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ABSTRACT

Within-field variability in cropping system attributes is often obvious but difficult to

accurately and efficiently quantify. The magnitude of the variation also changes with

attribute, location and time. Importantly, variability at this scale of the soil/crop system

may give rise to economic, environmental and societal problems on cropping enterprises

under traditional 'uniform' management. In general, the problems arise from a decision

to use 'mean-of-field‘ information to guide the amelioration of an area which may result in

zones being under- or over- treated. Gathering data on, and extracting useful management

information from, within-field variability is the goal of Precision Agriculture.

Assessment of the reported magnitude of variation in the most influential soil/crop

attributes is provided as a general, simple guide to that which may be expected at the

within-field scale. These may be used as a basic benchmark for variability at this scale.

Further study into the structural component of the observed variability provides

generalised representations of the form and 'strength' of spatial variability models that

may be expected at the within-field scale. These may be used as surrogates for the

parameters in unsampled fields, initial estimates in modelling/simulation procedures or

as a basis for establishing the sample spacing for initial sampling schemes in unsampled

fields. With the exception of soil moisture, the results suggest a 60 metre sample spacing

as being the maximum required to accurately capture the spatial variability in most

attributes.

The inference from these analysis is that management at the within-field scale may prove

useful, with the proviso that attributes that display a moderate to weak spatial structure

will prove more difficult to compartrnentalise or classify into homogenous management

units. In most cropping systems, the field variation in soil type, moisture content, structural

integrity and nutrient levels, will contribute to site fluctuations in the potential yield. The

progress towards developing such a farm management system that will incorporate a

finer scale treatment of variation is reviewed at the end of Section 1.

Section 2 examines the variability at the within field-scale of soil moisture and crop yield.

Soil moisture is measured using Time-Domain Reflectometry (TDR) and modelled using

a joint space/time technique. The trend in soil moisture content in 3 dimensions is found

to be best described by a regression-tree function. The temporal variation component is

significantly more influential than the spatial component. Crop yield variability is also

studied over a number of seasons and crops using a real-time yield monitoring system.



Abstract

The results of these experiments confirms the general observation that whole field yield

variability decreases with increasing mean crop yield and provides evidence that the spatial

component of the yield variability also decreases as mean crop yield rises. It is also clear

that annual temporal variation is much larger than the spatial variation within single

Australian fields. Temporal variability is shown to be up to ten times the spatial component.

Hard-set cluster analysis of crop yield and a number of derived yield attributes is performed

to incorporate this temporal variability into the process of identifying strata or management

zones. The temporal variance cluster maps appear to offer the best quantitative

methodology for the stratification process but one which will require further research to

determine the levels at which zoning should occur.

In Section 3, the accuracy and precision of real-time crop yield monitoring is explored by

examining the effect of the harvesting mechanics on the grain sensors and the prediction

technique on the resultant yield maps. A process is described for determining the flow

pattern of sorghum grain through a harvester. Grain movement is shown to be partially

influenced by the position of the row in relation to the centre of the cutting platform leading

edge. Grain from the outer rows is delayed in comparison with those more centrally

located. A more significant impact is made on grain flow by internal mixing during the

threshing and auger transport processes. The two effects are combined and modelled

using an Inverse Gaussian distribution function to construct a grain transfer function.

This transfer function is used to deconvolve the observed grain yield and return an estimate

of the true yield quantity and location.

For yield map construction, the form of spatial prediction chosen is shown to impart a

significant influence on the final prediction surface. Local kriging using a local

semivariogram appears well suited for use as a spatial prediction method for real—time
sensed crop yield data. The method makes most use of the dense data files and can be

used to provide a statistical estimate of uncertainty as it changes within fields.

Finally, the potential for economic and environmental benefits from precision agriculture
is examined under simulated conditions for 'differential' nitrogen application. The uniform
yield potential simulations show that such an assumption will be unworkable in most
cropping situations. The ideal of promoting a uniform yield across a field is therefore also

shown to be unworkable. The simulations based on diverse yield potential have shown,

as a reflection of a more realistic natural system, that the potential for site-specific

management may be enormous and its impact will increase in crops of higher inputs and

greater market value.

ii



B.M. Whelan - Reconciling Continuous Soil Variation 8 Crop Yield

ACKNOWLEDGMENTS

The work presented in this thesis is foremost a testimony to the vagaries of the Australian

climate, the extraordinary, ever increasing influence of the CPU in society and the

overwhelming support of friends and colleagues.

No field-based project in Agriculture is begun without some consideration for the

interaction and intervention of climate. Mostly, the negative aspects are optimistically

brushed aside. So it was for the original idea and experimental procedures for this thesis.

Drought, harvest deluges (combined with mid-season equipment problems) quickly

reminded me that optimism doesn't write thesis chapters. At this stage I must thank

Frank Ellison and all at the LA. Watson Research Institute for their expertise and help

with establishing the initial experiments. However, my interest in small-scale variability

in edaphic factors and their influence on crop yield needed to be re-channelled.

To his great credit, my supervisor Alex McBratney encouraged my diversification into an

embryonic field that was attempting to apply small-scale observation of variables in the

cropping system to crop management. Precision Agriculture and myself owe a great debt

to Alex. He has provided me with access to his immense wealth of knowledge, taught me

geostatistical skills that could be gained nowhere else, guided me when my vision faltered

and offered friendship and flexibility throughout my work. This thesis would remain

unfinished without his input and encouragement.

I am also indebted to the Boydell family — Craig, Judy, Broughton and Catherine. Their

farm provided the opportunity to reconstruct this thesis. Their friendship, knowledge

and willingness to explore experimental techniques on a commercial farm has been crucial

to this work, and my personal and agricultural education.

My colleagues at the University have also played a significant role. The atmosphere in the

labs and offices has always been one of friendliness and co—operation. I must also

acknowledge my friends at play. An old man needs humorous and loyal distractions.

Finally I tip my hat to my family. My mother and sisters for their love and friendship and

my wife Maree for her love, friendship and above-all unquestioning support throughout

this long adventure.

Thank you. I am fortunate to know you all.

iii



B.M. Whelan — Reconciling Continuous Soil Variation 8 Crop Yield

Table of Contents

Abstract ................................................................................................................................................................... i

Acknowledgments ........................................................................................................................................... iii

Table ofContents ............................................................................................................................................ v

List ofTables ...................................................................................................................................................... xi

List ofFigures .................................................................................................................................................... xv

General Introduction .................................................................................................................................... xxiii

Aims................................................................................................... xxvii

SECTION I

A REVIEW OF THE LITERATURE DEALING WITH SMALL-SCALE VARIABILITY IN

AGRICULTURALLY IMPORTANT SOIL AND CROP ATTRIBLITES AND THE DEVELOPING OPTIONS

FOR MEASUREMENTAND MANAGEMENT.

CHAPTER 1. Variability in Soil Attributes and Crop Yield

1.1 INTRODUCTION ................................................................................................................................ 1

1.2 MEASURING VARIATION ............................................................................................................. 2

1.2.1 Classical Statistical Analysis ....................................................................................... 2

1.2.2 Theory of Regionalised Variables ............................................................................. 3

1.2.3 Spatial Dependence Analysis ..................................................................................... 4

0 Autocorrelation ........................................................................................................... 4

0 Semivariograms ........................................................................................................... 4

1.3 SOIL ATTRIBUTE VARIATION ..................................................................................................... 6

1.3.1 Soil Type/Texture ........................................................................................................... 7

1.3.2 Soil Structure .................................................................................................................. 10

1.3.3 Soil Organic Matter ....................................................................................................... 14

1.3.4 Soil Moisture .................................................................................................................. 15

1.3.5 Soil Nutrients ................................................................................................................. 19

1.3.6 Soil pH ............................................................................................................................. 23

1.4 VARIATION IN CROP PEST INFESTATION .......................................................................... 26

1.5 CROP YIELD VARIATION .............................................................................................................. 27

1.5.1 Spatial Variability ......................................................................................................... 27

1.5.2 Temporal Variability ..................................................................................................... 32

1.5.3 Joint Space-Time Models ............................................................................................. 34

1.6 SUMMARY ............................................................................................................................................ 34



Table of Contents

CHAPTER 2. Site-Specific Measurement And Management of Attributes

2.1 INTRODUCTION ....................................................................................................................
............ 39

2.2 COLLECTING DATAON SPATIAL VARIABILITY.................................................................. 40

2.2.1 Satellite Navigation Systems ...................................................................................... 41

2.2.2 Attribute Observation Strategies ............................................................................... 46

0 Discrete Sampling ....................................................................................................... 46

0 Remote Sensing ........................................................................................................... 47

0 Continuous Sampling ................................................................................................. 49

— Crop Yield Monitoring ..................................................................................... 50

— Soil Organic Matter .......................................................................................... 55

— Soil Nitrogen ..................................................................................................... 57

— Other Soil Attributes ........................................................................................ 58

— OtherAgronomic Attributes ............................................................................ 60

2.3 MANAGEMENTOPTIONS FOR SITE-SPECIFIC MANAGEMENT ................................. 62

2.3.1 Soil Tillage ...................................................................................................................... 62

2.3.2 Fertiliser Application (both in quantity 8: mix) .................................................... 64

2.3.3 Nitrification Inhibitor ................................................................................................... 68

2.3.4 Gypsum/Lime Application .......................................................................................... 68

2.3.5 Seeding Rates ................................................................................................................. 69

2.3.6 Crop Variety .................................................................................................................... 70

2.3.7 Pesticide Application .................................................................................................... 71

2.3.8 Application of Irrigation Water .................................................................................. 74

2.4 MANAGEMENTDECISIONS BASED ON OBSERVED SPATIAL VARIABILITY........ 77

2.4.1 Determining Causal Effects ........................................................................................ 79

2.4.2 Management Unit Determination .............................................................................. 81

0 Soil Attributes ............................................................................................................. 81

0 Continuous Yield ......................................................................................................... 82

0 Aerial Reconnaissance ............................................................................................... 84

0 Elevation and Terrain Attributes ............................................................................ 85

0 Comparisons ................................................................................................................ 85

2.4.3 Modelling Yield Variability as a Function of Causal Effects............................... 87

2.5 SUMMARY ....................................................................................................................
........................ 93

SECTION II

STUDIES OF WITHIN—FIELD VARIABILITY IN SOIL AND CROP ATTRIBUTES UNDER AUSTRALIAN

CONDITIONS

CHAPTER 3. Spatio-Temporal Monitoring and Modelling of Soil Moisture

Content

3.1 INTRODUCTION ................................................................................................................................ 95

3.2 METHODS OF IN SITU SOIL MOISTURE MEASUREMENT............................................ 95

vi



3.3

3.4

3.5

B.M. Whelan - Reconciling Continuous Soil Variation 8* Crop Yield

3.2.1 Tensiometry ..................................................................................................................... 96

3.2.2 Electrical Resistivity ...................................................................................................... 96

3.2.3 Neutron Thermalisation ............................................................................................... 97

3.2.4 Time-Domain Reflectometry ....................................................................................... 97

MATERIALS AND METHODS....................................................................................................... 98

3.3.1 Site Description .............................................................................................................. 98

0 Soil ofNorth-WestNSW .......................................................................................... 98

0 Soil at the Experimental Site ................................................................................... 99

3.3.2 Moisture Monitoring Equipment and Installation ................................................ 101

0 Waveguide Layout ...................................................................................................... 101

0 Inserting Waveguides ................................................................................................. 101

0 Multiplexed TDR Network ....................................................................................... 104

. Observation Schedule ................................................................................................ 104

RESULTS 8: DISCUSSION ............................................................................................................. 104

3.4.1 Soil Moisture Variation in Space and Time ........................................................... 107

3.4.2 Modelling the Spatio-Temporal Variability in Soil Moisture Content ............ 108

0 Trend Modelling .......................................................................................................... 109

0 Residual Modelling .................................................................................................... 114

0 Combing Trend and ResidualAnalysisfor Prediction......................................... 126

CONCLUDING REMARKS.............................................................................................................. 141

CHAPTER 4. Real-Time Monitoring of Crop Yield - Spatial & Temporal Variability

4.1

4.2

4.3

4.4

4.5

INTRODUCTION ................................................................................................................................ 143

MATERIALS AND METHODS....................................................................................................... 143

4.2.1 Harvesting Process ........................................................................................................ 143

0 Calibration ................................................................................................................... 145

4.2.2 Grain Yield Calculation ............................................................................................... 146

4.2.3 Rectifying Yield Quantities 8: Harvest Location ................................................... 147

RESULTS 81: DISCUSSION ............................................................................................................. 147

4.3.1 Position Accuracy .......................................................................................................... 147

4.3.2 Mass-Flow Calibration ................................................................................................. 148

4.3.3 Spatial Variability in Grain Yield ............................................................................. 149

4.3.4 Spatio-Temporal Variability in Grain Yield ............................................................ 161

0 Wheat ............................................................................................................................ 161

0 Sorghum ........................................................................................................................ 174

GENERAL DISCUSSION ................................................................................................................. 183

CONCLUDING REMARKS ............................................................................................................ 212

vii



Table of Contents

SECTION III

IMPROVING THE MONITORING AND MAPPING OP CROP YIELD USING REAL-TIME CROP YIELD

SENSORS

CHAPTER 5. An Examination of Combine Harvester Grain-Flow Dynamics

5.1 INTRODUCTION ................................................................................................................................ 213

5.2 MATERIALSAND METHODS....................................................................................................... 215

5.3 RESULTS &: DISCUSSION ............................................................................................................. 219

5.3.1 Spatial Sensitivity & Displacement........................................................................... 219

5.3.2 Grain-Flow Convolution 82: Transport Delay .......................................................... 220

0 Platform Transport ..................................................................................................... 220

0 Threshing 8 Clean-Grain Delivery Processes ...................................................... 221

0 Total Grain Convolution .......................................................................................... 222

5.3.3 Modelling Total Grain Convolution ......................................................................... 223

0 Non-Parametric ........................................................................................................... 223

0 Parametric .................................................................................................................... 225

5.3.4 Grain Yield Deconvolution ......................................................................................... 228

0 Fourier Transformation .............................................................................................. 229

5.4 GENERAL DISCUSSION ................................................................................................................. 235

5.5 CONCLUDING REMARKS ............................................................................................................ 239

CHAPTER 6. Crop-Yield Map Production

6.]. INTRODUCTION ................................................................................................................................ 241

6.2 MATERIALS AND METHODS....................................................................................................... 243

6.2.1 Prediction Methods........................................................................................................ 243

0 LocalMovingMean ................................................................................................... 244

- Inverse Distance .......................................................................................................... 244

0 Local Kriging with a Global Semivariogram ....................................................... 245

0 Local Kriging with a Local Semivariogram ......................................................... 245

6.3 RESULTS 8: DISCUSSION ............................................................................................................. 246

6.3.1 25 Hectare Region........................................................................................................... 246

0 LocalMovingMean ................................................................................................... 248

0 Inverse Distance Squared .......................................................................................... 248

0 Local Kriging with a Global Semivariogram ....................................................... 248

0 Local Kriging with a Local Semivariogram ......................................................... 248

6.3.2 6 Hectare Region............................................................................................................. 253

0 LocalMovingMean ................................................................................................... 254

. Inverse Distance Squared .......................................................................................... 254

0 Local Kriging with a Global Semivariogram ....................................................... 254

0 Local Kriging with a Local Semivariogram ......................................................... 254

6.4 GENERAL DISCUSSION ................................................................................................................. 265

6.5 CONCLUDING REMARKS ............................................................................................................ 273

viii



B.M. Whelan - Reconciling Continuous Soil Variation 8 Crop Yield

SECTION IV

THE POTENTIAL EOR ECONOMICAND ENVIRONMENTAL BENEFITS FROM PRECISIONAGRICULTURE

CHAPTER 7. Modelling the Economic and Environmental Impact of

Site-Specific Fertiliser Treatment

7.1 INTRODUCTION ................................................................................................................................ 275

7.2 UNIFORM YIELD POTENTIAL ACROSSA SITE ................................................................. 275

7.2.1 Site Sown to Sorghum................................................................................................... 276

0 Materials 8Methods ................................................................................................ 276

' Results 8 Discussion ................................................................................................. 279

7.2.2 Site Sown to Cotton....................................................................................................... 282

0 Materials 8Methods ................................................................................................ 282

0 Results 8 Discussion ................................................................................................. 285

7.3 DIVERSE YIELD POTENTIAL ACROSSA SITE ................................................................... 288

7.3.1 Cotton - Season 1 ........................................................................................................... 291

0 Materials 8Methods ................................................................................................ 291

0 Results 8 Discussion ................................................................................................. 296

7.3.2 Cotton - Season 2 ........................................................................................................... 301

0 Materials 8Methods ................................................................................................ 301

0 Results 8 Discussion ................................................................................................. 305

7.4 GENERAL DISCUSSION ................................................................................................................. 310

7.5 CONCLUDING REMARKS ............................................................................................................ 313

SECTION V

GENERAL DISCUSSION, CONCLUSIONS AND FUTURE WORK

CHAPTER 8. General Discussion, Conclusions And Future Work

8.1 GENERAL DISCUSSION ................................................................................................................. 315

8.2 CONCLUSIONS ................................................................................................................................... 323

8.3 FUTUREWORK .................................................................................................................................. 325

BIBLIOGRAPHY.............................................................................................................................................. 327

APPENDIX A 1......................................................................................................................................... A1-1

APPENDIX A 2......................................................................................................................................... A2-1 ,

APPENDIX B ............................................................................................................................................... B-2

ix



B.M. Whelan - Reconciling Continuous Soil Variation 8 Crop Yield

List of Tables

Chapter 1

Table 1-1. Mean and CV for soil textural properties within increasing sampling area.. 9

Table 1—2. Semivariogram model parameters reported for soil textural properties...... 10

Table 1-3. Mean and CV for soil bulk density within increasing sampling area............. 12

Table 1-4. Mean and CV for soil organic fractions within increasing sampling area... 14

Table 1—5. Mean and CV for soil moisture content within increasing sampling area... 17

Table 1-6. Semivariogram model parameters reported for soil moisture content ......... 18

Table 1—7. Mean and CV for soil N,P,K content within increasing sampling area........... 20

Table 1-8. Semivariogram model parameters reported for soil N, P, K content.............. 22

Table 1-9. Mean and CV for soil pH within increasing sampling area................................. 24

Table 1-10. Semivariogram model parameters reported for soil pH....................................... 25

Table 1-11. Mean and CV. estimates for crop yield within a 0.01 ha area and the

associated heterogeneity index 'b' .............................................................................. 29

Table 1-12. Mean and CV for crop yield within increasing sampling area........................... 30

Table 1—13. Semivariogram model parameters reported for crop yield................................. 32

Table 1-14. Median CV values for important soil/crop system attributes.......................... 35

Table 1-15. Median semivariogram model parameters for important soil/crop

system attributes................................................................................................................... 36

Table 1-16. Problems associated with not treating spatial variation in influential

soil/crop system components........................................................................................ 37

Chapter 2

Table 2—1. Relevant remote sensing techniques and the attributes estimated................. 49

Table 2-2. Commercial or well researched crop yield monitoring systems

- operational technique and sensor location.......................................................... 56

Table 2-3. Options for continuous sensing of soil attribute variation.................................. 61

Table 2-4. Management options for differential treatment and the available

technology................................................................................................................................. 76

xi



Chapter 3

Table 3-1.

Table 3-2.

Table 3-3.

Table 3-4.

Table 3-5.

Chapter 4

Table 4-1.

Table 4-2.

Table 4-3.

Table 4-4.

Table 4-5.

Table 4-6.

Table 4-7.

Table 4-8.

Table 4-9.

Table 4-10.

Table 4-11.

Chapter 5

Table 5-1.

Table 5-2.

List of Tables

Physical and chemical characteristics of the soil at the experimental site

(a) and from samples 500m south-east (b) and 700m north-east (c) ....... 100

Descriptive statistics for the observations of soil moisture content in

1993 and 1995......................................................................................................................... 108

Percentage variance in the soil moisture data explained by each trend

model.......................................................................................................................................... 110

Percentage variance in the soil moisture data explained by incorporating

each component singularly in the regression-tree model............................... 114

Model parameters for the 1993 and 1995 space/time

semivariograms..................................................................................................................... 125

1995 trimmed wheat yield data for monitored fields............................................ 158

1996 trimmed sorghum yield data for monitored fields...................................... 158

1996 trimmed wheat yield data for monitored fields............................................ 159

1997 trimmed sorghum yield data for monitored fields...................................... 160

Trimmed sorghum yield data for 2 seasons on a farm block basis................ 160

Global variogram parameters for 1995 and 1996 trimmed yield data ........ 161

Global variogram parameters for 1995 and 1996 predicted yield data

(5m moving average; 3.5m grid) ................................................................................. 162

Pearson correlation coefficient between seasons and the spatial

correllogram range that corresponds to the coefficient. Mean

corresponding correllogram range is calculated using the mean

yield values across seasons to estimate the corellogram

(predicted yield data - 5m moving average; 3.5m grid) ................................ 163

Descriptive statistics for the wheat fields in space and time............................. 173

Descriptive statistics for the sorghum field 52 in space and time................... 174

Descriptive statistics for cluster analysis of field B4 based on crop

yield over two seasons (1995 & 1996), yield difference (1996 — 1995)

and the temporal variance between 1995 & 1996............................................... 184

Parameter values for grain flow model......................................................................... 225

Statistical moments of the sensed and deconvoluted yield................................ 233

xii



Chapter 6

Table 6-1.

Table 6-2.

Table 6-3.

Table 6-4.

Table 6-5.

Chapter 7

Table 7—1.

Table 7—2.

Table 7—3.

Table 7—4.

Table 7—5.

Table 7—6.

Table 7—7.

Table 7—8.

Table 7-9.

Table 7—10.

Table 7—11.

Table 7-12.

Table 7-13.

B.M. Whelan - Reconciling Continuous Soil Variation 8 Crop Yield

Classification of prediction methods (after Laslett et al., 1987)................................ 242

Descriptive statistics for the prediction surfaces generated by

the various methods............................................................................................................ 247

Descriptive statistics for the prediction surfaces generated by the various

methods over the 6 ha site.............................................................................................. 254

Descriptive statistics for the local semivariogram parameters, prediction

error and confidence intervals....................................................................................... 260

Generalised recommendations for the use of spatial prediction methods

in relation to sample size and intensity for Precision Agriculture............ 270

An economic analysis of information-based fertiliser programs.

Autoregressive initial P distributions with a range of mean values........ 280

An economic analysis of information-based fertiliser programs.

Autoregressive initial P distributions with a range of

variance values....................................................................................................................... 281

Response function co—efficients for the two mean initial soil N03' levels... 283

An economic analysis of information-based fertiliser programs.

16.77 kg/ha mean initial NO3' distribution with three different

variances.................................................................................................................................... 286

An economic analysis of information—based fertiliser programs.

45.24 kg/ha mean initial NO; distribution with three different

variances.................................................................................................................................... 287

Co-efficient values for soil yield response functions.............................................. 295

Mean N application and lint yield for uniform and differential

fertiliser management......................................................................................................... 296

Financial comparison between differential and uniformN application. 299

Over—fertilisation following uniform treatment.......................................................... 300

Soil nitrate concentrations prior to Season 1 and prior to Season 2............... 305

Mean N application and lint yield for uniform and differential

fertiliser management (season 2) .................................................................................. 306

Financial comparison between differential and uniform

N application (season 2) .................................................................................................... 306

Over-fertilisation following uniform treatment in season 2.

(A comparison with optimal application rates calculated for

the same site in season 2) ................................................................................................ 309

xiii



B.M. Whelan - Reconciling Continuous Soil Variation 6’ Crop Yield

List ofFigures

General Introduction

Figure 1.

Figure 2.

Figure 3.

Chapter 1

Figure 1-1.

Figure 1-2.

Chapter 2

Figure 2-1.

Figure 2—2.

Figure 2-3.

Figure 2-4.

Figure 2-5.

Chapter 3

Figure 3-1.

Figure 3—2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 3-6.

Figure 3-7.

Figure 3-8.

The economic-environmental basis for a site—specific

management system.......................................................................................................... xxiii

Generalised production impetus for site-specific management........................ xxiv

Components of a site-specific crop management (SSCM) system................... xxv

Continuous map of draw-bar draught (N) (after Haines &: Keen, 1925a)............... 13

1934 Wheat yield map - Australia (after Fairfield Smith, 1938).................................. 28

A proposed real-time system linking information acquisition, decision

making and action operations (McBratney & Whelan, 1995b)..................... 40

Operational configuration of a real-time Differential GPS (DGPS)................. 42

Operational configuration of a Wide-Area Differential GPS (WADGPS)..... 44

Diagrammatic representation of the commercial methods of grain yield

monitoring................................................................................................................................. 50

Management decision tree for Site-Specific Crop Management

— a simple model based on the economic imperative....................................... 78

Regional location of the experimental site................................................................... 99

Experimental setup for waveguides................................................................................. 102

Pre-insertion tool and associated equipment............................................................. 103

Pre-insertion procedure in operation.............................................................................. 104

TDR instrument with single waveguide (a), TDR and multiplexer unit

(b), instrument array in the field during the growing season (c) .............. 105

Soil moisture observations at the site for 1993 and 1995..................................... 107

Experimental model fits for 1993 (a) and 1995 (b). Fit for one

observation point over entire growing season (spatial location

denoted by x/y co-ordinates in top left corner of each graph) ................... 110

1993 regression-tree skeleton showing separation based on deviance

XV



Figure 3-9.

Figure 3-10.

Figure 3-11.

Figure 3-12.

Figure 3—13.

Figure 3-14.

Figure 3-15.

Figure 3-16.

Figure 3-17.

Figure 3-18.

Figure 3-19.

Figure 3-20.

Figure 3-21.

Figure 3-22.

Figure 3-23.

List of Figures

between parent and children nodes........................................................................... 111

1995 regression-tree skeleton showing separation based on deviance

between parent and children nodes........................................................................... 111

1993 regression-tree skeleton showing criterion for separation

(uniform node spacing) ..................................................................................................... 112

1995 regression-tree skeleton showing criterion for separation

(uniform node spacing)..................................................................................................... 113

1993 regression-tree fit for the entire season at a number of locations

at the site (location coordinates are shown in top left of each graph;

graphs presented as a plan View of the site) ....................................................... 115

1993 regression-tree fit for the entire season at a number of locations

at the site (location coordinates are shown in top left of each graph;

graphs presented as a plan View of the site) ....................................................... 116

1993 regression-tree trend prediction across the site on single days (a)

julian day 240, (b) julian day 285, (c) julian day 295, (d) julian day 320.. 117

Observations of soil moisture content across the site on single days in

1993 (a) julian day 240, (b) julian day 285, (c) julian day 295,

(d)ju1ian day 320................................................................................................................. 119

1995 regression-tree trend prediction across the site on single days (a)

julian day 240, (b) julian day 285, (c) julian day 292, (d) julian day 320.. 121

ObserVations of soil moisture content across the site on single days in

1995 (a) julian day 240, (b) julian day 285, (c) julian day 292,

(d) julian day 320................................................................................................................. 123

Representation of the three dimensional semivariogram for 1993 -

(a) semivariogram cloud calculated using the displayed rotation

angles in the time dimension; (b) semivariogram model.............................. 127

Representation of the three dimensional semivariogram for 1995 -

(a) semivariogram cloud calculated using the displayed rotation

angles in the time dimension; (b) semivariogram model.............................. 129

1993 kriged residual estimates across the site on single days (a) julian

day 240, (b) julian day 285, (c) julian day 295,(d) julian day 320............... 131

1995 kriged residual estimates across the site on single days (a) julian

day 240, (b) julian day 285, (c) julian day 292,(d) julian day 320............... 133

1993 combined trend and residual estimates for the entire season at a

number of locations at the site (location coordinates are shown in top

left of each graph; graphs presented as a plan View of the site) ...................... 135

1995 combined trend and residual estimates for the entire season at a

number of locations at the site (location coordinates are shown in top

xvi



Figure 3-24.

Figure 3-25.

Chapter 4

Figure 4-1.

Figure 4-2.

Figure 4-3.

Figure 4-4.

Figure 4-5.

Figure 4-6.

Figure 4-7.

Figure 4-8.

Figure 4-9.

Figure 4-10.

Figure 4-11.

Figure 4-12.

Figure 4-13.

B.M. Whelan — Reconciling Continuous Soil Variation 8 Crop Yield

left of each graph; graphs presented as a plan view of the site) ...................... 136

Combining trend and residual estimates for soil moisture across the

site on single days in 1993 (a) julian day 240, (b) julian day 285,

(c) julian day 295,(d) julian day 320......................................................................... 137

Combining trend and residual estimates for soil moisture across the

site on single days in 1995 (a) julian day 240, (b) julian day 285,

(c) julian day 292,(d) julian day 320.......................................................................... 139

Grain-flow sensor installation: (a) mounting position (b) installed

 (C) sensor.............................................................................................. 144

Capacitance plate moisture sensor .................................................................................. 144

dGPS aerial array....................................................................................................................... 145

Cabin mounted monitor showing PCMCIA data storage card and the

connections to external sensors.................................................................................... 146

dGPS accuracy and precision determination from 286 observations at a

known trigonometric station........................................................................................... 148

1995 wheat and 1996 sorghum actual versus sensed weight following

calibration................................................................................................................................. 149

View of yield observation spacing in header runs using a real-time

yield monitor. Observations are 0.9m separation along and 7m

between the runs................................................................................................................... 149

Harvest data showing spatial and statistical distribution. Areas of low

yield attributable to harvest artifacts are highlighted as black................... 151

Erroneous yield estimates attributable to harvest artifacts are removed

using three sandard devaitions of the data distribution as upper and

lower cut-offs........................................................................................................................... 153

Regression analysis of yield variance against square-root field area.

This provides a basic comparison of the increasing variability

with increasing harvested area...................................................................................... 156

Regression analysis based on the Fairfield Smith (1938) 'uniformity

index'. The regression line slope provides the index (b').

Sorghum yield in both seasons shows greater variability.............................. 157

Wheat yield maps for Field Bl and B2 - (a)1995 season

(b) 1996 season (c) seasonal difference...................................................................... 165

Wheat yield maps for Field B4 - (a)1995 season (b) 1996 season

(c) seasonal difference......................................................................................................... 167

xvii



Figure 4-14.

Figure 4-15.

Figure 4-16.

Figure 4-17.

Figure 4-18.

Figure 4-19.

Figure 4—20.

Figure 4-21.

Figure 4-22.

Figure 4—23.

Figure 4-24.

Figure 4-25.

Figure 4-26.

Figure 4—27.

Figure 4-28.

Figure 4—29.

Figure 4-30.

Chapter 5

Figure 5—1.

Figure 5—2.

Wheat yield maps for Horse Field — (a)1995 season (b) 1996 season

(C) seasonal difference......................................................................................................... 169

Wheat yield maps for Maidens - (a)1995 season (b) 1996 season

(c) seasonal difference......................................................................................................... 171

Yield temporal variance maps — (a) Fields Bl 8: 32 (b) Field B4....................... 175

Yield temporal variance maps - (a) Horse Field (b) Maidens........................... 177

Sorghum yield maps for Field 52 - (a)1996 season (b) 1997 season

(c) seasonal difference......................................................................................................... 179

Yield temporal variance map for Field 52.................................................................... 181

Gross margin maps for Fields Bl & BZ - (a) season 1995

(b) season 1996....................................................................................................................... 185

Four cluster analysis on crop yield — (a) spatial representation

(b) data demarkation........................................................................................................... 189

Three cluster analysis on crop yield - (a) spatial representation

(b) data demarkation........................................................................................................... 191

Two cluster analysis on crop yield - (a) spatial representation

(b) data demarkation........................................................................................................... 193

Four cluster analysis on difference in crop yield

- (a) spatial representation (b) data demarkation..................................................... 195

Three cluster analysis on difference in crop yield

- (a) spatial representation (b) data demarkation.................................................... 197

Two cluster analysis on difference in crop yield

- (a) spatial representation (b) data demarkation................................................... 199

Four cluster analysis on temporal variance in crop yield

- (a) spatial representation (b) data demarkation................................................... 201

Three cluster analysis on temporal variance in crop yield

— (a) spatial representation (b) data demarkation................................................... 203

Two cluster analysis ontemporal variance in crop yield

- (a) spatial representation (b) data demarkation................................................... 205

Lease Field — (a) aerial photograph of bare soil (b) the subsequent

wheat yield map showing strong pattern correlation...................................... 209

Plan View of experimental setup detailing the cutting platform,

coloured grain pattern and cutting platform delivery process.................... 216

An example of coloured sorghum band (a) harvest operation (b) and

grain flow strip for sampling 8m past interception of the coloured

band (note coloured grain mixed with clean grain) ......................................... 217

xviii



Figure 5—3.

Figure 5—4.

Figure 5-5.

Figure 5-6.

Figure 5-7.

Figure 5-8.

Figure 5-9.

Figure 5-10.

Figure 5—11.

Figure 5-12.

Figure 5-13.

Figure 5-14.

Figure 5-15.

Figure 5-16.

Chapter 6

Figure 6-1.

Figure 6—2.

Figure 6-3.

B.M. Whelan - Reconciling Continuous Soil Variation 6* Crop Yield

Zero yield smoothing and displacement in two adjacent header runs....... 219

Grain yield trace and zero yield cutout positions for the lower

header run in Figure 5-3.................................................................................................. 220

Flow of grain through the harvester based on row position relative to

the centre of the cutting platform at time of crop severance........................ 221

Delivery time distribution for the coloured grain pulse through

the harvester............................................................................................................................. 22

Comparison of observed coloured flow with total grain flow during

the experiment........................................................................................................................ 223

Modelled time distribution for the coloured grain pulse using a cubic

smoothing spline................................................................................................................... 224

Modelled time distribution for the coloured grain pulse using the Jury

& Sposito (1985) pulse input model........................................................................... 226

Pulse input, observed and modelled output with the centre of the pulse

set as t0 and V equal to the harvester velocity..................................................... 227

Median polishing of sensed yield data expressed as tonnes/ha..................... 232

Deconvoluted yield values using the experimental transfer function as

compared with the smoothed yield input............................................................... 233

Deconvoluted yield values using the experimental transfer function as

compared with the smoothed yield input............................................................... 234

Deconvoluted yield values using the experimental transfer function as

compared with a 105 linear delay................................................................................ 234

Yield data for the 24m grain gap experiment comparing the sensed

yield with that deconvoluted using the experimental model and

using the simple lOs delay............................................................................................... 237

Comparison of semivariograms for sorghum yield data obtained in a

2.5ha field using hand harvesting and threshing, yield monitoring

and deconvoluted yield monitor data....................................................................... 237

Site layout and header runs for 25 ha site................................................................... 247

Crop yield maps for a 25ha region of the Creek field produced by

different prediction methods - (a) local moving mean (b) inverse .

distance squared................................................................................................................... 249

Crop yield maps for a 25ha region of the Creek field produced by

different prediction methods - (a) local kriging with a global

semivariogram (b) local kriging with a local semivariogram...................... 251

xix



Figure 6-4.

Figure 6-5.

Figure 6-6.

Figure 6-7.

Figure 6—8.

Figure 6-9.

Figure 6-10.

Chapter 7

Figure 7-1.

Figure 7-2.

Figure 7-3.

Figure 7-4.

Figure 7-5.

Figure 7—6.

Figure 7-7.

Figure 7-8.

Figure 7-9.

Figure 7-10.

Figure 7-11.

Figure 7-12.

Figure 7-13.

Site layout and header runs for the 6 ha site............................................................ 253

Crop yield maps for a 6ha region of the Creek field produced by

different prediction methods ; (a) local moving mean (b) inverse

distance squared (c) local kriging with a global semivariogram............... 255

Maps for a 6ha region of the Creek field (a) prediction by local kriging

with a local semivariogram (b) yield variance as estimated by the

kriging variance (c) co—efficient of variation (CV)............................................. 257

Distribution histigrams of the model parameters for the suite of local

semivariograms- (a) C0; (b) C; (c) a'; (CI) confidence interval...................... 261

(a) Examples of semivariogram models from the suite of local

variograms (A to F) as compared with the global semivariogram

model (G). (b) Spatial location of the variograms within the yield

variance map........................................................................................................................... 261

Variogram parameter maps for a 6ha region of the Creek field - (a) range

value - a ’ (b) nugget value — CO (C) sill minus nugget value - C................... 263

Inverse distance squared weight model for a maximum separation

distance of 20m in 40 lags............................................................................................... 265

Simulated P distribution and associated data knowledge levels..................... 277

Site map of membership in soil A................................................................................... 289

Site map of initial soil nitrate............................................................................................. 289

Soil Ayield response functions.......................................................................................... 292

Soil B yield response functions........................................................................................... 292

Soil A: yield response surface as a function of initial N and applied N.

Shown in contour plan (a) and perspective (b) ................................................... 293

Soil B: yield response surface as a function of initial N and applied N.

Shown in contour plan (a) and perspective (b) ................................................... 293

Yield response functions for a point with an initial NO3' level of 39.53

kg/ha and soil memberships of 0.593 and 1 in soil A; 1 in soil B............... 296

Site map of lint yield following uniform fertiliser management..................... 297

Site map of lint yield following differential fertiliser management............... 297

Zones of over-fertilisation at the simulated site........................................................ 300

Season 2 site map of initial soil nitrate following uniform fertiliser

application in Season 1 ..................................................................................................... 303

Season 2 site map of initial soil nitrate following differential fertiliser

application in Season 1 ..................................................................................................... 303

XX



Figure 7—14.

Figure 7—15.

Figure 7-16.

Chapter 8

Figure 8-1.

Figure 8-2.

B.M. Whelan - Reconciling Continuous Soil Variation 6* Crop Yield

Season 2 site map of lint yield following uniform fertiliser application

in Season 1 ............................................................................................................................... 307

Season 2 site map of lint yield following differential fertiliser application

in Season 1 .............................................................................................................................. 307

Zones of over-fertilisation at the uniform treatment site in season 2............ 309

Generalised map model.......................................................................................................... 318

Uncertainty associated with increasing block size. (a) original sensor

data (b) deconvoluted equivalent data..................................................................... 319

xxi



GENERAL INTRODUCTION & AIMS



B.M. Whelan — Reconciling Continuous Soil Variation 6* Crop Yield

GENERAL INTRODUCTION

Post-industrialisation farm management practices have tended towards the treatment of

individual fields as spatially uniform in respect to yield controlling factors, primarily as a

trade-off to economies of scale. However, increasingly critical attention is being focused

by both the farming and wider communities on this notion that agriculturally productive

land should be managed as a relatively homogeneous unit at the 'within-field' scale. It

may be argued that such an assumption could lead to inappropriate resource application

and subsequent financial, environmental and social costs. The significance of these imposts

(such as input waste, yield reduction and soil, water and air contamination) to whole

farming systems has only recently received serious consideration (e.g. Pierce & Lal, 1991;

Schueller, 1992).

This concern is encompassed in the philosophy of Precision Agriculture. In general the

term refers to the observation, impact assessment and timely, directed response to fine—

scale variation in causative components of an agricultural production process. This

philosophy may be eventually applied to the spectrum of agricultural industries, for both

quantity and quality control.

For field cropping enterprises, a form of Precision Agriculture referred to as Site-Specific

Crop Management (SSCM), has been proposed as a remedy to the financial and

environmental resource-use inefficiency problems raised above (Robert, 1989; Larson 8:

Robert 1991). The simple rationale that justifies and supports SSCM is founded on both

financial and biological levels (Figure 1.).

 

Sustainable Agricultural Production

/1\
 
 

Economics Environment
Optimum input quantities Optimum input quantities
more precisely targeted more precrsely targeted

—optimise gross margin — minimise environmental
impact     
 

the principle ofparsimony orfrugality   
 

Figure 1. The economic-environmental basis for a site-specific management system.
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General Introduction

It relies on matching resource application and agronomic practices with soil attributes

and crop requirements as they vary across a site. Collectively, these actions may be referred

to as the 'differential' treatment of field variation as opposed to the 'uniform' treatment

that underlies the traditional agricultural management systems.

In economic terms, the precise calculation and placement of input resources suggests a

more efficient and profitable use of enterprise resources. Figure 2 depicts the generalised

gains that may be achieved through targeting resources to the most responsive areas within

a field without necessarily increasing resources. If the mean field treatment is aimed at

the optimum economic application for response 1, then areas of the field characterised by

response 2 will be underachieving. By reallocating enough resources (AA) to achieve

optimal application in areas characterised by response 2, the yield gain (AYZ) is greater

than the yield loss (AYI). This is likely to be the most simplistic form of SSCM but serves

to demonstrate the basic principle. It is important however, to acknowledge that such

gains require a suitably detailed knowledge of the within-field variability in response to

 

 

   
 

an action.

optimal economic
application
(response 2)

I

I

AA I
I

_ _ _ I

: response 2

_\

response 1

E
.9
>' optimal economic

application
(response 1)

Ameliorative action ———>

Figure 2. Generalised production impetus for site-specific management.

From an environmental point of View, this precision may offer the prospect of reducing

the environmental risk associated with blanket field treatments and provide the ability to

work with the natural diversity within each field. By more closely aligning yield goals to

the variation in yield potential induced by natural and anthropogenic diversity, it may be

possible to improve the sustainability of modern farming systems.
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There are 5 components to consider in the development of a Site-Specific Crop Management

system (Figure 3). Because the complete process cannot be made in a single pass of the

field, the site-specificity is made possible, and indeed relies upon, the ability to accurately

resolve ground position during all facets of field operation. The remaining components

of the system operate in a cyclical fashion. Influential factors effecting crop yield, along

with the crop yield itself, must be monitored at a fine-scale and maps of variation in these

factors for an entire field subsequently constructed. The degree of spatial variability found

in a field will determine whether unique treatment is warranted in certain parts. Linking

the variation in crop yield and the measured factors influencing crop yield using suitable

modelling procedures may then be used to formulate agronomically suitable treatment

strategies. Finally, if differential management is warranted, operations such as fertiliser,

lime and pesticide application, tillage, sowing rate etc. may be varied in real-time across a

field.

 

Crop, Soil
& Climate
Monitoring

  

  

Attribute
Mapping   

 

Figure 3. Components of a site-specific crop management (SSCM) system.

These components are at different stages of development and implementation. The

technology required to gather detailed data and enact a differential treatment leads the

agricultural science of deciphering and formulating responses to the information obtained.

Preliminary research provides evidence that yield can vary widely within a field and that

the spatial pattern of this variation may change over time. This reflects interactions between

influential field attributes and also between these attributes and the environment.
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General Introduction

Identifying a significantly yield limiting factor in one year may have limited bearing on

the next growing season if its influence is considered singularly.

At present, it is necessary to gather data to characterise the small-scale variability that

may be expected over space and time. Research is required to ensure the data gathered is

representative of the true variation at this scale, to provide insights into it's implications

and use, and to maximise the benefits obtained for agricultural farm management. This

thesis will address in particular the issues associated with soil and crop monitoring and

mapping at a fine-scale.
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AIMS

This thesis has a number of investigative aims. They have the general objective of exploring

the methodology, agronomic reasoning and current ability to monitor, record and suitably

employ data on variation in soil and crop attributes at the Within-field scale.

1. To examine the literature on variability in soil and crop attributes that impact on crop yield to

determine baseline magnitude and spatial structure parameters. Subsequently, to review the

literature on methods and opportunitiesforgathering data on the variability and incorporating

the information derived intofarming management systems.

2. To explore the variability to be found in soil moisture and crop yield during a number of

growing seasons and attempt to establish a method for modelling soil moisture over space

and time. Observe and correlate the impact of this variability on final yield.

3. To establish a real-time yield monitoring system and examine the variability to befound in

summer and winter crop yield at the within-field scale under Australian conditions.

4. To investigate the mechanics of the mechanical harvesting process to quantify the quality of

the yield data.

5. To investigate and compare map production methods to determine the most suitable technique

for crop yield mapping.

6. To model the possible impact of variable rate treatment ofN in crop production to ascertain

possible financial and environmental benefits and provide a frameworkfor future decision—

support models.
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CHAPTER 1

Variability in Soil Attributes and Crop Yield

1.1 INTRODUCTION

The successful implementation of Precision Agriculture will be dependent on the ability

of individual growers to differentially manage their crops to achieve the twin goals of

maximising yield or profit whilst simultaneously minimising environmental impact. The

major obstacle to this is the lack of, and uncertainty in, local information. That is,

information pertaining to the variation (and the component spatial and temporal variance)

in crop yield and those factors which determine crop yield and resource losses from the

cropping system to the environment.

The importance of such information is not a recent concept. It has been a long held and

Widely identified notion that field heterogeneity in influential cropping system components

will affect crop yield (Harris, 1920). At the regional scale, the observable variation in crop

yield can be considered the consequence of variability in the interaction between crop

genetics and environmental factors (Bresler et al., 1981; Boyer, 1982). However, at the field

scale, site-specific variation in soil type/texture, soil structural integrity, soil moisture

content and soil nutrient chemistry will significantly contribute to the spatial variability

in crop yield (Russell, 1932).

The variability in these soil attributes (and therefore crop production potential) displayed

at a given site, at a given time, is in turn controlled by a number of important processes.

The more influential of these are the geological and pedological processes that define the

soil type and govern the majority of static soil properties e.g. texture, horizon colour and

cation exchange capacity (Jenny, 1941). Additional effects on the variability of soil attributes

are contributed by soil management practices and cropping systems. These can greatly

manipulate the more dynamic soil properties such as nutrient, water, air and solute regimes

(Bouma & Finke, 1993). The magnitude of variability is generally lower in the static

compared with the dynamic properties (Wilding, 1985). Variation in crop yield at the

within-field scale is also a known to be a function of crop insect pests and diseases (Banyer

et al., 1988) and weeds (Cousens, 1985) which may all be important yield limiters.

This chapter will review the literature on the variability of soil attributes and crop yield

documented using probability distribution statistics and spatial variance analyses. Crop

yield variation will also be reviewed using temporal variance indicators. The impact on

1
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crop yield of field variation in the major soil attributes will also be summarised. Together,

this will provide information to indicate the need for, and the practicality and appropriate

scale of, differential management within fields.

1.2 MEASURING VARIATION

The methods used in the statistical analysis and description of variation in soil/crop system

components has evolved substantially. Avery basic review of the theories will be presented

as background here and the reader is directed to more thorough treatise by Cliff & Ord,

1981; Wilding 8t Drees, 1983; Webster, 1985; Trangmar et al., 1985; Cressie, 1993.

1.2.1 Classical Statistical Analysis

The variability in field-based attributes such as soil properties or crop yield have been

routinely analysed using classical statistical approaches which assume that the expected

value for any of these attributes (2) at any location within a field (or sampling area) (x) will

be:

E [z(x)] = ,u + 8(x) (1-1)

where:

u = the population mean.

8(x) = a random, spatially uncorrelated spread of values about the mean which

is assumed to be normally distributed with zero mean and variance = 0'2.

In reality, quantifying the probability distribution of a population (Z) is achieved using

the central tendency and distribution of a sample population (2'). The central tendency of

a sample (z’l......2’") may be described by the mean (2' ), and the distribution is commonly

characterised by the variance (0'?) or its square root, the standard deviation (0') of the sample

population, where:

ion—232
n — 1 (1-2)

0'

In many studies, the variance and standard deviation are often found to be proportional

to the mean. It is therefore common practice to compare variability between sample
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populations using the more stable coefficient of variation (CV) (Equation 1-3).

C.V. = g * 100 (1-3)
2

These classical procedures are based on the assumption that the variation observed within

the sampling area is randomly distributed (i.e. the variable is a random variable with no

spatial correlation) and as such they provide only a universal description of the variability

for an entire sampling region. Soil and crop attributes are however continuous variables

that usually exhibit some component of localised spatial dependence in the observable

variation (Wilding & Drees, 1983) as a result of the formative and ameliorative processes

discussed earlier. As such, more information on the variability within a sampling area can

be obtained by incorporating some form of spatial correlation into the variation analysis.

1.2.2 Theory of Regionalised Variables

The theory of regionalised variables (Matheron, 1963; Journel & Huijbregts, 1978) has been

developed to include both spatial and random structure in methods that describe variability

within sampling regions. A regionalised variable z(x) is considered a form of random

variable in which any value 2 is a function of its spatial location at within the sampling

region and when all values of z(x) are considered at all spatial locations then the regionalised

variable may be described by a random function Z(x) (Trangmar et al., 1985).

Two basic assumptions regarding the behaviour of a random function are of relevance to

the proceeding discussion of spatial analysis using autocorrelation and semivariograms.

Firstly, the random function Z(x) is said to be 'first-order stationary’ if the variable Z has

the same mean value across the sampling region and therefore follows Equation 1-4.

E [Z(x) - Z(x + 11)] = 0 (1-4)

where:

h = lag; the separation distance between sample locations.

Stationarity of second order is achieved if the spatial covariance C(h) associated with every

sample pair (Z(x) and Z(x+h)) is identical across the sampling region (Equation 1-5).

C(h) = E [[Z(x) - [,t][Z(x + h) — #1] (1—5)
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Second-order stationarity implies that the spatial covariance is finite and that it will

approach a finite, stationary sample variance as the lag approaches zero (Equation 1-6).

C(O) = E [Zz(x)] - p2 = 62 (1-6)

A more relaxed conditional stationarity may be defined when the variance and covariance

cannot be regarded as uniform across the sampling region. This is known as the 'intrinsic

hypothesis' (Matheron, 1963) and requires that the variance of the difference between points

separated by lag 11 need only be finite for each lag h (Equation 1-7).

' Var [Z(x) - Z(x + h)] = 1/2 x E [Z(x) - Z(x + 11)]2 (1-7)

1.2.3 Spatial Dependence Analysis

Autocorrelation

Autocorrelation describes the degree of interaction between spatially separated

observations of one random variable (Griffith, 1987) based on the assumption of second-

order stationarity so that (Equation 1-8):

p01) = C(h)/C(0) = Cad/0'2 (1-8)

where:

p(h) = autocorrelation at lag h.

The plot of p(h) against lag h is known as the autocorrelogram, which is a maximum of 1 at

h = O and falls as the lag increases. A random variable is spatially dependent up to the

point where p(h) ceases to decrease.

If second—order stationarity does not hold, then the autocorrelation function can not be

determined without removal of the causative trend. Alternatively, by assuming the less

rigid intrinsic hypothesis of stationarity, the semivariogram may be used in the analysis

of spatial dependence.

Semivariograms

Under the intrinsic hypothesis, the semivariance Kh) between two observation points
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separated by lag h is a function of the distance and direction of separation. It is described

by Equation 1-9.

7(h) = 1/2 * E [Z(x) + Z(x + h)]2 (1-9)

And, given the dependence on separation distance and direction only, the mean

semivariance can be calculated for each lag h as in Equation 1-10.

=—— z Z 11 2 1-10M> 2N(h)2[ (x,)— (x + )1 < >

where:

N = the number of observation pairs separated by lag h.

The semivariance at each lag h plotted against lag h is known as a the semivariogram and

it has been commonly modelled using a number of universal functions. These models, in

general, begin from an intercept at lag h = 0 of zero (or close to zero) and rise to a plateau

semivariance (sill) at some larger lag h (the range of spatial dependence). The models

therefore require three parameters for description: 'CO' (intercept or nugget semivariance),

'C' (spatial structure semivariance; (sill-nugget semivariance)) and 'a' (the apparent range

of spatial dependence).

These models should also be positive-definite functions for the number of dimensions in

which they will be used (Webster, 1985). The most common models that fit these criteria

up to 2 and 3 dimensions are presented: linear, spherical and exponential.

. h = 0

Lmear' 70')2 {20+ b(h), h ¢ 0 (1'11)

0, h = 0

Spherical y(h)-_ co++CPE _ élh)] 0 < h s a (1-12)
2a a

C0 + C, h > a

0, h = 0

Exponential y(h) = C0 + (:[1 _ 9XP(‘£):| h > 0 (1-13)
a, I
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Linear and spherical models reach a finite sill value and are described as transitive. The

exponential function approaches the sill asymptotically and therefore possesses no absolute

range value. However, the semivariance does not effectively increase beyond a certain

lag h (termed a’ in Equation 1—13), which has been estimated as 1 /3 a, at which point 7(a ’)

is approximately equal to C0 + 0.95C (Webster, 1985).

Amodel is typically fitted to the semivariogram using some form of nonlinear least squares

optimisation. The usual assumptions associated with nonlinear regression do not hold

due to the spatial dependence between variogram values at different lags. Cressie (1985)

outlines methods for weighted least squares and generalised least squares which deal

with this dependence.

In these models, the nugget semivariance C0 represents the random variation (Wilding &

Drees, 1983) or noise (Webster & Cuanalo, 1975) contributed by measurement error or

unexplained sources. The structural semivariance C represents the component of total

variation contributed by systematic sources. A quantification of the contribution of random

variation to the data semivariance can be gleaned from the ratio of nugget semivariance to

sill semivariance (Trangmar et al., 1985) (Equation 1—14).

CO

CO+C
 NR = * 100 (1-14)

This ratio has been used in a qualitative assessment of the strength of the spatial dependence

within a field attribute (Cambardella et al., 1994) where:

NR S 0.25 = variable with strong spatial dependence

0.25< NR < 0.75 = variable with moderate spatial dependence

NR 2 0.75 = variable with weak spatial dependence

1.3 SOIL ATTRIBUTE VARIATION

It is important to understand that a variability study based on an attribute that expresses

as a continuous function of numerous, scale—variable influencing factors, will produce

results that will be dependent on the scale and frequency of observation. This nested

structure of variation (Iournel 8: Huijbregts, 1978) makes it difficult to asses the full spatial

structure of an attribute without some form of nested or multi-stages sampling procedure

(Trangmar et al., 1985). Burrough (1983) noted that this effect parallelled the self-similarity

described by fractal geometry, and surmised that closer examination of the random

6
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component of variation would reveal spatial structure. However, the underlying

implication is that direct comparison of field study results using various sampling strategies

would be misleading. Examination of a range of studies could provide a qualitative

assessment of the spectrum of variation that may be observed in the field.

Such variation observed in soil attributes has been documented by numerous individual

studies in which sampling strategies are rarely comparable. Beckett & Webster (1971), in

a comprehensive review of the literature to that date, attempted to standardise the area of

influence applied to CV values for soil physical and chemical attributes. Their results

tend to confirm the accepted generalisation that the observed variability in soil attributes

increases as the area under study increases. They also suggest that more than half the

variation found within an entire field may be observed within any 0.01 ha area.

Gajem et al. (1981) convincingly demonstrate the effect on spatial structure of increasing

the sampling area and distance between sampling points. They show that the range of

spatial dependence for 9 physical soil parameters increased 10 fold as the sample separation

and transect length increased by an order of magnitude (0.2m, 2m, 20m). These

relationships are likely to operate in other cropping system variables such as yield and

pest infestations.

The degree and structure of variation observed in the more important soil and crop

attributes, and the impact of this variability on the cropping system, will be examined

individually.

1.3.1 Soil Type/Texture

Variation in soil type may directly influence the yield potential of a site by contributing to

the variation in nutrient storage and availability, fluid retention and transport, and soil

stability to potentially disruptive processes. While variability in these individual soil

attributes will be examined separately, it is the gradual changes between soil type that

significantly governs variability.

Variation in soil texture is considered here as a major indicator of soil type variability.

Particle size variability will be discussed as it has become the default measurement for

soil texture, but it is acknowledged that the nature of the clays present, other inorganic

and organic coatings and accretions all combine to create a soil texture (Mott, 1988a).

However, quantitative analysis of the sand, silt and clay fractions is important to soil /

crop relations in that clay content is positively related to moisture holding capacity (Gregory,

1988) and organic matter decomposition (Sorensen, 1975) and the surface charge effects

7
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impact on the behavior of plant nutrients and the reaction of applied fertilisers and

pesticides (Mott, 1988b).

The review of Beckett 8: Webster (1971) concluded that approximately 50% of randomly

chosen sample sites within soil mapping units would not match the assigned soil profile

definition. In a detailed study of within-map unit variation of soil morphological and

physical properties Agbu & Olsen (1990) determined the proportion of total variation

attributable to within-map unit variation in twenty-eight properties using a coefficient of

non determination (Steel 8: Torrie, 1980). The results indicated that the majority of the

total variation observed resided within the map units and not between them. These two

studies imply that substantial variability in soil physical and morphological properties

within a field should be expected, even if it is categorised as a single soil type.

