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Abstract
Spreading processes, such as epidemics and wildfires, have an initial localized outbreak
that spreads rapidly throughout a network of connected nodes, e.g. global travel
networks for pandemics or geographically connected areas for wildfires. The real-
world risks associated with such events have stressed the importance and current
limitations of methods to both quickly map and monitor outbreaks and to reduce
their impact by planning appropriate intervention strategies.

This thesis is, therefore, concerned with risk minimization of spreading processes over
networks via surveillance schedules and sparse control. This is achieved by providing a
flexible optimization framework that combines surveillance and intervention to bound
and minimize the risk of spreading processes.

Here, risk is defined as the risk of an undetected outbreak, i.e. the product of the
probability of an outbreak occurring over a time interval and the future impact of
that outbreak. The aim is now to bound or minimize the risk of spreading processes
by allocation of resources and use of persistent monitoring schedules.

When setting up an optimization framework to tackle this problem, four other aspects
have been found to be of importance. First of all, being able to provide targeted risk
estimation and minimization for more vulnerable or high cost areas. Second and
third, scalability of algorithms and sparsity of resource allocation are essential due to
the large network structures. Finally, for wildfires specifically, there is a gap between
the information embedded in fire propagation models and utilizing it for persistent
monitoring path planning algorithms for efficient remote sensing.

The presented framework utilizes the properties of positive systems and convex opti-
mization, in particular exponential cone programming, to provide flexible and scalable
algorithms for both surveillance and intervention purposes.

We demonstrate with different spreading process examples and scenarios, focusing on
epidemics and wildfires, that the presented framework gives convincing and scalable
results. In particular, we demonstrate how our method can include persistent moni-
toring scenarios and provide more targeted and sparse resource allocation compared
to previous approaches.
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Chapter 1

Introduction

This thesis is concerned with risk minimization of spreading processes via surveillance
scheduling and sparse control. This is achieved by providing the joint optimization of
surveillance and intervention methods to bound and minimize the risk of spreading
processes such as epidemics and wildfires. In this first introductory chapter, we
provide background on the problems involved with risk minimization of spreading
processes, state the research objective, summarize this thesis’s main contributions
including related publications and outline the thesis structure.

1.1 Background and Motivation

Epidemics and wildfires claim each year a significant number of lives, have major
impacts on the economy and can cause significant disruptions to life as we know it
as the outbreak of coronavirus disease of 2019 (COVID-19) and the Australian and
Californian wildfire seasons of 2019/2020/2021 have demonstrated [18, 52, 72, 77, 127].
What they both have in common is that they can be thought of and modeled as a
spreading process in which an initial localized outbreak spreads rapidly to neighboring
nodes in a network [12, 80, 113]. Examples of these ‘networks’ are social contact
networks for epidemics and raster data representing a forest area, i.e. a landscape
partitioned into geographically connected grid cells, for wildfires.
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The real-world risks associated with these events and other spreading processes, such
as computer viruses, have sparked significant research into methods for modeling,
prediction and control as indicated by the recent surveys [113, 122, 183]. The after-
math of two decades of multiple deadly coronavirus epidemics alone (SARS, MERS,
COVID-19) stresses the importance and current shortcoming of being able to not
only quickly map and monitor the spread of infection, but more importantly, get an
accurate risk estimate and plan appropriate intervention strategies such as lockdowns,
testing and vaccination [52, 127].

For wildfires specifically, future wildfire potential is, unfortunately, only predicted to
keep increasing due to a warmer and dryer climate with already an upward trend
being noticeable with fires becoming more frequent and severe [41, 77]. Therefore, as
indicated by the Australian Bushfires and Natural Hazards CRC [18, 177], there is an
interest in using remote sensing for early fire detection and risk reduction. Although
many fire propagation models and simulators exist (e.g. [76, 80]) and path planning
for spatial monitoring is well advanced (e.g. [129, 152, 179]), the link connecting them
is still missing.

The earlier a fire or contagious disease can be detected, the easier it is to minimize
the damage [57, 70, 113]. Therefore, it is essential to be able to quickly assess the
situation and detect outbreaks early on. Hence, there is a clear need for methods
to provide quick situational awareness to assess and minimize the risk of spreading
processes.

The large scales these spreading processes typically evolve on, e.g. global travel net-
works for epidemics, large geographic areas for wildfires, or the internet for computer
viruses, imposes another challenge and emphasizes the importance of scalability of
computational methods. Furthermore, sparsity of resource allocation solutions is of-
ten needed, because it can be difficult or impossible to distribute resources broadly
across the network, such as vaccines for epidemics or waterbombing allocations for
wildfires.
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1.2 Problem Statement

In the previous section we already touched upon some of the problems involved with
risk minimization of spreading processes. The main problem is that it is important
to be able to both efficiently monitor the network to reduce the risk of undetected
outbreaks and to get an accurate risk estimate to plan appropriate intervention.

Four aspects in particular are important when solving this problem. First of all, being
able to provide targeted risk estimation and minimization for more vulnerable or
high cost areas, such as an elderly community during an epidemic or more populated
areas when controlling a wildfire. Second, because spreading processes evolve over
large networks, scalability of algorithms is important. Moreover, it can be difficult
to distribute resources widely. Hence, sparsity of resource allocation is required.
Finally, for wildfires specific, there is currently an inability to be able to directly
use fire propagation models for efficient remote sensing, e.g. by deploying unmanned
aerial vehicles (UAVs). Hence, there is a gap between the information embedded in
spreading models and utilizing it for persistent monitoring path planning algorithms.

In order to address this problem we define our research objective as ‘develop a joint
optimization framework for both surveillance and intervention purposes that is 1)
based on a risk model with node dependent costs for targeted risk minimization, 2)
results in sparse outcomes, 3) is scalable to large network sizes and 4) can be connected
to persistent monitoring algorithms for robot path planning’.

In this thesis, we will, therefore, first of all examine the current state-of-the-art and
existing literature on risk minimization for spreading processes. Next, we will design
a surveillance schedule and determine intervention strategies to bound and minimize
the risk of an undetected outbreak of a spreading process. In particular, we will
focus on developing scalable algorithms and providing sparse resource allocation for
targeted risk minimization. For wildfires specific, we will aim to bridge the gap
between spreading models and remote sensing.
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1.3 Contributions

In this thesis we provide a flexible optimization framework to bound and minimize the
risk of spreading processes via surveillance schedules and sparse resource allocation.
The main contributions of this thesis that address the problems and research objective
presented in Section 1.2, can be summarized as follows:

• We provide the joint optimization framework of both surveillance and in-
tervention via sensor scheduling and sparse control.

• A risk model is developed based on the product of the probability of an unde-
tected outbreak with its discounted future cost, with node dependent weightings,
to provide targeted risk estimation and minimization. In particular node im-
pact is based on richer information than network topology and can deal with
different types of network structures.

• Sparsity inducing resource models are presented, validated and discussed for
the spreading rate, recovery rate and outbreak rate.

• The presented framework provides scalable algorithms for both surveillance
and intervention purposes by utilizing the properties of positive systems and
convex optimization, in particular exponential cone programming.

• For wildfires specific, we bridge the gap between spreading models and robotic
path planning by developing revisit maps based on the risk that can be used
in existing path planning algorithms.

We demonstrate the flexibility and use of the proposed approach by providing ex-
amples of different spreading processes: epidemics and wildfires. We show how our
method leads to a more precisely targeted allocation of resources compared to pre-
vious approaches and can incorporate different parameters and scenarios such as a
vaccination strategy for epidemics and the effect of vegetation, wind and outbreak
rate on a wildfire in persistent monitoring scenarios.
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Although we focus on spreading processes, the proposed framework is applicable to
any linear positive system for which sparse control applications are needed.

1.4 Publications

The work presented in this thesis has also appeared in the following related publica-
tions as declared in the declaration of authorship.

• Somers, V. L. J. and Manchester, I. R. Minimizing the Risk of Spreading
Processes via Surveillance Schedules and Sparse Control. IEEE Transactions
on Control of Network Systems, Under review

• Somers, V. L. J. and Manchester, I. R. Sparse Resource Allocation for Control of
Spreading Processes via Convex Optimization. IEEE Control Systems Letters,
5(2):547–552, 2021

• Somers, V. L. J. and Manchester, I. R. Priority maps for surveillance and
intervention of wildfires and other spreading processes. In Proceedings of the
2019 International Conference on Robotics and Automation, pages 739–745.
IEEE, 2019

1.5 Thesis Structure

The remainder of this thesis is structured as follows. In Chapter 2 the current state-
of-the-art of spreading models, risk minimization for surveillance and intervention and
optimization methods is analyzed. In particular, we provide background on spreading
models of the two spreading processes we focus on, epidemics and wildfires, and
discuss the existing literature and their shortcomings in relation to surveillance and
intervention of them. The purpose of this chapter is to provide background on what
methods could be used to design an optimization framework for risk minimization of
spreading processes, which is the objective of this thesis.
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Chapter 3 presents how to model the risk of an undetected outbreak of a spreading
process. The risk model is based on the product of the probability of an undetected
outbreak starting in a particular area and the impact of the process spreading from
that location. We address how to model the outbreak probability and present the
used linearized networked spreading model. Furthermore, we define a cost function to
obtain targeted risk estimation and discuss how to model and visualize node impact
or cost-to-go.

Next, in Chapter 4, we consider the surveillance problem of bounding the risk of an
undetected outbreak by use of a revisit schedule. Here the dynamics of the spreading
process are fixed and the aim is to identify and bound the future cost of an undetected
outbreak spreading from each node. We introduce risk maps and look into the effect
of the different parameters on the risk map with two different spreading process
examples. Furthermore, we demonstrate how we can use surveillance schedules for
persistent monitoring to bound the maximum risk.

We extend this idea in Chapter 5 by including resource allocation for risk minimiza-
tion. We address the thesis objective and problems discussed earlier in Section 1.2
by formulating the joint optimization framework that minimizes the risk of spreading
processes by integrating surveillance schedules and sparse control. To obtain this
framework, we define resource models for spreading rate, recovery rate, outbreak rate
and surveillance interval rate and discuss how they induce sparsity. Furthermore, we
demonstrate how to reformulate the problem to obtain a convex optimization prob-
lem, in particular an exponential cone program. Finally, we compare our results to
existing methods and we comment on computation and scalability. With multiple
examples of spreading processes, i.e. epidemics and wildfires, we convey that the
proposed method is easily applicable and provides quick and convincing results.

Finally, Chapter 6 presents the conclusion of this thesis. It summarizes the main
results and contributions of this thesis and discusses open problems and directions
for future work.



Chapter 2

Background

In order to provide a flexible framework for the optimization of both surveillance and
intervention of spreading processes, we first have to look into the state-of-the art of
spreading models, surveillance and intervention for risk minimization, and optimiza-
tion. We, therefore, first present literature and background on models of the two
spreading processes we focus on in this thesis: epidemics (Section 2.1) and wildfires
(Section 2.2). Next, we review existing literature on surveillance and intervention
strategies for risk minimization in respectively Sections 2.3 and 2.4. Finally, in Sec-
tion 2.5, we provide background on relevant convex optimization methods.

2.1 Epidemic Models

The most well-known spreading models come from the epidemics literature and are the
Susceptible-Infected-Susceptible (SIS) model and the Susceptible-Infected-Removed
(SIR) model and their variants [7, 66, 83]. Their simplest mathematical description is
the classic single group model or compartment model as first introduced by Kermark
and Mckendrick [83] and can be described as a Markov process or system of ordinary
differential equations (ODEs). To extend these models beyond the population level
and model the interactions and connections between individuals, networked versions
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of these models have been developed [113, 126, 167]. Finally, threshold conditions of
the different models are important to determine the outcome of an outbreak [122].

2.1.1 Susceptible-Infected-Susceptible (SIS)

The simplest epidemic model is the Susceptible-Infected-Susceptible (SIS) model
which consists of only two compartments or states: ‘susceptible’ and ‘infectious’
[7, 66]. It is assumed that individuals of the modeled population do not acquire
immunity after infection and hence, transition back and forth between the ‘suscepti-
ble’ and ‘infectious’ state as illustrated in Figure 2.1 [166] via the spreading rate β > 0
and recovery rate δ > 0. If δ = 0, the model is called an Susceptible-Infected (SI)
model and can only transition from ‘susceptible’ to ‘infectious’, i.e. infected nodes
stay infected.

S

Susceptible

I

Infectious
β

δ
Figure 2.1 – Susceptible-Infected-Susceptible (SIS) model with infection rate β and

recovery rate δ.

For the SIS model, the proportion of a population being in the ‘susceptible’ or ‘in-
fectious’ state evolves according to the following deterministic ordinary differential
equations (ODEs)

Ṡ(t) = −βS(t)I(t) + δI(t) (2.1a)

İ(t) = βS(t)I(t) − δI(t) (2.1b)

where S(t) is the proportion of the population being ‘susceptible’ at time t ≥ 0 and
I(t) the proportion that is infectious. This model assumes a homogenous population
with a constant population size and S(t) + I(t) = 1.
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This basic deterministic model as originally developed in [83], has two major limita-
tions. First of all, the assumption that an epidemic occurs on a large population that
can be estimated by a continuous distribution without the presence of uncertainty
or stochasticity. Outbreaks, however, often start as small local outbreaks where the
effect of a finite population and uncertainty, such as a small change in the initial local
outbreak, can not be neglected and have a significant impact on the outcome of the
model. Second, the model does not take into account interactions on an individual
node level.

To be able to take the stochasticity of the model into account, we can model an
epidemic as a stochastic model with Markov transition probabilities. For a population
of n individuals each node i ∈ 1, 2, . . . , n has state Xi(t) associated with it that can
be either S(susceptible) or I(infectious). This state now evolves according to the
following stochastic equations:

Pr {Xi(t+ ∆t) = I|Xi(t) = S} = βf(X(t))∆t + o(∆t) (2.2a)

Pr {Xi(t+ ∆t) = S|Xi(t) = I} = δ∆t + o(∆t) (2.2b)

for some scalar function f : {S, I}n → [0, 1] and where ∆t is a small time period.

It should be noted that (2.2a) describes an exogenous transition, i.e. the state of node
i depends on external factors instead of solely its own state, whereas (2.2b) describes
an endogenous transition, i.e. this transition between states occurs for each node
independent of the state of other nodes [113]. Models that take into account network
structure as well as individual node interactions are networked models, which we will
discuss further in Section 2.1.3.

2.1.2 Susceptible-Infected-Removed (SIR)

The Susceptible-Infected-Removed (SIR) model as first introduced by Kermark and
Mckendrick [83] can be seen as an extension of the SI model, i.e. an SIS model with
δ = 0, where an additional state ‘recovered’ or ‘removed’ is introduced as demon-
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strated in Figure 2.2. Although on a side note, historically it was developed before
the SIS model [66, 83].

S

Susceptible

I

Infectious

R

Recovered

β δ

Figure 2.2 – Susceptible-Infected-Removed (SIR) model with infection rate β and
recovery rate δ.

The transition between states is again defined by the spreading rate β > 0 and
recovery rate δ > 0. However, an ‘infectious’ node in state I(t) now transitions into
the ‘recovered’ state R(t) with recovery rate δ instead of going back to the ‘susceptible’
state S(t). The deterministic ODEs describing these transitions as first formulated
by Kermark and Mckendrick [83] are given by

Ṡ(t) = −βS(t)I(t) (2.3a)

İ(t) = βS(t)I(t) − δI(t) (2.3b)

Ṙ(t) = δI(t). (2.3c)

The stochastic model, which is a more realistic model to describe an epidemic as
discussed before, can be obtained by replacing (2.2b) of the stochastic SIS model
with

Pr {Xi(t+ ∆t) = R|Xi(t) = I} = δ∆t + o(∆t) (2.4)

where each node i in the state vector X(t) = (X1(t), X2(t), . . . , Xn(t))T can be in
3 states, i.e. Xi(t) ∈ {S, I,R}. Another option is to model the different states
separately where we define Xi(t) as the probability a node i is in the infectious state
I and Zi(t) as the probability of node i being in the removed state R as we will
discuss further in Chapter 3.
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2.1.3 Network Models

In the previous subsection we discussed the unrealistic assumption of the original SIS
and SIR models of reducing the entire population into a subset of being in two or
three compartments and ignoring individual interactions and connectivity. Networked
models consider these individual interactions by associating spreading and recovery
rates to individual edges and nodes, where the transitions depend on neighboring
nodes. To model these interactions and connectivity, we make use of the basics of
graph theory and therefore, first provide some definitions that we will use to describe
the networked models.

Note that there is an entire field of study associated with extending compartment
and population models to network models with different topologies, which is outside
of the scope of this thesis, but for further reading we refer to [126].

Definition 2.1. A directed graph or digraph G(V , E) is a pair consisting of a nonempty
set V of n vertices and a set of edges E ⊆ V × V.

An edge of this graph G from node i ∈ V to node j ∈ V is defined by (i, j) and exists
if (i, j) ∈ E [122].

Definition 2.2. The adjacency matrix for a graph G with n nodes is AG ∈ Rn×n with
entries aGij

∈ R+ where aGij
= 1 if and only if (i, j) ∈ E and 0 otherwise.

It follows from Definitions 2.1 and 2.2 that a graph is undirected if the adjacency
matrix is symmetric, i.e. aGij

= 1 ⇒ aGji
= 1 for all i and j.

Definition 2.3. The set of in-neighbors of node i is defined as Ni = {j|(j, i) ∈ E}.

We can now model the stochastic networked SIS model, where Xi(t) ∈ {S, I} → [0, 1],
and instead of (2.2), we obtain

Pr {Xi(t+ ∆t) = I|Xi(t) = S} =
∑

j∈Ni

βXj(t)∆t + o(∆t) (2.5a)

Pr {Xi(t+ ∆t) = S|Xi(t) = I} = δ∆t + o(∆t) (2.5b)
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for homogeneous networks where Ni is the neighborhood of node i. For heterogeneous
networks the spreading and recovery rates vary per node and link in the network and
therefore, β is replaced with βij and δ with δi.

Networked Mean-Field Approximations

A particularly interesting mathematical adaptation of the SIS model and a method
to go from the stochastic networked model to a deterministic set of ODEs is the
N-Intertwined Mean-Field Approximation (NIMFA), first described in [167].

Given a graph G with n nodes, for the basic SIS model, a node is now in two states:
‘susceptible’, i.e. Xi(t) = S = 0, or ‘infectious’, i.e. Xi(t) = I = 1. The transition
probabilities, following (2.5), are defined using the fact that Xi(t) is a Bernoulli
random variable for a small time period ∆t for a heterogeneous network as

Pr {Xi(t+ ∆t) = 1|Xi(t) = 0} =
∑

j∈Ni

βijXj(t)∆t + o(∆t) (2.6a)

Pr {Xi(t+ ∆t) = 0|Xi(t) = 1} = δi∆t + o(∆t) (2.6b)

Pr {Xi(t+ ∆t) = 0|Xi(t) = 0} = 1 −
∑

j∈Ni

βijXj(t)∆t + o(∆t) (2.6c)

Pr {Xi(t+ ∆t) = 1|Xi(t) = 1} = 1 − δi∆t + o(∆t) (2.6d)

where βij is the spreading rate from node j, δi the recovery rate and Ni the neigh-
borhood of node i.

If we define E[Xi(t)] = Pr (Xi(t) = 1) as the probability of node i being infected, the
dynamics of the expectation can be obtained from (2.6) by letting ∆t go to zero

dE[Xi(t)]
dt

= −E

Xi(t)δi + (1 −Xi(t))
∑

j∈Ni

βijXj(t)


= −E[Xi(t)]δi + E

(1 −Xi(t))
n∑

j=1
βijXj(t)

 (2.7)

where βij = 0 if (i, j) /∈ E .
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Finally, n coupled nonlinear differential equations can be obtained by using a mean-
field approximation:

χ̇i(t) = (1 − χi(t))
n∑

j=1
βijχj(t) − δiχi(t). (2.8)

The mean-field approximation is obtained by making the assumption that all ran-
dom variables have zero covariance, i.e. E[XiXj] = E[Xi]E[Xj] for all i ̸= j. It is
proven in [51, 90, 165] that the deterministic model upperbounds the actual infection
probabilities.

The set of ODEs (2.8) have an equilibrium point at χ = 0 called the disease-free
equilibrium. Because in many real epidemics, levels of infection in a population are
very small, we can linearize (2.8) around the disease-free equilibrium to obtain the
linear model

ẋ(t) = (B −D)x(t) (2.9)

where x(t) = [x1(t), ..., xn(t)]T is the state of the linearized system with x(0) ∈ [0, 1]n,
B = [βij] the matrix of spreading rates, given that βij = 0 if (i, j) /∈ E , and D =
diag(δ1, δ2, . . . , δn) the diagonal matrix of recovery rates. The linear model again
upperbounds the nonlinear one [131]. This implies that controlling or stabilizing
the linear model has a guarantee of controlling the underlying stochastic epidemic
outbreak model.

For the SIR model a set of n nonlinear differential equations can be derived in a
similar fashion, which can again be linearized to obtain the linear model. We will
discuss the SIR model and linear upperbound further in Chapter 3.

2.1.4 Threshold condition

An important part of epidemiology is being able to predict if and when an epidemic
will die out, i.e. if or when the absorbing disease-free state will be reached. For the
basic compartmental SIS model (2.1)/(2.2) there are two equilibrium states possible:
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the system either reaches the disease-free equilibrium I = 0 or the endemic equilibrium
I = 1 − δ

β
. The threshold condition for the disease-free equilibrium to be globally

asymptotically stable is
R0 = β

δ
≤ 1 (2.10)

where R0 is the basic reproductive number that describes the average amount of
secondary infections that are caused by a single infectious individual [83, 113, 122].

