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ERRATA

P. 1.3 fifth line: "(b)...plasmas" should read "(b) it allows excitation

of waves in the interior of the plasma which damp and heat the plasma

without necessarily heating the surface of the plasma".

P. 1.20 seventeenth line: "it is quite possible that" should read "the

antennas can be designed so that".

P. 2.1 fourth line: "In this case" should read "When w = 9m (where 9m

is the minority ion-cyclotron frequency)".

P. 2.1 last line: add "Electron heating is inhibited because the damping

from the minority ions can be much greater than that from the electrons

(Section 2.5). The heating of the plasma surface is also inhibited

because (as discussed in Section 1.3) the Alfvén resonance can be

well inside the plasma.".

P. 3.32 end of first sentence: add "(Antenna configurations for this

current are discussed in Chapter 1.)".

P. 4.12 first line: "H is positive" should read " H is determined by

the dispersion equation and is positive".

P. 4.16 third line: "The terms...1978)" should read "the terms azimuthal

and axial are used because the instabilities are driven by the wave

fields modifying the electron trajectories so that the electrons

bunch azimuthally when Ric2 << w2 and axially when Ric2 >> wz

(Chu and Hirschfield, 1978; see also Section 4.6)".

R 4.21 second last line: " = Pf" should read " ==-j%_Pf".

P. R.3 fourth reference:"Lehame" should read "Lehane".

P. R.5 third referencePAust. J. Phys. 22, 477" should read'hust. &, 221“

P. R.5 fourth reference: "Aust" should read "Aust. J. Phys. 22, 447.".

flunk/M ”(77' 
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SUMMARY

This thesis is concerned with theoretical investigations into

the dissipation and amplification of waves in laboratory and space

plasmas. Three specific examples of current interest are examined.

The first is the dissipation of a magnetosonic wave by resonant mode

conversion into a shear Alfvén wave and the subsequent collisionless

damping of the shear Alfvén wave by resonant particle interactions.

The other two involve the amplification of electromagnetic and whist—

ler waves by electron cyclotron instabilities.

The mode conversion of magnetosonic waves is of interest in

radio frequency (rf) heating of tokamak plasmas to fusion temperatures.

To produce the heating an external antenna excites a magnetosonic wave

which mode converts in a localized region within the plasma (at the

Alfvén resonance); the collisionless damping of the excited shear

Alfvén wave then produces heating. The mode conversion is important

because (a) the collisionless damping of the magnetosonic wave is much

weaker than that of the shear Alfvén wave and (b) the shear Alfvén

wave cannot be directly excited by an external antenna due to its large

spatial decay rate.

Conditions for optimum plasma heating by this method are deter—

mined in the first part of this thesis. For simplicity, the heating

scheme is divided into three individual processes:

(i) the collisionless damping (and dispersion) of the magnetosonic

and shear Alfvén waves in a locally homogeneous plasma;

(ii) the mode conversion of a magnetosonic wave in an inhomogeneous

plasma;



ii.

(iii) the excitation of a magnetosonic wave by an external

antenna .

In the second part of this thesis, electron cyclotron instab—

ilities are investigated. One class of instabilities examined is re-

levant to the gyrotron, Jupiter's decametric radio emission (DAM),

terrestrial kilometric radiation (TKR) and solar spike bursts. The

instability producing the emission in the gyrotron is similar but

seemingly different from that producing DAM, TKR and solar spike

bursts. A theory is presented which interrelates these instabilities.

A modified version of this theory is then used in formulating a new

theory for the amplification and triggering of discrete VLF emissions

in the magnetosphere.
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PART I

RF HEATING OF TOKAMAK PLASMAS



1.1

CHAPTER 1

INTRODUCTION AND REVIEW

1.1 PLASMA HEATING

A central problem in the achievement of controlled thermonuclear

fusion is the heating of the reactor plasma to fusion temperatures. The

ignition temperature of a deuterium-tritium (D—T) reaction is 4 keV

while the ignition temperatures for D-D and p—3He reactions are 35 keV

and 30 keV respectively (Miley, 1976). The simplest plasma heating

scheme utilizes ohmic heating generated by a current induced in the

plasma by a transformer. However, the plasma resistivity which origin—

ates from Coulomb collisions decreases with increasing electron temper—

ature and at a temperature of about 1 keV the plasma is essentially

collisionless and ohmic heating is ineffective (Chen, 1974, P- 161)-

One possible way to supplement ohmic heating is via the excit—

ation of electromagnetic waves in the plasma by an external antenna.