While significant variability may be observed within soil units, the magnitude of the

variation is likely to be influenced by the soil parent material. Mausbach et a1. (1980)

examined the variability in 1280 matched pedons representing eight soil orders covering

the major cropping regions of the USA. Their study showed that variability of textural

properties is least in soil of loess origin (median CV = 18%) followed by glacial drift parent

material (24%) and alluvium (33%). The CV for textural classes were highest for C horizons

and approximately equal for A and B horizons in all soil.

At a finer scale, Table 1-1 catalogues a number of texture variability studies undertaken

over a range of sampling area sizes. Given this variability in sample size and strategy, it is

difficult to compare the results, but the median values may provide a rudimentary

approximation of the baseline variability to be found at any local sampling scale. The

median CV for sand, silt and clay are 37%, 18% and 18% respectively, but it is important to

note that the occurrence of high variability in all three particle size fractions may appear

at all sampling scales.

The spatial structure component of soil texture variation has not been as well documented.

Using autocorrelation analysis, Gajem et a1. (1981) sampled intensively at 0.2 m intervals

along a 20 m transect and found the spatial dependence to be >5 m for all textural

components. At a coarser scale, Webster 8: Cuanalo (1975) used a 10 m sampling interval

over a 3.2 km transect and estimated the spatially dependent range of the texture

correlogram to be 230 m. This range, they concluded, was attributable to variation in the

underlying lithology which reinforces the impact of parent material on soil type variability.
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Table 1-2 displays the summary statistics of a number of studies employing semivariance

analysis of spatial structure. As with the CV data, the median semivariogram descriptors

have been presented as a generalisation of the spatial structure model that may apply

across all local sampling scales. The nugget ratio (NR) of 20% suggests that soil texture is

a strongly spatially dependent attribute. The median range of 63 m may approximate the

upper limit of the dependence.

Tex1ure

Author/s Sampling design Sand (%) Sill (°/o) Clay (°/a)

u c.v.(-/.) )1 c.v.(%) p. c.v.(%)

Gajem et al. (1981) 20cmlag (20mtrsect) 17.3 32 50.9 18 31.8 16

Burden 8. Selim (1989) 30cm lag (80mtrsect) 9.6 29 81.7 4 47.5 31

Mller et al. (1988) 20m lag (5 x 400m lrsect) 20.0 29 - — 37.0 12

Mulla (1988) 20m lag (660m trsecl) 13.8 18 — - 21.2 2

14.7 14 — — 18.4 19

Webster 8. Ouanalo (1975) 10m lag (3200m trsect) — - 35.8 22 25.6 16

— — 30.0 18 34.5 24

— — 18.1 16 39.1 31

‘ Vauclin et al. (1983) 10m lag (0.28 ha) 65.1 8 7.2 44 27.7 18

Kachanoski et al. (1988) 37 comp (1.5 ha) 31.8 66 47.3 22 20.9 58

\Mlliams 91 al. (1987) 10m grid (1.6 ha) 27.0 18 51.0 6 22.0 10

Hunsaker et al. (1991) 97 mdm (4.2 ha) 612 10 20.7 21 18.1 19

Nolin el al. (1996) 30 m grid (10 ha) 16.6 59 39.1 18 44.3 14

Tabor et al. (1985) 49 mdm x 2m grid 41.7 20 26.2 16 32.1 18

(13 ha)

Nelsen at al. (1973) 20 mdm x 6.5m2 26.5 60 26.2 38 47.5 25

plots(150ha)

Chien 91 al. (1997) 6.25ha grid (1000 ha) 39.2 45 42.5 29 18.2 35

Agbu 8 Olson (1990) within soil units 12.3 53 50.8 10 36.9 13

9.0 49 51.0 14 40.0 16

11.6 47 58.8 8 29.7 7

17.0 68 50.0 21 33.0 22

12.3 65 55.4 11 32.3 13

19.3 57 42.8 21 37.9 26

35.8 38 35.1 21 29.1 28

7.0 12 57.5 64 35.6 47

\Mlding et al. (1964) within soil series 24.7 25 54.7 10 20.6 20

20.3 37 58.8 11 20.9 17

MEDIAN 37 18 18

Table 1-1. Mean and CV for soil textural properties within increasing sampling area.
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The study by Chien et al. (1997) serves as a reminder of the scale dependence of these

observations. Operating on a 250m grid within a 1000 ha site, they estimate semivariogram

parameters as: sand - C0 = 0.718, C = 0.344, a = 1046m;si1t - C0 = 0.736, C = 0.372, a = 1290;

clay - C0 = 0.770, C = 0.172, a = 723m. At this scale the particle size fractions have an NR

ranging between 67% and 82% suggesting a tendency towards weak spatially dependence.

 

Semivariogram Parameters

 

 

Author/s Sampling design Attribute Model CO ("/oz) C (%2) a (m)

Miller et al. (1988) 20m lag (5 x 400mtrsect) sand spherical 0.60 33.4 75.0

Mulla (1988) 20m lag (660m transect) sand spherical 0.16 5.7 60.1

sand spherical 0.99 3.7 71.8

Vauclin et al. (1983) 10m lag (0.28 ha) sand spherical 13.37 17.1 33.5

Burden & Selim (1989) 30cm lag (80m transect) silt linear+sil| 5.30 5.2 19.5

Miller et al. (1988) 20m lag (5 x 400mtrsect) silt spherical 3.00 12.0 75.0

Vauclin et al. (1983) 10m lag (0.28 ha) silt |inear+si|| 8.06 3.4 50.0

Burden 8 Selim (1989) 30cm lag (80m transect) clay |inear+sill 1.80 5.2 130

Miller et al. (1988) 20m lag (5 x 400mtrsect) clay spherical 7.00 14.0 75.0

Mulla (1988) 20m (660m transect) clay spherical 0.08 7.3 93.2

clay spherical 1.54 11.2 66.1

Vauclin et al. (1983) 10m lag (0.28 ha) clay |inear+sill 13.37 14.1 35.7

MEDIAN 2.4 9.3 63.0

 

Table 1-2. Semivariogram model parameters reported for soil textural properties.

1.3.2 Soil Structure

Soil structure may be simply defined as the arrangement of particles that form the soil and

the distribution of voids between these solid particles. Such a description, however, fails

to project the true dynamism of the soil forming and degrading processes. More

comprehensively, Kay (1991) uses the term as an umbrella that encompasses a composite

of soil properties namely soil structural form, stability and resilience.

The structure of the soil governs the physical penetration, growth and anchorage of roots

along with regulating the air/moisture balance required for plant growth and microbial

activity, the soil drainage/water retention characteristic and the erosion potential (Harris

et al., 1966). It follows that a decline in soil structural condition may encompass a broad

range of deleterious affects on crop growth. A reduction in the availability of oxygen for
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metabolic processes and adverse effects on soil moisture regimes are the dominant result,

however indirect consequences such as a reduction in nutrient availability and

perturbations in the soil solution pH and redox potential (Glinski 8: Stepniewskii, 1985)

will ultimately reduce crop yield.

Soil structural condition is inherently unstable when subjected to potentially disruptive

forces (Hillel, 1982). These forces maybe mechanical, as in the use of cultivation implements

or other heavy machinery, or physico-chemical via the frequent saturation of agricultural

soil through irrigation and rainfall. Common to both dryland and irrigated cropping is

the yield reduction attributed to structural degradation caused by compaction and shearing

through tillage and heavy vehicular movements. Hakansson et a1. (1987) has shown the

yield reduction to extend over a number of growing seasons due to the persistence of the

initial degradation. Root distribution and nutrient uptake is reduced and a coarser tilth is

produced (Hakansson et a1., 1988).

Structural degradation through compaction, and the ensuing increase in soil strength,

have also been shown to increase the energy required to overcome tillage draft in

subsequent operations. Watts 8: Dexter (1994) report a reduction in cultivation energy

requirements of between 17% and 45% in the absence of machinery traffic. Chamen 8:

Cavalli (1994) observed an average 18% reduction in cultivation draft under similar

conditions, while Burt et a1. (1994) report a mean 40% reduction in draft under no traffic

conditions.

Site variability in field soil structure has been inferred through measurements of soil

strength using tillage draft and cone-penetrometer resistance, and pore/solid relationships

via air permeametry and bulk density. Following the uniform application of tillage

treatments to a 0.36 ha area, Wood et a1. (1991) estimate CV's for: cone penetration = 44%;

air permeability = 114%; porosity = 37%; bulk density = 9%. Mulla (1988) sampling at a

20m lag (on two 660m transects) reported cone penetrometer resistance 20.22 kPa, CV =

37% and 0.2 kPa, CV = 44%. Asimilar degree of variability in cone penetrometer resistance

was recorded by Hartge et a1. (1985) on a 10m transect that reflected compaction patterns

resulting from tillage.

Table 1—3 summarises a number of reported investigations into the variability of field bulk

density. The median CV value of 5% agrees with the value of 7% compiled from a number

of earlier studies by Warrick & Nielsen (1980). This low variability, compared with the

other indirect methods, suggests that bulk density may not be a good indicator for the

variability in soil structure.

11
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bulk density
 

Author/s Sampling design

it (g/cm3) C.V. (%)

 

Gajem et al. (1981) 200m lag (20m trsect) 1.38 1

2m lag (200m trsect) 1.25

Burden & Selim (1989) 300m lag (80m trsect) 1.35

Buchter et al. (1991) 1m lag (400mtrsect) 1.39

1.39

1.22

1.21

VWlliams et al. (1987) 10m grid (1.6 ha) 1.40

1.36

Hunsaker et al. (1991) 97 rndm (4.2 ha) 1.61

1.65 (
L
n
-
5
.
5
0
3
4
3
4
3
0
0
0
0
4
3
0
0
1
:

1.63 3

Cambardella et al. (1994) 25m grid + nest (6.25ha) 1.32 14

100m grid + nest (10 ha) 1.03 17

1.24 13

Nielsen et al. (1973) 20 random x 6.5m2 plots (150ha) 1.47 10

1.37 6

1.35 6

1.31 5

1.33 5

1.31 6

 

MEDIAN 5

 

Table 1-3. Mean and CV for soil bulk density within increasing sampling area.
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The spatial nature of this variability in soil structure has been little considered. Haines &

Keene (1925a), in a remarkably prescient study, employed a dynamometer to record the

continuous variation in drawbar pull required during parallel transects of a field (Figure

1-1). They showed substantial spatial variability and significant positive correlations

between draw-bar pull and clay content, plant establishment and tillering.
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Figure 1-1. Continuous map of draw-bar draught (newtons) (after Haines 8: Keen, 1925a).

Further statistical analysis of the spatial variability has proven inconclusive. Gajem et a1.

(1981) observed a 3.40 m zone of influence for bulk density when sampling on 20cm lags

and hardly any discernible spatial structure at greater lags. On the other hand, Cambardella

et a1. (1994) using a 25m grid sampling scheme (with closer nested samples) fitted spherical

variograms with parameters: C0 = 0.013, C = 0.023, a = 129m. Using a similar strategy but

on a 100m grid, they reported variogram parameter values of: C0 = 0.011 C = 0.025 a =

223m and C0 = 0.006, C = 0.019, a = 115m. The NR values ranged from 36% to 24%,

suggesting that the bulk density at the site possessed a moderate to strong spatial structure.

Interestingly, Buchter et al. (1991) sampling every 1m on 4 x 100m transects found no

spatial structure in the autocorrelation for bulk density in the top 30 cm, but very weak

3m spatial dependence at a depth of 60 cm. Given all these results, it could be hypothesised

that vehicle traffic and cultivation may play a role in reducing any inherent spatial structure

in soil structure measurements, leaving apparently random or very small-scale structure

in most agricultural fields that may only be observed in dense sampling arrays.
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1.3.3 Soil Organic Matter (OM)

The amount of soil OM provides an indicator for the inherent soil fertility in most soil

types. Specifically, it plays a significant role in maintaining soil physical properties, storing

and releasing moisture and plant nutrients and influencing the quality and quantity of

soil microbial activity (Lowe, 1978). Of particular interest is the ability of OM to provide

mineralisable nitrogen, phosphorus and sulphur (Allison, 1973) as this may influence the

requirements for synthetic fertiliser application. The typically slow operation rate of the

mineralisation process will limit the release of these nutrients, but this source may provide

a significant contribution to dry-land cropping or during the drying cycle on irrigated

land. The importance of OM in this storage and release of moisture and plant available

nutrients should increase as the percentage clay content decreases.

 

Organic Matter

Sampling design

 

 

 

14

Author/s

p. (%) C.V.(%)

Muiia (1993) 15m lag (4 x 650mtrsect) 2.04 41

Miller et al. (1988) 20m lag (5 x 400mtrsect) 1.26 18

Khakural et al. (1996a) 30m lag (4 x 430mtrsect) 5.5 27

Reed & Rigney (1947) 0.015ha grid (0.3 ha) 2.09 22

0.91 45

Robert et al. (1996) 12m grid (1 .6 ha) 2.13 5

12mgrid (1.8 ha) 2.21 5

Mallarino et al. (1996) 15 m grid (3-6 ha) 5.40 9

3.70 1 1

5.60 14

Nolin et al. (1996) 30 m grid (10 ha) 4.84 26

Wang (1982) one map unit 4.52 60

Cipra et al. (1972) soil type (7 x 2.4ha) 2.22 5

Wilding et al. (1964) soil series 2.80 32

6.40 9

MEDIAN 18

Table 1-4. Mean and CV for soil organic fractions within increasing sampling area.
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The amount of OM present will also effect the degree to which inactivation processes act

on soil applied pesticides through adsorption and biological and non biological breakdown

(Khan, 1978). This is relevant for both ionic and non-ionic active ingredients and its impact

should increase as the percentage clay content of the soil decreases. Linear relationships

between soil OM and the applied herbicide rate for a designated degree of weed control

have been published for atrazine, cyanazine, simazine, alachlor, metolachlor, metribuzin,

trifluralin, pendimethalin and diuron (Weber et al., 1987; Blumhorst et al., 1990; Upchurch

et al., 1966; Fernandez etal., 1988).

Estimates of the degree of variation to be found in soil organic carbon have been reported

by Spain et al. (1983) who describe a coefficient of variation in Australian agricultural soil

between 10-20% when measured on a 10m grid and 25-40% on 10's of kilometer separation.

These figures agree with the generalisation of Beckett 8: Webster (1971) who suggest that

10-30% CV within fields is typical for OM. The results of a number of other studies are

shown in Table 1-4. The median C.V. value of 18% falls within the scale suggested above.

Studies on the spatial structure of the soil organic fraction have been rare. Miller et al.

(1988) sampled organic carbon on 5 x 400m transects using a 20m lag and fitted a spherical

semivariogram to the data with parameter values of: C0 = 0.003, C = 0.017, a= 50 m

(NR=15%). Mulla (1993) sampled OM at 15m lags along 4 x 650m transects and reported

a spherical variogram range of 114m (NR = 39%). Kristensen et al. (1995) fitted exponential

variograms for two Danish fields that show ranges for OM from 45m to 99m (135m to

300m equivalent spherical range) with no nugget variance (NR = 0%). While the ranges

display a spatial structure varying by up to 250m, the NR values suggests a strong spatial

dependence over any range.

As with soil bulk density, agricultural intervention may be detected in the depth of

sampling. Wang (1982) shows greater variation in organic carbon content in the Ahorizon

(CV = 42%) as compared with 34% in the B horizon. Kristensen et a1. (1995) report a

decrease in spatial correlation range to between 22m and 34m (66m to 132m equivalent

spherical range).

1.3.4 Soil Moisture

Variability in available soil moisture and soil moisture movement will be controlled by

non-uniformity in the physical soil factors previously discussed, along with the supply of

moisture (which is likely to be completely random in the case of precipitation).

Soil moisture is crucial to plant growth. Much of the variation in yield response to fertilisers
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is due to variation in soil moisture and therefore nutrient transport and supply potential

across a field. Power et a1. (1961) show that 53% of variation in wheat yield can be explained

by variability in soil moisture at the time of sowing. They recorded a 29 kg/ha increase in

yield for every 1 cm increase in available water. Hunsaker et a1. (1991) found that soil

water content measured at crop emergence was highly correlated to textural classification,

sand especially. Multiple regression estimated that 76% of variation in the infiltration

depth at the site was accounted for by antecedent moisture and elevation. Variability in

soil moisture content also significantly influences soil biological activity (Harris et a1.,

1966) and soil temperature variation which inturn effects nutrient uptake kinetics in roots

and also root elongation (Fixen 8: Grove 1990).

Given this importance, quantification of the variability in soil moisture content has been

often undertaken and has lead to the general understanding that as soil moisture content

increases, the variability decreases ( Towner, 1968; Nielsen et a1., 1973; Williams et a1.,

1987; Burden & Selim, 1989; Nash et a1., 1989). This maxim forms part of the rationale for

crop irrigation.

The results in Table 1-5 support this observation and also suggest that variability increases

with sampling distance (Gajem et a1., 1981). The median CV's for the two standard

measurements are: 0g = 11%, 0v = 9%. Vauclin et a1. (1983) report a CV for available soil

water (arguably a more relevant quantity to crop growth) of 19%.

Far more variable at the small-scale are infiltration characteristics of the soil. Nielsen et a1.

(1973) measured a mean saturated hydraulic conductivity of 20.3 cm/day with an

associated CV = 100%. The CV rose to 400% as the soil drained to 78% saturation and

hydraulic conductivity declined dramatically. Bresler et a1. (1981) reported a lower

variability in saturated conductivity in a 0.8 ha field (CV = 64%), while Mulla (1988)

calculated CV's of 236% and 355% from two 660m transects and Buchter et a1. (1991) record

a CV = 200% in the top 30cm which dropped to 100% in the 60cm level in two transects.

Nash et a1. (1989) calculated the drainage rate at the 1.35m depth in a soil profile following

irrigation. Following irrigation the mean rate was 2.45 cm/day (CV = 45%), after 14 days

drainage the mean had declined to 0.15 cm/day (CV = 40%), and 44 days after irrigation

the mean rate was 0.04 cm/day (CV = 38%). Large variation remains at low drainage

rates Which would suggest significant variation in chemical movement and concentrations

within the profile.

Along with the effect of non-uniformity in soil physical properties and climate, in an

agricultural field the phase of the cropping cycle Will influence the spatial dependence of
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Moisture

Author/s Sampling design

p. c.v.(%)

(99)

Gajem et al. (1981) 200m lag (20m1rsec1) fc 0.35 8

200m lag (20m trsect) pwp 0.18 11

20cm lag (20m trsect) to 0.37 4

20cm lag (20m trsect) pwp 0.21 7

2 mlag (200mtrsect)fc 0.35 8

2 m lag (200mtrsect) pwp 0.19 13

2 mlag (200mtrsect)fc 0.34 11

2 m lag (200m trsect) pwp 0.19 14

20 m lag (2000m1rsect)fc 0.33 21

20 m lag (2000m trsect) pwp 0.14 31

Mulla (1988) 20m lag (660m trsect) 0.28 25

0.35 39

Nielsen et al. (1973) 20 rndm x 6.5m2 plots (150ha) sat 0.45 10

20 rndm x 6.5m2 plots (150ha) fc 0.43 11

20 rndm x 6.5m2 plots (150ha) pwp 34 22

MEDIAN

11

(0V)

Burden & Selim (1989) 30cm lag (80m trsect) sat 0.54 9

30cm lag (80m trsect) fc 0.43 8

300m lag (80m trsect) pwp 0.14 21

Nash et al. (1989) 1 m lag (90 m trsect) 0.36 7

1 m lag (90 mtrsect) 0.36 13

Buchter at al. (1991) 1 m lag (400 mtrsect) sat 0.45 4

1 m lag (400 mtrsect) sat 0.44 4

Or & Hanks (1992) 50 rndm (1.5 ha) sat 0.43 4

50 rndm(1.5 ha) fc 0.25 4

50 rndm (1.5 ha) pwp 0.10 9

Kachanoski et al. (1988) 52 rndm(1.5 ha) 0.21 42

Williams et al. (1987) 10m grid (1.6 ha) 0.22 7

0.21 1 1

Hunsaker et al. (1991) 97 rndm (4.2 ha) 0.22 12

0.20 1 1

MEDIAN 9

 

Table 1-5. Mean and CV for soil moisture content within increasing sampling area.

17



Variability in Soil Attributes 6r Crop Yield

the variation in soil water content and available water. Van Wesenbeeck & Kachanoski

(1988) show that under a corn crOp there is a significant difference between the spatial

variation within the plant row and between the rows due to preferential drying and water

recharge attributable to the plants. They found the resulting spatial variation was greatest

during the middle of the growing season due to significant water use and full canopy

closure. Likewise, the spatial structure of moisture content variability in a sloping field is

likely to be dominated by down-slope trend (Williams et al., 1987).

The variety of such influences on soil moisture content produces site—specific effects on

spatial variability. Gajem et a1. (1981) measured an increase from 0.6 m to 160 m in the

correlogram zone of dependence for soil moisture content as the sampling lag increased

from 0.2 m to 2 km and a general decrease in spatial dependence with drying. Nash et a1.

(1989), sampling at 1 m intervals also noted a decrease in spatial dependence with drying.

Conversely, Or & Hanks (1992) sampling on a 2 m scale found spatial correlation for soil

water content to be below 1 m for soil at saturation and field capacity but the range increased

to 7 m at permanent wilting point. Burden & Selim (1989) calculated that the spatial range

of linear variograms generally increased from 20 to 22 rn (refer Table 1—6) and the

autocorrelation distance rose from 8 m to 15 m as the moisture content declined from

saturated to permanent wilting point.

 

 

 

 

Moisture

Author/s Sampling design Model CO (‘73) C (%2) a (m)

Burden & Selim (1989) each 300m (80m transect) sat linear 0.000793 0.000447 20

each 300m (80m transect) tc linear 0.000793 0.000447 20

each 30cm (80m transect) pwp linear 0.000491 0.000242 22

Mulla (1988) each 20m (660m transect) spherical 0 0.0062 81

spherical 0 0.022 52

MEDIAN 0.00049 0.00045 22

 

Table 1-6. Semivariogram model parameters reported for soil moisture content.

Russo (1986) sampled 130 random locations within a 250ha area and calculated a variogram

range of 761 m for soil moisture content. By applying a stochastic approach to modelling
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the effect of this spatial variability on crop yield (using a very simple crop-response model)

he generalised that as irrigation is increased, and the variability of soil moisture decreases,

so does the variability in crop yield. These results are significant but the variogram range

suggests that the scale of information is quite coarse and inferences could only be applied

to similarly broad resolution studies. On a finer sampling scale, the median values in

Table 1-6 indicate that soil moisture could only be considered as weakly spatially dependent

(NR = 91%).

There appears to be some degree of ambiguity in the published studies on spatial variability

in the soil moisture regime. Generally, the soil moisture content is initially controlled by

water infiltration and the steady-state infiltration rate is more highly correlated with

percentage saturation than moisture content (Nielsen et al., 1973). The percentage saturation

is in turn a function of soil physical properties. It would then seem most useful to identify

and characterise the dominant physical properties effecting the moisture holding capacity

of the soil in an attempt to predict soil moisture spatial variability at a site.

1.3.5 Soil Nutrients

The importance of the availability and supply of macro- and micro- nutrients to growing

crop plants is a fundamental pillar of modern agronomy. The spatial variability of these

two aspects of soil nutrition is ultimately governed by variability in the physical factors

and moisture regimes already discussed, along with the soil pH. These factors influence

plant root growth and extension on one hand, and control the supply of nutrients to the

roots by controlling the total quantity of diffusible nutrient, the diffusion rate and the

convolution of pathways to the roots (Baldwin, 1975). The possibility that as little as 10%

of the crop root system is able to absorb nutrients (Burns, 1980) may magnifying the effect

of spatial variability in soil nutrient concentrations on crop yield.

The application of fertilisers and the inherent soil organic matter content will also contribute

to the total nutrient load and its variability within the soil. The influence on total nutrient

content is obvious while the effect on variability may be less known. Trangmar (1982)

show an increase in the variability of soil P from a CV of 13% to 21% with a fertiliser

application increase from 0 kg P/ha to 45 kg P/ha. Leake 8: Paulson (1997) sampling on

a 36m grid within a 10 ha field found that the CV generally increased from 22% as the

concentration of mineral N increased down the profile. Cabrera et al. (1994) show that
there is large variability in the amount of N mineralised from organic matter within a
field during a season and this contributes significantly to the quantity of soil N required

for crop growth.
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Nutrient

Author/s Sampling design Nitrogen Phosphorus Potass'um

Mmg/kg) C-V.(%) Mmglkg) C-V.(%) u (Mgikg) C-V~(%)

 

 

Khakural et al. (1996a) 3011 tag (4 x 430m trsect) 25 72 197 26

30 55 169 21

Read 8: Rgney (1947) 0.01511: 91d (0.3 ha) 28 16 56 13

12 58 39 41

Trangmar (1962) 1.5m gtid (120 m’) 13 13

Goovaerts & Chiang (1993) 10m 9141 (16001112) 1 51

4 15

Cahn at at. (1994) 0.25 ha grid (311a) a so 74 36 268 43

Mallarino at at. (1996) 15 m 91d (3-6 ha) 45 62 88 15 243 13

26 35 20 25 107 17

51 55 45 38 213 28

Ndinetal. (1996) 30mgrid (10 ha) 10 36 52 36 347 31

Tabor at al. (1985) 49 rndm smpls on 2m 14 31 4 72 0.62 32

grid (13 m)

Pieroeetal. (1995) 0.1hagid (10—20ha) 31 32 333 25

85 38 270 20

124 26

Wouenhaupt et a1. (1994) 0.11141 gid (15-20113) 24 84 71 61

18 42 48 31

Everett& Pierce (1996) 30nlag(600bsin23ha) 5 46

8 31

4 33

8 47

6 24

7 32

4 39

Webster & McBrainey. (1987) 0.4ha grid (77 ha) 5 106 26 34

Han et al. (1998) 60m 9nd (90 ha) 3 45 24 24 183 21

Ctl'en at al. (1997) 6.25ha grid (1000 ha) 217 199

Carretal. (1991) 390i! units 63 12 15 330 20

2 soil units 84 38 15 0 440 9

4 soil units 17 38 14 54 464 9

4 soil units 63 64 16 59 385 42

2 soil units 71 35 12 47 268 17

Nelson & McCracken (1962) 15 soil units 14 32 71 38

29 45 52 63

Cipra at at. (1972) soil type (7 x 2.4ha) 34 11 847 4

MEDIAN 38 38 23

 

Table 1-7. Mean and CV for soil N,P,K content within increasing sampling area.
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Beckett 8: Webster (1971) in a summary of knowledge to that date, calculated within-field

median CV values from a number of soil studies in cultivated crops and normalised them

to represent a 0.01ha area. They summarised the results as: Nitrogen (N ) = 10-20%, available

phosphorus (P) = 40%, available potassium (K) = 35% and available calcium (Ca) = 10-

40%. A more general areal delineation of "within a field" produced CV's of: N = 25-30%,

P=45%, K: 70% and Ca = 30%. At a larger scale, the "between field" variance was broken

into properties along a management effect line i.e. 10% CV for total P that is little effected

by management, 25% CV for total N and 5 -50% for avail P, K, ng and Ca that are most

effected by management. Over a whole soil series they estimate the CV's to be

approximately 20, 35, and 60% for the same groupings. Such generalisations for increasing

scales are quite useful in demonstrating the influence of sample area on variability, but

the implications regarding management are most interesting. They appear to confirm

that the intervention of management in the fertility of the soil increases variability.

Nutrient variability within purported ‘uniform' soil has been documented by Reed &

Rigney (1947). Sampling 0.3 ha areas on a 0.015 ha grid at sites assessed as containing

'non-uniform' or 'uniform' soil series, they observed CV's of 58% for P and 41% for K and

16% for P and 13 % for K at the respective sites. In Table 1-7, the variability displayed in

numerous classical variation studies of the major nutrients (N, P, K) for a range of sampling

areas and designs is tabulated. The median CV values are 38 % for both N and P, and 23%

for K. While the N and P values are somewhat comparable to the "within a field" value

suggested by Beckett 8: Webster (1971), the K value is much smaller than their generalised

estimate. A recent comprehensive study by Dampney et al. (1997) closely agrees with the

median figures reported herein. They calculated a mean CV of 36% for P and 27% for K

based on an experiment that covered 78 English fields between 4—50 ha, sampled on a

mean grid of 0.65ha.

This range of variability has been reported for other macro and micro nutrients, e.g. Pierce

et a1. (1995) show calcium CV ranging from 16% to 44% and magnesium CV ranging from

17% to 51% on 0.1 ha grid over 10—20 ha sampling areas; Khan 8: Nortcliff (1982) found

iron CV at 45%, manganese CV at 49%, copper CV at 20%, zinc CV at 24% on a 7m grid

over a 1ha sampling area.

The spatial structure of this variation would be also expected to vary Widely. Within the

uniform field studied by Reed 8: Rigney (1947), the variance at different sampling scales

show that the contribution from samples in a 15cm radius may dominate P and K variance

within the field (this field has greater spatial relationships at higher scales). They find

greater spatial variance within the non-uniform field (less spatial pattern).
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Venom Parameters

who", Sampling design Nutrient Model co (mg/kg") 0 (mg/kg?) 3 (m)

Cmn el al. (1994) 200 mdm (0.25 ha) Nitrogen spherical 7.24 9.4 5

50 m grid (3.3 ha) spherical 5.25 6.5 45

Kristensen et al. (1995) 20m grid (10 ha) Nitrogen exponential 0 2.2 '99

0.8 2.0 "285

0 9.7 '144

Everett & Pierce (1996) 30m lag (60 obs in 23 Nitrogen spherical 1 20 0.3 166

ha)

spherical 0.40 1.7 79

spherical 0.20 0.3 1 17

30m|ag(14obsln1 spherical 120 0.6 346

Used)

spherical 5.40 10.9 152

spherical 3.00 2.5 71

spherical 2.60 0.8 99

Han el al. (1996) 60m grid (90 ha) Nitrogen spherical 0.52 0.83 900

MEDIAN 1.2 2.0 1 17

Mulla (1993) 15m (660m transeco Phosphoms spherical 27.6 63.38 145

Cahn et al. (1994) 200 mdm (0.25 ha) Phosphorus spherical 404.6 724.33 50

Pierce et a]. (1995) 0.1ha g’id (10-20ha) Phosphorus spherical 233.0 844 172

Kristensen at at. (1995) 20m grid (10 ha) Phosphorus exponential 0 4.5 '444

0 1 1 '180

Webster & McBratney (1987) 0.4ha grid (77 ha) Phosphorus spherical 0.02 0.0847 241

Han et ai. (1996) 60mJrid (90 ha) Phosphorus spherical 26.89 2.5 900

MEDIAN 26.9 1 1.0 180

Cahn el al. (1994) 200 mdm (0.25 ha) Potassium spherical 5265.80 7344.2 40

50 m grid (3.3 ha) spherical 4206.5) 440.2 45

Pierce 81 al. (1995) mm grid (10-20ha) Potmdum spherical 887.0 391 157

302 833 174

Kristensen et aL (1995) 20m grid (10 ha) Potassium exponential 0 37.7 '75

0 389 '387

Han et a]. (1996) 60m grid (90 ha) Potassium spherical 905.18 243.67 284

MEDIAN 887.0 391 .0 157

 

*apparent range equivalent (3 X a': refer Equation 1-13)

Table 1-8. Semivariogram model parameters reported for soil N, P, K content.
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Geostatistical analysis of N, P and K variability reported in a number of more recent studies

is shown in Table 1-8.

The median values for the range document an increasing spatial dependence for N<K<P

with all nutrients showing only moderate spatial structure (NR = N - 38%; K - 69%; P -

71%). Cahn et a1. (1994) report the same order of spatial dependence Within a single field

and suggest that the observed spatial variability may be related to increasing nutrient

mobility (N>K>P). At a regional scale, this interrelationship may be further linked to

rainfall patterns. Yost et a1. (1982) sampling Within a 30 m radius at 1-2 km intervals

calculated ranges for nutrients between 32 -42 km which they reported as similar to the

rainfall range. In the future, a knowledge of localised moisture regime patterns may be

used in the prediction of nutrient variability within fields.

This link to the soil moisture parameter is further strengthened by a similar decrease in

spatial dependence as fertiliser application rate increases. Trangmar (1982) shows a

decrease in the range from 5.6m to 5m when comparing the application of 0 kg P/ha with

45 kg P/ha monitored on a 1.5 m grid within 15 x 8m plots. The mobility of these macro

nutrients (especially N) will also affect the spatial variation expected over a profile depth

(Everett & Pierce, 1996).

Importantly, Haneklaus et a1. (1997) show that the spatially dependent ranges for these

nutrients vary Widely between farms. In a study of 3 German Farms (total 880ha), the

variogram range for the measured soil nutrients were : P - 115m to 153m; K - 67m to 135m;

Mg - 70m to 136m. The interaction with management and other soil attributes ensures

that the spatial variability in soil nutrient status is significantly site-specific.

1.3.6 Soil pH

The soil pH is a logarithmic index of hydrogen ion (H*) activity in the soil solution. The

level of H” activity in the soil solution effects the charge state of both soil organic and

inorganic particles (Gregory, 1988). In the routine soil environment, it is this effect that

controls the availability of nutrients, with some such as aluminium (Al) and manganese

(Mn) becoming highly available and toxic to plants at low pH. Variation in pH across

fields will undoubtedly effect the plant availability of nutrients even if applied in uniform

quantities.

Table 1-9 documents the variability observed in the much of the literature to date. The

median CV value of 5% is equal to the mean value reported by Dampney et a1. (1997)
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pH

Author/s Sampling design

)1 C.V.(%)

Gajem et al. (1981) 200m lag (20m trsect) 8.7 3

Miller et al. (1988) 20m lag (5 x 400mtrsect) 7.5 6

Khakurai et al. (1996a) 30m lag (4 x 430mtrsect) 7.5 8

Reed & Rigney (1947) 0.015ha grid (0.3 ha) 5.3 1

Webster & Cuanalo (1975) 10m lag (3200mtrsect) 6.1 1

6.2 1

6.6 1

Laslett et al. (1987) 0. 1 ha grid (1 ha) 5.3 4

4.5 5

Robert et al. (1996) 12m grid (1.6 ha) 8.1 1

12m grid (1.8 ha) 7.6 3

Mallarino et al. (1996) 15 m grid (3-6 ha) 6.5 3

6.6 5

6.2 5

Nolin et al. (1996) 30 m grid (10 ha) 6.0 6

Tabor et al. (1985) 49 rndm x 2m grid (13 ha) 7.3 2

Pierce et al. (1995) 0. 1 ha grid (10-20ha) 6.5 14

6.6 14

6.7 6

Evans et al. (1997) 20m x 40m grid (16 ha) 5.8 7

6.1 6

Webster & McBratney. (1987) 0.4ha grid (77 ha) 7.7 8

Wang (1982) one map unit 5.8 17

Cipra et al. (1972) soil type (7 x 2.4ha) 7.1 3

VWIding et al. (1964) soil series 6.5 9

3.0 30

MEDIAN 5

 

Table 1-9. Mean and CV for soil pH within increasing sampling area.
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when sampling 78 English fields between 4-50 ha, on a mean grid of 0.65ha. While this

value appears low by comparison with the other soil properties, it is due to the index or

ranking nature of the pH scale.

This variation is likely to decrease in horizons further down the profile due to a decreasing

variability in soil OM and texture. Wang (1982) shows pH to be more variable in the A

horizon (p. = 5.7, CV = 12%) than the B (u = 6.4, CV = 6%).

The spatial distribution of this variability is highlighted in Table 1-10, which suggests that

a strong spatial structure (NR = 12%) over a range of 105m might be expected. Cambardella

et al. (1994) suggest that the range may be closely linked to the geology of the sample site

as do Webster & Cuanalo (1975) who sampled at a 10m lag over a 3.2km transect and

concluded that the 230m spatial range observed in correlogram analysis was caused by

underlying lithology.

Any uniform attempt to amend soil acidity or alkalinity will be hampered by such

variability in soil pH, however it is possibly more important to know the variability in soil

buffering capacity at the within field scale. The buffering capacity is primarily controlled

by soil moisture, pH and clay content (van Lierlop, 1990). Spatial variability in all three of

these components is likely to interact within a field.

 

 

 

 

pH

Author/s Sampling design CO C a (m)

Mulla (1993) 15m (660m transect) spherical 0.17 0.43 132

Laslett et al. (1987) 0. 1 ha grid (1 ha) spherical 0.0252 0.0204 53

spherical 0.0191 0.0321 55

Cambardella et al. (1994) nested 2-25m grid (6.25ha) spherical 0.060 0.70 117

Kristensen et al. (1995) 20m grid (10 ha) exponential 0 0.092 '57

exponential 0 0.098 *51

Pierce et al. (1995) 0. 1 ha grid (10—20ha) spherical 0.089 0.271 105

spherical 0.06 0.15 190

Webster & McBratney (1987) 0.4ha grid (77 ha) spherical 0.021 0.33 185

MEDIAN 0.021 0.15 105

 

*apparent range equivalent (3 X a': refer Equation 1-13)

Table 1-10. Semivariogram model parameters reported for soil pH.
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1.4 VARIATION IN CROP PEST INFESTATION

It is widely understood that the distinctly aggregated colonisation mechanisms of most

crop pests predominantly results in a clustered spatial distribution (Auld & Tisdell, 1988;

Marshall 1988; Mortensen et al., 1993). Yield loss studies by Cousens (1985) and Dorr &

Pannell (1992) confirm the benefits to crop yield and enterprise gross margin of efficiently

reducing the density of weed infestations, but it is important to note the potential for

positive correlation between the absolute yield loss per weed and the potential crop yield.

Pannell (1990) noted such a relationship for wheat, implying that the financial loss increases

in areas under-treated as the potential yield increases. This emphasises the importance of

accurately describing the spatial distribution of weed population densities prior to

treatment.

Marshall (1988) reports a negative binomial distribution for weed infestations recorded as

counts in quadrants which suggests aggregation at random. The distribution function

provides a parameter 'k' that reflects decreasing population aggregation as its value

increases. Johnson et a1. (1995) found that the value of k was not stable between fields for

given weed species but did show significant stability between years in same field for the

same species. Such instability between fields would suggest that individual field

recommendations for treatment may be required.

Aggregation also infers that parts of a field may remain pest-free. Wilson & Brain (1991)

studied a 10 year weed cycle on a 173 ha grazing/cereal farm and found the weed

distribution to be irregular but that >60% of the area had no weeds during the cereal crop

phases. Rew et al (1996) produced manually scouted weed maps showing between 27 -

97% of 5 cereal fields with Elymus repens infestations to be unaffected.

This aggregation may be further defined between the crop row and inter-row space.

Mortensen et al. (1995) examined the inter-row areas of 5 corn fields and 5 soybean fields

and found a mean 30% of the area with zero broadleafweeds and 72% with zero grassweeds.

The intra-row space showed greater weed-free areas with a mean 71% free of broadleafs

and 94% grassweed free. The authors also conclude that the blanket use of herbicides

may be increasing aggregation.

It would appear that the spatial distribution of weed plants may be a function of species

(weed and crop), environmental conditions and previous /current cultural practices. A

meaningful generalisation on variability or spatial dependence other than 'aggregational'

would be difficult to prepare. However, in an attempt to quantify the spatial dependence,

Nordbo & Christensen (1995) suggest that most weed species display an omnidirectional
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autocorrelation range greater than 50m and that most fields show a significantly longer

autocorrelation range in the direction of tillage and harvest than normal to that direction.

The spatial aggregation highlighted in the previous studies can also be traced through

time. Wilson 8: Brain (1991) reported significant spatial correlations in weed patches

between the years of continuous cereals on a 173 ha farm, and also in cereal crops separated

by a 3 years grass ley. Gerhards et a1. (1996) also report the relative stabilisation of patches

of 4 broadleaf weeds in corn and soybean fields over a 4 year study period.

The aggregation pattern of insect pests is often more dynamic than weed pests and is

necessarily a function of insect species and possibly insect and crop life-cycle stage

(Schotzko & O'Keeffe, 1989; Weisz et al., 1995a). As a generalisation, Fleischer et a1. (1997)

distinguish the processes of immigration, colonisation, reproduction, emigration and

mortality as fundamental to the spatial distribution of insect species.

Schotzko & O'Keeffe (1989) report a spatial dependence range between 15m and 50m for

a lentil beetle which depended on life-cycle stage and growing season period. Weisz et al.

(1995a) calculated a mean range of 60m to 70m for all life cycle stages in the potato beetle

but with the range shorter across rows than down, suggesting migration maybe preferential

down the rows. Ellsbury et a1. (1996) report spatial correlations of between 200m and

550m for corn rootworms in one corn field. More importantly, the authors attribute this

spatial variability to the effect spatial variation in soil and host plant conditions has on

insect mortality.

Given the variability in these results it could be argued that external influences on the

insect population dynamics processes described above, and their inherent spatial and

temporal variability, may be ultimately governing distribution. Therefore, knowledge of

the soil/crop variability before pest infection may aid prediction of the spatial distribution

of subsequent pest infestations.

1.5 CROP YIELD VARIATION

The variability of individual crop system components described above contributes to spatial

variation in yield potential within fields, with the interaction between the components

undoubtedly adding complexity to the patterns of variability. Variability in soil components

has been linked to differential germination and growth rates causing variation in yield

production potentials between 5% and 51% within English fields (Evans & Catt, 1987).

The Cation Exchange Capacity (CEC), which reflects the ability of soil to store and release
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essential cationic nutrients and is a function of many of the soil attributes discussed, may

provide an integrating indicator of overall soil contribution to yield potential. A CV of

45% in A horizon CEC between different delineations of one soil unit within a County has

been demonstrated by Wang (1982). The variation decreased in the B horizon (CV = 17%).

Mausbach et al (1980) examined the CEC of 1280 matched pedons representing 8 soil

orders from the major regions of the USA and reported CV's ranging from 14% for Entisols

to 51% for Ertisols. This degree of variation is likely to manifest as spatial variability in

crop yield.

1.5.1 Spatial variability

Much of the early work on spatial variability of crop yields using uniformity trials was

reported in a remarkable paper by Fairfield Smith (1938). In fact, he presented one of the

earliest yield maps derived from data collected in Australia during December 1934 and it

is reproduced here as Figure 1-2. It shows approximately 100% variation in yield from

lowest to highest across the area. Using this data, and data from other authors that had

been reported earlier, Smith attempted to negate the influence of sample area and normalise

the CV for each study to represent a 0.01 ha area. Some of the results are listed in Table 1-

11, but this process is crucially dependent on assumptions regarding individual sample

size and method of collection (i.e. bulking etc.).

 

8 9 10 11 12 13 14 15 16 d.kg.per4sq.fl Scale

0 1 2 3 4 5 6 7 feet

-I-:-

0 1 2 metres

 

 

1.69 2.07 2.45 3.01 tomes/ha

Figure 1-2. 1934 Wheat yield map - Australia (after Fairfield Smith, 1938).
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Crop Year Location Plot Size Number of Mean Yield CV for 0.01 b’

(n12) Plots (t/ha) ha (%)

wheat 1911 Rothamsted 8.10 500 2.2 6.3 0.46

1932 Rothamsted 0.08 1092 2. 5 4.4 0.54

1913 Nebraska 2.80 224 2.4 4.9 0.54

1920 Missouri 0.30 3100 1.4 3.7 0.80

1920 Missouri 0.30 3100 1.4 6.9 0.58

1938 Australia 0.05 1080 3.2 1.7 0.74

1938 Australia 0.20 54 2.7 3.1 0.54

irrigated 1935 Idaho 1.40 1440 4.2 10.5 0.22

wheat

potatoes 1924 West Virginia 3.30 186 14.6 10.5 0.45

West Virginia 3.30 290 10.5 18.9 0.29

West Virginia 3.30 3309 7.1 25.1 0.32

 

Table 1-11. CV estimates for crop yield within 0.01 ha area and associated heterogeneity

index 'b' (adapted from Fairfield Smith, 1938).

More significantly Fairfield Smith (1938) showed that the variance of crop yield per unit

area could be described by an empirical law (Equation 1-15)

log Vx = log V1-— 17' log x (1-15)

where:

Vx = Yield variance per unit area

V1 = constant

’ = uniformity index

x = area of plots

The model incorporates a uniformity parameter 'b ’ (a coefficient of yield uniformity where

the crop yield uniformity increases with increasing b ) which is listed for the various

experiments in Table 1-11. The index 19’ may prove useful in the development of field

heterogeneity thresholds as an aid to site-specific crop management.

29



Variability in Soil Attributes 6' Crop Yield

 

grain yield

 

 

Author/s Crop Sampling design it (t/ha) 0V. (7:)

Taylor et al. (1997) Barley 29 samples (0.026 ha) 3.1 21

Barley “ 6.7 17

Barley “ 7.3 21

Barley ' 6.8 18

Long at al. (1995) Wheat 5.4m' plots (864 samples in 0.5 ha) 1.5 16

Guitjens (1992) Wheat 1985 1m lag (500m trsecl) 3.6 36

Meet 1985 ' 4.6 27

M831 1985 1m lag (171mtrsect) 3.6 25

Wheat 1985 1m lag (154mtrsect) 4.2 27

Wheel 1986 1m lag (500m trsect) 2.9 40

Meet 1986 “ 5. 1 15

Meat 1986 1m lag (171mtrsect) 2.9 34

Meal 1986 1m lag (154m trsect) 4.8 19

Cassel el al. (1988) Corn 39 samples (3 x 198m trsect) 7.4 12

Corn “ 8.5 11

Corn “ 7.9 13

Corn " 7.7 19

Mulla (1993) Wheat 15m lag (4 x 650m lrsecl) 4.1 29

Khakural et al. (1996a) Com 30m leg (4 x 430m trsect) 10.7 7

Soyabean ' 3.8 7

Mallarino et al. (1996) Corn 15 rn grid (3-6 ha) 11.2 15

Corn " 10.1 16

Corn " 12.5 11

Nolin et al. (1996) Corn 30 m grid (10 ha) 7.9 4

Miller et al. (1988) Meat 20 x 50m grid (10 ha) 3.4 27

Pierce et al. (1995) Corn 30m lag (8 trsect) 6.8 9

30m lag (7 trsect) 7.6 7

30mlag(131rsect) 10.5 5

Everett & Pierce (1996) Com 1992 30m lag (60 obs in 23 ha) 9.9 13

1993 " 9.4 9

1994 “ 12.9 4

Karlen et al. (1997) Corn 1992 45 m‘ random (36 he) 11.4 12

Corn 1994 “ 10. 6 12

Soybean 1993 " 1.8 45

Soybean 1995 ' 3.3 9

Com 1992(nolill) " 11.6 7

Corn 1993 (no llll) “ 4.9 27

Corn 1994 (nolill) " 11.4 7

Com 1995 (nolill) “ 9.6 6

Soybean 1992 (no till) ' 3.2 6

Soybean 1993 (no till) " 1.9 43

Soybean 1994 (no till) “ 3.8 8

Soybean 1995 (no till) ' 3.4 6

Burrough a Swindell (1997) Rapeseed 1993 continuous (1.25) 2.0 22

Wheat 1994 ' 6.4 17

Barley 1995 “ 5.5 14

Shlel et al. (1997) Wheat continuous (16m) 11.4 16

Wheat “ 9.2 6

Rapeseed ' 3.6 12

Rapeseed " 4.7 10

MEDIAN 14

 

Table 1-12. Mean and CV for crop yield within increasing sampling area.
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A number of more recent classical statistical studies on yield variability are recorded in

Table 1-12. Over a wide range of sample areas and sizes, the median CV value of 14% falls

within the range of estimates reported by Fairfield Smith (1938). For the crops examined,

the median yield variability increases as: soybean (8%) < com (11%) < rapeseed (12%) <

barley (18%) < wheat (27%). For other crops, Schneider et al. (1996) report a median CV

value of 33% for potatoes under centre-pivot irrigation. These values are reflected in the

study of Bresler et a1. (1982) where CV values for corn under various irrigation and tillage

treatments ranges from 11 - 20% and 12 - 26% for irrigated winter wheat.

Gales (1983) in a substantial review of wheat and barley variation and factors affecting it

in Britain also found a CV = 26% for one wheat variety grown at 11 sites over 8 yrs and a

CV = 22% for a second variety grown at 7 sites over 10 years. By analysing the CV of the

fundamental crop physiological components that make-up yield (i.e. mean grain mass

and number of grains per area) Gales (1983) reported that the number of grains per area

was between 2 and 3 times more variable than the grain mass. The conclusion appears to

be that environmental factors that effect grain per unit area, such as climatic and soil

conditions prior to anthesis, are very important.

This significant effect of soil type has been demonstrated by Carr et a1. (1991) where the

within-field yield CV for wheat (10 m2 samples within 0.25 ha), harvested according to

soil type, ranged between 7% and 37% in one year. It is also noted that as yield increases

towards the potential crop yield, the variability within a field tends to decrease. This is

most noticeable in irrigated crops where moisture deficit can be controlled. Guitjens (1992)

sampled irrigated winter wheat in 1.6 m2 continuous plots along two transect lengths and

concluded that as water deficit increased and yield correspondingly declined, the CV

increased linearly. Hunsaker (1992) sampled sixteen 12.2 m2 plots of irrigated cotton within

each of twelve 0.35 ha basins under three irrigation treatments. In two successive seasons,

CV's for high to low irrigation treatments ranged from 7 - 17% and 12 - 26% displaying a

significant decrease in CV as irrigation (and yield) increased.

The spatial structure of this variation has been less well studied. Guitjens (1992) who

reported that greater uniformity in wheat yields along transects associated strongly with

higher yields also found the autocorrelation distance to vary from 5m to 27m. Unexpectedly,

the autocorrelation distance showed no significant correlation with yield or CV. It could

be reasonably expected that greater autocorrelation distances would be associated with

more uniform crops.

Table 1-13 shows the variogram parameters for a number of recent yield studies with a

median range value of 88m. The median nugget ratio of 37% suggests that crop yield may
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Yield

Author/s Orop Sampling design Model 00 (t/ha’) C (t/ha’) a (m)

Mulla (1993) . wheat 15m lag (4 x 660m transect) spherical 0.84 1.14 70

Nolin et al. (1996) com 30m grid (10 ha) exponential 11.15 13.67 '51

Pierce et al. (1995) corn 30m lag (7 trsect) spherical 0.68 0.424 231

Everett & Pierce (1996) com 1992 30m lag (60 obs in 23 ha) spherical ' 0.54 1.29 85

1993 " spherical 1.32 0 8

1994 “ spherical 0.33 1.15 20

Kristensen et al. (1995) Meat 1993 continuous (2-3 seconds) exponential 0.90 1.02 '150

1994 “ " 0.18 0.50 ‘102

bartey1993 “ " 1.19 1.13 '183

1994 " “ 0.30 0.48 ‘123

Lutticken et al. (1997) wheat 1993 continuous (time unknown) spherical 0.20 0.60 85

barley 1994 “ “ 0.30 O. 60 80

Meat 1993 “ ‘ 0. 20 0.50 85

barley 1994 " " 0.24 0. 43 75

wheat 1993 " " 0.40 1.05 75

barley 1994 ' “ 0.18 0.65 70

MEDIAN 0.37 0.63 83

 

*apparent range equivalent (3 X a': refer Equation 1-13)

Table 1-13. Semivariogram model parameters reported for crop yield.

be expected to display moderate to strong spatial structure in the field. The median range

value is comparable to the 80m range of influence for dryland wheat reported in an earlier

study by Miller et a1. (1988). Haneklaus et a1. (1997) continuously sampled wheat, rapeseed,

barley, oats and beans over an area of 880ha on three farms and recorded a mean and

median range value of 90m.

1.5.2 Temporal variability

While the above studies confirm that spatial variability in crop yield occurs within fields

and that its magnitude varies between fields, it should also be important for farm

management to quantify the extent to which crop yield varies with time. Sadler et a1.

(1995) and Karlen et al. (1997) show that annual changes in yield CV values for whole

fields can be quite significant and the effect can be different for different crops and different
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soil units within the field. Significant temporal variability would increase the difficulty of

yield goal determination and operations planning.

To quantify this variation, Porter et al. (1996) studied corn and soybean yields for 10 years

in small plots within 1 ha areas at 3 locations. Their results show that the seasonal (temporal)

variability in continuous soybeans was 3 times greater, and in continuous corn 4 times

greater, than the variability between plots in any year (i.e. spatial variability). On an even

finer sampling scale, Thylen (1997) continuously sampled within a 12 ha field the yield of

four crops in a four year rotation (oats/barley/oats/barley). The yield CV values (in

chronological order) ranged from 10% to 21% for oats and 17% to 14% for barley.

In a more innovative, yet coarser -scale study, Eghball & Power (1995) employed a fractal

analysis to the annual average yield of barley, maize, oats, peanuts, rice, rye, sorghum,

soybeans, wheat and cotton fibre in the USA over the 61 year period from 1930 to 1990.

The fractal dimension (D) (Mandelbrot, 1977) was calculated using the semivariance

estimated for different year intervals, with a value of D close to 1 suggesting that long-

term variation dominated (genetic and cultural practice improvements) whereas a value

approaching 2 suggests the dominance of short-term variation (climatic).

While improvements in plant breeding and increased fertiliser, pesticide and herbicide

use contributed to a strong increase in yields during the study period, the results showed

that there were significant differences between the ten crops. The values of D ranged

from 1.20 for rice to 1.47 for oats. Rice displaying the least effect of short-term variation

while oats and soybeans showed a more pronounced effect, suggesting that the later two

crops may be particularly sensitive to annual variation in some environmental growth

factors. It is not unexpected that rice growing techniques may reduce the yield sensitivity

to annual climatic variability.

At the field scale, grain yield data for maize (1953 to 1993) under different fertiliser

management regimes was used in a similar temporal yield variability study by Eghball et

a1. (1995). While no significant differences in D values were found between the treatments,

the values ranged between 1.958 and 1.996 indicating the dominance of short-term temporal

variation. The authors conclude that for this study location (western Nebraska)

management practices cannot override the strong influence of variable environmental

conditions. This may well be the case at the field scale in most modern field cropping

regions.

Where long-term variability can be demonstrated it may be possible to predict crop yields

over time and model temporal plant growth. However, high values of D which may indicate

33



B.M. Whelan - Reconciling Continuous Soil Variation 8 Crop Yield

that environmental factors rather than management practices affect the year-to-year

variability of crop yields, would prove more complex to manage. Values of D also indicate

the uncertainty or risk involved in growing a particular crop in a particular location.

Increased yield variability in the short—term (higher D) indicates greater risk in crop

production.

It should also be noted that the fractal dimension D is scale independent and the values of

D depend on variability rather than yield so values of D may be compared (Eghball and

Power, 1995). It is therefore a useful device for comparing the magnitude of temporal

variation between fields and may also be useful in establishing temporal variability

thresholds in the same manner as suggested for b and D in spatial variability.

1.5.3 Joint Space-Time Models

The development of space-time models remains in its infancy although several have been

suggested (e. g. Stein, 1986; Posa, 1993; Stein et al., 1997). Buxton & Pate (1994) have used

a joint temporal/spatial variogram in a 3-dimensional kriging process to estimate pollutant

concentrations in time and space. The validity of their method being confirmed by

Dimitrakopoulos & Luo (1994). Heuvelink et al. (1996) applied a more flexible model to

the prediction of soil moisture under a pine forest.

McBratney et al. (1997) have also documented a number of simple, general models for the

analysis of stationary, non-stationary and intermediate data sets and examined wheat dry

matter and grain yield from the Rothamsted Classical Experiments (Johnston, 1994). The

results show that the temporal variance between locations in the field may be up to 4

times the spatial variance in drymatter production and 6 times the spatial variance in

grain yield.

1.6 SUMMARY

Within-field variability of soil attributes, crop pest infestations and the resultant crop yield

is obvious. The magnitude varies with attribute, location and time. Table 1-14 lists median

CV values for the variables examined in this chapter which may be taken as a general,

simple guide to the magnitude of variation that may be expected at the within-field scale.

These may possibly be used as a basic benchmark for variability at this scale.