For the SIR model the same threshold condition (2.10) exists, however, there is no
endemic equilibrium due to the existence of the ‘removed’ state. If R0 ≤ 1 the
outbreak exponentially converges to the disease-free equilibrium I = 0, whereas if
R0 > 1 the outbreak will monotonically increase until reaching its peak. Afterwards it
will decrease to the disease-free equilibrium I = 0 with nodes being either ‘susceptible’
or ‘removed’.

For networked models, the basic reproductive number R0 alone is often not sufficient
to represent the outcome of the epidemic and updated threshold conditions have
been derived. For homogeneous networked models the disease-free equilibrium χ = 0
is globally asymptotically stable if and only if

R0 = β

δ
≤ 1
λmax(AG) (2.11)

where λmax(AG) is the maximum eigenvalue of the adjacency matrix [167].

Relating this back to the previous discussion about the NIMFA; if the disease-free
equilibrium of the deterministic model is globally asymptotically stable, the under-
lying stochastic system will reach the disease-free absorbing state in sublinear time
[90, 165]. Hence, it also defines a lower bound for the epidemic threshold.

For heterogeneous networks, the disease-free equilibrium χ = 0 is globally asymptot-
ically stable if and only if

λmax(B −D) ≤ 0 (2.12)

where G is assumed to be strongly connected directed, B = [βij] the matrix of spread-
ing rates, such that βij = 0 if (i, j) /∈ E , and D = diag(δ1, δ2, . . . , δn) the diagonal
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matrix of recovery rates [85, 178].

More detail on the stability of the disease-free equilibrium can be found in [85, 122].

Threshold conditions are particularly critical when trying to intervene with the spread-
ing process and the basic reproduction number R0 is often used in press conferences
[33, 102] when talking about COVID-19 outbreaks to indicate the seriousness of the
variation or current outbreak and the need for less or more measures such as lockdown
restrictions.

2.1.5 Other Models

The described stochastic, deterministic and networked SIS and SIR models are the
most common epidemic models and will be used in this thesis. However, there are
many other extensions and variations to these models. A common extension is to
include birth and death rates or adding additional compartments, e.g. ‘exposed’ or
‘asymptomatic’ [68, 122].

For the networked models there are multiple variations. First of all, metapopula-
tion models where nodes represent subpopulations instead of individuals. They are
modeled in a similar way to networked models, but are often extended by modeling
the dynamics within populations as well [113, 126]. Second, all presented network
models assume continuous time, but discrete time versions as presented in [122] might
be more suitable depending on the epidemic data available. Finally, instead of de-
terministic network models, stochastic agent based models are a different approach
to modeling the individual connections and interactions. For a comparison between
agent based models and metapopulation models, we refer to [1].

2.2 Wildfire Models

The basics for fire spread modeling were set out by Rothermel in [141] and [142],
with an additional model for crown fires later described in [143]. Almost all current
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available fire models and simulators use these basics to a certain extent and tune their
rate of spread model parameters on his research. The current fire spread models can
be split into two categories regarding their landscape presentations: continuous and
discrete [157, 159] of which discrete models or more specifically stochastic cellular
automata (CA) models are similar to epidemic SIS and SIR models.

2.2.1 Continuous Landscape Representation

Continuous landscape fire spread models use wave propagation to model wildfires
[157]. This is done by applying Huygens’ wavelet principle by considering fire spread
similar to light wave propagation. Instead of light waves propagating from each other,
each point on a fire perimeter is considered as a possible new fire ignition source
[5, 159]. This model is, together with Rothermels’ models for fire spread [141, 143],
the basis for FARSITE [47], the fire simulator used by the U.S. Forest Service.

The main disadvantages of continuous landscape representations are that they are
very complex models that need homogeneous data to perform well. That is, fire spread
parameters, such as vegetation, fuel available and wind conditions, are assumed to
be the same for the entire area or landscape that is considered. However, the real
environment is often not homogeneous but heterogeneous, which introduces errors
into the system that accumulate over time if no correction factors are used [159].
Using a discrete representation of the landscape helps address these issues.

2.2.2 Discrete Landscape Representation

Within discrete landscape representation models, a split can be made between regular,
e.g. a grid, and irregular structures, e.g. triangulation. On this discrete landscape
the rate of spread can be calculated by either considering the shortest path or using
probabilities for fire transition from one cell to another. The first, the shortest path
method, is applied by Stepanov and Smith [157] for a wildfire model using a Delaunay
triangulation that can serve as a good first approximation of wildfire propagation time.
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The latter is commonly known as cellular automata (CA) and is similar to the stochas-
tic epidemic SIR model. It is easier to implement than all previously described meth-
ods, has a low computational cost and is suitable for heterogeneous conditions [159].
Furthermore, it has been shown to give quantitatively accurate predictions when
compared to real wildfire spread [81]. It is, therefore, one of the most popular and
common wildfire propagation models and forms the basis for Australis [82], the simu-
lator developed for the Western Australia Deparment of Fire and Emergency Services.

Cellular Automata Models

Cellular Automata (CA) models are stochastic models based on fire transition prob-
abilities from one cell to another. Each cell is in one of a finite number of states and
can transition to another state in discrete time based on a number of rules. The most
simplified version would be that a cell is ‘on fire’ or ‘unburned’ and ‘susceptible’ to
fire. Compare this to an SIS model (Section 2.1.1) where ‘susceptible’ is ‘susceptible
to fire’ and ‘infectious’ is now ‘on fire’ . Similar to SIR models (Section 2.1.2) a third
state ‘recovered’ or ‘removed’ can be added by adding a ‘burned’ state.

An example set of rules of how the state Xi(t) of cell i transitions could be

Rule 1 : IF Xi(t)=‘on fire’ THEN Xi(t+ 1)=‘burned’ with probability δi

Rule 2 : IF Xi(t)= ‘unburned’ AND neighbor j is ‘on fire’ THEN Xi(t+ 1)=‘on
fire’ with a probability βij [3].

Here δi is the recovery or removed rate and βij is the spreading rate from cell j to
i based on wind velocity and direction, vegetation, fuel available and other factors
influencing fire spread.

We visualize the spreading options to neighboring cells in Figure 2.3 for a lattice grid,
which is common in fire CA models. The fire can spread to the 8 surrounding grid
cells with probability βji. That is, if a cell is on fire as demonstrated in Figure 2.3
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Figure 2.3 – Fire can propagate to its 8 direct neighbors on a square grid.

for a simple grid example, at each discrete time step t of the simulation, the fire can
spread to each surrounding grid cell j with independent probability βji.

One of the first CA models suitable for both homogeneous and inhomogeneous forests
was described by Karafyllidis and Thanailakis in [80] where they use hypothetical
forests to validate the model. Another example of a successful cellular automata
model with a regular grid structure that can include the state of fuel present is the
model described by Alexandridis et al. [3] that is validated on the Spetses Island fire
in 1990.

Instead of using a square grid, Hernández Encinas et al. [65] proposed a CA model
with hexagonal cells. It has low computational cost, weather and land topography
are included, it can implement different rates of spread and a first comparison with
real fire spreading data gives good results.

A downside of regular grids is that they can only model the fire spread in limited
directions, due to its structure, which can lead to fire shape distortions and lower
accuracy. Therefore, Johnston et al. [76] proposed a fire spread model using an
irregular grid that obtains the same accuracy as wave propagation methods, but has
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a lower computational cost.

A disadvantage of CA models is that stochastic discrete models are not directly
amenable for optimization-based analysis and decision-making as each simulation
will have a different outcome. However, we can overcome the stochastic CA models’
optimization and decision-making issues by using their deterministic approximations
similar to epidemic modeling.

We can model this grid as a directed graph G(V , E) with n nodes, where each cell is
a node i ∈ V and an edge (i, j) ∈ E exists if cells are connected. For a small time
interval ∆t a surrounding cell j can now catch fire with probability βji∆t and the
node i, that is on fire, can burn out with probability δi∆t and we have reached a
similar model as the ones discussed in Section 2.1.

2.2.3 Wildfire Simulators

In the previous subsections we already mentioned a couple of different simulators such
as Farsite [47] and Australis [82]. We in particular want to highlight the Australis
wildfire simulator to demonstrate and convey that CA models can be very accurate
in simulating real wildfires.

As mentioned previously, the Australis wildfire simulator is based on a CA model and
fire can spread as demonstrated in Figure 2.4. If cell A is ‘on fire’, Figure 2.4a, fire
can spread to its surrounding cells. If cell A is ‘susceptible’ to fire and its neighbors
are ‘on fire’, fire can spread towards cell A with a predetermined probability.

This simulator was validated by comparing simulated fire spreading with historical
wildfire data in [81], an example of this comparison is shown in Figure 2.5.

Furthermore, the research by Kelso et al. [81] proposes a method for evaluating wild-
fire simulators. To obtain this accuracy in prediction, existing wildfire simulators,
such as Australis, take into account vegetation maps, elevation, terrain, fuel maps
and weather conditions to obtain accurate transition probabilities [81, 109].
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(a) Fire can spread from a single cell A to
its neighbors [82]

(b) Fire can spread to cell A from neighboring
cells on fire [82]

Figure 2.4 – The Australis wildfire simulator [82] is based on a CA model. Fire can
spread from or to cell A based on which neighboring cells are on fire and, in this
case, a southeasterly wind. Green is ‘susceptible’ to fire, red indicates ‘on fire’ and
black is ‘burned’. Figures are taken from [82].

Figure 2.5 – Example of a wildfire simulation evaluation of the Australis simulator by
Kelso et al. [81].

Remote sensing can provide estimates for fuel mapping or biomass estimation as
shown by many studies, e.g. [4, 26, 109]. In [109] the sensitivity of fire simulators to
different fuel and probability models is tested and the authors conclude that the use of
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airborne laser scanning, i.e. light detection and ranging (LIDAR), and multispectral
data over Landsat and other satellite imagery, see [4, 109], has significantly increased
the accuracy of fuel maps, increasing the appeal of the aforementioned CA models.

2.3 Surveillance

Given a spreading process and its known model, there are two main problems that can
be considered. First of all Surveillance Scheduling, i.e. how to estimate the state of
the process. Especially since spreading processes evolve on large networks, a sampling
schedule is needed to determine the state of the outbreak. The second problem is
Intervention, i.e. how to modify the spreading process and reduce the impact of its
outbreak, which we will discuss in Section 2.4.

2.3.1 Critical Nodes

Both for surveillance scheduling and intervention it is important to determine which
nodes in a graph are most influential in regards to an outbreak of a spreading process.
This is often approached by ranking nodes, for which many different methods exist.
The most common ones are based on graph topology, where the most straightforward
method is to look at the degree of a node [98]. The higher the degree of a node, i.e.
the number of neighbors (Definition 2.3), the more critical the node. Another option
is to define neighbors of randomly picked nodes as critical, since neighbors of random
nodes are most likely to have a high degree [98].

More sophisticated versions of this are point centrality [50, 69, 125] and the k-shell
index [86]. Point centrality metrics are common in analysis of social networks and
can be split into three different categories: degree, as already discussed, closeness,
i.e. the closeness of a node to all other nodes in a directed graph (Definition 2.1),
and betweenness centrality, which looks at if a node is on the shortest path of pairs
of other random nodes in the graph [50, 69]. The k-shell index, described by Kitsak
et al. [86], focuses on the location of the nodes instead of solely on the neighbors (i.e.
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degree) to determine the influential nodes. The k-shell index of a node is obtained
by looking at the remaining degree after pruning of nodes with a lower degree than
the current layer.

However, these methods struggle in defining critical nodes in regular graph structures
such as grids, where all nodes have similar degrees. Moreover, in [97] it is shown
that considering topological features alone is in most cases not enough to indicate
influential nodes.

Other options include reproduction number [113] and PageRank [25, 103, 118]. Repro-
duction number R0, as discussed in Section 2.1.4, is the average number of secondary
infections that occur from a single node. Hence, nodes can be ranked by simulating
their impact. Although it works well as a metric to find high impact nodes, it is
not computational efficient [113, 135]. PageRank is the algorithm behind the Google
search rankings, which consists of a random walk problem, where the more often a
node is visited on a random walk, the higher the rating [103, 118].

Furthermore, in wildfire models it is particularly important to consider spatially-
varying spreading rates, due to the effects of vegetation, terrain, and weather.

Methods that, therefore, go beyond simple topological features and take into ac-
count both network structures and dynamical parameters such as spreading rate are
Dynamics-Sensitive (DS) centrality [97] and eigenvector centrality [178]. DS central-
ity determines the importance of a node by considering a weighted sum of walks from
a node to all other nodes in the graph by taking into account both the spreading
rate and spreading time, where longer walks have a lower weighting [97]. In eigen-
vector centrality, the elements of the eigenvectors corresponding to the maximum
eigenvalue of the adjacency matrix, i.e. spectral radius, provide a measure of node
impact [114, 132, 167, 168, 178]. This relates back to the threshold condition of het-
erogeneous networks (2.12) and will be further discussed regarding intervention and
minimizing the dominant eigenvalue in Section 2.4.1.
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2.3.2 Outbreak Probability

Another aspect of surveillance scheduling, besides only finding the critical nodes, is
the likelihood of an outbreak. While the outbreaks of unknown and new epidemics
are hard to predict, the likelihood of experiencing outbreaks of known diseases can
be modeled. In [28] the likelihood of a severe acute respiratory syndrome (SARS)
outbreak is modeled by analyzing different stochastic outcomes of an outbreak with
the same initial conditions. That is, the more often these stochastic simulations result
in high case numbers in a given location, the higher the likelihood of an outbreak.
Hence, new critical outbreak locations can be found.

Wildfires, on the other hand, are in some sense more predictable due to the known
conditions that cause a fire to start. Fire ignition probabilities are studied in [133].
Here, the authors purely look into determining fire probability maps using weather
and fire danger variables and compare them to historical data. They indicate, how-
ever, a need to connect their maps to additional topographic variables, i.e. combining
outbreak probability with node impact and spreading models.

Other stochastic and deterministic fire susceptibility mapping approaches using ma-
chine learning and logistic regression are researched in [53, 74, 89]. In [177] satellite
data is used to estimate the live fuel moisture content, one of the primary factors
influencing wildfire fuel flammability.

2.3.3 Surveillance Scheduling

Surveillance scheduling, or sensor scheduling, consists of finding an optimal schedule
for taking measurements at individual nodes to estimate or influence the state of the
total system, given a limited budget on the number of nodes that can be sensed at
the same time.

In the literature, sensor scheduling is often considered from a control theoretical
perspective. E.g. sensor and actuator placement to optimize controllability and
observability for dynamical networks is studied in [160]. For linear dynamical systems
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tractable algorithms are developed in [170] and a simple example in an application
for active mapping is presented. Similarly, periodic sensor scheduling for an infinite
time horizon of continuous time linear systems is presented by Ha and Choi [61]. For
discrete time linear systems a greedy algorithm is presented in [75] and Huber and
Hanebeck [71] accomplish prioritizing sensor nodes and sensor schedules by exploiting
the monotonicity of the Riccati equation in combination with a branch-and-bound
technique.

Sensor scheduling applied to spreading processes on the other hand is more limited.
For epidemics, sensor scheduling could be interpreted as a testing schedule or the
selection of individuals to be tested for which an interest has arrived since COVID-19
[130]. For wildfires, sensor scheduling or more specifically, persistent monitoring using
UAVs is a more active area of research.

Persistent monitoring

Persistent monitoring literature for wildfires can be roughly split into two categories
based on their main goal: 1) fire mapping and fire perimeter estimation, and 2)
optimal path planning. The first category is outside the scope of this thesis, but
examples of boundary estimation and fire perimeter tracking algorithms are given in
[78, 151]. The second category, path planning, is relevant for this thesis, because it is
part of our thesis objective to bridge the gap between existing spreading models and
UAV path planning. We, therefore, need to look into the current state-of-the-art of
path planning methods.

For the persistent monitoring problem different path planning algorithms and solu-
tions exist [2, 17, 23, 59, 129, 136, 146, 152, 179]. They can be split into two main
categories; either all nodes are visited in an optimal order and frequency or a trade-off
is made which nodes to visit based on their impact.

If all nodes are visited, the most straightforward and simple persistent monitoring
model is the ‘boustrophedon’ path, more commonly known as a lawnmower pattern
[23]. When no further information about an outbreak is available this method is often
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used as a baseline with decent results. Another option is to approach the problem
as a traveling salesman problem (TSP) [48], i.e. finding the shortest, most efficient
path between nodes. This problem is NP-hard, but many different efficient heuristic
algorithms have been proposed [60, 93, 95]. For a grid pattern with equal distances
and no weights associated with the nodes, this will often result in a lawnmower
pattern. TSPs for the Dubins vehicle, i.e. turn-rate limited, are developed in [146].

A more sophisticated approach for a predetermined path is given in [152], where a
linear program (LP) is solved to compute a speed controller to minimize the maxi-
mum field value over the environment. Alamdari et al. [2] provide a solution to the
persistent monitoring problem in discrete environments by minimizing the maximum
latency between observations. Here maximum latency is the maximum time between
visits to the same node. This is done by first creating a relaxed graph, i.e. relaxing
the weights of the nodes to be powers of 2, and ranking the nodes of the relaxed
graph in different priority classes. Afterwards different walks are created for which a
traveling salesman path is found. These walks together form the final path, such that
the highest priority nodes are visited in each subwalk and the lowest priority nodes
are only visited once during the complete tour. The results outperform a classic TSP.

An example of a routing problem in which a trade-off is made which nodes to visit is
the orienteering problem (OP). Here the goal is to find a path that visits a subset of
nodes that maximizes the total collected sum, where each node has a weight associated
with it [59]. Different variations exist. An example of a flight time and path length
trade-off algorithm is the Dubins orienteering problem (DOP) discussed in [129]. The
proposed solution is based on the variable neighborhood search. Yu et al. [179] give
a nonlinear extension to the OP called the correlated orienteering problem, which is
solved with a mixed integer quadratic program.

2.4 Intervention

In the previous section we discussed how to determine the state of the system and find
nodes that are influential and critical in case of an outbreak of a spreading process.
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The next step is to utilize this knowledge and look into strategies to influence the
system and reduce the impact of the spreading process within a budgeted constraint.
We are particularly interested in methods that provide sparse and scalable control
due to the large scale these spreading processes typically evolve on.

2.4.1 Topological Control

The most intuitive idea to reduce the impact of an outbreak is by either removing
the optimal combination of nodes or edges or to influence the system by lowering the
epidemic threshold (see Section 2.1.4). Removing nodes and edges from a graph is
most likely to be costly in the real world. Therefore, an optimal solution is required
to make sure a minimum number of nodes and edges is selected to obtain the desired
reduction in outbreak.

Node and Link Removal

The problems of minimizing the spreading rate by removing either a fixed number
of nodes or edges, i.e. links, in the network turn out to be respectively NP complete
and NP-hard [168]. This fact has motivated the study of heuristics methods based
on node-rankings of various forms [34, 62, 94, 101].

Many heuristics use the metrics that were discussed in Section 2.3.1 to identify critical
nodes to remove based on topological features, e.g. point centrality [69, 125] and
PageRank [25, 103]. In [148] the susceptible size of the population is optimized based
on a variation of the betweenness centrality. In [42] a different approach is taken by
solving a non-convex quadratically constrained quadratic program for optimal link
removal.

Lindmark and Altafini [94] identify parameters for controllability of a network, where
the main result is again based on topological features, i.e. the highest ratio of weighted
outdegree versus indegree. Similarly, in [34] leader selection and its influence on sta-
bility and optimal performance in directed graphs is explored. Moreover, the authors
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study combination drug therapy and solve this by influencing the main diagonal of
the dynamic matrix.

However, these approaches have drawbacks as identified previously in Section 2.3.1.
That is, they are not suitable for regular graph structures like grids and using topologi-
cal features alone is not enough to indicate critical nodes. In general, these approaches
will, therefore, not be optimal in any sense and tend to perform poorly [97, 113, 181].
Furthermore, the assumption of complete node or link removal is often unrealistic
and impractical in the real world, because this implies that it is possible to perfectly
isolate or remove an individual or area from the network.

Spectral Abscissa

A method that goes beyond simple topological features is minimizing the spectral
radius, i.e. minimizing the dominant eigenvalue of the adjacency matrix λmax(AG),
or more specifically, minimizing the spectral abscissa, i.e. minimizing the dominant
eigenvalue of the linear dynamics, λmax(B −D) (2.12). This results in a reduction in
overall spreading rate across the network and is based on the intuitive approach of
lowering the epidemic threshold [114, 132, 167, 168, 178]. The effect of minimizing
the spectral abscissa (2.12) is to maximize the exponential decay rate of the system
towards the disease-free equilibrium [113].

In [171] and [172], the authors recognise the importance of spatial control and develop
constrained optimization methods, employing Lagrange multipliers, for allocating re-
sources to minimize the dominant eigenvalue of the system matrices.

However, in many cases it is crucial to take into account node dependent costs for
targeted outbreak risk minimization. For example, higher cost may be associated
with nodes representing populated areas when controlling a wildfire or more vulner-
able members of the community, such as the elderly or immunocompromised, in an
epidemic. This is not taken into account when minimizing the spectral abscissa.
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2.4.2 Optimal Control

A more suitable approach and realistic assumption is to reduce the impact of an
outbreak by tuning and controlling the spreading rates and recovery rates. This can
be achieved by applying resources to the nodes and edges. Examples of resources
include waterbombing and backburning for wildfires and social distancing, lockdowns
and vaccination for epidemics. Various solutions to the optimal control problem of
regulating infection spread over networks are presented in [12, 31, 35, 36, 63, 84, 96,
99, 113, 114, 132, 137, 162, 182].

For example, the control input can be taken as the fraction of the population treat-
ment or resource allocation is provided to as done for SIS and SIR models in [44,
49, 107]. Using Pontryagin’s maximum principle an optimal solution is found where
the result is a bang-bang controller. An optimal control solution based on multiple
switches is presented by [84] to regulate infection levels by adapting recovery rates of
the nodes. Di Giamberardino and Iacoviello [35] applied classical control strategy to
the cost function to develop an optimal vaccination model that has a switching cost
depending on the state and severity of the disease and outbreak.