The heating of the plasma arises from the subsequent collisionless damp—

ing of these excited waves. To date the proposed heating schemes which

utilize collisionless damping include lower hybrid resonance heating

(Puri and Tutler, 1973), electron—cyclotron resonance heating (Alikaev

et a1., 1976) ion-cyclotron resonance heating (Stix and Palladino, 1958),

parametric excitation (Hooke and Bernabei, 1972), ion-ion hybrid reson—

ance heating (Stix, 1975; Perkins, l977)and Alfvén resonance heating

(Tataronis and Grossmann, 1973; Chen and Hasegawa, 1974).

However, there are problems with some of these supplementary

heating schemes. For example, in the first two, the electrons rather

than ions absorb the rf power. In ion—cyclotron resonance heating, the

ions absorb the rf power but the plasma tends to shield itself from the
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applied field and little energy reaches the plasma interior (Rose and

Clarke, 1961, p. 453). In parametric excitation, large wave amplitudes

which are hard to produce and may cause plasma disruption are required.

The above problems are not incurred in the ion—ion hybrid and

Alfvén resonance heating schemes. Indeed, experimental results for

these two schemes are promising. For example, using the ion—ion hybrid

resonance heating scheme in a deuterium plasma containing 30% hydrogen,

JFT-Z Group (1982) report the heating of ions from 400 to 800 eV and

electrons from 600 to 900 eV by 600 kw antenna—power input. The excess

in electron temperature is attributed to the direct absorption of rf

power by the electrons. Similar results have been reported by Equipe

TFR (1982) using a deuterium plasma containing 20% hydrogen. In their

experiment ions were heated from 0.8 to 1.6keVand electrons from 1.0

to 1.5 keV by 1.3 MW antenna—power input.

The most impressive results to date for Alfvén resonance heat-

ing are from Heliotron—D in which electrons were heated from about 100

eV to 200 eV and ions from 50 eV to 70 eV by 400 kW antenna—power in-

put (Obiki et al., 1977; Mutoh et al., 1979) and from TCA where elec-

trons were heated from 500 eV to 900 eV and ions from 150 eV to 225 eV

by 100 kW antenna—power input (de Chambrier et al., 1982b). The ex—

perimental results for Alfvén resonance heating are less impressive

than for ion—ion hybrid resonance heating as much of the experimental

effort on Alfvén resonance heating has been concentrated on understand-

ing the physical processes involved (e.g. Bengston et al., 1982; de

Chambrier et al., 1982a; Cross et al., 1982).

In both the ion-ion hybrid and Alfvén resonance heating schemes

a fast magnetosonic wave is excited by an external antenna. The

magnetosonic wave then mode converts into an ion—Bernstein wave in
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ion—ion hybrid resonance heating and into a shear Alfvén wave

in Alfvén resonance heating. The mode conversion is an essential

feature of these heating schemes because (a) the damping of the mag-

netosonic wave is much smaller than the damping of either the ion-

Bernstein or shear Alfvén waves and (b) neither the ion-Bernstein wave

nor the shear Alfvén wave can be directly excited by an external anten—

na because of the large spatial decay rate of these waves in low 8

plasmas.

