we crop all training data (im-

ages and depth maps, 375 × 1242) to the size of validation and test data, i.e.,

352 × 1216. For evaluation, we adopt the official error metrics: root mean

squared error (RMSE in mm, main metric for ranking), mean absolute error

(MAE in mm), root mean squared error of the inverse depth (iRMSE in 1/km),

and mean absolute error of the inverse depth (iMAE in 1/km).

NYU-v2 (Silberman et al., 2012). This dataset consists of RGB and depth im-

ages collected from 464 different indoor scenes. According to the official data

split strategy, 249 scenes are used for training, and 654 labeled images are se-

lected for evaluating the final performance (Eigen et al., 2014; Laina et al.,

2016). In our experiments, we sample around 48k images with annotations from

the training set for training. Adopting similar experimental setting as (Ma and

Karaman, 2018; Cheng et al., 2018), we firstly down-sample all images to half

and center-crop them to 304 × 228, and then sample 500 sparse LiDAR points

from the provided dense depth map randomly as the sparse depth data. We ex-

ploit root mean square error (RMSE in meter), mean absolute relative error
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Method PAR. FLOPs Time (s) Mem. RMSE MAE iRMSE iMAE
SparseConv - - - - 1601.33 481.27 4.94 1.78
MorphNet - - - - 1045.45 310.49 3.84 1.57
CSPN 17.41 - - - 1019.64 279.46 2.93 1.15
Spade-RGBsD ∼5.3 - - - 917.64 234.81 2.17 0.95
HMSNet - - - - 841.78 253.47 2.73 1.13
DDP 18.8 - - - 832.94 203.96 2.10 0.85
NConv-CNN-L2 0.36 305 0.05 5.2 829.98 233.26 2.60 1.03
Sparse2Dense 26.10 1247 0.07 3.7 814.73 249.95 2.80 1.21
PwP 28.99 - - - 777.05 235.17 2.42 1.13
Certainty 2.55 111 0.02 5.4 772.87 215.02 2.19 0.93
DeepLiDAR 53.44 3070 0.04 4.0 758.38 226.05 2.56 1.15
UberATG-FuseNet 1.89 - - - 752.88 221.19 2.34 1.14
CSPN++ ∼26 - - - 743.69 209.28 2.07 0.90
NLSPN 25.84 1353 0.14 3.3 741.68 199.59 1.99 0.84
ACMNet 4.9 544 0.08 2.9 744.91 206.09 2.08 0.90

Table 3.1. Quantitative results on the test set of KITTI depth completion benchmark,
ranked by RMSE. Our method performs better than most of previous methods, and
yields close performance to CSPN++ and NLSPN with a much smaller model size
(PAR./M). Our model also runs faster than NLSPN, and has lower FLOPs (G) and
consumes less GPU memory (Mem./G) than most of approaches during inference. For
fair comparison, we run the methods with released code and pretrained models on one
Tesla V100 GPU.

(REL in meter), and the percentage of relative errors inside a certain threshold

(δt, t ∈ {1.25, 1.252, 1.253}) as evaluation metrics.

3.4.2 Implementation Details

Graph Construction. For KITTI dataset, we build the graphs at three scales

with 10000, 5000, and 2500 observed pixels randomly sampled from the down-

sampled sparse depth maps, respectively, and we calculate 6 nearest neighbours

for each node. For NYU-v2, we randomly sample 250, 125, and 60 points, re-

spectively. Note that, we can create the graphs using either the 3D coordinates

(e.g., camera coordinates) or the 2D coordinates (e.g., pixel coordinates). Here,

we use the 3D coordinates, and we will study the differences in ablation studies.

Architecture Details. At each level of the encoder, we employ two CGPMs,

and in the decoder, two ResBlocks are utilized in the symmetric gated fusion
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module at each scale. The feature channels in the modules are set to 64. Our

final results are obtained using the feature-integration, and in this case, we use

two convolutional layers, each with 64 output channels at each scale.

Training Details. We implement our depth completion framework in PyTorch.

In specific, we optimize our network with the momentum of β1 = 0.9, β2 =

0.999, and the initial learning rate of α = 0.0005 using the ADAM solver (Kingma

and Ba, 2014b). The model is trained for around 40 epochs with a batch size of

8, and the learning rate is delayed by 0.5 every 10 epochs during training.

3.4.3 Comparison against the State-of-the-art

KITTI Dataset. In Table 3.1, we report the number of parameters as well as the

performance of our approach and previous peer-reviewed works on KITTI depth

completion benchmark. The comparison methods include SparseConv (Uhrig

et al., 2017), MorphNet (Dimitrievski et al., 2018), CSPN (Cheng et al., 2018),

Spade-RGBsD (Jaritz et al., 2018), HMSNet (Huang et al., 2020), DDP (Yang et

al., 2019b), NConv-CNN-L2 (Eldesokey et al., 2019), Sparse2Dense (Ma et al.,

2019), PwP (Xu et al., 2019), Certainty (Van Gansbeke et al., 2019), DeepLi-

DAR (Qiu et al., 2019), UberATG-FuseNet (Chen et al., 2019), CSPN++ (Cheng

et al., 2020a), and NLSPN (Park et al., 2020). Note that, some of the existing

approaches employ additional data during training. For example, DeepLiDAR

renders 50K training samples using an open urban driving simulator to train

the surface normal prediction network, and Certainty utilizes a pre-trained se-

matic segmentation model on Cityscapes (Cordts et al., 2016) as network ini-

tialization, which can provide high-level semantic information for depth com-

pletion. In contrast to these approaches, we train our network from scratch

without any additional data. Nevertheless, our approach obtains a convincible

improvement over most of the previous methods. In comparison to the latest

works, i.e., CSPN++ and NLSPN, our model achieves very close performance,

but our model has fewer parameters. Specifically, the RMSE errors of NLSPN
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RGB Image DeepLiDAR Certainty PwP Sparse2Dense Ours

Figure 3.7. Qualitative comparison of our method against four state-of-the-art ap-
proaches on KITTI test set. Left to right: RGB image, results of DeepLiDAR, Certainty,
PwP, Sparse2dense, and ACMNet, respectively. For better comparison, we show color
images, dense predictions, and zoom-in views of details and error maps (darker, better).
Best viewed in color.

and CSPN++ are 3mm and 1mm less than ours, respectively, but the number

of their parameters is around four times larger than ours. Moreover, our method

runs faster than NLSPN, and has lower FLOPs and GPU memory consumption

than most of approaches during inference.

Figure 3.7 shows some qualitative results of ACMNet and other four state-of-

the-art methods (Qiu et al., 2019; Van Gansbeke et al., 2019; Xu et al., 2019; Ma

et al., 2019). Benefiting from our proposed co-attention guided graph propaga-

tion and symmetric gated fusion strategy, which exploit observed pixels’ infor-

mation and capture the heterogeneity of the two modalities efficiently, ACMNet

is capable of yielding high-performing dense depth map, preserving more de-

tails over boundary regions (e.g., the 2nd and 3rd examples), and performing

better on the tiny/thin objects (the 1st example).
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Method RMSE REL δ1.25 δ1.252 δ1.253

TGV (Ferstl et al., 2013) 0.635 0.123 81.9 93.0 96.8
Bilateral (Silberman et al., 2012) 0.479 0.084 92.4 97.6 98.9
Zhang et al. (Zhang and Funkhouser, 2018) 0.228 0.042 97.1 99.3 99.7
Ma et al. (Ma and Karaman, 2018) 0.204 0.043 97.8 99.6 99.9
CSPN (Cheng et al., 2018) 0.117 0.016 99.2 99.9 100.0
DeepLiDAR (Qiu et al., 2019) 0.115 0.022 99.3 99.9 100.0
Xu et al. (Xu et al., 2019) 0.112 0.018 99.5 99.9 100.0
NLSPN (Park et al., 2020) 0.092 0.012 99.6 99.9 100.0
ACMNet 0.105 0.015 99.4 99.9 100.0

Table 3.2. Quantitative results on NYU-v2 with the setting of 500 sparse depth sam-
ples. RMSE, REL: lower better; δt: higher better.

Models RMSE MAE PARAMs (M) Time (s) FLOPs (G)
- FI (D) 789.72 216.65 1.13 0.057 151
- FI (T) 785.97 213.24 1.17 0.068 153
- SG (D) 806.87 220.97 0.72 0.053 86
- SG (T) 801.76 219.18 0.76 0.063 88
- GP 794.13 218.56 1.32 0.018 189
Full (D) 786.89 216.24 1.35 0.061 191
Full (T) 781.66 212.61 1.39 0.072 193

Table 3.3. Investigation on the model with one module disabled. - FI: using end-
integration instead of feature-integration, i.e., feat-integration disabled; - SG: removing
SGFM and using the direct fusion strategy instead; - GP: removing CGPM. D: default
attention operator in CGPM; T: point transformer in CGPM.

NYU-v2 Dataset. As shown in Table 3.2, most of latest works have close per-

formance on this dataset. Our method performs better than almost all of methods

except NLSPN (Park et al., 2020), but as stated above the number of our model’s

parameters is far less than it. In more specific, on NYU-v2, the PARAMs (M),

FLOPs (G), Running Time (s), and Inference Memory (GB) of ours / NLSPN /

CSPN is 4.9 / 25.8 / 21.8, 122 / 220 / 262, 0.02 / 0.03 / 0.05, and 1.3 / 1.7 / 2.5,

respectively.
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Method RMSE MAE iRMSE iMAE
Baseline 815.61 224.43 2.59 1.02
+GP 806.87 220.97 2.42 0.97
+GP/D 810.85 224.64 2.45 0.99
+GP/W 809.09 221.44 2.42 0.97
+SG 796.79 219.86 2.39 0.97
+GP+SG 789.72 216.65 2.32 0.96
+GP/D+SG 792.49 215.14 2.33 0.95
+GP/W+SG 790.75 217.34 2.39 0.97

Table 3.4. Quantitative results on KITTI validation set for ablation study on Graph
Propagation. Noticeable improvements gained by +GP demonstrate the effectiveness of
our proposed graph propagation module.

Method RMSE MAE iRMSE iMAE
DF 815.61 224.43 2.59 1.02
DAF 807.35 224.70 2.46 1.00
SG 796.79 219.86 2.39 0.97
GP+DF 807.49 218.74 2.39 0.96
GP+DAF 804.69 221.09 2.44 0.99
GP+SG 789.72 216.65 2.32 0.96

Table 3.5. Investigation for different fusion strategies. DF: direct fusion; DAF: direct
fusion with attention mechanism; SG: our proposed adaptive symmetric gated fusion
strategy.

3.4.4 Ablation Study

Here, we conduct comprehensive ablation studies on KITTI selected validation

dataset to verify the effectiveness of our proposed components. In following ex-

periments, we set the channels of intermediate layers in networks to 32 to speed

up model training. Unless otherwise specified, we exploit the end-integration in

most cases.

Investigation on the model with one module disabled. At first, to better un-

derstand the performance improvement brought by the proposed modules, we

conduct a series of experiments by removing one component from the full model

each time and observe how the performance changes. The results are shown in
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Table 3.3, and we can observe the performance drops with any component dis-

abled. In specific, SGFM can yield lower RMSE than CGPM and requires less

time, but CGPM has fewer parameters and lower FLOPs. Therefore, the pro-

posed two modules have both strengths and shortcomings.

In addition, currently there are various ways of modeling the attention guided

propagation. As a result, we wonder whether there exist attention operators

which can extract the observed contextual information better. To address this

problem, we re-implement the attentional weights learning and neighboured in-

formation aggregation (Eq. 3.3, Eq. 3.4, and Eq. 3.5) using the Point Trans-

former operator, which is proposed by the latest work (Zhao et al., 2020a). We

refer the original implementation as Default (D), and the re-implementation as

Transformer (T). As shown in Table 3.3, the performance can be improved fur-

ther by the new attention operator with slight increase of FLOPs and PARAMs,

which demonstrates the potential of CGPM for bringing improvement. In the

following, we make detailed analysis for each module.

The effectiveness of the graph propagation. We demonstrate the effective-

ness of the proposed co-attention guided graph propagation by comparing the

performance in four cases, i.e., (1) Baseline: no propagation used in the encoder

and direct fusion in the decoder; (2) +GP: graph propagation in the encoder

and direct fusion in the decoder; (3) +SG: no propagation in the encoder and

symmetric gated fusion in the decoder; (4) +GP+SG: our whole model with the

end-integration. As shown in Table 3.4, +GP and +GP+SG outperform Baseline

and +SG, respectively, which demonstrates that the proposed graph propagation

module better captures the spatial contextual information from sparse LiDAR

data.

Furthermore, we carry out four additional experiments to analyze in which

stage, such as the encoder (i.e., +GP and +GP+SG), decoder (referred as +GP/D

and +GP/D+SG), or whole network (referred as +GP/W and +GP/W+SG), the
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Graph RMSE MAE iRMSE iMAE
10K_2D_6NN 792.56 216.31 2.34 0.95
10K_3D_6NN 789.72 216.65 2.32 0.96
10K_3D_3NN 792.13 216.64 2.35 0.96
10K_3D_9NN 795.09 216.57 2.37 0.96
08K_3D_6NN 794.59 216.64 2.36 0.95
12K_3D_6NN 793.61 215.81 2.34 0.95

Table 3.6. Ablation study on the coordinate system and the number of nearest neigh-
bours and sampled points.

Method RMSE MAE iRMSE iMAE
End-Integration 789.72 216.65 2.32 0.96

Feature-Integration 786.89 216.24 2.28 0.96
EI/Depth 802.66 219.88 2.40 0.97
EI/Image 807.34 223.26 2.47 1.00

Table 3.7. Investigation for the two proposed integration methods.

graph propagation module performs better. As shown in Table 3.4, the compar-

isons (+GP v.s. +GP/D, and +GP+SG v.s. +GP/D+SG) indicate that applying the

propagation module in the feature extraction stage is more effective in modeling

the contextual information. Additionally, we can also observe that compared to

+GP (+GP+SG), +GP/W (+GP/W+SG) causes some performance drop. This

might be because in the decoder the structure of the observed pixels is not well-

preserved after several operations in the encoder.

The effectiveness of the symmetric gated fusion. To verify that the proposed

symmetric gated fusion strategy performs better than direct fusion, e.g., con-

catenation with or without attention (referred as DAF and DF, respectively), we

compare six models, i.e., DF (namely Baseline), DAF, SG, GP+DF (namely

Baseline+GP in Table 3.4), GP+DAF, and GP+SG. As shown in Table 3.5,

SG outperforms both DAF and DF, demonstrating that the proposed symmet-

ric gated fusion strategy is capable of combining the multi-modal information

more effectively. Moreover, the comparisons between GP+SG, GP+DAF, and

GP+DF can further support this conclusion.
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Figure 3.8. Qualitative example of the end-integration. First row: input image, pre-
diction of EI/Depth and EI/Image, respectively; Second row: final prediction, and con-
fidence maps corresponding to the predictions in the first row. We can find that each
branch can capture different information.

Analysis of graph construction. Here, we investigate the impacts of three

factors involved in constructing graphs. Note that, we conduct the following

experiments using our final model with the end-integration. We report the results

in Table 3.6.

Firstly, since we aim at capturing more observed multi-modal information to

enhance the features of unobserved pixels by finding their spatial neighbours,

it is interesting to explore the selection of the coordinate system, i.e., pixel co-

ordinate system or camera coordinate system. In specific, for a set of observed

pixels, we can construct a graph according to their 2D coordinates {(ui, vi)}n−1
i=0

directly or 3D coordinates {(xi, yi, zi)}n−1
i=0 , which are obtained according to

Eq. 3.10, where fx, fy, cx, cy denote the camera parameters, and di represents

the depth value. In Table 3.6, we compare two models (10K_2D_6NN v.s.