Offering a more comprehensive View of variability in a number of these attributes are the

figures in Table 1-15. These values agree with the median values calculated by Haneklaus
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Attribute Media” CV (°/°)

Soil Texture Sand 37

Silt 18

Clay 18

Soil Structure Bulk density 5

Soil 0M. 18

Soil Moisture eg 11

6v 9

Soil Nutrients N 38

38

K 23

Soil pH 5

Crop Yield 14

 

Table 1-14. Median CV values for important soil lcrop system attributes.

et a1. (1997) for attributes studied on 18 fields. They may also be considered as generalised

representations of expected variability at the within-field scale and could be used as

surrogates for the parameters in unsampled fields or initial estimates in modelling

procedures. The provision of a spatially dependent range (a) may also prove useful in

establishing the sample spacing for initial sampling schemes in unsampled fields. With

the exception of soil moisture, these figures tend to suggest a 60m sample spacing as

being a maximum required to accurately capture the spatial variability in most soil

attributes. Franzen 8: Peck (1995) compared the abilities of a 100m and a 66m sampling

grid to delineate the spatial features in soil pH, P and K observed on a finer 25m grid.

They concluded that the 66m grid provided sufficient detail but that the 100m grid delivered

an unacceptable loss of information. Similarly, Haneklaus et a1. (1997) suggest a soil

sampling grid of between 50m and 100m for reasonable spatial delineation.

The values in Table 1-15 are similar in magnitude to the average variogram parameters

calculated by McBratney 8: Pringle (1997) in a recent variability review of a number of

soil attributes. They concluded that the degree of variability (variation doubling as area

increases from 0.1 ha to 1 ha) and structural ranges Suggested that management at the 1m

to 100m unit scale was potentially useful. These results tend to support such a hypothesis,
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Median Varlogram Parameters

 

 

Attribute CO C C0 + C a (m) spatial structure

Son Texture (%2) 2.4 9.3 11.7 63 strong

Soil Moisture (%2) 0.00049 0.00045 0.00094 22 moderate

Soil Nitrogen (mgMg’) 1.2 2.0 3.2 117 moderate/strong

Soil Phosphorus (mg/kg?) 26.9 1 1.0 37.9 180 moderate/weak

Soil Potassium (mg/kg?) 887 391 1 278 1 57 moderate/weak

Soil pH (units?) 0.021 0.15 0.171 105 strong

Crop Yield (tlhaz) 0.37 0.63 1.0 83 moderate/strong

 

Table 1-15. Median semivariogram model parameters for important soil lcrop
system attributes.

with the proviso that attributes that display a moderate to weak spatial structure will

prove more difficult to compartrnentalise or classify into homogenous management units.

Importantly, the variation in attributes of the soil—crop system highlighted by this review

may give rise to economic, environmental and societal problems on cropping enterprises

under traditional 'uniform' management (Lowenberg-DeBoer 8: Swinton, 1995;

Wollenhaupt 8: Buchholz, 1993). In general, the problems as summarised in Table 1-16,

arise from a decision to use 'mean—of—field' information to guide the amelioration of an

area which may result in zones being under- or over- treated.

For the majority of impacts listed in Table 1-16, the implications are obvious and require

no further elaboration. The significance of excess denitrification products provides an

exception. In areas with soil nitrogen levels above crop requirements, there is a greater

opportunity for the excess nitrogen to result in increased production of nitrous oxide (N20)

through the denitrification process. N20 release is believed to contribute to the global

greenhouse effect and is instrumental in the breakdown of stratospheric ozone (Hauck,

1984)

At present, the problems of input resource waste and failure to attain optimum yield remain

economic dilemmas of the individual producer. Escaped fertiliser and pesticide, along
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Economically Excess Excess Fertilisers Excess Excess Excess Pesticide Pesticide

Attribute Significant Fertiliser in Tailwater or Denitritication Pesticide in Tailwater or Residues

Yield Loss Cost Groundwater Products Cost Groundwater in Soil

Soil Type / Texture / J l l \/ J J

Soil Structure J J J J J

% Soil OM J J J J J J J

Soil Moisture J J J J J

Soil Nutrients / i/ I/ J

Soil pH J J J ./

Pest Infestations / v/ \/ \/

 

Table 1-16. Problems associated with not treating spatial variation in influential
soil/crop system components.

with contamination of follow-on enterprises with residual pesticides, has entered the public

domain. Legislation has been foreshadowed on the right to use and apply chemicals, and

on containment strategies to reduce the contamination of waterways and food chains.

Failure to comply will undoubtedly bring another economic dilemma for the individual

producer.

Technology is now becoming available to tackle the operational difficulties inherent in the

problems raised by spatial variability. Providing further impetus is the now greater general

awareness of the natural boundaries limiting resource requirements, availability and

application. Given that this review points to the conclusion that a much finer delineation

of homogeneity in management units is required than presently utilised, it may therefore

be efficacious to attempt to account for, and operate with, spatial variation as the solution

to the potential problems of soil spatial variability.

Chapter 2 will review the progress towards developing a farm management system that

will incorporate a finer scale treatment of variation.
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CHAPTER 2

Site-Specific Measurement and Management of Attributes

2.1 INTRODUCTION

The preceding review highlights the variability that has been observed in the major

components of crop production systems. It also raises the concept that the scale of spatial

variation in crop yield is critically dependent on the scale of spatial variation in significant

field-based factors that contribute to crop yield. This interrelationship has tended to be

overlooked by farm managers as operational logistics enticed them towards larger field

sizes. Given the spatial relationships presented in Chapter 1 it is entirely feasible that the

incorporation of more variability within each field may have followed.

With the advent of tools such as the differential Global Positioning System (dGPS),

Geographical Information Systems (GIS), and miniaturised computer components there

is now an increasing interest in, and quantification of, the variability in soil attributes,

crop yields, pest infestations and climatic factors. These tools allow agricultural enterprises

to gather more comprehensive data on this production variability in both space and time

and has fostered a new attempt to understand and manage the variation at the Within—

field scale.

The desire, and ability, to monitor and respond to variation on a fine-scale is the goal of

Precision Agriculture. This desire has both an economical and environmental basis.

Matching inputs to crop and soil requirements as they vary within a field should improve

the efficiency of resource use and minimise adverse environmental impact.

At present, monitoring and mapping the spatial variation in small-grain crop yields is

receiving much publicity in Australia. Yield mapping is only one component of a Precision

Agriculture system (refer Figure 3) and small—grains is not the only enterprise to embrace

the ideas. Crop yield monitors are also available for potato, peanut and forage harvesters

and are under development for cotton, sugarcane and a range of horticultural crops.

Achieving the operational harmony called for in a site-specific crop management system

will require a holistic approach to describing, and delineating suitable responses to, the

spatial variation found in the influential components of a cropping system. A union of

data acquisition operations, information processing and decision formulation procedures

would be necessary to successfully complete this process. Ideally, for many ameliorative
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operations the whole process would be undertaken in 'real-time' as depicted in Figure 2-1,

however many technological and agronomic barriers remain. This Chapter will review

the progress towards constructing such a management system.

 

A REAL-TIME

INFORMATION— DECISION— ACTION SYSTEM

  
INFORMATION —) OPTIMAL DECISION —-> ACTION

0 existing gee-referenced ° amp growth models . differential tillage,
information 0 spatial models for soil fertilisation, sowing

- telemetry variables etc.
- real—time sensed 0 economic models

information

RELYING ON ACCURATE OBSERVATION AND MODELLING OF SOIL VARIATION    
Figure 2-1. A proposed real-time system linking information acquisition,

decision making and action operations (McBratney & Whelan, 1995b).

2.2 COLLECTING DATA ON SPATIAL VARIABILITY

Acritical requirement for collecting data on the spatial variation in any land-based attribute

is an ability to accurately resolve ground positions in the field. All data must be geo—

referenced to facilitate the production of a representative field map and for the purpose of

correlating the information on various attributes obtained from a field. The technology is

available to determine the position of a stationary/moving vehicle with increased accuracy

using satellite-based navigation systems or land-based triangulation telemetry systems.

Local triangulation systems rely on calculating a position relative to a configuration of

ground based beacons. A number of radio-frequency, time-multiplexing positioning

networks that allows radial distance real-time positions to be calculated and converted to

x,y data have been explored (e.g. Hiel et al., 1986; Palmer, 1990). The beacons may be

permanently fixed in position or moved to allow coverage of new areas, however the

position must always be initially surveyed. These systems are generally low-powered

and currently have operating radii of 5-25 kilometres (km). Satellite navigation systems

will be discussed here because they are now becoming ubiquitous within agriculture and

the wider community.
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2.2.1 Satellite Navigation Systems

Two satellite systems have been developed. The NAVSTAR Global Positioning System

(GPS) is owned by the government of the United States of America, and the Global

Navigation Satellite System (GLONASS) is controlled by a consortium headed by the

Russian Government. Both systems are built using a space segment comprising a

constellation of dedicated satellites, a control segment that monitors, manoeuvres and

updates information to the satellites, and a user segment trying to determine accurate

ground position. The systems are basically similar (see Kruger et al., 1994 for comparisons)

however far more receivers have been developed by commercial enterprises to utilise the

information from the GPS satellites so its operation will form the basis of the following

review.

Methods of position calculation are beyond this general review and readers are referred

to Hofmann-Wellenhof et a1. (1994) for a thorough explanation of theory and practice or

the NAVSTAR technical characteristics reference (USAGovernment, 1993). In basic terms

a user's position is determined by resection using the distances measured to the satellites.

These distances are most commonly estimated using satellite orbit, current position and

time information uniquely coded into a transmission signal from each satellite. The distance

to four satellites must be instantaneously determined by a remote receiver in order to

obtain a point position in three dimensions. One satellite each for resolving latitude,

longitude and elevation and the fourth is required to determine nonsynchronisity between

the satellite and receiver time pieces.

The GPS satellites are currently controlled by the US. Department of Defense who regulate

the quality of information available to civilian users. This regulation, known as 'selective

availability' (SA), is initiated by dithering the satellite clock and position information that

is included in the coded signals available to non-military users. Areduction in the accuracy

of satellite distance determination and therefore remote receiver position results. This is

especially the case in the 'stand-alone' mode of operation whereby a ground position is

calculated using a single receiver that tracks and obtains data from the satellites. The

specified accuracy with SA has a 95% confidence interval of i100 metres (m) and a $300 m

99% confidence interval. Without SA the 95% confidence intervals are 3-35 m (Kruger et

al., 1994 ). Georgiadou & Doucet (1990) have demonstrated that SAcan increase positioning

errors from 15m to 100m.

The errors introduced by SA can be reduced with the introduction of a second receiver

installed at a fixed, surveyed position. The position data collected by the fixed receiver

can be used to calculate a correction factor that may be applied to the data gathered by a
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mobile receiver. Using a GPS in this operational configuration is known as differential

GPS (DGPS). This correction may be stored and applied to the mobile receiver's data

following a reconnaissance or survey operation (post-processing) or used as individual

positions are calculated by the mobile receiver (real-time) using a radio frequency

communication link.

 

 
 

 

  
 

Figure 2-2. Operational configuration of a real-time Differential GPS (DGPS).

Figure 2-2 depicts the basic set-up of a real-time DGPS. The mobile receiver (A) and the

fixed position base unit (B) interrogate the navigation satellites (C). (B) continually

compares its surveyed position with that calculated using the data from the satellites (C).

A correction (differential) is computed to truth the incoming data and the differential is

relayed by radio frequency to the mobile unit (A). The mobile unit is thus able to more

accurately calculate its position from the satellite data (C) and the differential supplied by

the base station (B).

Real-time DGPS allows instantaneous position reckoning and the associated ability to

store position information with other observations while they are being observed. Initial

studies on civilian use of DGPS with user controlled base stations suggested an accuracy

between 2-4m was attainable if the two receivers were positioned close together (Beser &

Parkinson, 1982; Kalafus et al., 1983). This accuracy would degrade at approximately 1cm

per km (Ashjaee, 1985) until the separation distance reached 100 - ZOOkm (Brown, 1989;

Kee et al., 1991). Further separation would subject the user to position error up to

approximately 15m at 500km (Kruger et al., 1994). Such degradation would limit the

usefulness of operating DGPS with a single base station to short-range operation.
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If the differential signal is broadcast on a PM frequency sideband the system can

accommodate multiple users within the effective range. Such differential correction signal

coverage is available for many of the major cropping regions in Australia through Ausnav

Services Pty Ltd.‘II who lease a proprietary programmed receiver to the user.

The differential calculated using one fixed receiver reduces/removes the GPS system errors

produced by SA, the internal position and time monitoring errors associated with the

satellites and the time monitoring errors associated with the receivers. The range restrictions

that are still incurred are a result of variation within the atmospheric layers through which

the satellite signals are propagated as well as internal receiver noise and multi-path signal

reception.

An ionospheric delay, imposed on the transmissions as a function of signal frequency and

the number of free electrons along the path, will therefore vary with satellite elevation.

GPS satellites transmit a basic model of this delay that reduces the ionospheric error to a

mean of 50% of the true effect and using one base—station DGPS can only improve this

within 185 km separation (Brown, 1989). A tropospheric delay is induced as a function of

local elevation, humidity and temperature and this is not corrected in single base-station

DGPS (Brown, 1989).

In general, using a single fixed base-station assumes that all errors applying at this reference

station should apply exactly to the mobile but as separation distance increases the two

receivers may be observing different satellite information errors and receiving the satellite

signals Via different atmospheric travel paths (Ackroyd 8: Lorimer,1994). However, these

effects are spatially correlated between separated receivers (Loomis et al., 1991; Clark,

1992) so they may be overcome by the use of two base stations as proposed by Tang et al.

(1989) or multiple base stations (Brown, 1989; Loomis et al., 1991,' Mueller et al., 1994) that

allow the spatial pattern of these "line of sight " errors to be modelled. The proposed

methods weight the differential corrections computed at various ground stations and

combine them to obtain an improved estimate of errors at a users location. The weightings

are a function of the correlation distance of the GPS errors and the distance between user

and the reference stations. Tang et a1. (1989) concluded that the error reduction with two

base stations appeared as a function of separation geometry. The multiple base station

systems, with a wide spread of fixed reference points is less susceptible to this problem

(Loomis et al., 1991).

lAusnav Services Pty Ltd., PO Box 7396, Canberra Mail Centre, ACT 2601
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A solution has been designed that incorporates a Wide network of fixed position receivers

(D) that communicate with the GPS satellites (E) and calculate a correction algorithm which

is then passed to a master station (F). The master station computes a vector correction

from all the individual stations and relays this to a general communications satellite (G)

that increases the broadcast range to remote users (H). The correction transmission is

supplied in a standard format (RTCM-104) defined by the Radio Technical Commission

for Maritime Services (Kalafus et al., 1986). This operational configuration is known as

Wide Area Differential GPS (WADGPS) and is capable of providing sub-metre accuracy

that is spatially independent of mobile receiver location within the network (Figure 2-3).

 

 

   
Figure 2-3. Operational configuration of a Wide-Area Differential GPS (WADGPS).

This form of correction is available in many countries (including Australia) through the

competing commercial operations of Fugro Starfix§ and Racal Survey1 The remaining

spatially uncorrelated errors in the user segment are receiver noise, which should be

reduced as electronic technology continues to advance, and multi-path signal reception

that can be significantly reduced using antennas that will not accept signals from below

the local horizon.

More accurate modes of operation are available whereby the distance to satellites is

determined in a codeless manner using the phase change of the information carrier signal

between propagation and reception (Larsen et al., 1994). This method offers potentially

greater accuracy but requires more expensive receivers and user provided base stations

with radio links. The range of these systems and the cost will restrict their use to very

detailed survey, terrain modelling or vehicle guidance at present.

§ Fugro Starfix 18 Prowse St, West Perth, WA 6005. f Racal Survey Australia Ltd. 4 Ledgar Rd, Balcatta, WA 6021.

44



B.M. Whelan - Reconciling Continuous Soil Variation 8 Crop Yield

In an agricultural context, the required location accuracy and precision will depend on

the operation being undertaken. Stafford 8: Ambler (1994) suggest and accuracy of i 1m

for the operation of a boom spray with controllable 2mboom sections; <10cm for controlling

spray overlap between adjacent passes; and for monitoring crop yield the resolution may

only be required to be below the width of the cutter-bar (i.e. i 3m for a 5m cutter). In

precision tests they show that prior to S/A operation an accuracy of 1.9m was obtainable

in 95% of measurements (root mean squared error (RMSE) X 2) using stand—alone GPS

receiver and a correction signal transmitted for a broad area. This extended to 5—15m with

S/A, but prior to the 1993 completion of the GPS satellite constellation. After the full

constellation was airborne, a tram-line test using an in-field base-station found

improvement to 2.7m (easting ) and 1.9m (northing).

Delcourt & De Baerdemaeker (1994) calculate a 1m error in 95% of measurements as a

requirement for soil sampling to delineate spatial units. This accuracy should also be the

aim for crop yield monitoring as any error will be incorporated into the final map. The

belief that the cutter-bar width can dictate the GPS resolution is erroneous.

There are now numerous DGPS receivers commercially available with manufacturer

reported accuracy of 1.0m (2 x RMSE). Saunders et a1. (1996) proposed static and dynamic

tests to verify the suitability of receivers for Precision Agriculture which highlighted the

variability in performance attributable to receiver specification. Performance will also be

location and time dependent.

In general, the pseudorange GPS method of position determination would appear to

adequately fulfil the requirements for monitoring crop yield and possibly boom spray

operation. It is not yet suitable for accurate spray overlap control, vehicular guidance or

digital terrain modelling. The more expensive operations such as Real-Time Kinematic

(RTK) DGPS carrier phase systems and the synchronous use of DGPS and dead-reckoning

instruments have been shown to produce centimetre level accuracy and precision (Van

Zuydam et al., 1997; Le Bars et al., 1997) and should be employed for these tasks.

In the future, it may be possible to combine the GPS and GLONASS systems to increase

the number of satellites visible at one time and improve reliability and accuracy. GLONASS

may bring a number of benefits such as a constant and more easily modelled bias because

3/A is not imposed and a higher satellite inclination (65 deg compared to 55 deg) which

improves satellite Visibility.
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2.2.2 Attribute Observation Strategies

Some data on soil and crop variability may already be available. Regional soil maps are

compiled from coarse-scale survey information but may be useful as an initial indication

of the soil variation to be expected on a farm level. Soil sampling and testing that may

have been carried out in previous years would also provide useful data on temporal

variation and soil response to treatment strategies.

Discrete Sampling

Field observation has been traditionally based on discrete sampling procedures using either

a grid-based or statistically based random sampling strategy. Samplingby grid is at present

a laborious procedure if large areas are to be tested. For the production of accurate maps,

the appropriate sampling scheme and minimum lag must be determined, and as

highlighted in Chapter 1, the inherent variability expected in most attributes would suggest

the principal sampling lag should be as small as possible. This inevitably leads to a conflict

between accuracy and sampling cost.

To increase the speed and efficiency of such sampling (and eventually reduce the per-

sample cost) a small low ground-pressure utility vehicle such as a 4 wheel motorbike,

equipped with positioning technology and an industrial grade personal computer may be

employed. Such a unit may be used to collect soil samples for ex situ chemical analysis or

perform in situ measurements of attributes such as nutrients (Wild et al., 1997), moisture

content by TDR (Zeglin et al., 1989), structural interpretations using air permeability (Fish

8: Koppi, 1995) and salinity by electromagnetic induction (EMI) (Rhoades, 1992). The

position of the sample site being logged simultaneously using the on-board positioning

technology. A further step towards greater automation in sampling has been made by

McGrath & Skotnikov (1997) who present a traillable sampling, packaging and labelling

machine for field soil sampling.

Much of the soil and crop attribute sampling for Precision Agriculture has been conducted

manually on grids of 100m or larger. Birrell et al. (1996) graphically depict an observed

increase in the confidence range for the spatial representation of soil pH, K and P associated

with an increase in sampling grid from 25m to 100m. The common choice of grid size

appears to indicate that reducing sampling cost has triumphed over accurate spatial

resolution. Such economic rationality will always restrict the detail in information

obtainable from discrete sampling procedures. While the procedure will continue to be

employed, it is imperative that more intensive methods of data gathering are developed.
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Remote Sensing

Remote sensing encompasses techniques for collecting data on the spatial variation of

both soil and crop parameters using aerial or satellite observation platforms. Most

techniques rely on the fact that different landcovers have often characteristic ambient

reflectance signatures in the Visible and/or non-Visible electromagnetic (EM) spectrum.

Images of this reflectance covering various spatial resolutions may be captured using

photographic film, video or digital media. Satellite observed images that are available to

civilians have a typical resolution of 20 m2 to 30 m2. The resolution of images captured by

aerial platforms is generally a function of observation altitude and media composition.

Harrison & Iupp (1989) list the soil attributes most influential on reflectance as moisture >

OM > texture > structure > iron content. Unfortunately, the influence is exerted by the

characteristics of the top few millimetres of soil, which (with the possible exception ofOM

and texture) may notbe representative of the COndition of the underlying topsoil. However,

reflectance measurements from bare soil using the visible and near infrared (NIR)

wavelengths have proven useful in assessing variability in soil texture (e.g. Stoner &

Baumgardner, 1981) and OM content (e.g. Krishnan et al., 1980; Bhatti et al., 1991) and in

turn may be applied to inferring variation in yield potential in the future.

Airborne radar imaging units are able to penetrate further into the soil. The information

gained represents the top 5 cm of soil and can be analysed to retrieve accurate

determinations of soil moisture content (Engman, 1990). TheAmerican NationalAeronautic

and Space Administration (NASA) operates one such system known as Airborne Synthetic

Aperture Radar (AIRSAR), has tested a system in 1994 from the spaceshuttle called

Spaceborne Imaging Radar-C/ X-Synthetic Aperture Radar (SIR-C/X-SAR), and has plans

for a dedicated satellite based system (LITESAR) to be launched in 2001.

The emission of gamma radiation, particularly from a radioactive potassium isotope (40K)

has been remotely sensed and used to distinguish soil parent materials and has been

suggested for use in conjunction with terrain models and aerial photographs in estimating

the spatial variability in soil materials (Cook et al., 1996).

The reflectance response of vegetation displays more potential. Reflectance in the red (0.6

- 0.7 pm) and NIR (0.8 - 1.1 um) wavelengths is known to be influenced by agronomic

practices that effect the crop leaf area index (LAI), biomass and percent soil coverage

(Daughtry et al., 1980). Variation in reflectance response across a field may then be used

to estimate variation in yield potential or target areas for amelioration. Bausch et a1. (1997)

assessed plantN status using a Nitrogen Reflectance Index (a ratio of NIR/green reflectance
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across a crop is compared to the ratio expected from a crop with no deficiency) and suggest

the index provides a rapid assessment of N sufficiency. Plant photosynthetic activity and

thus potential crop yield has also been related to a normalised difference vegetation index

(NDVI) based on the ratio of NIR minus red reflectance, divided by NIR plus red reflectance

measurements (Taylor et al., 1997). A modified version of NDVI (mNDVI) has been

presented by Iurgens (1997) and is calculated as the ratio of NIR minus medium infrared

(MIR), divided by NIR plus MIR reflectance measurements. The author reports that such

an index can be useful in determining the reduced cellular moisture content of plants

damaged by frost. Data from AIRSAR and SIR-C/X-SAR imagery has also been used to

calculate variation in leaf area index within agricultural fields (Paloscia, 1998).

Reflectance measurements in the thermal infrared range (10.5um to 12.5um) may be used

to monitor variation in crop canopy air temperature in a transpiring crop. This is believed

to provide an integrating indicator of the underlying spatial variability in plant-available

soil profile moisture status (Yates et al., 1988). This variability has been further correlated

with soil texture and structure variation (Jackson, 1982; Smith (at al., 1989) which affect

soil moisture content and availability. Gauthier 8: Tabbagh (1994) directly measured the

thermal response of soil from an aerial platform and successfully detected spatial variability

in soil moisture content and could delineate textural changes as soil units.

Aerial Video imagery has also been used to calculate percentage land affected by saline

soil areas using red narrow band and colour infrared reflectance (Everitt et al., 1988). Brown

et al. (1994) utilised aerial still-video camera images captured using four discrete spectral

windows to discriminate between seven weed species in a corn field. The spectral regions

were chosen to allow separation of the different plant species based on their individual

spectral signatures. Hanson et a1. (1995) used aerial colour and NIR imaging to classify

8.3 m2 cells within two young wheat fields as either infested or not with wild oats. They

achieved a minimum 80 % correct classification and suggested that the resolution of

digitised film images was superior to that obtained from a digital camera. Colour infrared

and panchromatic NIR in conjunction with GPS and GIS tools proved useful for Everitt et

a1. (1994) in the detection and mapping of blackfly infestations in citrus orchards.

Table 2-1 summarises the remote sensing techniques and the relevant attributes that can

be estimated. In general, employing these techniques prior to sowing a fallow field may

provide data on soil moisture and texture variability and during the cropping phase

vegetative growth may be monitored for variation resulting from nutrient deficiencies,

water stress or pest infestation. This form of data appears suitable for quantifying more

coarse-scale variation but as the resolution of the technology increases, and ground-truthing

is improved, this may become a more useful tool for assessing small-scale variation.
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Observation technique Platform Attribute estimated

soil crop

Visible/ NI Fl reflectance Aircraft/Satellite Moisture Leaf area index

Organic matter Biomass

Texture N status

Salinity Photosynthetic activity

Species identification

Physical damage

Thermal infrared Aircraft/Satellite Moisture Canopy temperature

Moisture stress

Vigour

Radar Aircraft/Satellite Moisture Leaf area index

Surface roughness Biomass

Surface roughness

Gamma ernmission Aircraft Mineralogy

Clay content

 

Table 2-1. Relevant remote sensing techniques and the attributes estimated.

Continuous Sampling

This refers to the practice of collecting samples for, or directly measuring, variables 'on the

go'. Collecting samples or direct data on the variable/s during a pass over the field produces

a more fluent data set and obviously enhances the observation resolution. In the case of

direct or 'real—time' data collection, there are no sample transport/storage concerns, no

laboratory variation to contend with and no delay in accessing the results. Ultimately, the

results would also be available in real-time so that farming operations dependent on

analysis outcomes may be accomplished in the same pass of the field.

The development of such sensing technology in the area of crop yield measurement has

progressed rapidly. The more complex chemical and physical attributes of soil and other

crop quality parameters is proving more difficult.
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Crop Yield Monitoring

The continuous measurement of crop yield has received much attention in the grain

industry. Borgelt (1993) briefly summarises the various approaches under review at the

time and a number have progressed to commercialisation (Figure 2-4). These sensors are

all harvester mounted and measure the flow of clean grain at some point in the harvest

process either directly by using flow impact force or volume, or indirectly through flow

density observation using attenuation of signals in the gamma ray, Visible, NIR, and

radiowave regions of the electromagnetic spectrum.

Murphy et a1. (1995) and Pierce et a1. (1997) give a more detailed account of the operation

of these commercialised sensors and it is apparent that these emerging technologies have

driven the development of real-time yield monitoring. Constructing spatial yield maps

from the data generated by these sensors requires that a calibration be determined for the

conversion of signal to grain mass/volume and that a harvest area be assigned to the

grain quantity at each measurement. Most systems discussed here assume a fixed crop

cutting Width (commensurate with comb width) or allow some manual adjustment during

operation, and monitor ground speed for the purpose of area calculation. These matters

will get brief discussion here but will be further considered in later Chapters.

grain flow F(y)
detector   
 

 

olev :1 sensor

39:6
r

  

    

_ _ - _ one-way
.@light beam

       grain flow

 

grain flow gram flow

volumetric impact E.M. attenuation

Figure 2-4. Diagrammatic representation of the commercial methods of grain yield

monitoring.

In a pioneering study, Schueller and Bae (1987) monitored sorghum 'yield' using engine

speed (rpm) as a surrogate for the harvested crop while attempting to hold ground speed

and throttle control constant. Using a microwave ranging system to gather positioning

information (with a maximum position error of 8m during mobile operation) they mapped
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average engine speed over 10m cells in the field. Peterson et a1. (1989) noted that harvester

engine speed would be difficult to utilise where slopes or surface roughness effected

machine ground speed and decided that the most suitable location for yield estimation

was in the clean grain flow. An isolated motor was installed to drive the grain-bin auger

and the amperage used was correlated to yield flow rate during harvest (R2 = 0.96). The

Loran C positioning system was employed but produced highly inaccurate positioning of

the header paths which made mapping the yield fruitless.

In a further progression of yield monitoring techniques Searcy et a1. (1989) directly

monitored grain flow volume by recording paddle wheel rotations required to meter out

grain sorghum from the end of the bubble-up auger into the grain bin. Harvester position

was determined using a microwave ranging system. Yield maps were constructed on

mean yield within 6m square cells (determined by the cutting width) and cells were

classified using : set percentages of the yield as the categories.

Using dead reckoning to determine harvester position, Stafford et a1. (1991) monitored the

grain flow density at the exit of the clean—grain elevator by correlating the attenuation of

gamma-ray radiation directed across the grain flow to grain yield. Assessment of the

system accuracy was qualitative but positive. They also reported the development of a

capacitance—based sensor for mounting at the exit of the bubble-up auger which operated

at a maximum 2% error in yield determination during calibration checks. However, the

capacitance sensor appears more sensitive to grain temperature and moisture fluctuations,

and to the cross-sectional flow dimension in the delivery system.

Vansichen 8t De Baerdemaeker (1991) also used dead reckoning to establish harvester

position but employed a direct mass flow sensor based on monitoring the change of

momentum in the grain flow when obstructed by a curved plate. The plate is attached to

a force transducer and the component of the recorded force attributable to mass flow rate

can be calculated. This yield sensor had a quoted calibration check accuracy between -

2.7% and +35%, but the authors believed that in operation an absolute maximum error of

6% should be assumed. Like all the mapping efforts discussed above a cell-based system

was used, and in this instance the yields allocated within 10 m square blocks were averaged.

In 1992, Reitz 8: Kutzbach (as reported in Aunhammer et a1. 1994) utilised a mass-balance

approach using weighing scales to produce a discrete yield /time observation. In another

approach, Klemme et a1. (1992) used an ultrasonic level sensor mounted over the grain

bin to measure the volume of grain in the bin every 12m. Positioning was determined by

dead reckoning. The results displayed a maximum of 40% error in small volume
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measurements which decreased to 25% for larger volumes. This method encountered

difficulties in the measurement of grain height due to machinery Vibration and pitching,

and irregular bin shape.

With the GPS network partially operational in December 1990, position determination of

agricultural vehicles via this system began in 1991. Selective Availability (S/A) was initiated

in December 1991 prior to constellation completion in December 1993. Schnug et a1. (1993)

reported one of the first uses of the GPS for harvester positioning during the 1991 European

summer harvest. They operated with both the paddle-wheel volume yield sensor and

with the gamma-ray sensor, and while not commenting on the accuracies or operational

differences, quote a position error of less than 20m using the initial non-S/Aversion of the

GPS. Stott et al. (1993) also used the paddle-wheel volume yield sensor and achieved an

average error in the yield estimates of 1% and with DGPS attained a location accuracy of

x 2m.

Pringle et a1. (1993) trialled another method for yield monitoring using a load cell mounted

under an active section of the clean-grain transport system to determine grain weight as it

was delivered to the grain bin. The yield estimates displayed a mean error of 1 2% and in

DGPS mode, the position accuracy was also determined to be 1 2m. Such a method will

obviously be susceptible to terrain influence and vibrational interference.

In an attempt to further evaluate the volume versus mass flow sensing systems,

Auernhamer et a1. (1994) compared a paddle-wheel sensor with the gamma detection

system and also tested the DGPS as a positioning prospect. They reported a reduction in

position error from 12-15m in 1991 prior to S/A to 2.5m in 1992 that they attributed to

technology improvements and correction techniques (carrier phase correction

determination). The mean accuracy of yield measurements with both sensors was less

than 2%, but the volume based sensor was found to be susceptible to variation in grain

density, the effect of which could be reduced with individual tank recalibration. The mass

flow system proved far less sensitive to this problem.

More recent studies have enabled some evaluation of newer versions of these yield

monitoring systems. Murphy et al. (1995) suggest that the volumetric measuring system

can achieve : 1% accuracy when calibrated and offer anecdotal evidence for an accuracy

of < 2% for the light attenuation system. Hummel et al. (1995) reported a field accuracy of

~ 3% for the light attenuation system. Birrell et al. (1995) found less noise apparent in an

impact-based as compared with a volumetric type system, possibly due to the more

continuous sampling technique of the former system.
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These quoted errors are all based on a mass balance monitored over a reasonably large

area or grain tonnage. The accuracy over small areas or weights has received less scrutiny.

Missotten et a1. (1996) describe an overall error of 5% for the measurements from a curved

plate impact sensor on 20m by 20m sampling grid, which decreased to 1.6% over a 6ha

sampling area. Unlike the previous studies, they fitted an ultrasonic range detection

system to the harvester comb to measure changes in crop width entering the harvester.

When investigating the yield calculation process applied to whole field operations they

still report errors from the cutting width sensor of 5% and 2.5% for the speed sensor. Their

results infer that the system under evaluation is subject to a 12.5% error at the 20m by 20m

mapping resolution.

Vansichen &: De Baerdemaeker (1991) report a 7% error in the area calculation introduced

by assuming a full cutting width when harvesting a 5 ha field as compared with the mean

cutting width determined using an ultrasonic ranging system. The accuracy of the range

estimation is quoted as 2% of the measured distance. Stafford et a1. (1997) also evaluated

two ultrasonic ranging systems and concluded that a broad beam and long range detection

were desirable attributes. They estimate that the error in assuming a fixed width in the

area calculation to be in the order of 10%. There appears to be a high probability that

systems operating without such width sensors are subject to a yield calculation error greater

than the 12.5% estimated by Missotten et al. (1996) at a 20m x 20m resolution.

This increase in error for the 'instantaneous ' measurements appears to be primarily due

to errors associated with allocating a harvest area to the quantity of grain measured at the

sensor and errors introduced by the grain flow dynamics within the harvester. Pierce et

al. (1997) provide a comprehensive discussion of these errors and grain flow dynamics

will be considered in more detail in Chapter 5. However, it is important to note that there

have been novel attempts to negate some of these errors by relocating the grain

measurement point closer to the harvester front.

Pang & Zoerb (1990) investigated the novel use of impact sensitive film installed below

the separating sieves. A piezoelectric material (high polar Poly-Vinylidene Film (PVDF)

which could register an approximate maximum of 2000 equally spaced impacts per second

was assessed for the sensor. At a flow rate of 16.2 t/hr they calculated a piece of film

4x5cm would receive 575 impacts/sec. When installed under the sieve an average 4.5%

error in yield determination for 5 short flow runs (max = 7.5%) was recorded. Problems in

field operation resulted from variation in the location on the sieve where the main grain

flow occurred due to fluctuating internal air speed and active separator width. Under

optimum operating conditions the authors suggest grain should fall through the front

section of the sieve. While these changing conditions make the system difficult to use for
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yield measurement, it may be useful in the future as a monitoring system for separator

operation and guide adjustments for increasing harvester operation efficiency.

Klassen et a1. (1994) trialled a capacitance sensor for crop feed rate that used one plate

inserted into the cutting-table and the table auger as the other plate. The capacitance

between the 'plates' was affected by the thickness of the crop matt on the table, the density

of the crop matt and the moisture content. With compensation for moisture content

variation, a reasonable linear relationship existed between feed rate and capacitance.

Klassen et a1. (1994) also measured the table auger drive shaft torque using a torque sensor

and the linear displacement of the feeder—house conveyor using linear potentiometers

and attempted to correlate observations with crop feed-rate . Both were found to be less

linear than the capacitance method.

Feed-rate will always be difficult to convert to crop grain yield because a fixed relationship

between dry matter and grain yield must be assumed. A straw mass sensor at the cutting-

table or in the feeder house may however prove useful to cross check with data from a

grain yield sensor and help explain why grain yield is varying (a ratio of the two would

provide information on crop density).

Grain moisture may also be monitored in the grain flow to improve the estimation of

grain mass at a single grain moisture content. Using the correlation between electrical

properties of grain and moisture content, capacitance-type measurement systems are more

common but alternatives such as microwave attenuation that requires no grain contact

(Kraszewski & Nelson, 1991) have been examined.

While grain crop yield has received the most research, other crops have had yield

measurement systems investigated or developed. Rawlins et a1. (1995) used commercially

available conveyor weighing technology to monitor the yield of potatoes during harvest

with a reported accuracy of ~ 5%. Schneider et a1. (1996) provide further detail on the

operation of this commercialised system.

A similar conveyor weighing process has been employed to monitor sugarbeet yield (Walter

et al., 1996). This technology could be applied to any other harvester that relies on a

conveyor system for harvested crop transport e.g. grape harvesters. Boydell et a1. (1996)

used load cells beneath the basket of a peanut harvester to monitor crop yield by direct

weighing. Cox et a1. (1996) reported the preliminary development of a system for sugarcane

yield mapping that utilises a correlation between monitored power required to drive the

cane elevator and mass cane flow. An absolute error in calibration of 1.4% was recorded.

Silage crop harvesting has also seen the use of power or torque surrogates for mass flow
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(Vansichen & De Baerdemaker, 1993), and impact based flow sensors (Missotten et al.,

1997). A load-cell instrumented trailer has been investigated for monitoring the increasing

crop weight of non-combinable crops such as sugarbeets as they are loaded in the field

(Wheeler et al, 1997). This simple system may also be applied to numerous other

agricultural and horticultural crops.

The opportunity for use of Precision Agriculture within the high input/high output cotton

industry has been mooted for some time (McBratney & Whelan, 1995) but has been

restricted by the slow development of a lint yield sensor. A prototype sensor based on the

principle of light transmission and absorption was developed by Wilkerson et al. (1994).

The technique used a plane of light propagated orthogonally to the cotton flow and a light

receptive array that responds to the light attenuation caused by the passage of cotton. The

transmitter and sensor are mounted in the pneumatic conveyors and the output of the

sensor correlates with the volumetric flow rate of cotton.

Installation of such a sensor is non-intrusive of the cotton flow but must be responsive to

flow rates of 50m/sec in the chutes. In laboratory tests the regression of instrument response

on cotton mass produced an R2 of 93%. The prototype sensor was however sensitive to

cotton feed-rate, with higher and faster mass flow reducing the accuracy. More recently

Boydell et al. (1997) reported the assessment of a similar flow sensor and published a

yield map. Schoenfisch (1997) also reported the development of a comparable system but

offered only qualitative assessment.

Table 2-2 summarises the available yield monitoring techniques for combinable and non-

combinable crops.

Soil Organic Matter

Correlation of soil OM with externally measurable soil attributes has focused on the

reflectance properties of soil. Many early studies have been efficiently reviewed by Sudduth

8r. Hummel (1991) suggesting that the Visual to near infrared (NIR) range of the spectrum

offered most promise. Shonk & Gaultney (1988) chose the red waveband (660nm) for the

first reported real-time OM sensor. The sensor array comprises 6 x 660nm LED's and a

photodetector mounted within a purpose-built tine. The base of the tine operates below

the soil surface with the leading edge providing a level surface for the reflectance

measurement. Such a system is in effect measuring the colour of the soil. Shonk et al.

(1991) report a linear relationship for fine to medium textured soil in the 1%-6% OM range

and a curvilinear relationship for more coarsely textured soil and field test results with

regression R2 ranging from 0.83 to 0.95. Because only one waveband is employed, the
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Crop type

Yield measurement

Technique Sensor location

 

Combinable crops

Potatoes, Beets & Tubers

Cotton

Peanuts

Grapes

Sugarcane

Forage c rops

Tomatoes & other horticultural

Mass flow by impact force

Volume flow by light attenuation

Volume flow by mechanical metering

Mass flow by gamma attenuation

Mass flow by radio freq. attenuation

Mass flow by mechanical weighing

Mass flow by mechanical weighing

Mass flow by light attenuation

Mass flow by mechanical weighing

Mass flow by mechanical weighing

Mass flow by mechanical weighing

Mass flow by power requirement

Mass flow by power requirement

Mass flow by impact force

Mass flow by mechanical weighing

Mass flow by power requirement

Mass flow by mechanical weighing

Mass flow by mechanical weighing

Clean-grain elevator exit

Across clean-grain elevator

Grain-bin auger exit

Clean-grain elevator exit

Clean-grain elevator exit

Cross-auger floor

Active conveyor idler wheels

Across basket delivery shute

Peanut basket

Active conveyor idler wheels

External weigh-wagon

Chopper drive

Elevator drive

Delivery spout

External weigh-wagon

Chopper drive

Active conveyor idler wheels

External weigh-wagon

 

Table 2-2.

- operational technique and sensor location.
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system is deemed to be landscape-dependent (Sudduth et al., 1991) requiring calibration

for changes in soil texture and moisture content. Shonk et a1. (1991) also report reduced

accuracy with low quantities of OM.

Amore complex system utilising light in multiple narrow-band wavelengths (1630 - 2650nm

in 52nm bandwidths) has been developed to prototype stage (Sudduth et al, 1991). The

authors results suggest that the additional spectral information gained will ensure the

sensor is landscape independent (insensitive to variation in soil moisture and texture).

Although more costly and less robust, they believe it should provide a more versatile

measurement tool.

For heavy textured, dark soil low in organic matter (e.g. Vertisols), the single wavelength

instrument may be limited by the characteristic dark colour that is dominantly a function

of ferromagnesian mineral contents. Krishnan et a1. (1980) report that this reduction in

effect on soil spectral properties may be expected below 2% OM. The multiple wavelength

device may prove more suitable in these cases.

Soil Nitrogen

For soil nitrate sampling, a number of ion selective probes have been produced and involved

in a limited release (Borgelt 1993). Continuing work is focusing on the use of Ion Selective

Field Effect Transistors (ISFET) which use ion-selective sensors mounted on computer

chips, in conjunction with specific membranes, to measure soil solution ion concentrations.

Birrell & Hummel (1997) report successful analysis of nitrate samples within a 1.255

timeframe using flow injection analysis. The samples were manually extracted for the

experiments and the authors concede that maintenance of constant flow parameters and

precise injection times is important to maintain measurement accuracy. Development of a

rapid, automated sampling and extraction system remains as the major limitation to the

employment of these devices as real-time soil nutrient sensors.

. The development of electrochemical nitrate measurements using a nitrate selective

electrode in an electrochemical cell to monitor nitrate levels in a extraction obtained from

an 'on—the—go' sample is also progressing. Adsett and Zoerb (1991) designed and tested a

mechanised sampling and monitoring station that operated at a forward speed of 3 km/

hr and sampled every 30 seconds. While the sampling operation, using a modified

chainsaw bar, performed adequately, the inconsistency in nitrate extraction has proven a

major limitation.
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Soil nitrate measurement using electrical conductivity has been examined using a coulter—

based implement (Borgelt, 1993) and is commercially available'. The scientific basis for

such an instrument appears fragile. Calibration of conductivity to soil nitrate concentrations

would only be of use in a medium that was dominated by the nitrate ion (e.g. a sandy soil

used for intensive production).

Other Soil Attributes

The ISFET sensing systems previously mentioned would appear suitable for all ionic

nutrients, but there is no published literature on their development. Clearly, the eventual

completion of a nitrate ISFET sampling and sensing system will lead to similar real-time

sensors for a variety of soil nutrients. However, the ISFET technology is being employed

in preliminary experiments for sensing soil pH in real-time. Viscarra Rossel &: McBratney

(1997) concluded that the ISFET provided the necessary ruggedness and speed of response

for development as areal-time pH sensor and proved superior to more common electrode

systems.

Electromagnetic induction (EM) instruments measure the apparent electrical conductivity

of a material by generating electromagnetic fields and monitoring attenuation. Changes

in the electromagnetic response are caused by variation in ionic concentration. In soil, the

volumetric moisture content, quantity and identity of ions present and the texture effect

the observed ionic concentration. EM instrumentation has been mobilised using towable

PVC sleds suitable for pre-sowing use or dedicated all-season field vehicles to provide a

contiguous assessment of salinity levels in the crop root zone (Henkes 8: Dietz, 1994;

Rhoades, 1992). The technique has also been successfully employed to monitor variability

in topsoil depth in claypan soil (Sudduth et al., 1995), soil mOisture content in soil with

low electrolyte concentration (Kachanoski et al., 1988) and soil clay content (Williams &

Hoey, 1987). With these numerous influences on the EM field, it is important to be able to

isolate the effect of the attribute of interest. Jaynes et a1. (1996) discovered this complexity

when unsuccessfully attempting to correlate basic EM readings with crop yield over 3

years.

The soil reflectance sensor, previously discussed as a means of determining organic matter

content, may also prove useful in recognising gradual changes in soil type and texture

that would be valuable in the accurate classification of field variation in crop yield potential.

This technique, as with EM, appears particularly promising for use in areas where heavier

textured, clay dominant soil intergrades with lighter textured, more sandy soil.

11 Soil Doctor “4- Crop Technology, Inc. USA
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The continuous monitoring of soil moisture content may also offer a means of identifying

areas susceptible to waterlogging and aid in the determination of soil textural variation.

The requirements and development of a number of contact and non-contacting sensing

techniques, including electrical resistance, microwave attenuation, capacitance probes,

nuclear magnetic resonance (NMR), near-infrared reflectance, microwave reflectance and

ground-penetrating radar (GPR) are examined by Whalley 8: Stafford (1992). The contact

sensing techniques, with the inclusion of the Time Domain Reflectometry (TDR)

measurement technique, appear most suitable for incorporation in a cultivation tine. Lui

et a1. (1996) report the continuous measurement of soil moisture content using a resonance

frequency and phase lock technique to monitor changes in soil dielectric properties from

a tine mounted sensor. GPR appears to offer the greatest depth of penetration of the non-

contacting sensors.

GPR has also already been used 'on—the—go' to map textural discontinuities and thickness

of soil horizons (Collins et al., 1986; Truman et al., 1988), depth to spodic and argillic

horizons (Collins 8: Doolittle, 1987), depth to soil water tables (Truman et al., 1988) and

improve the determination of soil map unit boundaries (Schellentrager etal., 1988). The

GPR technique does appear to function best in soils with abrupt textural changes at horizon

boundaries.

Liu et al., (1993) showed preliminary results of a novel acoustic method for determining

soil texture in real-time. A tine mounted microphone measured acoustic emissions

generated by the release of energy during the dynamic process of tillage. They showed

promising differentiation of soil types based on texture but more work is required to

determine which frequencies are best for delineating soil types.

Information on the variation in soil compaction may be obtained via a moisture calibrated

correlation with soil strength. Alihamsyah and Humphries (1991) tested and recommended

a shank-mounted, horizontally operating penetrometer with a 30° prismatic tip leading-

edge to measure the mechanical impedance of the soil 'on-the-go'. This technique could

be employed in conjunction with a moisture probe to quantify soil strength.

Young et a1. (1986) modelled the instantaneous draft of tillage tools using time series analysis

and found that the parameters relevant to soil analysis were the mean draft, residual draft

and the auto regressive coefficients of the model. The mean draft equated to the average

dynamic soil strength, changes in soil strength as the soil is tilled was evident in the residual

draft, and the auto-regressive coefficients reflect the soil/tool interaction. Such analysis

could be used to asses soil physical condition. They suggest using a trailling tool in the

tilled soil following a cultivation gang to act as a transducer to measure the physical state
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of the soil. This method is reactionary rather than predictive and the soil condition

agronomically suited to a variety of crops has not been accurately characterised.

Plough draft has also been monitored and correlated to clay content in an effort to map

spatial variation in soil type (Van Bergeijk & Goense, 1996) and a soil texture/compaction

index to be used in modifying liquid application rates (Lui et al., 1996).

Other Agronomic Attributes

Most other 'on the go' sensing has concentrated on weed mapping and management. The

systems developed and studied have usually involved detection of living weeds in fallow

fields using optical sensors (Felton et al., 1991) although Green et al. (1997) report the use

of height selective spraying equipment employing infrared light beams to detect Texas

panicum in peanuts. These are integrated detection and treatment systems and will be

further discussed in a later section.

Alternatively, many grain yield monitoring systems allow manual operator flagging of

weed patch positions observed from the harvester cabin during harvest. While this method

is time efficient compared with traditional scouting, Colliver et a1. (1996) show it may

potentially overestimate weed infestations and is less spatially accurate than perimeter

patch scouting with a GPS prior to harvest. Stafford et al. (1996) also report only a general

agreement between the two methods as increasing subjectivity and required recognition

speed appear to be affecting the accuracy of the cabin-based system.

Measurement of plant spacing to infer plant population density has been investigated by

Plattner & Hummel (1996) using a photoelectric emitter and receiver pair to measure the

in-row distance between corn plants. An estimate of plant population density at harvest

time would be very useful for the subsequent process of determining the cause of crop

yield variation detected by yield monitoring.

Plant tissue nitrogen status has also been monitored using tractor mounted continuous

remote sensors. Wollring 8: Reusch (1997) report success in monitoring experimental

variations of 50 kg N/ha in applied N fertiliser at 2 weeks post application using

measurements in the red and infrared wavelengths. The system showed significant

variability in N nutrition status in fields supposedly uniformly fertilised. The authors

believe that this continuous monitoring can be used to direct differential split fertiliser

applications
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Soil Attribute Measurement technique

 

Texture

Moisture

Organic matter

Nitrogen

pH

Salinity

Compaction

Topsoil depth

Horizon boundaries/ claypans

Visible and NI R reflectance

Electromagnetic induction (EMI)

Ground penetrating radar (GPR)

Acoustic sensors

Tillage draft

Electromagnetic induction (EMI)

' Ground penetrating radar (GPR)

Electrical resistance

Electrical capacitance

Time-domain reflectivity (TDR)

NIR reflectance

Nuclear magnetic resonance (NMR)

Visible and NI Ft reflectance

Ion selective electrode

ion selective field effect transistor (ISFET)

Electrical conductivity

lon selective electrode

Ion selective field effect transistor (ISFET)

Electromagnetic induction (EMI)

Penetrometer

Electromagnetic induction (EMI)

Ground penetrating radar (GPR)

Electromagnetic induction (EMI)

Ground penetrating radar (GPR)

 

Options for continuous sensing of soil attribute variation.
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2.3 MANAGEMENT OPTIONS FOR SITE-SPECIFIC MANAGEMENT

In implementing this type of management, rate-based operations that influence crop yield

can be targeted to achieve desired yield goals with the minimum input of resources. Such

governing operations occur at nearly all phases of the crop growth cycle. Schueller (1992)

describes the array of variable-rate control designs available or proposed at the time,

ranging from simple control of flow rate to more complex management of rate, chemical

mix and application pattern. The author emphasises that the control segment of any

variable rate application should optimise both the economic and environmental product

of the field and must ensure that estimates of operational accuracy and dynamics are

included in the application process. This is an important point, as incorrect spatial

application may be economically and environmentally detrimental.

In all the operations that will be discussed here, the control commands may be instigated

by combining input data with the real-time use of a response algorithm or a by accessing

a two-dimensional array of set points which in effect is a raster display of application

rates and positions (Schueller, 1992). For the majority of cropping industries the important

areas of managerial intervention would include:

2.3.1 Soil Tillage

Generally, the current tillage systems in use attempt to apply a uniform treatment to the

soil at a site irrespective of the spatial variation in soil tilth/structural condition that may

occur. Tillage operations modify the soil propensity for plant growth and erosion by

imparting compaction/disintegration forces on the soil while endeavouring to achieve a

desired level of soil disturbance or crop residue/ameliorant incorporation. Readers are

referred to Voorhees (1991) for a review of the criteria for assessing the impact, and

economics of, ameliorating soil compaction using tillage.

In general, variation in soil texture, structure and strength within a field may combine to

produce significant spatial variability in the tillage required to achieve a suitable or

optimum result. Soil moisture content and soil texture at the time of an operation also

influence the effect of a tillage implement (Allmaras et al., 1967). Schafer et a1. (1985)

discuss the concept of 'prescription tillage' as involving the combination of soil

characteristics, the interaction of soil/machine operations and the eventual crop

requirements into a suitable tillage operation.

Therefore, prescribed tillage or differential tillage operations for a specific crop may be

achieved by controlling the type of tillage implement and the depth of operation. The
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type of implement employed and depth of operation will directly influence the resulting

surface roughness, porosity and degree of organic matter incorporation (Voorhees et al.,

1993). They report that incorporation increases as tillage is changed from chiselling to

disking to mouldboard ploughing.

The potential impact of this concept on soil structural change is shown in a study by

Cassel et a1. (1988). Their experiments reveal appreciably different interpolated yield

patterns between disked, chiselled, subsoiled and bedded treatments in a field with a

tillage clay pan. In this example the chisel treatment provided the highest mean yield and

the most uniform influence as assessed by a low semivariogram variance and almost

random model. The authors hypothesise that the chisel treatment resulted in the most

unifom soil mechanical impedance within the field thereby giving better access for plants

to subsoil moisture. It does appear that the chisel treatment homogenised the field in

terms of mechanical impedance as evidenced by the random nature of the variogram

model. The bedding and sub soiling treatments retained a spatial structure in the yield

data which aside from greater heterogeneity, may also be reflecting variability in the

quantity of organic matter incorporated. A degree of heterogeneity in soil physical

parameters and greater organic matter incorporation may be more economically and

ecologically beneficial than homogenisation in some fields in the long term.

For a differential tillage operation, both the original and desired soil condition should be

quantified on the same scale, e.g. soil strength and ductility by mechanical impedance

(Chandler 8: Stafford, 1987). The most suitable tillage implement and operational depth

to achieve this goal could then be chosen based on the moisture content and texture of the

soil.

A sensor such as a shank-mounted cone penetrometer (Alihamsyah & Humphries (1991)

or draught transducer (Young et al., 1986) mounted in front of an implement could monitor

the initial soil condition while the resulting condition of the tilled soil is gauged by a

similar trailling sensor. Chandler & Stafford (1987) and Stafford & Ambler (1990) have

proposed image analysis techniques to monitor clod or aggregate size distribution as an

alternate method of monitoring tillage results. The information obtained from such sensors

could be used in a control loop to vary implement action.

A hydraulically controlled tool frame supporting a variety of implements with real—time

engaging and depth control could perform the desired tillage operation. Voorhees et a1.

(1993) suggest including a front disk gang for residue incorporation backed up by a chisel

gang for deeper or more vertical disturbance. Roytburg & Chaplin (1995) have proposed

a stochastic random-walk model based on soil resistance force to predict tillage outcome
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from the initial soil condition. This would enable real-time decisions to be made regarding

implement and/or operating depth required for the desired final soil condition.

Such systems are now being developed. Scarlett et al. (1997) have successfully employed

ultrasonic depth sensors to control and vary the operation depth of a power harrow and

also trialled the ultrasonic sensors to measure surface roughness in real-time as a guide to

resultant seed bed quality. They report a good regression response when comparing the

sensor to sieve analysis under laboratory conditions (R2 = 0.92) and found that the sensor

underestimated aggregate size in the field. The authors suggest this may be due to a fine

aggregate surface artifact created by the powerharrow. Further research with less

destructive implements may prove more successful.

2.3.2 Fertiliser Application (both in quantity and mix)

The application of fertilisers to provide sufficient nutrients to maximise crop growth and

yield is broadly viewed as essential in intensive cropping systems. Since the seminal

response studies of von Leibig (1847) and subsequent modelling by Mitscherlich (1913),

numerous fertility trials have quantified the yield response to application of the various

macro and micro nutrients (applied in isolation and with interactions) for the majority of

economically significant crops (see Cooke, 1982). This response to individual nutrient

addition has continued to be modelled with varying success using exponential, quadratic,

square root or paired linear functions in their full, modified or inverse forms (e.g. Bock &

Sikora, 1990; Boyd et al., 1976; Danke 8:: Olson, 1990). Determination of the most suitable

model seems reliant on the initial soil nutrient conditions, the boundary nutrient levels

(fertiliser levels applied) and climatic and landscape parameters (Cooke, 1982). Many

authors have also explored the role of nutrient interactions through response surface

analysis (e.g. Colwell, 1978; Dillon 8: Anderson, 1990).

However, given this acknowledgement of the complexity of nutrient dynamics in the field,

and the difficulty in assessing the optimum response model, it remains a common practice

to use regional average nutrient—yield relationships in conjunction with soil analysis (e.g.

Peck & Soltanpour, 1990; Daniells & Larsen, 1991) or crop leaf testing (e.g. Baethgen &

Alley 1989; Roth et al., 1989; Scharf et al., 1993), to construct singular fertiliser rate and

formulation regimes for whole fields.

While the ability and/or legitimacy of available techniques for delineating soil nutrient

management units at the within—field scale remains to be comprehensively tested, the

ability to control the composition and rates of chemical application in real-time has

significantly progressed. Scheuller &: Wang (1994) discuss the requirements and available

64



B.M. Whelan - Reconciling Continuous Soil Variation 6? Crop Yield

variable—rate technology (VRT) for the purpose of co-ordinating of this task. Differential

fertiliser application usually combines some or all of the following technologies: dGPS,

GIS, automated map reading and controlling electronics, fertiliser mixing and precision

application apparatus. These components are commercially available individually from a

number of manufacturers allowing VRT systems to be constructed and customised by

individual operators to suit standard dry or liquid applicators.