To date, emphasis in the studies of Alfvén resonance heating

has been directed towards the determination of the damping of the mag-

netosonic wave by mode conversion and the corresponding antenna re—

sponse. These studies are reviewed in Section 1.2. A comparison

between Alfvén resonance and ion-ion hybrid resonance heating is given

in Section 1.3. Although ion heating via the ion—ion hybrid resonance

has been established both theoretically (e.g. Perkins, 1977) and exper-

imentally (e.g. Equipe TFR, 1982), there has been little corresponding

work in determining ion heating via the Alfvén resonance. In Chapters

2 and 3, the conditions for the heating of ions in the plasma interior

via the Alfvén resonance are determined and it is shown that this ion

heating can occur both efficiently and without the problems of ion—ion

hybrid resonance heating.

1.2 ALFVEN WAVE HEATING

1.2.1 The Wave Eguation

The heating of a collisionless plasma via the Alfvén resonance

is reviewed in this Section. The wave equation governing the mode



1.4

conversion can be derived from either ideal magnetohydrodynamic

(MHD) theory or from kinetic theory. In ideal MHD theory the basic

equations are (Krall and Trivelpiece, 1973, Ch. 3).

 

 

3E
v><B = 4—"J+l—~ (1.1)

~ c ~ c at

v 13% 12X = -—-—-— .

E C St ( )

dv J X B

~3- = ~ ~ (1.3)
dt pMc

v X B

E+~C~ = 0 (1.4)

where E and B are the electric and magnetic fields respectively and QM is

the mass density. In kinetic theory, the fluid equations, (1.3) and

(1.4), are replaced by a conductivity tensor relating J to E i.e.

J. = o E,. (1.5)

The elements of the conductivity tensor are given in standard texts such

as Stix (1962, Ch. 8) and Krall and Trivelpiece (1973, Ch. 8). The ad—

vantage of kinetic theory over MHD theory is that it allows the in—

clusion of finite Larmor radius, finite frequency and finite electron

mass and temperature corrections.

For simplicity, a planar geometry is assumed in this study. A

similar geometry has also been used in many other previous theoretical

studies on Alfvén wave heating (e.g. Tataronis and Grossmann, 1973; Chen

and Hasegawa, 1974; Hasegawa and Chen, 1975, 1976; Ott et al., 1978;
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Karney et al., 1979; Winglee, 1982). The mode coupling has also been

previously investigated for cylindrical (Karney et al., 1979; Ross et

al., 1982) and toroidal (Appert et al., 1982) geometries. However,

in these later studies, no fundamental difference between the planar

geometry and the cylindrical and toroidal geometries was found. Thus,

the planar geometry is expected to simulate at least qualitatively the

more complicated geometry of the tokamak plasma.

In the planar geometry assumed here,a constant magnetic field,

EO’ is directed along the z axis and a density gradient along the x

axis (Fig. 1.1) so that all perturbations in the field and fluid dis-

placements can be considered to have the form p(x)exp(i(kyy + kzz - wt)).

 
 

N
V

 

Fig. 1.1 The model density profile. A constant density gradient

exists between x1 and x2 .
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Under these assumptions the wave equation in the ideal MHD limit (i.e.

(1.1) — (1.4)) has the form (Tataronis and Grossmann, 1973; Chen and

Hasegawa, 1974)

d5
ll. 8 x _ _

dx{2 " TX} 85,, - 0 (1.6)

k — e

Y

2 2 2 2 k . ,
where 6 = w /VA(X) — k2, vA(x)(= (BO/4flpi(x)) ) is the local Alfven

speed, pi is the ion mass density and Ex is fluid displacement in the

x direction. In the derivation of (1.1), the parallel electric field is

neglected because of the large conductivity in the z direction.

In a homogeneous plasma, (1.6) reduces to

2 2

e(e — ky — kx) = 0 (1.7)

where kx is the wavenumber in the x direction. From (1.7), the dispers-

ion relation for the shear Alfvén wave (hereafter SAW) is given by

V (i.e. E = 0) (1.8)

p
N

and that of the magnetosonic wave (hereafter MW) by

w2 = k2v2 (i.e. e - k: — k: = 0) (1.9)

where k2 = k2 + k2 + k2.

z y x

In an inhomogeneous plasma, the MW propagates on the high density

2 . .

side of the linear turning point xé, €(xé) = ky. (In this the51s, the

notation of Ott et a1. (1978) is adopted with linear turning points

referring to points where kx = 0). However, the SAW root which occurs
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at xé, E(X;) = 0, does not represent a wave but rather a resonance in

the plasma (Ott et al., 1978). This resonance is called the Alfvén

resonance and is where mode conversion of the MW occurs.