A different approach was taken by Bloem et al. [12], who considered an SI(R) model
for computer networks infected by a virus. A linear-quadratic regulator is proposed to
solve the problem of spreading minimization via patching. In [99] the authors present
a Jacobi type distributed algorithm for suppressing epidemic spread over networks.
Distributed feedback control for two competing viruses is studied in [96].

Most of these presented methods give good working results for small scale examples,
but have limitations in regards to scalability. More recently limitations on feedback
control have been identified in [175, 176]. It is proven that a large class of distributed
controllers cannot guarantee convergence to the disease-free equilibrium utilizing the
recovery rate as the control input.

Linear spreading processes are positive systems [8], which enables control based on
linear programming [16, 138] and geometric programming [15], which allows global
optima to be found with efficient numerical methods and significantly improved scal-
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ability compared to general linear systems. Optimal resource allocation via geometric
programming has, therefore, been studied in [63, 73, 114, 115, 117, 132, 182].

In particular we like to highlight [132], which is the first paper to describe how the
problem of containing spreading processes under budget constraints can be reformu-
lated as a geometric program (GP) using the linear SIS dynamics. Two problems are
considered, 1) minimize the impact of the outbreak given a fixed budget by finding
the optimal resource allocation and 2) find the minimal amount of resources required
to control the spreading process. Extensions were proposed in [63] for unknown con-
tact rates. Hung et al. [73] consider the problem where two levels of recovery rates
exist with different amounts of resources required. Again the problem is reformulated
as a conic geometric program. In [115] a convex optimization framework is proposed
for SIR models where the expected number of infections is minimized.

However, most of these papers consider minimizing the spectral radius, spectral ab-
scissa or similar instead of node dependent costs. In addition, most of the discussed
methods do not result in sparse resource allocation, exceptions being [31] which formu-
lated a knapsack problem for a multi epidemic problem and sparse resource allocation
was obtained, and [162] in which optimal sparsity is obtained for the special case of
diagonally symmetrizable system matrices. We will, therefore, discuss convex opti-
mization, geometric programming and sparsity further in more detail in Section 2.5.

2.4.3 Other Methods

Most of the discussed intervention methods come from the epidemics literature. For
wildfires specific, different intervention approaches have been proposed. A general
wildfire resource allocation approach is suggested by Griffith et al. [58]. They model
the wildfire dynamics as a CA model and suppression as a Markov Decision Process
(MDP), where they use both a Monte Carlo tree search and a model predictive
control (MPC) method to find the optimal suppression team allocation. The authors
test the presented methods for examples up to a maximum grid size of 30x30 and 32
oppressive teams and conclude that the optimization method outperforms the Monte
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Carlo tree search for larger examples due to increase of the state space dimension.

More common is to focus on wildfire fuel management, where the available fuel is
minimized, which reduces the spreading rate and outbreak probability. For small scale
examples, mixed integer programming has been shown to give good results. However,
for larger state dimensions, heuristics have to be considered [91, 101, 105, 174]. For
a complete overview, we refer to [54, 104].

2.5 Convex Optimization

In the previous Sections 2.3 and 2.4 we identified different methods for surveillance
and intervention of spreading processes. The most promising methods, e.g. linear
programs (LPs) and geometric programs (GPs), require the problem to be phrased
as an optimization problem in order to solve it.

Optimization problems are widely used in civil, mechanical, aerospace and chemical
engineering to solve optimal design problems arising in for example scheduling, esti-
mation and signal processing, communications and networks, finance, supply chain
management, automatic control systems and many more [14].

A particular interesting field of optimization problems, due to their reliability and
numerical efficiency, is called convex optimization, which we will discuss in this sec-
tion. In particular we review two subclasses of convex optimization in more detail,
namely linear programming and geometric programming, that will be used to set up
our optimization framework.

Notation

This section has some different notation compared to the rest of this thesis in line
with the literature. In particular, x corresponds to the vector of decision variables of
the optimization problem to be consistent with other optimization literature. For the
remainder of this thesis, however, x is the state variable of the linearized dynamics.
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Similarly, β is not the spreading rate, p not the node impact and c not the cost, but
are used as indicated within this section.

2.5.1 Convex Programming

An optimization problem is a problem of the form

minimize
x

f0(x) (2.13a)

such that fi(x) ≤ bi, i = 1, . . . ,m, (2.13b)

where x = (x1, . . . , xn) is the vector of optimization variables, f0 : Rn → R the cost or
objective function, fi : Rn → R the constraints functions and b1, . . . , bm are constants
that are the bounds for the constraints.

A vector x⋆ is a solution of the minimization problem (2.13) or it is said to be optimal,
if it has the smallest value for the objective (2.13a) out of all vectors that satisfy the
constraints (2.13b) [14].

A convex optimization problem is an optimization problem of the form (2.13) where
the objective and constraint functions are convex, i.e.

fi(αx+ βy) ≤ αfi(x) + βfi(y) (2.14)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0 [14].

The main advantage of convex optimization problems is that they can be solved re-
liably and numerically very efficient using interior-point methods or other effective
methods specifically for convex optimization. The algorithms that exist for convex
optimization can solve large convex problems with thousands of variables within sec-
onds and by exploiting problem structure, such as sparsity, even larger problems with
ten thousands of variables and constraints can be solved quickly in the same time
frame [14]. Furthermore, convex optimization has as a guarantee that a local opti-
mum is automatically also a global optimum [9], which is a major advantage in the
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case of iterative algorithms as there is no doubt whether a local or global optimum
is found.

2.5.2 Linear Programming

Linear programming is one of the most well known subclasses of convex optimization
and has been around for a long time due to its ease of implementation and variety of
applications in a number of fields. LPs have been more widely introduced since 1947
and been used in commercial applications since 1952, from the petroleum industry for
oil extraction calculations to more recently financial management such as portfolio
analysis. One of the first methods suggested to solve them is the simplex method
for which a starting basic feasible solution is needed. Since the 1980s, interior point
methods have become more popular and with increased capacity and efficiency of
computers, large LPs can be solved extremely numerically efficient these days [14, 32].

The mathematical definition of a linear program (LP) is an optimization problem of
the form (2.13) where the objective and constraint functions f0, . . . , fm are linear, i.e.

fi(αx+ βy) = αfi(x) + βfi(y) (2.15)

for all x, y ∈ Rn and all α, β ∈ R.

Comparing the condition for a linear program (2.15) to the condition for convex
optimization (2.13), it is evident that, therefore, any linear program is a convex
optimization problem and linear programming is a subclass of convex optimization.

The standard mathematical form of a linear optimization problem is:

minimize
x

cTx (2.16a)

such that aT
i x ≤ bi, i = 1, . . . ,m, (2.16b)

where c, a1, . . . , am ∈ Rn and b1, . . . , bm ∈ R.
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2.5.3 Geometric Programming

A geometric program (GP) is an optimization problem in which the objective and
constraints can be rewritten as positive sums of exponentials. It is, therefore, a
subclass of exponential cone programming or relative entropy programming [21].

GPs are not convex in their natural form, but can be transformed to a convex op-
timization problem [14]. The key principle for geometric programming is the way
the objective function and constraints are defined. Therefore, we need the following
preliminaries.

Definition 2.4. A monomial function or monomial is a real-valued function of the
form f(x) = cxa1

1 x
a2
2 · · ·xan

n where c > 0 and ai ∈ R [14].

Definition 2.5. A posynomial function or posynomial is a sum of one or more mono-
mials, i.e. f(x) = ∑K

k=1 ckx
a1k
1 xa2k

2 · · · xank
n where ck > 0 [14].

Lemma 2.1. Monomials and posynomials are convex in log scale [14].

A geometric program can now be defined as an optimization problem of the form

minimize
x

f0(x) (2.17a)

such that fi(x) ≤ 1, i = 1, . . . ,m, (2.17b)

gi(x) = 1, i = 1, . . . , p, (2.17c)

where fi are posynomials, gi are monomials and all variables are positive, i.e. xi > 0
[14, 15].

The reason for this formulation follows from Lemma 2.1. Geometric programs, which
by themselves are quasi-convex, can now be solved by converting them into log-scale,
since as stated by Lemma 2.1 posynomials are convex in log-scale, transforming the
GP into a convex optimization program.

Hence, taking the transformation yi = log(xi), this results in the following convex
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optimization problem:

minimize
y

log (f0(ey)) (2.18a)

such that log (fi(ey)) ≤ 0, i = 1, . . . ,m, (2.18b)

log (gi(ey)) = 0, i = 1, . . . , p. (2.18c)

The attractiveness of geometric programs lies in the convexity of the reformulated
optimization program, which makes it possible to solve large scale problems in a
computationally efficient manner.

Note that if the objective and constraint functions (2.17) are all monomials, the geo-
metric program reduces to a linear program (2.16). That is, geometric programming
can be considered a generalization of linear programming.

2.5.4 Exponential Cone Programming

Exponential cone programming or relative entropy programming [21] is a type of cone
programming. Cone programs are a type of optimization problems in which a linear
functional is minimized over the intersection of an affine subspace and a convex cone,
i.e. the objective and constraints are subject to both linear and conic constraints
[9, 14, 21]. In exponential cone programming, these conic constraints are given by
the exponential cone.

Conic optimization problems are a special class of convex optimization problems
and can also be understood as a reformulation of convex optimization problems [55].
Therefore, before we explain the exponential cone further, let us start with a more
straightforward understanding of conic optimization.

LPs can also be seen as a cone program where the convex ‘cone’ K is the nonnegative



2.5 Convex Optimization 35

orthant Rn
+. Hence, (2.16) becomes

minimize
x

cTx (2.19a)

such that aT
i x ≤ bi, i = 1, . . . ,m, (2.19b)

x ∈ K (2.19c)

where K is the nonnegative orthant Rn
+.

If the conic constraints are now given by the exponential cone, we obtain an expo-
nential cone program. The three dimensional exponential cone is a convex subset of
R3 defined as

Kexp =
{

(x1, x2, x3) : x1 ≥ x2e
x3
x2 , x2 > 0

}
∪
{

(x1, 0, x3) : x1 ≥ 0, x3 ≤ 0
}
. (2.20)

The exponential cone can be utilized to model and set up a variety of constraints.

Geometric programs, as discussed in the previous subsection, are exponential cone
programs. To give an example of how to set up an exponential cone program, we,
therefore, revisit the GP (2.18) from the previous subsection.

Given f(x) = ∑K
k=1 ckx

a1k
1 xa2k

2 · · ·xank
n , see Definition 2.5, the posynomial constraints

(2.18b) of the GP can be rewritten to the form

log
(

K∑
k=1

exp
(
aT

k y + log(ck)
))

≤ 0 (2.21)

where ak = (a1k, ..., ank).

Introducing the new variable uk for each monomial appearing in the posynomial
constraints and a fixed variable tk = 1, we can rewrite the log-sum-exp constraint
(2.21) to

uk ≥ exp(aT
k y + log(ck)),

(
or (uk, 1, aT

k y + log(ck)) ∈ Kexp

)
(2.22)∑

k

uk = 1. (2.23)
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Recently there has been an increased interest in exponential cones and commercially
available software such as MOSEK [108] has included exponential cone programming
in their software from v9 released in 2019 to solve them efficiently with good numerical
performance [30].

2.5.5 Sparsity and Optimization

As mentioned previously, sparsity of resource allocation is desired due to the large
scale networks spreading processes evolve on and the often limited budget of resources.
We, therefore, look into how to incorporate this into our optimization framework to
encourage sparse outcomes.

Sparsity implies that we want to minimize the number of non-zero elements, i.e. the
ℓ0 “norm”. For a linear system, given an m × n matrix Φ, where m < n and vector
x ∈ Rn for which we desire a sparse outcome, this leads to the following optimization
problem

minimize
x

∥x∥ℓ0 (2.24a)

such that y = Φx (2.24b)

where ∥x∥ℓ0 = |{i : xi ̸= 0}| [20]. (Here, | · | indicates the cardinality instead of the
absolute value.)

However, this optimization problem (2.24) is non-convex and generally very challeng-
ing to solve [20]. In general, the problem of designing sparse feedback gains for linear
systems is non-convex and computationally challenging [92].

A common alternative is, therefore, to minimize the ℓ1 norm instead, i.e.

minimize
x

∥x∥ℓ1 (2.25a)

such that y = Φx (2.25b)

where ∥x∥ℓ1 = ∑n
i=1 |xi| [20].
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This optimization problem can be rewritten as a linear program (LP) and more
importantly is convex and can be solved efficiently. ℓ1 type constraints are known
to encourage sparsity [19, 39, 161] and due to their convexity more practical than ℓ0

norm constraints and objectives.

If the goal is maximum sparsity, sparsity can be further increased using reweighted
iterations [20]. This approach has previously been applied to networked epidemics for
a multi-competitive virus model in [123]. The reweighted ℓ1 minimization problem is
given by

minimize
x

∥∥∥∥∥ xk

|xk−1| + ϵ

∥∥∥∥∥
ℓ1

(2.26a)

such that y = Φx (2.26b)

where k is the iteration number and ϵ a small positive constant to improve numerical
stability.

The problem is now solved iteratively till the outcome either converges or after a
set number of iterations. This reweighted iteration program has no guarantee of
convergence or global optimality but has been found to be very effective in practice
[20].

2.6 Conclusions

This chapter has presented background literature on modeling spreading processes
and discussed different theories and approaches that can be used for surveillance
and intervention of them. It can be concluded that spreading models are commonly
modeled as Markov processes. The most well-known and documented models are
the Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Removed (SIR)
model, coming from the epidemics literature. Similarly for wildfires, cellular automata
(CA) models are most suitable, since they have a low computational cost and deal
well with heterogeneous data. However, for surveillance and intervention purposes
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the stochastic model is not directly suitable. It is, therefore, common that stochastic
models are approximated as ODE models, which in turn can be approximated by
linear models, which are proven to be an upperbound and therefore, usually the
object of study.

In Section 2.3 we found that existing methods to indicate influential nodes in a net-
work are either topological dependent or cannot take into account node dependent
cost. Furthermore, surveillance scheduling literature is still limited for spreading pro-
cesses. For intervention, as discussed in Section 2.4, a suitable approach includes
regulating spreading and recovery rate of the process via convex optimization, in par-
ticular exponential cone programming. However, these approaches do not necessarily
provide sparse control for targeted intervention in large networks. We, therefore,
discussed sparsity and convex optimization in Section 2.5.

In the remaining chapters we will, therefore, present a risk model with node depen-
dent cost in Chapter 3, our proposed surveillance model in Chapter 4 and our joint
flexible optimization framework via surveillance scheduling and sparse control using
exponential cone programming in Chapter 5.



Chapter 3

Risk Modeling

In this chapter we discuss how to model the risk of an undetected outbreak of a
spreading process. Here, risk is the product of the probability of an outbreak starting
in a particular area and the impact of the process spreading from that location. We,
therefore, first discuss outbreak probability in Section 3.1. Next, we elaborate on
how we can model the spread from the outbreak location as a linearized SIR model in
Section 3.2. In Section 3.3 we will discuss how to model the node impact or cost-to-go
and finally, we present the risk model in Section 3.4.

3.1 Outbreak Rate

Let us consider a network graph G(V , E) with n nodes in the set of nodes, or vertices,
V and edge set E , where at each node i ∈ {1, 2, ..., n} an outbreak can occur. We
model the probability of an outbreak occurring at a node i within a time interval as
a Poisson process [140, Chapter 2]. A Poisson process is a counting process with rate
λ > 0, in which N(t) represents the total number of events up to time t, such that

1. N(0) = 0,

2. The process has independent increments, i.e. Pr {N(t+ s) −N(s)} for any
s ≥ 0, t > 0 is independent of N(s),
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3. The number of events N(t) happening in any interval of length t is Poisson
distributed with mean λt. That is, for all s, t ≥ 0

Pr {N(t+ s) −N(s) = m} = e−λt (λt)m

m! m = 0, 1, . . . (3.1)

In our model outbreaks occurring at each node i are modeled as independent Poisson
processes with rates λi.

Lemma 3.1. For any interval t the probability of at least one event occurring within
this time interval has a linear upperbound λt.

Proof. The probability of at least one event occurring within time interval t is a
consequence of the Poisson definition and given by

Pr {N(t+ s) −N(s) > 0} = 1 − Pr{N(t+ s) −N(s) = 0}

= 1 − e−λt. (3.2)

The derivative at t = 0 equals λ, making it a smooth function. For a Poisson rate
λ > 0 the second derivative of (3.2) equals −λ2e−λt ≤ 0 and hence is concave.
Therefore, the linear approximation will be an upperbound, i.e.

1 − e−λt ≤ λt. (3.3)

For a small interval, this is a tight upper bound.

3.2 SIR Spreading Model

We model an outbreak spreading according to a cellular automata (CA) model.
Cellular automata simulations such as [3, 76, 80] (Section 2.2.2) use an underly-
ing stochastic model with Markov transition probabilities. We consider a basic
Susceptible-Infected-Removed (SIR) model [83], see Section 2.1.2, and each node
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i ∈ {1, 2, ..., n} ∈ V has states Xi(t) (infected) and Zi(t) (removed) associated with
it. A node can now be in three states: infected, i.e., Xi(t) = 1, Zi(t) = 0, susceptible
to infection, i.e., Xi(t) = 0, Zi(t) = 0, or removed, i.e., Xi(t) = 0, Zi(t) = 1.

The transition probabilities of the infected and removed states X(t) and Z(t) associ-
ated with the continuous time Markov chain model [140, Chapter 5] are defined for a
small time period ∆t as

Pr { (Xi(t+ ∆t), Zi(t+ ∆t)) = (1, 0)| (Xi(t), Zi(t)) = (0, 0)} =∑
j∈Ni

βijXj(t)∆t + o(∆t) (3.4a)

Pr { (Xi(t+ ∆t), Zi(t+ ∆t)) = (0, 1)| (Xi(t), Zi(t)) = (1, 0)} =δi∆t + o(∆t) (3.4b)

where βij is the spreading rate, δi the rate of removal and Ni the neighborhood of
node i.

We will now derive the linear networked SIR model similarly to the derivation in
Section 2.1 for the SIS model.

Lemma 3.2. Let us define E[Xi(t)] = P (Xi(t) = 1) as the probability of a node i
being infected at time t and ż as the rate of removal. If χi(0) = E[Xi(0)] then the
upperbound of the stochastic probabilities, i.e. χi(t) ≥ E[Xi(t)] for all t ≥ 0, can be
established via the following coupled differential equations

χ̇i(t) = (1 − χi(t) − zi(t))
n∑

j=1
βijχj(t) − δiχi(t) (3.5a)

żi(t) = δiχi(t). (3.5b)

There are multiple ways to approach the proof of Lemma 3.2. The networked non-
linear ODEs (3.5) can be either derived from the deterministic compartment model
(2.3) or by using a mean-field approximation of the Markov chain model [83, 122].
We will use the latter, similar to Section 2.1.3.

Proof. Using the Kolmogorov forward equations [140, Chapter 5], E(Xi(t)) = P (Xi(t) =
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1) and letting the asymptotically small time interval ∆t go to zero, we can obtain the
exact dynamics of the expectation

dE[Xi(t)]
dt

= −E[Xi(t)]δi + E[(1 −Xi(t) − Zi(t))
∑

j∈Ni

αijβijXj(t)]

dE[Zi(t)]
dt

= δiE[Xi(t)]. (3.6)

Now, taking the mean-field approximation and assuming that E[XiXj] = E[Xi]E[Xj]
for all i ̸= j, the deterministic model can be approximated from this stochastic model
[113, 132, 178]. Similar derivations for the homogeneous differential equations for the
SIR model are given in [83] and for heterogeneous equations in [113, 122, 178]. It
is proven in [167, 178], by showing that E[XiXj] ≥ E[Xi]E[Xj] for all i ̸= j, that
χi(t) ≥ E[Xi(t)] for all t ≥ 0.

This approximation is based on assuming that all the random variables have zero
covariance. This is generally not the case, but it has been found to provide tight
bounds in practice which improve further with network size [164, 167].

Furthermore, the upperbound obtained by using the mean-field approximation has
positive implications for controlling the underlying stochastic process. That is, sta-
bilizing the mean-field approximation implies stabilizing the underlying model.

A linear model can be obtained by linearizing the deterministic model (3.5) around
the infection-free equilibrium point (χ = 0, z = 0). Hence, we obtain

ẋi(t) =
n∑

j=1
βijxj(t) − δixi(t) (3.7a)

żi(t) = δixi(t). (3.7b)

We can combine (3.7a) for all i as

ẋ(t) = Ax(t) (3.8)

with initial condition x(0) where x(t) = [x1(t), ..., xn(t)]T with t ≥ 0, is the state of
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the system and the state matrix A is defined by the linearized spreading dynamics

aij =


−δi ≤ 0 if i = j,

βij ≥ 0 if i ̸= j, (i, j) ∈ E ,

0 otherwise

(3.9)

where E is the set of edges of the graph. Therefore, the off-diagonal entries aij are
determined by the spreading rate βij and the adjacency matrix of the graph, whereas
the diagonal entries are given by −δi, the recovery rate. Because all off-diagonal
entries aij are assumed to be nonnegative, A is Metzler and the system is positive,
i.e. if xi(0) ≥ 0 for all i, then xi(t) ≥ 0 for all t ≥ 0 [8].

Lemma 3.3. Let χ(t) be the solution of (3.5a) ∀i with initial condition χ(0) and let
x(t) be the solution of (3.8). The linear function (3.8) upperbounds the nonlinear one
(3.5a), i.e. x(t) ≥ χ(t) for t ≥ 0 when x(0) ≥ χ(0).