10K_3D_6NN), where 6-nearest neighbours algorithm is utilized to construct

graphs and 10, 000 points are sampled at the first scale. We can find 10K_3D_6NN

slightly outperforms 10K_2D_6NN on the RMSE metric. It is mainly because
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RMSE on All Sampling Ratios RMSE on Sampling Ratios 0.025, 0.05, 0.1, 0.2

RMSE on Sampling Ratios 0.4, 0.6, 0.8, 1.0 MAE on All Sampling Ratios

MAE on Sampling Ratios 0.025, 0.05, 0.1, 0.2 MAE on Sampling Ratios 0.4, 0.6, 0.8, 1.0

Figure 3.9. Performances under different levels of sparsity. For better comparison,
we also show the performances on lower (the second and fifth) and larger (the third
and sixth) densities separately. In comparison to Certainty, Sparse2dense, and NConv-
CNN, ACMNet performs better under all input densities.

propagation in the camera (3D) coordinate system can learn the scene’s geomet-

ric structure.
zi = di

xi =
zi(ui − cx)

fx

yi =
zi(vi − cy)

fy

(3.10)
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Secondly, we discuss the performance of the model under different numbers of

nearest neighbours. By setting k (k nearest neighbours) to different values, i.e.,

3, 6, 9, we train three models, i.e., 10K_3D_3NN (k = 3), 10K_3D_6NN (k =

6), and 10K_3D_9NN (k = 9), all of which propagate features in the camera

coordinate system. As shown in Table 3.6, in comparison to 10K_3D_3NN and

10K_3D_6NN, 10K_3D_9NN causes a slight decrease in the performance, it

might be because increasing the number of nearest neighbours encourages the

model to see unrelated contexts.

Lastly, we study the number of sampled points. In specific, we sample 10, 000,

8, 000, and 12, 000 points at the first scale, respectively, and at the following

scales, half of points are sampled from the last scale. From Table 3.6, we can

observe that more or fewer points might degrade the performance on the RMSE

metric.

In a nutshell, the selection of coordinate system, the number of nearest neigh-

bours and sampled points might affect the performance, but in most settings, the

model performs well.

Analysis of branch integration. In Section 3.3.5, we introduce two methods

for the integration of the two branches. Here, we analyze their performances.

As shown in Table 3.7, the comparison (RMSE: 786 v.s. 789) between Feature-

Integration (abbr. FI) and End-Integration (abbr. EI) shows that integration at

the feature level is more powerful than the end in learning the reliability of the

two branches.

In addition, we also evaluate the performance of the two branches. Taking the

end-integration as an example, we report the performance of EI/Depth fusing the

RGB information into the depth, and EI/Image doing the opposite. Although the

two branches yield close scores on all metrics, by learning confidence maps to

fuse them together, a significant improvement on all metrics is obtained. To
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understand the two branches deeply, we provide a qualitative example in Fig-

ure 3.8. It can be seen that the depth branch is able to generate dense depth

map with higher confidence in most locations, while the image branch performs

better in capturing the boundary information. This result also further supports

that the two modalities are complementary to each other.

3.4.5 Generalization Capabilities

Lastly, we evaluate the generalization capabilities of our method on the sparsity,

including the number of observed points and the sparse data pattern.

Number of known points. To show the generalization capabilities of ACM-

Net on different levels of sparsity, we evaluate our approach and other three

state-of-the-art methods with publicly available code, i.e., Certainty (Van Gans-

beke et al., 2019), Sparse2dense (Ma et al., 2019), and NConv-CNN (Eldesokey

et al., 2019), on KITTI selected validation set under different input densities.

In specific, we first uniformly sub-sample the raw LiDAR depth by ratios of

0.8, 0.6, 0.4, 0.2, 0.1, 0.05, and 0.025 to generate sparse depth maps with dif-

ferent densities, and then test pretrained models on the generated sparse depth

maps. Note that, all the models are trained on KITTI training set under the

original sparsity (sampling ratio of 1.0) but not fine-tuned on the new sparse

depth maps. Figure 3.9 shows that our approach performs better under all in-

put densities in terms of both RMSE and MAE metrics, which demonstrates the

impressive generalization capabilities of our approach under different levels of

sparsity.

Sparsity pattern. The NYU-v2 dataset provides dense depth maps, so we can

evaluate the model on different sparsity patterns through applying different sam-

pling method to generate the sparse depth map. Here, we compare our method

with NLSPN (Park et al., 2020) and CSPN (Cheng et al., 2018), which released

the code and pretrained models. In specific, we firstly define three patterns, i.e.,
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Method RMSE REL δ1.25 δ1.252 δ1.253

Uniform
CSPN (Cheng et al., 2018) 0.117 0.016 99.2 99.9 100.0
NLSPN (Park et al., 2020) 0.092 0.012 99.6 99.9 100.0
ACMNet 0.105 0.015 99.4 99.9 100.0

Gaussian
CSPN (Cheng et al., 2018) 0.121 0.017 99.1 99.8 100.0
NLSPN (Park et al., 2020) 0.093 0.013 99.5 99.9 100.0
ACMNet 0.110 0.017 99.3 99.9 100.0

Grid
CSPN (Cheng et al., 2018) 0.123 0.017 99.2 99.8 100.0
NLSPN (Park et al., 2020) 0.095 0.013 99.5 99.9 100.0
ACMNet 0.090 0.012 99.6 99.9 100.0

Table 3.8. Quantitative results on NYU-v2 with different sparsity patterns. RMSE,
REL: lower better; δt: higher better.

Uniform, Gaussian, and Grid. As shown in Figure 3.10, Uniform indicates that

we randomly sample n (= 500) points from the dense depth map as the known

points and each point could be selected with equal probability; Gaussian means

that the closer the point is to the central location, the larger the probability of

being selected is; Grid means we sample the points regularly. All models, in-

cluding NLSPN, CSPN, and ACMNet are trained on the Uniform patterns, and

then evaluated on all three patterns. As shown in Table 3.8, the scores of all

models on RMSE and MAE drop slightly in the Gaussian pattern, since the

number of points in two sides of the sparse depth map with Gaussian pattern

is fewer than Uniform pattern. In comparison, on the Grid pattern, which can

be considered as the easier version of the Uniform, our model generates higher

scores. In contrast, other two methods still yield lower scores, which exploit the

standard convolutional operation to extract the features. Therefore, our method

generalizes well to different sparsity patterns.
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Dense Uniform

Gaussian Grid

Figure 3.10. Different sparsity patterns. Zoom in for best view.

3.5 Conclusion

In this chapter, we have developed an Adaptive Context-Aware Multi-Modal

Network (ACMNet) to recover a dense depth map from sparse LiDAR data and

dense RGB data. The critical issue in depth completion is how to exploit the ob-

served spatial contexts from multi-modal data efficiently. To this end, we apply

the co-attention guided graph propagation within multiple graphs constructed

from observed pixels, which adaptively extracts multi-scale and multi-modal

features and contributes to the feature enhancement for unobserved pixels. Fur-

thermore, to fuse the multi-modal features in an effective way, we propose the

symmetric gated fusion strategy, which has the capability of learning the het-

erogeneity of the two modalities. Finally, we implement our ACMNet, where a

stack of CGPMs are employed in the encoder and SGFMs are used in the de-

coder. Benefiting from the two new modules, ACMNet is capable of generating
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high-quality dense depth maps. Our extensive experiments have demonstrated

the effectiveness of the network as well as the network components.



CHAPTER 4

Adaptive Edge-to-Edge Interaction Learning for Point Cloud

Analysis

Previous chapters study 3D structure prediction from single images and multi-

modal data, i.e., monocular depth estimation and depth completion, respectively.

In this and next chapter, we are investigating 3D information understanding

through exploring local shape representation and model generalization for 3D

point cloud analysis, respectively. Recent years have witnessed the great suc-

cess of deep learning on various point cloud analysis tasks, e.g., classification

and semantic segmentation. Since point cloud data is sparse and irregularly

distributed, one key issue for point cloud data processing is extracting useful

information from local regions. To achieve this, previous works mainly extract

the points’ features from the local region through learning the relation between

each pair of adjacent points. However, these works ignore the relation between

edges in the local region, which encodes the local shape information. Associ-

ating the neighbouring edges could potentially make the point-to-point relation

more aware of the local structure and more robust. To explore the role of the

relation between edges, this chapter proposes a novel Adaptive Edge-to-Edge

Interaction Learning module (AE2IL), which aims to enhance the point-to-point

relation through modeling the edge-to-edge interaction in the local region adap-

tively. We further extend the AE2IL module to a symmetric version, named

SymAE2IL, to capture the local structure more thoroughly. Taking advantage of

the proposed modules, we develop two networks, AE2INetCls and AE2INetSeg,

75
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for shape classification and segmentation tasks, respectively. Various experi-

ments on several public point cloud datasets show that our models achieve state-

of-the-art performance for point cloud analysis.

4.1 Introduction

In recent years, a lot of works have been made to exploit deep learning for

3D point cloud analysis, which is important for real-world applications, such

as autonomous driving (Li et al., 2019c) and robotics manipulation (Kim and

Sukhatme, 2014). Since point cloud data does not have a regular structure

like images, it cannot be processed straightforwardly in the deep convolutional

neural networks (DCNNs). To address this issue, some works (Maturana and

Scherer, 2015; Wu et al., 2015; Wang et al., 2017) propose to voxelize the points

and obtain the volumetric representation, which can be fed into the conventional

CNNs. However, these voxel-based approaches often suffer from quantization

loss of the structure due to the low resolution caused by voxelization.

Another solution is designing a deep model that can learn representations from

the raw point cloud directly. The pioneering work of this clue, i.e., PointNet (Qi

et al., 2017a), extracts the features from each point directly using the multi-layer

perceptron (MLP). Despite being efficient, however, it omits the local structure,

which is significant for learning discriminative representations. PointNet++ (Qi

et al., 2017b), as an extension of PointNet, attempts to model the local shape by

introducing a hierarchical encoder-decoder structure with point sampling and

feature propagation operations.

Following these two works, a lot of variants (Wang et al., 2019d; Liu et al.,

2019d; Fujiwara and Hashimoto, 2020; Li et al., 2018e; Wang et al., 2019b)

have been proposed to extract discriminative features from the local regions. A

typical clue they exploit is aggregating the information of a point into its neigh-

bours according to their relationships, i.e., the edge’s features. For example,
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DGCNN (Wang et al., 2019d) proposes the EdgeConv operation that extracts

the local features from the center point and the edges (e.g., spatial relative posi-

tion) between it and its neighbours. Another interesting work, RS-CNN (Liu et

al., 2019d) maps the predefined geometric priors between two adjacent points

into a high-level relation expression, and then considers it as weights to aggre-

gate the local contextual information. These methods improve the performance

of several typical point cloud tasks, including shape classification, part segmen-

tation, and semantic segmentation, remarkably.

However, as these methods solely model the point-to-point relation for each pair

of adjacent points, the learned representation for the edge might lack the local

structure information, making the relation not discriminative and not robust. For

example, given two point pairs (p1, p2) and (p3, p4), if we calculate the relation

for each pair respectively, then we might get close results, even though they

locate in different objects. In comparison, if we exploit the local structure to

enhance the point-to-point relation (p1 and p2, p3 and p4) through considering

other edges in the same local region, then the results could be more distinctive.

Based on the analysis above, we propose an Adaptive Edge-to-Edge Interaction

Learning (AE2IL) module. Specifically, for a point, we first find its K neigh-

bours, and thus there areK edges emanating from it to its neighbours. Then, for

each edge we consider other edges’ information through modeling the edge-to-

edge interaction in three steps: 1) find its nearest neighbours from the K edges;

2) learn the relation between it and its neighbours; 3) use these learned relations

to update its information. Furthermore, to model the local structure thoroughly

and explore the reverse edges, we extend the AE2IL to a symmetric version,

namely SymAE2IL, the details of which can be found in the third section.

Taking advantage of the (symmetric) adaptive edge-to-edge interaction learn-

ing modules, we develop two networks, i.e., AE2INetCls and AE2INetSeg, for

shape classification and segmentation, respectively. The experimental results
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show that the designed models outperform previous approaches on several pub-

lic point cloud datasets, and achieve state-of-the-art performance.

4.2 Related Work

Currently, many efforts have been made to exploit deep learning on point cloud

processing. In this section, we briefly review some of them, especially those

point based methods. We refer to the survey (Guo et al., 2020) for a thorough

understanding.

Following PointNet (Qi et al., 2017a), which is the first attempt to apply deep

learning directly on the sparse and unstructured point sets, and its extension

PointNet++ (Qi et al., 2017b), a lot of efforts (KIM et al., 2020; Landrieu and

Simonovsky, 2018; Wu et al., 2019; Lang et al., 2020; Liu et al., 2019a; Liu et

al., 2020; Wang et al., 2018a; Wong and Vong, 2020; Huang et al., 2018; Atz-

mon et al., 2018; Le et al., 2020; Nezhadarya et al., 2020; Wang et al., 2019c;

Hua et al., 2018; Xiang Zhang, 2021; Liu et al., 2019b; Xu et al., 2018c; Ko-

marichev et al., 2019; Chen et al., 2021) have investigated the feature extraction

of the local structure. Most of these point based works mainly focus on one or

more of the following components: 1) points sampling, 2) relation learning, and

3) convolutional operation.

Points Sampling. To capture the contextual information in a hierarchical struc-

ture, PointNet++ (Qi et al., 2017b) exploits the farthest point sampling (FPS)

algorithm to sample a subset from the input points. Since the FPS algorithm is

permutation-variant and samples points from low-dimension Euclidean space,

PAT (Yang et al., 2019a) proposes Gumbel Subset Sampling to select the sub-

set, which is more robust to outliers. In comparison, to overcome the issue

existing in FPS, PointASNL (Yan et al., 2020) proposes an adaptive sampling
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strategy to refine the initial sampled points, which considers both low- and high-

dimension embedding space. Interestingly, a recent work, RandLA-Net (Hu et

al., 2020a) compares several point sampling approaches, and observes that the

Random Sampling strategy is more suitable for large-scale point clouds.

Relation Learning. To represent the local structure, PointNet++ (Qi et al.,

2017b) extracts the features of each point in the local region using the MLP and

then exploits the Max-Pooling operation to get the local region feature vec-

tor. However, it ignores the geometric relationships between points, which

causes the limitation on the modeling of local structures. To improve this,

DGCNN (Wang et al., 2019d) exploits the proposed EdgeConv on the con-

structed local neighbourhood graph to model local geometric structures. Edge-

Conv aggregates the features of the edges emanating from the central point of

the local region as its new representation. In comparison, some works aim to

map the edge features into weights for feature association. For example, ex-

tending regular 2D CNN to irregular configuration, RS-CNN (Liu et al., 2019d)

encodes the predefined geometric priors, e.g., the spatial distance, between two

adjacent points as a high-level relation expression, i.e., weight vector. Simi-

larly, GAC (Wang et al., 2019b) learns attentional weights from both spatial and

feature distances. One point in common among these works is that in a local

region, only the edges connecting the central point to the others are considered.

In comparison, PointWeb (Zhao et al., 2019a) constructs a densely-connected

graph and aims to find the interaction between all adjacent points for better de-

scription of the local structure. This chapter attempts to learn the edge-to-edge

interaction adaptively for the enhancement of the point-to-point relation.

Convolutional Operation. Motivated by the standard 2D convolution kernel,

KPConv (Thomas et al., 2019) designs a set of 3D kernel points. The kernel

points are used to define the area where the kernel weights are applied to extract
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the features. A recent work, PAConv (Xu et al., 2021a), proposes to construct

the convolutional kernels by dynamically assembling basic weight matrices in a

pre-defined Weight Bank. In addition, some works attempt to apply projection in

the feature space so that the projected features can be processed by the standard

convolutional operation directly. Fox example, PointCNN (Li et al., 2018e)

transforms the points in a local region to the canonical order through learning

a transformation matrix and then the traditional convolution can be applied. In

comparison with PointCNN, FPConv (Lin et al., 2020a) learns a weight map

to softly project local points onto a 2D grid, which is further processed by the

regular 2D convolutional operation.

4.3 Our Approach

In this section, we present the proposed novel adaptive edge-to-edge interaction

learning modules, AE2IL and its symmetric version SymAE2IL in detail. In

addition, we also provide an analysis for the differences between an existing

work and our approach in the last.