In tokamaks like the Princeton Large Torus (PLT) tokamak

(Karney et al., 1979) and in the Sydney University TORTUS tokamak

(Cross et al., 1982) ideal MHD theory is not valid because the ratio

of the wave frequency, w, to the ion—cyclotron frequency Qi is non—

negligible. In this case, Karney et a1. (1979) have shown (using the

cold plasma dielectric tensor and (1.1), (1.2) and (1.5)) that the

wave equation has the form

 

2d E 2 dB 2 2

2”- “ 2 d3+(u-S-M2+—M§—JE =0 (1.10)
du u(u — M ) u u(u ' M2) y

M _ k /(k2K) 1/3

y z

s = (w/Q)(k/K)2/3
i z

_ _ 2 l/3
u — (x Xa)(sz)

K = id“;
n, dx
1 x

a

Where x is defined by w2 = k2v2(x )(l — wz/Qg), n, is the ion number
a z A a 1 1

density and terms of order S4 and Mzw/Qi have been neglected as have

finite Larmor radius and parallel electric field corrections.

In the limit w/Qi + 0, (1.10) reduces to (1.6) with the y com-

ponent of the electric field, Ey’ being proportional to Ex as given by
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(1.4). The retention of finite w/Qi terms shifts the Alfvén resonance

from the point where w2 = k:V:(x;) to the point where

2 2 2 2 2 . . .

w = ksz(xa)(l — w /Qi). This resonance 15 also sometlmes called the

perpendicular ion-cyclotron resonance (Stix, 1962, P- 62)-

The finite frequency corrections also modify the dispersion of

the SAW and MW. In particular, for a homogeneous plasma, (1.10) reduces

to

N N

e 12 2 w _
Ak(Ak — ky — kx) - —§-9- ‘_"’7f’7f — 0 (1.11)

VA 1 1 — w /Qi

N

where Ak = wz/v:(1 — wz/Qi) - k The dispersion relation for the SAWZ.

in this case has the form

m z k

N

N
M

2 2

vA/(l + (wk/Qikz) ) (1.12)

while that of the MW has the form

2 2 2

w = k vA/(l — (wkz/Qihi) ) (1.13)

where hf = k: + k:. In the derivation of (1.12) and (1.13) it has been

assumed that w/Qi << [Rf/k2
 

It can be seen from either of (1.9) or (1.13) that the magneto-

sonic wave turning point (i.e. the point where k: = 0) occurs on the

high density side of the Alfvén resonance. Thus, depending on the mag—

nitude of ky, two possible configurations for Alfvén resonance heating

are possible. The first is when k: is sufficiently large so that the

magnetosonic wave turning point is not present in the plasma. In this
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case, a magnetosonic surface wave (i.e. a cutoff magnetosonic wave)

is excited by the antenna. The second is when ky is sufficiently

small so that the magnetosonic wave turning point is present in the

plasma and a magnetosonic body wave is excited. The relevant heating

scheme (i.e. surface wave or body wave heating) is determined by the

antenna configuration.

1.2.2 Surface-Wave Heating
 

Tataronis and Grossmann (1973), Chen and Hasegawa (1974),

Hasegawa and Chen (1976), Stix (1980), Ross et a1. (1982) and Cramer

and Donnelly (1983) have considered Alfvén wave heating for the case

in which ky is sufficiently large so that the MW turning point is not

present in the plasma. Such a configuration can be obtained if an an-

tenna of the form shown in Fig. 1.2 is used. In this case, the anten—

na excites a surface wave which is damped by mode conversion to the

SAW. The subsequent dissipation of the SAW produces plasma heating.

Ionson (1978) and Wentzel (1979a, 1979b) have also used this

type of mechanism in a model for the heating of solar coronal loops.