Proof. Because βij ≥ 0, δi ≥ 0, x(t) ≥ 0 and z(t) ≥ 0 for all i and j, it holds that

n∑
j=1

βijxj(t) − δixi(t) ≥ (1 − xi(t) − zi(t))
n∑

j=1
βijxj(t) − δixi(t). (3.10)

Hence, the linear model upperbounds the nonlinear one if x(0) ≥ χ(0) [132].

It should be noted that the linear SIR model for the infected state (3.7a)/(3.8) is
similar to the linear SIS model (2.9).

How the linear model (3.7) behaves in comparison to the nonlinear (3.5) and stochas-
tic cellular automata model (3.4) is shown in Figure 3.1. The stochastic fire spread
displayed is the expectation over multiple runs. It can be seen that the linear
model upperbounds the nonlinear deterministic one, which upperbounds the stochas-
tic model. Closer to the equilibrium point the linear model more closely approximates
the stochastic process whereas over time the error accumulates. That is, the linear
model accurately captures the initial exponential growth phase of an outbreak, but
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(a) Cellular Automata (b) Nonlinear (c) Linear

Figure 3.1 – Fire spread comparison of the different models on a fictional landscape.
The different colors indicate spreading over time, where lighter indicates further in
time.

becomes less accurate as a large percentage of nodes is affected. Nevertheless, its pre-
dictions still provide upperbounds on the true probabilities of infection, so controlling
the linear model can still provide rigorous guarantees. Therefore, it is common to
study the linear model as a proxy for the underlying stochastic spreading process.

3.3 Node Impact

The question now remains how to define the node impact or cost-to-go of the nodes
in the graph. We use the property of positive systems that they have linear and
hence separable Lyapunov and storage functions, which has previously been used for
scalable methods of robust control and identification [16, 138, 163]. We note that this
property also extends to certain classes of nonlinear systems [38, 100].

3.3.1 Cost function

Given that an outbreak has occurred, we associate the following cost function with
the Markov process

JM(X(0)) =
∫ ∞

0
e−rtCE[X(t)]dt (3.11)

where C = [c1, ..., cn] is a row vector defining the cost associated with each node i,
with each ci ≥ 0. For example, in a wildfire the cost of a populated area burning is
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much higher than open grassland. Similar in an epidemic an elderly population in a
nursing home might be more vulnerable and hence, associated with a higher cost of
infection. The variable r is the discount rate and since Xi is bounded, r ≥ 0 is finite.

The cost function for the nonlinear model can be defined by

JNL (χ(0)) =
∫ ∞

0
e−rtCχ(t)dt (3.12)

and for the linear model by

JL (x(0)) =
∫ ∞

0
e−rtCx(t)dt. (3.13)

where we assume that r is large enough such that A − rI is Hurwitz-stable, i.e. all
eigenvalues have negative real parts, and hence, JL is finite. It should be noted that
if the Hurwitz condition is not met then the integral defining JL does not converge,
and so the cost is unbounded.

Lemma 3.4. If x(0) = χ(0) = E[X(0)] then the cost of the linear model (3.13)
upperbounds the cost of the nonlinear model (3.12), which upperbounds the expected
cost of the stochastic model (3.11) for all t ≥ 0,

∫ ∞

0
e−rtCx(t)dt ≥

∫ ∞

0
e−rtCχ(t)dt ≥

∫ ∞

0
e−rtCE[X(t)]dt. (3.14)

Proof. From Lemmas 3.2 and 3.3, we have x(t) ≥ χ(t) ≥ E[X(t)] and because C ≥ 0,
(3.14) follows.

Discount Rate

The discount rate r ≥ 0 can be tuned to emphasize near-term cost over long-term
cost and can be understood as r = 1

td
, i.e. JM =

∫∞
0 e

− t
tdCE[X(t)]dt, where td ≥ 0

is the discount time constant. A shorter time constant td, i.e. a larger discount
rate r, indicates short-term cost is prioritized. In surveillance problems discounting
is necessary for (3.13) to exist since the spreading process dynamics of interest are
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generally unstable.

3.3.2 Cost-to-go

We can now find the node impact or cost-to-go p via two different methods. Either
by direct calculation or via an equivalent linear program (LP).

Lemma 3.5. If A − rI is Hurwitz-stable, the linear cost-to-go has the following
structure, ∫ ∞

0
e−rtCx(t)dt =

n∑
i=1

pixi(0) (3.15)

i.e. JL(x(0)) is finite for all x(0) and a linear function of the initial state, where
pixi(0) is the discounted cost-to-go associated with each node i and p is given by

pT = C(rI − A)−1. (3.16)

Here, A is the state matrix as defined in (3.9), C is the cost vector, r the discount
rate and (3.16) is an upper bound for the stochastic cost-to-go.

Proof. (3.16) implies (3.15) since integrating over the time interval [0,∞) both sides
of

d

dt

(
e−rtpTx(t)

)
= −e−rtCx(t),

gives (3.15), while expanding the left-hand-side gives

d

dt

(
e−rtpTx(t)

)
= −e−rtCx(t),

⇒ e−rtpT ẋ(t) − re−rtpTx(t) = −e−rtCx(t),

⇒ pT (rI − A)x(t) = Cx(t)

which must hold for all x(t), hence implies (3.16). It follows from Lemma 3.4 that
this is an upperbound for the stochastic model.

Lemma 3.6. Each element of p is nonnegative and a monotone function of A, i.e.
A1 ≥ A2 ⇒ p1 ≥ p2 elementwise.
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Proof. (rI − A) is a positive-stable M-matrix, which is inverse positive [8, p. 134],
i.e. all elements of the matrix (rI − A)−1 are nonnegative, as are all elements of
C by construction. Therefore pi will always be nonnegative. Furthermore (rI − A)
is non-singular and given two non-singular M-matrices M and N , if M ≥ N , then
N−1 ≥ M−1 [46]. Hence if A1 ≥ A2 then (rI − A1) ≤ (rI − A2) and (rI − A1)−1 ≥
(rI − A2)−1. Since all elements of C are nonnegative, p1 ≥ p2.

Lemma 3.6 implies that reducing the spreading rate or increasing the recovery rate
can never increase the node impact and vice-versa. An important application of this
is robust solutions: if spreading or recovery rates are uncertain, but known to be in
an interval, then worst-case node impact can be calculated using the boundary values
of the intervals.

The second method to find the node impact p is via a linear program (LP) which is
suitable for extension to include resource allocation. The equivalent LP is

minimize |p|1 (3.17a)

such that p ≥ 0, (3.17b)

pTA− rpT ≤ −C. (3.17c)

Lemma 3.7. The LP (3.17) is equivalent to (3.16).

Proof. Equivalence can be shown by application of Lemma 3.6. Let p⋆ be the node
impact calculated using (3.16), then p⋆ ≥ 0 and p⋆TA − rp⋆T = −C hence p⋆ is
feasible for the LP, but any other feasible p has pTA − rpT ≤ −C and hence (via
inverse-positivity) pT ≥ C(rI − A)−1 = p⋆T , so

|p|1 =
∑

pi ≥
∑

p⋆
i = |p⋆|1 (3.18)

and p = p⋆ is optimal for the LP.

Note that if we are only interested in computing p then the LP representation is
redundant: the second inequality constraint in (3.17) can be replaced by an equality,
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which is equivalent to (3.16) and no minimization is required. However, in Chapter 5,
when we start optimizing over both p and the elements of A, the inequality form is
useful as it admits a convex representation whereas the equality does not.

Remark 3.1. The cost matrix C can be constructed in various ways. One possibility
is to use it to represent the expected total number of ‘removed’ nodes. Indeed, taking
the integral of (3.5b) over the interval [0,∞), and assuming there are no removed
nodes at the start, i.e., z(0) = 0, this results in

z(∞) − z(0) =
∫ ∞

0
ż(t)dt =

∫ ∞

0
Dx(t)dt. (3.19)

where D = diag(δ1, δ2, . . . , δn). Including the option for the discount rate r, i.e. put a
higher cost on nodes that are removed earlier, and using the total number of removed
nodes as the cost, we obtain

∫ ∞

0
e−rtDx(t)dt =

n∑
i=1

pixi(0). (3.20)

3.3.3 Priority Map

To understand the node impact p more intuitively and how the different parameters
affect it, we will visualize the resulting node impact for two different examples with
different sizes and dynamics. We will call the map displaying the node impact a
‘priority map’.

16 node grid

Let us consider a graph G(V , E) with n = 16 nodes, connected as visualized in Fig-
ure 3.2a with a spreading rate β = 0.5 for all (i, j) ∈ E and recovery rate δ = 0.2 for
all i ∈ V , where the cost ci = 1 for i = 16 and ci = 0.1 for every other node. This
results in a system for which aij = −0.2 if i = j, aij = 0.5 if (i, j) ∈ E and aij = 0
otherwise.
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(b) Normalized priority map

Figure 3.2 – Example 3.1; Graph and belonging priority map for a network with
n = 16 nodes with equal spreading rate of β = 0.5 and recovery rate δ = 0.2 for all
nodes. The cost ci = 0.1 for i = 1, .., 15 and ci = 1 for i = 16.
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Figure 3.3 – Block format display of the normalized priority map Figure 3.2b for the
graph in Figure 3.2a.

Hence, there is a high cost node i = 16, which is only connected to node 11. Taking
r = 2 and solving either (3.16) directly or the LP (3.17), the normalized results are
shown in Figure 3.2b.

As expected due to the connectivity, equal spreading and recovery rates and with
one high cost node, Figure 3.2b shows high priorities for the diagonal nodes 6 and
11 leading up to the high cost node 16. Another way to display Figure 3.2b, is
demonstrated in Figure 3.3 and for larger node examples we will stick to the block
format for visibility.
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(b) Cost Map

Figure 3.4 – Example 3.2; Fictional landscape with different area types, represented
as a grid with n = 1000 nodes and corresponding cost map where the city nodes
have a high cost associated with them.

1000 node fictional landscape

A more interesting problem is to look at the effect of different spreading rates β, which
would be a more realistic representation of actual spreading processes. Therefore,
we consider the fictional landscape given in Figure 3.4a consisting of three different
vegetation types, a city and water. It can be represented as a network graph with
n = 1000 nodes. The adjacency matrix and therefore, the edge set E , is based on a 8
node spreading direction grid, i.e., the landscape is seen as a grid where each node is
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connected to its 8 neighboring nodes. That is, fire can spread horizontally, vertically
and diagonally as explained and visualized previously in Figure 2.3. Boundary nodes
have fewer edges accordingly.

The spreading rates are determined based on cellular automata (CA) wildfire models
presented in [3] and [80], where the wildfire spreading probabilities are determined
based on real wildfire observations. The spreading rates for an edge consist of a
baseline spreading rate and vegetation and wind correction

β = βbβvegβw (3.21)

where the baseline βb = 0.5. A correction factor for the vegetation is taken as βveg =
0.4, βveg = 1 and βveg = 1.4 for respectively desert, grassland and eucalyptus forest.
For the city this is βveg = 0.5 and for the unburnable water areas βveg = 0 is taken.
βw is calculated following [3]. Finally, β is corrected for spreading between diagonally
connected nodes, following [80]. The cost of the city nodes is ci = 1, whereas ci = 0.1
for all other nodes as displayed in the cost map Figure 3.4b.

We now look into adjusting the spreading rate for respectively a southwesterly, south-
easterly, northeasterly and northwesterly wind with a speed of V = 4 m/s. Taking a
discount rate of r = 3.8, this results in Figure 3.5, where the effects of wind direction
on the node priority map can be seen. A higher wind speed will exaggerate these
effects, see Figure 3.6 for V = 10 m/s, whereas for lower wind speed the priority
maps will look more similar.

In general, the most critical nodes are the nodes in the bottom left corner where the
eucalyptus with grassland in between leads up to the city. Other possible hazards
are the city itself due to its high cost and the smaller patches of eucalyptus closer to
the city. However, this area is smaller and restricted above by slow spreading desert
and water. Therefore, it poses less danger in case of fire igniting in the top part of
the landscape. For a better interpretation of the priority map, simulations were run
starting fires in different priority nodes and the results can be seen in Figure 3.7.

The cost that is taken for the landscape nodes also affects the priority map as shown
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(d) Northwest

Figure 3.5 – Normalized surveillance priority map for different wind directions, V = 4
m/s, for the landscape and cost map in Figure 3.4. Wind direction is indicated as
the direction the wind is coming from.
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Figure 3.6 – Effect of a higher wind speed, V = 10 m/s, on the priority map, com-
pared to Figure 3.5, for the landscape and cost map in Figure 3.4.
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(a) Low priority node (b) High priority node

Figure 3.7 – Fire spread simulations of starting fires (red triangle) in different priority
nodes in the top and bottom left corner for optimal wind conditions for fire spread
to the city. Black indicates burned area.
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(b) ci = 0.1

Figure 3.8 – Effect of different cost ci of the landscape nodes on the priority map of
the landscape in Figure 3.4a with southwesterly wind of V = 4 m/s and r = 3.8.

in Figure 3.8. With a high cost on the landscape nodes, they are prioritized over the
city, because more landscape burning down will now result in a higher total cost.

Discount Rate

In Section 3.3.1 we discussed the discount rate r in (3.11) and (3.13). We visualize the
effect of the discount rate in Figure 3.9 with again ci = 0.1 for landscape nodes, ci = 1
for city nodes and a southwesterly wind of V = 4 m/s, where the minimal discount rate
equals r = 3.3103 before rI −A becomes singular. A higher discount rate prioritizes
the near future and hence, prioritizes what is happening in the city, i.e. the highest
cost area of the landscape, over what possible outbreaks in other parts of the graph
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Figure 3.9 – Effect of discount rate r on the priority map for the landscape and cost
map in Figure 3.4 with southwesterly wind of V = 4 m/s.

could lead to. The limiting case of r → ∞ would result in limr→∞
1
r
CT (rI −A) = C,

i.e. p → 1
r
C.

3.4 Risk Model

We can now define a risk model associated with the spreading process on the graph
G. The risk Ri at each node i is defined as the product of the probability of at least
one outbreak occurring within a time interval (3.2) and the resulting cost of that
outbreak (3.11).

Using Lemma 3.1 and Lemma 3.5, we obtain

R(t) = p⊙ λt. (3.22)

Remark 3.2. Instead of using the probability that at least one outbreak occurs within
a given time interval for a Poisson process, we can also define likelihood of an outbreak
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more general with the estimated probability of infection x̂i(0). The risk vector can now
be defined as:

R = x̂(0) ⊙ p. (3.23)

Spectral Abscissa

In this thesis we will often compare our proposed risk model to minimizing the spectral
abscissa (see Section 2.4.1)

Jλ = λmax(A). (3.24)

We will, therefore, define the following corollary to show the relationship between the
discount rate r in our model and minimizing the spectral abscissa.

Corollary 3.1. The constraints on the cost function of the linear model (3.13) and
the linear cost-to-go (3.15) are feasible if and only if A − rI is Hurwitz-stable, i.e.
λmax(A) ≤ r. Because A is Metzler, λmax is real and unique. Therefore, minimizing
the spectral abscissa (3.24) can be upperbounded by minimizing the discount rate r.
Hence, the widely-used approach of minimizing the the spectral abscissa can be seen
as a special case of the optimization framework we propose in Chapter 5.

Minimizing the spectral abscissa is common in literature (e.g. [114, 132, 167, 168,
178]), as discussed in Section 2.4.1. The main difference and advantage of our risk
model over the spectral abscissa is that it can take into account node dependent costs.

Feasibility

The linear cost-to-go (3.15) used to define the node impact p in the risk model (3.22)
is feasible if and only if A− rI is Hurwitz stable. If A− rI is not Hurwitz stable, the
linear model (3.13) has infinite cost. This doesn’t necessarily imply the nonlinear cost
(3.12) is unbounded as the linear model (3.7) is an upperbound of the nonlinear model
(3.5), which in turn upperbounds the expected state of the underlying stochastic
model (3.4), see Lemma 3.4. However, it has been observed that the mean-field
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approximation tends to closely approximate the stochastic model and the gap on the
bound decreases with increasing network size [164, 167] and we refer to Figure 3.1 and
discussion in Section 3.2 for a fire spread example comparing the stochastic, nonlinear
and linear model, showing close agreement between the three.

3.5 Conclusions

In this chapter we defined a risk model based on the product of the outbreak rate and
the node impact for a given time interval. We proposed to model the outbreak rate as
a Poisson process, where we take the linear upperbound of at least one event occurring
within a time interval. Furthermore, we discussed why the linear spreading model
is a suitably proxy for studying the underlying stochastic model. Next, we defined
a cost function, where we found that the cost function associated with the linear
model upperbounds the cost function associated with the stochastic model. We used
the properties of positive systems to find the linear cost-to-go or node impact vector,
which we discussed further by giving examples of a ‘priority map’ that shows the node
impact or cost-to-go for different cost and spreading parameters and we discussed the
effect of the discount rate. Finally, we presented and discussed feasibility of our
proposed risk model and how it differs from other risk models, such as the spectral
abscissa, by taking into account node dependent costs.



Chapter 4

The Surveillance Problem

In the previous chapter we defined the risk model, where risk consists of the probabil-
ity of an outbreak starting in a particular area and the impact of the process spreading
from that location. In this chapter we consider the problem of bounding the risk of
an undetected outbreak by use of a revisit schedule. We will, therefore, first present
the surveillance problem and the main theoretical result in Section 4.1, afterwards
in Section 4.2 we will discuss two examples of how the risk map and surveillance
schedules can be implemented. We look into the effect of different parameters on the
risk with a small 16 node example. Finally, with a large 4000 node wildfire example
we demonstrate how a revisit schedule can bound the maximum risk.

4.1 Problem Statement

The risk Ri at each node i is defined as the product of the probability of at least one
outbreak occurring within a time interval (3.2) and the resulting cost of that outbreak
(3.11) as discussed in Chapter 3. We now want to bound the risk and minimize the
cost of an undetected outbreak by use of a revisit schedule. That is, we want to
find the largest revisit interval τi for each node i, such that the risk of an undetected
outbreak remains bounded by some Rmax > 0. We take the assumption that at each
revisit we can sense the state of the system, whereas in between visits we receive no
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information. That is, at time of visiting the risk of an undetected outbreak is reduced
back to a small number ϵR, to include sensor inaccuracy, for that node.

Problem 4.1 (Surveillance Problem). For each node i find the largest revisit interval
τi, such that the risk of an undetected outbreak remains bounded by Rmax. Here,
the risk Ri at each node i is defined as the product of the probability of at least one
outbreak occurring (3.2) and the resulting cost of that outbreak (3.11).

The main theoretical result is

Theorem 4.1. Suppose that A− rI is Hurwitz-stable, the risk of an undetected out-
break at node i remains bounded by Rmax for any revisit interval τi = ti(k+ 1) − ti(k)
satisfying

τi = ti(k + 1) − ti(k) ≤ Rmax − ϵR

piλi

(4.1)

where ti(k) is the kth time node i is visited, λi the Poisson rate of an outbreak oc-
curring at node i, pi the node impact, and ϵR a small number to include sensing
uncertainty.

Proof. Using Lemma 3.1 we can upperbound the probability of an outbreak occurring
at a node i by λiτi. That is, the estimated outbreak probability over the interval
τi = ti(k + 1) − ti(k), where ti(k) is the kth time node i is visited, is

x̂i(t) = λi(ti(k + 1) − ti(k)). (4.2)

The node impact or cost-to-go pi is given in Lemma 3.5. Therefore, taking into
account the risk is reduced to a small number ϵR at each revisit, the risk at each node
is bounded by

Ri(t) ≤ piλi (ti(k + 1) − ti(k)) + ϵR ≤ Rmax. (4.3)

To bound the risk as defined in Theorem 4.1, we can revisit the node location to
reduce the uncertainty. How often to revisit depends on the Poisson rate of the
outbreak λi and cost-to-go pi. We can visualize this as demonstrated in Figure 4.1.
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Figure 4.1 – Theorem 4.1 visualized. To keep the risk bounded at Rmax (4.1), node j,
indicated with the orange line, has to be visited twice as often compared to node
i, i.e. the blue (dotted) line.
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In Figure 4.1a we have set the risk bound to Rmax and we have to revisit at least every
ti(k+ 1) − ti(k) interval to prevent the risk of an undetected event going over the set
bound. If for a node j, pjλj is twice as high as piλi, indicated in Figure 4.1b with the
orange line, we have to revisit this node twice as often to get the same bound on the
risk.

It should be noted that if the Hurwitz assumption is not met, the cost is unbounded,
Theorem 4.1 is not valid and no revisit interval can be found, see ‘Feasibility’ subsec-
tion in Section 3.4.

Remark 4.1. For epidemics, revisiting can be interpreted as testing an individual
for infection of a specific disease, e.g. COVID-19. Hence, each time that a node gets
tested the risk of an undetected outbreak is reduced.

4.2 Results

In this section we illustrate how the proposed surveillance model can be implemented
with two different examples. First, we look into the effect of different parameters on
the risk with a small 16 node example. Next, we discuss a large wildfire example of
4000 nodes, and demonstrate how we can go from the risk map to bounding the risk
and incorporate robotic path planning methods for surveillance.

4.2.1 Risk Map

Let us consider a graph with n = 16 nodes, connected as visualized in Figure 4.2. We
now want to investigate the effect of the different parameters, i.e. cost ci, outbreak
rate λi and spreading rate βij, on the risk. We first set all parameters the same for
all nodes and edges, i.e. we take ci = 1, βij = 0.5 and λi = 1 ∀i, and then introduce
one by one node dependent cost, spreading rate and outbreak rate. The resulting risk
maps for r = 2 are displayed in Figure 4.2.