4.3.1 AE2IL Module

Let P = {p1, p2, ..., pN} ⊂ R3, where pi represents the point’s spatial position,

denote the processed point cloud consisting ofN points, F = {f1, f2, ..., fN} ⊂

RCin denote the corresponding feature set, where Cin is the number of channels.

Our new AE2IL module takes P and F as the input, and outputs the enhanced

representation f o
i ∈ RCout for each point pi in Ps. Ps is a subset sampled from

P via the FPS technique (Qi et al., 2017b), and Cout is the channel number.

Specifically, for a certain point pi, we find itsK neighbours N (pi) ⊆ P from P .

This is implemented by the K-nearest neighbour (K-NN) algorithm according to

the spatial distance. To extract the local features, we follow (Liu et al., 2019d;
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Wang et al., 2019c; Wang et al., 2019b) to first encode the point-to-point relation

(hij) based on the spatial relative position and difference between features as:

hij = σ([(pj − pi)||(fj − fi])), pj ∈ N (pi), (4.1)

where [·||·] is the concatenation operation, and σ(·) denotes a mapping function.

In this chapter, we use MLP as the function. Given the learned point-to-point

relation hij , we can integrate the point feature fi and its K neighbouring fea-

tures fj following (Liu et al., 2019d; Wang et al., 2019c; Wang et al., 2019b).

However, as discussed before, only studying the relations between two points

solely may fail to model the local structure well. We thus seek a solution by

adaptively investigating the interaction between the edges.

In detail, for the central point pi we have K directed edges1. Among them, the

edge eij emanates from point pi to its neighbour pj ∈ N (pi). We then utilize

K-NN algorithm to find the Ke nearest neighbours for each edge according to

the distance between edges. Here, the distance between eij and eik is computed

as:

Dist(eij, eik) =
√

||pj − pk||2, (4.2)

i.e., the spatial Euclidean distance between the terminal points of the edges.

For a specific edge eij , we denote its neighbours as eik ∈ N (eij), where eik

represents the edge from pi to its neighbour pk ∈ N (pi). We take Ei,jk to

represent the edge from eij to eik, and define Hi,jk as their interaction. These

symbolic marks are illustrated in Figure 4.1.

To obtain Hi,jk, we extract the information of edge Ei,jk. Here, we consider

three kinds of information. The first two are the spatial relative position Ds
i,jk

and difference between features Df
i,jk. Before computing Df

i,jk, we first use

1Note that, in this chapter the edge eij between pi and pj is directed, where pi is the staring
/ emanating point and pj is the terminal point.
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MLPs (ϕ and ψ) to encode the edges’ features, and then calculate the two rela-

tions as:
Ds

i,jk = pk − pj,

Df
i,jk = ϕ(hik)− ψ(hij).

(4.3)

Apart from Ds
i,jk and Df

i,jk, we further compute the surface normal Dc
i,jk as

follows:

Dc
i,jk = (pk − pi)× (pj − pi), (4.4)

where × denotes the cross product operation. By taking Ds
i,jk, Df

i,jk, and Dc
i,jk

as the inputs, we first encode the spatial information into a new feature vector

and then capture Hi,jk via a summation operation:

Hi,jk = Df
i,jk + γ(Ds

i,jk||Dc
i,jk), (4.5)

where γ is an MLP. Therefore, the edge-to-edge interaction Hi,jk not only en-

codes the relations between edges in both low- (Euclidean) and high- (feature)

dimensional space, but also considers the plane information. We refer to the

ablation studies for more analysis.

The next goal is to update the point-to-point relation hij using the learned edge-

to-edge interactions between eij and its Ke neighbours N (eij) via the attention

technique (Hu et al., 2020a; Vaswani et al., 2017). In specific, we first calculate

the attentional weights as follows:

wi,jk = α(Hi,jk),

w
′

i,jk =
exp(wi,jk)∑

l∈Ṅ (eij)
exp(wi,jl)

,
(4.6)

where α is an MLP, and Ṅ (eij) denotes an index set containing the index of the

terminal point of the edges in N (eij). We then aggregate {hik}k∈Ṅ (eij)
and the

spatial relation γ(Ds
i,jk||Dc

i,jk) using the learned attentional weights as follows:

h
′

ij =
∑

k∈Ṅ (eij)

w
′

i,jk · (β(hik) + γ(Ds
i,jk||Dc

i,jk)), (4.7)
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where · denotes the element-wise multiplication operation, and β is an MLP.

Now, we achieve the interaction between the edges emanating from pi, and get

the enhanced representation h′
ij for each directed edge eij . Lastly, we employ

three consecutive operations, i.e., a shared MLP µ and a max-pooling operation,

and a residual connection (Hu et al., 2020a; He et al., 2016), to update the

features of pi so that it contains the extracted local structure information, i.e.,

fij = µ([fi||h
′

ij]),

⟨f o
i ⟩c = max

j∈[1,2,...,K]
⟨fij⟩c + ⟨ρ(fi)⟩c,

(4.8)

where c ∈ [1, 2, ..., Cout], ρ is an MLP, and ⟨f⟩i is the ith element of the feature

vector f .

4.3.2 SymAE2IL Module

For a local region centering on point pi, AE2IL exploits the local structure to

enhance the point-to-point relation hij through learning the edge-to-edge inter-

actions between eij and its neighbours N (eij). Taking an example of one of

its neighbours eik (j ̸= k) starting from pi to pk. AE2IL models the interac-

tion between eij and eik, but overlooks the reverse edge eji. We find that further

studying the interaction between eji and ejk could exploit the local structure bet-

ter. From another perspective, through modeling the two interactions, we can

also extract the structure information contained in the triangle constructed by pi,

pj , and pk. We call this new module as SymAE2IL, i.e., Symmetric Adaptive

Edge-to-Edge Interaction Learning, which simultaneously learns the represen-

tations of both eij and eji.

To achieve this, we first define a new edge set N̂ (eji), which contains all edges

emanating from pj to the terminal point of the edges in N (eij), as the neighbours

of the edge eji. Then, we compute the feature of each edge in N̂ (eji), and

update the feature of eji as we do to update the feature of eij , i.e., from Eq. 4.3
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to Eq. 4.7. This process is illustrated by the boxes in the bottom of Figure 4.1.

Denoting the output feature of eji by ĥ′
ji, then we reformulate Eq. 4.8 as:

fij = µ([fi||(h
′

ij + ĥ
′

ji)]),

⟨f o
i ⟩c = max

j∈[1,2,...,K]
⟨fij⟩c + ⟨ρ(fi)⟩c.

(4.9)

We can use AE2IL or SymAE2IL as a basic operator to construct deep networks

for point cloud analysis, including shape classification and segmentation. In

our experiments, we use SymAE2IL as the core operation, and we will study

the two modules in the ablation. The networks for segmentation and classifica-

tion are named as AE2INetSeg and AE2INetCls, respectively. The structures of

the networks and detailed architectures of AE2IL, SymAE2IL, AE2INetCls, and

AE2INetSeg are provided in Sec. 4.3.4.

4.3.3 Relation to PointWeb

In this chapter, we consider the edge-to-edge interaction, which involves the

point-to-point relation between the neighbours of the central point as well as the

central point and its neighbours. Technically, the feature of an edge are updated

with its neighbouring edges, while not in most of existing works. However, an

interesting work, PointWeb (Zhao et al., 2019a), develops the Adaptive Feature

Adjustment (AFA) module to update all points in the local region before the

feature aggregation. As a result, the point-to-point relation in PointWeb can be

viewed as being updated. Here, we analyze the differences between the AFA

strategy in PointWeb and ours.

Firstly, we consider a simplified implementation of our AE2IL, defined as:

h
′

ij =
∑

k∈Ṅ (eij)

ω(hik − hij) · hik, (4.10)
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where hij = σ(fj − fi), and ω is an MLP followed by a SoftMax function. We

can re-write the equation as:

h
′

ij =
∑

k∈Ṅ (eij)

ω(hik − hij) · hik

=
∑

k∈Ṅ (eij)

ω(σ(fk − fi)− σ(fj − fi)) · σ(fk − fi)

=
∑

k∈Ṅ (eij)

ω(σ(fk − fj)) · σ(fk − fi)

=
∑

k∈Ṅ (eij)

δ(τ(fk − fj)) · σ(fk − fi), (4.11)

where δ denotes the SoftMax function and τ is an MLP. Similarly, the symmetric

version of the simplified AE2IL can be written as:

h
′

ij =
∑

k∈Ṅ (eij)

δ(τ(fk − fj)) · σ(fk − fi)+

∑
k∈Ṅ (eij)

δ(τ ′(fk − fi)) · σ′(fk − fj), (4.12)

where τ ′ and σ′ are both MLPs. Using our notations, we can represent the h′
ij

in AFA module as follows:

h
′

ij =f
′

j − f
′

i

=fj +
∑

k∈Ṅ (eij)

ξ(fj − fk) · (fj − fk)− [fi +
∑

k∈Ṅ (eij)

ξ(fi − fk) · (fi − fk)]

=
∑

k∈Ṅ (eij)

[ξ(fj − fk) · (fj − fk)− ξ(fi − fk) · (fi − fk)] + hij

=
∑

k∈Ṅ (eij)

[ξ(fj)(fj − fk) + ξ(fi)(fk − fi) + ξ(fk)(fi − fj)] + hij, (4.13)

where ξ is an MLP. Note that, PointWeb considers i = k and j = k as a special

case, while we ignore that for simplicity, which does not affect the conclusion.
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Taking an example of three points {pi, pj, pk}, where pj, pk ∈ N (pi) and k ∈

Ṅ (eij), we analyze the differences between PointWeb and ours. Firstly, com-

paring Eq. 4.11, Eq. 4.12, and Eq. 4.13, we can find that when using the edge

eik to update eij , our method exploits the relation between the two edges, which

is the difference between the terminal points’ features in the simplified version.

Although PointWeb also exploits the neighbouring edges, it does not involve

the interaction between the edges. Instead, it sums the edges’ features directly

taking the points’ features as the weights, or Eq. 4.13 can be explained as that

it sums the new points’ features taking the difference between points’ features

as the weights. In comparison, we update the edge’s feature according to the

relation between edges adaptively. In addition, through modeling the edge-to-

edge interaction directly, we can exploit complicated functions (Eq. 4.3-Eq. 4.7

v.s. Eq. 4.10), such as the learning of both low- and high-level relations be-

tween edges, easily. As a result, in comparison to PointWeb, our method is able

to learn the edge-to-edge interaction more effectively and thus model the local

structure better.

4.3.4 Network Details

In the following, we introduce the architecture details of the proposed two net-

works, i.e., AE2INetCls and AE2INetSeg, respectively. Before that, We first

introduce the architectures of AE2IL and SymAE2IL, which are used as the

basic operator to construct deep networks for point cloud analysis. In our exper-

iments, we use SymAE2IL as the core operation.

Architectures of AE2IL and SymAE2IL. The main operations (functions) in

AE2IL and SymAE2IL include MLP, Leaky-ReLU, and batch normalization

(BN). In specific,
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Figure 4.1. Illustration of AE2IL and SymAE2IL. AE2IL marked by the gray dotted
line consists of Step 1, Step 2, and Step 3, while SymAE2IL marked by the gray solid
line contains all steps. The edges located in one gray ellipse are neighbours. In this
example, p0 is the central point, and p1-p5 are its neighbours. Note that, from Step 2 to
Step 6, we take the example of the edges e01 and e10. The blue dotted arrow denotes
the edge between edges. The two association operations are formulated as Eq. 4.8 (for
the top one) and Eq. 4.9 (for the below one), respectively. Notations are identical to the
text. Best viewed in color (zoom in for details).

• σ in Eq. 4.1 contains a shared single-layer MLP followed by one BN

layer and one Leaky-ReLU layer;

• ρ and µ in Eq. 4.8 and Eq. 4.9 contain a shared single-layer MLP fol-

lowed by one BN layer, and there is a Leaky-ReLU layer after the

summation operation in Eq. 4.8 and Eq. 4.9;

• ϕ and ψ in Eq. 4.3, and β in Eq. 4.7 contain a shared single-layer MLP;

• γ in Eq. 4.5 and α Eq. 4.6 in contain a shared two-layer MLP, where

the first one is followed by one BN layer and one Leaky-ReLU.

AE2INetCls for Classification. AE2INetCls contains three consecutive SymAE2ILs.

In the lth layer, givenNl−1 points as the input, we sampleNl points (Nl−1 > Nl)

using the FPS algorithm (Qi et al., 2017b). Taking the samples as the central

point, the SymAE2IL module is able to extract the structure information of the

corresponding local regions. For the ModelNet40 dataset (Wu et al., 2015),



4.3 OUR APPROACH 88

we feed 1, 024 points (N0 = 1, 024) into the network. In all layers, we con-

sider 32 (K = 32) nearest neighbours for each sampled central point. The

number of central points sampled in each layer is 512 → 128 → 32, respec-

tively. The output feature dimension (Cout) is 128, 256, and 512, respectively.

In addition, in each module, for the features obtained from the functions {σ}

and{ϕ, ψ, α, β, γ}, we set the number of channels as Cout

2
and Cout

4
, respectively.

AE2INetSeg for Segmentation. For the segmentation tasks, including part seg-

mentation and semantic segmentation, we build the networks on the encoder-

decoder architecture with skip connections, which is exploited widely by most

previous works (Qi et al., 2017b; Zhao et al., 2019a; Zhang et al., 2019b). The

encoder part consists of a stack of SymAE2ILs, which is identical to AE2INetCls.

After the encoder, the original point is sub-sampled, so we need to upsample the

encoded features into the original resolution progressively. In specific, for the

upsampling layer corresponding to the lth layer in the encoder, we aim to prop-

agate point features from Nl points to Nl−1 points, which can be achieved by

the Feature Propagation Operation in PointNet++ (Qi et al., 2017b). The output

feature dimension (Cout) of each module in the encoder is 64, 128, 256, 512, and

512, respectively. As in AE2INetCls, in each module, for the features obtained

from the functions {σ} and{ϕ, ψ, α, β, γ}, we set the number of channels as
Cout

2
and Cout

4
, respectively. For ShapeNetPart (Yi et al., 2016) (N0 = 2, 048),

S3DIS (Armeni et al., 2016) (N0 = 14, 000), and ScanNet v2 (Dai et al.,

2017a) (N0 = 14, 000), in each SymAE2IL, we sample 1, 024/4, 096/4, 096 →

512/1, 024/1, 024 → 256/256/256 → 128/128/128 → 64/64/64 points, re-

spectively. In each layer of the encoder, we consider 16 (K = 16) nearest

neighbours for each sampled central point. In each layer of the decoder, we

exploit the FPS to upsample the point features, which is followed by a shared

two-layer MLP to update the points’ features. The output feature dimensions in

the decoder are symmetrical to the input feature dimensions in the encoder.
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Figure 4.2. AE2INetCls and AE2INetSeg. FPL, Seg, Cls, and Skip denote feature
propagation layer (Qi et al., 2017b), segmentation, classification, and skip connections,
respectively.

The structures of AE2INetCls and AE2INetSeg are shown in Figure 4.2.

4.4 Experiments

To examine the effectiveness of our point cloud analysis approach, we conduct

experiments on several tasks, including semantic segmentation, part segmenta-

tion, and classification, on widely studied benchmarks, such as S3DIS (Armeni

et al., 2016), ScanNet v2 (Dai et al., 2017a), ShapeNetPart (Yi et al., 2016), and

ModelNet40 (Wu et al., 2015). The results and ablations for our modules are re-

ported in the following, while some detailed results and visualization examples

are provided in Sec. 4.5.