However, in their case the surface wave is excited by some plasma dis—

turbance at the feet of the coronal loops.

The properties of the surface-wave eigenmode can be derived

from the wave equation, (1.6), which for k: >> k: and w << 91 has the

approximate form

 

 

2
(lg dE
x+l—’5— = o (1.14)

dX2 X dX x

0.2 lkl
x (22—1)—-V—K .

k v
z A
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Anfenna

Plasma I CONS I
,r—JR/ \ J—Hfi

_I 217/ ky

v v

ls—m kz"|‘—7T/kz"l

 

Fig. 1.2 Schematic diagram of an antenna with k: >> k: for surface

wave Alfvén resonance heating. (After Chen and Hasegawa,

1974).

In this case, the two linearly independent solutions, for the

density profile shown in Fig. 1.1, are
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€x1(x) = exp(hix) x f x1

= CllIO(X) + C12K0(X) x1 5 x 5 x2 (1.15)

= CZlexp(- kix) + C22exp(kix) x 3 x2

EX2(X) = Dllexp(- hlx) + Dlzexp(klx) x f x1

= D2110(X) + D22K0(X) x1: x 5 x2 (1.16)

= exp(- klx) x 2 x2

where kl = [kyl’ Io and K0 are the zeroth—order modified Bessel functions

(Olver, 1970) and the constants Cum and Dmm are determined by the contin-

uity of Ex and its derivative. The logarithm in K is defined by appeal-
0

ing to causality (Chen and Hasegawa, 1974; Ott et al., 1978) i.e. w is

assumed to have a small positive imaginary part so that

flux = RnX X > 0

(1.17)
mm + in x < o.

The discontinuity of the imaginary part of Ex represents the resonant ab—

sorption of energy from the MW.

By applying the boundary condition that EX must be finite as

x 9 i w (i.e. C22 = O or Dll = O), the dispersion equation for the sur-

face wave is found to have the form
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(100(2) + 11(x2))(xo(xl) + K1(x1)) — (100:1) - 11(xl>><1<0(x2> — K1(x2)>= o

(1.18a)

i.e. (10(X2) + 11(X2))[K0(—Xl) — Kl(—Xl) — fii(IO(-Xl) + Il(—Xl))]

- (IO(—Xl) + Il(-Xl))(KO(x2) — Kl(X2)) = 0 (1.18b)

where Xi = X(Xi)’ i = 1,2 and (1.17) has been used in the derivation of

(1.18).

The above dispersion equation has been studied by Ionson (1978),

Wentzel (1979a) and Cramer and Donnelly (1983) for the case of a sharp

discontinuity i.e. K2 >> k:. In this case, (1.18b) reduces to (Ionson,

1978)

J; 1 _ .
X + X — 1W. (1.19a)
1 2

The imaginary part of (1.19a) is half that given by Wentzel (1979a) as he

assumes that the logarithm for negative arguments has an imaginary part

equal to Zn which is incorrect.

is much less than n,In tokamaks, n
12

11 so that the dispersion

relation given by (1.19a) can be approximated by

w = 2k2v2(x )(1 - inlk l/4K) (1 19b)
2 A 2 y ' '

This dispersion equation implies that the Alfvén resonance (i.e. the

point where w2 = k:V:(x)) occurs at approximately half the maximum plasma

density. The damping of the surface wave as given by the imaginary part
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of (1.19b) arises from energy absorption at the Alfvén resonance. This

damping increases with increasing lkyI/K; for a step discontinuity in

density (i.e. K + co), the surface wave is undamped.

To determine the actual mechanism for the damping of the surface

wave, Hasegawa and Chen (1975, 1976) included finite Larmor radius and

parallel electric field corrections in the wave equation using kinetic

theory. They found that the wave equation (1.14) is replaced by a

fourth order differential equation of the form

 

 

wz 292i+iiieng] [g 1‘31]
k2V2 4 1 dx3 de gn T1 1 dx n dx
2 a

2 2
+ -—— g — 1 ——-— k ————-g — l E = 0 (1-20)dx k2v2 n dx y k2v2 n y

z a z a

where 01 = vTi/Qi, vTi is the ion thermal speed, Va is the Alfvén speed

evaluated at the maximum plasma density, gn is the normalized plasma

density (being equal to unity at the maximum density) and Ikyl << Id/dxl

is assumed.