As an example, Robert et a1. (1991) reported the development and evaluation of a variable

rate anhydrous ammonia application system utilising common farm implements. A

predetermined application map (based on discrete soil sampling and subsequent yield

goal determination) was used to direct the quantity of fertiliser applied. The map was

loaded and read through a cab-mounted lap-top computer which is connected to a ground

speed monitor, a flow rate indicator and a rate control valve. Gaseous anhydrous ammonia

is converted to the liquid phase in an expansion chamber and then applied through the

applicator knives at rates varying between 60kg N/ha — 260kg N/ha.

Further, Macy (1993) successfully developed a automated spatially variable system for

dry and liquid fertiliser application using in-house controlling software and rate

prescriptions based on soil test results, yield goal estimation and expert (farmer)

recommendations. A multiple channel master controller is used to broadcast target rates

to additional slave controllers governing the product flow rates in conventional fertiliser

applicators. Having a component based system allows the master controller to be used in

the control of other rate-driven machine operations such as sowing, pesticide application,

and lime spreading. Incorporating automatic rate adjustment removes the need for cabin

operators to monitor and change rates, allowing equipment performance to be more closely

observed.

At the other end of the scale, dedicated vehicles for the spatially variable application of

either dry or liquid fertilisers have been designed and marketed by a number of enterprises,

principally in the USA. Ag-Chem®+ has employed flotation—tyred vehicles with

individually controlled nutrient bins allowing a variable dry chemical mix to be applied

in variable quantities. The initial technology was developed for fertiliser Spreaders and

basically operated as a real-time custom blending and spreading vehicle (Luellen, 1985).

The technology has been refined to a four bin plus pesticide impregnation system for

pneumatic delivery of variable mixes and rates (Schueller & Wang, 1994). For liquid

application, two autonomously metred tanks using separate flow and nozzle systems are

+ Ag-Chem Equipment Co., Inc. Minnetonku, Minnesota, USA.
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combined in a single boom array that enables up to 7 different rates for each flow system

(Schueller & Wang, 1994).

For each of these systems a predetermined fertiliser requirement map is constructed from

soil sampling results and yield goal estimates to control the rate of application. On—board

computer software determines the vehicle position and reads fertiliser requirements from

a screen-based field map comprising colour coded polygons representing differential

fertilisation zones. Chemical mix and application rates are calculated as a function of

DGPS determined vehicle position in the field and fed via a central controller to slave

valves or pump actuators.

Tyler®§ have also marketed a computerised, self-propelled fertiliser applicator with VRT

capability that utilises the OM sensor developed by Shonk 8: Gaultney (1988) to determine

the level of soil OM preceding the applicator and, via on—board calibration and decision

software, then calculates the fertiliser application rate required. The correct amount is

subsequently applied as the rear mounted applicator bar passes over the designated

observation point. This system has been commercialised and employed in herbicide and

fertiliser application operations (McGrath et a1., 1990; Alsip 8: Ellingson, 1991) but appears

to be under re-evaluation at present due to limitations of the sensor discussed in Section

2.2.2.

AnyVRT system, whether component-based or dedicated applicator vehicle, must maintain

accuracy in controlling the application rates. Weber et a1. (1993) after a substantial test of

standard anhydrous ammonia applicator accuracy report that 59% of controllers and 27%

of regulators performed within acceptable application rates. The most significant influences

on accuracy appeared to be variation in implement speed information and incorrect initial

setup. Uneven application of fertiliser may greatly increase the probability of reducing

the mean yield through under— and over— fertilisation (Lutz et a1., 1975; Dilz & van Brakel,

1985) however, the impact of inaccurate fertiliser spreading appears to be predominately

random. Van Miervenne et a1. (1990) found no spatial dependence in soil N within a lha

area studied on a 2.5m sample separation after supposed uniform fertiliser application.

The results did suggest some periodicity across the direction of machine pass corresponding

to machinery overlap which was implicated in a loss of 71kg/ha in yield compared to

application of the correct amount. This is not significant when compared to the total yield

of 7.5 tonne (~ 1%) but may be of greater significance in the lower Australian wheat yields

(~4%).

§ Tyler, Benson, Minnesota, LISA.
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Ensuring application accuracy is therefore imperative for VRT management. Persson &

Moller (1997) provide an evaluation of fertiliser spreader accuracy using computer

controlled actuators. The systems were considered to operate accurately with regard to

the desired outputs being dispensed at varying speeds, with different spreading widths

and with varying rates. However, the authors suggest that even though the expected

quantity of fertiliser is released, the distribution may be poor as the spreading pattern is

often influenced by the flow rate.

Olieslagers et a1. (1997) have attempted to stabilise the spreading pattern when flow rates

are changed by developing flow calibrations based on varying the disc height from the

ground and from the drop point of the spreader hopper above the discs. This produces a

fertiliser application pattern with a CV less than 11%. To ensure accurate flow rates are

delivered to the hopper drop point, Van Bergeijk et a1. (1997) have implemented a dynamic

weighing system that allows real-time re-calibration of spreader fertiliser flow rates to

match desired rates. They believe the hygroscopic qualities of dry fertilisers may mean

the flow calibration changes with time and are able to maintain a calibration accuracy of

1% mass between desired and actual rates. These advances should increase the accuracy

of variable —rate spreader programs.

A further impediment to application accuracy in all systems is the response dynamics of

controllers and regulators to commands changing the required fertiliser level. Schueller

(1992) and Schueller & Wang (1994) discuss this 'feed—forward' problem and the solutions

devised to model and compensate for the effects on application quantities at the boundaries

between rate changes. Indicative of the degree of this effect, Cahn and Hummel (1995)

using a modified a anhydrous applicator for variable rate N sidedressing of corn, found a

2 second response lag between control signal and actual rate change with a 5% application

error at the boundary caused by the response of the control valve in this transient phase.

While these mechanical controls for variable rate application continue to be refined, it

may be just as important to consider varying fertiliser placement depth and/or plant

relative position. Eghball et al. (1990) note that P applied in bands may move very slowly

through the soil and influence the variability of soil P within a field. The banded P may

also remain available for many years. It may also be feasible to control the temporal

application of fertilisers by varying blends of slow or controlled release fertilisers with

different activation properties for different soil conditions or different plant developmental

stages. A step in this direction has been achieved by Shoji et al. (1996) whereby a granulated

urea formula coated in a resin with defined water absorption properties controlled by

temperature (Meister N) is used to manage the temporal supply of N fertiliser.
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2.3.3 Nitrification Inhibitor

The loss of applied nitrogen through the gaseous products of the denitrification process is

a limiting factor in the efficient utilisation of artificial N fertilisers. Greater rates of

denitrification are likely to occur in wetter regions of dryland fields (i.e. hollows and lower

slopes) and closer to the head ditch in flood irrigated fields. In a simple study applying

uniform nitrification inhibitor and N fertiliser down a toposequence Malzer et a1. (1995)

found only a weak correlation between corn yield at a landscape position and soil N levels.

However, the yield at the lower elevation appeared to benefit most from the nitrification

inhibitor as would be expected

In irrigated cotton, Freney et a1. (1992) reported a 57% recovery rate for 15N labelled fertiliser

applied one month prior to sowing in the absence of nitrification inhibitors. Significant

increases in the recovery rate were achieved using the nitrification inhibitors N—Serve (74%

recovery) and wax-coated calcium carbide (78% recovery). For a mean field application

of 190kg N/ha the inhibitors allow access by the crop to approximately 33 kg/ha — 40 kg/

ha more N. The results also indicated a greater increase in the recovery rate (92%) could

be achieved using 2-ethynylpyridine, however the cost for commercial field use appeared

prohibitive. Identifying the spatial variation in denitrification potential at a site may allow

differential application of these inhibitors and reduce the cost of treatment.

A combination of moisture monitoring in conjunction with soil textural or OM

measurement could provide the required data on zones in a field more susceptible to

denitrification. The variable rate application technology developed for fertiliser application

would require only minor adaptions to control a differential treatment with nitrification

inhibitor.

2.3.4 Gypsum/Lime Application

The dispersion of clay and the decline in soil structure associated with sodic and highly

sodic soil may be alleviated through the application of calcium in the form of gypsum

(CaSO4) or lime (CaCOB). Sodic soil is identified as containing sodium concentrations that

contribute >6°/o to the total cation exchange capacity. The addition of calcium acts to

flocculate dispersed clay by increasing the total content of soluble salts in the soil solution

and helps maintain aggregation by replacing sodium ions on the clay surfaces.

The application of CaCO3 is also widely used to increase the soil solution pH in acidic

soils (generally pH <6) by reacting with and removing H+ ions in the form of water. The

importance of soil pH on crop production has been discussed in section 1.3.6.
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Mapping the spatial variability in soil lime requirements or regions of a field that exceed

the 6% Na threshold would provide information for the differential application of the

appropriate calcium-based product. Evans et a1. (1997) calculated the spatial lime

requirement for 2 fields with spatially variable pH and OM and concluded that uniform

application may leave up to 58% of a field incorrectly treated. Lime and gypsum are

traditional applied using the same broadcasting mechanism as a fertiliser spreader. Control

of the spreader is exactly as discussed in Section 2.4.2 and even though the spreading

operations may lack the accuracy of pneumatic delivery systems, the large range indicated

by Evans et a1. (1997) should enable substantial management units to treated uniformly.

A liquid application system described by Anderson & Hendrick (1983) used a modified

sub-soiling tine and slurry feeding mechanism to inject a lime mixture into the soil. This

operation could be quite accurately rate-controlled and has the benefit of simultaneously

performing multiple tasks. As the price of lime increases such operations may become

more widely accepted.

2.3.5 Seeding Rates

Matching the rate of sowing to a predetermined yield potential also offers an opportunity

to apply site-specific management. All soil types do not possess an identical ability to

germinate and support a given plant population to reach its full potential. It is also arguable

that areas considered to be of uniform yield potential will achieve their potential given a

range of emergence rates. Ellis (1997) highlights this adaptability of crop plants by

modelling the effect on yield of spatial variation in emergence using yield/plant population

density equations. The results show a negligible direct effect on yield and sowing rates.

The conclusion appears to be that varying sowing rates to achieve an even population in

a field that displays variable emergence characteristics may be unnecessary (and not cost

effective). However, varying sowing rates between areas of different yield potential may

offer some agronomic advantages.

Control of seeding rates may be achieved by replacing the ground drives on conventional

seeders with speed independent, rate—variable motors. Neuhaus & Searcy (1993) controlled

the seeding density from flat-plate planter boxes using a hydraulic motor with an electric

solenoid and controller. Under field conditions they managed to get seed spacing to within

i 5% of desired set points at speeds up to 7 km/hr. Using an electric motor and actuator

on a conventional seed drill, Bahri et a1. (1996) found under experimental conditions that

incremental changes of 10kg seed/ha were less easily controlled than 20 kg seed/ha and

took longer to reach a steady flow rate following the step. Importantly, the results from a

comparison of 6 different sowing implements showed that in the direction of operation,
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the CV at a rate of 80kg seed/ha was between 10% and 20%. This would explain the

greater control with larger increments and suggests that attempting to control small

incremental changes in seeding rates (< 15 kg seed /ha) may be fruitless.

Other aspects of sowing may also be targeted for variable control. Carter 8: Chesson

(1993) discuss varying depth of seed placement according to optimum soil moisture

conditions. The method requires electrical conductivity sensors calibrated to moisture

content and a model of the relationship between soil moisture and depth. As sowing

progresses, moisture readings deemed to be outside desired limits trigger actuators that

raise or lower the implement gang. This is an effective method of ensuring optimum

germination conditions given the degree of variability in within-field soil moisture

conditions documented in Section 1.3.4.

The opportunity could be taken to optimise the seed row spacing for different soil types

or yield potentials. As a beginning, Solie et a1. (1991) have calculated the optimum row

spacing for maximising wheat yield based on Oklahoma State sowing rates. In any case,

accurately recording the sowing rates and spacing that occur during the planting operation

would appear relatively simple and useful. Using a modified planter monitor (Saraiva et

al., 1997) recorded seeding rates and speed which were linked with GPS determined

position to produce seed population maps. These maps may be invaluable in the processes

of determining causal effects of yield variation observed in crop yield maps.

2.3.6 Crop Variety

Little research or discussion is recorded in the literature on variation in crop variety within

fields. For most crop species, varietal characteristics could be used to advantage in fields

where significant soil type/textural change or variation in the degree of compaction may

be identified. As an example, the more waterlogging tolerant cotton variety Siokra L22

may be considered for heavier textured or compacted areas and the less well adapted

Siokra 1—4 planted on lighter textured, non-compacted zones, to optimise the quantity of

lint from a field.

At present, varietal combinations may raise apprehensions over possible non-

synchronisation of maturity dates, mixture of quality attributes and variation in harvesting

characteristics. Certainly such concerns would seem to restrict this option to reasonably

large management units so that harvest operations could be successfully segregated if

necessary. As restrictions are imposed on other aspects of crop management these concerns

may reduce in importance.
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2.3.7 Pesticide Application

In general, the traditional 'timetable treatment' regime for preventative crop pest

management has been replaced, where practicable, by an economic threshold trigger.

However, this economic threshold is routinely based on an assumption of homogenous

distribution of pest infestation. This may be reasonable for very mobile insect pests and

mobile insect life-cycle stages where population dynamics are often greatly influenced by

environmental factors on a larger scale than those considered here (Crossley et a1., 1984),

but may be inappropriate for more sedentary insect pests and life—cycle stages as discussed

in Section 1.4.

In principle, site-specific crop management could be applied to the control of insect pests.

Aerial photographic and ground-truthing techniques may be applied to detect crop stress

or damage inflicted by initial insect infestations (e.g. Everitt et a1., 1994). Mapping these

areas within a field may be useful in identifying zones suitable for initial treatment to

prevent further spread or for directing the differential application of insecticide over the

entire field. In this second case, the whole field may receive a minimum application rate

with higher rates being applied to the outbreak zones.

Weisz et al. (1995b) used crop scouting of potato beetle within potato fields to establish a

suitable sample support size (20 plants per sample) for successfully estimating the spatial

structure of pest variability. Maps of the field colonisation, when compared with threshold

values, showed significant areas of the fields would require no treatment even though the

field mean exceeded the critical value. The authors contend that differential treatment

would reduce the chemical load on the environment, decrease pressure on resistance

selection and offer possible economic benefits. In a further study, Weisz et a1. (1996)

compared uniform pesticide treatment with differential application and found that over

two seasons a cumulative pesticide saving ofbetween 30% and 40% was achievable across

a broad range of colonisation pressures. As pest pressures begin to overwhelm a field the

saving would be negated and the results should be considered as species specific, but they

suggest that differential management of insect pests is Viable.

The assumption of homogenous population distribution would definitely appear

unsupportable in weed management programs given the clustered spatial distribution

highlighted in Section 1.4. And, if agricultural industries move towards more controlled

traffic/reduced tillage systems, the spread of weed propagules is likely to be further

reduced. This may result in even more stationary individual weed populations and a

more clustered overall weed pattern in a field. Greater clustering implies an increase in
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weed-free areas. A more irregular pattern also presents the opportunity for differential

treatment as opposed to blanket field applications of herbicide.

Inappropriately assuming a uniform pest population distribution may then result in whole-

field applications of pesticides that are overestimated or unwarranted. Conversely, portions

of the crop where colonisation is high may be inadequately protected using 'mean of field'

applications.

Two approaches to spatial identification and treatment of weeds have been considered.

Firstly, areas in a field that display a level of infestation that required treatment during a

growing season could be precisely mapped. The map may then be used to direct the site-

specific application of a residual/contact herbicide prior to the next season planting.

Stafford and Miller (1993) have reported the development of such a system for winter

cereal cropping, in which they propose applying a greatly reduced herbicide rate over the

entire field and raising concentrations at previously identified weed locations.

An even greater reduction in spray area is promoted in the system described by Paice et

a1. (1995) whereby patch spraying of infested areas only is advocated. Paice et a1. (1996)

succinctly review the control requirements for such systems and conclude that the direct

injection process offers the greatest benefits in economic and environmental terms. Qui et

a1. (1994), modelling the use of such continuously variable direct injection control

equipment, reported a saving of up to 50% in herbicide application for the site-specific

treatment of weeds in corn based on previously mapped weed density and soil OM. The

authors bravely hypothesise that this treatment should also increase crop yield as the

method will provide optimum weed destruction.

However, as indicated by Rew et a1. (1997), these patch spray operations require the addition

of a buffer zone to the identified patch area to account for position location errors,

application activation delays and propagule spread by tillage. The authors concluding

that a 4m buffer zone is optimum for the conditions under study.

Obviously the areal and quantitative reduction in herbicide usage from either of these

systems would be controlled by the patchiness of the weed distribution and the application

risk incorporated in buffer zone size or whole-field base rate. Rew et a1. (1996) studied

five fields with varying weed distribution and showed quantitative herbicide savings of

between 9% and 23% for a blanket low rate with double blanket-rate patch spraying

scenario and a 12% to 97% herbicide reduction for selective patch spraying only, when

compared with mean uniform whole-field applications.
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It may be necessary to study the effect of these two strategies over time to determine the

most effective option. Paice & Day (1997) have attempted such a study using a 10 year

stochastic simulation based on chemical cost and yield loss assessment in relation to initial

weed distribution and spatial resolution of a sprayer. The results suggest that for the

control of grass weeds in cereal crops, the low base dose with higher patch application is

more cost effective. The fully spatially selective option apparently leads to increasing

instability in the weed population over time and therefore significant increases in annual

chemical costs and yield losses. Obviously the benefit is shown to be greater in population

distributions that are less discrete. The simulation also illuminated the possibility that at

courser sprayer resolutions (6m x 6m instead of 4m x4m) the costs over time for patch-

only spraying may be significantly greater than uniform mean application.

Regardless of application philosophy, the technology to control variable rates is quite

accurate. Stafford & Miller (1996) showed that at steady-state operation a direct injection

system can provide delivered doses to within 5 % of the desired level at speeds between 1

and 3.5 m/s and flow rates of 0.75 to 5.01 litres /ha. The largest step change attempted

(from 0 litres /ha to full operation) produced a 40% deviation in desired concentration for

only 0.3 seconds. This equates to a 1m zone of misapplication at 3.5 m/s.

The second approach involves the employment of real-time weed recognition systems

during treatment operations. Detectspray‘m, originally developed in Australia to

commercial prototype by Felton et a1. (1991), uses ambient light reflectance to identify

green weeds in a fallow or stubble covered field. The detection activates the spraying

mechanism so that only areas of weed infestation are treated. Biller et a1. (1997) modified

the operation of the Detectspray® to reduce calibration complexity and errors introduced

by speed changes. They report herbicide savings between 30-70% with 100% kill. This

type of system has an obvious use replacing fallow weed control by tillage and with total

weed kill may prove superior to the temporally separated mapping and application

methods.

More difficult to achieve is real-time detection of weed species in a photosynthesising

crop. Brown et al. (1994) utilised aerial still—video camera images captured using four

discrete spectral windows to discriminate between seven weed species in a corn field

based on their individual spectral signatures. The process remains untested for efficacy

from a ground-based platform and is therefore limited as a real-time treatment system.

iDetectspray International Pty Ltd, Albury, NSW, Australia.
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More successfully, Green et a1. (1997) used height-selective spraying equipment employing

infrared light beams to detect and treat Texas panicum in peanuts. An 86% reduction in

herbicide (with > 80% weed control) was reported. The height-selective sprayer was also

shown to locate 21% more Florida beggarweed in a peanut field as compared with visual

scouting maps. Long et a1. (1997) employed a similar light beam system to selectively

spot spray topped tobacco plants with sucker controlling chemicals and demonstrated a

reduction in chemical application of 50%, having effectively removed wind drift and

wasteful soil application. This technique could be applied to other row crops with discrete

plant spacing and operates at 4-7 km/hr.

At the furthest realm of real-time control, Hague et a1. (1997) have demonstrated the use

of an autonomous vehicle guided through row crops by a Vision system that can

discriminate between crop and weed plant using image analysis. The vehicle operates at

speeds of 1m/s (3.6km/hr) and allows individual plant treatment, be it weed or crop,

with pesticides or fertiliser. Deployed in early crop growth stages the authors suggest

that 90% of blanket chemical application may be saved by such accurate targeting.

The temporally separated mapping and treatment operations require some prior

knowledge of the distribution of weeds or pests, unlike the real-time sensing and treatment

techniques. For most insect pests, the real-time option is not a viable alternative. For weed

infestations Stafford & Miller (1996) believe that temporally separated mapping allows

for more complete chemical type and rate decisions based on knowing the whole field

infestation. They also cite technically easier weed detection, greater flexibility in the timing

of detection and spray operations, an ability to spray pre-emergent herbicides based on

previous maps and the opportunity to discern the magnitude of error in the maps prior to

treatment as positive attributes of the system.

The best option appears to rest on the efficacy of kill and the optimum time for treatment

of particular weeds. Location errors in the temporally separated methods must be

accounted for by low dose base-level spraying over the whole field. At present real-time

sensors may only be used early in the growing season or with tall weed species.

2.3.8 Application of Irrigation Water

Variable-rate application of irrigation water to broadacre crops remains in its infancy. Much

irrigation is based on a flood system mainly due to the relatively low cost of water compared

with the higher costs of alternative irrigation systems. Undoubtedly this contributes to

some gaseous and percolatory loss of chemicals from areas of a field that receives extended

saturation periods. Field textural and structural variation may already be contributing to
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variation in infiltration and introducing significant error into the present prescriptions for

the optimal use of irrigation water (Feinerman & Bresler, 1985). Textural differences could

possibly be considered as an external control of variable-rate irrigation if the spatial

variation in soil texture was known. Research in the immediate future may focus on

textural monitoring and more frequent but smaller water applications to ensure more

control of soil water movement.

Simulations by Warrick & Gardner (1983) suggest that variability in irrigation application

may be just as influential on crop yield as variability in moisture-related soil physical

attributes. The investigation of superior methods of application control may soon appear

warranted on the basis of financial, social and environmental considerations.

Drip irrigation management poses particular problems with annual cultivation and flow

control but could offer solutions to high value crops such as cotton in the future. More

promising is the use of automated travelling sprinkler systems. King et a1. (1995) developed

a prototype control system to apply site-specific quantities of water from continuous

moving irrigation systems. In field trials they succeeded in attaining water and chemical

application uniformity similar to a conventional sprinkler system. The design was

considerably more expensive owing to the use of 2 or 3 sprinklers at each delivery point to

attain variable flow rates.

The system was fitted it to commercial centre-pivot by King et a1. (1996) and successfully

applied step-wise variable amounts of N with equivalent or greater accuracy than

conventional uniform applicators, achieving the targeted amounts of N with little error.

Evans et a1. (1996) achieved similar success using a command system for cycling sprinklers

within each zone of a moving irrigation system, and noted that the greatest difficulty

remains in determining sensible application prescriptions.

The principle appears to be robust and achievable. Operation in windy conditions would

reduce the accuracy of these systems and only some chemicals are registered for use with

sprinklers. The future development of variable-rate sprinklers will drastically reduce the

cost and technical complexity of these systems.

Table 2-4 is provided as a summary of the possible points for differential management

intervention and the tools currently available or designed for the operations.
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Management practice Aspect

Diierential action

Technology

 

Tillage

Fertiliser application

Gypsum/lime application

Irrplement type and depth

Surface condition

Spreading

Pneumatic (variable rate and nix)

Anhydrous ammonia

Liquid manure

Spreading

Slurry injection

Ultrasonic range finders.

Draught transducers.

Cone penetrometers.

Image analysis.

Utrasonic range finders.

Draught transducers.

Master controlled metering device and variable disc height.

Master controller governing individual bin slave controllers.

Flow controller governing actuators.

Separate flow controller for twin tank/boom system.

Master controlled metering device and variable disc height.

Flow controller governing actuators.

 

Sowing Seed quantity Speed independent electric or hydraulic master controller.

Depth Sensor feedback loop governs actuators for depth control.

Pesticides Insecticide application Map guided patch spraying.

Herbicide application Map guided patch spraying.

Master control of direct injection.

Photoelectric real-time detection and spot treatment.

Infrared height selection and spot treatment.

Real-time image analysis vision detection and spot spraying.

Irrigation Travelling sprinkler Master controlled zones with autonomous nozzle arrays

Table 2-4. Management options for differential treatment and the available

technology.
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2.4 MANAGEMENT DECISIONS BASED ON OBSERVED SPATIAL VARIABILITY

The preceding sections outline the techniques and extent to which data on spatial variability

may be gathered and the presently available options for differential treatment. The critical

link between these two operations is the agronomic rationale or decision on which to base

spatially variable treatments. This is potentially the most conceptually diverse component

in the Precision Agriculture management system, and where the greatest information gap

resides.

Initially causal relationships between soil/crop factors and yield must be established at

the within-field scale along with the extent to which these relationships vary across the

field. This information should be used to determine whether the observed variability

warrants differential treatment and if so, direct the decision methodology to be followed.

Figure 2-5 provides a skeletal example of the decision process that could be employed

following a study of field variability. This model begins with the premise that variability

in crop yield is the initial signal that uniform application of ameliorants is a possibly

inefficient use of resources. Another model may begin with the observation of soil

variability. However, until the environmental cost of fertiliser wastage is imposed as a

grower penalty in Australia, the economic imperative of optimising crop yield will no

doubt guide management decisions.

In this model, differential treatment is then examined as an option based on the degree of

variation, the cause/3 of variation and their suitability for management intervention.

Continuously variable treatment or division of a field into management sub-units is

determined based on the spatial dependency observed. Again, this decision marks the

point of a conceptual schism. If variability and treatment can be observed and controlled

at a fine scale, should fields be treated as continuously variable in yield potential or can

some classification into management units of 'homogeneous’ yield potential be accepted?

If the later is chosen, should these units be treated with uniform rates of ameliorants if the

controlling factor for application was not used to define the management unit? The answers

to such questions are most likely complex and, I believe, as yet unknown. Options at this

point in the model are more than likely governed by limiting factors such as technology,

economics and lack of research.

Finally, some form of predictive model must be employed to enable a scientific and

agronomically sensible examination of the implications of differential as opposed to

uniform treatment, and the interpretation of the results in the form of a spatial management

plan. Research relevant to this realm of site-specific management will be examined.
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Is crop yield variable?

YES NO H Uniform field treatment

Can the cause/s of
variability be determined

and modelled?

YES NO )—> Uniform field treatment

I
Can the cause/s of variability

be managed?

/\
/YES NO

Will the cause/s be used to Can the cause/s be used to
determine management units? determine management units?

NO YES YES NO

ls variability suited to Determine Uniform field treatment
continuous management? management units

NO YES I
I Set yield goals

Uniform field treatment Apply continuous
yield models Are management units to be

treated uniformly for other
variables

NO YES

<—¢ Determine unit yield models Instigate differential action
for variables of interest based on unit mean value of

the variable of interest

Instigate continuous
differential action

Figure 2-5. Management decision tree for Site-Specific Crop Management

— a simple model based on the economic imperative.
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2.4.1 Determining Causal Effects

Chapter 1 has examined the individual impact of variability in many soil and crop attributes

on crop yield and provided an indication of the variability that may be expected within a

field. Table 1-5 confirms the observations of Harris (1920) who had developed a yield

heterogeneity index based on a form of nearest neighbour correlation with which he inferred

that heterogeneity in soil factors such as soil moisture, nitrogen and carbon was occurring

at the same scale as that observed in crop yield. The importance of characterising soil

variability at the within-field scale in an attempt to understand crop yield variability at

the same scale is only now becoming more widely accepted (Robert, 1993).

For site-specific management, the question is whether one factor can be considered to

dominate the yield potential in a field or shall the complex interrelationships between

observable factors be utilised in decision making. The former assumption simplifies

management. The latter may be optimal in terms of optimising yield and environmental

benefits, but economically inviable (at present).

Under the controlled environment of sprinkler irrigation Bresler et al. (1982) found that

soil physical factors were dominantly the cause of observed within-field variation in crop

yield. Under similar conditions Guitjens (1992) reported that areas with an increase in

sand content produced a spatial pattern of soil water deficit that governed yield variability.

A correlation between grain yield and clay content has also been reported by Miller et a1.

(1988) as the most significant contributor to spatial yield variability. Khakural et al. (1996b)

suggest that more spatial variability in corn and soybean yield can be explained by physical

soil or landscape features than soil fertility factors.

The significant effect of soil moisture on crop yield variability is shown by Power et a1.

(1961) where 53 % of wheat yield response to P is explained by spatial variability in soil

moisture at seeding. With the addition of rainfall variability between tillering and heading

the authors explained 81% of the spatial yield variability. Studies over 3 years in dryland

crop production by Lark & Stafford (1997) provide evidence that the spatial variation in

soil moisture significantly effected the spatial variability of crop yield. While noting a

significant spatial correlation between texture and sorghum yield over two years, Williams

et al. (1987) also found that in a year with a very dry finish the correlation with soil moisture

storage also became significant. Similarly, Thomsen et a1. (1997) found that in 'dry years'

the spatial variability in water holding capacity (calculated by water balance modeling)

was a highly significant contributor in yield variability but was not significant in years

with 'sufficient' moisture.
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Other soil factors have also been shown to predominate in the explanation of yield variance.

Nolin et a1. (1996) found soil pH to be the most significantly spatially correlated soil attribute

to corn yield. Dobermann (1994) also reported that spatial variability in soil pH was strongly

correlated with rice yield in Russia and suggested its dominance could be used as a simple

parameter to infer fertility gradients.

The relationship between topography and crop yield, in particular slope position and

aspect is well known (Hanna et al., 1982). Measuring these attributes can provide an

indirect indication of variability in soil physical and chemical attributes along with climatic

gradients (McCann et al., 1996). Sudduth et al. (1996) found that understanding the causes

of yield variability was compounded by the interrelationship of factors affecting it, but

when comparing seven soil parameters (K, P, pH, OM, topsoil depth, CEC and elevation)

they found elevation to be the most significant.

The spatial variation in nutrient supplying capabilities with a field and the associated

yield effects have also been well documented (e.g. Rennie 8: Clayton, 1960; Ferguson 8:

Gorby, 1967). Using 10 tonne samples of 4 soil types sampled in duplicate from two different

counties to grow a variety of crops over 10 years, Lyttleton-Lyon (1932) noted large

differences in yield response to fertiliser application. In some instances the variability

was greatest Within thanbetween soil types. They also observed the same spatial variability

in field experiments and conclude that it would be very difficult to justify the use of one

response model for a single soil type let alone a field with a suite or gradation of soil types.

More recently, in a comprehensive nitrogen fertiliser response trial using sugar beet and

potato at over 200 sites, Neeteson & Wadman (1987) showed the confidence range for the

economic optimumN rate to be over 300 kg/ha (equivalent to the maximum rate applied)

for up to 60 % of the trials. This also dramatically demonstrates that very large spatial

variation in fertiliser response maybe encountered within a field and so spatial correlations

between soil nutrient levels and yield may routinely prove insignificant or negative.

One plausible explanation for such variability is that the soil nutrient status has also been

related to variation in the complex interrelationships existing between the spectrum of

edaphological influential soil physical and atmospheric factors (Malo & Worcester 1975).

Nolin et a1. (1996) proposed using the strong spatial correlation between altitude and a

range of major chemical nutrients as a means of inferring fertility gradients. Goovaerts &

Chiang (1993) found a temporal persistence in the spatial pattern of numerous soil

properties studied before and after winter which they postulate maybe due to a correlation

with a deterministic attribute such as soil texture.
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These results tend to suggest that spatial variability in the soil water regime and physical

properties controlling soil water movement and nutrient supply may be the most significant

causal factor in the spatial variability of crop yield. Using the variation in indicator factors

such as soil texture or elevation to delineate areas of homogeneous yield potential may

prove useful. The response to these factors will be site-specific, but the significance of

their influence may not.

2.4.2 Management Unit Determination

The information provided in Section 2.4.1 suggests that the use of more static variables to

delineate map units may be supported agronomically. Obtaining data on the spatial

variability in these soil attributes directly is but one option. The expense and labouriousness

of the sampling regime has fostered the examination of alternative methods.

Soil Attributes

Mulla et a1. (1992) used grid sampled soil P and N to calculate required fertiliser using a

mass balance approach and divided the field into three management zones based on

fertiliser application thresholds. They determined yield goals based on the probable water

deficits calculated from subtraction of available water plus expected precipitation from

the non-limiting water requirement for growth. Field results showed a significant difference

in yield for each zone which correlated well with soil profile moisture measurements and

organic carbon which were not used in management zone construction.

Following this lead Mulla (1993) used the spatial variability in soil OM to infer fertility

variability and divide a field in management zones. The zones possessed significantly

different wheat yield potential, soil moisture and residual N. Calculated differential

Fertiliser N and P treatments for these zones were much lower than uniform option

traditionally employed by the grower. Field results in this year revealed no significant

difference in yield between uniform and differential fertiliser applications within the zones

but with considerably less fertiliser applied, a economic benefit could be assumed.

Management unit delineation based on soil texture was employed by Nolin et a1. (1996)

and found to reduce the unit variation (expressed as %CV ) in other soillattributes

significantly. This was a comparison of total field CV to a weighted mean for all the soil

units. Dobermann (1994) used factor analysis to construct a soil fertility factor that the

author suggest could be classified and mapped to produce fertility zones.
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As noted earlier, discrete soil sampling may provide a useful method for research purposes

where sampling costs are less limiting, but at a practical level the number of samples and

the sampling design are likely to be both influential and cost prohibitive. To explore this

point, Franzen &: Peck (1995) used grid sampling on a 25m, 66m and 100m grid to determine

management zones based on required P and K fertiliser. Their results show that the 66m

grid approximated the delineations apparent in maps produced on the 25m and were far

superior to the 100m grid example. They concluded that a 66m grid could be used as a

compromise between economics and accuracy.

Wollenhaupt et al. (1994) reported that a 30m grid provided the most accurate

representation of soil spatial variability and that a loss of at least 30% in map accuracy

could be expected if the sampling grid was increased in size. Birrell et al. (1996) also Show

that sampling pattern and intensity greatly influences the map and the associated error.

This error changes with soil attributes and much detail can be lost in simply moving from

a 25m to a 100m grid. The influence of sampling design on management unit delineation

is further highlighted by Wollenhaupt et a1. (1994) in a comparison of grid point sampling

to grid cell sampling. They report that cell sampling could lead to incorrect determination

of fertiliser requirements in more than 40% of a field when compared to maps made on

grid points. Confirmation of the significant effect of soil sample density and design on

fertiliser application mapping accuracy is provided by Gotway et al. (1996a).

Few studies have used continuous sampling of soil attributes to overcome the sampling

density, design and cost aspects, however Jaynes (1996) did employ EM induction estimates

as a surrogate for organic carbon and the depth to clay pan to successfully map and define

management units.

Continuous Yield

Based on the premise that spatial variability in crop yield is influenced by spatial variability

in soil factors at a similar scale, researchers have begun to examine the patterns observed

in crop yield maps obtained from continuous monitoring.

Using a classified yield map from the previous year Kitchen et a1. (1995) report the successful

determination of yield potential zones. Their success was quantified by applying variable

N fertiliser according to yield goals calculated for each zone, and observing a reduction in

residual soil nitrate in comparison with uniform treatment within the zones and (as may

be predicted) especially in the zones of low yield potential.
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When more than one year's yield maps are available for a field, the recognition of stable

response patterns becomes important for the determination of management units. Stein

et a1. (1997) suggest the simple use of correlation coefficients between the nodes on a map

for pattern comparison. Van Uffelen et a1. (1997) propose a weighted taxonomic distance

measure to quantify the similarity between patterns in yield maps. The authors applied

the technique to simulated yield maps but were forced to arbitrarily select the dominant

pattern as that most repeated over the 8 years of simulation. A benefit of the simulation

process is that yield levels displayed in the dominant pattern may be utilised as the yield

goals for the management units.

In a more rigorous approach using actual yield data, Lark & Stafford (1997) employed a

fuzzy multivariate clustering analysis to three years yield data in an attempt to define

regions of a field that may present similar factors limiting/governing yield. The years

were considered variates in the technique which was optimised with 4 clusters and

produced reasonable continuity in maps of maximum class association.

Again using a form of fuzzy cluster analysis Burrough & Swindell (1997) classify maps of

3 years yield data into four membership classes. They employ an innovative technique to

determine boundaries between the classes whereby points in the maps where the maximum

membership values are most similar between the classes indicate zones of confusion. These

zones are used to define the boundaries between classes or management units. While the

process appears promising, it is only applied in this instance using 80 yield values which

were obtained as 20m block kriged estimates on a 2.5m grid. The clustering is performed

and then the membership values kriged onto a 2.5m grid. This methodology is likely to

produce smooth spatial representations and thus continuous yield boundaries that may

be unrealistic.

Another novel idea is presented by Swindell (1997) which suggests the use of normalised

yield classification and the summation of these classifications over mapped years to

determine a relative yield potential variation in a field. This technique is likely to falsely

represent the overall field variability as each year must have a full range of classifications

under the normalisation process, but in some years there may be little variance in the

absolute yield values recorded. It could not be accurately used as a quantified yield

potential map. Further, the author alludes to the use of the technique to combine crop

types Within one field but it is arguable as to what information would be gained as various

soil attributes are likely to effect different crops differently.

Not all studies suggest that crop yield is the optimum indicator. Khakural et al. (1996b)

believe that management units based on yield maps may maximise differences in yield
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between units but this may not necessarily be equated to the optimum delineation of

management units based on maximum differences in soil properties. This is presumably

possible due to other external factors significantly influencing crop yield.

Aerial Reconnaissance

A further step away (in terms of distance) from directly sampling the soil is the use of

remote sensing from an aerial or satellite platform. Anderson & Yang (1996) delineated

management units by aerial photography into zones of homogenous spectral response.

During ground-truthing, considerable variability in crop yield data (CV between 9% and

180%) and plant and soil nutrient levels were recorded within each zone. McCann et a1.

(1996) used panchromatic aerial photographs of bare soil enhanced, categorised and

ground-truthed to delineate 4 management units which the author believed to basically

reflect slope position.

Using satellite imagery with a 20m ground resolution, Steven & Millar (1997) calculated

the NDVI for a number of field crops and typically explained 50% of eventual yield

variability. The results showed that spatial pattern persistence was poorly detected in

most cases between years but depending on time of capture, could be quite good within

years.

These studies highlight the error introduced by the temporal gap between image capture

and final harvest and also may allude to the eventual need to manage differentially within

management zones with uniform yield goals. These images may find their greatest use as

an aid to determining causes of spatial yield variation by providing in-season growth

information or as an adjunct to other delineation methods.

As an example, by augmenting soil unit delineations from survey maps with aerial

photographs Carr et a1. (1991) derived within field management units. Fertiliser application

rates were calculated based on mean soil nutrient tests, traditional fertiliser

recommendations and yield goals. They report some success at 5 sites over two years but

temporal variability in the crop yield achieved highlighted the need for accurate yield

goals, accurate soil tests and reliable fertiliser response calculations.

Combining DEM derived attributes with aerial photographic survey data proved most

cost and labour efficient for Thompson and Robert (1995) in delineating map units as

compared with grid soil sampling and interpolation.
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Elevation and Terrain Attributes

Delineating management units based on landscape characteristics has been suggested by

Larson & Robert (1991). They discuss numerous landscape characteristics of which they

consider position the simplest and most effective. Landscape or terrain mapping (to provide

position information) may prove effective in management unit delineation because terrain

significantly influences the distribution of hydrological processes and soil temperature

which in turn govern the majority of soil and microclimate attributes that influence crop

production potential (Moore et al., 1993).

Terrain attributes calculated from a digital elevation model (DEM) were shown to account

for 50% of the spatial variability in soil OM and depth of top soil attributes in a study by

Bell et a1. (1995) and to significantly represent the spatial variation in soil N (Hollands,

1996). Showing the diversity of information that may be related to elevation, Mathews 8:

Blackmore (1997) used a DEM to estimate the variability in incident solar radiation as a

function of elevation. They combined this information with a crop growth model to

estimate changes in nitrogen response curves within the field and calculated management

units. Under field conditions, 15% less fertiliser was applied than under uniform

management to achieve the economic optimum yield.

It is important to remember with these surrogate techniques that the accuracy of the derived

attributes is a function of the accuracy of the DEM, which in turn is a function of the

method of collection (Spangrud et al., 1995).

Comparisons

A few studies have been undertaken to compare strategies for management unit

delineation. Wibawa et a1. (1993) found that soil sampling on a 50 m grid spacing produced

a good estimate of soil fertility as indicated by increased yield from differentially fertilising

to yield goals determined for the delineated management units. In comparison, using

existing soil survey map units as management units did provide significant differences in

crop yield, however the soil nutrient levels did not follow the soil unit pattern providing

less than optimum yields. While the authors report grid sampling to be the most successful

in terms of yield and fertiliser synchronicity, the cost of grid sampling meant that this

option was not the most profitable. The study does suggest that a process of delineating

management cells based on yield potential may benefit from differential treatment within

based on spatial variability in indigenous attribute levels.
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Intensive soil sampling also proved the most successful for mapping P and delineating

management units in a study by Delcourt & De Baerdemaeker (1994). They compared

this procedure with apriori knowledge (soil survey maps) and yield maps correlated over

two years. The soil unit management delineations suffered a similar error as described

above and the yield mapping proved difficult to delineate units from using correlation

analysis due to large temporal variability.

Long et al. (1995) reports that aerial imagery of crop reflectance produced more accurate

and precise estimation of soil unit delineations than a final yield map. Importantly, they

condition such results on the aerial photographs being taken at the correct time of season

to truly represent the yield variability induced by soil variability. The period post-anthesis

is suggested as the optimum window.

These studies suggest that intense grid sampling of soil attributes is the most accurate

method of determining management units (at least for single nutrient fertiliser application).

Techniques for the use of multiple year yield maps in management unit delineation are in

their infancy. Intuitively, management zones developed on an integrative attribute such

as crop yield or vegetative index should be more robust for the application of a range of

differential treatments.

While these techniques are researched and refined, operations should continue based on

the soil sampling process. Initially zones defined in this manner will be treated as

homogenous, described by a single response curve for individual attributes. Thrikawala

et a1. (1998) show that in a simulated field efficiency gains increase with decreases in

management unit size even with a single fertiliser response curve and that this result is

enhanced by greater spatial variability. The authors determine efficiency is as returns less

fertiliser application costs with no inclusion for the cost of information.

However, as has been previously suggested, while management zones may be drawn on

the grounds of homogeneous yield potential, the response to treatment within the zones

may be governed by internal variability. Using N fertiliser as an example, Vetsch et a1.

(1995) experimentally determined the variability in response to N fertiliser within a field

and particularly concluded that variability existed in the intercept, slope and economic

optimum N rate, but not in the predicted optimum yield.

Continuously variable treatment may eventually be applied in such cases (and across

whole fields) but some guidelines for management cell size within the units will be required.

Sensibly, the minimum cell size should be determined based on the application equipment

dimensions, the accuracy of positioning systems and the speed with which application
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controllers can vary rates without considerable error. The maximum cell size requires

some agronomic or statistical basis. Han et a1., (1994) propose using the 'mean correlation

distance' based on the normalised complement of the semi-variogram model of the attribute

of interest. This distance is a function of the sill and range of the semi-variogram and

while it does assume one variogram model for the whole field or management unit,

provides a non-arbitrary assessment. The technique must be an improvement on that

proposed by He 8: Peterson (1991) whereby simulation based yield goal estimation from

soil OM, moisture and indigenous N are combined with a rule-based expert system to

calculate variable N rates for 80 x 80m blocks within a field.

2.4.3 Modelling Yield Variability as a Function of Causal Effects

As experimental work continues on the most effective method of delineating differential

management zones, the tools necessary for predicting the spatial effects of inherent and

induced variability on crop yield is also being examined. Models are required that predict

outcomes for all the differential treatment processes described in Section 2.3.

A comprehensive summary of the attempts and requirements of including bio-economic

spatial weed models into management decisions is provided by Johnson et a1. (1997).

Although there has not been a great deal of success as yet in this endeavour due to sampling

scale problems, Steckler & Brown (1993) circumvented the dilemma by using classified

aerial images to identify weed patches. They developed rule-based, expert system to

calculate herbicide application within each treatment unit based on spatial distribution of

weed species, thresholds, crop stage, climatic conditions and herbicide resistance.

Far more attention is being focused on the variable-rate application of fertiliser and

modelling the spatial yield response.

Modelling crop yield may be achieved through a number of conceptually different

techniques. An 'empirical' model may be constructed purely on the basis of statistical

analysis of experimental data, while a 'mechanistic’ model attempts to predict yield on the

basis of contributory functional components of growth. These two general types of models

maybe further classified as 'deterministic' whereby prediction is aimed at a singular

outcome for a set of input conditions, or 'stochastic' providing a probability distribution

for the outcome.

Most traditional modelling approaches for the effect of varying the rate of single or twin

causal factors on yield follow the empirical response curve technique as described in Section

2.3.2. These models can be incorporated into spatial analysis for site-specific management
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(McBratney & Whelan, 1995b) and their simplicity enables relatively swift data

manipulation. However, their usefulness may be restricted to combining linearly related

factors.

Sudduth et a1. (1996) analysed a number of simple empirical models in relation to site—

specific management and indeed found that interrelationships in the causal factors of

spatial yield variability makes modelling difficult. These relationships are often nonlinear

making modelling operations that are linearly constrained (i.e. correlation and multiple

linear regression) unsuitable. The authors found that non-parametric, non—linear methods

such as projection pursuit regression (PPR) were better performed when dealing with

numerous factors. A yield map constructed from the PPR derived response curves

compared favourably with the initial yield map, however this may be due to the large

number of parameters overfitting the experimental data.

In an attempt to improve interpretation of multiple regression by reducing the correlations

between variables, Mallarino et al. (1996) employed factor analysis to aggregate highly

correlated variables into new 'latent' variables. Factor analysis defines these 'latent'

variables using covariance analysis. They found that a latent variable reflecting early

corn growth was considered the most important to final yield, and in two of three fields

studied the aggregate variable 'weed control' was important. Only a low to moderate

proportion of yield variability could be explained by this technique (R2 = 0.28 to 0.71) and

the authors stress the importance of measuring and including in analysis the truly

influential causal factors. This technique offers relative simplicity in the incorporation of

interrelationships but the variability in R2 reported by Mallarino et al. (1996) suggests that

variables may be interrelated differently between fields and that 'latent' variables may not

be stable in space.

In a similar vein, Khakural et al. (1996b) produced a Soil Fertility Index (SFI) which ranged

from 0 to 1 based on a number of soil and terrain attributes. The SFI was used to linearly

predict maximum crop yield and a variable stress factor based on climatic and soil moisture

characteristic information was then superimposed to calculate actual yields. When applied

to a 17 ha area, the predicted yields provided a good spatial correlation with the actual

mapped yield.

Wendroth et al. (1997) used the same principle of SFI, in conjunction with a vegetative

index (VI) formed from aerial infrared photographs, in a state-space approach to modelling

yield variation. The method is basically an autoregressive approach incorporating spatial

covariance and cross covariance in a transition or autoregressive coefficient matrix. The

autoregressive analysis can only operate in one dimension but most interestingly it can be

88



B.M. Whelun - Reconciling Continuous Soil Variation £1 Crop Yield

yield. The authors found that yield could be predicted well with SI and VI in combination

with only minimal auxiliary yield data. They suggest the addition of variables such as

multiple year yields, multiple year VI or soil nutrient concentrations could help in

determining which parameters are optimal for prediction.

Neural networks are another non—parametric, empirical process that have recently been

employed in crop yield modelling. Aneural network 'learns' by experience from statistically

approximating the input and output functions of a process using sample data. The neural

network is recognised as capable of non-linear processing and signal noise reduction (Kosko

1992). Sudduth et a1. (1996) employed neural network analysis in the previously described

study and found the models generated to be only slightly less successful than PPR.

Quite sophisticated empirical models with stochastic prediction have been developed for

crop yield. As an example Bresler (1987) models crop yield in a field with spatially variable

soil parameters and boundary and initial conditions as an indirect random function of the

spatial co-ordinates. It can be considered as a direct function in the form of Equation 2—1:

Yo) = flBm, Q09] (2—1)

where

Y(;) = Vector of crop yield for a given space coordinates vector

3(5) = Vector of man-controlled random functions (i.e. boundary/initial

conditions) for a given space coordinates vector

am = Vector of spatially random functions for a given space

coordinates vector

The authors used this model to estimate the moments (mean and variance ) of the integral

of all Yo)“ For an application to site-specific management the individual estimates of Y“)

would be useful or integrals over management units. For this model to be applicable

however, the changing nature of the functions in space that comprise the vectors Em and

9(1) must also be considered.

These empirical models are finding application in spatial analysis at the field level through

incorporation as (315 data analysis tools. Yost et a1. (1988) outline the preliminary

development of an 'expert system' for the determining lime requirement using rule—based

functions on model output. Moltz et a1. (1993) preview a more sophisticated approach in

the form of a specific GIS for site-specific management that spatially analyses input data

(detrending and variogram analyses) then uses empirical and Boolean (logical) functions
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to manipulate the data and form fertiliser treatment maps. Schroeder et al. (1997) report

the development of a similar approach.

Mechanistic models are more complex and computationally demanding but have routinely

been employed in simulation studies of crop growth because they are often regarded as

superior to empirical models which are usually single-site based and consider little

phenological effect (Barnett et al., 1997). Numerous commercial growth simulators are

available in the public domain for a range of crops using component soil moisture, soil

chemical, soil erosion, root growth, nutrient uptake, climatic and transpiration sub-models

(see for example Hanks 8: Ritchie, 1991).

However, traditional mechanistic simulation models do not operate at the spatial resolution

required for site-specific management. Either the simulations must be run using input

data representative of small areas only or the models must be modified to accommodate

spatially variable data.

Hoogenboom et a1. (1993) attempted to circumvent this dilemma by linking a commercial

GIS to a crop simulation models. The (315 could call the simulation model to run in batch

mode for different soil units identified within a field or farm to give a representation of

soil spatial variability to the model output. Han 8: Goering (1993) and Han 8: Evans

(1994) also employed a GIS and simulation models to simulate corn and potato yield along

with nitrogen movement and added a decision rule module to interpret the output and

recommend spatially variable pre-season fertiliser and lime application.

Boone et a1. (1996) provide a discussion of this developing use of GIS and growth simulation

models in combination with expert interfaces for interpreting model output as management

decisions. These software linkages have been collectively termed 'decision support systems’

(D88) and Olesen et a1. (1996) show the use of a sophisticated example that includes

submodels for crop vegetative development, soil water balance and crop yield all modelled

as a function of available water and available nitrogen. The modelled spatial variability

in yield for a single field provided a reasonable correlation with mapped and hand

harvested wheat in one year but not the proceeding year.

This example highlights the apparent fact that factors affecting spatial variation in crop

yield may change with time. More accurate is the possibility that the influence of certain

physical causal factors changes with temporal climatic variation. While these simulation

models attempt to incorporate some influence of climate, it is spatially and temporally

non-linear and therefore complex to predict (Schueller 1992). The simulation studies of

Hoogenboom et a1. (1993) show that the effect of temporal variability in climate on crop
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yield models is far greater than soil spatial variability and that there appears to.be a

difference between crops in their response to soil and climate variability.

This large temporal variability in climate reinforces the need for the inclusion of climatic

simulation models and the necessity of historic climatic data in any yield prediction process

(Karlen et al., 1997). Booltink et al. (1996) have attempted such a procedure by combining

crop simulation models within a commercial DSS with spatially variable soil data and a

weather generator (predictive simulator). The weather simulator is based on historical

climatic data and the model outcomes are used to predict fertiliser applications for optimum

yield and minimum nitrogen wastage. The predictions had not been field tested at the

time of publication.

While these systems are honing in on the requirements of a comprehensive site—specific

DSS, there remains contentious or problematic areas. While Acock & Pachepsky (1997)

argue that mechanistic models using limiting factor sub-models for the interaction of

parameters (and operating with less than daily analysis) are the most suitable for a site-

specific management system because they are better at operating outside the conditions

on which they are developed than empirical models, Barnett et al. (1997) do not agree.

The authors attempted to validate in the UK a number of well known mechanistic wheat

yield models developed from other countries. They found very poor correlation between

predicted and actual yields and believed that the complex weather processes included in

the models for crop physiological growth simulation are basically irrelevant in the UK. A

parsimonious statistical model was formulated that was applicable across a range of sites

and incorporated phenological growth stage factors providing a reasonable predictive

power for yields.

Passioura (1996) concurs with Barnett et al. (1997) in the belief that mechanistic models as

management tools are flawed, and bases the opinion on the inclusion of usually difficult

to prove assessments of the processes that control crop growth in the models. Passioura

(1996) suggests that empirical models applied under the environmental conditions in which

they were formulated are the most suitable for management. Obviously it will be important

to ensure that site-specific causal factors (including climate) are relevantly modeled and

included in any DSS for local application.

It also should be acknowledged that uncertainty exists in the final yield estimate as a

result of uncertainty in the input data and errors in the models. Chen et al. (1997) used

first order uncertainty analysis to examine the effect of uncertainty in input data on the

model outcome of a mechanistic phosphorus decision support system. They reported a

large uncertainty which was contributed mostly by variability in specific model parameters
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(crop critical P level and the soil buffering coefficient). Uncertainty may also be contributed

by the use of models and input data designed for larger scales than the current application.

In explanation of this, Heuvelink (1998) point to the fact that different processes are

important at different scales, that reduced input data is available at larger scales and the

support for data points changes dramatically. The implication is that a D55 for site-specific

management should not include commercial models developed for larger scale predictions.

Uncertainty estimation is essential for a thorough risk analysis of any decisions generated

from a D55. A stochastic element must be introduced to the model or the input data.

Pachepsky 8: Acock (1997) use stochastic imaging to achieve this aimby generating possible

images of variability in soil input data (available water content). These realisations are

applied in crop growth models to assess yield response and the associated uncertainty.

Gomez-Hernandez (1997) also show the use of stochastic simulation by generating

alternative spatial estimates of parameter values for input into water flow models and

obtain frequency distributions of the response variables.

Finally, the majority of models discussed (with the exception of Wendroth et a1., 1997) are

designed to utilise input data that has been previously gathered. Figure 2-1 suggests that

the ultimate aim of site-specific management may be to gather some information, make

decisions and instigate action all in real time. While this may appear futuristic, there are

a number of other techniques that may be investigated to achieve this goal. Or 8: Hanks

(1992) suggest the use of a Kalman filter algorithm§ that combines data from separate

sources such as model predictions and actual measurements into an estimate with

minimised variance. Alternatively, Goovaerts 8: Iournel (1995) used indicator algorithms

to merge soil classification data with sparse sample data to improve predictions of

deficiency in trace elements.

While progress continues to be made in DSS, it appears imperative that the errors and

uncertainty associated with measuring variability and modelling responses be estimated.

It is also evident that and D58 must incorporate the significant effects of temporal variability

induced by climatic variables.

§ The theory of Kalman filtering can be reviewed in Merminod (1989) and Grewal 8: Andrews (1993).
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2.5 SUMMARY

The premise underlying site-specific management, namely that soil heterogeneity

influences the productive potential of agricultural land, can not be regarded as a new

concept. Equally, the knowledge that measuring the degree of heterogeneity and using

this as base data with which to manipulate farming operations is long held. In most

cropping systems, the field variation in soil type, moisture content, structural integrity

and nutrient levels, will contribute to site fluctuations in the potential yield.

Acquiring data on the short-range variation of these influential soil attributes is essential

to the operation of a SSM system. A true description of small and large scale variation in

such soil properties has historically been difficult and costly to obtain. Sampling on a

large-scale grid is logistically troublesome and provides data on variability at a very coarse

scale. Alternatively, a fine-scale grid sampling scheme may provide more detail on

variability but will incur high costs in order to cover a significant area. Obtaining a more

thorough understanding of the extent of soil variability at a site will require the continued

development of methods that allow observations to be made at a diverse range of scales

and with greater continuity. Until such time, more efficient direct sampling designs and

machinery should be investigated.