4.2 Results 61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ut

br
ea

k
R

at
e

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
is

k

(a) All nodes have equal cost ci = 1 and outbreak rate λi = 1, all edges
have spreading rate βij = 0.5
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(b) High cost nodes i = 14, 15, equal outbreak rate λi = 1 for all nodes
and equal spreading rate βij = 0.5 for all edges
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(c) Spreading rate as indicated by edge width on the left, high cost nodes
i = 14, 15, equal outbreak rate λi = 1
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(d) Outbreak rate, spreading rate and cost as indicated on the left

Figure 4.2 – Example 4.1; The effect of cost ci, outbreak rate λi and spreading rate βij

on a graph with n = 16 nodes. On the left is the graph where node color indicates
outbreak rate, node marker size indicates cost and edge width spreading rate. The
resulting risk map is displayed on the right, where node color indicates risk Ri.
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(a) r = 1.6439
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(b) r = 20

Figure 4.3 – Effect of the discount rate r on the risk map of Figure 4.2d.

It can be seen that uniform spreading rate, cost and outbreak rate result in risk based
on node degree, see Figure 4.2a.

If we introduce a cost ci = 1 for nodes i = 14, 15 and ci = 0.1 otherwise, see Fig-
ure 4.2b, we obtain high risk nodes i = 14, 15 which correspond to the high cost
nodes.

Including higher spreading rates βij = 0.8 at specified edges and a lower spreading
rate of βij = 0.2 elsewhere, see Figure 4.2c, we obtain high risk node i = 15, which
corresponds to both high cost and high spreading rate.

Finally, we set outbreak rate as indicated by the colorbar with a high likelihood of
an outbreak starting in node i = 3. It can be seen in Figure 4.2d that the high risk
node i = 3 now corresponds to the high outbreak node.

We can visualize the effect of the discount rate (see Section 3.3.1) for Figure 4.2d by
comparing the resulting risk map for a low and high discount rate, see Figure 4.3.
Here, the minimum discount rate equals r = 1.6439 before rI−A becomes singular. A
higher discount rate, see Figure 4.3b, prioritizes the near future and hence, prioritizes
what is happening in the high cost nodes over what possible outbreaks in other parts
of the graph could lead to.
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4.2.2 Surveillance Scheduling

Next, we consider a wildfire example to demonstrate risk maps, revisit maps and
surveillance scheduling in combination with persistent monitoring. Similar to Exam-
ple 3.2, we consider a fictional landscape with varying vegetation, a city and water as
visualized in Figure 4.4a and cost ci given in Figure 4.4b. However, to take it a step
further and make it more realistic, we increase the size of the example to a network
graph of n = 4000 nodes and consider gradual transitions between vegetation areas,
see Figure 4.4a, instead of the previous ad hoc representation. Furthermore, we take
into account the outbreak rate λi as illustrated in Figure 4.4c to obtain the risk map.

The adjacency matrix and therefore, the set of edges E , is again based on a 8 node
spreading direction grid, i.e., the landscape is seen as a grid where each node is con-
nected to its direct horizontal, vertical and diagonal neighbors, see Figure 2.3. The
recovery rate δ = 0.5 for all nodes, whereas β is again derived using data from cellu-
lar automata wildfire models presented in [3] and [80], where the wildfire spreading
probabilities are determined based on real wildfire observations. For the spreading
dynamics βveg = 2 · Vegetation, where the vegetation value is indicated in Figure 4.4a
and ∈ [0, 1] for respectively minimal and maximal vegetation. For the city βveg = 0.5
is taken and for the nonburnable water areas βveg = 0. Finally, β is corrected for
spreading between diagonally connected nodes, following [80].

The spreading rate is, furthermore, adjusted for respectively a westerly, northerly,
easterly and southerly wind with a speed of V = 8 m/s. Taking a discount rate of
r = 4, this results in Figure 4.5, where the effects of wind direction on the risk map
can be seen. Large spreading rates, caused by e.g. eucalyptus forest, in combination
with wind direction form the most direct hazards to the high cost city nodes.

It should be noted that the generated risk maps are for a revisit rate of 1, i.e. 1
τ

= 1.
If we now want to minimize the maximum risk by 50% by using a revisit schedule,
i.e. Rmax = 0.5Ri where Ri is the risk in Figure 4.5a, we can obtain the smallest
revisit rate using Theorem 4.1, assuming ϵR is negligible. The results are displayed
in Figure 4.6.
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Figure 4.4 – Example 4.2; Wildfire spreading over a graph with n = 4000 nodes
representing a simplified landscape with its corresponding cost map and outbreak
rate.
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Figure 4.5 – Logarithmic surveillance risk map for different wind directions for the
landscape in Figure 4.4. Wind direction is indicated as the direction the wind is
coming from.
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by 50%.
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UAV path

Figure 4.7 – Persistent monitoring path consisting of two subwalks using the minimum
maximum latency walk [2] on the revisit map given in Figure 4.6. Darker red lines
indicate multiple subwalks visit this section.

We can use this revisit rate to find a persistent monitoring path, see Figures 4.7 and
4.8. We consider a simplified scenario, with no restrictions on flight time and path
length, and assume the UAV is able to monitor a 4x4 square of nodes at the same
time. To match this sensing assumption, we take the maximum revisit rate of 4x4
squares of nodes of Figure 4.6, rounded to the nearest integer, as input.

As discussed in Section 2.3.3 for the persistent monitoring problem different algo-
rithms and solutions exist [124, 152, 179]. To show how a risk map or revisit map
can be used for persistent monitoring we show the implementation of one of these
existing algorithms.

Alamdari et al. [2] for example provide a solution to the persistent monitoring problem
in discrete environments by minimizing the maximum latency between observations.
Here maximum latency is the maximum time between visits to the same node, i.e.
the revisit interval τ . Their method ranks nodes into different subclasses based on
their value, where the higher the value and subclass the more often the node will be
visited as explained in more detail in Section 2.3.3.
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UAV path

(a) Subwalk 1

UAV path

(b) Subwalk 2

Figure 4.8 – Two different subwalks of the persistent monitoring path given in Fig-
ure 4.7.
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Implementing the algorithm proposed in [2], the minimum maximum latency walk for
persistent monitoring as visualized in Figure 4.7 is obtained. Darker red lines indicate
that multiple subwalks visit that section. This particular persistent monitoring path
consists of two subwalks, which are illustrated in Figure 4.8.

It should be noted that the risk map, e.g. Figure 4.5, could also be taken directly
as an input to flight time and path length trade-off algorithms such as the Dubins
orienteering problem (DOP) [129].

4.3 Conclusions

In this chapter we formulated the surveillance problem. In the surveillance problem,
the dynamics of the spreading process are fixed and the aim is to identify and bound
the future cost of an undetected outbreak spreading from each node. This can be
done by use of risk maps and finding the largest revisit interval for each node that we
can use in surveillance schedules. We demonstrated this by first showing the effect
of different parameters and discount rate on the risk map, afterwards we discussed
a larger realistic wildfire example and demonstrated how to implement persistent
monitoring path planning to bound the risk. In the next chapter, i.e. Chapter 5, we
will extend this by including resource allocation for risk minimization.



Chapter 5

The Intervention Problem

In the previous chapter, we discussed how to bound the risk of an undetected outbreak
by use of a revisit schedule. In this chapter, we consider allocating resources to reduce
the risk and determine the associated surveillance workload needed. We, therefore,
first define the resource model in Section 5.1. Next, we formulate the intervention
problem and its convex representation in respectively Section 5.2 and Section 5.3. In
Section 5.4 we discuss sparsity and reweighted ℓ1 minimization. Finally, we present
results for both epidemic and wildfire examples in Section 5.5. We demonstrate how
the optimization framework can integrate both resource allocation and surveillance
schedules, compare our results to minimizing the spectral abscissa and the original
stochastic model and comment on computation and scalability.

5.1 Resource Allocation Model

In this section we discuss our proposed resource allocation model. Resources, e.g.
lockdowns, vaccination, fire containment lines, can be allocated to modify the spread-
ing and recovery rates βij and δi, the outbreak Poisson rate λi and the revisit interval
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τi. We assume bounded ranges of possible values

0 < β
ij

≤ βij ≤ βij, (5.1a)

0 < δi ≤ δi ≤ δi < ∆, (5.1b)

0 < λi ≤ λi ≤ λi, (5.1c)

0 < τ i ≤ τi ≤ τ i. (5.1d)

Here βij and δi are the unmodified rates of the system (3.8).

Remark 5.1. Note that ∆ > δ as introduced in (5.1b) is often restricted to 1 for
(networked) spreading processes where the recovery rate δ can not exceed 1 due to
either restrictions on the discrete or nonlinear continuous dynamics, used time frames
and/or values to indicate the spreading process [122, 132].

The resource model we propose is defined by the following functions:

fij (βij) = wijlog
(
βij

βij

)
, (5.2a)

gi

(
∆ − δi

)
= wiilog

(
∆ − δi

∆ − δi

)
, (5.2b)

hi (λi) = ωλi
log

(
λi

λi

)
, (5.2c)

ψi (τi) = ωτi
log

(
τ i

τi

)
(5.2d)

where wij, wii, ωλi
and ωτi

are weightings expressing the cost of respectively reducing
βij, increasing δi and reducing λi and τi, and can be tuned to indicate areas in the
network where it is hard or undesired to apply resources.

The logarithmic resource model for β (5.2a) can be understood as expressing the cost
of proportional decrease in spreading rate at a particular node. That is, a reduction
in βij by a certain proportion always takes the same amount of resources.

The design of the weightings wij is, therefore, easy to understand: e.g. if it takes
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ξij resources to reduce the spreading rate from i to j to half its original value, then
set wij = ξij/ log(2). Note that this implies that it is impossible for βij to become
0, as this would take infinite resources, which is consistent with many real processes
in which it is impossible to completely eliminate the possibility of spread. A similar
interpretation holds for the cost of δ (5.2b) except that it is the difference between δ
and ∆ which is reduced proportionally.

The logarithmic resource model of λ (5.2c) can be understood in a similar way as
the resource model of the spreading rate β, i.e. a proportional decrease always has
the same cost and it is impossible to reduce the outbreak rate to 0. Finally, for the
revisit interval τ (5.2d) this can be thought of as that it is impossible to monitor
each node i constantly. Hence, there will always be a non-zero interval rate between
measurements. Furthermore, these resource models encourage sparsity as detailed
further in Section 5.4.

In Section 5.5.2, in Example 5.3, we will compare the proposed resource model for
the spreading rate (5.2a) and recovery rate (5.2b) with the resource model in [132],
i.e.

fij (βij) =
β−1

ij − β
−1
ij

β−1
ij

− β
−1
ij

, (5.3a)

gi (δi) = (1 − δi)−1 − (1 − δi)−1

(1 − δi)−1 − (1 − δi)−1 (5.3b)

as visualized for the spreading rate in Figure 5.1 for β = 0.05 and β = 1. Notice that
the proposed model associates higher cost for low resource investments, encouraging
sparse allocation.

5.2 Problem Statements

We can study multiple problems, where the goal is to either minimize the risk or keep
the risk bounded while minimizing resources. In total there are six different quantities
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Figure 5.1 – Comparison of resource models (5.2a) and (5.3a) for investment on spread-
ing rate β, with β = 0.05 and β = 1.

we may want to minimize or bound: risk (3.22), resources on spreading rate (5.2a),
recovery rate (5.2b) and outbreak rate (5.2c), surveillance workload, i.e. frequency of
revisits (5.2d) and discount rate r or the spectral abscissa bound (see Corollary 3.1).

The constraints the optimization will have to adhere to are the dynamic coupling
constraint (3.17c), bounds on the spreading rate (5.1a), recovery rate (5.1b), outbreak
rate (5.1c), revisit interval (5.1d) and discount rate. We set the bounds on the
discount rate as

0 ≤ r ≤ R (5.4)

where R is the maximum discount rate.

The different objectives or costs and constraints are also summarized in respectively
Table 5.1 and Table 5.2 including their convex representation, which we discuss in
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the next Section 5.3.

Using the above mentioned objectives and constraints, we can now specify the stan-
dard set-up of the optimization problem, which is an extension of the LP (3.17).

Problem 5.1 (Intervention Problem). Minimize the maximum risk bound Ri = piλiτi

via sparse resource allocation, given defined resource allocation budgets Γ and a cost
ci associated with each node i. That is, find the optimal state matrix A, discount rate
r, outbreak Poisson rate λi and revisit interval τi that minimizes

minimize
p,r,β,δ,λ,τ

max
i

(piλiτi) (5.5a)

such that p ≥ 0, (5.5b)

pTA− rpT ≤ −C, (5.5c)

0 < β
ij

≤ βij ≤ βij, (5.5d)

0 < δi ≤ δi ≤ δi < ∆, (5.5e)

0 < λi ≤ λi ≤ λi, (5.5f)

0 < τ i ≤ τi ≤ τ i, (5.5g)

0 ≤ r ≤ R, (5.5h)∑
ij

fij (βij) ≤ Γβ, (5.5i)

∑
i

gi (δi) ≤ Γδ, (5.5j)

∑
i

hi (λi) ≤ Γλ, (5.5k)

∑
i

ψi (τi) ≤ Γτ . (5.5l)

It should be noted that (5.5c) expresses the Hurwitz stability condition (Section 3.3.1)
and ensures the optimization is feasible, see Corollary 3.1.

In this thesis we focus on minimizing the maximum risk maxi(Ri), i.e. we allocate
resources to reduce the worst-case expected impact of a localized outbreak. However,
the summed risk, i.e. ∑i Ri, can also be used.
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Two closely related simplified problems which are often studied in literature [99,
114, 132, 183] are ‘resource-constrained risk minimization’ and ‘risk-constrained risk
minimization’ where the goal is to keep both the risk and budget allocation small.
These problems fall within the presented optimization framework Problem 5.1, but
have only resources allocated to spreading and/or recovery rate. That is, compared
to Problem 5.1 they have a fixed, given discount rate and outbreak rate and do
not consider the joint optimization with surveillance scheduling, i.e. they do not
include the interval rate. We will, therefore, use the risk given in (3.23) including the
estimated probability x̂i(0) instead of the probability of an outbreak occurring over
a time interval (λiτi).

Problem 5.2 (Resource-Constrained Risk Minimization). Given defined resource al-
location budget Γ, discount rate r and node dependent cost ci, find the optimal spread-
ing and recovery rates βij and δi that via sparse resource allocation minimize the
maximum risk x̂(0) ⊙ p, i.e. find the updated state matrix A that minimizes

minimize
p,β,δ

max(x̂(0) ⊙ p) (5.6a)

such that p ≥ 0, (5.6b)

pTA− rpT ≤ −C, (5.6c)

0 < β
ij

≤ βij ≤ βij, (5.6d)

0 < δi ≤ δi ≤ δi < ∆, (5.6e)∑
ij

fij (βij) +
∑

i

gi (δi) ≤ Γ. (5.6f)

Problem 5.3 (Risk-Constrained Resource Minimization). Find the optimal spreading
and recovery rates βij and δi that via sparse resource allocation minimize the amount
of resources required, given an upperbound on the maximum risk γ, discount rate r
and node dependent cost ci, i.e. find the updated state matrix A that minimizes

minimize
p,β,δ

∑
ij

fij (βij) +
∑

i

gi (δi) (5.7a)

such that p ≥ 0, (5.7b)
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pTA− rpT ≤ −C, (5.7c)

0 < β
ij

≤ βij ≤ βij, (5.7d)

0 < δi ≤ δi ≤ δi < ∆, (5.7e)

pix̂i(0) ≤ γ. (5.7f)

The formulated Problems 5.1, 5.2 and 5.3 are, however, unfortunately not LPs due
to the nonlinearity occurring in the dynamic coupling constraint (5.5c) and can,
therefore, not easily be optimally solved directly in a scalable way. In the next section,
we will, therefore, demonstrate a method to reformulate these problems as convex
optimization programs. In Appendix A an alternative resource model and iterative
optimization programs to deal with this nonlinearity are explored and discussed as
partially published in [153].

Additionally, it should be remarked that the proposed framework is applicable to any
linear positive system for which sparse control applications are needed.

Remark 5.2. The proposed optimization framework is applicable to any linear pos-
itive system where sparse changes to the state matrix are required, i.e. for which an
integral linear cost function is minimized from the initial condition by changing as
few elements of the state matrix as possible. In particular, the framework holds for a
system ẋ(t) = Ax(t) where A is Metzler, i.e. aij ≥ 0 ∀i ̸= j similar to (3.9) and a
corresponding cost function of the form J =

∫∞
0 e−rtCx(t)dt.

5.3 Exponentional Cone Programming

This section demonstrates how we can reformulate our constraints and objectives to
obtain a convex optimization problem, in particular an exponential cone program (see
Section 2.5.4). Our problem formulations as given in the previous section are similar
to GPs (Section 2.5.3) in that they are convex after logarithmic transformation.

We define decision variables yi, vi, zi and σi for all nodes i ∈ V , uij for all pairs
(i, j) ∈ E and a new variable ρ to obtain a convex spectral abscissa bound. All
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Table 5.1 – Spreading process quantities and their convex representation.

Objective Model Variable Convex Representation
Risk Ri = piλiτi yi + log(λi) − zi

ωλi
+ log(τ i) − σi

ωτi

Spreading rate ∑
ij fij (βij)

∑
ij uij

Recovery rate ∑
i gi (δi)

∑
i vi

Outbreak rate ∑
i hi (λi)

∑
i zi

Surveillance workload ∑
i ψi (τi)

∑
i σi

Spectral abscissa bound r log(eρ − ∆)

objectives and constraints can now be reformulated as convex constraints under the
following logarithmic transformations;

yi = log(pi), uij = fij(βij), vi = gi(∆ − δi),

zi = hi(λi), σi = ψi(τi), ρ = log(∆ + r). (5.8)

The objectives and their convex representation are summarized in Table 5.1.

Most convex representations follow directly from the logarithmic transformations
given in (5.8), however, we will demonstrate how to obtain the convex logarithmic
transformation of the risk Ri, i.e.

log(Ri) = log(piλiτi) = log(pi) + log(λi) + log(τi). (5.9)

From (5.8) we can directly see that log(pi) = yi, but we will need to rewrite zi = hi(λi)
and σi = ψi(τi) to obtain the logarithmic risk equation. We will demonstrate this for
zi. Using (5.2c) we obtain

zi = hi(λi) = ωλi
log

(
λi

λi

)
= ωλi

(
log

(
λi

)
− log (λi)

)
, (5.10)

rearranging we get
zi

ωλi

= log
(
λi

)
− log (λi) (5.11)

which results in
log(λi) = log(λi) − zi

ωλi

. (5.12)
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Table 5.2 – Constraints of the minimization Problem 5.1 and their convex representa-
tion.

Name Model Constraint Convex Representation

Dynamic coupling constraint pTA− rpT ≤ −C q(y, u, v, ρ) ≤ 0 (5.13)

Spreading rate bounds 0 < β
ij

≤ βij ≤ βij 0 ≤ uij ≤ uij = wijlog
(

βij

β
ij

)
Recovery rate bounds 0 < δi ≤ δi ≤ δi < ∆ 0 ≤ vi ≤ vi = wiilog

(
∆−δi

∆−δi

)
Outbreak rate bounds 0 < λi ≤ λi ≤ λi 0 ≤ zi ≤ zi = ωλi

log
(

λi

λi

)
Revisit interval bounds 0 < τ i ≤ τi ≤ τ i 0 ≤ σi ≤ σi = ωτi

log
(

τ i

τ i

)
Discount rate bounds 0 ≤ r ≤ R log(∆) ≤ ρ ≤ log(∆ +R)

In a similar way we can obtain an expression for log(τi) and finally, we obtain the
convex representation of the risk objective as shown in Table 5.1.

The constraints the optimization will have to adhere to are summarized in Table 5.2
and consist of the bounds on the different variables and the dynamic coupling con-
straint (3.17c), derived from (3.16).

Lemma 5.1. The dynamic coupling constraint pTA− rpT ≤ −C is equivalent to the
following convex constraint under the transformations (5.8)

qj(y, u, v, ρ) = log
 ∑

i:(i,j)∈E
exp

(
yi + log

(
βij

)
− uij

wij

− yj − ρ

)

+ exp
(

log
(
∆ − δj

)
− vj

wjj

− ρ

)
+ exp

(
log (cj) − yj − ρ

) ≤ 0 ∀j.

(5.13)

Proof. We obtain (5.13) from (3.16)/(3.17c), which can be rewritten as

n∑
i=1

piAij − pjr ≤ −cj ∀j. (5.14)
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Now using (3.9) we can rewrite this as

∑
i ̸=j

piβij − pjδj − pjr ≤ −cj ∀j, (5.15)

which is equivalent, when introducing ∆ > δi, to

∑
i ̸=j

piβij

pj(∆ + r)
+ ∆ − δj

∆ + r
+ cj

pj(∆ + r)
≤ 1 ∀j. (5.16)

Taking the log of both sides, using ρ = log(∆ + r) and rewriting gives (5.13). The
convexity follows from the fact that log-sum-exp constraints are convex on Rn [14].

It should be noted that (5.13) can be formulated as a set of exponential cone con-
straints.

Lemma 5.2. The bounds on the spreading rates and recovery rates, respectively 0 <
β

ij
≤ βij ≤ βij and 0 < δi ≤ δi ≤ δi < ∆, are equivalent to the following equations

under convex transformation using uij = fij(βij) and vi = gi(∆ − δi)

0 ≤ uij ≤ wijlog
βij

β
ij

 , (5.17a)

0 ≤ vi ≤ wiilog
(

∆ − δi

∆ − δi

)
. (5.17b)

Proof. Rewriting the bounds on β results in

0 <
β

ij

βij

≤ βij

βij

≤ 1 (5.18)

which is equivalent to

0 ≤ log
(
βij

βij

)
≤ log

βij

β
ij

 (5.19)

and can be rewritten to (5.17a) using uij = wijlog
(

βij

βij

)
. The bounds on vi can be

found in the same way.
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The bounds on the outbreak rates λi and interval rates τi can be found following a
similar derivation.