4.4.1 Implementation Details

We train all networks with an initial learning rate of 0.1 using the SGD optimiza-

tion algorithm. For the semantic segmentation task on S3DIS (ScanNet v2), we

train for 100 (1000) epochs with a batch size of 8 (10) and decay the learning
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Method 6-fold Area 5
oA mAcc mIoU oA mAcc mIoU

PointNet 78.6 66.2 47.6 - 49.0 41.1
PointNet++ 81.0 67.1 54.5 - - -
PointCNN 88.1 75.6 65.4 85.9 63.9 57.3
DGCNN 84.1 - 56.1 - - -
PointWeb 87.3 76.2 66.7 87.0 66.6 60.3
HPEIN 88.2 76.3 67.8 87.2 68.3 61.9

KPConv* - 79.1 70.6 - 72.8 67.1
FPConv - - 68.7 88.3 68.9 62.8
SegGCN - - - 88.2 70.4 63.6

RandLA-Net 88.0 82.0 70.0 - - -
Point2Node 89.0 79.1 70.0 88.8 70.0 63.0
SCF-Net* 88.4 82.7 71.6 - - -
PAConv* - 78.7 69.3 - 73.0 66.6

AE2INetSeg 89.6 81.7 73.0 89.7 73.5 67.3
AE2INetSeg* 89.9 82.6 73.7 89.9 74.3 68.0

Table 4.1. The mIoU (%), mAcc (%) and oA (%) on S3DIS dataset. The mark ‘*’
denotes that the voting scheme (Thomas et al., 2019) is adopted at testing.

rate by 0.1 after 60 (600) epochs and 80 (800) epochs, respectively. For classi-

fication (ModelNet40) and part segmentation (ShapeNetPart) tasks, we reduce

the learning rate until 1e− 3 using the cosine annealing (Loshchilov and Hutter,

2016) policy. We train the networks for 250 / 200 epochs with a batch size of

32 / 16 on ModelNet40 / ShapeNetPart. Following previous works (Xu et al.,

2021a; Liu et al., 2019d; Qi et al., 2017b; Thomas et al., 2019), we exploit data

augmentations. In specific, for classification and part segmentation, we aug-

ment the point cloud with 1 ) random anisotropic scaling in a range from −0.66

to 1.5 and 2) random translation in a range from −0.2 to 0.2, while for semantic

segmentation, we exploit random rotation along the vertical axis, scaling in a

range from 0.8 to 1.1, and gaussian jittering.

4.4.2 3D Scene Semantic Segmentation

Here, we study 3D scene segmentation on S3DIS (Armeni et al., 2016) and

ScanNet v2 (Dai et al., 2017a) to evaluate the capacity of AE2INetSeg.
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Figure 4.3. The mIoU on ScanNet v2 (Dai et al., 2017a). We make comparisons
against PointConv (Wu et al., 2019), HPEIN (Jiang et al., 2019), KPConv (Thomas et
al., 2019), SegGCN (Lei et al., 2020), FPConv (Lin et al., 2020a), and PointASNL (Yan
et al., 2020).

S3DIS contains 271 rooms captured from 6 areas. It provides 3D points and

their corresponding RGB values. Each point is annotated with one of the se-

mantic labels from 13 categories, such as table, wall, and sofa. In training time,

we randomly select 14,000 points from a 2m × 2m block on-the-fly. Each

point is represented as a 9-dim vector with XYZ, RGB, and normalized posi-

tion in the room. All points are evaluated at test time. We study two settings

for the task, i.e., 6-fold cross-validation and Area 5 validation. In Table 4.1,

we make comparisons against the previous methods, including PointNet (Qi

et al., 2017a), PointNet++ (Qi et al., 2017b), PointCNN (Li et al., 2018e),

DGCNN (Wang et al., 2019d), PointWeb (Zhao et al., 2019a), HPEIN (Jiang

et al., 2019), KPConv (Thomas et al., 2019), FPConv (Lin et al., 2020a), Seg-

GCN (Lei et al., 2020), RandLA-Net (Hu et al., 2020a), Point2Node (Han et

al., 2020), SCF-Net (Fan et al., 2021a), and PAConv (Xu et al., 2021a). Since

some works evaluates the model using the voting scheme at testing, which is

helpful to improve the performance, we also report the results obtained with

the voting scheme (marked by ‘*’). As shown in Table 4.1, we can find that

both AE2INetSeg and AE2INetSeg* perform better than almost all of existing

peer-reviewed works on all metrics, including overall Accuracy (oA), mean IoU
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(mIoU), and mean class Accuracy (mAcc). It is worth noting that our method

outperforms PointWeb (Zhao et al., 2019a) by a large margin, which demon-

strates the superiority of the proposed edge-to-edge interaction. The scores for

each class are given in Sec. 4.5.

For ScanNet v2 (Dai et al., 2017a), we train the model on the training set (1201

scans), and make evaluation on the test set (100 scans). There are 20 meaningful

categories and one class for free space. During training, we randomly sample

14, 000 points from a 2m× 2m block on-the-fly. Each point is represented as a

6-dim vector with XYZ and RGB. We mainly compare our model with previous

point based methods. As shown in Figure 4.3, our model performs better than

most of methods by a large margin. In the benchmark website, we can find some

methods yield higher scores through exploring other clues, such as, rendering

virtual views (Kundu et al., 2020), training multiple tasks (Hu et al., 2020b),

and combining 2D and 3D domains (Hu et al., 2021). See the detailed scores

for each class in Sec. 4.5.

4.4.3 3D Shape Part Segmentation

The shape part segmentation task aims to predict part category label for each

point in a 3D model. We evaluate the proposed AE2INetSeg on the ShapeNet-

Part dataset (Yi et al., 2016). There are 16, 881 CAD models from 16 object

categories, which are labeled with 50 parts in total. Following (Li et al., 2018e;

Zhang et al., 2019b), we split the models into 14, 006 for training and 2,875 for

testing. During training, we randomly sample 2, 048 points on mesh surfaces.

In the inference stage, we sample 2, 048 points multiple times to make sure all

the points have at least ten predictions. We present the instance average IoU

(mIoU, %) and class average IoU (mcIoU, %) in Table 4.2. We observe that our

AE2INetSeg achieves competitive or even better scores compared with existing

methods, including PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b),

PCNN (Atzmon et al., 2018), PointCNN (Li et al., 2018e), DGCNN (Wang et
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al., 2019d), RSCNN (Liu et al., 2019d), DensePoint (Liu et al., 2019c), KP-

Conv (Thomas et al., 2019), 3D-GCN (Lin et al., 2020b), and PAConv (Xu et

al., 2021a). We can also find that the performance is improved slightly over

the recent years. Specifically, while our model ranks third place w.r.t mcIoU, it

yields higher mIoU (86.8%) than previous approaches.

Method mcIoU mIoU air bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
plane phone bike board

PointNet 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

PCNN 81.8 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
PointCNN 84.6 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0

DGCNN 82.3 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0
RSCNN 84.0 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6

DensePoint 84.2 86.4 84.0 85.4 90.0 79.2 91.1 81.6 91.5 87.5 84.7 95.9 74.3 94.6 82.9 64.6 76.8 83.7
KPConv 85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6

3D-GCN 82.1 85.1 83.1 84.0 86.6 77.5 90.3 74.1 90.9 86.4 83.8 95.6 66.8 94.8 81.3 59.6 75.7 82.8
PAConv 84.6 86.1 84.3 85.0 90.4 79.7 90.6 80.8 92.0 88.7 82.2 95.9 73.9 94.7 84.7 65.9 81.4 84.0

AE2INetSeg 84.4 86.8 84.9 84.9 88.4 81.8 91.9 76.5 92.0 88.8 86.4 96.1 75.5 95.6 84.1 63.9 76.3 83.5

Table 4.2. Quantitative results on ShapeNetPart dataset. Our method yields higher
mIoU score than previous approaches, and competitive mcIoU score.

Method Input #Points mA oA Aligned
PointNet++ PN 5k - 91.9 No

PointNet P 1k 86.2 89.2 No
PointNet++ P 1k - 90.7 No
PointCNN P 1k 88.1 92.2 No

AE2INetCls P 1k 89.9 92.4 No
PointASNL PN 1k - 93.2 Yes

DGCNN P 2k 90.7 93.5 Yes
PointCNN P 1k 88.8 92.5 Yes
DGCNN P 1k 90.2 92.9 Yes
RSCNN P 1k - 93.6 Yes
ShellNet P 1k - 93.1 Yes

PointASNL P 1k - 92.9 Yes
GridGCN P 1k 91.3 93.1 Yes
PAConv P 1k - 93.9 Yes

AE2INetCls P 1k 91.6 94.2 Yes
Table 4.3. The mA (%) and oA (%) on ModelNet40 dataset. P denotes Point, while
PN denotes Point and Normal.
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4.4.4 3D Shape Classification

We evaluate our model on the ModelNet40 (Wu et al., 2015) shape classifica-

tion benchmark. There are 9, 843 3D models for training and 2, 468 for testing.

During training, we uniformly sample 1, 024 points on the mesh surfaces. Not-

ing that, a large percentage of 3D models in ModelNet40 have been pre-aligned

to the common up direction and horizontal facing direction. As reported in

PointCNN (Li et al., 2018e), random horizontal rotation (i.e., Not aligned) has

a non-negligible impact on the performance. We thus consider both settings in

our experiments, i.e., Pre-aligned and Unaligned.

Here, we only make comparisons against several previous methods, including

PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b), DGCNN (Wang

et al., 2019d), PointCNN (Li et al., 2018e), PointASNL (Yan et al., 2020),

RSCNN (Liu et al., 2019d), GridGCN (Xu et al., 2020b), ShellNet (Zhang et

al., 2019b), and PAConv (Xu et al., 2021a). More comparisons can be found

in Sec. 4.5. As reported in Table 4.3, AE2INetCls outperforms previous state-

of-the-art approaches in terms of both oA (overall accuracy) and mA (mean

per-class accuracy). It is worth noting that the improvement on the ModelNet40

classification benchmark is only around 1.1% w.r.t oA over the last two years.

The SOTA methods are ShellNet in 2019 (93.1%), RSCNN in 2019 (93.6%),

GridGCN in 2020 (93.1%), and PAConv in 2021 (93.9%), respectively. This

observation may further show the significance of our approach.

4.4.5 Ablation Study

The comparisons against the state-of-the-art methods demonstrate the effective-

ness of our model in exploiting the local structures. Here, we conduct extensive

ablations to inspect the proposed modules and analyze their involved compo-

nents on Area 5 of S3DIS (Armeni et al., 2016).
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Analysis Config. oA mAcc mIoU
Ke = 2 89.3 73.0 66.2

#Near. Ke = 3 89.8 73.1 66.8
Neb. Ke = 4 89.7 73.5 67.3

Ke = 5 89.4 73.1 66.8
Baseline 88.3 69.7 63.9
+AE2IL 88.7 (0.4 ↑) 72.1 (2.4 ↑) 65.3 (1.4 ↑)

Eff. of +SymAE2IL 89.7 (1.4 ↑) 73.5 (3.8 ↑) 67.3 (3.4 ↑)
modules AFA* 87.9 69.8 63.9

AE2IL* 88.1 70.0 64.1
SymAE2IL* 88.1 70.6 64.2

Df 87.9 70.7 64.2
Relation Df +Ds 89.1 72.8 65.9
learning Df +Dc 88.6 71.6 65.5

Df +Dc +Ds 89.7 73.5 67.3
RSConv 86.9 66.6 60.3

Comb. +SymAE2IL 88.4 (1.5 ↑) 69.2 (2.6 ↑) 63.5 (3.2 ↑)
w/others GAConv 86.0 67.3 59.8

+SymAE2IL 87.7 (1.7 ↑) 71.9 (4.6 ↑) 64.6 (4.8 ↑)
Table 4.4. Ablation study on the proposed modules.

Method mIoU (A5 / 6F) #Par./M FLOPs/G Mem./G T./s
PointWeb 60.3 / 66.7 1.0 142 8.4 0.18
FPConv 62.8 / 68.7 17.4 1032 9.8 0.69
PAConv 66.6 / 69.3 0.6 52 13.2 0.28

Ours 68.0 / 73.7 3.6 312 9.4 0.37
Table 4.5. The mIoUs (Area 5 and 6-fold), the parameters (#Par.), FLOPs, Inference
memory (Mem.), and Inference time (T.) of the segmentation models on S3DIS dataset.
We calculate the FLOPs, Mem., and T. by processing 12 samples, each one containing
14, 000 points, on one Tesla v100 GPU.

Method None 90◦ 180◦ 270◦ ×0.8 ×1.2 0.5% 1%

PointWeb* 54.7 52.5 54.2 51.5 54.0 51.7 54.5 54.4
FPConv* 56.0 54.0 54.3 52.4 54.3 52.5 55.6 55.1

Ours* 58.1 56.5 58.0 55.6 58.0 56.3 57.9 57.7
PAConv 59.5 55.4 58.1 53.9 58.7 59.1 58.8 58.3

Ours 62.3 62.1 59.9 61.1 62.3 59.4 62.0 61.2
Table 4.6. Robustness analysis. We evaluate the robustness through performing rota-
tion (90◦,180◦,270◦), scaling (×0.8,×1.2), and adding noises (0.5%, 1%) on 20 rooms
of S3DIS dataset. Since FPConv and PointWeb are trained without data augmentation
(DA), for fair comparisons, we also re-train our model without DA (Ours*).
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Number of nearest neighbours. We first study the impacts of the number of

nearest neighbors for an edge, i.e., Ke. As reported in Table 4.4, the model per-

forms better when we set Ke to 4, which is used in all experiments. It is also

worth noting that when we set Ke to 2 or 3, the model still outperforms most of

existing works list in Table 4.1. When setting Ke to 5, we find that the perfor-

mance drops, due to the aggregation of some unrelated information.

Effectiveness of the proposed modules. To study the effectiveness of the pro-

posed AE2IL and SymAE2IL, we compare three model, i.e, Baseline (no edge-

to-edge interaction), AE2INetSeg with AE2IL, and AE2INetSeg with SymAE2IL,

in Table 4.4. The comparisons show that the basic edge-to-edge interaction can

improve the performance and the symmetric information can bring a further

improvement. In addition, to further provide supports for the analysis on the

differences between ours and PointWeb experimentally, we re-implement the

AFA module proposed by PointWeb in our framework (AFA*). The compar-

isons between AFA* and the simplified version of our modules (AE2IL* and

SymAE2IL*) in Table 4.4 also show the superiority of our methods over AFA

strategy in PointWeb.

Relations learning between edges. In Eq. 4.5, we introduce three kinds of

information, i.e., relative position Ds, difference between features Df , and nor-

mal vector Dc, to learn the low and high-level relations between the edges. To

evaluate their impacts, we revise SymAE2IL by considering four kinds of fea-

ture combinations, including Df , Df +Ds, Df +Dc, and Df +Ds +Dc. The

results in Table 4.4 show that the geometric relations (Ds and Dc) can bring

improvements, and when all relations are exploited, the performance can be im-

proved greatly.
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Combination with other point cloud operations. To further show the effec-

tiveness of our method, we compare four models by integrating our module

(SymAE2IL) with two point cloud operations, i.e., RSConv (Liu et al., 2019d)

and GAConv (Wang et al., 2019b). In specific, since they aim to learn (at-

tentional) weights from the edge information, here we insert the edge-to-edge

interaction into the two operations to enhance the edge representations. As show

in Table 4.4, we can observe that our module can bring remarkable performance

improvements for both two operations.

Model complexity. In Table 4.5, we report the mIoUs, parameters, FLOPs,

inference memory, and inference time of our segmentation model and several

state-of-the-art works, including PointWeb (Zhao et al., 2019a), FPConv (Lin

et al., 2020a), and PAConv (Xu et al., 2021a). We can observe that our model

complexities and running time are competitive to recent approaches, while our

model outperforms previous methods for various point cloud analysis tasks, as

shown in Table 4.1, Table 4.2, Table 4.3, and Figure 4.3.