Numerous systems are now commercially available to monitor the variability in crop

yield in 'real—time' during harvest operations. Combining these technologies with vastly

improved ground positioning systems is now allowing detailed mapping of crop yield

variability within a field. There are however a number of error sources in the data gathered

by these systems that requires quantification, or more appropriately, removal.

The results of mapping variability patterns in this manner should be a wealth of new

production information for the land manager. Small-scale variation in pertinent soil factors

can be identified and any fluctuations in productivity potential across a site quantified.

While this review has only touched on the formal processes of spatial representation of

this data (i.e. map making), the different methods and their associated assumptions can

produce widely varying results. With the vast quantities of data available per field for

yield map construction, these methods and assumptions should be examined in terms of

accurate variability representation and uncertainty propagation and the most appropriate

method determined.

The degree of variation will in turn influence the differential treatment strategies required

to maximise yields and resource application. It should be obvious that the technology to

apply variable rates of ameliorants within a field is well developed. The agronomy and
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decision processes at these fine-scales has been little developed. While it can be envisaged

that the entire data acquisition—processing—decision procedure may be undertaken in the

field during relevant farming operations, thereby avoiding an increase in the traffic loading

and increasing timeliness, the reality appears relatively distant. Much research is being

undertaken in an endeavour to rectify this situation.

In general, applying the theories of Precision Agriculture to the practicalities of broad-

acre farming will rely on successfully handling the ramifications of uncertainty in

information, i.e. information pertaining to the spatial and temporal variation of those factors

which determine yield components and/or environmental losses. It is clear that annual

temporal variation is much larger than the spatial variation within single fields. This

leads to the conclusion that if Precision Agriculture is to have a sound scientific basis and

ultimately a practical outcome then accurate measurements of variability and assessments

of the spatial structure must be ensured and uncertainty reduced in soil and yield maps

and crop growth models. Some of these important areas will be addressed in the following

research Chapters.
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CHAPTER 3

Spatio-Temporal Monitoring and Modelling of Soil Moisture Content

3.1 INTRODUCTION

Considering the climate, soil types and managerial practices of the north-westNSW dryland

cropping region, by far the most critical spatio-temporally variable attribute governing

crop yield is the moisture content of the soil. Moisture content must be within recognised

parameters for trafficability at cultivation, sowing and harvest times. It is also crucial to

the germination, vegetative and reproductive growth of the plant.

The soil moisture content at any point in a field can also be viewed as a random realisation

of the effects of a number of soil physical attributes that themselves vary in space and

time. These would include soil type, soil texture, soil structure and structural stability to

wetting along with surface features such as crusting. This ability to broadly reflect the

variation in a number of physical attributes of the soil, when combined with the crucial

role soil moisture occupies in all aspects of plant growth, provides a potentially powerful

singular parameter with which to characterise the spatial and temporal variability of soil

in the cropping fields in northern NSW.

3.2 METHODS OF IN SITU SOIL MOISTURE MEASUREMENT

The requirement for robust methods for the measurement of soil moisture content in situ

has continued to extend the ingenuity of soil scientists. Gravimetric sampling provides

an indisputably accurate method however its destructive nature, the requirement for

constant physical site access and the inability to resample observation points ultimately

limits its use to space- and time-finite surface sampling if a crop experiment is to remain

minimally disturbed through the growing season.

Stafford (1988) comprehensively reviews the techniques for remote, non-contact and in

situ measurement of soil moisture. Of relevance here are the Widely available in situ

techniques. They all rely on the measurement of physical properties of the soil that vary

in a definable relationship with soil moisture. Each of these 'indirect' techniques require

calibration to approximate a soil moisture content and each varies in applicability to field-

based crop growth experiments.
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3.2.1 Tensiometry

Tensiometers measure the energy status or potential of the soil water, the matric component

of which can be related to the water content of the soil. In operation, an hydraulic

equilibrium is established between the soil water and the water supply inside the

tensiometer. The moisture potential of soil surrounding the porous ceramic tip of the

tensiometer is then measured by monitoring the pressure exerted on free water inside the

tensiometer. Tension is exerted on the tensiometer water by a drying soil, producing an

outflow and a reduction in the internal water pressure (the value becomes more negative).

The reverse occurs if water is added to the soil and equilibration requires a flow into the

tensiometer.

Cassel & Klute (1987) consider the applicability of tensiometers to cover irrigation

scheduling, root zone delineation and hydraulic gradient measurements. The inference

being that the method is less suitable as a technique for indirect measurement of soil

moisture content. This reservation is increased in shrink/swell soils where the matric

potential is further influenced by the overburden load imparted on the soil around the

tensiometer cup (Mahony 1975). The safe operating range of the tensiometer is generally

regarded as O kPa to -100 kPa (with Field Capacity = -10 to -30 kPa and Permanent Wilting

Point -1500 kPa). The range of moisture contents that can be estimated is therefore similarly

restrained. Coupling tensiometers with electrical transducers does facilitate digital data

logging, allowing a number of units to be automatically monitored.

3.2.2 Electrical resistivity

The electrical resistivity of a porous medium is also a function of its moisture content

(Gardner 1987). Typically, a porous gypsum block buried in the soil will achieve a matric

potential equilibrium with the surrounding soil that can be measured using suitable

electrodes. This potential can be calibrated to approximate the moisture content of the

specific soil surrounding the block. Porous blocks used in this method are unsuitable for

measuring moisture at the wetter end of the scale, operating with greater precision in the

-60 kPa to -1500 kPa range.

As with the tensiometer, the relationship between moisture potential and content can be

effected by hysteresis and calibration is more successful in the soil drying cycle. Adequate

and realistic contact between the soil and the instrument surface is also a point of concern.

The application of the above two techniques would appear best suited to monitoring soil

moisture potential and the interpretation of these measurements for the availability of soil
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water for plant growth. Extrapolation to a precise moisture content appears to over—extend

the techniques.

3.2.3 Neutron Thermalisation

The Neutron scattering technique has found wide acceptance in irrigation scheduling

throughout Australia. It operates using a radioactive source (Americium 241 /Beryllium)

in tandem with a multi—directional sensor that is shielded from the source. Fast moving

neutrons are emitted into the surrounding environment, thermalised on contact with atoms

of a similar size and mass and detected as slower moving neutrons by the sensor (Gardner

& Kirkham, 1952). In the soil, hydrogen (H+) is effectively the only atom with the necessary

characteristics and is present in clay minerals, organic matter and water. The fraction of

H+ in the mineral/organic soil matrix at a site is extremely low and essentially fixed in

comparison to quantities monitored during fluctuations in moisture content. This lead to

the effect of soil constituents other than water being neglected in analysis and the

development of a universal calibration (Holmes, 1956).

The use of a universal calibrations has been questioned more recently. Chanasyk 8: Neath

(1996) cite changes in soil chemistry, bulk density and organic matter levels as attributes

which will significantly effect the accuracy of absolute moisture values using a universal

calibration. The neutron scattering technique is also sensitive to the volume of soil available

for sampling and is therefore less reliable at the soil surface (Chanasyk 8: Neath, 1996).

3.2.4 Time Domain Reflectometry (TDR)

TDR is used to measure the apparent dialectric constant of soil (8) surrounding a

configuration of metal probes. The technique involves determining the travel time (t) of

an electromagnetic pulse propagated along the probes and relies on the correlation between

pulse travel time and soil moisture content for a fixed probe length (L). Top et a1. (1980)

reported an empirical relationship for many soil materials of the form:

6 = —0.053 + 0.298 — 0.000555:2 + 0.0000043sz3 (3-1)

The apparent dialectric constant is calculated using the velocity of light in free space (c) in

Equation 3.2

e = (ct/2L) (3~2)
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This simple technique has been made available for soil moisture measurement due to the

rapid improvement in instrumentation electronics. Probe lengths between 0.2m and 1.0m

require the ability to measure reflection times in the nanosecond (ns) range. This speed of

measurement also means that the sampling process is extremely swift and the use of

buriable probes allows for repeatable non-destructive sampling of a single soil volume.

Coupled with these advantages is the ability to multiplex a large number of probes to

automatically collect data at many points. These attributes make the TDR the best choice

to examine the spatial and temporal variability of soil moisture over a growing season.

3.3 MATERIALS 8: METHODS

3.3.1 Site Description

Soil ofNorth-West NSW

The soil of the North West Plains of NSW composes a mosaic of types that vary in both

genetics and crop production potential. Northcote (1966), Stannard 8: Kelly (1977), and

Butler & Hubble (1978) provide detailed descriptions of the variability in soil profiles to

be found in the region. However, it is the deposition of alluvium derived from basaltic

parent material in the ranges to the east that has resulted in the predominance of Cracking

Clay soil in the semi-arid/sub tropical cropping sectors of this region. These Cracking

Clay soil types are at the fore in agricultural production potential in Australia.

The Cracking Clay soil classification encompasses the Australian soil groups - Grey, Brown

and Red Clays and Black Earths (Stace et a1., 1968). In terms of US Soil Taxonomy (Soil

Survey Staff 1975) these soil types are recognised as Vertisols. Northcote (1971) generally

characterised these soil types as possessing a uniform, clay dominant texture profile and

a shrink/swell nature that results in seasonal cracks of a minimum 6mm width, 30cm

depth and 1 m2 spatial frequency. A more complete description of the qualities that define

this classification would include the following attributes (Hubble 1984).

0 A texture profile with a maximum range of one texture group.

0 Generally uniform profile colour ranging from black — grey —— brown to red-brown.

Below 1 m the colour gradually becoming paler with ochreous mottling in poorly

drained soil and occasional changes to more yellow clays in deeper soil.

0 A 2 — 5 cm surface layer that is either self-mulching composed of loose granular or

polyhedral units; self-mulching with a thin laminar crust of dispersed soil that cracks

on drying; or massive to weak medium blocky.
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0 An abrupt boundary to a moderate medium blocky ped structure that graduates

into a parallelepiped structure.

0 Environmentally induced occurrence of carbonate, ferromagnesian and gypsum

segregations, concretions or coatings.

0 As a consequence of the amount and type of clay present, the soil may exhibit >70°/o

base saturation, relatively high soil water contents at Field Capacity and Wilting

Point, variable water infiltration into dry soil and low saturated hydraulic

conductivity.

0 The soil reaction may range through strongly alkaline — alkaline — alkaline/acid —

acid.

0 Montmorillonite, illite or kaolinite may dominate the clay mineral suite; as a

consequence the Cation Exchange Capacity may vary between 200 and 800 millimoles

'+' / kg soil with a grade between calcium dominance (10w Sodium Adsorption Ratio

(SAR)) and magnesium co-dominance combined with higher sodium concentrations

(high SAR); exchangeable potassium concentrations are relatively high.

0 Nutrient status and organic matter contents vary from high to low according to site-

specific factors.

Soil at the Experimental Site

The soil monitoring experiment was conducted at the LA. Watson Research Institute,

Narrabri, NSW. The Institute is located within the northern grain/cotton belt as shown in

Figure 3-1. The region has a summer dominant rainfall pattern enabling both summer

and winter crops to be grown.
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Figure 3-1. Regional location of the experimental site.
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Layer Depth Texture pH E.C. CI 0.0. P Ca Mg K Na 2 Cat

(m) (mS/rn) (mg/kg) 43/?) (mg/kg) (mmol+lkg) (mmol+lkg) (mmol+lkg) (mmol+lkg) (mmol+lkg)

0.0 - 0.3 Medium Clay 8.6 15 5 0.8 39 213 104 8 7 332

(b)

Layer Depth Sand Silt Clay pH E.C. Cl CaCQ, 0.0. P Ca Mg K Na 2 Cat

(ml (%) (%) (%) (mS/m) (mg/kg) (°/o) (%) (mg/kg) (mmol+lkg) (mmol+lkg) (mmol+lkg) (mmol+lkg) (mmol+lkg)

0.00 - 0.02 28.9 13.5 56.0 8.3 12 1 0.1 0.9 — 263 147 22 13 444

0.00 - 0.10 32.3 12.3 53.9 8.1 17 6 0.1 0.8 82 219 160 16 17 410

0.10 - 0.20 30.5 13.2 55.0 8.5 20 25 0.1 0.7 41 210 163 12 33 416

0.30 - 0.40 32.9 15.3 50.0 8.9 25 23 0.7 0.6 28 187 174 10 54 425

0.70 - 0.80 27.2 13.9 56.9 9.1 35 78 0.9 0.6 50 166 220 12 99 497

1.20 - 1.30 24.5 16.2 56.6 8.9 66 298 1.7 0.5 53 148 214 14 119 495

2.50 - 2.60 22.1 15.7 60.1 9.0 67 262 1.6 0.1 12 141 250 11 134 535

(C)

Layer Depth Sand Silt Clay pH EC. Cl C8003 O.C. P Ca Mg K Na 2 Cat

(m) (%) (%) (%) (mS/m) (mg/kgL 1%) (‘36) (mg/kg) (mmol+lkg) (mmol+lkg) (mmol+lkg) (mmol+lkg) (mmol+lkg)

0.00 - 0.02 37.2 12.3 48.0 8.9 17 2 0.9 0.9 - 242 135 15 18 410

0.00- 0.10 42.5 11.0 43.0 8.9 19 10 1.5 1.1 14 219 150 15 39 422

0.10 - 0.20 40.6 10.8 45.2 9.1 25 15 1.6 0.9 13 189 157 12 49 407

0.30 - 0.40 28.1 10.8 50.2 9.4 41 25 9.9 0.5 5 123 242 9 101 473

0.70 - 0.80 32.0 10.4 49.9 9.6 67 128 7.0 0.3 4 35 239 13 . 174 461

1.20 - 1.30 24.1 15.3 54.9 9.5 96 314 5.1 0.2 12 26 247 14 234 520

2.30 - 2.40 56.2 10.5 30.9 9.5 69 295 2.1 0.1 11 19 149 6 101 275

2.50 - 2.60 31.4 15.8 50.6 9.3 89 482 1.8 0.1 6 36 243 9 171 459

 

Table 3-1. Physical and chemical characteristics of the soil at the experimental site (a) and from samples

500m south-east (b) and 700m north east (c).
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The general physical and chemical characteristics of the topsoil at the site are displayed in

Table 3-1(a). Tables 3-1(b) and 3-1(c) show the physical and chemical analysis of entire

profiles located respectively 500m south east and 700m north east of the experimental site

(unpublished data (McGarry et al.)). The soil is classified as a Grey Clay or Pelustert. All

the sampling points are under the same management cycle.

3.3.2 Moisture Monitoring Equipment and Installation

The project employed a commercially developed TDR system utilising buriable sensors

(waveguides) that could all be monitored within the same hour of the day. The waveguides

were installed in a horizontal orientation at the site. This orientation was primarily chosen

to provide data from the profile zone where soil moisture would be drawn by the plant

roots for the majority of the growing season. It also reduced the effect of variability in the

integration process used to measure moisture content from the soil surrounding the probe.

A waveguide installed vertically into the topsoil would encounter a steep gradient in

moisture content as the soil surface dried and insulated the deeper soil from the evaporative

effect of the troposphere. The resulting soil moisture measurement would be an integration

of the varying dielectric qualities observed in the soil down the length of the waveguide.

Waveguide Layout

The experiment was initiated on a 36 m x 36 111 site subdivided into 144 plots, each 3 m X

3 m, with a centrally located TDR waveguide (0.2 m long) inserted horizontally at a depth

of 0.25m (Figure 3—2). At this depth the greatest extraction of soil moisture by the fibrous

wheat root system is expected. Ten additional waveguides (5 pairs at 0.3 m separation)

were used to examine shorter-range variation. Techniques and tools for the installation of

the sensors into undisturbed soil at an appropriate depth were developed.

Inserting Waveguides

An undisturbed soil environment is desirable to ensure the moisture measurements reflect

real growing conditions. To this end the waveguides were buried prior to the first crop

being sown and they remained in position for the subsequent years. It is considered

important for correct operation of the three-probe waveguides that the parallel planar

orientation of the probes is maintained. To ensure this condition was met in the heavy

textured soil, a pre-insertion tool was designed to prepare a pathway for each probe into

the soil. This tool was constructed of high tensile steel that would allow significantly

more pressure to be applied without deformation. The tool and associated equipment are

drawn in Figure 3-3.
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\\‘. \

\

 

Q Multiplexed TDR unit @ Buriable moisture sensors   
 

Figure 3-2. Experimental setup for waveguides.

The waveguides were to be installed in the centre of each plot so a hole was dug along the

central north-south axis to expose a planar soil face 0.1m south of the central east-west

axis in each plot. The 0.25m depth was established and the pre—insertion tool guide installed

horizontally into the soil face using a spirit level. Once the pre-insertion tool was correctly

aligned using the spirit level and set square, it was gradually pushed into the undisturbed

soil. The spirit level was used to ensure the tool maintained a flat plane during the process.

Removal of the tool left three channels for the probes of the waveguide to follow. The

diameter of the tool probes was smaller than that of the waveguide probes so that good

soil to probe contact could be established when the waveguide was finally inserted. Figure

3-4 shows the pre-insertion procedure in operation.

Following installation of the waveguides into the prepared positions, their 1m coaxial

cable was buried as the access hole was back-filled, to leave only 0.1m of cable and the

terminating connector exposed above the soil surface. The site was left to equilibrate for
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spin't level/set square

   
Figure 3-3. Pre-insertion tool and associated equipment

 

Figure 3-4. Pre-insertion procedure in operation.
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3 months prior to sowing, at which time a bright pink marker ribbon was attached to each

connector to improve location of the cables post sowing. The sowing operation over the

waveguides was completed each year with the loss of only 2 waveguide cables.

Multiplexed TDR network

A weatherproof Trase® TDR instrument was located in the centre of the experimental site

and linked to a multiplexing unit. The multiplexer acts like a switchboard when under

command of the TDR instrument. All the waveguides were connected to individual

channels of the multiplexer via coaxial extension cables which enabled the TDR to

interrogate each waveguide in sequence. The electrical requirements for operation were

provided by a solar panel array and storage battery cells. Figure 3-5 shows the TDR

instrument and a single waveguide, the multiplex unit and the whole monitoring station

set-up during the growing season.

Observation Schedule

The mean time for a moisture reading was estimated at 13 seconds, giving an approximate

total of 35 minutes for a complete measurement cycle. Readings were programmed to

occur on a 12 hour cycle beginning at 6.00am. This time-frame was chosen in an attempt

to gather data on water usage during the daily transpiration period and any redistribution

changes that may occur during the evenings. The twice-daily readings were also considered

the most efficient trade-off between instrument memory and data requirements, while

remaining within the power supply capabilities of the solar array. The instrument was

expected to remain self-sufficient for 3 week periods.

3.4 RESULTS 81; DISCUSSION

The operation of the TDR instrument proved problematic during much of the experimental

period. At the time of initialisation (1993), the unit and multiplexer were, although recently

commercially released, still under refinement. The multiplexer was in fact the first of its

size to be used under full field conditions.

Technical errors with the pulse generating board caused the instrument to fail and abort

the monitoring program. With an updated board the instrument functioned as expected

until periods of high temperature apparently caused the internal circuit breaker to trip

again aborting the monitoring program. The cause of this problem was not diagnosed by

the USA-based instrument supplier until towards the end of the experimental period.
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Figure 3-5. TDR instrument with single waveguide (a), TDR and multiplexer unit

(b), instrument array in the field during the growing season (c).
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These malfunctions meant that the unit could not be expected to reliably operate over

extended periods. International repair requirements, remoteness of the site from the

university campus, and the lack of additional personnel meant that often the unit was not

operafing or operating satisfactorily. Missing data in the years 1993 and 1995 reflect these

operational difficulties. In 1994, technical problems became unimportant as the region

was subjected to severe drought and it was impossible to sow a winter wheat crop. The

1994 year of data collection was abandoned.

Results for the 1993 and 1995 experiments will be presented and discussed. The less-than-

optimal operation of the TDR set-up meant that the full aims of the experiments could not

be explored with the data available. Modelling of the spatial, temporal and spatio—temporal

variation in volumetric soil moisture content at the site will be examined.

3.4.1 Soil Moisture Variation in Space and Time

The data gathered in 1993 and 1995 are graphically displayed in Figure 3—6. Substantial

variation about the mean of the site can be seen in both space and time during both years.
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Figure 3-6. Soil moisture observations at the site for 1993 and 1995.

Table 3-2 presents the moments of the data for 1993 and 1995. The small change in mean

moisture content between the years does not provide a significant change in the observed

variability. The CV is double the median value listed in Section 1.3.4 for spatial variation.

This is most likely a function of the data set density and temporal span.

107



Spatio-Tkmporal Soil Moisture Modelling

 

 

Moment 1993 1995

No. of observations 14095 11612

Minimum 6v (%) 15.0 13.1

Mean 9v (%) 33.7 30.0

Maxirmm 9v (%) 66.2 59.6

Std. Deviation 6v (%) 6.9 6.1

Variance (6v %2) 47.6 37.1

CV (%) 20.5 20.3

Duration (days) 99 105

 

Table 3-2. Descriptive statistics for the observations of soil moisture content in 1993
and 1995.

3.4.2 Modelling the Spatio-Temporal Variability in Soil Moisture Content

The embryonic nature of space-time models has been discussed in Section 1.5.3. In general

a number of generic models can be described and categorised based on the stationarity of

the data mean.

Equation 3-3 describes a stationary model:

Ill(x,y, t) = m”, + We yJ) (3-3)

where:

y/ = soil moisture content (mi‘m'3 x 100)

x,y,t = space and time coordinates

m = data mean or trend

r = residual

In understanding this model, the use of subscripts may be read as ’value does not depend

on the listed coordinates’ and the enclosing brackets ( ) are to be read as ’value is dependent
on the listed coordinates’. Equation 3-3 therefore states that soil moisture content is
dependent on all coordinates but has a fixed mean. Other models can be written to describe

the non-stationary situation (Equation 3-4) or intermediate cases (Equation 3-5 and
Equation 3-6).
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w(x,y, t) = m(x,y, t)+ r(x,y,t) (3-4)

w(x,y,t) = m.,, +m(t) +r(x,y, t) (3-5)

Way, 0 = m(x, y, t) +rx, (0 (3-6)

The non-stationary model is best applied to the data under examination in this experiment.

Suitable models for the trend in the non-stationary case (m(x,y,t)) would include generalised

linear models e.g. polynomial trend surfaces (McCullagh & Nelder, 1989), generalised

additive models e.g. smoothing splines (Hastie & Tibshirina, 1990), regression-tree models

(Clark & Pregibon, 1992) or a deterministic function describing a physical process. The

usual model for residuals, r(x,y,t), assumes the condition stated in Equation 3-7.

E[r(x9 yst)] : 0 (3-7)

Description of the residual is commonly performed by a covariance or semivariance

function. Assuming spatial isotropy, one positive-definite model for the semivariance

(Christakos, 1992) is shown as Equation 3-8.

  y(k,r)=C0+C[l—ex?[— [ A: + 122]]] (3-8)
(a') (b')

where:

ya, I) = semivariance as a function of the spatial lag (A)

and the temporal lag (17)

C0 = nugget semivariance

C = sill semivariance minus the nugget semivariance

a’ = the range of influence in space

17' = the range of influence in time.

Trend Modelling

To define the three-dimensional trend component of the data, a polynomial trend surface,

a generalised additive model and a regression-tree were applied and tested for goodness

of fit (Table 3-3). The most successful of these, the regression tree model, is a hierarchical

model that determines the relationship between variables by devising a set of regression

rules for prediction using recursive partitioning (Clark 8: Pregibon, 1992). Figure 3-7

presents the fitted models for a single measurement point in the 1993 and 1995 growing

seasons.
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% Varianoe Explained
 

 

Model 1993 1995

Poly nom'al trend surface 24.4 1.1

Generalised additive model 32.0 37.0

Regression tree 62.9 66.9

 

Table 3-3. Percentage variance in the soil moisture data explained by each trend

model.

It is obvious that the regression-tree, while far from perfect, models the trend in the data

with greatest efficacy. The other models are likely to fail in capturing the variation in soil

moisture content in three-dimensions due to the 'step-input' effect of rainfall events and

subsequent drying cycles. The skeletons of the regression tree models are shown

diagrammatically in Figure 3-8 and 3-9 where the spacing between levels is based on the

deviance of parent and children nodes. To enable the criterion for each split to be Viewed,

the same regression trees are also shownwith uniform spacingbetween the nodes in Figures

3-10 and 3—11.

(a) (b)
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Figure 3-7. Experimental model fits for 1993 (a) and 1995 (b). Fit for one observation

point over entire growing season (spatial location denoted by x/y

co-ordinates (in metres) in top left corner of each graph).
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43—15;; Ffiia

Figure 3-8. 1993 regression-tree skeleton showing separation based on deviance

between parent and children nodes.
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Figure 3-9. 1995 regression-tree skeleton showing separation based on deviance

between parent and children nodes.
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The model is fitted to two spatial dimensions (X and Y co-ordinates) and a temporal

dimension (julian day of observation). It is appears from Figures 3-8 to 3—11 that the major

criterion for separation is temporal (jday). This is perhaps understandable given the

intensity and sporadic nature of the rainfall events that lead to the recorded soil moisture

content. A breakdown of the variance in the data sets that can be explained by modelling

the time or space components separately is provided in Table 3-4. Modelling the soil

moisture content with any degree of precision would seem difficult without the temporal

indicator data.

 

% Variance Explained
 

 

Model oorrp onent 1993 1995

All (jday, x, y) 62.9 66.9

Terrporal (jday) 44.4 59.2

Spatial (x & y) 30.4 19.2

 

Table 3-4. Percentage variance in the soil moisture data explained by incorporating

each component singularly in the regression-tree model.

Figures 3-12 and 3—13 are included to display the temporal fit of the regression-tree models

at different locations within the site. The locations, the same in both years and identified

by co-ordinates in the upper left of each graph, have been chosen to uniformly cover the

site and are presented in a plan perspective of the site.

These figures show that in both seasons the trend model fits most poorly in the upper left

and lower right corners of the site. From the lower left, through the centre, to the upper

right of the site the trend model fits quite well. This is indicative of the direction of the

trend at the site. Maps showing the modelled spatial variability in the trend across the site

on a number of days during the growing seasons (Figures 3-14 and 3—16) also highlight the

changing spatial pattern with time in each year. A comparison with the original

observations on the same days is provided in Figures 3-15 and 3-17. The original data was

recorded on the nodes of a 3m grid and the maps presented are not predictions but

representations of the point observations as 3m x 3m blocks. The modelled trends (and

indeed all Figures representing modelled attributes) are point predictions on the nodes of

a 1m three-dimensional grid for improved spatial and temporal resolution. The data is

represented as blocks for improved visual appreciation and it is not difficult to 'see' the

modelled trend patterns in the original data maps.
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Figure 3-12. 1993 regression-tree fit for the entire season at a number of locations at

the site (location coordinates in metres are shown in top left of each graph

graphs presented as a plan view of the site).
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Figure 3-13. 1995 regression-tree fit for the entire season at a number of locations at

the site (location coordinates in metres are shown in top left of each graph

1995 Julian Day

graphs presented as a plan View of the site).
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Figure 3—14. 1993 regression-tree trend prediction across the site on single days (a) julian

day 240, (b) julian day 285, (c) julian day 295, (d) julian day 320.
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Figure 3-15. Observations of soil moisture content across the site on single days in 1993

(a) julian day 240, (b) julian day 285, (c) julian day 295, (d) julian day 320.
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Figure 3—16. 1995 regression-tree trend prediction across the site on single days (a) julian

day 240, (b) julian day 285, (c) julian day 292, (d) julian day 320.
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Figure 3-17. Observations of soil moisture content across the site on single days in 1995

(a) julian day 240, (b) julian day 285, (c) julian day 292, (d) julian day 320.
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Residual Modelling

Modelling the residuals arising from the trend fit to the observations was undertaken

using a three-dimensional semivariogram analysis. With the removal of the underlying

trend, the residuals were assumed to possess spatial isotropy (X,Y plane) and anisotropy

along the temporal (Z) plane. The semivariogram cloud was then constructed from

observation residuals using isotropic spatial lags and 36 azimuth angles in the temporal

plane. Visually representing such a semivariogram cloud is more difficult than a two

dimensional example. Figures 3-18a and 3-19a show the residual semivariance estimated

for observations with spatial lags up to 20m and temporal lags up to 50 days.

Modelling the semivariogram was achieved using Equation 3—9, a modified form of

Equation 3-8.

y(}t,‘c)=C0+ l—ex — (1+1) (3—9)
a' b'

where:

701, 1:) = semivariance as a function of the spatial lag (A)

and the temporal lag (1:)

C0 = nugget semivariance

C = sill semivariance minus the nugget semivariance

a ’ = the range of influence in space
f

= the range of influence in time.

The parameters for this three—dimensional model in both years are shown in Table 3—3.

 

 

Parameter 1 993 1 995

CO (0v %2) 5.6 5.8

C (0v %2) 13.0 7.3

a (m) 3.2 1.7

b (days) 30.3 36.0

a/b (m’day) 0.1 0.05

 

*note: a and b are the apparent range equivalent (3 x a' or b')

Table 3-5. Model parameters for the 1993 and 1995 space/time semivariograms.
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The fitted models are represented in Figures 3—18b and 3—19b. The models as shown have

been predicted onto a regular grid to remove the undue influence of prediction points on

the perceived pattern. This influence is considered responsible for the undulations in the

radiating patterns displayed in the semivariogram clouds (Figures 3-18a and 3-19a).

Semivariance estimations using points in the three dimensional array with small temporal

separation (close to the zero time axis) and high spatial separation (further from the origin

of the figures) are much less common, and the estimates are accordingly less reliable.

The models in both years depict a quite small dependence in the spatial as compared with

the temporal plane. This can be best observed by examining the predicted residuals across

space with time held constant. Figures 3-20 and 3-21 map the residuals for the same days

shown in Figures 3-14 and 3-16. The maps (especially in 1993) Show a high degree of

small-scale spatial dependancy in the residual patterns. This is seen as sharp changes in

colours within each map. The dominance of the spatial co-ordinates on the variability in

residuals can also be gleaned from the fact that there is greater change in the colours

within maps than between the maps of one year. The spatial patterns could also be

considered as reasonably stable through the year.

Combing Trend and Residual Analysisfor Prediction

By combining the three-dimensional kriging estimates of residuals with the regression-

tree trend predictions, the estimation of soil moisture content in both space and time should

be enhanced. Figures 3-22 and 3-23 show this combined model fit to the observed data

for each season at five locations within the site. These locations are the same as those

showing the results of the regression-tree trend modelling in Figures 3-12 and 3-13. A

comparison between these two sets of figures indeed suggests that the observations are

more successfully predicted, however in areas where the trend model failed to reliably

characterise the moisture content, the final estimate remains inadequate.

Figures 3-24 and 3—25 allow an insight into the spatial pattern in total soil moisture content

that has been predicted accross the site at a number of given days in the season. The trend

model can again be seen to dominate the moisture prediction.

As mentioned earlier, the moisture monitoring equipment performed less than optimally

given the effort required for installation. A full season data set would have provided a far

greater opportunity for examining the implications of this method of soil moisture

modelling for crop parameters. Further exascerbating this attempt was the significant

rain damage to the grain at harvest 1995.
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Representation of the three-dimensional semivariogram for 1993

- (a) semivariogram cloud calculated using the displayed rotation

angles in the time dimension; (b) semivariogram model.
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Figure 3-20. 1993 kriged residual estimates across the site on single days (a) julian day 240,

(b) julian day 285, (c) julian day 295, (d) julian day 320.
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Figure 3-21. 1995 kriged residual estimates across the site on single days (a) julian day 240,

(b) julian day 285, (c) julian day 292, (d) julian day 320.
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Figure 3-24. Combining trend and residual estimates for soil moisture across the site on

single days in 1993 (a) julian day 240, (b) julian day 285, (c) julian day 295,

(d) julian day 320.
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Figure 3-25. Combining trend and residual estimates for soil moisture across the site on

single days in 1995 (a) julian day 240, (b) julian day 285, (c) julian day 292,

(d) julian day 320.
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The significant temporal variability observed in these experiments suggests that the

successful completion of such work will be required if variation in soil moisture content is

to be usefully employed in the Precision Agriculture Decision-Support Systems of the

future.

3.5 CONCLUDING REMARKS

The results presented in this Chapter suggest that the variability in soil moisture content

across a field during a growing season is predominantly influenced by time. The trend

model based on the spatial co—ordinates and the Julian calendar day of the observations

show that the initial (and most significant in terms of variance partition) tree nodes separate

on the temporal parameter. However, the spatial component of this trend model cannot

be ignored. The spatial patterns in the trend model maps shown in this Chapter are rarely

similar.

With the dominant temporal variability being significantly removed by the regression-

tree, the variation in residuals shows a more dominant spatial influence. In fact the variation

in residuals found over 1 metre in 1993 was equivalent to that experienced over 10 days.

In 1995 the ratio suggests that 1 metre of spatial variation equalled 20 days in the temporal

dimension.

While this study provides only a small insight into the complex nature of space-time

variability in soil moisture content, the dominance of the trend component may have

significant implications for the use of real-time soil moisture sensors and Decision-Support

Systems in Precision Agriculture. While it is apparent that the trends are dominated by

time in this instance, a region with more regular rainfall (or irrigation) should show a

greater influence of spatial parameters in the model. In such circumstances, the ability to

rely on trend information onlywould mean substantial savings in computation complexity

and time if soil moisture was to be eventually incorporated into real-time Decision-Support

Systems.

In areas where spatial parameters were found to dominate trend models, then modelled

soil moisture content could be used to stratify management units within fields. From the

results presented here, the region under investigation could not be considered suitable

for such delineation and real-time sensors would best be employed to provide data for

agronomic operations (e.g. sowing) that are performed in temporal proximity to the

moisture measurement.
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In the future it may prove suitable to monitor inherent trends in the temporal variability

of soil moisture content within fields and use this information for growth assessment and

risk-based analysis ofwithin season operations such as fertiliser and pesticide applications.

An understanding of the trend in soil moisture variability appears to provide the most

useful information for crop growth management. Fine tuning using the residual model

may add little of use for management.
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CHAPTER 4

Real-time Monitoring of Crop Yield - Spatial 8: Temporal Variability

4.1 INTRODUCTION

As Chapter 1 documents, the quantification of crop yield variability within a field has to

date relied on random broad-scale sampling, transect sampling or small-scale labour

intensive comprehensive sampling operations. Extending the information gained using

such procedures to whole fields requires the assumption that the sample variance is

representative of the true field variance. The true field variance has been economically

and perhaps physically impossible to obtain, however gathering detailed yield variability

data on a broad-scale (i.e. whole field basis) during the normal commercial harvest

operation could provide this information.

This chapter presents work aimed at documenting and examining the detailed spatial and

temporal variability in grain crop yield within and between fields in north-west New

South Wales using real-time crop yield monitors.

4.2 MATERIALS &; METHODS

4.2.1 Harvesting Process

A conventional combine harvester (John Deere 7720) was used to harvest winter wheat

crops in November/December 1995 and 1996 and summer sorghum crops in February/

March 1996 and 1997. The wheat harvest in 1997 involved two harvesters often operating

in tandem within a field. Both harvesters were fitted with 7 metre wide cutting-tables.

The fields, all located within a 40km radius near the village of Biniguy in north—west NSW,

are farmed by one family. The crops were agronomically managed using a traditional

uniform approach to ground preparation, sowing rates, fertiliser and pesticide application.

Beginning in 1995, the harvesters were equipped to monitor crop yield by recording grain

mass flow rates and determining the area to which each measurement should be allocated.

For this purpose a number of instruments are required. A real-time mass flow sensor was

installed between the exit point of the clean grain elevator and the grain bin bubble-up

auger intake (Figure4—1a). At this point a free—flowing stream of clean grain can be

intercepted by the flow sensor (Figure4-1b) which comprises a strike-plate and

potentiometer to measure applied force (Figure4—1c) - see section 2.2.2 for a full description.
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Figure 4-1. Grain-flow sensor installation: (a) mounting position (b) installed

(c) sensor. An AgLeader ® * mass flow sensor was employed.

A capacitance-type moisture meter was installed into the bubble-up auger where the flow

of clean grain over the capacitance plate registered grain moisture content continuously

(Figure 4-2). The grain moisture content is used to adjust the final yield calculation to a

constant grain moisture content.

 

Figure 4-2. Capacitance plate moisture sensor .

A dGPS receiver (Motorola Encore 8 channel with OmniStar demodulator) was installed

in the harvester cabin behind the operators seat and connected to two externally mounted

aerials. The GPS aerial was located along the central axis of the harvester on the top edge

of the grain-bin front 'hungry board'. This location gives an uninterupted satellite view

and ensures that position readings refer to the central axis of the harvester close to the

perpendicular plane on which the yield sensor is mounted.

+ AgLeader Technology, 2202 South Riverside Drive, Ames, IA 50010.
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Figure 4-3. dGPS aerial array.

The differential correction aerial has no positional restrictions other than ensuring an

uninterrupted sattelite View. The mounting positions for both these aerials can be seen in

Figure 4-3. The dGPS system and the yield sensor were linked to a cabin mounted monitor

that combines a basic computer with a static RAM (SRAM) PCMCIA card port for data

storage (Figure 4-4). Each second during harvest operations, incoming grain flow force

data from the yield sensor is matched with a georeference point from the dGPS and stored

on the PCMCIA card. Additional information required to convert the force to mass per

unit area is also recorded by the monitor. These attributes include GPS time, harvester

speed, cross auger speed and comb cutting width and were also stored each second.

Calibration

Together these instruments produce a monitoring system which requires some basic initial

calibration. Distance monitoring is effectively calibrated by travelling over a known

distance. The signal from the grain sensor registers force and this must be converted to a

mass flow rate. Firstly, the underlying mechanical noise effects of harvester operation on

signal output are identified by running the harvesting mechanisms at full operational

speed with no grain flow. This provides a signal level that equates to zero yield.

Quantitative yield calibration is then achieved through comparison of cumulative mass

measurement using a mobile grain bridge (10 kg resolution) and an integrated sensor
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incoming incoming
sensor data dGPS data

Figure 4-4. Cabin mounted monitor showing PCMCIA data storage card and the

connections to external sensors.

signal. Total grain mass was measured on six to eight harvest loads, collected at a range of

harvest speeds to simulate variation in grain flow rate within the harvester. These

comparisons were performed for each crop in each year and used to construct signal /

yield calibration curves for the harvest.

4.2.2 Grain Yield Calculation

The sensed data may be used to calculate a yield quantity per unit area for a given harvest

duration (t) by Equation 4—1.

Y“, = (%:—P—) X (1 - (mm - sm)) (4-1)
(t) (t)

where:

Y“) = grain yield (t ha'l)

fl.) 2 grain mass flow (kg)

d“) : distanced travelled (m)

w“) = cutting Width (m)

m(,) = moisture content (m3 m'3)

sm = standard moisture content (m3 m'3)
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The wheat and sorghum yields referred to in these experiments has been corrected to 12%

and 13% moisture content respectively, which is the desired level for delivery of grain to

bulk handling facilities. Adetailed description of the methods and practicalities of obtaining

the operational measurements used in the grain yield calculation can be found in Pierce et

a1. (1997).

4.2.3 Rectifying Yield Quantities &: Harvest Location

The calculated grain yield in mass per unit area remains matched with spatial co—ordinates

that refer to the position of the harvester at the time the yield was sensed. With the yield

sensor positioned at the end of the threshing and separating processes as previously

described, there is a delay period between crop entering the harvester and flow being

registered at the sensor. Both the yield sensor and dGPS are recorded at a frequency of 1

hertz, therefore shifting the yield measurements backward relative to the position

information by an amount equal to the delay period should approximately rectify the

yield with the relevant spatial co-ordinates.

The results shown herein have used a 10 second delay which has been determined as the

mean travel time for grain through the harvester at harvest speed. Chapter 5 will discuss

this important aspect of the yield monitoring process in more detail.

4.3 RESULTS 8: DISCUSSION

4.3.1 Position Accuracy

The dGPS instruments utilised in the monitoring process were subjected to a number of

accuracy and repeatability tests involving start and end point correlation while mapping

field boundaries and repeated measurements of a single fixed point. In Figure 4—5 a

surveyor's trigonometric point (where the exact location is known to within 0.001 m) is

monitored once per second over a 5 minute period. The results show that in the dGPS

mode, accuracy reaches the sub-metre level (mean = 15cm east/4cm south) with a precision

of 1 metre (97cm 2RMS). These results are only a guide to the quality of position

determination as the error budget for the system varies with time as discussed in Section

2.2.1. However, as will become evident in the proceeding results, the dGPS employed in

these experiments provides highly suitable position determination for crop yield

monitoring.
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Figure 4-5. dGPS accuracy and precision determination from 286 observations at a

known trigonometric station.

4.3.2 Mass-flow Calibration

Appendix A1 catalogues the calibration weights and errors for each load, each year, in

each crop. The mean error for both crops ranged from 0.45% to 1.37% with a maximum

individual load error of 3.20 %. The calibration operation was undertaken at a range of

speeds to cover the expected flow rates under normal operation. This is more important

at this scale than evenly covering a range of total harvest mass.

Figure 4-6 graphically documents the results following the 1995 wheat and 1996 sorghum

calibrations. While these measurements are necessarily made using small tonnages to

retain the operation on-site and maximise the weighing accuracy, the results at this scale

can be compared with entire season calibrations. The full 1996 sorghum harvest, monitored

as a total of 1974 tonnes using the yield sensor, was delivered for sale and recorded 2054

tonnes at the grain handling silo. This equates to an absolute mean error of 4.1% using

much less sensitive scales and less rigourous grain handling techniques than the localised

calibration.
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Figure 4-6. 1995 wheat and 1996 sorghum actual versus sensed weight

following calibration.

4.3.3 Spatial Variability in Grain Yield

The yield monitoring system records a quantitative yield determination once per second

during harvesting operations. The distance between observations is governed by harvester

travel speed in the direction of operation and by the cutting-table width in the direction

normal to operation. Figure 4-7 shows an example of the spatial observation detail obtained

from this system in the 1996 sorghum harvest Where the harvest speed was 3.25 km/hr,

resulting in observations every 0.9 m.
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Figure 4-7.
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Figure 4—8 displays the spatial and frequency distribution of 26,161 yield observations in a

409 ha area that is divided into 3 contour bays. It highlights a number of important

process errors that result in unusually high or low yield values. Points where the full

width of the cutter-bar is not utilised during a harvest run result in the area allocated to a

crop yield being exaggerated and the yield values per unit area will appear unrealistically

small (refer Equation 4—1). This will occur in headland areas when harvesting is carried

out in a circular pattern, when harvesting across irregular terrain or highly irregular shaped

areas, and where the cutter-bar remains lowered when moving but not harvesting.

Unrealisticaly high yields are observed where the harvester is brought to a sudden halt

and grain yield is allocated to a nonrepresentatively small area. These points are evident

in the histogram as outliers below 2 t/ha and above 10 t/ha and as black symbols in the

spatial distribution.

These erroneous data points should be removed to improve the accuracy of further analysis.

After examining the spatial and frequency distribution data from all fields in all years

monitored, it was evident that these outliers could be removed from the vast majority of

fields by trimming the data using equation 4-2.

Yv = Y if Y0 + 30' EYE Yo - 36 (4-2)

where:

Y0 = valid yield estimates

Y = observed yield estimate

Y: = observed yield mean

0' = observed yield standard deviation

Comparing Figure 4—8 with Figure 4—9 shows the effect of this procedure. In Figure 4-9,

yield estimates have been removed that were erroneously high along with artificially low

yields in areas such as oversown roadways where the crop was damaged by vehicle passage

prior to harvest, slopes where a full swath width could not be achieved and areas in

headlands. In this instance, the prOcedure has removed 697 data points (from a total of

26161) and has increased the mean yield from 6.76 t/ha to 6.90 t/ha. The process decreases

the standard deviation of the data sets, here reducing the figure of 1.58 t/ha to 1.22 t /ha,

with a comensurate decrease in CV (23% to 18%). '

Tables 4-1 to 4—5 present the trimmed yield data for the fields monitored over two seasons.

Appendix A2 provides summaries of the original yield sensor data for comparison. The

spatial distribution of the trimmed yield data as farm block and individual field yield
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data maps is presented in Appendix B. These maps have been prepared using a 5 m

radius moving window averaging process on a prediction grid spacing of 3.5 m. Linear

interpolation onto a 1 m grid followed to improve map resolution. Prediction onto a

regularised grid is necessary because of the irregular observation spacing produced by

variation in harvester travel speed and path (refer Figure 4-7). These 'maps are not

neccessarily the best depiction of the true yield variability within each field because the

method applied here has been chosen to best present the yield data obtained from the

monitoring process without undue smoothing. The 5 m window radius allows the

information in individual header runs to remain obvious while producing a continuous

prediction surface for improved spatial representation and visualisation.

The farm-wide season summaries in Tables 4—1 to 4—4 show substantial differences in mean

yields between the two years for wheat (1.56 t/ha 8: 4.28 t/ha) and sorghum (6.20 t/ha &

3.08 t/ha). The mean standard deviation for wheat increases slightly from 0.75 t/ha to

0.88 t/ha with the decrease in mean yield. Sorghum shows an increase in mean standard

deviation from 1.07 t/ha to 1.31 t/ha with the decrease in mean yield. It would appear

that sorghum yield is more variable across the farm than wheat yield , even with its greater

overall mean yield. At a finer scale, Table 4-5 shows significant differences between farm

block mean yields during each season and each crop. Again the sorghum yield appears

consistently more variable than the wheat yield.

At the within-field scale of observation, the mean standard deviations of each crop are

lower than for the larger farm units. However the range of these values is greater at the

field level because less variability is encompassed in each estimate. The range of standard

deviation values for wheat extends from 0.44 t/ha to 1.02 t/ha, and from 0.67 t/ha to 1.62

t/ha for sorghum. With 3 standard deviations encompassing 99% of the normal distribution

(Mead & Curnow, 1987), these figures intimate that within a single field the wheat yield

may vary between i 1.32 t/ha and i 3.06 t/ha from the mean. Sorghum yields may show

variability from the field mean of between i- 2.01 t/ha and i 4.86 t/ha within a single

field. These figures translate to coefficients of variation ranging from 10% to 80% (mean =

22%) for both crops combined.

At this scale, the median CV = 17%, as compared to CV values of 16% (mean) and 14%

median for all experiemnts in Table 1-12, 14% for both mean and median of the continuous

experiments reported in Table 1-12, and 19% (mean) and 20% (median) for continous

experiments reported by Pringle et a1. (1993).

As a simple analysis that provides some insight into the comparitive spatial variabilities
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of the crops is shown in Figure 4-10. Here the variance at all scales is regressed against the

square root of the applicable field area (a surrogate distance measurement). The results

confirm the earlier indication that the sorghum crop displays greater variability than the

wheat in both seasons. The 1997 sorghum harvest fields show the greatest increase in

variability with increasing representative distance.
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Figure 4-10. Regression analysis of yield variance against square-root field area. This

provides a basic comparison of the increasing variability with increasing

harvested area.

This variability may also be quantified and assessed using the uniformity index proposed

by Fairfield Smith (1938) (refer Equation 1-15). The slope of the regression equations

displayed in Figure 4-11 are used as an index (b’) of uniformity in yield with increasing

crop area. A larger value for b' indicates a greater uniformity in the crop yield across

space. A comparison of the values in Figure 4—11 with those reported by Fairfield Smith

(1938) and documented in Table 1-11, show the wheat yield for these experiments to be in

the higher range for uniformity. This may suggest that the sorghum crop would show

greater response to differential treatments, but there is as yet little information with which

to provide a benchmark for the index.

As with the analysis shown in Figure 4—10, the regression model cannot be expected to

fully describe the spatial variability in crop yield but the index (b') does provide a tool for

classifying or ranking variability. This may be an even more valuable tool for SSCM if

used at the within field scale, by calculating variance over increasingly larger subunits.

With such analysis the index would be a tool for segregating crop fields into variability

classes and eventually formulating a benchmark index above which differential treatment

may be non-Viable.
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Figure 4-11. Regression analysis based on the Fairfield Smith (1938) 'uniformity index‘.

The regression line slope provides the index (b ’). Sorghum yield in both

The degree of within—field variation that is evident in these analyses is most strikingly

demonstrated in the yield data maps (Appendix B). Each field is classified using 0.5

tonne class intervals. These maps also show the spatial distribution of the yield variation

which should provide a much greater benefit for management decisions than the

information gleaned from the classical statistical analyses. However, to reliably examine

the nature of temporal and spatial variation exhibited at the within field scale, it is

neccessary to examine these maps for fields that have been sown to the same crop for
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Yield Moisture

Field Name Area N Mean Std Dev. C.V. Mean Std Dev. C.V.
(ha) (t/ha) (t/ha) (%) (%v/v) (%v/v) (%)

B1 3.53 2611 2.21 0.63 28.5 9.94 0.53 5.3

B2 12.52 7966 1.04 0.73 70.2 8.72 0.35 4.0

Horse 10.43 10182 2.67 0.66 24.7 9.86 0.21 2.1

B4 7.91 6636 1.90 0.73 38.4 12.54 0.96 7.7

N3 14.61 11404 2.24 1.02 45.5 9.73 0.44 4.5

Maidens 77.29 32082 0.96 0.78 81.3 8.81 0.44 5.0

 

Season
Sunmary 125.68 70881 1.56 1.04 66.7 9.50 1.20 12.6

 

Table 4 1. 1995 trimmed wheat yield data for monitored fields.

 

 

Yield Moisture

Field Name Area N Mean Std Dev. C.V. Mean Std Dev. C.V.
(ha) (t/ha) (t/ha) (%) (%v/v) (%v/v) (%)

N2 12.25 18804 6.68 0.76 11.4 12.69 0.65 5.1

N6 14.64 22100 6.70 0.71 10.6 12.81 0.47 3.7

N10 15.24 22087 6.47 0.68 10.5 12.53 0.61 4.9

S2 11.60 17234 6.15 0.71 11.5 12.96 1.06 8.2

86 11.23 15709 6.21 0.67 10.8 12.64 1.21 9.6

S10 11.39 15337 6.27 0.75 12.0 12.39 0.49 4.0

Creek 71.25 106734 7.00 1.00 14.3 13.20 0.80 6.1

Pine 66.84 82315 5.27 1.04 19.7 13.00 1.34 10.3

Cabro West 44.20 58994 5.40 1.05 19.4 12.04 0.49 4.1

Cabro East 46.72 77080 6.25 1.00’ 16.0 13.24 1.03 7.8

 

Season
Surrmary
(allfields) 305.36 434804 6.20 1.20 19.4 12.90 1.20 9.3

 

Table 4-2. 1996 trimmed sorghum yield data for monitored fields.
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Yield Moisture

Field Name Area N Mean Std Dev. C.V. Mean Std Dev. C.V.
(ha) (t/ha) (t/ha) (%) (%v/v) (%v/v) (%)

B1 3.36 4035 3.32 0.54 16.3 10.67 0.86 8.1

B2 12.78 14100 3.48 0.57 16.4 9.53 0.51 5.4

Horse 10.85 12199 4.67 0.47 10.1 11.10 0.60 5.4

B4 8.12 9366 4.00 0.68 17.0 11.86 0.50 4.2

B5 14.05 12738 3.87 0.64 16.5 10.26 0.53 5.2

Field 80 25.80 28809 4.41 0.56 12.7 12.61 2.76 21.9

N1 10.78 13006 4.62 0.50 10.8 10.66 0.22 2.1

N4 15.97 18348 3.93 0.65 16.5 9.38 0.58 6.2

N5 17.47 18312 3.55 0.61 17.2 8.85 0.61 6.9

N8 12.68 17369 3.92 0.82 20.9 11.16 0.74 6.6

N9 16.61 19212 4.20 0.93 22.1 11.28 1.71 15.2

S1 11.70 12628 3.70 0.76 20.5 8.06 0.36 4.5

$4 14.88 18363 3.51 0.52 14.8 10.16 0.63 6.2

$5 9.74 10199 4.07 0.64 15.7 9.23 0.89 9.6

88 8.25 17103 3.72 0.44 11.8 9.95 0.66 6.6

89 16.67 19691 3.39 0.57 16.8 9.56 0.68 7.1

812 12.15 12050 3.02 0.71 23.5 10.85 0.71 6.5

Maidens 77.29 110942 4.54 0.59 13.0 10.88 0.66 6.1

Bomnera 26.78 27789 2.52 0.83 32.9 10.51 0.64 6.1

Bull 7.36 9344 4.94 0.91 18.4 9.63 0.77 8.0

South Dam 16.11 21103 5.54 0.73 13.2 13.05 1.30 10.0

Skurr 5.84 7380 5.24 1.01 19.3 13.12 0.69 5.3

Creek 83.66 110530 5.44 0.67 12.3 11.25 1.48 13.2

Lease 89.14 96311 5.68 0.84 14.8 10.64 1.10 10.3

Cabro West 142.40 170300 3.66 0.78 21.3 9.47 0.75 7.9

C ab ro East 62.74 73923 3.77 1.00 26.5 11.39 0.69 6.1

KWee North 114.78 133227 4.16 0.74 17.8 11.49 0.83 7.2

KWee South 62.39 78862 4.35 0.75 17.2 11.30 0.74 6.5

 

Season
Summary 910.351097239 4.28 1.06 24.8 10.94 1.38 12.6
(allfields)

 

Table 4-3. 1996 trimmed wheat yield data for monitored fields.
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Yield Moisture

Field Name Area N Mean Std Dev C.V. Mean Std Dev. C.V.
(ha) (kg/ha) (kg/ha) (%) (%v/v) (%v/v) (%)

S2 11.55 9201 2.67 0.73 27.3 11.40 0.58 5.1

Silo 17.13 10611 1.60 0.93 58.1 12.67 1.66 13.1

W80 41.17 40868 4.21 1.02 24.2 12.18 1.85 15.2

Well 33.01 26322 3.04 1.62 53.3 19.72 8.66 43.9

Pine 65.95 60529 2.66 1.11 41.7 12.75 1.61 12.6

 

Season
Surrmary 168.81 147531 3.08 1.40 45.4 13.88 4.98 35.9
(all fields)
 

Table 4-4. 1997 trimmed sorghum yield data for monitored fields.

 

 

Yield Moisture

Year & Crop Farm Area N Mean Std Dev. C.V. Mean Std Dev. C.V.
(ha) (t/ha) (kg/ha) (%) (%v/v) (%v/v) (%)

1995 Wheat Marinya 49.00 38799 2.06 0.97 47.1 10.05 1.33 13.2

Maidens 77.29 32082 0.96 0.78 81.3 8.81 0.44 5.0

1996 Sorghum Man'nya 76.35 109682 6.43 0.74 11.5 12.73 1.16 9.1

Romaka 138.09 189049 6.22 1.33 21.4 13.15 1.28 9.7

Cabro 90.92 136073 5.88 1.11 18.9 12.72 1.05 8.3

1996 Wheat Mariny a 221.86 257881 3.87 0.78 20.2 10.36 1.69 16.3

Romaka 202.11 226145 5.50 0.79 14.4 11.16 1.51 13.5

Maidens 77.29 110942 4.54 0.59 13.0 10.88 0.66 6.1

Borrmera 26.78 27789 2.52 0.83 32.9 10.51 0.64 6.1

Cabro 205.14 244233 3.69 0.86 23.3 10.05 1.14 11.3

KWee 177.17 212089 4.23 0.75 17.7 11.42 0.80 7.0

1997 Sorghum Marinya 102.86 87002 3.38 1.50 44.4 14.66 6.21 42.4

Romaka 65.95 60529 2.66 1.11 41.7 12.75 1.61 12.6

 

Table 4-5. Trimmed sorghum yield data for 2 seasons on a farm block basis.
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4.3.4 Spatio -Temporal Variability in Grain Yield

While spatial yield distributions determined in one harvest may provide valuable data on

small-scale variability pertaining to the individual season, gathering information with

which to modify agronomic practices will require data about the temporal influence on

the degree and pattern of spatial variability.

Four wheat fields and one sorghum field were monitored after being sown to the same

crop over the two seasons documented here. Figures 4-12 to 4-15 and 4-18 separately

display data for the five fields, and in each case: (a) = year 1 yield map, (b) = year 2 yield

map, (c) = difference in yield between year 2 and year 1. Again, a 5 m radius circular

moving average has been used to predict the data onto a 3.5 m grid for visual representation.