Proposition 5.1 (Convex Problem 5.1). Problem 5.1 is equivalent to the following
convex optimization problem, more specifically exponential cone program, under the
transformations yi = log (pi), uij = fij(βij), vi = gi(∆ − δi), zi = hi(λi), σi = ψi(τi)
and ρ = log

(
∆ + r

)

minimize
y,ρ,u,v,z,σ

max
i

(
yi + log

(
λi

)
− zi

ωλi

+ log (τ i) − σi

ωτi

)
(5.20a)

such that q(y, u, v, ρ) ≤ 0, (5.20b)

0 ≤ uij ≤ uij, (5.20c)

0 ≤ vi ≤ vi, (5.20d)

0 ≤ zi ≤ zi, (5.20e)

0 ≤ σi ≤ σi, (5.20f)

log
(
∆
)

≤ ρ ≤ log
(
∆ +R

)
, (5.20g)∑

ij

uij ≤ Γβ, (5.20h)

∑
i

vi ≤ Γδ, (5.20i)

∑
i

zi ≤ Γλ, (5.20j)

∑
i

σi ≤ Γτ . (5.20k)

Proof. How to derive the convex objective function (5.20a) from the risk objective
(5.11) was demonstrated above in equations (5.10) and (5.11). The dynamic cou-
pling constraint (5.13) equivalence to (5.20b) was proven in Lemma 5.1. The bounds
on spreading, recovery, outbreak and interval rate (5.20c) - (5.20f) were derived in
Lemma 5.2. (5.20g) follows from (5.5h) by adding ∆ and using the transformation
ρ = log(∆ + r). Finally, the resource bounds (5.20h) - (5.20k) follow directly from
(5.5i) - (5.5l) and uij = fij(βij), vi = gi(∆ − δi), zi = hi(λi) and σi = ψi(τi).

Similarly we can derive the equivalent convex optimization problems of Problem 5.2
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and 5.3.

Proposition 5.2. Problem 5.2 is equivalent to the following convex optimization
problem under the transformations yi = log (pi) and uij = fij (βij) and vi = gi

(
∆ − δi

)

minimize
y,u,v

max (log (x̂(0)) + y) (5.21a)

such that log
 ∑

i:(i,j)∈E
exp

(
yi + log

(
βij

∆ + r

)
− uij

wij

− yj

)

+ exp
(

log
(

∆ − δj

∆ + r

)
− vj

wjj

)
+ exp

(
log

(
cj

∆ + r

)
− yj

) ≤ 0 ∀j,

(5.21b)

0 ≤ uij ≤ uij, (5.21c)

0 ≤ vi ≤ vi (5.21d)∑
ij

uij +
∑

i

vi ≤ Γ. (5.21e)

Proof. The objective function (5.21a) follows directly from (5.6a) and y = log(p). We
obtain (5.21b) from Lemma 5.1 and taking the assumption that the discount rate r
is a fixed parameter instead of a variable. The bounds on spreading rate (5.21c) and
recovery rate (5.21d) were derived in Lemma 5.2. Finally, (5.21e) follows directly
from (5.6f) and uij = fij (βij) and vi = gi

(
∆ − δi

)
.

Proposition 5.3. Problem 5.3 is equivalent to the following convex optimization
problem under the transformations yi = log (pi) and uij = fij (βij) and vi = gi

(
∆ − δi

)

minimize
y,u,v

∑
ij

uij +
∑

i

vi (5.22a)

such that log
 ∑

i:(i,j)∈E
exp

(
yi + log

(
βij

∆ + r

)
− uij

wij

− yj

)
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+ exp
(

log
(

∆ − δj

∆ + r

)
− vj

wjj

)
+ exp

(
log

(
cj

∆ + r

)
− yj

) ≤ 0 ∀j,

(5.22b)

0 ≤ uij ≤ uij, (5.22c)

0 ≤ vi ≤ vi (5.22d)

log (x̂(0)) + y ≤ log (γ) . (5.22e)

Proof. Similar to the proof of Proposition 5.2.

5.4 Sparsity and Reweighted ℓ1 minimization

A significant benefit of the exponential cone programming formulation is that it en-
courages sparse resource allocation. Since the associated variables are non-negative,
our resource bounds, formulated as constraints (5.20h) - (5.20k), e.g. ∑ij uij ≤ Γβ,
are ℓ1 norm constraints and objectives, which are widely used to encourage sparsity
[19, 20, 39, 161] as discussed in Section 2.5.5.

If the goal is maximal sparsity, i.e. minimal number of nodes and edges with non-zero
resources allocated, then we can use the reweighted ℓ1 optimization approach of [20]
as given in (2.26) in Section 2.5.5. We can adapt this to our problem by iteratively
solving the problem, but with a reweighted resource model that approximates the
number of nodes and edges with non-zero allocation, e.g.

ϕk
β =

∑
ij

uk
ij

uk−1
ij + ϵ

(5.23)

where k is the iteration number and ϵ a small positive constant to improve numerical
stability.

If we use our resource model as a constraint in the optimization Problem 5.1 we now
replace e.g. the constraint (5.20h) with ϕk

β ≤ M where M is the bound on the number
of edges that can have resources allocated to them. If on the other hand, we want
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to minimize the amount of resources used, the objective changes from minimizing
the resource model to minimizing ϕk

β. We can demonstrate this by having a look at
applying reweighted ℓ1 minimization to Problems 5.2 and 5.3.

We define the iterative reweighted ℓ1 minimization by

ϕk
β,δ =

∑
ij

uk
ij

uk−1
ij + ϵ

+
∑

i

vk
i

vk−1
i + ϵ

. (5.24)

For Problem 5.2 we now replace constraint (5.21e) with ϕk
β,δ ≤ M where M is the

bound on the number of nodes and edges that can have resources allocated to them,
similar to the approach for Problem 5.1. For Problem 5.3 the objective changes from
minimizing (5.22a) to minimizing ϕk

β,δ.

Similarly, we could minimize all resource allocation on nodes and edges for Prob-
lem 5.1 together, instead of for separate resource budgets, by defining

ϕk
all =

∑
ij

uk
ij

uk−1
ij + ϵ

+
∑

i

vk
i

vk−1
i + ϵ

+
∑

i

zk
i

zk−1
i + ϵ

+
∑

i

σk
i

σk−1
i + ϵ

. (5.25)

The reweighted ℓ1 iteration approach has no guarantee of convergence or global opti-
mality, nevertheless has been found to be very effective in practice.

5.5 Results

In this section we illustrate how our proposed method can be implemented with multi-
ple examples for two different spreading processes; epidemics and wildfires. First, we
discuss a 7 node epidemic example to demonstrate how the optimization framework
can be used for identifying critical links and deriving a vaccination strategy. Second,
we discuss a larger 359 node epidemic example of a pandemic spreading on the air-
port transportation network in the United States (US). Third, we demonstrate with a
simplified 1000 node wildfire example that our method can provide more targeted re-
source allocation compared to previous geometric programming approaches. Fourth,
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we revisit Example 4.2, i.e. the large wildfire example of 4000 nodes of Section 4.2.2,
demonstrating how we can utilize resource allocation and revisit schedules to min-
imize the risk of an undetected outbreak. Furthermore, we incorporate robot path
planning methods for surveillance to show how to bridge the gap between spread-
ing models and path planning. We validate our proposed framework based on the
linear model by comparing it to the original stochastic process. Finally, we discuss
computation time and scalability.

5.5.1 Epidemics

We discuss two examples involving epidemics in this subsection. A 7 node example to
demonstrate first of all simplified resource allocation for the optimal control problem
of minimizing risk by modifying the system’s dynamics and second a vaccination
strategy. Moreover, we discuss the effect of the discount rate in regards to intervention
strategies. Finally, we consider a larger air transportation network of 359 nodes
to discuss policy making on larger networks in regards to epidemics and how to
implement reweighted ℓ1 minimization if sparsity is the primary goal.

Epidemic Intervention - 7 nodes

To demonstrate how the optimization framework (Problem 5.1 and Proposition 5.1)
can be utilized we take an example of an epidemic spreading on a graph G(V , E) with
n = 7 nodes as visualized in Figure 5.2. Here, node color indicates outbreak rate λi,
weightings wij are indicated at the edges and node marker size indicates cost ci. We
take homogeneous spreading and recovery rates of βij = 0.35 for all (i, j) ∈ E and
δi = 0.2 for all i ∈ V . In this particular example we have a vulnerable high cost node
i = 7, which could be an elderly person, which is connected to i = 6, which can be
thought of as a caretaker or nurse. This link has, therefore, a higher weight wij = 10,
hence a larger cost to remove it. Node i = 6 is connected to node i = 1 who has a
high likelihood of getting the disease, e.g. due to their work situation.
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Figure 5.2 – Example 5.1; Epidemic spreading over a graph with n = 7 nodes. Node
color indicates outbreak rate λi, weightings wij are indicated at the edges, node
marker size indicates cost ci.

We are, first of all, interested to see if our method can indicate the critical link between
node 1 and 6. Hence, we take our objective as minimizing the risk (3.22) similar to
Problems 5.1 and 5.2, while allocating resources on the links, i.e. spreading rate, take
Γβ = 1 and obtain Figure 5.3. Our method does indeed suggest allocating resources
to this particular link, especially considering the larger cost involved in breaking up
the link between the nurse and the associated patient.

Next, we compare our method to minimizing the spectral abscissa (3.24), see Fig-
ure 5.4. It can be seen, that by only minimizing the spectral abscissa instead of
our proposed risk model, the same critical link is not identified, because the spectral
abscissa does not take into account node dependent costs and therefore, ignores the
importance of node i = 7 and only considers reducing overall spreading rate in the
network.

Another common scenario in relation to epidemics is vaccination. We model vacci-
nation in such a way that similar to other common methods vaccination of a node
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Figure 5.3 – Resource allocation for minimizing the risk (3.22). Node color indicates
outbreak rate λi, weightings wij are indicated at the edges, node marker size indi-
cates cost ci.
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Figure 5.4 – Resource allocation for minimizing the spectral abscissa (3.24).



5.5 Results 86

1

2
3

4

5

6
7

1

1

1

1

1

1

1

1
1

10

0

0.2

0.4

0.6

0.8

1

R
es

ou
rc

e
A

llo
ca

tio
n

7

Figure 5.5 – Resource allocation for vaccination scenario. Node color indicates nodes
vaccinated, i.e. βij is reduced and δi is increased for nodes i = 1 and i = 6, r = 1.3.
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(a) r = 0.987
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(b) r = 2

Figure 5.6 – Effect of discount rate r on vaccination strategy compared to Figure 5.5.

both increases its recovery rate [49, 63, 64] and reduces all incoming spreading rates
[22, 67, 79, 180]. Setting ∆ = 1, see Remark 5.1, the obtained resource allocation, or
vaccination strategy, is given in Figure 5.5 and Figure 5.6. Here the discount rate r,
see Section 3.3.1, determines if we should vaccinate node i = 1, i.e. high discount rate
prioritizes near future impact, and/or node i = 6, i.e. low discount rate prioritizes
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long term advantage. The initial zero outbreak rate of node 7 and higher weight on
the edge between node 6 and 7, make in this case vaccination of node 7 not relevant.

Note that another common way of modeling vaccination is by including an additional
vaccination class into the SIS or SIR model [128, 144, 150]. This, however, goes
beyond the scope of this thesis.

Air Transportation Network

We now demonstrate resource allocation and policy making in regards to risk manage-
ment for a larger network given a spreading process, here an epidemic. We consider
the domestic US air transportation network graph based on the number of passengers
transported in 2014 [145] consisting of n = 359 nodes and 2097 edges as visualized
in Figure 5.7. All domestic air traffic within the US excluding Puerto Rico, Virgin
Islands and Guam is considered, where multiple airports that serve the same city are
combined and routes that have less than 10.000 pax per year are omitted.

Now considering β allocation only and the spread of SARS, we obtain a spreading
rate of β = 0.25 per day, a recovery rate of 0.0352 and a death rate of 0.0279 [24].
For simplicity we consider recovered nodes as removed as well due to (temporary)
immunity. For the resource model we now base the weighting wij on the number
of passengers transported, taking the logic that the more flights and passengers, the
higher the cost of reducing this traffic. The cost ci equals the normalized number of
passengers served per airport, since this roughly corresponds to the local population
and hence, impact of an outbreak.

We now consider two different scenarios with different levels of information. In each
case, the objective is to minimize the risk by 50 percent. First, we consider a known
outbreak in Philadelphia (PHL) and set x̂(0)P HL = 1 and x̂(0)i = 0.1 elsewhere.
Note that this corresponds to Problem 5.3, namely ‘risk-constrained resource mini-
mization’, with spreading rate β allocation only. The resulting resource allocation
for r = 10.7 is given by Figure 5.8 and reduces passenger numbers on 53 out of 2097
routes.
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Figure 5.7 – Example 5.2; Epidemic spreading over a graph of the domestic US air
transportation network with 359 nodes and 2097 edges based on [145]. Node marker
size indicates cost ci, and the color indicates outbreak rate λi for Scenario 2.

We can further improve sparsity by solving the reweighted ℓ1 minimization as ex-
plained in Section 5.4. The resulting allocation is demonstrated in Figure 5.9, here
the number of affected routes is reduced to only 11 instead of 53 while achieving the
same risk as in Figure 5.8. Hence, by stopping air traffic between Philadelphia and
respectively Atlanta, Charlotte, Chicago, Dallas, Denver, Detroit, Houston, Las Ve-
gas, Minneapolis/St. Paul, New York City and Washington DC, risk can be reduced
by 50 percent while leaving other busy air routes intact.

Second, we consider the more realistic scenario where the exact outbreak location
is not known and take the following estimated outbreak probabilities: Philadel-
phia (PHL) x̂(0)P HL = 0.9, Atlanta (ATL) x̂(0)AT L = 0.7, Washington DC (DCA)
x̂(0)DCA = 0.5, New York City (NYC) x̂(0)NY C = 0.4 and x̂(0)i = 0.1 elsewhere.
The resulting resource allocation is displayed in Figure 5.10 and for the reweighted ℓ1

minimization in Figure 5.11. Passenger numbers are reduced on respectively 60 and
13 routes. It can be seen that compared to Figures 5.8 and 5.9 the amount of routes
affected has only slightly increased, but the particular routes affected have changed.
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Figure 5.8 – Scenario 1 - Resource allocation given known outbreak in PHL for reduc-
ing the risk by 50%. 53 edges have resources allocated. Node marker size indicates
cost ci and the node color indicates outbreak rate λi.
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Figure 5.9 – Resource allocation after using reweighted ℓ1 minimization (5.23) on
Figure 5.8. 11 edges have resources allocated.
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Figure 5.10 – Scenario 2 - Resource allocation reducing the risk by 50% with higher
outbreak rates in Philadelphia, Atlanta, Washington DC and New York City. 60
edges have resources allocated. Node marker size indicates cost ci and the node
color indicates outbreak rate λi.
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Figure 5.11 – Resource allocation after using reweighted ℓ1 minimization (5.23) on
Figure 5.10. 13 edges have resources allocated.
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5.5.2 Wildfires

In the previous subsection, we demonstrated how the optimization framework works
with epidemic examples and resource allocation on spreading and recovery rate β

and δ. In this subsection, we will make full use of the optimization framework by
presenting two wildfire examples consisting of a 1000 and 4000 node graph. We
compare the proposed method and resulting resource allocation to other common
approaches based on risk and resource model. That is, we particularly investigate if
high cost areas are targeted and if the results are sparse. Furthermore, we demonstrate
how the joint optimization framework can bridge the gap between spreading models
and robotic path planning. Finally, we validate the resulting allocation obtained by
using the linearized model to outbreaks of the original underlying stochastic model.

1000 nodes

Let us consider the fictional landscape given in Figure 5.12a consisting of different
vegetation types, a city and water. We represent this landscape as a graph with
n = 1000 nodes, where the edge set E connects each node to its neighboring 8 nodes,
i.e. fire can spread horizontally, vertically and diagonally, see Figure 2.3. Boundary
nodes have fewer edges accordingly.

The spreading rates are determined by the vegetation type, wind speed and direction,
as per the wildfire models in [3] and [80]. The spreading rate for an edge

β = βbβvegβw (5.26)

consists of a baseline spreading rate βb = 0.5 and βveg = 0.1, 1 and 1.4 for respectively
desert, grassland and eucalypt forest. Water is considered unburnable and those edges
are removed, resulting in a total number of 3486 non-zero edges. βw is calculated
following [3] for a northeasterly wind of V = 4 m/s. The spreading rate is corrected
for the spread between diagonally connected nodes, following [80]. We set the recovery
rate δ = 0.5 for all nodes.
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(c) Outbreak Rate

Figure 5.12 – Example 5.3; Fictional landscape with different area types, represented
as a grid with n = 1000 nodes with its corresponding cost map and outbreak rate.
City nodes have a high cost associated with them and the cyan cross indicates the
outbreak node for simulations.
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We consider resource allocation to reduce the spreading rates βij, e.g. by digging
firelines or controlled burns. We set wij = 1 for all edges (i, j), indicating an equal
cost to apply resources to any edge. The cost of the city nodes is taken as ci = 1,
whereas ci = 0.001 for all other nodes as illustrated in Figure 5.12b. This could reflect
either the higher economic cost of fire reaching a city or the higher risk to human life.
The outbreak rate λi or outbreak probability x̂i(0) is depicted in Figure 5.12c, e.g.
this could reflect that fires are more likely to start near roads. The discount rate is
set to r = 3.1.

In this example we consider the simplified optimization framework Problems 5.2 and
5.3. That is, we will not take into account surveillance scheduling, i.e. revisit interval
rate τ , nor will we consider resource allocation on the discount rate or outbreak rate.

We compare our proposed objective and resource model with those presented in [132].
Firstly, we compare objectives: our proposed risk model (3.23) and minimizing the
spectral abscissa (3.24) as discussed in Section 2.4.1. We do this via Problem 5.2, the
budget-constrained resource allocation, using the proposed resource model (5.2a). We
take a resource allocation budget of Γβ = 200 and β

ij
= 1 × 10−8 for all edges. The

resulting allocations are shown in Figure 5.13, with colored edges indicating resource
allocation to reduce βij, red indicating maximum possible allocation reducing βij to
β

ij
.

It can be seen in Figure 5.13a that our proposed risk-based objective results in con-
tainment lines that protect high cost areas from areas with high risk of spread. In
contrast, the spectral abscissa objective (3.24) does not distinguish nodes in terms
of cost or likelihood of an outbreak, and containment lines are not obtained (Fig-
ure 5.13b).

Note that the same resource allocation maps but with a different colormap can be
found in Section B.1. This colormap makes low resource allocation more visible to
clearly see the difference in the amount of edges resources are allocated to.

To test the effectiveness of the two approaches, we simulated the stochastic cellular
automata (CA) model with a range of resource bounds, with the starting node in-
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(a) The proposed model: minimize (3.23) subject to constraints on (5.2a).
136 edges have resources allocated.
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(b) Minimize the spectral abscissa (3.24) subject to constraints on the proposed
resource model (5.2a). 611 edges have resources allocated.

Figure 5.13 – Resource allocation for minimizing different risk models for Problem 5.2.
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Table 5.3 – Percentage of simulations of stochastic cellular automata model in which
the city burns down.

Resource bound Γβ 0 25 50 100 200
Proposed objective (3.23) 96.10 93.00 81.10 45.50 6.20

Minimizing spectral abscissa (3.24) 96.10 95.00 95.00 94.90 94.70

dicated in Figure 5.12c. Table 5.3 shows the percentage of simulations (over 1000
trials for each scenario) in which the city burns down, defined as ≥ 50% of city nodes
burning. It can be seen that with the same resources, the proposed risk model can re-
duce the impact on the city by nearly 90% whereas the spectral abscissa minimization
results in only a slight decrease.

Secondly, we compare resource models via Problem 5.3, i.e. risk-constrained resource
minimization. The risk bound that we use is γ = 0.045, which was the optimal value
achieved via Problem 5.2 above, as plotted in Figure 5.13a. Therefore, Figure 5.13a
also shows the solution for Problem 5.3 minimizing our proposed resource model
(5.2a) subject to the risk constraint γ = 0.045.

In Figure 5.14 we show the results for minimizing resource model (5.3a) from [132]
subject to the maximum risk upperbound γ = 0.045, and it can be seen that a small
investment is made on a large number of nodes, whereas our method finds a much
sparser allocation. Out of 3486 total edges, the resource model (5.3a) from [132]
allocates resources on 543 edges (Figure 5.14), whereas our proposed method only
invests on 136 edges (Figure 5.13a).

To further improve sparsity we solve Problem 5.3 with the reweighted ℓ1 minimization
(5.23) as explained in Section 5.4. The resulting allocation is shown in Figure 5.15.
Here, the resource allocation is reduced to only 27 edges while achieving the same
risk as the results in Figures 5.13a and 5.14, which allocated to 136 and 543 edges,
respectively.

Next, to illustrate the effect of the outbreak rate, we solved Problem 5.2 with x̂i(0) = 1
at the outbreak node and its eight surrounding nodes, and x̂i(0) = 0 for all other
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Figure 5.14 – Resource allocation using the resource model from [132] for Problem 5.3:
minimize (5.3a) subject to constraints on the proposed risk model (3.23). 543 edges
have resources allocated.
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Figure 5.15 – Resource allocation after using reweighted ℓ1 minimization (5.23) on
(5.13a). 27 edges have resources allocated.
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nodes, illustrated in Figure 5.16a. This corresponds to precise knowledge of the
outbreak location. It can be seen in Figure 5.16b that the outbreak area is aggressively
suppressed, while some resources are distributed along the path a fire would take to
the city.