Robustness analysis. Our method aims to enhance the point-to-point relation

through modeling the edge-to-edge interaction adaptively, which could make

the relation aware of the local structure and thus more robust to the geometry

transformation. We make robustness evaluation through performing rotation,

scaling, and adding noises on the input data during inference. As shown in

Table 4.6, our method performs better than previous methods under all settings.
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4.5 Supplementary Experiments

4.5.1 More Quantitative Results

In Sec. 4.4.2, we presented the oA, mIoU, and mAcc obtained under the 6-

fold cross-validation evaluation setting and Area-5 setting on S3DIS (Armeni

et al., 2016), and the mIoU on ScanNet v2 (Dai et al., 2017a). Here, we pro-

vide the category-level scores in Table 4.7 (6-fold S3DIS), Table 4.8 (Area-5

S3DIS), and Table 4.9 (ScanNet v2). The compared methods include Point-

Net (Qi et al., 2017a), PointCNN (Li et al., 2018e), DeepGCN (Li et al., 2019b),

PointWeb (Zhao et al., 2019a), PAT (Yang et al., 2019a), KPConv (Thomas et

al., 2019), FPConv (Lin et al., 2020a), PAConv (Xu et al., 2021a), HPEIN (Jiang

et al., 2019), SAGC (Wong and Vong, 2020), and SegGCN (Lei et al., 2020).

As shown in Table 4.7, Table 4.8, and Table 4.9, our model achieves compet-

itive or state-of-the-art scores (ranking first or second) in comparison against

previous methods for most of classes on both two datasets.

In addition, we provide more comparisons for the classification task on Model-

Net40 dataset (Wu et al., 2015) in Table 4.10.

Method oA mIoU ceil. floor wall beam col. wind. door table chair sofa book. board clutter

PointNet 78.6 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
PointCNN 88.1 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 69.1 71.6 61.2 39.1 52.2 58.6
DeepGCN 85.9 60.0 93.1 95.3 78.2 33.9 37.4 56.1 68.2 64.9 61.0 34.6 51.5 51.1 54.4
PointWeb 87.3 66.7 93.5 94.2 80.9 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5

PAT - 64.3 93.0 98.4 73.5 58.5 38.9 77.4 67.7 62.7 67.3 30.6 59.6 66.6 41.4
KPConv - 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 64.0 57.8 74.9 69.3 61.3 60.3
FPConv - 68.7 94.8 97.5 82.6 42.8 41.8 58.6 73.4 71.0 81.0 59.8 61.9 64.2 64.2
PAConv - 69.3 94.3 93.5 82.8 56.9 45.7 65.2 74.9 74.6 59.7 61.8 67.4 65.8 58.4

AE2INetSeg 89.9 73.7 95.0 97.5 82.9 60.9 46.8 68.6 75.4 76.0 77.7 72.2 70.5 70.9 64.5

Table 4.7. Semantic segmentation scores on S3DIS 6-fold cross-validation.

4.5.2 Visualization Examples

We provide several visualization examples on ShapeNetPart (Yi et al., 2016)

(Figure 4.4) and S3DIS (Armeni et al., 2016) (Figure 4.5). For S3DIS, we
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Method oA mIoU ceil. floor wall beam col. wind. door table chair sofa book. board clutter

PointNet - 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 58.9 52.6 5.9 40.3 26.4 33.2
PointWeb 87.0 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5

PAT - 60.1 93.0 98.5 72.3 1.0 41.5 85.1 38.2 57.7 83.6 48.1 67.0 61.3 33.6
HPEIN 87.2 61.9 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4

KPConv - 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
FPConv 87.5 62.8 94.6 98.5 80.9 0.0 19.1 60.1 48.9 80.6 88.0 53.2 68.4 68.2 54.9

SAGC 87.5 60.1 93.3 95.4 78.3 43.7 27.6 50.3 68.1 69.2 71.2 30.6 57.6 41.0 54.6
SegGCN 88.2 63.6 93.7 98.6 80.6 0.0 28.5 42.6 74.5 80.9 88.7 69.0 71.3 44.4 54.3
PAConv - 66.6 94.6 98.6 82.4 0.0 26.4 58.0 60.0 80.4 89.7 69.8 74.3 73.5 57.7

AE2INetSeg 89.9 68.0 95.3 98.5 83.2 0.0 21.8 59.4 63.4 81.7 91.4 77.5 75.8 76.6 58.7

Table 4.8. Semantic segmentation scores on S3DIS Area 5.

Method mIoU bath. bed book. cab. cha. cou. cur. des. door floor oth. pic. refr. show. sink sofa tab. toi. wall wind.

HPEIN 61.8 72.9 66.8 64.7 59.7 76.6 41.4 68.0 52.0 52.5 94.6 43.2 21.5 49.3 59.9 63.8 61.7 57.0 89.7 80.6 60.5
KPConv 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
FPConv 63.9 78.5 76.0 71.3 60.3 79.8 39.2 53.4 60.3 52.4 94.8 45.7 25.0 53.8 72.3 59.8 69.6 61.4 87.2 79.9 56.7

SegGCN 58.9 83.3 73.1 53.9 51.4 78.9 44.8 46.7 57.3 48.4 93.6 39.6 6.1 50.1 50.7 59.4 70.0 56.3 87.4 77.1 49.3
AE2INetSeg 68.5 81.9 77.2 71.6 65.6 82.9 49.0 81.3 62.4 60.5 95.1 48.4 26.7 56.6 59.8 70.2 75.0 60.7 92.4 82.9 69.5

Table 4.9. Semantic segmentation scores on ScanNet v2 test set. Our model yields
higher mIoU score than previous works.

Figure 4.4. Visualization examples on ShapeNetPart dataset. Best viewed in color.

compare our method and the baseline model (i.e., no edge-to-edge interaction

used). We can observe that our model generates more accurate prediction results

for some objects (marked with red dotted bounding box), like door (the 4th and

7th examples), board (5th), bookcase (1st), wall (2nd, 6th and 8th), and column

(2nd, 3rd, and 5th).
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Input Ground Truth Baseline (No E2E) Ours

Figure 4.5. Segmentation examples on S3DIS dataset. Best viewed in color.
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Method Input #Points mA oA Aligned
PointNet++ (Qi et al., 2017b) Point+Normal 5k - 91.9 No
SpiderCNN (Xu et al., 2018c) Point+Normal 1k - 92.4 No
KPConv (Thomas et al., 2019) Point 7k - 92.9 No
PointNet (Qi et al., 2017a) Point 1k 86.2 89.2 No
PointNet++ (Qi et al., 2017b) Point 1k - 90.7 No
3D-GCN (Lin et al., 2020b) Point 1k - 92.1 No
PointCNN (Li et al., 2018e) Point 1k 88.1 92.2 No
AE2INetCls Point 1k 89.9 92.4 No
SO-Net (Li et al., 2018c) Point+Normal 5k 90.8 93.4 Unknown
PAT (Yang et al., 2019a) Point+Normal 1k - 91.7 Unknown
PConv (Wu et al., 2019) Point+Normal 1k - 92.5 Unknown
FPConv (Lin et al., 2020a) Point 1k - 92.5 Unknown
CN (Yang et al., 2020b) Point 1k - 93.3 Unknown
PointASNL (Yan et al., 2020) Point+Normal 1k - 93.2 Yes
DGCNN (Wang et al., 2019d) Point 2k 90.7 93.5 Yes
PointCNN (Li et al., 2018e) Point 1k 88.8 92.5 Yes
PCNN (Atzmon et al., 2018) Point 1k - 92.3 Yes
DGCNN (Wang et al., 2019d) Point 1k 90.2 92.9 Yes
Point2Seq (Liu et al., 2019b) Point 1k 90.4 92.6 Yes
RSCNN (Liu et al., 2019d) Point 1k - 93.6 Yes
PointWeb (Zhao et al., 2019a) Point 1k 89.4 92.3 Yes
DensePnt (Liu et al., 2019c) Point 1k - 93.2 Yes
ShellNet (Zhang et al., 2019b) Point 1k - 93.1 Yes
PointASNL (Yan et al., 2020) Point 1k - 92.9 Yes
GridGCN (Xu et al., 2020b) Point 1k 91.3 93.1 Yes
WCPNet (Nezhadarya et al., 2020) Point 1k 90.5 92.4 Yes
PosPool (Liu et al., 2020) Point 1k - 93.2 Yes
GDANet (Xu et al., 2020a) Point 1k - 93.8 Yes
PAConv (Xu et al., 2021a) Point 1k - 93.9 Yes
AE2INetCls Point 1k 91.6 94.2 Yes

Table 4.10. Mean per-class accuracy (mA) and overall accuracy (oA) on ModelNet40
dataset.

4.6 Conclusion

In this chapter, we propose a novel adaptive edge-to-edge interaction learning

module, i.e., AE2IL, for point cloud analysis. Through learning the interaction

between edges, the module makes the point-to-point relation aware of the local

shape, which is beneficial to capture the discriminative local structure informa-

tion. Moreover, to model the local structure more thoroughly, we further extend

the AE2IL to a symmetric version, i.e., SymAE2IL. To examine the effective-

ness of the proposed module, we design two networks, i.e., AE2INetCls and
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AE2INetSeg, for point cloud classification and segmentation, respectively. The

experimental results on several typical point cloud tasks and ablations show the

models’ capability of representing the local structure.



CHAPTER 5

Domain Generalization via Entropy Regularization

Domain generalization aims to learn from multiple source domains a predictive

model that can generalize to unseen target domains. One essential problem in

domain generalization is to learn discriminative domain-invariant features. To

arrive at this, some methods introduce a domain discriminator through adver-

sarial learning to match the feature distributions in multiple source domains.

However, adversarial training can only guarantee that the learned features have

invariant marginal distributions, while the invariance of conditional distribu-

tions is more important for prediction in new domains. To ensure the condi-

tional invariance of learned features, we propose an entropy regularization term

that measures the dependency between the learned features and the class labels.

Combined with the typical task-related loss, e.g., cross-entropy loss for classi-

fication, and adversarial loss for domain discrimination, our overall objective

is guaranteed to learn conditional-invariant features across all source domains

and thus can learn classifiers with better generalization capabilities. We demon-

strate the effectiveness of our method through comparison with state-of-the-art

methods on simulated 3D and 2D object classification datasets and real-world

2D object recognition datasets.
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5.1 Introduction

Recent years have witnessed the remarkable success of modern machine learn-

ing techniques in various applications. However, a fundamental problem ma-

chine learning suffers from is that the model learned from training data often

does not generalize well on data sampled from a different distribution, due to

the existence of data bias (Torralba and Efros, 2011; Fang et al., 2020) between

the training and test data. To tackle this issue, a significant effort has been made

in domain adaptation, which reduces the discrepancy between source and target

domains (Zhang et al., 2013; Tzeng et al., 2014; Ganin and Lempitsky, 2015;

Sun and Saenko, 2016; Bousmalis et al., 2016; Zhao et al., 2018). The main

drawback of this approach is that one has to repeat training for each new dataset,

which can be time-consuming. Therefore, domain generalization (Blanchard et

al., 2011) is proposed to learn generalizable models by leveraging information

from multiple source domains (Muandet et al., 2013; Ghifary et al., 2015; Li et

al., 2018b; Arjovsky et al., 2019).

Since there is no prior information about the distribution of the target domain

during training, it is difficult to match the distributions between source and tar-

get domains, which makes domain generalization more challenging. To improve

the generalization capabilities of learned models, various solutions have been

developed from different perspectives. A classic but effective solution to do-

main generalization is learning a domain-invariant feature representation (Ghi-

fary et al., 2015; Li et al., 2018b; Li et al., 2018d; Muandet et al., 2013; Mat-

suura and Harada, 2020a; Li et al., 2018d) across source domains. Muandet

et al. (Muandet et al., 2013) presented a kernel-based optimization algorithm,

called Domain-Invariant Component Analysis, to learn an invariant transforma-

tion by minimizing the dissimilarity across domains. Ghifary et al. (Ghifary

et al., 2015) proposed to learn features robust to variations across domains by

introducing multi-task auto-encoders. Another line of research explores various
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data augmentation strategies (Shankar et al., 2018; Volpi et al., 2018; Carlucci

et al., 2019). For example, Shankar et al. (Shankar et al., 2018) presented a

gradient-based domain perturbation strategy to perturb the input data. By aug-

menting the original feature space, Blanchard et al. (Blanchard et al., 2017)

viewed the problem of domain generalization as a kind of supervised learning

problem. Then, they developed a kernel-based method that predicts classifiers

from the augmented feature space. To make theoretical complementary to these

empirically supported approaches, Deshmukh et al. (Deshmukh et al., 2019)

proved the first known generalization error bound for multi-class domain gen-

eralization through studying a kernel-based learning algorithm. Apart from the

clues aforementioned, some recent works (Dou et al., 2019; Li et al., 2019a;

Balaji et al., 2018; Li et al., 2018a) attempted to exploit meta-learning for

domain generalization. A latest work, MASF (Dou et al., 2019), proposed a

model-agnostic episodic learning procedure to regularize the semantic structure

of the feature space.

In this chapter, we revisit the domain-invariant feature representation learn-

ing methods. Most of existing methods assume that the marginal distribution

P (X) changes while the conditional distribution P (Y |X) stays stable across

domains 1. Therefore, significant effort has been made in learning a feature

representation F (X) that has invariant P (F (X)), either by traditional moment

matching (Peng et al., 2019) or modern adversarial training (Matsuura and

Harada, 2020a; Li et al., 2018d). To ensure the universality of F (X) and also

make it discriminative, a joint classification model is trained on all the source

domains and can be used for prediction in new datasets. However, the stability

of P (Y |X) is often violated in real applications, leading to sub-optimal solu-

tions. Li et al. (Li et al., 2018d) proposed to learn invariant class-conditional

distribution (P (F (X)|Y )) by doing adversarial training for each class. How-

ever, the method becomes less effective as the number of classes increases.

1Here, X and Y represent the sample and corresponding label, respectively.
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To tackle the aforementioned issues, we propose an entropy-regularization ap-

proach which directly learns features that have invariant P (Y |F (X)) across

domains. In specific, the conditional entropy term H(Y |F (X)) measures the

dependency between F (X) and class label Y , and we aim to minimize the de-

pendency by maximizing the conditional entropy. We show theoretically that

our entropy-regularization together with the cross-entropy classification loss ef-

fectively minimize the divergence between P (Y |F (X)) in all source domains.

In addition, we show that H(Y |F (X)) can be effectively estimated by assum-

ing a multinomial distribution for P (Y |F (X)), which is a weak assumption for

discrete class labels. Together with the adversarial training on P (F (X)), our

approach can guarantee the invariance of the joint distribution P (F (X), Y ) and

thus has a better generalization capability. We demonstrate the effectiveness of

our approach through conducting comprehensive experiments on several 2D ob-

ject recognition datasets, including simulated and real-world scenes. Moreover,

since currently there is no work studying domain generalization in 3D shape

analysis, we also test our model on a simulated 3D object classification dataset

as a tentative exploration to this problem.