The 1995 wheat yield (Figures 4-12a to 4-15a) was significantly decreased by late frost and

rainfall damage at harvest, while the 1996 season (Figures 4—12b to 4-15b) was marred

slightly by rainfall late in the harvest. The 1996 sorghum growing season (Figure 4-18a)

was completed under almost ideal growing conditions while the 1997 harvest (Figure 4-

18b) showed signs of late moisture stress and, ironically, rainfall damage during harvest.

Wheat

The spatial variability in the trimmed yield data for both seasons is represented in the

global variogram parameters shown in Table 4-6.

 

Exponential Variogram Parameters

 

Fueld Name Year CO C apparent range (m) NR (%)

B1 1995 0.031 0.286 83.3 10

1996 0.063 0.182 22.9 26

B2 1995 0.027 0.674 319.5 4

1996 0.042 0.189 46.8 18

B4 1995 0.061 0.443 103.8 V 12

1996 0.115 0.168 93.0 41

Horse 1995 0.080 0.190 134.7 30

1996 0.081 0.087 66.6 48

Maidens 1995 0.029 0.286 78.0 9

1996 0.126 0.102 74.7 55

 

Table 4-6. Global variogram parameters for 1995 and 1996 trimmed yield data .
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The significance of spatial structure in the data (reflected in the %NR - defined in Equation

1-14) shifts from strong in 1995 to moderate in 1996 across the majority of fields. B1 and

BZ remain strong in both years. A moderate to strong relationship is reconcilable with the

studies reported in the literature (Table 1-13). The median range (80.6 m) is remarkably

similar to the median reported in Table 1-13 (83 m) however the median total semivariance

(approximately equating the data variance) is approximately one third (0.28 as compared

to 1.0). While inconclusive, this analysis suggests that the yield monitoring operation

may be recording a reduced yield variability to that actually occuring in the field.

Predicting onto a regularised grid using the moving mean procedure provides an expected

reduction in the nugget and total semivariance within the yield data (Table 4-7). The

dramatic reduction in the nugget semivariance ensures that the spatial structure component

remains strong in all fields in both years. Table 4-7 also shows a reduction in the median

apparent range (75.4m). Such further reduction in the data variance may be undesirable.

 

Exponential Variogram Parameters

 

Field Name Year CO C apparent range (m) NR (%)

B1 1995 0 0.281 78.2 0

1996 0 0.128 27.6 0

82 1995 0 0.577 252.5 0

1996 0 0.167 51.9 0

B4 1995 0 0.424 102.3 0

1996 0.020 0.172 97.8 10

Horse 1995 0.008 0.205 114.0 4

1996 0.007 0.095 60.0 7

Maidens 1995 0 0.243 69.6 0

1996 0.017 0.107 72.6 14

 

Table 4-7. Global variogram parameters for 1995 and 1996 predicted yield data

(5m moving average; 3.5m grid).

Correlation in the spatial distribution of crop yield between seasons is small yet significant

at the 0.01% level in all of the wheat fields monitored. Table 4-8 displays the Pearson

correlation for the grid-based yield data in each field . The prediction for each season has

been performed on the same grid in each individual field to eliminate the influence of

spatial variability.
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Field Name Years TenporalCorrelation Corresponding Spatial Mean Corresponding Spatial

 

(Pearsons) C orrellogfl'n Range (in) C orreiiogram Range (m)

B1 1995 32
0.26 21

1996 11

32 1995 105
0.10 91

1996 48

B4 1995 40
0.21 40

1996 40

Horse 1995 137
0.12 121

1996 131

Maidens 1995 216
-0.20 136

1996 56 -

 

Table 4-8. Pearson correlation coefficient between seasons and the spatial

correllogram range that corresponds to the coefficient. Mean

corresponding correllogram range is calculated using the mean yield values

across seasons to estimate the corellogram (predicted yield data - 5m

moving average; 3.5m grid).

These small correlations are only considered significant due to the large number of

observations. A further undesirable attribute of the correlation statistic in spatial

interpretation is the confounding of positively and negatively correlated areas within the

data space. The negative correlation in the 'maidens' field is attributable to a dominance

of negative correlation throughout the field. This is quite strikingly evident as an inversion

of the yield quantity within an apparently stable pattern across most of the field in Figures

4—15a and 4-15b. More subtly (and cloaked by the correlation statistic), are areas of negative

correlation in the northern half of Figure 4-1321 and 4-13b where discernable patterns are

repeated in both years. In Figures 4—13 and 4-15, these inversion areas yield up to 2.5 t/ha

lower than the surrounds in the 1995 season, while in 1996 the yield is 0.5 t /ha to 1 t/ha

higher than the surrounding areas.

Such inversion between seasons highlights the significant interaction between the climate,

soil and crop yield. In this instance, the combined effect of climate and subtle differences

in elevation could be responsible for frost damage in lower areas in 1995 and subsequently

superior soil moisture availability in 1996. Variability in soil type may also be a factor

causing variability in crop maturity, and therefore frost susceptibility, across the fields.

163



Monitoring Crop Yield Variability

In Figure 4-14a a discernable 0.5 t/ha to 1 t/ha decrease in yield below the north-east/

south-west diagonal is apparent in 1995 but is not evident in the proceeding year (Figure

4-14b). Again elevation is believed to be the factor governing the incidence of frost damage

as the field falls through a 0.8% slope from north—west to south-east.

Table 4-9 catalogues the descriptive statistics for the individual seasons and the difference

between the two seasons in each field. The data, along with that presented in Tables 4-1 to

4—4, confirms the observation in Chapter 1 that yield variability decreases with increasing

mean yield. It also shows that their is variability of a similar magnitude to be expected in

the yield response within a single field to consecutive seasons.

Figures 4-12c to 4-15c show the spatial distribution of the difference in yield between the

1996 and 1995 seasons. Differences in yield generally range from 0 to 5 t/ha, with some

small areas in field BZ actually yielding lower in 1996 than 1995. The inversion areas

previously described are well delineated by the differencing procedure, making these maps

a possible starting point for zoning the field into different management units. In Figures

4-12c to 4-14c the general areas above 2 t/ha could be segregated for investigation into

landscape and soil factors that may retard crop development or increase frost susceptibility.

In Figure 4-15c, the area above 4 t/ha could fulfill the same segregation criteria.

While the difference maps provide a physical tonnage comparison between the years and

the associated variance is a more spatially integrative indicator of variability in physico-

chemical attributes within a field than the variance from individual years, an estimate of

the temporal variance could provide a indicator of seasonal or climatic influences on crop

yield.

The temporal variance may be simply estimated by Equation 4-3.

2

fi1/20r2i — m)
62f : ————i=1

(4-3)n — 1

Where:

62, = temporal variance

Y2 = yield value at point i for 1996

Y1 = yield value at point z' for 1995
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Figure 4-12. Wheat yield maps for Field Bl and BZ - (a)1995 season (b) 1996 season (c) seasonal difference.
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Figure 4-14. Wheat yield maps for Horse Field - (a)1995 season (b) 1996 season (c) seasonal difference.

p
p
m

(
1
0
1
3
,
9
u
o
y
n
y
v
A

1
.
1
0
5
s
n
o
n
u
y
u
o
g
S
u
y
g
a
u
o
a
a
g

-
u
n
l
a
q
M
'
w
'
g



[
A
1

(a)

n
o
n
n
n
g
/
m

(b)

n
o
m
n
g
/
m

 

 

(C)

 

unaw-

enw .

 

    unma-
 

ni- v-‘I vfi uh rui- uh ‘7. id. nfi ash in ah i do u-h ’J.

aesthg lm

wow -

imam

n
o
r
t
h
i
n
g

/
m

57mm .

 

mm.

mm.   

 
 

Figure 4-15. Wheat yield maps for Maidens - (a)1995 season (b) 1996 season (c) seasonal difference.
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Yield

Field Name Area Year Mean Variance. Std Dev. C .V.
(ha) (t/ha) (t/ha)2 (t/ha) (%)

B1 & B2 16.14 1995 1.31 0.66 0.81 62

1996 3.44 0.5 0.25 7

1996-1995 2.13 0.88 0.94 44

Temporal 2.70 1.64

B4 8.12 1995 1.89 0.44 0.66 35

1996 4.03 0.34 0.58 14

1996-1995 2.14 0.59 0.77 36

Terrporal 2.58 1.61

Horse 10.85 1995 2.66 0.34 0.58 22

1996 4.65 0.14 0.38 8

1996-1995 1.99 0.43 0.66 33

Termoral 2.20 1.48

Maidens 77.29 1995 0.90 0.49 0.70 78

1996 4.53 0.22 0.47 10

1996-1995 3.63 0.79 0.89 ' 25

Terrporal 6.98 2.64

 

Table 4-9. Descriptive statistics for the wheat fields in space and time.

This estimate of temporal variance is therefore a comparison of yield values between

seasons from fixed points in the field. This confers a spatial stationarity to the data sets.

The estimates of temporal variance calculated for the four wheat fields are included in

Table 4—9 and are substantially higher than the spatial variance in all cases. The inference

being that the variation in yield attributable to spatial variability in physico-chemical

attributes of the cropping system is much less than that induced by season to season climatic

variability in this instance.
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It may also be postulated that a high temporal variance in conjunction with a low spatial

variance for the difference between years suggests a relatively uniform field on which

crop yield is overwelmingly governed by climatic conditions.

The spatial distribution of the temporal variance at each evaluated point in the fields is

mapped in Figures 4-16 and 4-17. These maps may prove to be a very useful adjunct to

the physical difference maps (Figures 4-12c to 4-15c) for discriminating management zones

within a field, especially when constructed for a number of years. Stable areas of temporal

variance for a number of years would suggest that some form of differential management

may be feasible. Areas of low temporal variability would prove the easiest to determine

management regimes, with areas expressing high temporal variability more likely to be

identified as high risk zones and treated accordingly. As low temporal variability does

not indicate the yield quantity, but rather little change in yield quantity over time,

correlation with the physical difference map could be used to determine a yield potential

class.

Sorghum

Only one field was sown to continuous sorghum over the experimental period. The maps

of individual years, and the spatial distribution of the difference in yield between 1996

and 1997 are shown in Figure 4-18. Unlike the wheat fields, this sorghum field shows a

generally random spatial pattern in both years despite the substantial decrease in yield in

1997. The observed spatial distribution suggests that the field would be difficult to segregate

into management zones on the basis of yield.

 

 

Yield

Field Name Area Year Mean Variance. Std Dev . C .V.

(ha) (t/ha) (t/ha)2 (t/ha) (%)

S2 77.29 1996 6.12 0.24 0.49 8

1997 2.63 0.37 0.61 23

1997-1996 -3.49 0.44 0.67 19

Terrporal Variance 6.30 2.51

 

Table 4-10. Descriptive statistics for the sorghum field 52 in space and time.
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Table 4-10 records an increase in variability (variance and CV.) with decreasing yield values

as noted in the wheat fields. The CV. of the difference between years is lower than those

calculated for the wheat fields, reinforcing the suggestion that the field offers little potential

for differentiating management zones. The temporal variance is again much larger than

the spatial variance of the difference between years which suggests that the influence of

climatic conditions is dominating the crop yield. This also leads to the belief that this field

would be best treated as a homogeneous unit.

Further strengthening this hypothesis is the even spatial distribution of the temporal

variance as seen in Figure 4-19. Unlike the wheat fields, little spatial pattern is evident.

4.4 GENERAL DISCUSSION

Farm managers delivering grain directly from the field to point of sale or commercial

storage have traditionally been able to monitor the total yield in each field by collating

truck load weights. This data would provide information on variability between fields

and could be used to analyse the variability at the larger farm block and whole farm scales.

This information would no doubt prove valuable to variable management on a coarse

scale, but provide no insight into the possibility of changing management requirements

within individual fields. The data presented here provides evidence of considerable

variation in wheat and sorghum grain yield at all scales appropriate to farm management.

The relevance of the within-field scale to farm management can be inferred from the spatial

variability exhibited in the yield data maps, but a more impressive depiction results from

the extrapolation of yield to gross margin. In Figure 4-20, uniform field treatment costs

have been deducted from variable gross profit (yield x price). In 1995 the field lost an

average of $A53/ha with only 32% of the field returning a gross profit. The 1996 harvest

produced a gross profit range between $A25/ha and $A54O/ha at a mean of $A295/ha.

The potential for an increase in gross profit in both years is obvious. In the simplest case,

the identification of zones at risk of low production or with inherent lower yield potential,

may be used to reduce fertiliser rates and therefore variable costs.

As discussed in Chapter 2, the technology to apply inputs such as fertiliser at variable

rates is commercially available. Hindering the widespread adoption of such practices is

the present lack of a relatively inexpensive method for determining management zones

that have some robust agronomic rationale. Cluster analysis of multi—season crop yield

data has been suggested by Lark 8: Stafford (1997) and this approach could also be applied

to the crop yield difference and temporal variance information gleaned from the

183



experimental data presented herein. Clustering analysis is a multivariate technique which

may be applied to any number of variables, making it suitable for single and multi-season

analysis. For this discussion, a process of K-means clustering is utilised that employs

Monitoring Crop Yield Variability

hard-set classification to assign observations as members of one cluster only.

Table 4—11 records the descriptive statistical results of the analysis and Figures 4—21 to 4-29

present the spatial distribution.

 

 

 

Data Type Nunber of Clusters in Analysis

4 Clusters 3 Clusters 2 Clusters

1 2 3 4 1 2 3 1 2

Crop Yield

1995 p. 0.69 2.14 2.20 1.04 1.04 2.36 1.40 1.07 2.05

c 0.37 0.41 0.39 0.31 0.57 0.29 0.40 0.58 0.55

1996 p. 2.62 2.98 4.15 4.23 3.01 4.07 4.40 3.15 4.20

a 0.55 0.32 0.34 0.48 0.57 0.34 0.33 0.62 0.36

N 370 252 4470 1218 844 3518 1948 1040 5270

% Area
of field 6 4 71 19 13 56 31 16 84

Yreld 1.06 1.82 2.54 3.48 1.35 2.22 3.26 1.64 2.89
Difference

0.32 0.21 0.23 0.34 0.37 0.27 0.41 0.44 0.49

N 1036 2444 1930 843 2162 2773 1318 3763 2490

% Area
of field 17 39 31 13 35 44 21 60 40

Temporal 1.1 1.09 2.49 4.22 6.89 1.36 3.39 6.49 1.74 5.09
Variance

c 0.47 0.45 0.59 0.97 0.60 0.70 1.10 0.85 1.43

N 2532 21 1 1 1 109 501 3508 2083 662 4680 1573

% Area
of field 40 34 18 8 56 33 11 75 25

Table 4-11. Descriptive statistics for cluster analysis of field B4 based on crop yield

over two seasons (1995 87: 1996), yield difference (1996 — 1995) and the

temporal variance between 1995 8: 1996.
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It is important that each cluster be founded on an agronomically rational differentiation,

and for this reason a maximum of 4 clusters was chosen for the basic two season analysis.

Four clusters, as shown in Figure 21b segregates on high yields in both years, low yields

in both years and the two possibilities of inverse response between the years. More

clusters may be useful with an increase in the number of seasons incorporated in an

analysis. For the yield difference and temporal variance examples a maximum of 4 clusters

was assessed for comparison purposes.

An agronomic interpretation of the results is also probably of more importance than a

statistical approach. In each analysis in Table 4-11, there is a significant difference between

each relevant cluster mean due to the substantial number of observations. However, the

spatial aggregation of observations allocated to a cluster may prove diffuse or of small

total physical dimension. Such a result would offer little beneficial information to farm

management.

A four-cluster analysis of crop yield in 1995 and 1996 (Figure 21a) shows a spatial

predominance of cluster 3, with coherent inclusions of cluster 4. Clusters 1 and 2 are

basically restricted to the field boundary, representing a combined 10% of the field area

and would be difficult to manage as separate units. The three-cluster analysis in Figure

22 results in the general summation of the previous clusters 1 and 2 into the new cluster 1

(Figure 22b). Cluster 2, representing areas in the field that respond with relatively high

yield in both seasons, remains dominant (56% of field area). Areas which responded

poorly in 1995 but relatively well in 1996 (cluster 3) remain as coherent inclusions (31% of

field area). The areal dimensions of cluster 1 (basically reflecting the areas of low yield

response in 1996 and 1995) may now be physically manageable, but may remain too small

to be economically viable (13% of field area). Clustering on the premise of two clusters

produces Figure 23. Here, the ability to define areas with inverse response over time has

been relinquished and a field dominated by the high results of 1996 is displayed. This

clearly dismisses the information provided by the 1995 season results and would be useless

to management unless the 1995 yield response was considered an unrepeatable artefact.

Given the yield data on these two seasons, this clustering approach may be best interpreted

for management as 3 zones. This can be achieved by combining clusters 1 and 2 from the

4 cluster analysis or by accepting the three cluster analysis boundaries. The delineation

between the means of the remaining two clusters is slightly increased (~ 0.3 t /ha in 1996)

in the 3 cluster analysis (refer Table 4—11) and may be preferrable. The choice of absorbing

cluster 1 into the management regime of the dominant cluster 2 is then a matter of economic

and risk analysis.
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The interpretation of the cluster analysis based on seasonal yield difference and temporal

variance is more straightforward. As can be seen from Figures 24b to 29b, the clustering

process provides segregation regions that may be interpreted as quantifiable cuttoff zones.

The means and standard deviations of the clusters are recorded in table 4-11.

In the 4 cluster analysis based on yield difference, the separation between the cluster means

increases from an average of 0.7 t/ha for 4 clusters to 0.9 t/ha for 3 clusters and 1.2 t/ha

for 2 clusters. Given such information the acceptance of cluster delineation may eventually

include an assessment of the economic significance of the yield difference (given the possible

increased cost of variable application) as well as considering the spatial dimension and

aggregation of each cluster. In Table 4—11, cluster 4 is smaller in overall field area than

cluster 1 (13% compared with 17%), but appears in Figure 24a to be more aggregated and

ameniable to zone management. The subsequent consideration of only 3 clusters in the

analysis provides a more suitable zonal delineation (Figure 25a) however the areas allocated

to cluster 1 may still be considered as mostly disaggregated. The smaller areas could be

absorbed into the management regime of cluster 2, leaving a small number of cluster 1

regions. Alternatively, Figure 26 shows the results of a 2 cluster analysis which provides a

greater separation of the cluster means and similar delineation of the significant yield

inversion zones as depicted in Figure 22a.

While all three data sets provide evidence of gradational changes throughout the field

(i.e. very few occurrences of spatially adjacent clusters not being numerically adjacent),

the cluster analysis of temporal variance provides the smoothest, most contiguous

representation of the variation. In the 4 cluster analysis, while cluster 4 is smaller than

cluster 1, there is little discrepancy in the observable aggregation (Figure 27a). The size of

cluster 4 (8% of the field area) may however be considered insignificant. Consideration of

only 3 clusters (Figure 28a) appears to produce an increased aggregation in clusters 1 and

2 but little increase in the areal dimensions of the cluster based on the highest temporal

variance (8% to 11%). This map provides a more spatially contiguous display of a three

cluster analysis than presented in Figure 25a and could be utilised as a base map for three

management zones if the size of cluster 3 could be considered economically significant.

Figure 29 shows that the results of a 2 cluster analysis provides strong identification of the

areas of response inversion with boundaries more comparable to the crop yield map (Figure

22a) than the 2 cluster analysis of the crop yield difference data (Figure 25a).

It must be remembered that the temporal variance does not discriminate between similarly

high and similarly low response or between the yield response inversion possibilities across

seasons. The temporal variability maps must be interpreted in conjunction with the crop

yield or yield difference maps. In this instance, the temporal variance maps can be
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confidently interpreted as reflecting observed spatial variability in crop yield. The

segregation of clusters based on defineable and easily understood variance levels provides

useful information for assessing the economic impact of each cluster analysis. It also

offers the opportunity to asses the risk associated with cluster scenarios based on the

accuracy (expressed as variance) that is associated with the original yield data. These

points suggest that the temporal variance maps for 3 and 2 clusters may be most useful in

the search for techniques to define management zones within this field.

Fuzzy-set classification (McBratney et al., 1992) may also be used to partition membership

of an observation between defined clusters as an alternative to the hard-set process.

However, unless a continuously variable surface is the desired outcome, some form of

hard-set classification must be eventually employed in the final mapping procedure to

define management zones. Lark & Stafford 1997 employed a fuzzy-set clustering analysis

of three years yield data to define regions of a field that may have similar factors limiting

yield. They settled on 4 clusters as optimum and found reasonable continuity in

management zones determined on the hard-set classification of maximum class

membership. The technique proposed by Burrough & Swindell (1997) (refer section 2.4.2)

for delineation of unit boundaries using a confusion index based on fuzzy-set cluster

membership may offer an alternative to this final hard-set operation, but the process

requires further experimentation.

The hypothesis underlying this discussion, namely, that management units may be

delineated from the yield maps, is based on the assumption that the underlying soil

variability will be reflected sufficiently in these maps (other methods for delineation

management units have been discussed in section 2.4.2). The study by Lark & Stafford

(1997) provides some evidence for accepting this assumption. The authors found that a

significant proportion of the variation in soil moisture content could be explained by the

regions defined by the yield clustering process. Unfortunately, obtaining soil variability

information at the same scale as the yield data has restrained the ability to repeatedly test

this assumption at all but coarse scales. Soil sampling and analysis is prohibitively laborious

and expensive to undertake at the metre or tens—of—metre scale that is required. The

development of intrusive or remote methods of soil attribute sensing will eventually

overcome this restriction.

At present, aerial or satellite platform remote imagery offers the most suitable sampling

method. Some preliminary aerial photography of the "Romaka" Lease field following a

stubble burn in 1997 is presented in Figure 4-30 along with the corresponding yield map

from the previous wheat harvest.

207



Monitoring Crop Yield Variability

There is a striking correlation between soil colour and crop yield in the highlighted area of

the field where a yield reduction of up to 4.5 t is registered by the yield monitor in the

lighter coloured soil. This soil is lighter in texture than the rest of the field. Such remarkable

correlation qualitatively validates the assumption discussed above and also confirms that

the yield monitoring process described in these experiments can be relied on to distinguish

relative yield changes.

The results presented herein also highlight the accuracy of grain mass flow measurement

using the impact-based sensor. The maximum mean load error of 1.37% and maximum

individual load error of 3.2% for the calibration runs agrees with the results from recent

literature presented in Section 2.2.2. Contributing to these errors are variations in grain

density, foreign material, ground slope, machine vibration and electrical noise, and ambient

dust and humidity levels.

What cannotbe assessed from these experiments is the accuracy of the yield value calculated

from each mass-flow observation. It can be seen from Equation 4-1 that a yield estimate

requires a distance travelled and swath width measurement (to calculate area harvested)

in conjunction with the mass flow observation. The system employed here, like all such

systems now commercially available, gathers speed information from the vehicle speed

monitoring system to determine distance travelled per unit time. Cutting width is fixed

but may be manually altered during harvest. Error is introduced to the area measurement

from inherent speed sensor error and when the cutting table is not harvesting at the

determined swath width. Missotten et a1.(1996) have estimated the error associated with

one commercially available speed sensor to be 2.5%. The error introduced by the

assumption of a 'full' cutting-table during harvest has been estimated at 7% (Vansichen &

De Baerdemaeker, 1991) and 10% (Stafford et a1., 1997). However it is difficult to generalise

as the magnitude will depend on harvester operator, harvest pattern, field shape and terrain.

Missotten et al.(1996) attempted to remove this error by installing a sensor to detect changes

in the width of crop entering the harvester. Even with the addition of the sensor, the crop

width measurement was reported to include a 5% error. These errors will be difficult to

remove but should be quantified.

Further errors can be expected to impact on the integrity of the estimates of crop yield per

unit area. In these experiments, yield estimates were produced for every second of harvester

operation. This obviously requires an area estimate to be allocated to each mass

measurement. With the grain mass sensor located towards the end of the clean grain

transport process there is a delay between cutting the crop and the relevant grain mass

reaching the sensor. This delay means that harvester speed and grain mass observations
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Figure 4-30. Lease Field - (a) aerial photograph of bare soil (b) the subsequent wheat

yield map showing strong pattern correlation.
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recorded at the same time will not relate to the same area in the field. By the time grain

mass from a section of field reaches the sensor, the harvester has moved forward and the

speed recorded is from this distant section of field. Error in estimating the delay will

result in the mismatching of grain mass observations with the distance travelled to harvest

the grain and therefore error in individual yield per unit area estimates. Adding further

to this dislocation problem is the actual flow path dynamics within a combine harvester.

The threshing process, grain returns and the auger transport mechanism should

theoretically act to blend grain harvested at a certain time with grain harvested over a

limited preceeding and proceeding time frame. If this time frame is greater than the

observation frequency then the individual grain mass observations will not be directly

relateable to an individual distance observation. Again, error will be introduced to the

individual yield per unit area estimates.

The effect of flow dynamics must also be considered as a harvester enters and leaves a

standing crop. Upon entering a crop the internal grain pathways of the harvester fill from

empty and when leaving a crop these pathways empty. The impact of these dramatically

changing flow rates on the mass measurement errors appears to be different (Klemme et

al., 1992). At present the problem is dealt with by discarding data from the beginning and

ends of harvester runs.

Another area calculation problem is introduced by sudden halts in harvester forward

movement. Grain mass is subsequently allocated to an inordinately small area and the

yield per unit area appears as a high spike. These data points are usually associated with

low values as the harvester restarts and should be randomly distributed through the field

(Murphy et al., 1995). Again, these data points are regarded as erroneous and discarded

when identified. In both these cases, the removal of data points is justified on the basis

that the overall data density is high and that removal will be accomodated to some degree

in the subsequent interpolation process required for map construction. However, some

form of quality control is required for the identification of these points, either subjectively

based on expert knowledge or an objective method based on operational measurements.

The process employed on the data sets presented here (Section 4.3.3; Equation 4—2) is based

on a combination of the two techniques.

Afinal source of error is introduced in the standardisation of the yield estimate to a constant

moisture content (refer Equation 4-1). Error in the moisture observations will be propogated

through the yield calculation along with the other observation errors.

The errors identified will combine to impart an uncertainty in the individual yield

observations as represented in Figure 4-7. The interpolation or prediction technique used
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to produce a continuous surface map from these non-aligned data points will add further

uncertainty to the resulting yield map.

4.5 CONCLUDING REMARKS

The results of these experiments confirms the observation in Chapter 1 that whole field

yield variability decreases with increasing mean crop yield and provides evidence that

the spatial component of the yield variability also decreases as mean crop yield rises.

Certainly, if the impact of a yield limiting factor is spatially dependent then it follows that

as the severity of the effect increases, the spatial variability will also increase.

In the progression of a SSCM system, it is not sufficient to merely identify and quantify

crop yield variability in space. Spatially-variable management decisions that influence

crop yield must be guided. The clustering process presented offers a promising method

of identifying management units. The temporal variance cluster maps offer a quantitative

methodology for the stratification process but one which will require further research to

determine the levels at which zoning should occur. However, the use of temporal variance

clusters in conjunction with crop yield clusters should offer farm management the

opportunity to incorporate economic and risk assessment in the determination of the

optimum number of management units for each field.

It is vital, however, that the accuracy of the yield estimates used in any analysis be

determined, the causes identified and the effect hopefully reduced. At present the true

accuracy of the yield per unit area estimates provided by real-time crop monitoring systems

is unknown. From the contributing errors identified, the delay parameter and associated

combine harvester dynamics probably provides the greatest source of uncertainty. It is

also important that the uncertainty incorporated in the individual yield estimates is not

excessively increased by any subsequent prediction process. These two areas will be

examined in the Chapters 5 and 6.
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CHAPTER 5

An Examination of Combine Harvester Grain-Flow Dynamics

5.1 INTRODUCTION

The advent of real-time crop yield sensors has necessitated a more detailed understanding

be established of the effects of internal threshing and transport processes on grain

movement through harvesters. Commercially-available grain yield monitoring systems

measure grain flow per unit time using a variety of techniques. In the majority of systems,

the yield sensors are mounted in the clean-grain elevator flow or further along the grain

bin delivery mechanism (refer Figure 2-4). Borgelt (1993) provides a comprehensive list of

the major methodologies and sensor locations utilised. These systems register and tag

yield quantities with CPS-determined locations by implementing a user-specified or

manufacturer-governed single time delay between cutting a swath width and measuring

the resultant grain yield at the sensor. This may be simply expressed for observations at 1

5 intervals as Equation 5-1.

fi+ X 10

Y0) = —i(+pp—)_" (5‘1)

2d(k) x w

k=i+(p—1)

where

Y(,) = calculated yield (t/ha) for the time of position recording (i)

fm = measured mass grain flow (kg)

p = time delay (5)

dm = distance travelled since previous measurement (m)

w = cutting width (In)

This calculation assumes a linear, non—mixing grain flow from the cutting platform to the

clean grain bin. A mechanistic evaluation of the cutting, threshing and grain-transport

operations performed within a conventional harvester would suggest that a more complex

mixing or convolution would be imparted on grain movement. This would imply that a

non-linear delay may be more applicable in the yield/ground position tagging process.

Searcy et a1. (1989) proposed the use of a first-order decay model with time delay to account

for such grain—flow dynamics between the cutting platform and yield sensor. The model

they utilised (Equation 5-2) treated the grain entering the combine as a step input.
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Va) = r(1 _ {aw—[WU
(5-2)

where:

v“, = grain flow rate at the sensor

r = magnitude of flow rate step input (at the cutting table)

p = transportation delay between cutting table and sensor

to = time of step input

q = time constant of first order lag.

The parameters for this simple model were estimated from yield sensor data gathered as

an empty combine entered a crop at constant velocity. An average time constant (q) of 2 s

was calculated to be independent of grain flow rate, however they believed the

transportation delay (p) ranged from 13.5 s to 17.5 s as flow rates increased.

Vansichen and De Baerdemaeker (1991) also applied a first-order model to compensate

for the ’dynamic distortion’ of grain flow between intake and sensor. They estimated the

time delay parameter (p) as between 13.25 s and 14.25 s and between 3.5 s and 3.9 s for the

time constant (q).

More recent studies (Klemme et al., 1992; Eliason et al., 1995; Murphy et al., 1995) have

also acknowledged the importance of grain flow dynamics on the precision of point

allocation of yields while continuing to apply single time delays ranging from 12 s to 22 s,

albeit derived for the individual harvester. Birrell et a1. (1995) compared a first-order

model (with 12 s time delay, 0.5 s time constant and various low-pass filters) to a simple 12

s time delay model and suggested that both provide a reasonable estimate of combine

flow dynamics, but preferred the simpler model, perhaps through application of the

Ockham principle.

In a more thoughtful examination of the process, Lark et al. (1997) assumed the measured

yield at the sensor to be a convolution of the rate of flow with respect to time at the cutterbar

and an impulse response function characteristic to the harvester. They suggest that the

impulse may be experimentally approximated by the sharply defined edges encountered

on entering and leaving a standing crop. A Gompertz function was fitted to the flow data

observed for 305 following these points and the first derivative with respect to time

calculated as the impulse response function.

Taking the convolution approach appears mechanistically sensible and also allows the

complex analysis to be simplified as the convolution of two functions in the time domain

can be equated to the product of the respective Fourier transforms in the frequency domain.
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The impulse response functions obtained by Lark et a1. (1997) were quite different for

entering and leaving the crop, which they point out suggests that the results might not

represent the typical response during normal harvest operation.

Obviously, without directly measuring the convolution effected on grain transport during

normal (or 'steady—state') operation of the harvester, the assessment of more complex models

will continue to be ambiguous. However, applying the simplistic linear approach may

result in the allocation of incorrect yield values to the spatial units within a field. This has

obvious implications for the resolution at which accurate depiction of spatial yield variation

can be made. Consequently, the determination of yield response to differential fertilisation

and realistic calculations of the economic outcomes of all differential treatments will be

restricted.

While errors are also present in the ground positioning and physical sensing aspects of

these systems, by accounting for the true grain transport convolution the yield allocated

to field spatial units should more truly represent the real field variation. An understanding

of the convolution involved in the harvesting process may also be used to quantify the

error associated with non deconvolved yield maps.

5.2 MATERIALS 8: METHODS

A John Deere 7720 (JD 7720) conventional process combine harvester with a 7 m wide

cutting platform, operating at the season harvest speed of 3.24 kph (2 mph), was used to

harvest the 1996 sorghum crop.

To initially define the spatial sensitivity of the monitoring system and the extent of

smoothing and delay imparted on the grain during harvest, two adjacent 450m long X 7m

wide header runs were delineated and the grain removed from 4 segments along the runs.

The experimental setup is shown in Figure 5-3 where the grain has been removed across

the two runs normal to the harvest direction in Widths of 7 metres (a), 14 metres (b), 21

metres (c) and 28 metres (d). The runs were then harvested and the effect of the zero yield

segments observed.

For a more detailed examination of the grain travel process within the harvester, a 50 m

long sorghum strip that included a 1.5 m long by 7 m wide coloured band of grain was

established in the field. The coloured grain, externally treated using enamel spray paint,

was located 20 m along the sorghum strip to ensure the harvester was operating at ’steady-

state’ when the band was encountered.
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The coloured band was devised to quantify the hypothesised grain mixing and delivery

delay observed at the yield sensor caused by the movement of grain through the harvester

following stem cutting and the effect on these processes of crop spatial position along the

cutterbar.

With a 1 m plant row spacing, there were seven rows of sorghum in the swath width. The

cutting platform was assumed to represent two reflective halves separated by the middle

crop row due to the operation of the centre delivering auger system. Based on this, grain

in the sorghum heads was marked using four distinct colours in the following spatial

pattern: central row, the rows 1m on either side, the rows 2m on either side, and the outer

row on either side (refer Figure 5-1).

7 metres

 

—_.> H—

stem flow stern ow    

  harvesting
direction

0 central row . +2 m from central

 

+1 m from central . +3 m from central

Figure 5—1. Plan view of experimental setup detailing the cutting platform, coloured

grain pattern and cutting platform delivery process.

The grain for sampling was accessed by depositing the clean-grain flow from the cross-

auger in a controlled strip into the inter-row space beneath the clean—grain elevator. All

paddles from the clean-grain elevator were removed to prevent grain transport up the

elevator, the door at the base removed, and a purpose-built rubber skirt was fitted to

control the grain flow to the soil surface. The skirt was constructed to be as Wide as the

clean grain elevator so as not to interfere with grain flow rates.

Sampling 10 cm sections at 50 cm intervals along the flow resulted in 42 samples

representing a 0.11 second sampling window each 0.45 seconds of flow. The mass of

coloured and clean grain in each sample was manually determined. Figure 5-2 shows the

coloured grain band, the harvest operation and the resultant mixed grain flow.
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Figure 5—2. An example of coloured sorghum band (a) harvest operation (b) and

grain flow strip for sampling 8m past interception of the coloured band

(note coloured grain mixed with clean grain).
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5.3 RESULTS 81: DISCUSSION

5.3.1 Spatial Sensitivity and Displacement

Harvesting the two adjacent sorghum runs with the known zero yield segments coarsely

confirms and demonstrates the mixing and displacement of the grain when observed at

the yield sensor. Figure 5—3 shows the yield recorded and tagged with the location of the

harvester at the time of yield measurement. Immediately evident is the lack of a zero

yield registration following the 7 metre cutout. Only after a zero yield gap of 14 metres

does the monitoring system register the lack of grain in the run. Some smoothing of the

true yield variability in the field is obviously occurring within the system. The recorded

beginning of the zero yield (black points) are also displaced forward approximately 19

metres from the true origins of segments 'c' and 'd'. Zero yields only just register in one

run from segment 'b' (14m cutout).

Figure 5-4 displays the yield trace for the lower header run and shows an approximately

10 metre displacement for the yield signal to fall to almost zero followed by a small

fluctuation as the harvester empties of grain. This perturbation extends the displacement

for the zero yield signal out to the observed 19 metres.
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Figure 5—3. Zero yield smoothing and displacement in two adjacent header runs.
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Figure 5—4. Grain yield trace and zero yield cutout positions for the lower header

run in Figure 5-3.

No such fluctuation is evident as the harvester begins to fill with grain on exiting the

cutout zones, suggesting that the grain flow exhibits differing patterns for grain filling

and grain emptying within the harvester transport system. These results confirm that the

harvesting mechanics impart a more complex effect on grain movement between the

cutterbar and yield sensor than the simple linear model commonly utilised.

5.3.2 Grain-Flow Convolution and Transport Delay

While the grain transport delay appears to be non-linear in effect, it comprises two

components: a linear component relating to crop position along the cutting platform and

a non-linear component from the threshing and delivery process.

Platform Transport

In conventional harvesters, inflorescences are cut simultaneously along the length of the

cutter bar and delivered to the throat elevator by a central delivering platform auger. The

distance from the point of cutting to the throat will influence the transport time to a yield

sensor mounted at the exit from the clean grain elevator. The magnitude of this effect will

be governed by the platform width, and to some degree the delivery mechanism. The ID
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7720 displayed a platform-position delay for sorghum delivery through the harvester as

depicted in Figure 5—5.
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Figure 5-5. Flow of grain through the harvester based on row position relative to

the centre of the cutting platform at time of crop severance.

The throat elevator width of 2 m accommodated the middle three rows directly and this is

evident in the identical delivery times for the central and +1 111 grain. The magnitude of

the central peak is halved as it represents only one row. Rows 2 m from the platform

centre have their peak flow delayed by a further 2.2 seconds, while the outer rows (3 m

from the platform centre) have a peak delay of a further 1.1 seconds.

Threshing 8* Clean-Grain Delivery Processes

The mechanical processes that are applied to move threshed grain through the combine

result in flow convolution. In the full threshing process, grain separated as it passes through

the concave is collected and mixed with grain returns scavenged from within the material

other than grain (MOG) passing along the straw walkers. Delivery to the base of the clean

grain elevator is by the cross-delivery auger.
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Total Grain Convolution

The overall effect of these processes on grain transport is shown in Figure 5—6, where the

coloured grain is not delivered as a unit to the base of the clean grain elevator, but with a

distinctive delivery time distribution. The peak arrives approximately 7 seconds after the

cutterbar encounters the centre of the band and at a maximum of 20% of the total grain in

the band. However, the distribution covers approximately 25 seconds.
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Figure 5-6. Delivery time distribution for the coloured grain pulse through

the harvester. §

The distribution is relatively smooth but does display some irregularities. These may be

explained by the combination of yield variability within the short coloured band affecting

the peak of the coloured distribution and variability in total grain flow during the

experiment caused by yield variability in crop harvested before and after the coloured

band. Figure 5—7 shows the coloured grain flow compared with total grain flow during

the experiment. The troughs and peaks in the two traces occur simultaneously which

highlights the correspondence of total coloured output with total grain fluctuation.

§ The flow rates for these experiments were recorded an analysed in grams/second(gs“), however the graphs present

the data converted to tonnes/ha (t/ha) for ease of comprehension.
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Figure 5-7. Comparison of observed coloured flow with total grain flow during

the experiment.

5.3.3 Modelling Total Grain Convolution

Figure 5-6 confirms that a simple time delay would provide a poor approximation for the

transfer function describing grain transport within the harvester. Similarly, a first-order

exponential decay model as proposed by Searcy et al. (1989) will not adequately describe

the process.

Non-Parametric

The data could be more accurately described using a cubic smoothing spline which

minimises the compromise between the model fit and the degree of smoothing using

Equation 5-3. (Silverman, 1985).

min EDI. -f(ti)]2 +AJ(f"(t))2dt= z (5-3)
i=1
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where (in this example):

 

   

   

   

y = grain flow (t/ha)

t = time(s)

f(t) = spline

l = 0.00003 (smoothing operator)

2 = 0.0042 (generalised cross validation)
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Figure 5-8. Modelled time distribution for the coloured grain pulse using a

cubic smoothing spline.

In Figure 5-8, the smoothing spline fit to the experimental data is displayed along with

95% confidence limits. The spline describes the data well, providing a numerical model

for the transfer function relating grain flow across the cutting platform to grain flow

observed at the base of the clean grain elevator. This transfer function will only apply

when the harvester is within a ’steady-state’ operating range. Such conditions will not be

met With the very low grain flows that occur at the beginning of runs and high harvest

speeds that may result in choking of the internal pathways.
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Parametric

The pulse of coloured grain through the harvester can be considered analogous to the

flow of a narrow pulse of solute through a soil column. The exit concentration over time

for such a solute pulse will be governed by the initial concentration, the length of the

transport pathway, the velocity of solute flow and the dispersion processes imparted in

the flow. For a medium with a homogeneous dispersion characteristic, Jury 8: Sposito

(1985) provide a model that includes such parameters (Equation 5-4).

C L (L — Vt)2
C(L,t)=—°—-ex (—-——) _

2W p 4D: (5 4)

where:

C(L,t) = Breakthrough concentration at time t and column length L

CO = Integrated initial pulse concentration with respect to pulse duration

D — Dispersion co-efficient

L = Length factor

V = Velocity

t = Time

Here, C(L,t) represents the coloured grain output at each time (gS'l), C0 is the total grain in

the coloured pulse (g), D equates to a characteristic grain dispersion co—efficient for the

harvester (mZS'l), L is a characteristic grain pathway length (In) and V is the velocity of the

harvester (ms‘l). The values for these attributes of the fitted model are displayed in Table

5-1 and represent physical realisations of these parameters under the experimental

conditions (i.e. for this harvester at this flow rate).

 

V(m/s) D L (m) Co(kg) Mean (3) Mode (s)

 

0.9 0.7 8.0 6.03 8.9 6.7

 

Table 5-1. Parameter values for grain flow model.
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In Figure 5-9, application of the model to the experimental data confirms that the grain

transport and threshing operations within a conventional harvester appear to conform to

the process of dispersion described in Equation 5-4.
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Figure 5-9. Modelled time distribution for the coloured grain pulse using the

Jury 82: Sposito (1985) pulse input model.

In this model, the velocity, V, has been taken as the forward speed of the harvester. In the

soil theory, the mean velocity of the solute front is used, which would equate to the mean

grain travel speed within the harvester. This is not easily obtained and the best estimate is

the harvester travel speed with the boundary conditions that the harvester is travelling at

a velocity that has the machine operating at a ’steady-state’ whereby the grain flow is not

below the speed of the harvester. That this is a suitable velocity to utilise in the model is

highlighted by Figure 5-10 where the model is shown to fit the experimental data extremely

well when the centre of the coloured pulse is used as the initial time value.

This model is based on the Inverse Gaussian distribution which has its genesis in the

effect Brownian motion imparts on particles moving along a linear path with constant

velocity (V) (Johnson & Kotz, 1970). Under this scenario the time (t) for particles to travel

a fixed distance (L) will be a random variable and follow a probability density function

described by Equation 5-5.
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Figure 5-10. Pulse input, observed and modelled output with the centre of the pulse

set as t0 and V equal to the harvester velocity.

_ 2

xi 21tBt3 2m

where:

B = diffusion constant

This process is obviously similar to the grain dispersion that occurs within the harvester.

An alternative examination of the process considers that at a fixed time, i.e. at the sensor

each second, the grain being measured will have covered various distances which will be

random and normally distributed as Equation 5-6.
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_ (L - Vt)2
2m

 p(L) = exP( ) (5-6)
a 7
-
1
"

"
G
:

H
-

The mean and mode of the Inverse Gaussian distribution (Equation 5—5) may be estimated

as by Equations 5-7 and 5-8 respectively.

L. = _ 5-7”time V ( )

3
tmode = H{[ (1 + Z¢2)]_E} (5'8)

where:

L2

A =F = a reciprocal measure of dispersion

9»¢ = —
u

The implication of the Inverse Guassian distribution model for yield measurement is that

the mass flow being registered at the sensor will contain grain that has travelled a variety

of tortuous pathways through the harvester. This would suggest that for each measurement

the grain had not all been harvested at the same time or from the same discrete area in the

field.

5.3.4 Grain Yield Deconvolution

These results imply that the yield component of the signal recorded by the yield monitor

represents a considerably smoothed depiction of the true yield. The physical threshing

processes operating within the harvester impart a temporal mixing of the grain that

convolves the harvest process time for each grain. The signal recorded will also possibly

contain vibrational, pneumatic and instrument noise components. These will be discussed

in a later section.

Continuing the analogy with soil solute transport, it can be theorised that the transfer

function describing the effect of dispersion on a solute concentration entering a soil system

may be used to determine the original concentration from the observed output
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concentrations measured over time (White, 1987). Using a description of the grain transfer

function, the true yield values may be quantitatively rectified from the observed values

and, due to the time based nature of the function and the harvest measurement procedure,

also rectified in space.

The observed yield sensor signal when sampling at a frequency of 1H2 approximates a

continuous time series of grain flow through the harvester (Birrell et al., 1995). A time

series is but one realisation of the infinite suite of time series that could occur (Chatfield,

1996) and can be examined in both the time and frequency domains. With only one time

scale observed, variation in such a series may best be explained by investigating the

contribution to variability of a number of signal frequencies. Also, the degree ofconvolution

shown in Figure 5—6 becomes quite computationally difficult to deal with in the time

domain, but may be simplified to a basic multiplication operation in the frequency domain.

Fourier analysis using the fast Fourier Transform (Cooley and Tukey, 1965) is one

established method for the analysis of time series in the frequency domain.

Fourier Transformation

The complexity and magnitude of the mathematical operations required to analyse the

periodicity in data series of even moderately sized data sets initially restrained development

of suitable methods. In the later half of the nineteenth century there were few methods

capable of handling more than small data sets. Shuster (1897) introduced the Fourier

analysis procedure using the periodic components in tidal and meterological data and

devised the periodogram. However, it was the advent of spectral analysis'in the 1930’s on

the back of advances in probabilistic and statistical theory in time series, that brought

rapid developments.

Progress in the theory of spectrum estimation gained momentum over the next few decades

with the work of Bartlett (1948), Grenander & Rosenblatt (1953) &: Blackman & Tukey

(1959). Cooley & Tukey (1965) introduced the Fast Fourier Transform (FFT), that finally

enabled much quicker computation and the ability to handle much larger data sets. These

advancements were greatly aided by the increased application of Fourier analysis in the

electrical engineering field and an ability to manipulate data sets with basic computers.

Fourier analysis requires transformation of attributes from the time domain to the Fourier

domain. In generalised form, this operation creates a Fourier pair (Equation 5-9).

FourierTransformation 3

X(t) mm (5—9)
InverreFourierTransfann
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where:

X(t) = Observation in the Time domain

X((D) = Observation in the Frequency domain

For the deconvolution of grain yield observed from the yield monitor the following

generalisation can be made:

Yobs = Yact * Ytransf (5-10)

where:

Yobs = yield observed from the grain yield monitor,

Yact = actual yield that occurs in the field,

Ytransf = yield transfer function.

This generalisation is not, however, true in the time domain so the operation to distill Yact

from the known data must be moved into the frequency domain. This can be achieved

through Fourier transformation (Equation 5-9) so that:

Yobs (t) with Fourier transformation becomes Yobs (0))

Yact (t) with Fourier transformation becomes Yact (0))

Ytransf (t) with Fourier transformation becomes ytmnsf (0))

where:

Yx(t) = yield in the time domain,

yx(oo) yield in the frequency domain.

In the Fourier domain the transfer function is the Fourier transform of the impulse response

function. The impulse response function in this case is the modelled output from the

coloured grain experiment.

In the frequency domain Equation 5-11 is then robustz.

Yobs (03) = Yact ((0) * Ytransf (00) (5'11)
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And when Equation 5—11 is re-expressed as Equation 5-12, the true yield (expressed in the

frequency domain) can be calculated.

Yact (03) = Yobs (C0) / Ytransf (00) (5'12)

An inverse Fourier transformation may then be applied to return Yact from the frequency

domain to the time domain.

Yact ((0) with inverse Fourier transformation becomes Yact (t)

This whole operation will result in the real yield values being restored in conjunction with

harvest time rectification due to the time-based nature of the transfer function. In effect,

quantities are estimated that should be more representative of the grain yield at each

observation point in the field.

Variation in the original data induced by machine operation and measurement errors are

likely to be amplified in the above operation and warrant removal from the raw data prior

to transformation. Searcy et a1. (1989) employed a 3rd-order moving weighted averaging

to the yield data from a volumetric yield monitor prior to applying the first order

exponential transfer function detailed in Equation 5-1. Vansichen 8: De Baerdemaeker

(1991) incorporated a 0.5 Hz low pass filter to the sensor signal to remove vibrational

force components. They then applied a 0.2 Hz filter to the speed and width signals and

the yield flow time series to compensate for measurement errors and noise prior to

correcting for grain flow dynamics using a first order time delay model.

Pringle et al. (1993) used a monitoring system that observed the variability in a weighed

active section of grain delivery elevator and were able to determine the largest noise

components at 60 and 12 Hz corresponding to the movement of chain and paddles over

the active section. They then used a 0.5Hz low pass filter which they contend allowed

acceptable transient response but suppressed the noise. Birrell et a1. (1995) in an empirical

examination of first order transfer functions also note that the inversion operation required

amplifies the high frequency noise and requires some form of initial data smoothing. Lark

et a1. (1997) opted to average yield measurements over a 4.6m length prior to analysis

which would produce such an effect.

The inversion process and the fact that the transfer function models are smooth, twice

differentiable approximations of a variable process strengthen the requirement for initial

data smoothing. While these smoothing operations appear necessary prior to any attempt

to dynamically rectify grain yield, there is obviously a trade-off between adequately
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correcting the yield signal and amplifying inherent errors (Vansichen & De Baerdemaeker,

1991)

Given the above, the degree and method of smoothing to be applied to the original data

obtained from grain impact yield sensors remains subjective. Measuring the contribution

of machinery noise in these systems will improve this situation in the future. For this

experiment, a moving process of median polishing using three observations was applied

based on the Tukey (1977) method of repeated median smoothing, splitting and harming.

This method reduces the influence of very high or low values on the smoothing process

and therefore acts in effect more like a low-pass filter than would a moving mean procedure

while using the data to continuously determine the cutoff.

Figure 5-11 displays an example of the median polishing as applied to a 100 s time series

(approximately 90m header run). The transformed data has also been shifted backward 1

s to account for transport from the base to the top of the clean-grain elevator, where the

yield sensor is installed. This linear component of the transport process operates at 2.4

ms‘1 (Nelson, 1997 personal comm.)
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Figure 5-11. Median polishing of sensed yield data expressed as tonnes/ha.
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Figure 5-12. Deconvoluted yield values using the experimental transfer function as

compared with the smoothed yield input.

Using this smoothed data as the input to the Fourier transformation process produces a

yield output that is dynamically rectified (Figure 5-12). As would be expected, the

previously demonstrated mixing occurring within the harvester has been removed and

changes in the gradient of the time series trace are accentuated. The process also places

the yield values at the time the crop was encountered, not the time of measurement as

represented by the smoothed yield. A comparison of the deconvoluted yield with the

original sensed yield data (Table 5-2 and Figure 5-13) more clearly shows the increase in

variability that has occurred through deconvolution. Notably, the CV rises from 10.8% to

19.6%.

 

 

Yield Min Max Mean Std Dev. C.V.
(t/ha) (t/ha) (t/ha) (t/ha) (%)

Sensed Yield 4.97 9.23 6.93 0.75 10.8

Deoonv oluted Yield 2.66 10.66 6.93 1.36 19.6

 

Table 5-2. Statistical moments of the sensed and deconvoluted yield.
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Figure 5-13. Deconvoluted yield values using the experimental transfer function as

compared with the smoothed yield input.
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Figure 5-14. Deconvoluted yield values using the experimental transfer function as

compared with a 105 linear delay.
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Figure 5-14 provides an insight into the effect this dynamic adjustment has in comparison

to a simple time-delay model for rectification. The travel time for 50% of the colored grain

to reach the yield sensor position (8.95 + 15 = 9%) was applied as a linear delay. It is clear

that both the time and quantity adjustments differ significantly between the two cases.

5.4 GENERAL DISCUSSION

The results documented in this chapter suggest that there is a degree of smoothing applied

to the instantaneous yield measurement data that is introduced by the harvesting

mechanisms. This smoothing will not be corrected by the use of a simple linear time

delay.

As previously discussed, the importance of this time lag in grain flow monitoring has

been acknowledged by a number of authors. Along with an accurate determination of

operational cutting width, the best estimate for the time lag is necessary to ensure

meaningful accuracy in the resulting yield maps. The methods previously considered for

determining this component of the process have all inferred a model from other measured

parameters. The most common approach being an estimate of the time to steady flow

rates on the observed yield trace as an empty harvester enters a crop (Searcy et al., 1989;

Murphy et al., 1995; Birrell et al., 1995; Nolan et al., 1996) or leaves the crop (Lark et al.,

1997)

Internal transport of grain as a harvester fills from empty or empties from full would not

undergo the same dynamics as a harvester that is encountering a fluctuating but relatively

'steady-state' grain flow rate. Figure 5-4 intimates that there are differences between the

emptying and filling processes as seen at the grain flow sensor. Searcy et a1. (1989) noted

this in the estimate of their time constant (q) ranging from a mean of 2 s on entering the

crop to 10 s leaving the crop. Lark et a1. (1997) produced two different impulse response

functions for these two processes that demonstrated vastly increased mixing time for crop

exit. They concluded that the two models provided a "pessimistic" and "optimistic" account

of the mixing influence imparted by the harvest mechanism. While there has been no

justification shown for choosing the entrance over the exit transport time in previous

research, Figure 5—4 does highlight the 'tailing' effect of the emptying process.

Intuitively, while the harvester is operating within the normal crop yield range, the two

effects observed by previous studies may be combined to influence the transport function

through the harvester. Figure 5-7 suggests that this is the case. The mixing component is

apparently taking place over a greater period of time than the 0.5 s incorporated by Birrell
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et a1. (1995) or the maximum 10 5 reported by Searcy et a1. (1989). Indeed, these results

offer a mixing period of 17-18 s for 95% of the coloured grain to pass the sensor, which at

the harvest speed of 0.9ms‘1, equates to 15 -16 m of the harvest run. The maximum

concentration of coloured grain (mode) arrives at the sensor at approximately 85, or 7m of

the harvest run. That the mode is only 20% of the total coloured grain accentuates the

internal mixing. These figures fall within the optimistic (15m) /pessimistic (25m) mixing

predictions of Lark et a1. (1997).

It is also interesting to note that the deconvolution increases the CV of the yield data in the

experiment from 10.8% to 19.6%. This adjusted value closely equates to the mean CV

presented by Taylor et a1 (1997) for small-scale manual sampling of within-field crop yield

variability.

Replication of the experiment presented here has not been possible as yet due to labour

and time costs associated with initiating and conducting the measurements. However,

deconvolution of the yield data in Figure 5-2 (experimental data not used in generating

the transfer function) using the proposed model retrieves the start and end points of the

zero yield bands with more accuracy than the single 10 s time delay (Figure 5-15). It must

be noted however that the changing transfer functions as the harvester empties and then

fills causes unrealistic yield fluctuations at these points when using the "steady-state"

function.

The transfer function has also been applied to data from the most recent sorghum harvest

(1998 season - data not included in this thesis). The spatial relationships between yield

estimates obtained by hand harvesting and threshing, yield monitoring and deconvoluted

yield monitor data were compared for a single 2.5ha area. The variograms for these three

data sets are shown in Figure 5-16. The smoothing of the yield monitor data is again quite

evident when compared with the hand sampled yield estimates. Yield deconvolution

provides a variogram that essentially estimates the same nugget (C0) parameter of the

hand sampled data. The estimate of total semivariance (C0 + C) is less accurate but more

representative than that provided by the convoluted yield data.

Other studies provide corroborative evidence for the validity of the transfer function.

Boydell et a1. (1996) present a similar shaped transfer function for the flow of peanuts

within a peanut harvester. While a peanut harvester operates similarly to a grain harvester,

the process is far more direct and the results showed a maximum of approximately 90%

coloured kernels at the mode. The experiment was conducted with coloured kernel bands

that appear to have been too long and subsequently disguised the true mixing, however

the shape of the output at the sensor is very similar overall and would follow an Inverse
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Figure 5-15. Yield data for the 24m grain gap experiment comparing the sensed yield

with that deconvoluted using the experimental model and using the

simple 105 delay.
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Figure 5-16. Comparison of semivariograms for sorghum yield data obtained in a 2.5ha

field using hand harvesting and threshing, yield monitoring and

deconvoluted yield monitor data.
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Gaussian distribution. The impulse response functions derived by Lark et a1. (1997) from

the flow patterns at the start and end of harvester runs also display a similar form that

could be approximated by the Inverse Gaussian distribution.