It is interesting to contrast Figure 5.13a and Figure 5.16b, the only difference being the
outbreak probability x̂(0). If the outbreak location is known precisely (Figure 5.16b)
then resources are allocated to suppress the outbreak; if not (Figure 5.13a) then
resources are used to protect the high-cost city nodes.

Finally, we look at the effect of the cost map on the resource allocation. If we
take a more gradual cost map as displayed in Figure 5.17a, we obtain a resource
allocation that is more similar to minimizing the spectral abscissa, i.e. Figure 5.13b, as
demonstrated in Figure 5.17b, due to our proposed approach now having to minimize
an overall cost over the whole graph. The outbreak rate effect can still be seen,
especially on the higher outbreak rate ‘road’ on the right of the city that is more
heavily suppressed. Similarly, the top left and top right corners receive more resources
in our method than the spectral abscissa due to the outbreak rate map Figure 5.12c.

Furthermore, we can also model multiple high cost areas in different vegetation instead
of one high cost city area, as illustrated in Figure 5.18a. It can be seen in Figure 5.18b
that more or less resources are applied to protect these high cost areas depending on
the surrounding vegetation and outbreak rate in the area. The high cost eucalyptus
patches in the top left and right are most suppressed due to them being surrounded by
high spreading edges, the northeasterly wind direction and the higher outbreak rate.
Next, the area in the grassland on the bottom still receives some resources due to the
medium outbreak and spreading rates, while the high cost area in the desert on the
left does not prioritize for resources due to the low spreading rate of the vegetation
and lower outbreak rate.
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(a) Outbreak Rate
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(b) Resource Allocation Map

Figure 5.16 – Resource allocation for the proposed framework with precisely-known
initial fire outbreak location. 133 edges have resources allocated.
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(b) Resource Allocation Map

Figure 5.17 – Resource allocation for the proposed framework with a more gradual
cost map. 556 edges have resources allocated.
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(a) Cost Map
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(b) Resource Allocation Map

Figure 5.18 – Resource allocation for the proposed framework with four high cost
areas in different vegetation areas. 81 edges have resources allocated.
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10 -4

10 -3

10
-2

10 -1

10 0

R
isk

(d) Risk Map

Figure 5.19 – Example 5.4; Wildfire spreading over a graph with n = 4000 nodes
representing a simplified landscape with its corresponding cost map, outbreak rate
and resulting risk map for a westerly wind of V = 8 m/s.

4000 nodes

Finally, we revisit Example 4.2, i.e. the wildfire example of 4000 nodes of Section 4.2.2,
here displayed again as Example 5.4 in Figure 5.19, to demonstrate resource allocation
in combination with persistent monitoring.

To quickly summarize, this example can be represented as a network graph with
n = 4000 nodes. The adjacency matrix, i.e. the set of edges E , is set up similar to
the previous example. The recovery rate δ = 0.5 for all nodes. For the spreading
dynamics βveg = 2·Vegetation, where the vegetation value is indicated in Figure 5.19a
and ∈ [0, 1] for respectively minimal and maximal vegetation. For the city βveg = 0.5
is taken and for the nonburnable water areas βveg = 0. The cost ci and outbreak rate
λi are given in Figure 5.19b and Figure 5.19c, respectively. See Section 4.2.2 for the
full details of the parameter setup.

The risk map that we will continue to use in this example from Section 4.2.2 is
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illustrated in Figure 5.19d for a westerly wind of V = 8 m/s and a discount rate of
r = 4.

We now consider minimizing the risk of an undetected outbreak by allocating re-
sources and by use of a revisit schedule as proposed in Problem 5.1. Our objective is
to minimize the risk (3.22) and we can allocate resources on the spreading rate β, out-
break rate λ and revisit interval τ (5.2). Now taking σi = log(8), Γβ = 2000,Γλ = 500
and Γτ = 1500, we obtain the allocation in Figure 5.20. It can be seen that resources
are mainly allocated to high spreading areas that also have higher cost.

If we want to increase sparsity further, we can use the reweighted ℓ1 minimization as
explained in Section 5.4. Increasing the upperbound for σi to log(16), the resulting
allocation is visualized in Figure 5.21. The amount of edges with resources allocated
is reduced from 1273 to 289 while achieving the same risk bound.

To demonstrate how the proposed optimization framework can connect spreading
models to path planning, we give an example of integrating the obtained revisit rate
with an algorithm for persistent monitoring similar to Section 4.2.2. We will again
take the minimum maximum latency walk from [2] to find the path (see Section 2.3.3
for details) and assume that the UAV is able to monitor a 4x4 square of nodes at the
same time.

We use the revisit map given in Figure 5.20c as input, where we take the maximum
revisit rate of the 4x4 square of nodes rounded to the nearest integer. The minimum
maximum latency walk for persistent monitoring as visualized in Figure 5.22 is ob-
tained. The eight corresponding subwalks of Figure 5.22 can be found in Appendix B
and are depicted in Figure B.3.

We compare our proposed resource allocation, as shown in Figure 5.20, with mini-
mizing the spectral abscissa (3.24), depicted in Figure 5.23, taking the same resource
allocation budget. It can be seen that the spectral abscissa invests in reducing high
spreading rates, but it is unable to take into account the node dependent cost ci.

Finally, to validate our proposed method, which is based on various bounds and
approximations, we simulate the original stochastic model (3.4) a 1000 times and
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(a) Resource allocation on spreading rate β
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(b) Resource allocation on outbreak rate λ
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τ

Figure 5.20 – Resource allocation for the proposed Problem 5.1: minimize the risk
(3.22) with resource budgets Γβ = 2000, Γλ = 500 and Γτ = 1500.



5.5 Results 104

0

0.2

0.4

0.6

0.8

1

R
es

ou
rc

e
al

lo
ca

tio
n

(a) Resource allocation on spreading rate β
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(b) Resource allocation on outbreak rate λ
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Figure 5.21 – Resource allocation after using reweighted ℓ1 minimization (5.25) on
Figure 5.20.
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Figure 5.22 – Persistent monitoring path consisting of 8 subwalks based on the revisit
map in Figure 5.20c. Darker lines indicate multiple subwalks.

compare our proposed resource allocation, Figure 5.20, to minimizing the spectral
abscissa (3.24), Figure 5.23, based on total cost and warning time.

Warning time is taken as time between fire detection and reaching a high cost node
(i.e. ci ≥ 0.25). Fire detection is obtained by simulating an UAV flying along the path
as shown in Figure 5.22 starting at a randomized location, whereas for the comparison
model, the path is taken as a standard lawnmower pattern. A positive warning time
implies the outbreak is detected before it reaches a high cost node, negative warning
time indicates it is detected after. The fire outbreak node is randomly chosen for each
run based on the outbreak rate probabilities. We assume that the UAV flies 24 times
faster than the fire spreads, based on average fire spread rate [3, 29] and taking an
average UAV speed of 20 m/s [119].

In Figure 5.24, we show a scatter plot showing the resulting costs and warning times
for the randomized fire outbreak scenarios. It can be seen that the proposed method
overall has a higher reduction in cost and a longer warning time for higher cost runs,
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Figure 5.23 – Resource allocation on spreading rate β for minimizing the spectral
abscissa (3.24) using the same resource allocation budget as Figure 5.20.
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Figure 5.24 – Comparing total cost and warning time of the stochastic model for our
proposed resource allocation, Figure 5.20, versus minimizing the spectral abscissa,
Figure 5.23.
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Figure 5.25 – Comparing total cost and warning time of the stochastic model for our
proposed resource allocation, Figure B.4, versus minimizing the spectral abscissa,
Figure B.5.

compared to the baseline method of minimizing the spectral abscissa and performing
a lawnmower surveillance pattern.

Example simulations of runs with the stochastic SIR model for Figure 5.24 can be
found in Appendix B, Section B.2, in Figures B.7-B.12.

Besides the discussed proposed resource allocation, different allocation budgets result
in more or less suppression of the stochastic fire outbreak. An example is given in
Figure 5.25 for Γβ = 1500, Γλ = 500 and Γτ = 1000. The corresponding resource
allocation for both our method as well as minimizing the spectral abscissa with the
same budget can be found in Appendix B, Section B.2, in respectively Figure B.4
and Figure B.5.

In this scenario due to the lower revisit rates and budget, i.e. shorter warning times,
resources are used for more direct suppression to protect the city. Furthermore, 63.9%
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Table 5.4 – Run time for the proposed method in seconds.

State dimension n 60 240 1000 4000 16000
Figure 5.13a β allocation time 0.34 0.57 2.15 17.98 53.83

β & δ allocation time 0.34 0.59 4.17 8.27 48.85
Figure 5.20 β, λ & τ allocation time 0.42 0.70 3.20 11.59 46.16

of runs had no cost at all compared to 14% of the spectral abscissa runs. These runs
are due to the corresponding infinite warning time not shown in Figure 5.25. It can
be seen that overall the total obtained stochastic cost is significantly lower when
again run for a 1000 times compared to Figure 5.24 and compared to minimizing the
spectral abscissa with the same resource allocation budget.

5.5.3 Computation and Scalability

In this subsection we examine scalability of the proposed method. We recorded the
run time for Example 5.3 for allocation of resources on β alone, as well as on β and δ,
for networks of various sizes obtained by downsampling or interpolating the landscape
in Figure 5.12a. Similarly, we recorded the run time for β, λ and τ resource allocation
of various sizes for Example 5.4 as depicted in Figure 5.19.

The intervention optimization problems were formulated using Julia [11] and solved
with MOSEK v9.2 on an Intel i7, 2.6GHz, 8GB RAM. The results are shown in
Table 5.4 and Figures 5.26 and 5.27. For the presented examples up to 4000 nodes
this is in the order of seconds. Furthermore, the run time grows linearly in the number
of nodes, which suggests that the method is scalable to very large networks.
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Figure 5.26 – Run time for Example 5.3 for different resource allocations, e.g. see
Figure 5.13a for β allocation for n = 1000, and different dimensions in seconds.
Empirical run time values can be found in Table 5.4.
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Figure 5.27 – Run time for Example 5.4, β, λ and τ resource allocation depicted in
Figure 5.20, in different dimensions in seconds. Empirical run time values can be
found in Table 5.4.
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5.6 Conclusions

In this chapter we presented a flexible convex optimization framework that minimizes
the risk of spreading processes by integrating surveillance schedules and sparse con-
trol. We demonstrated how our logarithmic resource models for spreading, recovery
and outbreak rate led to sparse resource allocation and discussed how ℓ1 minimiza-
tion could be utilized if sparse outcomes are the main goal. By reformulating our
constraints and objectives as convex constraints using logarithmic transformation,
we obtained a convex optimization program or more specifically an exponential cone
program. With multiple examples of spreading processes, i.e. epidemics and wild-
fires, we conveyed the use and scalability of the presented framework. We found that
the proposed model outperforms standard methods such as minimizing the spectral
abscissa and that the results obtained with the linear model minimize and bound the
risk of the original stochastic process.



Chapter 6

Conclusion

In this thesis we developed a flexible optimization framework to bound and minimize
the risk of spreading processes, such as epidemics and wildfires, by use of both surveil-
lance schedules and sparse control. In particular, we focused on the joint optimiza-
tion of surveillance and intervention, providing targeted, sparse resource allocation
and developing scalable algorithms. For wildfires specifically, we also bridged the gap
between spreading models and remote sensing.

In this concluding chapter, we provide a summary of the thesis, state the main con-
tributions, address the research objective and discuss open problems and potential
directions for future work.

6.1 Summary

Epidemics and wildfires can be thought of as spreading processes in which an initial
localized outbreak spreads rapidly to neighboring nodes and throughout a network.
The real-world risks associated with such events have stressed the importance and
current shortcoming of both being able to quickly map and monitor the spread of in-
fection and being able to get an accurate risk estimate to plan appropriate intervention
strategies. When setting up an optimization framework to tackle this problem, four
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other aspects have been found to be of importance. First of all, being able to provide
targeted risk estimation and minimization for more vulnerable or high cost areas.
Second, due to the large network structures, scalability of algorithms and third, spar-
sity of resource allocation. Finally, for wildfires specifically there is a gap between
fire spreading models and persistent monitoring algorithms for remote sensing.

In order to address this problem we defined our research objective as ‘develop a
joint optimization framework for both surveillance and intervention purposes that is
1) based on a risk model with node dependent costs for targeted risk minimization, 2)
results in sparse outcomes, 3) is scalable to large network sizes and 4) can be connected
to persistent monitoring algorithms for robot path planning’.

Chapter 2 has presented background literature on modeling spreading processes and
discussed different theories and approaches that can be used for surveillance and in-
tervention of them. It was found that spreading models are commonly modeled as
Markov processes. The most well-known and documented models are the Susceptible-
Infected-Susceptible (SIS) and Susceptible-Infected-Removed (SIR) models, coming
from the epidemics literature. Similar for wildfires, cellular automata (CA) models
are most suitable, since they have a low computational cost and deal well with het-
erogeneous data. However, for surveillance and intervention purposes the stochastic
model is not directly suitable. It is, therefore, common that stochastic models are
approximated as ODE models, which in turn can be approximated by linear models,
which are proven to provide an upperbound on expected values and therefore, usually
the object of study.

We found that existing methods to indicate influential nodes in a network cannot
take into account node dependent cost. Moreover, surveillance scheduling literature
is still limited for spreading processes, in particular for epidemics. For wildfires per-
sistent monitoring is more an active area of research, however, limited to either fire
perimeter estimation or optimal path planning. For intervention, a suitable approach
that results in scalable algorithms includes regulating spreading and recovery rate of
the process via convex optimization, in particular geometric programming. However,
these approaches do not necessarily provide sparse control for targeted intervention
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in large networks. We, therefore, looked into sparsity inducing methods for convex
optimization. More specifically, ℓ1 norm constraints and objectives are known to en-
courage sparsity. Furthermore, convex optimization problems are preferred, because
they can be solved reliably and numerically very efficient.

In Chapter 3 we defined a risk model based on the product of the probability of an
undetected outbreak in a given time interval and the impact of that outbreak. That is,
risk was defined as the product of the outbreak rate, revisit time interval and impact
of the outbreak. We proposed to model the outbreak rate as a Poisson process, where
we take the linear upperbound of at least one event occurring within a time interval.
Next, we discussed why the linear spreading model is a suitably proxy for studying the
underlying stochastic model. Moreover, we defined a cost function, where we found
that the cost function associated with the linear model upperbounds the cost function
associated with the stochastic model. We used the properties of positive systems to
find the linear cost-to-go or node impact vector, which we discussed further by giving
examples of a ‘priority map’ that shows the node impact or cost-to-go for different cost
and spreading parameters and we discussed the effect of the discount rate. Finally,
we presented our proposed risk model, discussed feasibility in regards to the Hurwitz
assumption and mean-field estimation and how it differs from other risk models, such
as the spectral abscissa, by taking into account node dependent costs.

With the defined risk model, we formulated the surveillance problem in Chapter 4.
In the surveillance problem, the dynamics of the spreading process are fixed and the
aim is to identify and bound the future cost of an undetected outbreak spreading
from each node. This could be done by finding the largest revisit interval for each
node that we can use in surveillance schedules. We analyzed the risk model and
results of the surveillance problem by first showing the effect of different parameters
and discount rate on the risk map, afterwards we discussed a larger realistic wildfire
example and demonstrated how to implement persistent monitoring path planning to
bound the risk.

In the next Chapter 5 we extended this problem by including resource allocation for
risk minimization. We, finally, arrived at our complete proposed approach of a flexi-
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ble convex optimization framework that minimizes the risk of spreading processes by
integrating surveillance schedules and sparse control. We first demonstrated how our
logarithmic resource models for spreading, recovery and outbreak rate can be under-
stood as a proportional decrease and lead to sparse resource allocation. Later on we
discussed how reweighted ℓ1 minimization could be utilized if sparse outcomes are
the primary goal. Next, we formulated our main optimization problem and discussed
problems such as ‘resource-constrained risk minimization’ and ‘risk-constrained re-
source minimization’ that fall within this proposed framework. We obtained a convex
optimization program, or more specifically exponential cone program, by reformu-
lating our constraints and objectives to convex constraints and objectives by using
logarithmic transformations.

With multiple examples of spreading processes we conveyed the use and scalability of
the presented optimization framework. We demonstrated how the framework could
be used for identifying critical links in different epidemic and wildfire scenarios. Fur-
thermore, we found that the proposed model outperforms previous approaches, such
as minimizing the spectral abscissa, by providing more targeted, sparse resource allo-
cation. With a large wildfire example we demonstrated how we could utilize resource
allocation and revisit schedules to minimize the risk of an undetected outbreak and
incorporated robot path planning methods for surveillance. Finally, we validated
that the results obtained with the linear model reduced and bounded the risk of the
original stochastic process.

In this final Chapter 6, we will first demonstrate how we addressed our research
objective by stating our main contributions in Section 6.1.1. Next, in Section 6.2 open
problems and potential directions for future work will be discussed. This includes time
dependent intervention, time-varying networks, more realistic propagation models and
sensing assumptions, more elaborate UAV path planning scenarios and real-world
implementation.



6.1 Summary 115

6.1.1 Contributions and Research Objective

Summarized, the goal of this thesis was to bound and minimize the risk of spread-
ing processes such as epidemics and wildfires via surveillance schedules and sparse
resource allocation. The main contributions of this thesis that address this objective
and the research objective stated at the beginning of this section can be summarized
as follows.

We developed a flexible optimization framework that stands out and distinguishes
itself from previous literature, because it provides and includes:

• the joint optimization of both surveillance and intervention via sensor scheduling
and sparse control (main research objective),

• a risk model based on the product of the probability of an undetected outbreak
with its discounted future cost with node dependent weightings (research ob-

jective part 1),

• sparsity inducing resource models for spreading, recovery and outbreak rate
(research objective part 2),

• scalability due to the use of convex programming, in particular exponential cone
programming (research objective part 3), and

• for wildfires specific; we bridged the gap between spreading models and robotic
path planning by developing revisit maps based on the risk (research objec-

tive part 4).

We demonstrated the use and flexibility of the proposed framework by providing
examples and results for epidemic and wildfire scenarios. It is illustrated how the
proposed risk model provides targeted risk estimation and minimization and is based
on richer information than network topology alone and can deal with regular network
structures such as a grid. Furthermore, we showed and discussed how our method
leads to sparse resource allocation and achieved scalable algorithms.
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6.2 Future Work

The optimization framework for risk minimization of spreading processes presented
in this thesis offers a static control solution for time-invariant networks based on the
linearized model of the Markov process. Therefore, different areas to extend this
research for future work can be established and will be discussed in this section.
Potential directions include dynamic control of static networks, i.e. time dependent
intervention, control of dynamic networks, i.e. time-varying networks, more realistic
propagation models and sensing assumptions beyond the mean-field estimation and
Markov model, more elaborate UAV planning scenarios and real-world implementa-
tion.

6.2.1 Time Dependent Intervention

A drawback of the current presented joint optimization framework is that is offers
a static control or static intervention solution only. That is, the resource allocation
and surveillance schedule is determined once based on the current state instead of
allocated over time. A more realistic assumption would be to have dynamic control
and hence, time dependent intervention.

Dynamic resource allocation for epidemics is studied in [40, 147]. Here network prop-
erties are identified to respectively identify limitations on and derive upper and lower
bounds for epidemic extinction time. More recently, dynamic programming (DP)
[10] and in particular, model predictive control (MPC) has been proposed for time
dependent intervention [87, 173, 183].

These approaches, however, do not provide targeted, sparse resource allocation and
that is where our proposed risk model and resource model could be integrated.
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Model Predictive Control

Model Predictive Control (MPC) is a robust feedback strategy for solving optimal
control problems that can deal with a variety of different models. For spreading mod-
els, MPC has been proposed for dynamic resource allocation for both deterministic
epidemic models [87] and stochastic models [173].

Köhler et al. [88] extend their work in [87] by investigating MPC approaches to
optimally control the COVID-19 outbreak in Germany. Here ‘resource allocation’
is considered social distancing measures and the goal is to minimize the number of
fatalities. In [149] nonlinear MPC is applied to an SIS model. Similar to our approach
the state matrix or ‘contact network’ is altered to reduce the spread. Furthermore,
critical control bounds are determined to investigate controllability.

In particular, the MPC approach proposed in [87, 88] is very interesting, because
a similar spreading model as presented in this thesis is used and our proposed risk
model falls within the category of cost functions that work within their framework.
However, their current approach does not necessarily lead to sparse and targeted
results, hence leaves room for future work. Compared to our current framework, the
main difference would be that the parameters are updated per time step and hence,
additional constraints on the budget per time step are needed, including updates on
the bounds of the parameters. The downside of such an iterative approach, however,
is the longer solving time.

6.2.2 Time-varying Networks

A second opportunity for future work is extending our work to time-varying net-
works. Time-varying networks are often more realistic and appropriate, particularly
for spreading processes such as epidemics and social networks, where interactions
and hence, the connectivity of the network, change over time. Similarly, it would
also be interesting to examine the time-varying nature of the spreading and recovery
variables. For wildfires these could capture the changing wind and temperature pat-
terns, and for epidemics the varying spreading and recovery rates as different variants
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emerge or new treatments are developed. Time-varying networks are, however, more
challenging and complex to analyze [113, 183].

An interesting starting point and example of control of time-varying network is given
in [112], where geometric programming techniques are used to find the solution.
Hence, this could be extended to include our current framework and proposed risk
and resource model. Their proposed approach includes a weighted time-varying ad-
jacency matrix, i.e. the B matrix consisting of spreading rates βij changes over time,
and the optimization is solved for an updated geometric program.