5.2 Related Work

5.2.1 Domain Generalization

According to the number of source domains, we can divide the domain general-

ization problem into two sub-problems, i.e., multi-soruce domain generalization

and single domain generalization. Multi-source domain generalization (Ghi-

fary et al., 2015; Li et al., 2018b; Li et al., 2018d; Li et al., 2019a; Balaji et

al., 2018), which this chapter focuses on, refers to domain generalization using

multiple source domains. Here, we briefly categorize previous efforts into three

groups, i.e., domain-invariant features learning, data augmentation, and meta-

learning. We refer to a recent survey about domain generalization (Zhou et
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al., 2021) for a thorough understanding of more detailed categorization. Early

methods mainly follow the first clue through aligning the distributions across

source domains. For example, Li et al. (Li et al., 2018b) minimize MMD dis-

tance (Gretton et al., 2012) to align the distributions across source domains,

and force the aligned distribution to be similar to a pre-defined prior distribu-

tion via adversarial learning. Matsuura et al. (Matsuura and Harada, 2020b)

use a multi-class domain discriminator to learn domain-invariant features. To

learn domain-invariant class-conditional distribution, Li et al. (Li et al., 2018d)

exploit adversarial training for each category separately as well as for global

datasets. Recently, data augmentation technique for domain generalization has

been studied extensively. For instance, Zhou et al. (Zhou et al., 2020b) propose

to increase the diversity of the training data through training a synthetic data

generator. To generate new data, the generator is required to be distant from

the known source domains and to preserve the semantic content. Taking ad-

vantage of the property of the Fourier transformation that the phase component

preserves high-level semantic content while the amplitude component contains

low-level statistics, Xu et al. (Xu et al., 2021b) first get the Fourier transfor-

mation of the images, then interpolate between the amplitude spectrums of two

images using the MixUp strategy (Zhang et al., 2018a), and lastly use the new

amplitude spectrum to generate new data. Another solution to domain general-

ization (Dou et al., 2019; Li et al., 2019a; Balaji et al., 2018; Li et al., 2018a) is

using meta-learning (Hospedales et al., 2021), where the training domains are

split into meta-train and meta-test at each iteration, to simulate domain shift. To

learn semantically consistent features across source domains, Dou et al. (Dou et

al., 2019) propose to regularize the semantic structure of the feature space in a

model-agnostic episodic learning framework. In this chapter, we follow the first

clue, i.e., learning domain-invariant features, and exploit the proposed entropy

regularization to learn a classifier and a feature extractor with better generaliza-

tion capabilities.
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In comparison with multiple domain generalization, single domain generaliza-

tion (Volpi et al., 2018) is more challenging. To achieve domain generalization

from a single source domain, existing works often exploit the data augmentation

technique (Volpi et al., 2018; Qiao et al., 2020; Wang et al., 2021) to create fic-

titious domains using adversarial training. For instance, Qiao et al. (Qiao et al.,

2020) exploit adversarial training to augment the samples and train the model

on original data and augmented data using meta-learning. To increase the diver-

sity between the original data and the augmented data, Wang et al. (Wang et al.,

2021) synthesize samples with unseen styles out of original distributions and

enlarge the domain shifts gradually via a proposed style-complement module.

Batch normalization (Ioffe and Szegedy, 2015) has widely been used in most

of modern neural networks, which can reduce the internal covariate shift by

normalizing each layer’s input using the statistics. However, in single domain

generalization, due to the domain shift from source domain to target domain, the

source domain statistics and target domain statistics are usually different, which

might cause significant performance drops. To address this issue, Fan et al. (Fan

et al., 2021b) study the statistics of normalization layers and propose an adap-

tive normalization approach, where the standardization and rescaling statistics

are enabled to be adaptive to each individual input sample.

5.2.2 Domain Adaptation in Point Cloud Analysis

Currently, domain generalization in 2D image analysis, like object classifica-

tion and semantic segmentation, has been studied extensively (Dou et al., 2019;

Fan et al., 2021b; Qiao et al., 2020), while domain generalization in 3D point

cloud analysis is still largely under-explored. In comparison, some efforts to

address domain adaptation in several 3D point cloud tasks, like object detec-

tion (Saltori et al., 2020), classification (Achituve et al., 2021), and semantic

segmentation (Langer et al., 2020; Jaritz et al., 2020; Yi et al., 2021), have been

made recently. The domain shifts in 2D image data are mainly from the changes
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in style, like texture and color, while in 3D point cloud, the domain shifts largely

result from, such as, the density, object size, and sensor location. For domain

adaptation in 3D objection detection from point cloud, Yang et al. (Yang et al.,

2021) exploit a random object scaling strategy to mitigate the negative effects

resulting from the object size bias and use self-training to improve the detector

on target domain. For domain adaptation in 3D semantic segmentation, Zhao et

al. (Zhao et al., 2020b) learn the simulation-to-real domain adaption, i.e., from

synthetic data to real-world data, at two levels, i.e., pixel level through self-

supervised dropout noise rendering and feature level using feature alignment

between the simulation and real domains. To adapt a 3D shape classifier from

source domain to target domain, Achituve et al. (Achituve et al., 2021) design a

self-supervised task, i.e., deformation reconstruction, to capture the structure of

the target data, and propose a Point Cloud MixUp strategy to learn robust feature

representations. Although there is no work to cope with domain generalization

in 3D point cloud analysis tasks, we believe previous attempts to domain adap-

tation in related tasks can motivate the researchers to study the more challenging

problem. In this chapter, we study the general domain generalization problem,

and evaluate our method’s generalization capabilities on both 3D and 2D object

classification datasets.

5.3 Method

5.3.1 Problem Definition

Let X and Y be the feature and label spaces, respectively. In the domain gen-

eralization subject, there are K source domains {Di}Ki=1 and L target domains2

{Di}L+K
i=K+1. The goal is to generalize the model learned using data samples of

source domains to unseen target domains. In the following, we denote the joint

distribution of domain i by Pi(X, Y ) (defined on X × Y). During the training

2Source/Target: seen/unseen during training.
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process, there are K datasets {Si}Ki=1 available, where Si = {(x(i)
j , y

(i)
j )}Ni

j=1.

Here, Ni is the number of samples of Si, which are sampled from the ith do-

main. In the test stage, we evaluate the generalization capabilities of the learned

model on L datasets sampled from the L target domains, respectively. This

chapter mainly studies domain generalization for image classification, where

the label space Y contains C discrete labels {1, 2, · · · , C}.

5.3.2 Domain Generalization Through Adversarial Learning

We first present how domain generalization can be learned in an adversarial

learning framework.

For the classification subject, the model consists of one feature extractor F pa-

rameterized by θ and one classifier T parameterized by ϕ. We can optimize θ

and ϕ on the K source datasets by minimizing a cross-entropy loss:

min
F,T

Lcls(θ, ϕ) = −
K∑
i=1

E
(X,Y )∼Pi(X,Y )

[log(QT (Y |F (X)))]

= −
K∑
i=1

Ni∑
j=1

y
(i)
j · log(T (F (x(i)

j )),

(5.1)

where y
(i)
j is the one-hot vector of the class label y(i)j , “·” represents the dot

product operation, and QT (Y |F (X)) denotes the predicted label distribution

(conditioned on F (X)) corresponding to domain i.

However, optimized by the classification loss solely, the model cannot learn

domain-invariant features, and thus shows limitations in generalizing to the un-

seen domains. By exploiting the adversarial learning (Goodfellow et al., 2014),
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we can alleviate the issue. Specifically, we further introduce a domain discrimi-

nator D parameterized by ψ, and train D and F in a minimax game as follows:

min
F

max
D

Ladv(θ, ψ) =
K∑
i=1

E
X∼Pi(X)

[logD(F (X))]

=
K∑
i=1

Ni∑
j=1

d
(i)
j · log(D(F (x

(i)
j ))),

(5.2)

where d
(i)
j is the one-hot representation of the domain label i.

Although optimizing Eq. 5.2 can lead to invariant marginal distributions i.e.,

P1(F (X)) = P2(F (X)) = · · · = PK(F (X)), it cannot guarantee the condi-

tional distribution P (Y |F (X)) is invariant across domains. This would degrade

the generalization capabilities of the model. Even though the classifier attempts

to cluster the samples from the same category together in the feature space,

which benefits to the learning of the invariant conditional distribution, there still

exists an issue. We take the simulated data for example. Firstly, we sample

data from two 2D-distributions (shown in Figure 5.1) as the Domain_0 and Do-

main_1, respectively. The marginal distributions of the first dimension (x0) in

the two domain are the same, while the second (x1) comes from different mar-

ginal distributions. Each domain consists of three components. We take each

dimension as the input to train a classifier using Eq. 5.1 and Eq. 5.2, and we find

that the classifier distinguishes the second dimension better than the first (loss:

−0.34 v.s. −0.16). This indicates that the classifier might not select the domain-

invariant feature, but select the features easier to discriminate. Therefore, it is

challenging for the typical classification loss to achieve a balance between learn-

ing domain-invariant features and discriminative features.

5.3.3 Entropy Regularization

Description. To address the issues aforementioned, we propose to regular-

ize the distributions of the features by minimizing the KL divergence between
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Figure 5.1. Simulated data. We create two domains from the two 2D-distributions (left
and right), respectively. The data in Domain_0 and Domain_1 is two-dimensional. In
specific, the first dimensions in two domains are both sampled from Marginal_0 (top-
middle), while the second dimension in Domain_0 and Domain_1 is sampled from
Marginal_0 and Marginal_1 (bottom-middle), respectively.

the conditional distribution Pi(Y |F (X)) in the ith domain and the conditional

distribution QT (Y |X). Pi(Y |F (X)) denotes the predicted label distribution

conditioned on the learned features. By matching any conditional distribu-

tion Pi(Y |F (X)) to a common distribution QT (Y |F (X)), we can obtain the

domain-invariant conditional distribution P (Y |F (X)). For the purpose, we de-

fine an optimization problem as follows:

min
F,T

K∑
i=1

KL(Pi(Y |F (X))||QT (Y |F (X))). (5.3)

By using the definition of the KL divergence, we have:

min
F,T

K∑
i=1

KL(Pi(Y |F (X))||QT (Y |F (X)))

=
K∑
i=1

E
(X,Y )∼Pi(X,Y )

[log
Pi(Y |F (X))

QT (Y |F (X))
]

=
K∑
i=1

E
(X,Y )∼Pi(X,Y )

[logPi(Y |F (X))]−
K∑
i=1

E
(X,Y )∼Pi(X,Y )

[logQT (Y |F (X))].

(5.4)

The second term is actually the cross-entropy classification loss (Eq. 5.1), while

the first one is the sum ofK negative conditional entropy terms
∑K

i=1−HPi
(Y |F (X)).

However, it is difficult to optimize −HPi
(Y |F (X)) directly, since we do not
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know the conditional distribution Pi(Y |F (X)). To overcome this issue, we first

provide the following theorem to exploit the relationship between the negative

conditional entropy term and the Jensen-Shannon divergence (JSD) between the

conditional distributions {Pi(F (X)|Y = c)}Cc=1.

THEOREM 1. Assuming that all classes are equally likely, minimizing −HPi
(Y |F (X))

is equivalent to minimizing the JSD between the conditional distributions {Pi(F (X)|Y =

c)}Cc=1. The global minimum is achieved if and only if Pi(F (X)|Y = 1) =

Pi(F (X)|Y = 2) = · · · = Pi(F (X)|Y = C). Note that, if the dataset is bal-

anced, it is easy to make the assumption satisfied. Otherwise, we can enforce it

through biased batch sampling.

The proof is given in Sec. 5.5. Inspired by Theorem 1 and the minimax game

proposed in GAN (Goodfellow et al., 2014) and conditional GAN (Gong et

al., 2019), we introduce K additional classifiers {T ′
i}Ki=1, and then present the

following minimax game:

min
F

max
{T ′

i}Ki=1

V (F, T ′
1, T

′
2, · · · , T ′

K) =
K∑
i=1

E
(X,Y )∼Pi(X,Y )

[logQ
T ′
i

i (Y |F (X))],

(5.5)

where T ′
i parameterized by ϕ′

i represents a classifier trained on data sampled

from domain Di, and Q
T ′
i

i (Y |F (X)) denotes the conditional distribution in-

duced by T ′
i . The following theorem (the proof can be found in Sec. 5.5) shows

that the minimax game is equal to minimizing the JSD between the conditional

distributions {Pi(F (X)|Y = c)}Cc=1. According to Theorem 1, we can thus

achieve the optimization of
∑K

i=1 −HPi
(Y |F (X)).

THEOREM 2. If U(F ) is the maximum value of V (F, T ′
1, T

′
2, · · · , T ′

K), i.e.,

U(F ) = max
{T ′

i}Ki=1

V (F, T ′
1, T

′
2, · · · , T ′

K), (5.6)
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the global minimum of the minimax game is attained if and only if Pi(F (X)|Y =

1) = Pi(F (X)|Y = 2) = · · · = Pi(F (X)|Y = C). At this point, U(F ) attains

the value −KC logC.

Therefore, our proposed entropy regularization loss can be defined as:

min
F

max
{T ′

i}Ki=1

Ler(θ, {ϕ′
i}Ki=1) =

K∑
i=1

E
(X,Y )∼Pi(X,Y )

[logQ
T ′
i

i (Y |F (X))]. (5.7)

Combining Eq. 5.7 with the classification loss (Eq. 5.1) and the domain discrim-

ination loss (Eq. 5.2), we obtain the training objective:

min
F,T

max
D,{T ′

i}Ki=1

L(θ, ϕ, ψ, {ϕ′
i}Ki=1)

=Lcls(θ, ϕ) + α1Ladv(θ, ψ) + α2Ler(θ, {ϕ′
i}Ki=1),

(5.8)

where α1 and α2 are trade-off parameters.

Algorithm. In our experiments, we observed that directly optimizing the loss

Eq. 5.8 may show instability, since the minimax game in Eq. 5.7 encourages

the learned features not to be distinguished by the classifiers. That may impede

the optimization of the classification loss. To alleviate this issue, we introduce

additional classifiers {Ti}Ki=1 and add a new cross-entropy loss Lcel:

min
F,{Ti}Ki=1

Lcel(θ, {ϕi}Ki=1) =−
K∑
i=1

E
(X,Y )∼Pi(X,Y )

[logQTi
i (Y |F̄ (X))]

−
K∑
i=1

K∑
j=1,j ̸=i

E
(X,Y )∼Pj(X,Y )

[logQT̄i
i (Y |F (X))],

(5.9)

where QTi
i (Y |F (X)) denotes the conditional distribution induced by Ti. Here,

F̄ and T̄i mean that we fix the parameters of F and T during the training pro-

cedure, respectively. Specifically, we feed the learned features in the ith domain

into Ti to optimize its parameters ϕi. Additionally, we expect the feature ex-

tractor can map the data in domains {Dj}Kj=1,j ̸=i to a representation, which can
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be distinguished by Ti accurately. This strategy, on the one hand, can impose

regularization on the feature distribution of domains {Dj}Kj=1,j ̸=i. On the other

hand, the new loss can be considered as a complementary of Lcls.

Thus, our final objective is formulated as:

min
F,T,{Ti}Ki=1

max
D,{T ′

i}Ki=1

L(θ, ϕ, ψ, {ϕi}Ki=1, {ϕ′
i}Ki=1)

=Lcls + α1Ladv + α2Ler + α3Lcel,

(5.10)

where α3 is a weighting factor. To illustrate the training process clearly, we

provide the pseudo-code of our algorithm in Alg. 1.

Algorithm 1: Training algorithm for domain generalization via en-

tropy regularization.
Input: {Si}Ki=1: K source training datasets

Input: α1, α2, α3: weighting factors

Output: F : feature extractor; T, {Ti}Ki=1, {T ′
i}Ki=1: classifier; D:

discriminator

while training is not end do
Sample data from each training dataset respectively

Update θ, ϕ, and ψ by optimizing the first and second terms of

Eq. 5.10

for i in 1 : K do
Sample data from the ith dataset Si

Update {ϕi}Ki=1 by optimizing the forth term of Eq. 5.10

Update θ, and {ϕ′
i}Ki=1 by optimizing the third term of Eq. 5.10

Sample data from datasets {Sj}Kj=1,j ̸=i

Update θ by optimizing the forth term of Eq. 5.10.

end

end
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Figure 5.2. Illustration of our framework. GRL represents the gradient reversal layer.
All components are trained, but only F and T are preserved for test.

Framework. Here, we provide an illustration of our framework in Figure 5.2

for better understanding of the proposed components. The main module con-

sists of a feature extractor F and a classifier T . In addition, we exploit a do-

main discriminator D to discriminate domains, and 2K classifiers ({Ti}Ki=1 and

{T ′
i}Ki=1) to regularize the generated features. We insert a gradient reversal layer

(GRL) (Ganin and Lempitsky, 2015) between F and D, and F and T ′
i , respec-

tively. In the inference stage, only the main module (F and T ) is required.

Discussion. In comparison with the typical classification loss, our entropy reg-

ularization loss can push the network to learn domain-invariant features. For

instance, in the example of simulated data in Figure 5.1, the summation of

the classification loss, the regularization loss and the domain adversarial loss is

−0.16 in classifying the first dimension, and is −0.02 in classifying the second

dimension. Therefore, our training objective can enforce the learned features to

be domain-invariant.