The model presented here is suggested as a beginning for further research into the

characterisation of grain flow during the harvest process. No doubt the moments of the

distribution model will be affected to some degree by flow rates and harvester operational

configuration. It is envisaged that future verification of the flow model will lead to

procedures for more rapid determination of the parameters L and D for various harvester

configurations.

To this end it may be possible to use a substance to mark the crop in a number of locations

across a field or farm that can then be sensed automatically by detectors at the output of

the bubble-up auger. Skotnikov & McGrath (1996) suggest the use of metal—based paints

and metal detectors, however low-dose radioactive isotopes may also be suitable. It may

also be feasible to use the grain moisture sensor that is usually installed with the yield

monitoring equipment to detect the passage of strategically wetted grain bands in the

field. Such rapid replication of the experiment would characterise any variability in the

flow model and allow greater accuracy in yield correction.

A fuller understanding of flow dynamics should be coupled with improvements in the

concentration and direction of the grain flow from the exit of the clean-grain auger to an

impact-type yield sensor. Strubbe et a1. (1996) documented the flow pattern of free grain

at the exit of the clean-grain elevator and restricted the dispersion they found by guiding

the grain flow using curved plates and concentrating the flow with a small rotor mounted

on the lower side of the exit to prevent grain by—passing the sensor.

Further work is also required in measuring the noise components in the sensed signal so

that a more objective smoothing or filtering may be applied prior to the Fourier

transformation procedure. The hand sampled data shown in Figure 5-16 will be used for

this purpose. Wavelet theory and spectrum analysis will also be investigated in the future.
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5.5 CONCLUDING REMARKS

A process is described for determining the flow pattern of sorghum grain through a

harvester using plants systematically coloured prior to harvest. Grain movement is shown

to be partially influenced by the position of the row in relation to the centre of the cutting

platform leading edge. Grain from the outer rows is delayed in comparison with those

more centrally located. Amore significant impact is made on grain flow by internal mixing

during the threshing and auger transport processes. The two effects can be combined and

represented by a grain transfer function which quantifies these grain flow dynamics.

The dynamics of the grain flow within the harvester obviously results in convolution of

the true yield. Yield sensors intercepting the grain flow at the end of the transport process

will be registering this smoothed yield. Deconvolution is required if the correct yield is to

be located within the field at a fine-scale. Fourier analysis allows the signal to be untwined

and also provides the correct time adjustment.

If yield trends are the only interest then this process may not be necessary. Until it is

known at what scale we can realistically manage on a site-specific basis, the author believes

that accuracy (or at least qualification of errors) should be a priority. Procedures along the

lines presented in this chapter are a step forward.

Therefore, in the processes of determining causal factors of yield variation, prescribing

small-scale differential treatments and the cost assessments of these actions, this form of

correction will be crucial.
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CHAPTER 6

Crop-Yield Map Production

6.1 INTRODUCTION

The data gathered using a real-time crop yield monitor, and the possible sources of error

have been examined in Chapter 4. Chapter 5 has explored a method for deconvoluting

yield quantities and their spatial location along the header runs. This chapter shall

concentrate on the process of spatial prediction required to produce estimates of yield

values at points without an observation. Spatial prediction is required to regularise the

spatial distribution of yield values within an area in order to produce an almost continuous

surface for mapping.

Any form of spatial prediction is based on the premiss that observations made in close

proximity to each other are more likely to be similar than observations separated by larger

distances. This is the concept of spatial dependence which has been reviewed in Chapter

1. The process of spatial prediction requires that a model of the spatial variability ( spatial

dependence) in a data set be constructed or assumed so that estimates for the prediction

points may be made on the basis of their location in space relative to actual observation

points. It is the form of these models, and the assumptions underlying the choice of the

same, which generally distinguish the major spatial prediction methods. Laslett et al.,

(1987) presented a straightforward taxonomy of spatial prediction methods using three

categories namely, global or local, interpolating or non-interpolating, and smooth or non-

smooth, predictors. Their categories will be outlined here.

Global methods use all the data in a data set to determine a model for spatial variation

and then apply the one model to the prediction process at all unsampled points. They

therefore use all the data for each prediction which may be computationally expensive for

large data sets. Local predictors use only points 'neighbouring' the prediction point in the

prediction operation. A singular form of variance model may be constructed for the entire

data set and applied in each neighbourhood, or an individual model may be constructed,

and used exclusively for, each neighbourhood. Local methods may therefore be the

preferred option, especially on large data sets, and where a single model may be

inappropriate.

Spatial prediction methods whose principle requires the prediction to exactly reproduce

the data values at sites where data is available are said to act as interpolators. However, if

241



Crop-Yield Map Production

measurement errors are known to be large, Laslett et al. (1987) suggest that this constraint

may (or should) be relaxed a little. This principle may break down and not apply if there

are replicate values which do not agree at a point so that only one value, such as the

average, is honoured.

A smoother is a spatial predictor whose predicted surface and the first partial derivatives

thereof are continuous. A non-smooth predictor is one for which the discontinuity of the

predictor or its partial derivatives is readily detected by the eye, whereas discontinuity of

second and higher derivatives is not usually detected. Despite these definitions,Laslett et

al. (1987) indicate that the concept of smoothness of a spatial predictor is somewhat

subjective.

Potentially a whole variety of prediction techniques may be used: inter alia, global means

and medians; local moving means; inverse-square distance interpolation; Akima's

interpolation (Akima, 1978); natural neighbour interpolation (Sibson, 1981); quadratic trend;

Laplacian smoothing splines (Wahba & Wendelberger, 1980); and various forms of kriging

(Goovaerts, 1997).

The prediction technique of choice for yield map production in Precision Agriculture will

depend on the expected use of the map. However, real-time sensors that intensively sample

variables such as crop yield produce large data sets containing a wealth of information on

small-scale spatial variability. By definition, Precision Agricultural techniques should aim

to preserve and utilise this detail.

 

 

Prediction Method C haracten'stic

Local moving means global non-interpolator srmother

Inv erse squared distance glob al interpolator smoother

Local kriging

(w ith glob al v ariogram) local / glob al non-interpolator smoother

Local kriging

(w ith local v ariogram) local non-interp olator smoother

 

Table 6-1. Classification of prediction methods (after Laslett et al., 1987).
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In this study, grain yield data from the 1996 sorghum crop is predicted onto a regular grid

using the more commonly utilised prediction methods of: local moving mean, local inverse

distance, and local kriging with a global semivariogram. These will be contrasted with a

new technique employing local kriging with a local variogram (Haas, 1990a). Classification

of these four methods according Laslett et a1. (1987) is shown in Table 6—1. The results and

implications of using each method in crop yield map construction will be presented and

discussed.

6.2 MATERIALS 8:: METHODS

A local neighbourhood is defined here as the observations within a 20m radius of each

prediction point (d. S 20). 20 m has been chosen based on the convolution results of Chapter

5, the spatial dependence range estimates from preliminary data analysis and the desire

to include a minimum of 100 observations for spatial modelling. All the methods provide

estimates using a local prediction procedure.

6.2.1 Prediction Methods

Prediction methods operate on the basis that the yield value Y(xo) at any unsampled location

x0, (where x denotes a two co-ordinate location descriptor) can be estimated using the

values Y(xi) from the sampled locations xi, where i = 1,2,3 .......n, using the generalised

function

Y(x0) =flw1,w2, .......wn,Y(x1),Y(x2), ....... Y(xn)] (6—1)

where:

wi = the weight assigned to yield value Y(xi,) at point xi

All the prediction techniques to be applied in this study are linear predictors and use

Equation 6-1 such that

Y(xo) = :in(xi) (6‘2)

The various prediction techniques do differ in the methods used to calculate the weights.

These differences arise from contrasting agronomic assumptions regarding the spatial

interdependence of yield estimates and to some extent the degree of certainty placed in
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the observed data. To ensure that the predictions are unbiased, the weights for each estimate

must fulfil the condition of Equation 6-3.

Zwi = 1 (6-3)
i=1

Local Moving Mean

The weights for the local moving mean prediction are determined for each prediction

point using Equation 6-4.

w. = 1 /n for d. S 20 m (6—4)

where:

dl. = Linear distance of observation Y(xl.,) from the prediction location x0

Here the weight is obviously uniform for all observations, which assumes all observations

within the neighbourhood have equal relevance to the yield at the prediction location.

The spatial dependence is only a function of distance in so far as 'd' restricts the radius of

the observation neighbourhood.

Inverse Distance

The inverse distance weights are determined for each prediction point by Equation 6-5.

Y.w = 31$ for d. s 20 m (6-5)
1EA"

where:

l. = Linear distance of observation Y(x11) from the prediction location x0

p = integer power parameter

Here the weights are calculated on the assumption that yield observations are correlated

in space according to a universal function based separation distance between observations.

No account is taken of the true spatial variance structure of the data set. Commonly p = 2

is employed and the procedure is termed 'inverse distance squared'
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Local Kriging with a Global Semi'oariogram

The kriging process, developed by Krige (1951) and further extended and applied by

Matheron (1963) and Iournel 8: Huijbregts (1978), relies on the semivariogram model

(discussed in Chapterl) to provide a function describing the spatial variance structure of

the data set. While the semivariogram model is also a function of separation distance,

unlike Equation 6-5, the model is conditioned on the actual spatial dependence observed

in a data set. In this method a semivariogram model is fitted to the full data set, providing

a single model (global semivariogram) for the spatial variance structure in the field. Weights

are then obtained for the neighbourhood observations surrounding each prediction point

through the kriging process which solves the equation series 6-6.

w. 0 muse) y<x.,x,.> 1 ‘1 y<x.,xo)

w. x,,x O x.,xn 1 i,’ = 7( ‘ 1) fl ' ) x ’y(x x0) for diSZOm (6-6)

wn y(xn,x1) y(xn,xi) 0 1 y(xn,x0)

y/ 1 1 1 O 1

where:

W = Lagrange multiplier

semivariogram model for the function Y(x)70

The equations are solved using the Lagrange multiplier in an optimisation method that

ensures the prediction is unbiased and minimises the prediction variance (Olea, 1991).

The prediction or kriging variance (02(x0)) is given by Equation 6-7.

oZ<xo>= wiwinxflxo) <6-7)
i=1

The standard error of the prediction is the square root of the variance.

Local Kriging with a Local Semivariogram

Unlike the global semivariogram method, this technique models a semivariogram for the

data in each 'neighbourhood' around the prediction point. This provides a local model
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(local variogram) for the spatial variance structure that is intrinsic to the data that will be

used in each prediction (Haas, 1990a). The variograms are individually applied using the

kriging process within each neighbourhood. The weights are obtained as shown in

Equation 6-6. The provision of a measure of prediction variance in both these kriging

procedures is unique amongst the methods that will be examined.

All these methods will be compared quantitatively for the deviation of the prediction

surface distribution statistics from those of the input data. Direct comparison between

prediction values and observations not included in the prediction procedures is impossible

because the observation pattern and density supplied by the yield monitoring system

means that sampling point and prediction grid node alignment can not be controlled.

Further qualitative analysis will be undertaken.

An area of 25 ha will be first examined using a prediction grid of 3.5m. A more detailed

portrayal of the different surfaces produced by these techniques will then be made on a 6

ha portion of the larger area using a 2m prediction grid.

6.3 RESULTS &: DISCUSSION

6.3.1 25 Hectare Region

The header runs and local neighbourhood are shown in Figure 6-1. In general, the

neighbourhood will encompass between 5 and 7 header runs, its definition being

conditioned on the inclusion of 2100 observation points to ensure reasonably robust

estimation (Webster and Oliver, 1992).

The total area comprises 5 contour bays, the dividing contour banks can be distinguished

by tracing the header runs between the contour markers. An oversown roadway can also

be traced running parallel with the first bank for most of its length. Crop yield data from

the yield sensor, expressed as a continuous surface using a 5 m neighbourhood moving

mean, can be seen in the eastern half of Figure B -16 (Appendix B). Table 6-2 records the

distributions of the data produced by the prediction methods and Figures 6-2 and 6-3 map

the spatial distribution of the predictions.

With less observations than the original field data, all the prediction techniques

underestimate the data mean and standard deviation. The local moving mean best

estimates the data mean while the local kriging with a local semivariogram most

successfully maintains the variability in the data.
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Figure 6-1. Site layout and header runs for 25 ha site.

 

 

Prediction Method n Min. Max Mean Std Dev. C.V.

(t/ha) (t/ha) (t/ha) (t/ha) (°/o)

O n'ginal data 31813 2.70 9.50 6.82 1.14 16.7

Local moving mean 19252 3.69 8.53 6.75 0.82 12.1

Inv erse distance squared 19252 3.42 8.62 6.72 0.94 14.0

Local kriging w/ global variogram 19252 3.17 8.71 6.70 1.03 15.4

Local kriging w/ local variogram 19252 2.90 8.70 6.69 1.05 15.7

 

I.

Table 6-2. Descriptive statistics for the prediction surfaces generated by the various

methods.
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Local MovingMean

Figure 6-2a maps the yield surface produced using the 20 m radius moving mean. This

map shows only the gross features of the yield variability and generally fails to distinguish

the influence of the contour banks. The mean value for the field is significantly different

from the mean of the original data (p = 0.001).

Inverse Distance Squared

Figure 6-2b maps the yield surface produced using the inverse distance squared procedure.

Far more detail is now evident as the distance model for spatial variance produces less

smoothing. The effects of the contour banks and the roadway on yield can just be discerned

but the prediction surface appears ’spotted’ with very localised sharp changes in yield.

The mean value for the field is significantly different from the mean of the original data (p

= 0.001) and significantly different from the local moving mean (p = 0.01).

Local Kriging with a Global Semioariogram

Figure 6-3a maps the yield surface produced using the local kriging with a global

semivariogram procedure. Far less smoothing is evident around the northern boundary

of the field where the extent of yields below 4 t/ha has become more obvious. The roadway

and contour banks are well defined and while some spottiness remains, it is less localised

and more coherent. The mean value for the field is significantly different from the mean

of the original data (p = 0.001) and significantly different from the local moving mean (p =

0.01). It is not significantly different from the mean of the inverse distance squared

prediction surface.

Local Kriging with a Local Semivariogram

Figure 6-3b maps the yield surface produced using the local kriging with a local

semivariogram procedure. The degree of smoothing imparted by the procedure is similar

to that observed in Figure 6-3a, but a further reduction in the sharp localised changes

within defined yield classes is obvious. The mean value for the field is significantly different

from the mean of the original data and the local moving mean map (p = 0.001). It is

significantly different from the mean of the inverse distance squared prediction surface

(p=0.1), but not significantly different to the mean of the global semivariogram prediction

surface.
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Figure 6-2. Crop yield maps for a 25ha region of the Creek field produced by

different prediction methods - (a) local moving mean (b) inverse

distance squared.
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Figure 6-3. Crop yield maps for a 25ha region of the Creek field produced by
different prediction methods - (a) local kriging with a global
semivariogram (b) local kriging with a local semivariogram.
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While Figures 6-2 to 6—3 provide an important overview of the differing effects of these

prediction techniques, it would appear from Table 6—1 that the three more complex methods

offer a similar impact on the frequency distribution of the original data. The crucial aspect,

with respect to the construction of realistic crop yield maps, is the accurate spatial

representation of the data.

6.3.2 6 Hectare Region

In Figures 6-4 to 6-7 a more instructive examination of the application of these techniques

is made at a finer scale. The 6 ha area (Figure 6-4) has been sectioned from along the

central horizontal axis of the larger 25 ha area and extends from the western boundary of

that field to the eastern edge of the third contour bay. Table 6-3 displays the descriptive

statistics for the prediction surfaces at this scale.

 

 

no
rt
hi
ng

(m
)

5707700 “ roadway

contour bank    
I ' l ' | ' l ' l t l ' |

807800 807850 807900 807950 808000 808050 8081 00 8081 50 808200 808250

easting (m)

Figure 6-4. Site layout and header runs for the 6 ha site.

With more observations than the original data at this prediction scale, all the techniques

provide a closer estimate of the data mean even though the three more complex procedures

continue to produce a significant difference (p = 0.01). There is no significant difference

between the means of these three techniques. The improvement in overall mean estimation

has been accomplished by a reduction in the representation of the data variability in all

the prediction surfaces. This is not as evident at the coarser grid scale and is probably a

function of a smaller prediction grid to neighbourhood ratio.
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Prediction Method n Min. Max Mean Std Dev. C.V.
(t/ha) (t/ha) (t/ha) (t/ha) ("/o)

O riginal data 8504 3.07 9.95 7.41 0.85 11.5

Local moving mean 16815 6.30 8.50 7.40 0.41 5.5

Inv erse distance squared 16815 4.14 9.64 7.39 0.54 7.3

Local kriging w/ global variogram 16815 4.06 9.34 7.38 0.56 7.6

Local kriging w/ local variogram 16815 3.68 9.50 7.38 0.58 7.9

 

Table 6-3. Descriptive statistics for the prediction surfaces generated by the various

methods over the 6 ha site.

Local MovingMean

Figure 6-5a highlights the compaction of the data distribution induced by the local moving

mean technique. The yield covers a range of 2.5 tonnes and the presence of only one

contour bank is evident in the map.

Inverse Distance Squared

In Figure 6-5b the inverse distance squared prediction method shows an increased range

in the yield represented, and an increase in very localised sharp changes in yield evident

as discrete spotting. The severity and linear alignment of these 'spots' suggests that they

may be an artifact of the prediction process.

Local Kriging with a Global Semivariogram

Figure 6-5c, the local kriging prediction surface using a global semivariogram model, also

displays the phenomenon described above (albeit slightly less pronounced) but with a

decrease in overall smoothing as evidenced by the clearer depiction of the road and contour

banks. Both this method and the inverse distance squared method use a single model for

the spatial variation in the field.

Local Kriging with a Local Semivariogram

Incorporating a local semivariogram assessment into the local kriging process as in Figure

6—6a dramatically reduces both the number and linearity of the sharp circular changes in
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Figure 6-5. Crop yield maps for a 6ha region of the Creek field produced by

different prediction methods - (a) local moving mean (b) inverse

distance squared (c) local kriging with a global semivariogram.
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Figure 6-6. Maps for a 6ha region of the Creek field (a) prediction by local kriging
with a local semivariogram (b) yield variance as estimated by the
kriging variance (c) co-efficient of variation (CV).
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yield values. This suggests that the spotting may be attributed to areas in the field where

the spatial variability differs markedly from that described by the single inverse distance

square or global semivariogram models. It would appear that in both the 25 ha and 6 ha

areas these models are introducing an unrealistically high spatial variance structure to

many areas in the field.

This hypothesis may be examined using the individual semivariograms determined for

each neighbourhood in the local kriging with a local variogram procedure. The kriging

method, as previously discussed, produces a prediction error that maybe used to construct

confidence intervals for each prediction. The individual semivariogram models may also

be used to estimate the variance for an area around each prediction point, up to a radius of

the maximum lag used in the semivariogram model.

This is unique among the prediction methods used here and allows the spatial variability

of the neighbourhood yield variance to be mapped (Figure 6—6b). This map confirms that

a single model for the spatial structure of the yield variance would be nonrepresentative

of the data set. Converting the variance data to a coefficient of variation (Figure 6-6c)

produces a map that may be used to examine the preceding yield prediction maps more

directly. Areas in Figure 6-6c with a low C.V. infer that the coinciding areas on the yield

maps should display a smooth yield classification, depicted as solid areas of colour without

abrupt short distance 'spotting'. Both Figure 6-5b and 6-5c fail to acknowledge this spatial

pattern in variance in all but the larger regions of high %C.V.

To further highlight the variation in spatial structure across the field, the distribution

moments for the locally fitted exponential semivariogram model parameters are recorded

in Table 6-4 and displayed as histograms in Figure 6-7. The distributions suggest that the

application of a global semivariogram may be discarding information on the changing

magnitude of yield variability within the field. In Figure 6-8a, a number of the local

variograms representative of the suite of 16,815 is shown in comparison with the global

(average) semivariogram model. These models have been calculated for the various points

shown in Figure 6-8b. Here, the evidence is more easily understood. The semivariograms

show that the sill value (C0 + C : equivalent to 0.95 the yield variance) may change

substantially throughout the field.

The spatial distributions of these semivariogram parameters are displayed in Figure 6-9a

to 6-9c. Interestingly, these maps show that the 'a" parameter of the exponential

semivariogram models has little influence on the spatial structure of yield variance

throughout the field (Figure 6—9a). Variation in the nugget parameter 'CO' begins to exert

an influence (Figure 6-9b), but it is the 'C' parameter (the difference between the
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Parameter Min Max Median Mean Std Dev.

 

Exponential Variogram

CO (y(h)) 0 0.8 0.18 0.19 0.11

C (y(h)) 0 3.0 0.26 0.37 0.32

a’ (m) * 3.3 41.4 5.86 5.79 1.34

Prediction

Std En'or (t/ha) 0.12 1.22 0.57 0.59 0.13

95% Confid. Interval (t/ha) 0.2 2.4 1.12 1.16 0.25

 

* a' = 1/3 apparent range (a)

Table 6-4. Descriptive statistics for the local semivariogram parameters, prediction

error and confidence intervals.

semivariance observed at the lag 'a" and 'CO') which demonstrates the greatest impact on

the spatial structure of yield variance in the field.

The spatial distribution of the 95% confidence interval has not been mapped as the

individual maps in their entirety are an impossible depiction of reality. The total yield

expressed in each map would not match the quantity known to be harvested from the

field. The limits are important however, as they summarise the error inherent in the point

predictions, seen here to vary from i 0.2 t/ha to i- 2.4 t/ha within the field. Again, the

wide range in the standard error confirms the significant local variation in the spatial

variance structure.

All these results can be compared with the parameters of the global semivariogram fitted

to the same maximum lag for the Whole field. An exponential semivariogram model

provided the best fit with: C0 = 0.1, C = 0.45, a' = 2.7. The 0.55 sill value (C0 + C), which

approximates the maximum modelled variance in data sets of this size, is equal to the

mean value for the suite of local models (0.56). Such a result is to be expected and ensures

the mean variance within each prediction surface are equated. The 'a" parameter however

is significantly smaller in the global model than the local mean value (5.79). In the kriging

process this would cause close observations to be weighted much higher than if a the

mean local model was used. Therefore the contribution of observations further than the
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— Variogram A - CO = 0.109; C = 0.059; a' = 6.10

— Variogram B - C0 = 0.222; C = 0.049; a' = 5.30

— VariogramC-CO=0.180;C=0.196; a' = 5.95

— Variogram D - CO = 0.546; C = 0.326; a' = 5.43

— Variogram E — CO = 0.063; C = 1.046; a' = 7.80

Variogram F - CO = 0.392; C = 1.896; a' = 16.00

Global

Variogram - C0 = 0.100; C = 0.450; a' = 2.70
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Figure 6-8. (a) Examples of semivariogram models from the suite of local variograms
(A to F) as compared with the global semivariogram model (G).
(b) Spatial location of the variograms within the yield variance map.
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Figure 6-10. Inverse distance squared weight model for a maximum separation distance

of 20m in 40 lags.

value of 'a", considered influential in the local models, would be effectively disregarded

in the application of the global model. Greater short—range variation would be expected

as a result.

In Figure 6-10, an inverse squared distance model for the 20m neighbourhood shows that

the weights effectively reach zero at approximately 8 m. This is a similar distance to the

apparent range of the global semivariogram model (2.7 x 3 = 8.1) and offers an explanation

to the similarity between Figures 6—5b and 6-5c.

6.4 GENERAL DISCUSSION

That the form of spatial prediction chosen for map construction may be significantly

influential on the final prediction surface is not a new concept. Laslett et a1. (1987) examined

soil pH data (0-10 cm layer) sampled on a 10m grid within a 1 ha field in Samford,

Queensland, Australia to test and compare spatial prediction techniques. The performance
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of global means and medians; moving averages; inverse square distance interpolation;

Akima's interpolation; natural neighbour interpolation; quadratic trend; Laplacian

smoothing splines; and ordinary kriging was tested. Comparisons were made by assessing

the predictions against 64 observations made within the grid and withheld from model

construction.

The authors concluded that all the methods showed some deficiencies in spatial prediction.

Interpolation methods were generally very poor predictors, while of the non-interpolating

methods, Laplacian smoothing splines and kriging performed best. Whelan et a1. (1996)

constructed isarithms of soil pH from the results of Laslett et a1. (1987), which were

contoured to compare the spatial prediction of inverse-square distance interpolation and

ordinary global kriging. Global kriging produced a much smoother surface but an

examination of the two methods' predictions at assessment points along a transect showed

thatneither method appeared to predict the pH of the field very well in this case. Laslett

8: McBratney (1990) compared interpolators, Laplacian smoothing splines, intrinsic random

functions, and universal kriging fitted by restricted maximum likelihood (REML). The

kriging technique fitted with the REML consistently proved to be the best method.

Wollenhaupt et al. (1994) also compared the accuracy of a number of prediction techniques

in a soil phosphorus and potassium mapping study. At a grid spacing of 32m, the authors

concluded that inverse-distance squared produced more accurate results than those

obtained using the kriging procedure. At greater sample grid spacings, the techniques

provided similar accuracy. These accuracy results are based on comparison with a data

set constructed using Delaunay triangulation, and not on validation with independent

observations. As such, the legitimacy of the conclusions rest on the accuracy of the

triangulation estimates and the comparative results can only be regarded as offering

accuracy relative to the triangulation method.

In a more comprehensive study, Weber 8: Englund (1994) evaluated the accuracy of inverse

distance and ordinary kriging prediction techniques using elevation and elevation variance

data sets to simulate data with a relatively unskewed, continuous surface (e.g. geological

surfaces, soil OM) and those with highly skewed noisy surfaces (e. g. soil nutrients)

respectively. They compared predictions based on data subsets of increasing sample size

with observations from larger original data sets.

The results suggest that inverse distance techniques are sensitive to the type of data set,

the neighbourhood population used in each prediction and the power of distance (p; refer

Equation 6-5) used in the weighting. The accuracy of the prediction (assessed by mean

square error) for the more smoothly variable elevation data increased as the neighbourhood
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population decreased and the power of distance increased. For the more variable data

sets, the opposite was true. Alternatively, ordinary kriging displayed little sensitivity to

the variability in the data sets and the accuracy of the estimates continually improved

with increasing neighbourhood populations.

In a similar prediction-validation study Gotway et al. (1996b) compared inverse distance

methods with point kriging using various sampling densities. The attributes of interest

were soil OM (low variance) and N03' (high variance). The results also showed that the

accuracy of inverse distance methods generally improved with an increase in the power

parameter (p value - refer Equation 6-5) if the variability in the data set was low. The N03‘

data sets displayed greater variability and analysis using higher power parameters proved

less accurate than using a value of p = 1. The authors concluded that there was no single

value for the power parameter that could be considered optimal in all cases. On the other

hand, the kriging procedure using a global semivariogram based on the prediction data

sets was generally unaffected by the variability within data sets and indeed the accuracy

remained relatively high for each sampling configuration.

The observed inefficiencies of the inverse distance squared prediction technique can be

attributed to two main problems. Firstly, the prediction does not take into account the

relative distances among observation points in the model of spatial variability, so the

observation weighting is singularly based on an arbitrary function of distance to the

prediction grid node. Secondly, the method is an exact interpolator that passes through

the data points, this may not be sensible if there is uncertainty in the observations. Such

uncertainty may arise in either the value of the observed attribute or its spatial location.

Kriging only operates as an interpolator in the nugget value (C0) is zero. With any positive

C0 value, close range uncertainty in the observations will be reflected in the kriged surface

which will be discontinuous at the observation sites.

This point is often overlooked in assessing the suitability of prediction techniques but

should be a given a high priority in SSCM owing to the potential errors associated with

proposed observation techniques. Obviously real-time sampling and position recording

using GPS receivers will increase the individual observation error.

A further advantage in the use of kriging techniques over inverse distance methods lies

in the provision of a prediction error estimate (Laslett et a1., 1987; Weisz et al., 1995b; Brus

et a1., 1996; Gotway et a1., 1996a). Especially in SSCM, the production and reporting of the

kriging standard error for a prediction should be essential. The error value provides an

estimate of uncertainty that will have important ramifications in the extrapolation of

management information (i.e. differential fertiliser application maps) from predicted soil
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attribute and crop yield maps.

On the other hand, criticisms have been generally levelled at the kriging techniques'

complexity and related computational expense (e.g. Murphy et al., 1995). Astoundingly,

this one line of criticism has apparently overridden all the advantages discussed above,

and led to the general acceptance of the inverse distance method as the prediction method

of choice in the emerging mapping packages for Precision Agriculture. While there may

be some instances where a prediction map is required quickly (e.g. soil attribute maps for

interpolation to fertiliser application maps), at present the author believes this is not a

rational reason for discarding the advantages incumbent with kriging techniques. Certainly

for crop yield maps, the computational time would be far outweighed by the single fact

that the map represents a great deal of time, effort and expense taken to grow a crop.

Ultimately, it is the integration of an entire seasons crop growth information.

Where the computational expense may become important (and indeed the choice of

prediction technique possibly unimportant) is when the observation sampling scheme is

inadequate in terms of sample size, sample strategy, or both. Sample size is probably

considered the most crucial parameter (Englund et a1. 1992) with an increasing number of

observations generally offering greater prediction accuracy. Numerous studies on the

effect of sample strategy for regionalised variables have been reported since the early

theoretical work of McBratney et al. (1981). The general axiom to emerge is that sampling

schemes which fail to produce a sample set representative of the actual spatial variability

in the attribute of interest will hinder accurate prediction by any method.

The impact of sampling scheme inadequacies is more than likely behind the reported

results of several authors (including Laslett et al., 1987; Weisz et al., 1995b; Brus et al.,

1996; Gotway et al., 1996a) who have found inverse distance squared interpolation to

perform reasonably when compared with kriging for modest sample sizes (100 or less). A

low sample size or poorly structured design may severely effect the accuracy of

semivariogram estimation and often introduces unrealistically high nugget effects.

For SSCM it is therefore possible to argue that the optimal spatial predictor will depend

on both the sample size and the sampling intensity (sampling design in relation to a

minimum area of interest - MAI). The MAI is limited by the smallest differentially

manageable land unit (usually governed by implement width and operational dynamics)

and the field boundary.

First let us consider categorising sample size. Sample sizes of less than 10 will not allow

any kind of localised spatial prediction and estimates of the mean for the field will be
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rather poor. In the commercial realm of soil attribute analysis, the sampling size usually

ranges between 10 to 100 observations which should probably be considered inadequate

for formal spatial statistical techniques (kriging and Laplacian splines) and may explain

why methods such as inverse distance squared are often used. As seen from the earlier

discussion, the quality of the estimation must be questioned. With more than 100

observations, the more sophisticated techniques such as kriging and Laplacian smoothing

splines should work well.

For between 100 and 500 observations, kriging with a local neighbourhood of points and

a global variogram is often employed. At this sample size the assumption of a global

variogram is born of necessity but once sample sizes get above 500 it seems wasteful to

assume a single variogram within the field and local variograms can be easily estimated

for moving neighbourhoods (Haas, 1990b).

The second consideration is the sampling intensity. A way of representing the sampling

intensity is via the number of observations per MAI. Sparse, moderate and intense

categories will be defined here as 0.0001—0.01, 0.01-1 and > 1 observations per MAI,

respectively. Given these definitions, the purpose of spatial prediction is to convert x

observations per MAI to a least 1 prediction per MAI. For sparse sampling intensities this

represents a 100 to 10 000 fold increase from the number of observations to the number of

predicted data points which would seem to stretch belief in the validity of the predictions.

Here the prediction task seems too large and spatial prediction is probably inappropriate.

For moderate sampling intensities up to a 100-fold increase from the number of

observations to the number of predicted data points is required which appears reasonable

for valid prediction. In fact, at the most intense end of this range, and for intense sampling,

one might ask Why prediction is required. However, in many circumstances it may be

useful to have more than one prediction per MAI but more importantly it may be necessary

to move the location of predictions. This is particularly the case for crop yield maps

where the observation intensity may be 10 per MAI but these observations are linearly

clustered within the area and it would be beneficial to obtain an even intensity of

observations.

In this instance, kriging using a global variogram may prove too restrictive in its

representation of local spatial correlation whereas local variogram estimation and kriging

offers the ability to preserve the true local spatial variability in the predictions as shown

by the yield mapping results presented in this Chapter. If the chosen area of influence is

reasonably small, the use of local semivariograms may also negate the possible requirement
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for trend analysis and removal prior to variogram estimation and kriging. It must be

remembered that the area of influence chosen for semivariogram modelling may effect

the resulting model, however the density of data supplied by real-time crop yield

monitoring and the objective to accurately define management areas, should make the

use of local semivariogram models appealing .

These recommendations are summarised in Table 6-5.

 

Sarmling Intensny (No. per mnlmum area of Interest)

 

Sparse Moderate Intense

Sanple size 0.0001 -0.01 0.01—1 >1

<10 NA NA NA

10—100 NA ?IS ?IS/NR

101 -500 NA GK GK/NR

>501 NA/GK LKS LKS/NR

 

NA ' not applicable - don't do it.
?IS : inverse square or some informal prediction method but there may be problems with the

accuracy of the estimates.
GK : a geostatistical method such as ordinary kriging or universal kriging with a global variogram

or Laplacian smoothing splines

LKS: a local neighbourhood kriging method or Laplacian smoothing splines
NR: spatial prediction will only be necessary if the sampling strategy is poorly aligned.

Table 6-5. Generalised recommendations for the use of spatial prediction methods

in relation to sample size and intensity for Precision Agriculture.

Spatial prediction onto a regular grid is not the only method of constructing a yield map.

Another technique, proffered in the early stages of yield sensor development, is cell-based

mapping. A cell size is chosen and superimposed over the sampling scheme. The mean

value of all observations falling within a cell boundary is then allocated as the yield value

for the cell.

Schueller &: Bae (1987) used a 10m square cell chosen apparently arbitrarily, but with a

subjective influence based on the perceived variability and the desired accuracy of the

mean estimate. Searcy et a1. (1989) mapped using a 6m square cell size determined by the
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cutting width of the combine harvester. Missotten et a1. (1996) employed a 20m cell size

'which was based on the experimental sampling design. This method, unlike the moving

average process defined in Equation 6-4, requires that yield observations be used for a

single cell average only. The yield from adjacent cells is considered uncorrelated, even if

an observation is located close to a boundary. The underlying model of the spatial structure

in yield variability appears arbitrarily rigid and a biologically unrealistic representation.

Another method, suggested by Blackmore & Marshall (1996), involves map construction

by summing the total mass of grain sensed within a designated cell boundary and then

calculating the yield per unit area based on the area of the cell. The authors named the

process 'Potential Mapping' and justify the procedure on the basis that cutting width error

is removed. This error is significant (as discussed in section 4.4) and its possible removal

adds merit to the proposal. On the other hand, the cell size remains an arbitrary rigid

boundary with the associated non-biological assumptions, a large field-edge effect is

produced unless the cell size is extremely small, and this method fails where data points

are missing or removed by expert filtering. The procedure also offers no statistical estimate

of error.

Murphy et a1. (1995) have proposed recording the grain yield by distance rather than the

standard time basis. The distance would be chosen to match the combine harvester cutting

width and so provide data on a regularised grid. Prediction methods may then be

unnecessary, however the potential minimum resolution of the subsequent map will fall.

Murphy et a1. (1995) also suggest combining prediction methods within a local

neighbourhood. Within an inner radius, the observations are averaged and combined

with inverse distance weighting for observations extending out to a maximum radius.

Again, this method appears highly subjective in terms of neighbourhood maximum and

partial radius determination.

While these methods show limitations, in the future it may be advantageous for cell or

'block' estimates to be determined so that yield values for MAI's or management units can

be represented. The alternative methods outlined above are not the only options available.

Spatial prediction need not be at points as has been the focus of this Chapter, but prediction

can be made onto ’blocks’ which represent these management areas, e.g., 20 x 20 metres.

In the process of block kriging these blocks can overlap unlike the more rigid operations

described above. For example, a map on a 1 metre raster can then represent the average of

a relevant quantity over the 20 x 20 metre block centred on the prediction point (Burgess

and Webster 1980). Geostatistical methods appear the most advanced for such predictions,

particularly for SSCM where an estimate of prediction accuracy is required.
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In any form of cell-based estimation or block prediction method, the cell size and/or

prediction block size will effect the smoothness of any subsequent map. Bigger cells/

blocks leading to smoother maps. This also holds true for the neighbourhood size chosen

in the point prediction methods described earlier. Smoothness can also be effected by the

spatial dependence models underlying the prediction methods. These models obviously

control the weight attributed to observations. Only in the kriging procedures is the model

(semivariogram) conditioned on the actual observation data set and not an arbitrary

function of distance. The range parameter of the semivariogram (which estimates the

distance of spatial correlation between observations) is therefore a tool for determining

sensible neighbourhood or cell/block sizes.

Intertwined With the dilemma of appropriate neighbourhood size is the resolution at which

the yield maps should be presented. Resolution should probably be governed by ensuring

that the raster size is of a dimension that maintains a management determined uncertainty

level within the map. Uncertainty in the individual yield estimates reported in this thesis

is probably dominated by the harvester mechanical dynamics. The results presented in

Chapter 5 suggest that a resolution below 20m along the harvester path would not satisfy

this criterion. Lark et al. (1997) provide an estimate of 15m to 20m for the same

characteristic. It would appear that 20m x combine harvester cutting width could be a

base raster size with which to begin standardising mapping resolution.

Finally, the most suitable mapping class size (e.g. 0.5, 1.0, 2.0 t/ha demarkations) remains

unstandardised and basically unknown. This attribute also effects the degree of spatial

variability presented in a map which will in turn influence the observers perception as

well as management decisions based on the classified yield variability. Searcy et a1. (1989)

classified crop yield based on percentiles using +/- set percentages of the mean yield as

the categories. Such an idea is quite plausible as the basis for standardisation because it

would fix the maximum number of classes that can be displayed in yield maps. The

determination of the most suitable percentile bands remains a project for research.

As an alternative, a useful approach would be to ensure that the uncertainty in crop yield

data influenced the classification decision. For example, if the 95% confidence interval in

crop yield estimates is + /- 1.0 t/ha, classifying a field using classes less than 1.0 t/ha may

be misleading. A classification system based on the uncertainty in the yield data may

prove useful in the future.
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6.5 CONCLUDING REMARKS

Spatial prediction methods should be employed in Precision Agriculture to accurately

represent the spatial variability of moderate to intensely sampled field attributes and

maintain the principle of minimum information loss. To this end, the sampling intensity

should guide the prediction method utilised. However, data used in any spatial prediction

procedure should be of known precision and that precision can then be built into the

spatial predictor. Because of imprecision in crop yield measurement and within-field

location, interpolators (exact spatial predictors) are generally not optimal.

The results presented show that the form of spatial prediction chosen for yield map

construction has a significant influence on the final prediction surface. Local kriging using

a local variogram appears well suited for use as a spatial prediction method for real-time

sensed crop yield data. Mapping attribute values using this procedure and depicting the

changing variability within a whole field should be of benefit in the process of determining

whether a field warrants differential treatment and to what degree. However, there remains

a considerable amount of preprocessing and deconvolution required to obtain yields of

known accuracy from real-time sensed crop yield data so that prediction neighbourhood

size and map resolution can be confidently and above all, usefully determined

Ultimately, the software devised for spatial prediction in Precision Agricultural applications

should include options that will optimally support the management decisions that will be

formulated upon the prediction results.
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CHAPTER 7

Modelling the Economic and Environmental Impact of Site-Specific

Fertiliser Treatment

7.1 INTRODUCTION

Site—specific management appears a logical approach to utilising valuable resources in an

often fragile cropping environment. The question of its acceptance will depend on the

benefits displayed, and initially the economic benefit will be valued more highly in any

on—farm decision. The economic benefits to be gained from the inclusion of information

on spatial variation are also more easily substantiated than the environmental or social

gains (Wollenhaupt & Buchholz 1993). This arises because these latter gains include broad

societal improvements such as reduced contamination of the landscape and foodstuffs,

along with a potential for improved sustainability through increased recognition of natural

and anthropogenic diversity.

Any analysis of the economic benefits will ideally require some knowledge of the nature

and degree of soil variation exhibited at a site as this will influence the form of differential

treatment undertaken. For the example of differential fertiliser treatment, a site may

possess (or be believed to possess) a uniform yield potential but irregular initial soil

concentrations of the nutrient in question. The differential application of fertiliser to bring

the whole site concentration to a single, required baseline level may be a sufficient

treatment (areas already above this baseline would be untreated). Should the yield

potential at a site, as well as the initial soil nutrient concentrations, be deemed to fluctuate

over the field, a range of baseline levels would need to be calculated to co—ordinate the

optimum fertiliser application regime.

The possibility of financial benefits from these two different approaches will be examined

separately. Firstly, the uniform case for phosphorus (P) under sorghum and N03;-N under

cotton. Secondly, the more complex scenario of variable yield potential for N03‘ -N under

cotton will be explored for 2 consecutive growing seasons. Environmental implications

will be drawn in all cases.

7.2 UNIFORM YIELD POTENTIAL ACROSS A SITE

Uniform yield potential within a field may arise from the actual or perceived homogeneity
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of critical soil attributes governing crop yield. Such homogeneity is assumed in the

majority of management systems where soil sample test results are averaged to provide a

single estimate of the whole field status. Uniform yield may also be a goal of production.

7.2.1 Site Sown to Sorghum

Materials 8 Methods

A one dimensional simulation model is developed based on phosphorus (P) application

to broadacre sorghum grown on lateritic red—brown earth (rhodic palexeralf). The model

employs a fertiliser response function to quantify the expected grain yield obtained from

fertilisation treatments on a theoretical 1000 ha site. Differences in financial return are

compared for fertiliser application based on differential or 'mean—of field' treatments.

Six log—normally distributed populations of 1000 initial soil P levels were generated, giving

six site descriptions. Three sites were produced with the same mean P level but with

increasing degrees of P variance and three sites were constructed with increasing mean P

but identical P variance. The P distributions were generated using a first-order

autoregressive function (Box & Jenkins, 1970) (Equation 7-1).

Psi = B 10 5" (7-1)

where:

Psi = soil phosphate level (kg ha'l)

B = median regulating coefficient

Si = on Si_1 + k h

on = autoregressive parameter

k 2 'noise' coefficient

7] = random sample from a normal distribution (N(0,1))

For each of the six sites, three levels of knowledge of the spatial variability in initial soil P

content across the site are used to determine the quantity of fertiliser to apply in each of

the 1000 zones. The three data knowledge scenarios were:

(i) exact information at each point - which describes the ultimate goal of site-specific soil

management;

(ii) an inexact model of information at each point - derived from fitting a smoothing spline

(De Boor, 1978) to the P distribution data, it is taken to represent the general level of

information available when only minimal spatial soil sampling is undertaken or

inadequate data is used in soil fertility models.
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(iii) the mean value of the site - the traditional method of formulating fertiliser application

regimes. An example of the information levels for one initial soil P distribution is

presented as Figure 7-1.

The fertiliser response curve employed in the model (Equation 7-2) is a modified form of

that reported in Helyar 8: Godden (1977) and is based on Australian experiments.

yR = 2500 [1 — e’0-04 (f + 8.8) ] (7-2)
where:

yR = yield (kg ha‘l)

f = available P (kg available P ha—l)

Applying marginal analysis (Dillon, 1968) to equation 7—2, the Maximum Economic Yield

(MEY) and the optimum soil P level (OSP) may be determined for the field. This is the

point on a response curve where the financial return for applying 1 unit of input (P fertiliser

in this case) equals the unit cost of the input. It is calculated by equating marginal revenue

(MR) with marginal cost (MC). The economic parameters used in the analysis were:

' sorghum grain @ $150.00 / tonne1 ; Single super phosphate (8.6% available phosphorous

(P)) @ $247.00 /tonne = $2.87 / (kg available P); maximum grain yield @ 2.5 tonne /ha. An

OSP of 32.7 kg available P/ ha was obtained corresponding to an MEY of 2.025 tonnes/ha.
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Figure 7-1. Simulated P distribution and associated data knowledge levels.

1 "The Land", February 10, 1994. Rural Press, Richmond, Australia.
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The quantity of available P required to be applied to each zone on a site was calculated for

each treatment by differencing the known soil P level (KSP) from the OSP. In calculating

the returns for each site, exact information on the initial P fertility (RSP) provided the

simplest scenario as each point in the field was correctly fertilised to the optimum (except

where the zone was initially above the optimum and no fertiliser was applied). When

other than exact initial P fertility information was used, a residual P level for each zone on

the site was calculated by differencing the exact levels (RSP) with the known levels (KSP).

These residuals were used to determine zones of under or over fertilisation within a site.

Under-fertilised sites received a yield penalty in the model and over—fertilised sites had

excess fertiliser (APW) costs charged. However, this was tempered by any increase in

yield achieved from the higher fertility. The model can be expressed mathematically as

Equation 7-3.

Returns ($/ha) = MEY (kg/ha) x unit crop value ($/kg) (7-3)

— total applied P (kg) x unit P value ($/kg)

— total applied P wastage (kg) x unit P value ($/kg)

— total yield wastage (kg/ha) X unit crop value ($/kg)

+ total yield gain (kg/ha) x unit crop value ($/kg)

where:

MEY = 2025 kg/ha

unit crop value = $0.15 /kg

unit P value = $2.8721 /kg

1000 0511— KSP, if 0519, > KSPi,

total applied P = 2 {

. 0 otherwise.

121

wt“ applied P “Stage = 1000 OSP. — KSP. if RSP, > OSP.,

2 { RSPi-KSPl. otherwise. if KSPX. < RSPI,

i=1 0 otherwise.

total yield wastage =

1000 (MEY—(MEY, x [1 — e-0-04 (((OSP,-I<SP,)- I RSP,-I<SP,. | )+ 8-8) 1)) if RSP, < 0319,}

Z {0 otherwise. if KSPI. > RSPI,

i=1 0 otherwise.
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total yield gain =

10200 { ((MEY, x [1 — 9:004 («0513:161’.-)+ APW.)+ 8-8) ])— MEY) if K513, < RSPi,

0i=1 otherwise.

The model, as applied, implicitly assumes that the levels of soil P are uniformly available

and that the crop response to soil P is uniform across the 1000 ha site. The cost of fertiliser

spreading has not been included, as this simulation is aimed at providing a valuation of

increased returns to site-specific agronomy that may be available for allocation to site-

specific operations.

Results 8 Discussion

Table 7-1 displays the results of applying the knowledge model to 3 simulated fields with

similar variance in the initial soil P distributions but with differing mean values. This

simply examines the effect of between-field variability by testing the hypothesis that

differential P treatment would be suitable across a range of field mean soil P levels. Exact

information produced an increase in returns over the less detailed information ranging

from $3.37/ha to $8.12/ha. Importantly, the gain in returns for more precise information

appears to increase and subsequently decrease as the mean of the soil P distribution falls

from that of the desired fertiliser level.

Fields with very high inherent P fertility will show the least response to exact information,

and this simulation suggests that returns are actually decreased by inexact information (as

compared with the mean treatment) due to greater misplacement of fertiliser. Dropping

the mean to a moderate fertility level of 25.4 kg P/ha provides the largest increase in

returns to both levels of information. A further reduction in mean initial soil P fertility to

a relatively low 11.04 kg/ha, results in a decrease in the response to both exact and inexact

information, although not to the extent evident in the high fertility scenario. This suggests

the presence of a mean P fertility window that is best suited to differential fertiliser

application in sorghum under these conditions.

By maintaining a constant mean initial P level and modifying the variance, the influence

of within-site variability on differential fertilisation programs can be examined. Table 7-2

shows the results for 3 fields each with a mean of 25.40 kgP/ha but with increasingly

larger variance. The returns to exact information over mean application increase

exponentially from $4.83/ha to $9.74/ha as the variance is increased. The use of inexact

data however, increases returns over mean application as the variance increases to a

moderate range then decreases as the variance is widened. This suggests that the more
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Available P distribution (kg/ha) Available P distribution (kg/ha)

min. = 4.45; med. = 10.52; m'n. = 10.24; med. = 24.21;

mean = 11.04; max = 27.73 mean = 25.40; max = 63.78

Exact Inexact Mean Exact Inexact Mean

infonnation infomiation application infonmtion infonnation application information infomiation application

Available P distribution (kg/ha)

min. = 12.90; med. = 30.52;

mean = 32.03; max = 80.40

Exact Inexact Mean

 

Total av ailable P

required (kg/ha) 21.63 21.63 21.63 8.38 7.40 7.30

% site fertilized 100 100 100 82.6 97.8 100

Available P

wastage (kg/ha) — 1.16 1.36 — 1.66 2.05

Yield

wastage (kg/ha) — 23.6 27.7 —— 58.95 69.97

Yield gain (kg/ha)

— 20.16 23.13 — 28.25 34.48

Retum ($/ha) 241 .63 237.78 237.04 279.69 273.20 271 .57

Difference from

mean appl. ($/ha) 4.59 0.74 — 8.12 1.63 —

4.34

60.6

291.28

3.37

1.96

58.9

0.53

75.56

9.36

286.66

—1.25

0.67

100

0.29

92.34

5.34

287.91

 

Table 7-1. An economic analysis of information-based fertiliser programs.
Autoregressive initial P distributions with a range of mean values.
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Available P distribution (kg/ha) Available P distribution (kg/ha) Available P distribution (kg/ha)

 

rrin. = 16; med. = 25.11; m'n. = 10.24; med. = 24.21; rrl'n. = 3.45; med. = 21.91;

mean = 25.40; max = 40 mean = 25.40; max = 63.78 mean = 25.40; max = 119.5

Exact Inexact Mean Exact Inexact Mean Exact Inexact Mean

infonmtion information appliwtion information infom‘ation application information information application

 

Total available P

required (kg/ha)

% site fertilized

Available P

wastage (kg/ha)

Yield

wastage (kg/ha)

Yield gain (kg/ha)

Return ($/ha)

Difference from

rrean app I. ($/ha)

7.39 7.30 7.30 8.40 7.40 7.30 10.80 7.84 7.30

96.1 100 100 82.6 97.8 100 76.5 89.0 100.0

— 1.21 1.42 — 1.66 2.05 — 1.75 2.21

— 26.53 31.22 — 58.95 69.97 — 118.06 125.63

— 21 .27 24.64 — 28.25 34.48 -—— 28.94 36.88

282.54 278.52 277.71 279.69 273.20 271.57 272.86 262.83 263.12

4.83 0.81 — 8.12 1.63 — 9.74 —0.29 —

 

Table 7-2. An economic analysis of information-based fertiliser programs.
Autoregressive initial P distributions with a range of variance values.
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variable a field, under these conditions, the greater the return for detailed information

but that an optimum for inexact information is reached in the moderately variable range.

These simulations suggest that in fields with highly variable or moderate mean P fertility

the returns to site-specific management will be maximised. However, as the site mean

approaches the desired fertility level the mean P may be an economical estimate for

constructing P fertiliser programs. In all instances it would appear that the use of inexact

information offers little improvement to the mean application.

7.2.2 Site Sown to Cotton

Materials £1 Methods

A similar one-dimensional model has been employed to examine the effect of site-specific

management of N in cotton fields with uniform yield potential. In this example, the

difference in financial return obtainable when comparing fertiliser programs based on

differential versus mean-of—field treatment is examined under scenarios with two mean

initial soil nitrate (N03; ) contents and three NO3‘variances. This design tests the interaction

between mean NO3' levels and the variance and the influence of within-site variability on

the fertiliser application program. Separate fertiliser response curves are employed for the

respective means and the process of calculating the required fertiliser application has been

refined to include local industry recommendations.

A theoretical 1000 ha site is again examined using the same data knowledge levels

employed in the previous example, namely exact, inexact and mean. The initial NO3'

distributions were also generated using a first-order autoregressive function of the form:

Nsi = B 10 Si (7-4)

where:

N5,- = soil NO3' level (kg ha-l)

[3 = median regulating coefficient

si = 0c 51:1 + k n

at = autoregressive parameter

k = coefficient

11 = random sample from a normal distribution (N(0,1))
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Six log—normally distributed populations comprising 1000 initial soil N03; values were

constructed, three based on each of two mean initial soil NO3' levels (16.7 & 45.3 kg/ha).

These values were chosen from the minimum tillage treatments of an N fertiliser

management study by Constable et al. (1992).

Two yield response functions based on Equation 7—5 were utilised. This is a rearrangement

of a function from the minimum tillage treatments reported in Constable et al. (1992). The

co—efficients used to discriminate the function for the two soil NO3‘ means are shown in

Table 7-3.

 

 

y = e - (-a - bN + cN2 ) (7_5)

where:

y = yield cotton lint (kg ha'l)

N = N application rate (kg available N ha'l)

Mean soil NO3- Co-efficient a Co-efficient b Co-efficient c

(kg/ha)

16.77 6.7714035 0.0055853 000001367

45.24 7.53871 0.004117 —0.000011

 

Table 7-3. Response function co-efficients for the two mean initial soil N03' levels.

Marginal analysis using the functions derived from Equation 7—5 produced optimum N

applications (DNA) for maximising financial return of 190 kg N/ha for a mean site NO;

level of 16.77 kg/ha and 177 kg N/ha for a mean site NO3' level of 45.24 kg/ha. The

maximum economic yield (MEY) was calculated as 1.54 t lint/ha and 2.76 t lint/ha

respectively. The simulations are based onminimum tillage management ofcotton grown

on a Grey Cracking Clay (Vertisol) and the following economic parameters : N fertiliser @

$1.07 per kg of applied N (supplied pre—sowing as anhydrous ammonia and including

associated increases in the cost of irrigation, insecticide and defoliant); cotton lint @ $1.80/

kg.
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In the Australian cotton industry, nitrogen application to fields with soil test NO3' levels

below 25 mg/kg (97.5 kg/ha : 0-30cm depth ; r = 1.3) is recommended. The application

rate increases at 1.845 kg N/ha for every 1 kg unit decrease in soil NO3'/ha levels (Daniells

& Larsen 1991). Differencing the known soil NO3' level (KSN) at each point in a simulation

from the mean soil N03‘ level (MSN) produced a residual soil N03‘ level. The required N

application for each zone on a site simulation was then calculated using this residual and

the scale suggested by Daniells 8: Larsen (1991) to augment the OSA level. Again, it is

implicitly assumed in this experiment that the levels of soil N are uniformly available

across the sites.

When other than exact initial N fertility information was used, a residual N level for each

zone on the site was calculated by differencing the exact levels (RSN) with the known

levels (KSN). These residuals were used to determine zones of under or over fertilisation

within a site. Under-fertilised sites received a yield penalty based on the relevant response

curve, and over—fertilised sites incurred excess fertiliser (ANW) costs and a yield adjustment

based on the effect of increased fertility on the relevant response curve. The model can be

expressed mathematically as Equation 7-6.

Returns ($/ha) : MEY(l<g/ha) x unit crop value ($/kg) (7-6)

— total applied N (kg) x unit N value ($/kg)

— total applied N wastage (kg) X unit N value ($/kg)

— total yield wastage (kg/ha) x unit crop value ($/kg)

+ total yield gain (kg/ha) x unit crop value ($/kg)

where:

MEY = variable with mean

unit crop value = $1.80 /l<g

unit N value = $1.07/kg

total applied N = NARI.

NARI. =

(nitrogen appl. rate)

1000 08A,, + (IKSNX. —MSNI.| x 1.845) ifKSNi—MSNXSO,}

2 08/11. — ( | KSNi — MSNil x 1.845) otherwise ifKSNi < 97.5,

{:1 0 otherwise
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total N wastage =

((RSNi — KSN) x 1.845) ifRSNi < 97.5 }
1000 .
Z {(( I KSNX, — MSNI. I) x 1.845) othermse ifRSNi > KSNI.