In [120, 121] stability analysis of heterogeneous epidemic processes on time-varying
networks is investigated. Conditions for global exponential stability and convergence
to the disease-free equilibrium are provided where the Hurwitz assumption of the
linearized system can be relaxed due to the time-varying nature of the system. Fur-
thermore, quarantine control by decreasing the value of the connectivity matrix is
discussed. Gracy et al. [56] provide a distributed control strategy involving increas-
ing the recovery rate by defining conditions for stability and exponential convergence
to the disease-free equilibrium in terms of the joint spectral radius of defined matri-
ces. A different approach is taken in Paré et al. [123], where the authors utilize the
reweighted ℓ1 optimization approach (see Section 5.4) to solve an antidote problem
for a multi-competitive virus model.

In general, there appear to be four different ways of dealing with time-varying net-
works. First of all, time-scale separation, where the assumption is made that the
spreading process and the network dynamics evolve on a different time-scale. Sec-
ond, temporal-switching networks, where a switching network is created based on
a sequence of static networks. Third, activity-driven networks, where the network
changes are based on ‘actions’ taken by the nodes and finally, edge-Markovian dy-
namic graphs, where each edge has a Markov process associated with it. For more
in-depth discussion and analysis, we refer to [183].
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6.2.3 Different spreading models

In Chapter 3 we use the mean-field estimation to obtain the set of nonlinear equations,
which upperbounds the assumed underlying Markov process. Based on the linearized
version of these equations we obtained the presented convex optimization framework.
A more accurate model would be to use the stochastic model directly instead of the
deterministic approximation. This would result in more accurate control. There
is, however, no guarantee that a similar easy to solve convex optimization can be
obtained by using the stochastic model. Similarly, this will most likely result in a
reduction in scalability and increase in computational cost.

Furthermore, we model spreading processes similar to most existing literature [113,
183] assuming an underlying stochastic Markov process in which both transmission
and recovery time, i.e. time it takes for a node to respectively become infected or
recover, follow exponential trajectories. However, empirical studies have shown that
in many real scenarios, this distribution is not necessarily exponential [116, 183] and
the non-Markovianity of the spreading system may have a large impact on the actual
real-life spread [45, 156].

A step towards a proposed approach that does not rely on the mean-field approxi-
mation is given in [116]. Here the lower bound on the exponential decay rate to the
infection-free equilibrium is found without relying on the mean-field approximation.
However, as highlighted and emphasized in [45, 156], there is still a lot to be explored
and established and this could be an important area of future research. There will,
however, always be a trade-off between accuracy of the model and complexity and
computation time.

Another option that would be interesting to look at are stochastic agent based mod-
els, which provide a different approach to modeling the individual connections and
interactions compared to deterministic network models.

Agent based models rely on data involving human behavior and individual interaction,
which can make them very accurate depending on data availability, but, therefore,
also very complex to analyze and use [13]. Therefore, because both agent based and
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deterministic models have their advantages and disadvantages, a hybrid of them has
been proposed in [1, 13] and might be an interesting direction for future work.

6.2.4 Parameter estimation and sensing assumptions

In Chapters 4 and 5 we considered and explored the surveillance problem and inter-
vention problem. A third problem that is often considered is parameter estimation.
Currently, full knowledge of the outbreak likelhood and parameters of the system is
required and assumed, which is often unrealistic and therefore, a disadvantage of our
current approach.

A more realistic assumption is that parameters are not necessarily exactly known nor
perfectly measurable. An interesting extension of our current work would, therefore,
be to consider a model that can deal with this uncertainty in parameters.

An example of how to deal with these challenges for monitoring epidemics is given in
[169]. Here, the spreading model is extended by not only including a model of mea-
surement, i.e. testing, but more importantly including the problems and possibilities
of false positives and negatives.

The work by Köhler et al. [88] already highlighted earlier for their MPC approach,
uses interval arithmetic that can also take unknown and uncertain parameters into
account if exact measurements of the state are not available.

Similarly, for wildfires, imperfect observations could also be integrated with path
planning for persistent monitoring.

Finally, it would be interesting to look into the dual problem of state estimation and
sparse sensor placement. Instead of resource allocation, we could optimize and obtain
observer gains or sparse sensor locations to estimate the state of the system. That
is, minimize the state estimation error to obtain the minimum number of sensors
required or the observer gains.
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6.2.5 UAV path planning

One of our thesis objectives was to bridge the gap between fire propagation models
and UAV path planning algorithms for remote sensing. In this thesis, we presented a
solution using the algorithm from [2]. However, path planning for remote sensing is
well advanced (e.g. [129, 152, 179]). Therefore, many more extensions can be made,
such as multi-UAV approaches or implementing path planning algorithms, such as
the orienteering problem (OP), that make a trade-off between which nodes to visit
instead of visiting all nodes in different cycles.

Multi-UAV path planning

Wildfires often occur on very large areas and networks, therefore, it makes sense
that the area would be surveilled with multiple UAVs. To define the multi-UAV
path planning approach, the most simple approach would be to split the area using
weighted Voronoi subspaces based on the revisit rate [6, 43].

Another way to approach the problem of dividing the area is to consider it as a
p-median problem [106]. The p-median problem is defined as optimally placing p fa-
cilities to minimize the demand weighted average distance between demand nodes and
facilities. Instead of facilities we would allocate UAVs and demand can be interpreted
as the revisit rate required to bound the risk.

However, many more approaches exist and a complete survey of current state-of-the-
art and challenges can be found in [111].

Path planning trade-off algorithms

In Chapters 4 and 5 we demonstrated connecting fire propagation models to path
planning models for remote sensing by giving an example of a persistent monitoring
algorithm in which all nodes have to be monitored given a certain schedule. However,
if time is limited, trade-off path planning algorithms might be more relevant.
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An example of a routing problem in which a trade-off is made on which nodes to
visit is the orienteering problem (OP). Here, the goal is to find a path that visits a
subset of nodes that maximizes the total collected sum, where each node has a weight
associated with it [59]. This weight could be the revisit rate or risk.

Fuel and turn limitations can also be considered, such as in the DOP discussed in
[129], where the proposed solution is based on the variable neighborhood search.
Another common nonlinear extension to the OP is called the correlated orienteering
problem [179].

It should be noted that in the case of the OP the risk map could also be taken
directly as input when no additional time or resources can be allocated to monitoring
the nodes.

6.2.6 Real-world Implementation

The work presented in this thesis is, foremost, theoretical in nature and not meant
as an experimental set up that can directly be applied to the real-world. However,
for future work it would be interesting to look into and go towards real-world imple-
mentation.

For both wildfires and epidemics, the underlying models are quite well evaluated and
the spreading parameters based and evaluated on real-world data [3, 24, 28, 80, 81,
133]. The next step to go towards real-world implementation would be to tune and
evaluate the cost and resource parameters to get an idea of how the different resources
and measures such as waterbombing, lockdowns and vaccination affect the spreading
and recovery rates.

For wildfires, Mutthulakshmi et al. [110] look into the effect of fire containment lines
on the spreading rate, both in regards to constructed physical fire lines and temporary
fire lines such as waterbombing. In [27] on the other hand, the effect of fuel treatment
methods, such as thinning and backburning, is investigated.

For epidemics, each disease will be different, hence different measurements might
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have to be taken with different results. For example, outbreak control for SARS is
investigated in [24]. For COVID-19 examples of models for the efficiency of facemasks
and lockdowns are given in [158] and for vaccination in [134]. Unfortunately, due to
the inherent different nature of different types of diseases, new or updated models
for each new disease and vaccine will have to developed as new outbreaks or diseases
emerge to obtain the most accurate predictions for real-world implementation.

How to model and implement surveillance in real-world scenarios is quite different in
regards to wildfires and epidemics. For wildfires, surveillance is quite straightforward
in regards to robotic path planning, with different approaches being discussed in
the previous Section 6.2.5. It is also easier to monitor or ‘test’ large areas of the
network. Whereas for epidemics on the other hand, it can be more restrictive what or
whom can be tested and how to incorporate and interpret the results. Furthermore,
false negatives and positives depend on the testing abilities available, which will vary
depending on the type of disease and epidemic, where for wildfires they will depend
on sensors on e.g. the UAV.

Similarly, for wildfires the area network and structure is very well-known, whereas for
epidemics the network is a lot harder to map and changing social and contact networks
pose another modeling challenge. Finally, resources in regards to fire management
are often easier to control and implement than measures such as vaccination, which
are a socio-political issue.

6.3 Conclusion

This final chapter concluded this thesis on ‘Risk Minimization for Spreading Processes
over Networks via Surveillance Scheduling and Sparse Control’. A summary of the
thesis and main contributions was provided and suggestions for directions of future
work were established and discussed. These include extending the proposed work
to dynamic intervention and time-varying networks. In particular model predictive
control is suitable for extending the current proposed framework to time dependent
intervention and time-varying networks. Next, we looked into models that go beyond
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the mean-field approximation such as stochastic agent based models. Moreover, we
discussed including constraints or functions to the framework to include unknown
state parameters and more realistic sensing assumptions. Furthermore, the connec-
tion to UAV path planning can be extended by implementing multi-UAV approaches
or path planning trade-off algorithms such as the Dubins orienteering problem. Fi-
nally, we discussed real-world implementation challenges of the proposed optimization
framework for both wildfires and epidemics.
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Appendix A

Nonlinear Intervention Approach

In Chapter 5 we looked into the intervention problem by considering resource alloca-
tion to minimize the risk. We proposed logarithmic resource models and demonstrated
how to reformulate the resulting problem as an exponential cone program. We did,
however, also explore other methods for resource allocation to minimize the risk.

For example in [153] we proposed the following framework, where we include a new
resource allocation or ‘control’ matrix K to alter the original system dynamics and
state matrix (3.8). The task is again to reduce the discounted cost-to-go by finding
a sparse set of locations for intervention within a budgeted constraint.

The new closed loop system is given by

ẋ(t) = (A−K)x(t) (A.1)

where K is the control matrix and restricted to the total resource constraint ∑ kij ≤
Γ, where Γ is the maximum budget available. Note that this imposes an ℓ1-type
constraint on the elements of K and hence, encourages sparsity similar to the resource
model constraints in Section 5.1.

We can now extend the LP (3.17) from Chapter 3 to obtain the problem formulation;
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minimize
p,K

|p|1 (A.2a)

such that p ≥ 0, (A.2b)

pTA− rpT − pTK ≤ −C, (A.2c)∑
ij

K ≤ Γ, (A.2d)

K ≥ 0, (A.2e)

K ≤ A, (A.2f)

kij = 0 ∀(i, j) /∈ E . (A.2g)

However, the multiplication of decision variables pTK means this is not a linear
program (LP). Furthermore, note that we can also take max(piλiτi) as the objective to
minimize, similar to Problem 5.1, instead of the direct extension of (3.17), i.e. (A.2a).
Moreover, for simplicity we do not consider resource allocation on the outbreak rate
λi, the revisit interval τi nor discount rate r similar to Problem 5.2.

To solve this nonlinear program different iterative solving approaches have been ex-
plored that we will summarize and discuss in the following sections. Although all of
these proposed approaches have been shown to give good results in practice and do
also include sparse resource models, global optimality could not be proven and for all
methods exceptions have been found in which cyclic behavior of the results occurred
instead of convergence to an optimum. Furthermore, due to the iterative approach of
these methods, they are also not as scalable as the method proposed in Chapter 5.

A.1 Iterative Linear Program

To deal with the nonlinearity we define an iterative linear program where we introduce
p0 as the initial guess of p, which can be obtained by solving either (3.16) or (3.17).

We will minimize the maximum risk bound R(t) = x̂(0) ⊙ p (3.23) from Chapter 3,
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similar to Problem 5.2 and therefore, define the following optimization program

minimize
p,K

max(x̂(0) ⊙ p) (A.3a)

such that p ≥ 0, (A.3b)

pTA− rpT − pT
0K ≤ −C, (A.3c)∑

ij

K ≤ Γ, (A.3d)

K ≥ 0, (A.3e)

K ≤ A, (A.3f)

kij = 0 ∀(i, j) /∈ E (A.3g)

where K is the control matrix.

We now solve this optimization iteratively, while updating p0 in (A.3c) in the next
iteration with the obtained p from the previous iteration till the outcome converges,
i.e. p0 = p. Hence, the dynamic coupling constraint (A.3c) is an approximation
and not necessarily accurately solved in the earlier iterations due to the inclusion of
the approximation of p to minimize the cost of the system. The optimization can
be extended by including nodes as possible control resource options by changing the
constraints on kij to kij ≥ 0∀i = j, i.e. the equivalence of allocation of resources on
the recovery rate δi as explained in Chapter 5.

A.1.1 Change of variables

A similar but slightly different approach was taken in [153] by proposing a change of
variables. The approximation of each iteration then moves from the dynamic coupling
constraint to the resource allocation matrix.

Following [138] a new variable q = pTK is introduced, resulting in the updated
constraint pTA−rpT −q ≤ −C. However, to take into account the restriction imposed
upon the control matrix K by the total resource constraint Γ and the adjacency
matrix, we take P = diag(p) and Q = PK to preserve the specified structure of K.
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This implies 1⃗P = pT and 1⃗Q = q, where 1⃗ is the row vector with all ones of the
appropriate dimension and the problem can be reformulated as

minimize
P,Q

max (Px̂(0)) (A.4a)

such that P ≥ 0, (A.4b)

Q ≥ 0, (A.4c)

1⃗(PA− rP −Q) ≤ −C, (A.4d)∑
ij

P−1
0 Q ≤ Γ, (A.4e)

P−1
0 Q ≤ A, (A.4f)

qij = 0 ∀(i, j) /∈ E (A.4g)

where ∑ij |P−1
0 Q| ≈ ∑

ij |Kij| ≤ Γ and P0 is the initial guess of P taken as the solution
of (3.16).

The optimization problem now consists of minimizing the maximum risk (A.4a) or
the trace of P , i.e. ∑n

i Pii, while updating P0 to the obtained P till the outcome
converges, i.e. P0 = P . Afterwards, the final control matrix K = P−1Q.

A.1.2 Linearization

Finally, another approach is to take the linearization of the problem and optimize for
dP and dK. That is (A.2) is reformulated as

minimize
dP,dK

max ((P0 + dP ) x̂(0)) (A.5a)

such that P0 + dP ≥ 0, (A.5b)

1⃗((P0 + dP )A− r(P0 + dP ) − P0K0 − P0dK − dPK0) ≤ −C, (A.5c)∑
ij

(K0 + dK) ≤ Γ, (K0 + dK) ≥ 0, (K0 + dK) ≤ A, (A.5d)

dkij = 0 ∀(i, j) /∈ E (A.5e)
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where P = diag(p) similar to (A.4).

A.1.3 Computation and Convergence

These different approaches were tested for different scenarios up to n = 1000 nodes.
Different iterative approaches converged quicker for different scenarios, but overall
convergence generally occurred within 5 to 10 iterations.

Global optimality of these approaches, however, could not be proven and run time is
depended on the number of iterations needed. Furthermore, exceptions were found
for all discussed formulations where cyclic behavior of the result was obtained and
convergence was not obtained for one or both of the parameters.

An approach could be to reformulate our problem similar to [37]. Here local conver-
gence is proven for sequential convex programming for non-convex optimization of
the form

minimize
p

cTp (A.6a)

such that g(p) = 0, p ∈ Ω, (A.6b)

where c ∈ Rn, g : Rn → Rm is nonlinear and smooth on its domain, and Ω is a
nonempty closed convex subset in Rn, given that the optimization problem satisfies
the following conditions:

1. The set of Karush-Kuhn-Tucker (KKT) points of the non-convex problem is
nonempty,

2. The strong regularity condition as defined by [139] should hold,

3. The nonlinear constraint, g(p) = 0, should be weakly nonlinear, i.e. have small
second derivatives, in a neighborhood of a stationary point or the corresponding
Lagrange multipliers are sufficiently small in the neighborhood of the Lagrange
multiplier of the KKT point.

We refer to [37] for more details.
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Additional Figures Chapter 5

In this appendix additional figures are presented for the two wildfire examples in
Section 5.5.2. In Section B.1 the same resource allocation maps as already presented
for the 1000 node Example 5.3, are given but illustrated with a different colormap to
emphasize low resource allocation edges.

In Section B.2 additional figures for the 4000 node Example 5.4 are presented. First,
the eight subwalks belonging to Figure 5.22 are illustrated. Next, the resource al-
locations used to make the scatter plot Figure 5.25 are depicted. Finally, example
simulation runs with the stochastic model for scatter plots Figure 5.24 and Figure 5.25
are presented.

B.1 1000 node Wildfire Example

In this appendix section, we show the same resource allocation maps already depicted
in Figures 5.13 and 5.14, but with a colormap that visualizes lower resource allocations
to emphasize how our method provides more sparse results compared to minimizing
other resource models, see Figure B.1 and Figure B.2.
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(a) The proposed model: minimize (3.23) subject to constraints on (5.2a). 136 edges have resources
allocated.
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(b) Minimize the spectral abscissa (3.24) subject to constraints on the proposed resource model
(5.2a). 611 edges have resources allocated.

Figure B.1 – Resource allocation for minimizing different risk models for Problem 5.2.
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Figure B.2 – Resource allocation using the resource model from [132] for Problem 5.3:
minimize (5.3a) subject to constraints on the proposed risk model (3.23). 543
edges have resources allocated.

B.2 4000 node Wildfire Example

In this appendix section, we give additional figures for Example 5.4. First, the eight
subwalks of the minimum maximum latency persistent monitoring path in Figure 5.22
are given in Figure B.3.

Next, the resource allocations used to generate the scatter plot Figure 5.25 are pre-
sented in respectively Figure B.4 and Figure B.5 for minimizing our proposed risk
model (3.22) for Γβ = 1500, Γλ = 500 and Γτ = 1000 and for minimizing the spectral
abscissa with the same allocation budget.

Finally, examples of simulation runs with the stochastic SIR model for scatter plot
Figure 5.24 are presented in Figures B.7-B.12. Examples for a fire starting in two
different locations, as illustrated in Figure B.6, are given for the proposed resource
allocation (Figure 5.20), for the resource allocation obtained by minimizing the spec-
tral abscissa (Figure 5.23) and for not applying any resource allocation. Table B.1
indicates which scenario and resource allocation can be found in which figure.
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UAV path

(a) Sub Walk 1

UAV path

(b) Sub Walk 2

UAV path

(c) Sub Walk 3

UAV path

(d) Sub Walk 4

UAV path

(e) Sub Walk 5

UAV path

(f) Sub Walk 6

UAV path

(g) Sub Walk 7

UAV path

(h) Sub Walk 8

Figure B.3 – The eight subwalks corresponding to Figure 5.22.
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(a) Resource allocation on spreading rate β
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(b) Resource allocation on outbreak rate λ
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(c) Proposed revisit rate 1
τ

Figure B.4 – Resource allocation for the proposed Problem 5.1: minimize the risk
(3.22) with resource budgets Γβ = 1500, Γλ = 500 and Γτ = 1000.
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Figure B.5 – Resource allocation on spreading rate β for minimizing the spectral
abscissa (3.24). The same resource allocation budget compared to B.4 is used.

Scenario A
Scenario B

Figure B.6 – Fire start locations for scenario A and B for the stochastic simulation
runs displayed in Figures B.7-B.12.

Table B.1 – Figure indicator for the example stochastic simulation runs for different
scenarios as indicated in Figure B.6 for the proposed resource allocation, minimiz-
ing spectral abscissa and no resource allocation.

Proposed Spectral Abscissa None
Scenario A Figure B.7 Figure B.8 Figure B.9
Scenario B Figure B.10 Figure B.11 Figure B.12
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(a) t=0 (b) t=20

(c) t=40 (d) t=60

(e) t=80 (f) t=100

Figure B.7 – Scenario A - Proposed resource allocation. Stochastic SIR simulation
with our proposed resource allocation, Figure 5.20, as part of scatter plot Fig-
ure 5.24. Total cost equals 10.98 and the warning time is 6 hours. Red indicates
‘on fire’ and black ‘burned’. Time t is displayed in hours.
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(a) t=0 (b) t=20

(c) t=40 (d) t=60

(e) t=80 (f) t=100

Figure B.8 – Scenario A - Spectral abscissa resource allocation. Stochastic SIR sim-
ulation with resource allocation obtained by minimized the spectral abscissa, Fig-
ure 5.23, as part of scatter plot Figure 5.24. Total cost equals 101.22 and the
warning time is minus 21 hours. Red indicates ‘on fire’ and black ‘burned’. Time
t is displayed in hours.
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(a) t=0 (b) t=20

(c) t=40 (d) t=60

(e) t=80 (f) t=100

Figure B.9 – Scenario A - No resource allocation. Stochastic SIR simulation with no
applied resource allocation. Total cost equals 165.94. Red indicates ‘on fire’ and
black ‘burned’. Time t is displayed in hours.
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(a) t=0 (b) t=20

(c) t=40 (d) t=60

(e) t=80 (f) t=100

Figure B.10 – Scenario B - Proposed resource allocation. Stochastic SIR simulation
with our proposed resource allocation, Figure 5.20, as part of scatter plot Fig-
ure 5.24. Total cost equals 69.99 and the warning time is 5 hours. Red indicates
‘on fire’ and black ‘burned’. Time t is displayed in hours.
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(a) t=0 (b) t=20

(c) t=40 (d) t=60

(e) t=80 (f) t=100

Figure B.11 – Scenario B - Spectral abscissa resource allocation. Stochastic SIR
simulation with resource allocation obtained by minimized the spectral abscissa,
Figure 5.23, as part of scatter plot Figure 5.24. Total cost equals 158.05 and the
warning time is minus 12 hours. Red indicates ‘on fire’ and black ‘burned’. Time
t is displayed in hours.
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(a) t=0 (b) t=20

(c) t=40 (d) t=60

(e) t=80 (f) t=100

Figure B.12 – Scenario B - No resource allocation. Stochastic SIR simulation with no
applied resource allocation. Total cost equals 185.00. Red indicates ‘on fire’ and
black ‘burned’. Time t is displayed in hours.
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