5.4 Experiments

In this section, we study domain generalization on four datasets, including three

simulated datasets, i.e., Rotated MNIST (Ghifary et al., 2015), Rotated CIFAR-

10, and Rotated ModelNet40 (Wu et al., 2015), and two real-world datasets, i.e.,
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VLCS (Ghifary et al., 2015) and PACS (Li et al., 2017). We make comparisons

against state-of-the-art methods to demonstrate the effectiveness of the proposed

algorithm. We conduct extensive ablations to discuss our method comprehen-

sively.

5.4.1 Simulated 2D Datasets

Rotated MNIST. Following the setting in (Ghifary et al., 2015), we first ran-

domly choose 100 samples for each category (1, 000 in total) from the original

dataset (LeCun et al., 1998) to form the domain M0. Then, we create 5 ro-

tating domains {M15,M30,M45,M60,M75} by rotating each image in M0 five

times with 15 degrees intervals in clock-wise direction. As done by previous

works (Li et al., 2019d; Shankar et al., 2018), we conduct leave-one-domain-

out experiments by selecting one domain to hold out as the target. For fair

comparisons, we exploit the standard MNIST CNN, where the feature network

consists of two convolutional layers and one fully-connected (FC) layer, and the

classifier has one FC layer. We train our model with the learning rate of 1e− 4

(F , T , and D), and 1e− 5 ({Ti, T ′
i}5i=1) for 3, 000 iterations. We set the weight-

ing factors to 0.5 (α1), 0.005 (α2), and 0.01 (α3), respectively. We repeat all of

the experiments 10 times, and report the average mean and standard deviation

of recognition accuracy in Table 5.1.

Rotated CIFAR-10. We randomly choose 500 samples per category (5, 000

in total) from the original CIFAR-10 dataset (Krizhevsky et al., 2009), and then

create additional 5 domains using the same strategy as stated in Rotated MNIST.

We use AlexNet (Krizhevsky et al., 2012) as our backbone network. In spe-

cific, the feature extractor F consists of the top layers of AlexNet model till

the POOL5 layer, while T contains FC6, FC7, and an additional FC layer. For

{Ti, T ′
i}5i=1 and D, we use a similar architecture to T . We train the whole net-

work from scratch with the learning rate of 1e − 3 (F , T , and D) and 1e − 4
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Target CrossGrad MetaReg Reptile Feature-Critic DeepAll Basic-Adv Ours

M0 86.03 85.70 87.78 87.04 88.37± 1.19 88.88± 1.08 90.09± 1.25
M15 98.92 98.87 99.44 99.53 99.13± 0.41 99.10± 0.19 99.24± 0.37
M30 98.60 98.32 98.42 99.41 99.28± 0.27 99.25± 0.14 99.27± 0.16
M45 98.39 98.58 98.80 99.52 99.09± 0.29 99.25± 0.17 99.31± 0.21
M60 98.68 98.93 99.03 99.23 99.14± 0.28 99.16± 0.32 99.45± 0.19
M75 88.94 89.44 87.42 91.52 87.48± 1.01 89.06± 1.54 90.81± 1.35

Avg. 94.93 94.97 95.15 96.04 95.42 95.78 96.36

Table 5.1. Results on MNIST dataset with object recognition accuracy (%) averaged
over 10 runs.

Method M0 M15 M30 M45 M60 M75 Avg.

DeepAll 71.28± 1.59 97.94± 0.32 99.14± 0.04 99.06± 0.19 99.07± 0.40 76.59± 0.89 90.51

Basic-Adv 75.85± 1.45 99.03± 0.18 99.16± 0.06 99.14± 0.11 99.29± 0.13 81.14± 1.34 92.27

Ours 77.91± 0.83 99.05± 0.22 99.33± 0.09 99.39± 0.14 99.40± 0.29 80.12± 0.60 92.53

Table 5.2. Results on CIFAR-10 dataset with object recognition accuracy (%) averaged
over 5 runs.

({Ti, T ′
i}5i=1) using the Adam optimizer (Kingma and Ba, 2014a) for 2, 000 iter-

ations. The weighting factors (α1, α2, α3) are set to 0.5, 0.001, and 0.1, respec-

tively. We repeat all experiments 5 times, and provide the results in Table 5.2.

Results. We make comparisons against several recent works, including Cross-

Grad (Shankar et al., 2018), MetaReg (Balaji et al., 2018), Reptile (Nichol et

al., 2018), and Feature-Critic (Li et al., 2019d), on Rotated MNIST. To bet-

ter illustrate the generalization capabilities of our model, we also evaluate the

performance of two additional models, i.e., DeepAll and Basic-Adv, on both

Rotated MNIST and Rotated CIFAR-10. DeepAll trains F and T on all of

the source domains without performing any domain generalization (Eq. 5.1),

while Basic-Adv is the basic solution through adversarial learning (Eq. 5.1 and

Eq. 5.2). We can find all of the algorithms perform well on Rotated MNIST

from Table 5.1, which means the generated domains have similar distributions.

Nevertheless, our approach still performs better than existing approaches. Fur-

thermore, the higher accuracy compared with DeepAll and Basic-Adv on both

Rotated MNIST and Rotated CIFAR-10 shows the better generalization capa-

bilities of the proposed algorithm.
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Method
M0 M1 M2 M3 M4 Avg.

([0◦, 0◦, 0◦]) ([30◦, 15◦, 45◦]) ([80◦, 60◦, 75◦]) ([120◦, 90◦, 60◦]) ([270◦, 210◦, 180◦])

DGCNN
DeepAll 34.81± 0.96 34.83± 1.82 54.04± 2.13 26.87± 1.21 29.30± 1.03 35.91

Basic-Adv 36.17± 1.48 45.06± 2.27 56.24± 1.09 29.28± 1.70 31.00± 2.69 39.55

Ours 38.00± 1.67 44.13± 1.26 59.17± 1.49 30.28± 1.45 30.85± 2.01 40.49

PointNet
DeepAll 16.47± 0.44 20.37± 0.57 33.83± 0.32 12.80± 0.75 16.72± 0.11 20.04

Basic-Adv 19.68± 0.69 22.91± 0.93 34.86± 0.71 14.44± 0.67 18.24± 0.52 22.02

Ours 16.56± 0.59 25.31± 0.23 35.66± 0.32 13.96± 0.56 19.90± 0.21 22.28

Table 5.3. Results on ModelNet40 dataset with 3D shape recognition accuracy (%)
averaged over 5 runs.

Method Pascal VOC2007 LabelMe Caltech SUN09 Average

MLP
D-MATE (Ghifary et al., 2015) 63.90 60.13 89.05 61.33 68.60

DBADG (Li et al., 2017) 65.58 58.74 92.43 61.85 69.65
CCSA (Motiian et al., 2017) 67.10 62.10 92.30 59.10 70.15

MetaReg (Balaji et al., 2018) 65.00 60.20 92.30 64.20 70.43

CrossGrad (Shankar et al., 2018) 65.50 60.00 92.00 64.70 70.55
DANN (Ganin et al., 2016) 66.40 64.00 92.60 63.60 71.65

MMD-AAE (Li et al., 2018b) 67.70 62.60 94.40 64.40 72.28

MLDG (Li et al., 2018a) 67.70 61.30 94.40 65.90 72.33
Epi-FCR (Li et al., 2019a) 67.10 64.30 94.10 65.90 72.85

DeepAll 70.07± 0.79 60.54± 1.02 93.83± 1.08 65.95± 1.13 72.60
Basic-Adv 70.47± 0.59 60.94± 0.94 93.84± 1.00 66.05± 0.91 72.82

Ours 70.54± 0.55 60.81± 1.38 94.44± 0.98 66.11± 0.75 72.97

E2E
DBADG (Li et al., 2017) 69.99 63.49 93.64 61.32 72.11

JiGen (Carlucci et al., 2019) 70.62 60.90 96.93 64.30 73.19
MMLD (Matsuura and Harada, 2020a) 71.96 58.77 96.66 68.13 73.88

CIDDG (Li et al., 2018d) 73.00 58.30 97.02 68.89 74.30

DeepAll 73.11± 0.67 58.07± 0.52 97.15± 0.40 68.79± 0.44 74.28

Basic-Adv 72.79± 0.67 58.53± 0.69 97.00± 0.50 68.70± 0.69 74.26
Ours 73.24± 0.49 58.26± 0.82 96.92± 0.40 69.10± 0.46 74.38

Table 5.4. Results on VLCS dataset with object recognition accuracy (%) averaged
over 20 runs.

5.4.2 Simulated 3D Dataset

Rotated ModelNet40. Here, we evaluate our method on a simulated 3D shape

classification dataset, i.e., ModelNet40 (Wu et al., 2015), which consists of

9, 843 3D models for training and 2, 468 for testing. We uniformly sample

1, 024 points as input for each 3D model on the mesh surfaces. In addition, the

3D models in ModelNet40 have been pre-aligned to the common up direction

and horizontal facing direction. To evaluate the generalization capability and

speed up the evaluation, we sample 20 categories (5, 112 samples for training,
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Method Art Painting Cartoon Photo Sketch Average

D-MATE (Ghifary et al., 2015) 60.27 58.65 91.12 47.68 64.48

CrossGrad (Shankar et al., 2018) 61.00 67.20 87.60 55.90 67.93
DBADG (Li et al., 2017) 62.86 66.97 89.50 57.51 69.21

MLDG (Li et al., 2018a) 66.23 66.88 88.00 58.96 70.01

Epi-FCR (Li et al., 2019a) 64.70 72.30 86.10 65.00 72.03
Feature-Critic (Li et al., 2019d) 64.89 71.72 89.94 61.85 71.20

CIDDG (Li et al., 2018d) 66.99 68.62 90.19 62.88 72.20

MetaReg (Balaji et al., 2018) 69.82 70.35 91.07 59.26 72.62
JiGen (Carlucci et al., 2019) 67.63 71.71 89.00 65.18 73.38

MMLD (Matsuura and Harada, 2020a) 69.27 72.83 88.98 66.44 74.38
MASF (Dou et al., 2019) 70.35 72.46 90.68 67.33 75.21

DeepAll 68.35± 0.80 70.14± 0.87 90.83± 0.32 64.98± 1.92 73.57
Basic-Adv 71.34± 0.81 70.11± 1.18 88.86± 0.50 70.91± 0.94 75.31

Ours 71.34± 0.87 70.29± 0.77 89.92± 0.42 71.15± 1.01 75.67

Table 5.5. Results on PACS dataset with object recognition accuracy (%) averaged over
5 runs.

M0 M1 M2 M3 M4

Figure 5.3. Data Visualization on Rotated ModelNet40 dataset. For better observation,
we select different viewpoints for the two objects.

1, 202 samples for testing) from the original ModelNet40 dataset (M0), and then

create additional 4 domains by rotating each point cloud in M0 four times: 1)

M1 ([30◦, 15◦, 45◦]), 30 degrees in x-axis, 15 degrees in y-axis, and 45 degrees

in z-axis; 2) M2 ([80◦, 60◦, 75◦]), 80 degrees in x-axis, 60 degrees in y-axis, and

75 degrees in z-axis; 3) M3 ([120◦, 90◦, 60◦]), 120 degrees in x-axis, 90 degrees

in y-axis, and 60 degrees in z-axis; 4) M4 ([270◦, 210◦, 180◦]), 270 degrees in

x-axis, 210 degrees in y-axis, and 180 degrees in z-axis. Visualization for data

in the simulated dataset is shown in Figure 5.3. We use DGCNN (Wang et al.,

2018b) and PointNet (Qi et al., 2017a) as the backbone network, respectively.

Take an example of DGCNN. In detail, the feature extractor F consists of shape



5.4 EXPERIMENTS 121

representation layers of DGCNN model, while T contains the remaining linear

layers. For {Ti, T ′
i}4i=1 and D, we use a similar architecture to that in Rotated

CIFAR-10. We train the whole network from scratch with the learning rate of

1e − 3 (F , T , and D) and 1e − 4 ({Ti, T ′
i}4i=1) using the SGD optimizer for

80 epochs. The weighting factors (α1, α2, α3) are set to 0.5, 0.01, and 0.1,

respectively. For PointNet, we exploit similar configurations. We repeat all

experiments 5 times, and provide the results in Table 5.3.

Results. To illustrate the generalization capabilities of our model, we also eval-

uate the performance of two additional models, i.e., DeepAll and Basic-Adv as

we do on Rotated CIFAR-10 and Rotated MNIST. As shown in Table 5.3, we

can observe that all three methods, especially when PointNet is used as the back-

bone, yield low scores. Nevertheless, our approach still outperforms other two

methods. In addition, the accuracy of the model DGCNN (PointNet) trained on

{M1,M2,M3,M4} is 96.01% (72.58%) on the validation dataset, while 38.00%

(16.56%) on the test set, i.e., M0. The great performance drops mean that the

domain shift, like geometric changes, in 3D shape classification is a very seri-

ous problem for current deep networks, which is worth further investigating. In

addition, the comparisons between DGCNN and PointNet show that the local

shape representation operations also have significant impacts on the generaliza-

tion capability, which would motivate us to develop more effective operations.

5.4.3 Real-World Datasets

VLCS. VLCS (Ghifary et al., 2015) contains images from four well-known

datasets, i.e., Pascal VOC2007 (V) (Everingham et al., 2010), LabelMe (L) (Rus-

sell et al., 2008), Caltech (C) (Fei-Fei et al., 2004), and SUN09 (S) (Choi et al.,

2010). There are five categories, including bird, car, chair, dog, and person. Fol-

lowing previous works (Ghifary et al., 2015; Li et al., 2019a; Dou et al., 2019),

we randomly split each domain data into training (70%) and test (30%) sets, and
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do the leave-one-out evaluation. For the configuration of the network, we con-

sider two cases, i.e., MLP and E2E. In specific, in MLP, we use the pre-extracted

DeCAF6 features (4096-dimensional vector) as the input, and F consists of two

FC layers with latent dimensions of 1024 and 128. For the classifiers T and

{Ti, T ′
i}3i=1, we use one FC layer, respectively. For the discriminator D, we uti-

lize three FC layers with the output dimensions of 128, 64, and 3 (the number of

source domains). In this case, we train our model with the learning rate of 1e−3

for 30 epochs using the SGD optimizer. We set all trade-off parameters to 0.1.

In another setting (E2E), we employ the same network configuration as used on

Rotated CIFAR-10, but use the model pre-trained on ImageNet (Krizhevsky et

al., 2012). We set the learning rate to 1e − 4, and the weighting factors α1, α2,

and α3 to 0.1, 0.001, and 0.05, respectively. We train the model with the batch

size of 64 for each source domain for 60 epochs and repeat all of the experiments

20 times.

PACS. PACS (Li et al., 2017) is proposed specially for domain generalization.

It contains four domains, i.e., Photo (P), Art Painting (A), Cartoon (C), and

Sketch (S), and seven categories: dog, elephant, giraffe, guitar, house, horse,

and person. For a fair comparison, we use the same training and validation

split as presented in (Li et al., 2017). Our network configuration is the same as

that used for VLCS (E2E), and we set the weighting factors to 0.5 (α1), 0.01

(α2), and 0.05 (α3), respectively. Then we train the model with the learning

rate of 1e − 3 (F , T , D) and 1e − 4 ({Ti, T ′
i}3i=1) for 60 epochs. We repeat all

experiments 5 times, and report the results in Tabel 5.5.

Results. As shown in Table 5.4, although the baselines (DeepAll and Basic-

Adv) are competitive with previous methods in both cases (MLP and E2E),

our proposed entropy regularization still improves the performance further on

VLCS. Furthermore, the highest average score and the highest score on several

domains of PACS can also demonstrate the effectiveness of our approach. For

example, Table 5.5 shows that our method improves the average accuracy by
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2.1% on PACS over DeepAll, and improves 6.17% and 2.99% on Sketch and Art

Painting, respectively. In addition, from the results in Table 5.4 and Table 5.5,

we can observe that the performance (Ours v.s. DeepAll and Basic-Adv v.s.