0 otherwise ifKSNi < 97.5

0 otherwise
i=1

total yield wastage =

— (—a — b x Naug1+ c x(Nuug1 )2
MEY— (e ) IfRSNi < 97.5

— (—a — b x Naug2g+ c ><(NaugZ_)2 }
, , ) otherwise ifRSNl. < KSNi1000 MEY — (e

2 0 otherwise if KSNi < 97.5
i=1

0 otherwise

Naugl = (OSAX. - ((KSNi — RSNI.) X 1.845))

NaugZ = (05A,. — ((KSNi — MSNi) x 1.845))

total yield gain =

— (—a — b xNaug3g+ c x(Naug3)2
MEY— (e , , ) ifRSNl. < 97.5

—(—a-beau 2+c><(Nau 2)2 }
1000 MEY — (e g .- g i ) otherwise ifRSN‘. > KSNi

2 0 otherwise if KSNI. < 97.5

1:] 0 otherwise

Naug3 = (05A,. — ((RSNl. — KSN) x 1.845))

Results 8 Discussion

Table 7-4 displays the results of applying the model to 3 'fields' with mean initial soil NO3'

levels of 16.77 kg/ha but dissimilar soil NOS; distributions. The maximum increase in

returns arose from the comparison of fertiliser application based on exact information

with that using the 'mean—of—field' value, and ranged from $3/ha for the narrower N05

distribution to $18/ha for the wider NO3' distribution. Fertilising using exact information

produced an increase in returns over inexact information that ranged from $2 to $14/ha.
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Available N03' distribution (kg/ha) Available N03' distribution (kg/ha) Available N03" distribution (kg/ha)

 

m‘n. = 10.78; med. = 16.56; min. = 6.77; med. = 15.96; min. = 3.5; med. = 14.6;

mean = 16.77; max = 26.91 mean = 16.77; max = 42.14 mean = 16.77; max = 73.8

Exact Inexact Mean Exact Inexact Mean Exact Inexact Mean

inforrration information application infonnation information application infomtation information application

 

Total available N03'

required (kg/ha) 190 190 190 190 190 190 190 190 190

°/o site fertilized 100 100 100 100 100 100 100 100 100

Applied N

wastage (kg/ha) — 1.64 1.91 — 3.26 3.82 — 5.41 6.35

Yield

wastage (kg/ha) — 1.15 1.36 — 2.56 3.06 — 4.75 5.66

Yield gain

(kg/ha) — +0.78 +0.87 — +1.04 +1.01 — +0.15 -0.52

Return

($/ha) 2567.55 2565.15 2564.61 2567.55 2561.34 2559.77 2567.55 2553.48 2549.65

Difference from

mean appl. ($/ha) 2.94 0.54 — 7.78 1.57 —— 17.90 3.83 —

 

Table 7-4. An economic analysis of information-based fertiliser programs.

16.77 kg/ha mean initial NO; distribution with three different variances.
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Available N03' distribution (kg/ha) Available NO3' distribution (kg/ha) Available N03' distribution (kg/ha)

min. = 29.09; med. = 44.70; rn'n. = 18.25; med. = 43.10; min. = 9.44; med. = 39.54;

mean = 45.24; max = 72.60 mean = 45.24; n'ax = 113.70 mean = 45.24; max = 199.11

Exact Inexact Mean Exact Inexact Mean Exact Inexact Mean

intonation infomation application information infomiation application information information application

 

Total available N03'

required (kg/ha)

% site fertilized

Applied N

wastage (kg/ha)

Yield

wastage (kg/ha)

Yield gain

(kg/ha)
Retum

($/ha)

Difference from

mean appl. ($/ha)

177 177 177 176.7 177 177 175.7 177 177

100 100 100 99.6 100 100 96.0 100 100

— 4.42 5.15 —— 9.04 10.56 — 15.90 18.42

— 4.42 5.41 — 11.61 14.29 — 24.53 29.62

— +0.60 +0.23 — -5.60 “8-79. — -28.94 -40.01

4777.67 4766.07 4762.83 4777.96 4737.32 4725.11 4779.07 4665.81 4634.03

14.84 3.24 — 52.85 12.21 — 145.04 31.78 —

 

Table 7-5. An economic analysis of information-based fertiliser programs.

45.24 kg/ha mean initial NO; distribution with three different variances.

P
P
M

c1
04
3
9

uo
yv
uv
A

1.1
03
sn
on
uz
iu
oa

Su
ma
tr
a-
72
21

-u
vI
aL
rM

'W
‘E
I



Modelling Economic 6* Environmental Impact

The savings afforded by employing inexact information compared to the 'mean-of-field'

value ranged from $0.5/ha to $4/ha.

Table 7-5 displays the results of applying the model to 3 'fields' with equal mean initial

soil NO3' levels of 45.24 kg/ha but, as above, differing variances producing dissimilar soil

N03- distributions. The maximum benefit, obtained from the comparison of fertiliser

application based on exact information with that using the 'mean—of—field' value, ranged

from $15/ha to $145/ha. Afertiliser program using exact information produced an increase

in returns over the use of inexact information that ranged from $12/ha for the narrower

N05 distribution to $113 /ha for the wider NO3' distribution. The financial benefit of

including inexact information compared to the 'mean-of—field' value ranged from $3ha to

5532/ha.

The results suggest that in a field with very low initial NO3' fertility or a small initial NO;

variance, the site mean may remain a reasonably economical estimate for constructing N

fertiliser programs when compared with inexact models of the site NO3' levels. As the

initial NO3' fertility, or the inherent NO3' variability increases, the improvement in returns

offered by such inexact models in a N fertiliser application regime become more significant.

With the exception of sites with very low, evenly distributed initial NO3' levels, the benefits

of accurately determining the small scale spatial variation in initial NO3' levels proved

quite substantial.

These simple economic models provide a basic insight into the economic effects of a site-

specific management program in a field where the yield potential is perceived to be uniform.

The validity of such an assumption is debatable, however it is continually accepted in

constructing traditional fertiliser application programs. The inclusion of a more complex,

and arguably more realistic scenario is warranted in an effort to more thoroughly examine

the consequences of site-specific management.

7.3 DIVERSE YIELD POTENTIAL ACROSS A SITE

Usually, the inherent diversity in soil will extend beyond the initial levels of soil nutrients

and in many instances spatial variation in the soil may arise from substantial compositional

changes that affect the total yield potential of the soil regardless of management

intervention. Such soil variability underlies the natural variation in vegetative growth

and yield observed in most native ecosystems. Incorporating this natural variation in a

crop management scheme would require a knowledge of the variation in yield response

across a site.
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B.M. Whelan — Reconciling Continuous Soil Variation 8 Crop Yield

Here, the economic and environmental implications of varying yield potential on a

nitrogenous fertiliser regime is examined. Comparisons are made for two consecutive

seasons on simulated cotton fields that display spatial variability in initial soil NO;

concentrations. The fields are also characterised by continuous spatial variation in soil

type, which forms the basis for calculating the spatial variation in yield response.

7.3.1 Cotton - Season 1

Materials 6’ Methods

For this more complex management scheme, the yield potential at 30625 individual points

across the fields were manipulated by assuming each point to be a mix of two soil types

(designated A 8: B) that possess differing yield response functions. A random field

describing the degree of membership in soil A at each point was generated (Figure 7—2).

Membership at each point in soil B is the complement of the membership at each point in

soil A i.e., the membership in A and B at each point must sum to 1.

Initial NO; levels at each point were obtained from a log-normal distribution with a mean

of 45.24 kg/ha (based on a mean field level reported by Constable et al. 1992) and a standard

deviation of 23 kg/ha. The assumption that this standard deviation represents the variation

in a 'real' field is supported by co-efficient of variation (CV) figures obtained from field

sampling by the authors (CV = 50%) and data reported by Rochester et al. (1991) (CV

range of 14% to 98%).

Amap of the initial NO3' levels is shown as Figure 7—3. A correlation of 0.3 between initial

NO3’ and membership in soil A is included on the assumption that soil with greater yield

potential would posses more organic matter and therefore retain higher reserves of

mineralisable N and thus N031

Yield response functions for Soil A (Figure 7—4) and B (Figure 7—5) were generated using

quadratic approximations of those available in Constable et al. (1992). The form of the

yield response function is dependent on the initial soil NO; concentration up to an initial

concentration of 97.5 kg/ha, the limit where N fertiliser application is assumed to be non-

beneficial to cotton production (Daniells & Larsen 1991).

Combining the functions for a particular soil produces a two-dimensional yield response

surface function that encompasses the range of initial N03“ and applied N parameters that

were used in its construction i.e. initial NO3‘ : O to 97.5 kg/ha ; applied N : 0 to 300 kg/ha.

These are shown for soil A as Figure 7-6 and soil B as Figure 7-7.
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Figure 7-5. Soil B yield response functions
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Figure 7-6. Soil A: yield response surface as a function of initial N
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Figure 7-7. Soil B: yield response surface as a function of initial N

and applied N. Shown in contour plan (a) and perspective (b).
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Using this information, an individual yield response function for applied N can be

constructed for each point on the site. This function can be used to determine the yield at

each point for a given amount of applied N or, conversely, determine the amount of applied

N required to achieve a yield goal. Here, the yield goal is again defined by the economic

optimum point on each respective yield response function.

In this study, conventional fertiliser management (where the adoption of a fixed quantity

application regime is based on mean-of-field initial NO3' levels) is compared with a

differential treatment system supported by the determination of the economic optimum

quantity of fertiliser for every identified point on the site. For the mean-of field case, the

mean initial NO; level of 45.3 kg/ha is assumed to represent the value at each point, and

each point is characterised as having a membership of 1 to the soil A class. This results in

a single yield response curve and the calculation of a single fertiliser application level for

the entire site.

In the differential treatment scenario, individual initial NO3' levels are known for each

point and each point is characterised by its membership to both soil A and B. Equations 7-

7 and 7—8 show the generalised functions describing yield response to initial NO3' and

applied N for soil A and soil B respectively.

YA(N.~, NW) = cA + dA.N.~ + (3,.pr + fAJvi2 + gA.N.,,,,2 + hA.M.N,.,,,, (7-7)

where:

YA(Nz, Napp) 2 Soil A yield response as a function of Initial NO3‘ (Ni)

and Applied N (Napp)

cA,dA,eA,fA, gA,hA Soil A yield response function co-efficients

YB(M’ Napp) = CB + dB.Ni + CB.Napp + fB.Ni2 + gB.Napp2 + hB.M.Napp (7‘8)

where:

YB(N.-, Napp) = Soil B yield response as a function of Initial NO3' (Ni)

and Applied N (Napp)

CB,dB,eB,fB, gB,hB Soil B yield response function co-efficients
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Values for the co-efficients as used in this study are given in Table 7-6.

 

 

Co—efficient CA dA eA fA gA hA

Value 261.62 47.04 15.59 -0.225 -0.024 -0. 148

Co—efficient CB dB 63 f3 g3 113

Value 16.10 26.71 10.44 -0. 125 —0.018 —0.096

 

Table 7-6. Co-efficient values for soil yield response functions.

The yield response function applicable to each point is then constructed using a linear

mixing procedure. Equation 7—9 is the generalised form of this function, where the

membership values weight the response function co-efficients for soil A and B.

Y(Ni, Napp, mA) (7-9)

= (cB + (cA — CB).mA)+ (dB + (dA —dB).mA).Ni

+ (eB + (eA —e,3).mA).Nap,,+(fB + (fA —fB).mA).Ni2

+ (gB + (gA — g3).mA).Napp2 + (hB + (hA — hB).mA).N.-.N.pp

where:

Y(Ni, Napp, mA) = Soil yield response as a function of Initial NO3' (Ni),

Applied N (Napp) and Membership in soil A (mA)

From this model the economic optimumN application can be calculated for each individual

point. For example, a point in the study site with an initial NO3‘ level of 39.53 kg/ha and

a membership in Soil A of 0.593, has a yield response function that falls between the

functions characterising the yield response for soil at this initial NO3' level and with full

membership of 1 in soil A or B (refer Figure 7-8).
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Figure 7-8. Yield response functions for a point with an initial NO3' level of 39.53

kg/ha and soil memberships of 0.593 and 1 in soil A; 1 in soil B.

Results 8 Discussion

The final yield achieved in both these scenarios is calculated from the yield response

functions determined using the actual membership in both soil A and B at each point.

This mimics the effect of natural soil variation encountered even if a mean initial soil NO3'

test as been used to determine a uniform N fertiliser application. Table 7-7 details the

production differences in running the two management systems on this simulated site.

 

 

N Applied N Applied Yield Yield
(uniform) (differential) (uniform) (differential)

Mean (kg/ha) 171 165.0 2114.1 2202.3

Standard Deviation 60. 1 321.8 266. 4

CV (%) 36.4 15.2 12.1

 

Table 7-7. Mean N application and lint yield for uniform

and differential fertiliser management.
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Differential management has utilised a 6 kg/ha lower mean N application to attain an 88

kg/ha increase in lint yield. The lower variation in lint yield from differential treatment

compared with uniform treatment can be easily seen in the respective yield maps displayed

in Figures 7-9 and 7—10. In Figure 7-9, the discrete dark spots, indicating lower yield, are

more numerous and indicate that many zones of over— or under-fertilisation are occurring

following uniform treatment. Following differential treatment (Figure 7-10), considerably

less 'noise' is evident in the yield pattern and the small number of discrete dark spots are

the result of areas where the initial NO3' level was above the 97.5 kg/ha mark assumed to

be limiting.

Table 7-8 details the financial differences that may be extrapolated from operating the two

management systems on this simulated site. The higher mean yield and lower mean N

application associated with the differential management has resulted in a positive gross

profit differential of A$165/ha. This figure does not account for the increased costs of

implementing a differential management system, however equally, the environmental

benefits and risk reductions remain unaccounted. An insight into the impact of such a

management system on environmental risk reduction can be gleaned from Table 7-9. It

documents that 44% of the points on the site have been over-fertilised by the uniform

treatment when compared with the optimum determined using differential treatment.

 

 

Type of Application Uniform Differential

Yield (kg/ha) 2114 2202

N Application (kg/ha) 171 165

Gross Profit (EBA/ha) 3622 3787

Difference ($A/ha) + 165

 

Table 7-8. Financial comparison between differential and uniform N application.
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Number % of Total % of Total Mean Standard
Sites Applied N (kg/ha) Deviation

 

Overfertilised sites 13,458 44 16 59.8 50.1

 

Table 7-9. Over-fertilisation following uniform treatment.

This information is most easily displayed as a site map (Figure 7-11). The map reveals

many instances where between 50 kg/ha and 171 kg/ha of unnecessary N fertiliser has

been applied. These indicate areas of potentially excessive denitrification emissions, nitrate

leaching and general resource waste. In the future, it is likely that such environmental

effects will be penalised financially.

 

. ' 2- .é.-‘.§_‘"' .: '
’ :55!» .

  
  

Figure 7-11. Zones of over-fertilisation at the simulated site
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7.3.2 Cotton - Season 2

Materials 6} Methods

Appraising the impact of fertiliser management for the next season requires that an N

nutrient budget be estimated for the previous season and the intervening fallow to establish

the initial concentration and spatial distribution of N for season 2.

Separate N budgets were calculated at each point for the 'uniform' and 'differential'

treatments in season 1 to facilitate monitoring the different treatments through season 2.

These budgets were constructed using a modified balance sheet approach (Neeteson, 1990)

by estimating the N uptake as a function of lint yield and partitioning this total into

contributions from applied fertiliser, indigenous soil N andN mineralised over the growing

season as per Equation 7-10.

NUP = NFERT + NSOIL + NMIN (7'10)

where:

NUP = Total N uptake by crop (at each point)

NFERT = N contribution from applied fertiliser

NSOIL = N contribution from initial soil N

NMIN = N mineralisation during the growing season

The N uptake at each point was determined using functions from Constable et al. (1992)

which pertain to the trial data used in year 1. Separate functions are shown for soil A

(Equation 7-11) and B (Equation 7-12). The uptake at each point being calculated as a

composite of these functions weighted by the relevant soil membership value.

Nup = 90.8 + 0.8855.Napp - 0.002574.Napp2 (7'11)

NU? = 51.7 + 0.8148.Napp — 0.00219.Nap,,2 (7-12)

where:

Napp = Totaleertiliser applied
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Of this total N uptake, the N actually supplied from fertiliser (NFERT) is assumed to be 50%

of the amount applied at each point. This figure is based on a mean recovery of 52% from

pre-sowing, hill applied anhydrous ammonia (Constable et al., 1992). The contributions

to the total N uptake originating from the initial soil N concentration (Nsou) and

mineralisation (NMIN ) during the growing season constitute the balance and are calculated

as follows:

NSOIL = (NUP NFERT) X 0.5 (7-13)

NMIN = (NUP — NFERT) X 0.5 (7-14)

The site maps of soil N03' for season 2 can then be constructed as a summation of unused

soil N from season 1 (Nsommm), a residual fertiliser factor based on the quantity applied in

season 1 (Nrm RESID), and a quantity of mineralised N achieved over the 6 month fallow

(Nposn MIN).

Nmm = NSOILmm + NFERTmm + Nposmm (7-15)

where:

NSOI'Lmm = Nmm — Nsom

Npmmm = (0.12875 — 0.0002708 x Napp) x Napp

Nposrm = Nson. x 0.5

The function that estimates Npm RESID was constructed from data on the N contribution

from rotational cropping to cotton production and soil nitrate on a Vertisol (Standley et

al., 1988). It provides for a maximum 12.8% residual, decreasing as the quantity of fertiliser

applied increases.

The budget model produced an increase in mean soil NO3' concentrations for both

treatments (Table 7-10), however as expected, the 'uniform' treatment in Season 1 has

contributed a larger residual to Season 2. Table 7-10 also shows a reduction in soil NO3‘

distribution variance that is more pronounced by the accurate targeting of fertiliser to N

requirements from the 'differential' treatment in Season 1.
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N03' Distribution Season 1 Season 2 Season 2
(post uniform) (post differential)

Mean (kg/ha) 45.2 56.9 50.8

Standard Deviation 23.1 23. 3 19. 6

CV (%) 51.0 40.9 38.6

 

Table 7-10. Soil nitrate concentrations prior to Season 1 and prior to Season 2.

The spatial distribution of initial NO3' levels for the two scenarios leading into Season 2

are shown in Figure 7—12 and Figure 7-13. Soil-type membership and yield response curves

from Season 1 are maintained at each point in Season 2, while the changes to initial NO;

concentrations for the two treatments require the calculation of new N application rates

to achieve the economic optimum yield. Lint yield obtained by the application of each

treatment in Season 2 is determined using the procedures previously outlined.

Results 8 Discussion

Table 7-11 documents the calculated mean N application rates and yield for the two

treatments. The lint yield under uniform management of fertiliser application continues

to be lower than the economic optimum yield. The differences in yield obtained over

each field are displayed in Figures 7-14 and 7-15. Uniform treatment in Season 2 (Figure

7-14) continues to produce zones of miscalculated fertiliser application that appear as

'noise' in the yield map. In Figure 7-15, the discrete dark spots, indicating lower than

optimum yield (points where the initial NO3' concentration was above the 97.5 kg/ha

cutoff assumed to be limiting to growth) have been reduced from the amount in Season 1

by continued differential treatment.

Table 7-12 presents the financial statistics for the two management systems on the respective

sites. Mean yield has increased marginally (0.2kg/ha) for the differential treatment in

Season 2 as a result of differential treatment in Season 1 reducing the number of sites

with initially excessive NO3‘ levels. A comparative gross profit of $162/ha is predicted

for continuing the differential treatment into Season 2 as compared with on-going treatment

based on the field mean.
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N Applied N Applied Yield Yield
(uniform) (differential) (uniform) (differential)

Mean (kg/ha) 135.5 147.6 2105.3 2202.5

Standard Deviation 53. 7 321.3 263. 2

CV (%) 36.4 15.3 12.0

 

Table 7-11. Mean N application and lint yield for uniform and differential

fertiliser management (season 2).

 

 

Type of Application Uniform Differential

Yield (kg/ha) 2105 2203

N Application (kg/ha) 135 148

Gross Profit ($A/ha) 3645 3807

Difference ($A/ha) ' + 162

 

Table 7-12. Financial comparison between differential and uniform N

application (season 2).

Mean yield for the uniform treatment has been reduced by 9kg/ha from that achieved in

Season 1 as a result of greater misallocation of the total fertiliser applied. Table 7-13

compares the fertiliser applied to the field under uniform management in Season 2 with

the fertiliser that would have been applied if that field had been treated differentially in

Season 2. A comparison of this sort between the two fields in Season 2 would be misleading

because their initial conditions vary at the beginning of Season 2. By contrasting Table 7-

13 with Table 7-8 the total number of sites fertilised has slightly decreased from Season 1,

however the percentage of total fertiliser over-applied has risen from 16% to 18%. The

amount under-applied also increases proportionally. Figure 7—16 graphically represents

zones of the field that have received more fertiliser than required for the economic optimum

yield on the uniform site in Season 2.
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Figure 7-14. Season 2 site map of lint yield following

uniform fertiliser application in Season 1.
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Figure 7-15. Season 2 site map of lint yield following
differential fertiliser application in Season 1.
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Number % of Total % of Total Mean Standard

Sites Applied N (kg/ha) Deviation

Overfertilised sites 13,308 43 18 56.9 50.1

 

Table 7-13. Over-fertilisation following uniform treatment in season 2. (A comparison

with optimal application rates calculated for the same site in season 2).

 

  

 
 

0 50 100 150

kg N (nitrate)/ha

Figure 7-16. Zones of over-fertilisation at the uniform treatment site in season 2.
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7.4 GENERAL DISCUSSION

The benefits of differentially treating variability in field attributes that may be considered

influential to crop growth will obviously depend on the degree of variability exhibited

over the area of interest. It could further be hypothesised that the divergence of the field

mean of an attribute from the desired field level of that attribute may also play a role in

quantifying the benefits. These simulations have provided some insight into such

questions.

From the uniform yield potential examples it is possible to generalise that as the variance

within an area increases, the percentage of input wastage and the adverse yield impact

from under-application of the input both rise. These negative production indicators also

increase as the field mean of an attribute approaches the desired field level. The actual

percentage increases Will be specific to the simulation conditions as will the financial returns

attributed to each scenario. This is the nature of site-specific management. Nevertheless,

it would appear that the returns will also follow this upward trend until a point where the

field mean is very close to the desired level and then the field mean is probably a reasonable

estimate on which to base a fertiliser program (refer Table 7-1).

Assuming a uniform yield potential at almost any spatial scale accommodates a broad,

simplistic analysis of the trend effects of attribute variance and mean on differential

treatment. The more realistic scenario of diverse yield potential, while requiring greater

complexity in the model, should provide sound estimates of financial differences between

the treatments. Differential treatment of N fertiliser application to cotton, under the

conditions simulated here, offers an increase in returns over uniform fertiliser management

of approximately $160/ha for two successive years. This figure is higher than the $145/

ha calculated for a similar field restrained to uniform yield potential (refer Table 7-5). The

difference arising from the correct accounting for diversity in yield potential even when a

uniform application is made. These estimates do not include the increased cost of operating

a differential system which will be discussed later.

The discussion of either simulation procedure has also not considered that the traditional

approach to estimating the field mean of an attribute is to use a very small number of

samples. These simulations compare differential treatment with an estimate of the mean

based on all the samples in each site. The disparities in financial returns would be far

greater if a random sample of 50 points was used to estimate the mean. These simulations

are however not attempting to calculate maximum benefit but aimed at providing

conservative financial estimates for use in the process of determining the viability of site-

specific management.
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Aframework for such a financial evaluation procedure has been described by Lowenberg-

DeBoer & Swinton (1995). They outline a stepwise process of (i) partial budget analysis;

(ii) inclusion of annualised capital costs; (iii) inclusion of net revenue risk assessment; (iv)

inclusion of finance and management skill costs. After both steps (i) and (ii), if the returns

outweigh the costs, an environmental benefit estimate may be included.

Determining the true cost of a differential treatment regime will therefore be complex and

partially subjective. While the costs of sampling, analysis and chemical application may

be identified, the costs allocated to gaining the required understanding of concepts and

equipment is less tangible. Furthermore, the information compiled for a differential

treatment regime will be more than likely applicable to decision making processes in future

years, so the yearly costs may be reduced through annualisation.

Financial returns information provided by the simulations presented here would represent

the major portion of a partial budget analysis. The only additional variable cost that must

be included is the additional cost associated with sampling and application for differential

treatment. The financial literature published on this subject to date has been based on the

US environment and agricultural markets. Overall, the cost of performing differential

treatment has apparently declined slightly over the past 3 years.

Originally the costs were typified by the report of Wollenhaupt & Buchholz (1993) Where

a conventional treatment cost of $A 10.75/ha was compared with a differential application

cost that varied between $A 24/ha to $A 33 /ha, showing a difference of between $A 13/

ha and $A 23 /ha. In a later study, Lowenberg-De Boer 8: Swinton (1995) calculate the

annualised cost (over 4 years) of differential application at $A2350/ha which, when using

the same conventional application costs results in a conservative difference estimate of

$A13/ha which is in the lower range of that quoted by Wollenhaupt & Buchholz (1993).

Initially, the cost in Australia is likely to be higher due to greater soil analysis charges and

technology costs. The figures outlined above may be used as a rough forecast for future

contract application, but with a conservative tripling of the cost the partial budget would

appear strongly positive for cotton in these simulations.

Annualised capital costs will be dependent on the technology utilised, farm size and the

period of effective utilisation of the capital. Commercial information available in 1997

places the costs of yield monitoring and mapping equipment and software in Australia

between $A 9,000 and $A 20,000 depending on product choice. Variable-rate application

equipment is more difficult to cost at present, Lowenberg-De Boer & Swinton (1995) suggest

the use of a 3-year capital obsolescence strategy, which would give the maximum

annualised cost for the monitoring and mapping at $A 7,000. This cost would need to be
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apportioned on a per hectare basis to all farm operations that utilise the equipment or

information gathered.

Lowenberg-De Boer & Swinton (1995) also suggest there is no indication that site-specific

management will increase the variability in net returns to production leaving premature

obsolescence as the major risk to investment. This factor can only be included as a subjective

assessment. The cost of commercial finance can be simply factored using interest rate

calculations as can any extra labour costs deemed necessary to oversee and operate the

system. Both these costs will be farm dependent.

Environmental impact may be divided into human health or ecotoxic effects (Gustafson,

1993). However, in either case, the quantification of environmental benefits derived from

site-specific management does not easily fit the standard accounting paradigm. The

allocation of monetary value to environmental gains is a fledgling science. Straightforward

instances where payments may be made for positive actions or fines imposed for negative

actions can be dealt with traditional accounting. At present Australia has no such

remunerative or punitive legislation in place although Europe (Blackmore et al., 1995)

and the United States of America (Castelnuovo, 1995) are moving in this direction.

More difficult to assess are the societal or non-monetary gains such as overall environmental

welfare, production sustainability and non-contamination of foodstuffs that are gaining

importance in the community. A number of studies have examined the willingness of

agricultural producers to include a personal cost to reduce these risks (Higley &

Wintersteen, 1992; Beach & Carlson, 1993) and customers to bear a premium adjustment

to retail costs (van Ravenswaay, 1995) but there has only been conjecture that site-specific

management will provide such benefits.

However, the simulations based on diverse yield potential undertaken here dramatically

highlight the wastage that may be associated with uniform management (Figures 7-11 &

7-16). The extrapolation from this rnisplacement of N to some environmental impact

through denitrification, leaching or future uptake is not difficult to make. An economic

adjustment based on product premiums or elimination of environmental management

charges may be reasonably included in the future.

Given such complexity in the cost/analysis process, the studies of profitability based on

production physicalities have been few and as yet incomprehensive. Wollenhaupt &

Buchholz (1993) examined results from four states in the USA where the differential

treatment of fields were based on soil unit yield potential or whole field grid sample

analysis. These fields were sown to wheat, barley or corn and showed no major reduction
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in yield or profits when compared to uniform treatment but only a small number displayed

significant improvements under differential nutrient management. The main contributors

to these ambivalent results were an inability to accurately delineate soil unit boundaries

and a difficulty in calculating the appropriate yield goals for soil units or whole fields for

the upcoming growing season.

DeBoer & Swinton (1995) summarise the profitability results from 11 variable rate fertiliser

trials (N and/or P and/or K) and reported that five studies displayed non—profitability,

four produced an inconclusive evaluation and two suggested potential profitability. The

authors conclude that the treatment of sampling and application costs, along with the

degree of yield gain attainable, governs the financial outcome of all the trials reviewed.

The salient points from these studies are that fertiliser response varies within a field

(possibly at a soil unit scale), that accurately calculating yield goals will ultimately depend

on environmental prediction for the growing season and the amortisation of costs will be

important in determining the profitability or otherwise of site-specific management.

7.5 CONCLUDING REMARKS

It is important to acknowledge that the results presented here are the culmination of field

simulations. They are only a guide to the degree of financial benefit, in terms of increased

yield and targeted fertiliser use, that maybe obtained from differential fertiliser treatment.

The cost of additional equipment and operating expenses has not been taken into account,

however, neither have the environmental benefits and risk reductions.

Intuitively, as the financial difference increases between the unit cost of a field operation

(e.g. fertiliser application) and the unit value of a commodity, the per-unit savings afforded

by differential treatment will decrease. It is, however, difficult to conceive a situation where

accurate knowledge of the variability in an influential soil attribute would not produce

some degree of financial and environmental benefits under differential management.

More importantly, the value of these simulations can be found not so much in the output

values but the processes that are used to achieve the estimates. Decision support systems

will require models to substantiate the actions that variability in soil condition will demand.

The uniform yield potential simulations show that such an assumption will be unworkable

in most cropping situations. The ideal of promoting a uniform yield across a field is

therefore also shown to be unworkable. The simulations based on diverse yield potential
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have shown, as a mimic of a more realistic natural system, that the potential for site-

specific management may be enormous and its impact will increase in crops of higher

inputs and greater market value.

Future decision support systems must acknowledge that fields generally comprise a diverse

range of yield potentials and the success of a site-specific soil management program will

depend on the accuracy with which the variation in significant soil parameters are

monitored and treated to suit this diversity of potentials. The processes developed in the

diverse yield potential simulation offer an improvement to the detail available for fertiliser

application decisions and may increase the probability and profitability of more site-specific

management programs.
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CHAPTER 8

General Discussion, Conclusions 8: Future Work

While comprehensive discussion has been provided within the relevant chapters of this

thesis, some points are worth briefly revisiting as an overview of the thesis work and its

implications for Precision Agriculture.

8.1 GENERAL DISCUSSION

One cornerstone in our understanding of the existence and development of natural

populations is the variability evident within them. To this end, the magnitude of variation

within populations of attributes that influence agricultural systems has been noted at a

variety of observation scales. Chapter 1 has endeavoured to review the current knowledge

on the variation to be found in a number of the more important soil and crop parameters

and Table 1-14 summarises the median variation (expressed as CV o/o) that may be expected

across a range of observation scales.

The recorded magnitude of variation is greater in the physical and chemical components

that form the soil than in soil attributes that may be considered as functional derivatives.

Variation in crop yield also appears to be smaller than that observed in the fundamental

soil attributes, however this may be due to the traditionally larger geometric support for

crop yield samples. As the sample size, or representative area increases, so more total

variation is partitioned within each sample and less between sample variability is evident.

Information discovered on the heterogeneous nature of agricultural system components

has previously only been incorporated into management decisions at the coarser scales of

regions, farms or in latter years, individual fields. This may be a symptom of the general

inability to separate the magnitude of variation from its spatial structure until relatively

recently. Fairfield Smith, in his prescient Australian work of 1938 assessed this dilemma

and noted that:

"So far as present evidence goes total variability and the manner in which varyingfertilities are

distributed appear to be two distinctfeatures which must be separately considered in any quantitative

measure of soil heterogeneity. ”
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Since then the theory of regionalised variables has been developed and employed in

analysing the spatial component or structure in observed variation. The median spatial

structure parameters presented in Table 1-15 summarise observations reported in the

literature along with an assessment of the "strengt " inherent in the spatial structure. It is

the information on spatial structure provided by this analytical technique that offers an

opportunity to reliably assess the manner in which variation changes within a crop field

and ultimately improve the options for management of variation.

For the attributes considered in Chapter 1, spatial structure is evident up to a maximum

separation distance of 180m. This distance is well within the normal dimensions of a

broad-acre farm field and suggests that management of variation could be useful at the

within-field scale. As reviewed in Chapter 2, the arrival of affordable and accurate GPS

receivers that provide repeatable location determination, the embryonic development of

numerous new, more efficient observation tools and methodologies (Tables 2-2 and 2-3),

and the widespread availability of differential-rate controllers (Table 2-4), appears to signal

that the time to put this information to use has arrived.

I think that this may be a presumptive assessment and one which has led to a number of

failures in the early development of Precision Agriculture internationally. If Precision

Agriculture is to be elevated beyond a collection of new technologies and be adopted as

an holistic management system as described in Figure 3 then the agronomic rationale and

scientific methodology for identifying areas for differential placement of ameliorants must

be established. At present, the quality of the monitored and mapped data and the

mechanisms for decision-making on the basis of the information remain unclear. The

work presented in this thesis is an attempt to help clarify our understanding in these two

areas.

With regard to the monitored data it is evident that soil attributes and grain yield can vary

widely Within an Australian field and that the spatial pattern of this variation may change

over time. Chapter 4 confirms that real-time crop yield monitors can be considered quite

accurate at measuring the bulk yield of an entire field but less is known about the accuracy

of the monitoring systems at the 1m-2m level where individual yield measurements are

matched With dGPS position. In Chapter 5 the integrity of the data at this scale has been

examined and it would appear that substantial grain mixing during the harvesting and

threshing process operates like a moving average filter on the sensed yield data. This

data, in conjunction with information from less intensive studies (Lark etal., 1997) suggests

that this averaging process has an effective range of approximately 20m. Point estimates

of crop yield at the 1m-2m scale cannot therefore be considered as accurate representations

of the true value.
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This knowledge has important ramifications for the entire Precision Agriculture

management system (Figure 3). Firstly, it implies the yield variability over short ranges is

greater than that routinely displayed in crop yield maps. Figure 5-16 tends to confirm

this, as the variability evident in hand sampled grain appears to be much greater than that

expressed in the real-time yield monitor data. This may improve the perceived prospects

for the differential treatment of causal factors of yield variation in some instances where

variability was originally considered minor, and decrease the prospects in others where

the random component becomes too high. At present though this really remains conjecture

for while more monitoring must be undertaken to fully examine the range of yield

variability within fields, agronomically critical levels for the magnitude and structure of

the variation remain to be determined. Obviously these will be necessary for profitable

and sustainable differential management.

Secondly, the impact on crop yield of any step-wise differential actions performed at

resolutions less than 20m will not be easily detected in the monitored crop yield due to the

operational resolution of the yield monitoring systems. This in turn has significant

implications for the design and development of experiments aimed at establishing changes

in treatment response within fields. The yield monitor resolution should also be considered

when using yield maps to assess the financial benefits of differential actions .

This greater local variability also means that the uncertainty associated with yield estimates

made through prediction techniques must also be considered as higher in reality than

originally believed. In Table 6-4 the uncertainty in point estimates within the 6ha area of

Creek field is recorded as ranging between 0.2 t/ha and 2.4 t/ha (mean 1.16 t/ha). With

greater local variability, at some points in the field the yield estimate could actually be

incorrect by more than i 2.4 t/ha. Such uncertainty in the point predictions signals that

further improvements in the methods for monitoring must be made if data at these scales

is required.

If the 20m resolution is considered sufficient, then perhaps other methods of spatial

prediction may prove useful. Crop yield mapping has brought the process of digital map

construction into wider use. All digital maps are based on some form of map model

(Figure 8-1) whereby values are represented as a set of blocks (B) the centres of which are

located on a grid ((3). According to Goodchild (1992) the blocks may have sides equal to

the grid spacing (a raster model), the blocks may be points on a regular grid (a grid model)

or they may be points and the grid irregular or infinitely fine with missing values or

values equal to zero (a point model).
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Figure 8-1. Generalised map model.

When Burgess & Webster (1980) first introduced geostatistical spatial prediction techniques

into soil science, they discussed two techniques - point (or punctual) kriging and block

kriging. Since then almost all of the attention has been placed on point kriging, i.e. to a

method that interpolates at any given location a variable with a point support.

Block kriging has rarely been used and software for performing it is rather scarce. Block

kriging attempts to predict the average of a variable over some block of length (dx) and

width (dy) centred about some prediction point (x0, yO). It should be noted that the locations

(x0, y0 - the prediction grid or raster) can be closer together than the block length or width.

This in fact gives an aesthetically pleasing smooth map. The major advantage of using

block kriging is that the estimate of the block mean, not surprisingly, improves as the

block dimensions increase.

Block kriging does require that the variable to be estimated is additive, which crop yield is

clearly, as its total at many points divided by the area over which those are measured is

the accepted measure of yield no matter how large the area. The same could not be said

for soil pH or hydraulic conductivity which may not be additive. Figure 8-2 shows a

comparison of uncertainty calculated for original yield sensor data and the deconvoluted

equivalent. It shows that the uncertainty in yield predictions is in fact underestimated

when data is not deconvoluted. It also shows that as prediction support increases from

points to blocks the prediction uncertainty decreases with block size. The value at 20m

being approximately 0.35 t/ha in this instance which is probably acceptable. There is no
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Figure 8-2. Uncertainty associated with increasing block size. (a) original sensor data.

(b) deconvoluted equivalent data.

point in increasing the block size further as the uncertainty plateaus and further increases

may lead to the loss of site-specific management opportunities provided by smaller blocks.

The effect of observation distribution on the resulting prediction uncertainty is also shown

in Figure 8—2. Where there is less observation data within and area for use in prediction

then there is greater uncertainty at all block sizes and vice versa. It appears then that the

uncertainty may vary within a mapped area depending on the observation data and its

density.

Block kriging can also employ local variogram models for neighbourhood kriging as with

punctual kriging. Block kriging in this manner onto a fine raster of 2m to 5m using 20m x

20m blocks would provide a reduction in estimate uncertainty when compared with

punctual kriging estimates and may be an optimal mapping technique. In the absence of

block kriging software, PA practitioners may best be advised to produce maps using a

10m radius moving average rather than the support-limiting inverse square distance

method presently popular. A simple estimate of the variance within those blocks would

also be also useful in assessing the uncertainty.

Whether improvements are made in the sensors (or sensor location) or alternative prediction

techniques are employed, the level of variation represented in a yield map mustbe seriously
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considered during its construction. Yield classes of 0.5 tonnes are meaningless if the

uncertainty in the yield estimates is of a similar or greater order. Until a robust standard

is achieved for yield prediction and the subsequent map presentation, the emerging

Precision Agriculture industry will remain confused about the accuracy of yield maps

and the detail they should, and do attempt to display. I believe it is important that the

uncertainty incorporated in the individual yield estimates be known and minimised in

the final map representation. Further it is desirable that the inherent uncertainty be quoted

along with any digital map as a matter of best practice.

Answers are less abundant in the search for information on what may be causing the

observed yield variation. Data is required on the same raster dimensions as yield data (i.e.

every 2-5m). This will eventually require sensors that either externally scan or invasively

measure soil attributes as they pass in the field. At present, the development of such tools

remains distantand manualsamplingmustcontinue tobe relied upon. New, more efficient

sampling designs are required to maximise efficiency and variation identification. It is also

possible that soil analytical techniques are overly precise for the sample they are usually

required to analyse. A bulked composite sample, which in the end may provide a poor

representation of a field, does not require precise analysis. More samples and swifter, less

accurate analyses may provide more valuable information on within—field variability.

When considering variability in soil attributes that govern crop yield potential it is also

worth noting that such variation may contribute to fluctuations in treatment response

within a field. Variability observed in check plot yield across fertiliser response trials is

simple but crucial evidence that the nutrient requirements or supply potential varies across

fields. Vetsch et a1. (1995) have suggested that observed variability in "N supply power"

and variability in the response function slope ("fertiliser use efficiency") indicates that

variable-rate N application should be beneficial. Chapter 7 has proposed a method for

combing knowledge of variability in soil type, response functions and indigenous nutrient

concentrations with economic information to determine variable-rate fertiliser application.

Future decision support systems must acknowledge that fields generally comprise a diverse

range of yield potentials and the success of a site-specific soil management program will

depend on the accuracy with which the variation in significant soil parameters are

monitored and treated to suit this diversity of potentials. The processes developed in the

diverse yield potential simulation offer an improvement to the detail available for fertiliser

application decisions and may increase the probability and profitability of more site-specific

management programs.
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In all, the variability observed in crop yield at the within-field scale reflects interactions

between influential field attributes and also between these attributes and the environment.

Given the substantial temporal variability that has been shown here to often dominate the

spatial variation, the identification of a significantly yield limiting factor in one year may

have limited bearing on the next growing season if its influence is considered singularly.

Yield, soil, pest and environment variability data may need to be collected for a number of

years (possibly up to 10 in highly variable environments) to adequately characterise and

model this interaction. In this manner a map of yield potential for a field maybe constructed

and then used each year in conjunction with early season environmental indicators and

crop response models to guide differential actions. Establishing a baseline understanding

of the variability in yield potential within a field becomes essential if the most significant

soil-based contributors to variability are shown to be difficult to manipulate. Soil factors

such as clay content and organic matter levels are known to contribute to nutrient

availability and moisture storage capacity of the soil. They are also extremely difficult or

impractical to amend in the short-term.

Intuitively, factors contributing to variability in the soil moisture regime will be important

in the majority of cereal growing regions in Australia. The more easily adjusted soil factors

such as available nutrient levels and pH will also be important in many areas. However if

the more rigid factors are going to limit yield then it would seem prudent to allow these to

govern the application rates of any ameliorants in the field. The reader is referred back to

Figure 2-5 for one example of the differential management decision process.

Precision Agriculture should notbe about treating a field to produce a uniform yield unless

the potential is uniform. Its potential will be only be realised by acknowledging diversity

in yield potential and environmental conditions when formulating field management

operations. By gathering and understanding the improved production information

provided by Precision Agriculture techniques, managementmay alsobe provided with an

ideal tool for risk assessment in potentially poor growing seasons. For example, well

documented areas of low yield potential may be removed from production or have their

inputs reduced to minimise potential financial losses. Such assessments would form part

of the decision—support system, so that management actions may be used to disperse or

lower production or capital risks across a whole farm.

Information such as that displayed in this thesis should eventually be considered as an

economic necessity, as is production information in any industry. The technology is now

becoming available to monitor agricultural input/output at an increasingly detailed level.

At present, it is necessary to gather data on output to characterise the variability that may
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be expected over space and time. Understanding the causes will be more difficult at this

scale and require committed research from the agricultural industry and improvements in

soil sampling and analysis technology. Ultimately these will be available but the impact

of Precision Agriculture in Australia will depend on ensuring only suitable techniques are

adopted within a fertile research, educational and political framework.
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8.2 CONCLUSIONS

Substantial spatial variation exists in soil and cropping system attributes at scales that

suggest that management of the variability within fields may prove economically and

environmentally advantageous. The components of the Precision Agriculture system are

at different stages of development and implementation. It is true to say that the technology

required to gather detailed data leads the agricultural science of deciphering and applying

the information it contains.

With regard to the within-field variation in cropping system attributes in north-west NSW

it is concluded:

Spatial variability is such that manual sampling at a spacing less than 60m would be

required to successfully characterise within-field variation in most attributes.

0 Temporal variation is larger than the spatial variation in soil moisture content and

crop yield

0 The magnitude of within-field crop yield variation decreases with increasing mean

yield.

0 Sorghum (Sorghum bicolor) shows greater variability at the within-field scale than

wheat (Triticum aestivum).

0 Cluster analysis of crop yield and yield derivative maps provides a method for

stratifying yield variability within fields.

With regard to the grain-flow dynamics within a conventional combine harvester:

0 The threshing and delivery process provides significant mixing of grain harvested

over a 20 metre interval.

0 An Inverse Gaussian distribution function well describes the convolution transfer

function.

0 Present crop yield sensors are less accurate in estimating yield at the 1m-2m scale than

larger scales.

With regard to spatial prediction techniques for crop yield mapping:

0 The fluctuations in yield variability within fields, and the density of yield data

supplied by real-time yield sensors is such that local models of variability are useful

in spatial prediction.

0 An estimate of the prediction uncertainty would be a valuable addition to crop yield

maps.
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With regard to the economic and environmental analysis of variability in simulated N

response:

0 Knowledge of response variability will need to be accurate to provide economic

benefits to cropping systems using variable-rate treatments.

Environmental costs of over fertilisation should be assessed and included in future

analysis of differential treatment experiments.
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8.3 FUTURE WORK

There is much exciting and challenging research ahead for scientists and engineers in the

field of Precision Agriculture. The development of soil-sensing systems to replace the

present requirement for manual sampling is high on the list. The design of new yield

sensors that do not require contact with the grain flow and can be positioned closer to the

harvester front will also provide much fuel for thought.

There are a number of areas that demand further investigation arising specifically from

the work presented in this thesis. The cluster analysis of crop yield maps and there

derivatives provided an apparently useful method for stratifying fields into management

zones. It remains to be seen if these zones can be replicated when analysed for yield-

determining factors. Strategic soil sampling within the identified zones should now be

undertaken to establish whether there is justification for the differential treatment of one

or more factors. This work would also be useful in the preliminary investigation of

dominant yield determining factors for inclusion in Decision-Support Systems in Northern

NSW.

While the current yield-sensing systems are in use, it would also be useful to investigate

more rapid methods for determining the grain transfer function within harvesters. It is

apparent that, while the form of the distribution function is likely to remain constant, the

parameters may change for different harvesters and possibly different crops. Swifter

methods for the determination of this function would also allow investigation into the

question of parameter variation within fields. The most readily adaptable option would

involve the use ofwetted grain strips and observation using the grain—flow moisture sensor.

It is also apparent that the uncertainty inherent in the yield estimates resulting from

prediction onto a regular grid is too large. The value of using local semivariogram models

in the kriging process has been shown, but estimates for a block rather than a point now

appears most desirable. Software for local block kriging should now be developed for use

in yield mapping applications. This would then enable the presentation of uncertainty

estimates in conjunction with a crop yield map which would further enhance the

information available for management decisions. Ultimately, this is the reason for gathering

production information in such detail and it is beholden to the agricultural scientific

community to optimise the accuracy of this information.

Site-Specific Crop Management represents the desire (and ability) to identify and respond

to large in—field variation in agricultural production processes in an optimal and timely

manner. The ultimate objective should be the construction of a fully unified, real-time
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data acquisition—integration—decision process that, when appropriate, provides differential

treatment to suit the variation in influential cropping system components. Economic

optimisation of resource use and the minimisation of environmental impact is mandatory.

General work for the future design of such a system should give consideration to:

(1) Data acquisition — continue development, or adaptation, of continuous yield and soil

monitoring devices. New methods for EM attenuation yield sensors could

have a wide application in the industry. Nitrate, organic matter and soil

strength sensors are under development. Ideally, work on such

instruments, designed for local conditions, should be instigated in

Australia, but co-operation with the prototype manufacturers abroad may

hasten their adaptation to the Australian environment. In addition, a real-

time soil moisture sensor needs to be developed to suit local soil conditions.

(2) Data integration -— experimentation is required to ascertain the most suitable model

for the efficient collation of variability data already available with that

obtained from real-time sensors. An agronomic study to define the

importance of yield response surfaces or whole crop growth models in

estimating crop yield potential at a site also necessary.

(3) Management options — development or adaptation of machinery and controlling

software for differential treatment is essential. Differential application of

nutrient fertiliser and pesticides would appear to offer the greatest benefit

to the industry in the future, given the probability of more restrictive

environmental legislation. Engineering projects that consider the

adaptation of tillage and seeding implements to respond to real-time

commands would also seem prudent.
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”Siddhartha bent down, lifted a stonefrom theground and

held it in his hand. ’This’ he said, handling it, 'is a stone,

and within a certain length of time it will perhaps be soil

andfrom the soil it will become plant, animal or man. I

do not respect and love it because it was one thing and

will become something else, but because it has already long

been everything and always is everything’ ”

— Hermann Hesse (1954) Siddhartha
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APPENDIX A1

Yield Monitor Calibration Results



B.M. Whelun - Reconciling Continuous Soil Variation 8' Crop Yield

 

Run Nunber Area Estimated Actual Error
(ha) yield (t) yield (t) (%).

 

1 2.56 8.06 7.92 1.76

2 3.41 9.16 9.26 -1.15

3 3.41 8.76 8.87 -1.26

4 2.52 7.35 7.34 0.08

5 2.80 7.37 7.54 -2.32

6 3.04 7.92 8.01 -1.12

7 2.78 7.03 7.04 -0.10

8 6.20 16.86 16.34 3.20

Mean 9.06 9.04 :1 .37

 

Table A1-1. Calibration results for 1995 wheat - ID7720 Titan 11.

 

 

 

Run Nun'ber Area Estimated Actual Error
(ha) yield (t) yield (t) (% ).

1 0.32 2.45 2.49 -1.65

2 0.32 2.41 2.40 0.40

3 0.32 2.43 2.41 1.05

4 0.32 2.41 2.40 0.40

5 0.32 2.51 2.50 0.33

6 0.13 1.03 1.03 -0.09

7 0.42 3.33 3.36 -0.91

8 0.31 2.35 2.36 -0.27

Mean 2.37 2.37 21064

 

Table A1-2. Calibration results for 1996 sorghum - ]D7720 Titan II.

A1-1



Appendix A1

 

Run Nunber Area Estimated Actual Error
(ha) yield (t) yield (t) (%).

 

1 0.18 0.88 0.88 -0.41

2 0.19 0.95 0.93 1.21

3 0.58 2.92 2.87 1.58

4 0.57 2.87 2.81 2.08

5 0.22 1.02 1.03 -0.09

6 0.21 1.00 1.03 -2.51

7 0.23 1.03 1.02 1.02

Mean 1.53 1.51 i127

 

Table A1-3. Calibration results for 1996 wheat - JD7720 Titan 1.

 

Run Nurrber Area Estimated Actual Error
(ha) yield (t) yield (t) (%).
 

 

1 0.19 0.72 0.74 -2.70

2 0.20 0.81 0.80 1.48

3 0.20 0.79 0. 80 -0.80

4 0.20 0.79 0.80 —0.63

5 0. 20 0.76 0.77 -0. 65

6 0.20 0.73 0.73 0.12

7 1.38 4.93 4.92 0.28

Mean 0.90 0.89 i0. 95

 

Table A1-4. Calibration results for 1996 wheat - ID7720 Titan 11.

A1-2



B.M. Whelan - Reconciling Continuous Soil Variation 8 Crop Yield

 

Run Nurrber Area Estimated Actual Error
(ha) yield (t) yield (t) (%).

 

1 0.18 0.83 0. 83 —0. 11

2 0. 17 0.96 0.96 -0.09

3 0.17 0.93 0.92 0.94

4 0.17 0.93 0.92 1.28

5 0.18 0.89 0.89 0.20

6 0.17 0.86 0.86 —0. 11

Mean . 1.36 1.36 :045

 

Table A1-5. Calibration results for 1997 sorghum - JD7720 Titan 11.

A1—3



APPENDIX A2

Real-Time Monitored Crop Yield Statistics by
Field, Season and Farm



B.M. Whelan — Reconciling Continuous Soil Variation 8 Crop Yield

 

 

 

Field Name Area (ha) Yield (tonnes) Yield (t/ha) Mosture (%v/v)

B1 3.53 7.69 2.18 9.9

B2 12.52 13.03 1.04 8.7

Horse 10.43 27.60 2.64 9.9

B4 7.91 14.62 1.85 12.6

N3 14.61 32.07 2.20 9.7

Season Surrmary 49.00 95.00 1.98 10.2

 

Table A2-1. Monitored yield statistics - 1995 wheat season.

 

 

 

Field Name Area (ha) Yield (tonnes) Yield (t/ha) Mosture (%v/v)

N2 12.25 84.68 6.91 12.7

N6 14.64 104.21 7.12 12.8

N10 15.24 103.79 6.81 12.6

82 11.60 74.76 6.45 13.2

86 11.23 72.57 6.46 12.9

810 11.39 73.07 6.42 12.5

C reek 71.25 521.65 7.32 13.2

Pine 66.84 369.87 5.53 13.1

CWest 44.20 255.87 5.79 12.1

C East 46.72 313.50 6.71 13.2

Season Sun'mary 305.36 1973.98 6.55 12.8

 

Table A2-2. Monitored yield statistics - 1996 sorghum season.



Appendix A2

 

 

 

Field Name Area (ha) Yield (tonnes) Yield (t/ha) Mosture (%v/v)

B1 3.36 11.04 3.28 10.8

B2 12.78 43.01 3.37 9.5

Horse 10.51 48.73 4.64 10.9

B4 8.12 32.03 3.95 11.8

B5 14.05 52.87 3.76 10.5

80 25.80 112.95 4.38 13.1

N1 10.79 49.39 4.58 10.7

N4 15.97 62.10 3.89 9.3

N5 17.47 64.77 3.71 8.9

N8 12.68 51.46 4.06 10.7

N9 16.62 69.27 4.17 12.0

S1 11.70 41.57 3.55 8.1

84 14.88 49.02 3.29 10.0

85 9.74 33.09 3.40 9.4

88 8.25 32.01 3.88 9.4

89 16.67 57.18 3.43 9.5

812 12.15 35.59 2.93 10.8

Maidens 77.29 341.36 4.42 10.9

Borrmera 26.78 65.84 2.46 10.6

Bull 7.36 35.10 4.77 9.7

SDam 16.11 88.69 5.51 11.7

Skurr 5.84 29.86 5.11 12.8

C reek 83.66 444.36 5.31 11.5

Lease 89.14 495.40 5.56 10.9

CabroW 142.40 527.71 3.71 9.5

CabroE 62.74 243.31 3.88 11.4

KWeeN 114.78 470.54 4.10 11.7

KWeeS 62.39 264.33 4.24 11.2

Season Summary 910.00 3852.58 4.05 10.6

 

Table A2-3. Monitored yield statistics - 1996 wheat season.

A2-2



B.M. Whelan - Reconciling Continuous Soil Variation 8 Crop Yield

 

 

 

Field Name Area (ha) ' Yield (tonnes) Yield (t/ha) Mosture
(%v/v)

82 7 11.55 32.18 2.79 11.4

N Silo 6.61 5.86 0.89 13.8

s Silo 10.52 19.74 1.88 12.5

W80 41.17 183.14 4.45 8.7

Well 33.01 98.58 2.99 18.9

Pine 65.95 177.78 2.70 12.8

Season Surrmary 168.81 517.27 2.61 13.0

 

Table A2-4. Monitored yield statistics - 1997 sorghum season.

 

 
Year & Crop Field Name Area (ha) Weld (tonnes) Yield (t/ha) Mosture (%v/v)

1995 Wheat Mariny a Sumnary 49.00 95.00 1 .98 10.2

1996 Sorghum Mariny a S unmary 76.35 513.09 6.69 12.77

Romaka Summary 138.09 891.51 6.43 13.14

Cabro Sumnary 90.92 569.37 6.25 12.64

1996 Wheat Mariny a Surrmary 221.53 846.08 3.78 10.30

Rorraka Summry 202.10 1093.42 3.78 11.32

Maidens 77.29 341 .36 4.42 10.9

Bonmera 26.78 65.84 2.46 10.6

Cabro Surrmary 205.14 771.02 3.79 10.43

KWee Sumnary 177.17 734.87 4.17 11.43

1997 Sorghum Marinya Summary 102.86 339.49 2.60 13.06

Romaka Sumry 65.95 177.78 2.70 12.8

 

Table A2-5. Monitored yield statistics - total by farm and season.

A2-3



APPENDIX B

Real-Time Crop Yield Data

Data for the 1995/6 and 1996/7 harvest of sorghum and wheat on 6 properties in

northern NSW. Maps present the yield data as 5m radius moving average

calculated on a 3m grid and linearly interpolated onto a 1m grid.

Properties are located in the Moree Shire near Biniguy and all lie within an area of

approximately 403q km south of the township of Biniguy. The properties referred to

are: “Marinya”, “Romaka”, “Cabro”, “Maidens”, “Keelawee”, and “Bomera”.
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Figure B-11. Field N10 - Marinya 1996 sorghum.
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Figure B—12. Field 52 - Marinya 1996 sorghum.
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Figure B—15. Romaka 1996 sorghum yield overview.
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Figure 3-17. Pine Field - Romaka 1996 sorghum.
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Figure 3-27. Field N1 - Marinya 1996 wheat.
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Figure B-28. Field N4 - Marinya 1996 wheat.
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Figure 3-33. Field S4 - Marinya 1996 wheat.
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Figure 3—43. Skurr Field - Romaka 1996 wheat.
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Figure 3-51. Cabro East 2 - Cabro 1996 wheat.
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Figure 3-53. Keelawee North Field - Keelawee 1996 wheat.
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Figure 3-54. Keelawee South Field - Keelawee 1996 wheat.
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Figure B-55. Marinya 1997 sorghum yield overview.
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Figure 3-56. Field 52 - Marinya 1997 sorghum.
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Figure B—59. Well Field - Marinya 1997 sorghum.
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Pine Field - Romaka 1997 sorghum.
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