DeepAll) gains obtained by our regularization policy on PACS are more notable

than those on VLCS. A possible reason we guess is that only one domain (C)

in VLCS is object-centric, while others are all scene-centric. This makes the

generalization of the model difficult, although the domain shifts in VLCS are

small (Li et al., 2017). In contrast, the images in all domains of PACS are

mostly object-centric, and objects in different domains mainly have different

styles and shapes. This can better evaluate the generalization capabilities of the

model.

5.4.4 Ablation Studies

The experimental results above have demonstrated the effectiveness of our pro-

posed algorithm for domain generalization. Here, we provide the ablation stud-

ies on the designed loss and network backbone to analyze the contributions of

the proposed entropy regularization further.

Different Weighting Factors. We conduct various experiments with different

weighting factors on PACS to examine their impacts. We report the average

accuracy of 5 trials in Table 5.7. The results marked by the “gray” color cor-

respond to the results reported in Table 5.5. “-” means the corresponding loss

term is ignored. As shown in Table 5.7, in most cases, our proposed conditional

entropy regularization (α2 ̸= 0) can yield some improvements. Besides, by op-

timizing the full objective, our approach can further improve the generalization

capabilities of the model.

Deeper Networks. We further study the generalization capabilities of our model

by taking deeper networks, e.g., ResNet-18 and RestNet-50 (He et al., 2016), as

the backbone network. The models are pre-trained on ImageNet, and fine-tuned
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on PACS using the proposed loss. In specific, we take the last FC layer as our

task network T , and other layers as the feature extractor F . We use three FC

layers with output dimensions of 1024, 256, and the number of source domains

/ categories to construct the discriminator D and classifiers {Ti, T ′
i}3i=1, respec-

tively. For both ResNet-18 and ResNet-50, we use the same hyper-parameters,

i.e., α1 = 0.1, α2 = 0.001, α3 = 0.05, and the learning rate of 1e − 3 (F , T ,

D) and 1e − 4 ({Ti, T ′
i}3i=1). We learn models for 100 epochs, and report the

average scores of 5 trials. As shown in Table 5.6, even though we take deeper

networks as our backbones, our approach still yield higher scores than the two

baselines.

Class Imbalance. We address the class imbalance issue by using the weighted

cross-entropy loss according to the number of each class in each batch. If not

using the weighted loss i.e., setting the weight to 1 for each class, the model

yields a lower average accuracy of 75.58% (weighted loss used: 75.67%) on

PACS, but still has better generalization capabilities.

Feature Visualization. To better understand the distribution of the learned fea-

tures, we exploit t-SNE (Maaten and Hinton, 2008) to analyze the feature space

learned by DeepAll, Basic-Adv, and Ours, respectively. We conduct this study

on PACS, and in specific, we take the Photo dataset as the target, and others as

the source. As shown in Figure 5.4, both Ours and Basic-Adv are capable of

minimizing the distance between the distributions of the domains. For exam-

ple, in DeepAll (Domains), we can observe that the Sketch (Green) is far away

from other domains, while in Ours (Domains) and Basic-Adv (Domain), do-

mains are clustered better. Furthermore, the comparison between Ours (Classes,

Domains) and Basic-Adv (Classes, Domains) can show that our approach also

discriminates the data from different categories better than Basic-Adv.
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Method Art Painting Cartoon Photo Sketch Average

ResNet-18
DeepAll 78.93± 0.46 75.02± 0.89 96.60± 0.16 70.48± 0.84 80.25

Basic-Adv 80.54± 1.71 75.21± 0.92 96.67± 0.21 70.65± 1.91 80.77

Ours 80.70± 0.71 76.40± 0.34 96.65± 0.21 71.77± 1.27 81.38

ResNet-50
DeepAll 86.18± 0.34 76.79± 0.33 98.14± 0.15 74.66± 0.93 83.94

Basic-Adv 87.11± 1.08 78.65± 1.13 98.22± 0.17 76.48± 1.09 85.11

Ours 87.51± 1.03 79.31± 1.40 98.25± 0.12 76.30± 0.65 85.34

Table 5.6. Results of deeper networks on PACS dataset with object recognition accu-
racy (%) averaged over 5 runs.

5.5 Proofs

In this section, we provide the proofs of Theorem 1 and Theorem 2.

5.5.1 Proof of Theorem 1

PROOF. According to the definition of mutual information and under the

assumption that all classes are equally likely, we have:

−HPi
(Y |F (X))

=IPi
(Y, F (X))−H(Y )

=HPi
(F (X))−HPi

(F (X)|Y )−H(Y )

=− 1

C

C∑
c=1

E
X′∼PF

i (X|Y )
logPi(X

′) +
1

C

C∑
c=1

E
X′∼PF

i (X|Y )
logPi(X

′|Y = c)−H(Y )

=
1

C

C∑
c=1

E
X′∼PF

i (X|Y )
log

Pi(X
′|Y = c)

Pi(X ′)
−H(Y )

=
1

C

C∑
c=1

KL(Pi(X
′|Y = c)||Pi(X

′))−H(Y )

=
1

C

C∑
c=1

KL(Pi(F (X)|Y = c)||Pi(F (X)))−H(Y )

=JSD(Pi(F (X)|Y = 1), Pi(F (X)|Y = 2), · · · , Pi(F (X)|Y = C))−H(Y ).

(5.11)
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Since H(Y ) is a constant, then minimizing −HPi
(Y |F (X)) is equivalent to

minimizing JSD(Pi(F (X)|Y = 1), Pi(F (X)|Y = 2), · · · , Pi(F (X)|Y =

C)), the global minimum of which is achieved at Pi(F (X)|Y = 1) = Pi(F (X)|Y =

2) = · · · = Pi(F (X)|Y = C). □

5.5.2 Proof of Theorem 2

PROPOSITION 1. Let V (F, {T ′
i}) =

∑K
i=1 E

(X,Y )∼Pi(X,Y )
[logQ

T ′
i

i (Y |F (X))]. Then

the optimal prediction probabilities of T ′
i are

⟨T ′∗
i (x′

i)⟩c = Q
T ′∗
i

i (Y = c|x′
i) =

Pi(x
′
i|Y = c)∑C

c=1 Pi(x′
i|Y = c)

, (5.12)

where ⟨z⟩i denotes the ith element of z, and x′
i = F (xi).

PROOF. For a fixed F , minF max{T ′
i} V (F, {T ′

i}) reduces to maximizing

V (F, {T ′
i}Ki=1) w.r.t. {T ′

1, T
′
2, · · · , T ′

K}3:

{⟨T ′∗
i (x′)⟩1, ⟨T ′∗

i (x′)⟩2, · · · , ⟨T ′∗
i (x′)⟩C}

=arg max
{⟨T ′

i (x)⟩c}Cc=1

C∑
c=1

∫
x′
i

Pi(x
′
i|Y = c) log(⟨T ′

i (x
′
i)⟩c)dx′

i,

s.t.
C∑
c=1

⟨T ′
i (x

′
i)⟩c = 1.

(5.13)

Maximizing the value function point-wisely and applying Lagrange multipliers,

we obtain the following problem:

{⟨T ′∗
i (x′)⟩1, ⟨T ′∗

i (x′)⟩2, · · · , ⟨T ′∗
i (x′)⟩C}

=arg max
{⟨T ′

i (x
′)⟩c}Cc=1

C∑
c=1

Pi(x
′
i|Y = c) log(⟨T ′

i (x
′
i)⟩c) + λi(

C∑
c=1

⟨T ′
i (x

′
i)⟩c − 1).

(5.14)

Setting the derivative of Eq. 5.14 w.r.t. ⟨T ′
i (x

′
i)⟩c to zero, we obtain ⟨T ′∗

i (xi)⟩c =

−Pi(x
′
i|Y=c)

λi
. Through substituting the value of ⟨T ′∗

i (xi)⟩c into the constraint

3Here, we only consider T ′
i for simplicity.
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c=1⟨T ′

i (x
′
i)⟩c = 1, we can obtain λi = −

∑C
c=1 Pi(x

′
i|Y = c), and thus get the

optimal solution ⟨T ′∗
i (x′

i)⟩c =
Pi(x

′
i|Y=c)∑C

c=1 Pi(x′
i|Y=c)

. □

THEOREM 3. If U(F ) is the maximum value of V (F, {T ′
i}Ki=1), i.e.,

U(F ) =
K∑
i=1

C∑
c=1

E
Xi∼Pi(X)

[log
Pi(X

′
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i|Y = c)

], (5.15)

the global minimum of the minimax game is attained if and only if Pi(X
′
i|Y =

1) = Pi(X
′
i|Y = 2) = · · · = Pi(X

′
i|Y = C) for any i ∈ {1, 2, · · · , K}, where

U(F ) achieves the value −KC logC.

PROOF. Adding KC logC to U(F ) can obtain:
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(5.16)

According to the definition of the Jensen-Shannon divergence, we can obtain

U(F ) = −KC logC+
∑K

i=1C·JSD(Pi(X
′
i|Y = 1), Pi(X

′
i|Y = 2), · · · , Pi(X

′
i|Y =

C)). Since the JSD between multiple distributions is always non-negative, and

zero iff they are equal, then we have

P1(X
′
1|Y = 1) = P1(X

′
1|Y = 2) = · · · = P1(X

′
1|Y = C),

P2(X
′
2|Y = 1) = P2(X

′
2|Y = 2) = · · · = P2(X

′
2|Y = C),

· · ·

PK(X
′
K |Y = 1) = PK(X

′
K |Y = 2) = · · · = PK(X

′
K |Y = C),

(5.17)

and the global minimum of U(F ) is −KC logC. □
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α1, α2, α3 Art Painting Cartoon Photo Sketch Average

- , - , - 68.35± 0.80 70.14± 0.87 90.83± 0.32 64.98± 1.92 73.57

1.0 , - , - 64.46± 3.80 64.07± 3.01 83.48± 1.39 66.70± 2.64 69.68

0.5 , - , - 71.35± 0.81 70.11± 1.18 88.86± 0.50 70.91± 0.94 75.31

0.1 , - , - 68.22± 0.89 70.13± 0.67 90.60± 0.37 64.61± 1.93 73.39

0.5 , 0.05 , - 70.83± 1.35 70.06± 0.98 89.25± 0.38 71.34± 0.82 75.37
0.5 , 0.01 , - 71.05± 1.62 70.29± 0.88 89.44± 0.36 70.06± 1.80 75.21

0.5 , 0.001 , - 71.72± 0.77 69.84± 1.65 88.88± 0.42 70.85± 0.83 75.32

0.5 , - , 0.5 68.92± 0.59 69.62± 0.51 89.99± 0.38 70.04± 0.63 74.74

0.5 , - , 0.1 71.04± 0.96 69.78± 0.98 89.68± 0.51 70.95± 0.81 75.36
0.5 , - , 0.05 71.59± 1.01 68.97± 1.42 89.57± 0.23 69.81± 3.45 74.99

0.5 , 0.05 , 0.1 71.09± 1.10 69.55± 0.54 89.56± 0.33 71.31± 0.90 75.37
0.5 , 0.01 , 0.1 70.91± 0.81 70.05± 1.33 89.80± 0.44 71.46± 0.46 75.56

0.5 , 0.005 , 0.1 70.95± 0.77 69.78± 0.91 89.56± 0.64 71.00± 1.12 75.32

0.5 , 0.05 , 0.05 70.55± 1.17 69.57± 1.14 89.33± 0.55 70.40± 2.88 74.96
0.5 , 0.01 , 0.05 71.34± 0.87 70.29± 0.77 89.92± 0.42 71.15± 1.02 75.67

0.5 , 0.005 , 0.05 70.51± 2.26 69.60± 0.58 89.69± 0.39 71.51± 0.84 75.33

Table 5.7. Results with different weighting factors on PACS.

5.6 Conclusion

In this chapter, we aim at learning the domain-invariant conditional distribution,

which the basic adversarial learning based solutions cannot reach. We analyze

the issues existed in related works, and propose an entropy regularization term,

i.e., the conditional entropy H(Y |F (X)), as the remedy. Our approach can

produce domain-invariant features by optimizing the proposed regularization

term coupled with the cross-entropy loss and the domain adversarial loss, and

thus has a better generalization capability. The experimental results on both

simulated and real-world datasets demonstrate the effectiveness of our proposed

method. In the future, we can extend our approach to other challenging tasks,

like semantic segmentation.
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Figure 5.4. Feature visualization. Left: different colors represent different classes;
Right: different colors indicate different domains (Target: Photo). Best viewed in color
(Zoom in for details).



CHAPTER 6

Conclusions

In this thesis, we studied the problem of 3D information prediction and under-

standing in the deep learning framework. In detail, our goal was to investigate

several crucial issues in deep 3D information prediction and understanding, such

as multi-modal fusion, sparse data processing, relation learning, model general-

ization, and unsupervised learning, through studying four specific tasks, includ-

ing monocular depth estimation, depth completion, point cloud analysis, and

domain generalization.

First, we studied the domain adaptation from synthetic data to real data for un-

supervised monocular depth estimation. We found that previous works ignore

the geometric information of the natural images and thus the generated images

might suffer from distortions in the image-to-image translation process, which

then causes the performance drop of depth estimation model. To alleviate this

issue, we proposed to jointly explore the ground truth data in synthetic data and

the epipolar geometry in real data. We demonstrated our model is able to gen-

erate high-quality image-to-image translation results and depth maps through a

comparison with previous related works.

Second, we analyzed the shortcomings of standard convolution with fixed size

kernel in modeling the contextual information of sparse data, and proposed to

exploit the graph propagation to capture rich multi-modal contexts effectively

through developing a co-attention guided graph propagation module. Then, for
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multi-modal information fusion, we introduced a symmetric gated fusion mod-

ule, which has two branches, one focusing on fusing the depth information as

supplementary into the RGB information and the other one doing the opposite.

Taking advantage of the proposed two modules, our designed model achieves

the state-of-the-art performance on two depth completion datasets, and at the

same time has fewer parameters and lower computational costs.

Third, we developed an adaptive edge-to-edge interaction learning module for

local shape representation of 3D point cloud data. We hypothesized that as-

sociating the neighbouring edges could potentially make the point-to-point re-

lation more aware of the local structure and more robust. We, thereby, intro-

duced an edge-to-edge interaction learning strategy to enhance the representa-

tion of point-to-point relation. Then, we extended the basic interaction module

into its symmetric version to modeling the local structure thoroughly. At last,

we designed the models for classification and segmentation using the proposed

modules. To show the effectiveness of our method in point cloud analysis, we

evaluated the performances on several public point cloud datasets. Our models

outperform previous related works on almost all of metrics.

Finally, we investigated the domain generalization from multiple source do-

mains to unseen target domains for a basic task, i.e., object classification. We

first revisited previous works which aim to learn domain-invariant representa-

tions across source domains, and found that these methods cannot ensure the

conditional invariance of the learned features. To address this issue, we pro-

posed an entropy regularization term which measures the dependency between

the learned features and the category. Together with the adversarial training on

the marginal distribution of the learned features, our model can guarantee the

invariance of the joint distribution of learned features and category. We eval-

uated the generalization capability on a 3D object classification dataset as an

initial step to the study on domain generalization in point cloud analysis as well
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the 2D object classification datasets. The experimental results can show the

effectiveness of our method.

This thesis suggests two possible further studies on deep 3D information pre-

diction and understanding. First, since we can obtain the 3D information, such

as depth data, from stereo data, multi-view images, or video, and then further

analyze the 3D information, like detecting objects and labelling each pixel, it

is worthwhile to study how to complete these two tasks in a unified end-to-end

deep learning framework. As a result, learning the two tasks jointly would po-

tentially enhance each other. Second, the domain generalization in 2D object

classification has been studied extensively, while for 3D information prediction

and understanding, like depth estimation, 3D segmentation, and 3D reconstruc-

tion, there is hardly any work exploring the problem. In the future study, we can

investigate the domain generalization in these more complex and challenging

tasks through taking advantage of the domain knowledge.
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