The wave fields described by (1.20) differ from those given by

ideal MHD theory (i.e. (1.15) and (1.16)) in that the logarithmic singu—

larity at the Alfvén resonance is removed (Rabenstein, 1958). However,

Hasegawa and Chen (1976) still found that the MW loses the same amount

of energy as given by ideal MHD theory at the Alfvén resonance but this

energy appears as a SAW which propagates on the high density side of the

Alfvén resonance. Away from the Alfvén resonance where — id/dx in (1.20)

can be replaced by hi, the dispersion relation of the SAW is found to

have the approximate form
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w = k:V:[l + Ai(3/4 + Te/Ti)] (1.21)

where Xi = kioi. Because the above corrections to the SAW dispersion

equation were originally derived from kinetic theory, the wave described

by (1.21) is sometimes called the kinetic Alfvén wave (Hasegawa and

Chen, 1976).

It was later pointed out by Stix (1980) and Ross et a1. (1982)

that the dispersion equation for the SAW as given by (1.21) is only

valid for 8mi/me > 1 where B is the ratio of the thermal pressure to the

magnetic pressure. In the opposite limit, the SAW propagates on the low

density side of the Alfvén resonance. However, they found that even in

this case the total absorption rate is still approximately the same as

given by MHD. This last point is of particular importance because it

allows the neglect of finite electron mass and Larmor radius corrections

without producing significant errors in the estimate of the energy lost

by the MW at the Alfvén resonance.

Recently, Cramer and Donnelly (1983) investigated the properties

of the magnetosonic surface wave with the inclusion of finite w/Qi cor—

rections but with the neglect of finite Larmor radius and electron mass

corrections. They found that the finite w/SZi corrections are important

in that they split the low frequency surface wave into two modes whose

properties depend on the sign of ky/K and the magnitude of w/Qi; the

damping being larger for the mode with ky/K negative than for the mode

with ky/Kpositive.
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1.2.3 Body Wave Heating

Ott et al. (1978) examined Alfvén resonance heating for the

case where k: << ki, w/Qi << 1 and where the magnetic field also has

a small y component (i.e. O < By/Bz << 1). In this case, the magneto-

sonic wave turning point lies close to the Alfvén resonance and the

antenna excites a magnetosonic body wave. However, plasma heating

still occurs via the mode conversion of the MW into a SAW and the sub-

sequent damping of the SAW. Experimentally, k: << k: is obtained us-

ing an antenna configuration of the form shown in Fig. 1.3. It

differs from the antenna used in surface wave heating in that the an—

tenna here consists of a single coil loop without any twists.

Antenna

CoHs \\\

Plasma Z

 

Fig. 1.3 Schematic diagram of an antenna with k: << k: for body wave

Alfvén resonance heating. (After Ott et al., 1978).
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Karney et a1. (1979) extended the work of Ott et a1. (1978)

to include finite w/Qi corrections assuming By = 0. They were moti—

vated by the fact that w/Qi for MW eigenmodes in PLT is non—negligible.

Following the method of Karney et a1. (1979), the absorption of the MW

at the Alfvén resonance is now estimated by considering the reflection

of the MW from a constant density gradient using the solution to the

wave equation (1.10).

The two linearly independent solutions of (1.10) about xa are

(Karney et al., 1979)

E 1+(S/M+Sz)u
yl

(1.22)

Ey2 l + MS(l - MS) E Qnu

yl

where M2, S << 1 is assumed. The logarithm in (1.22) is again defined

by (1.17).

The linearly independent solutions for Ey which are valid away

from the Alfvén resonance are the Airy functions Ai(—u) and Bi(—u)

(Antosiewicz, 1970).

An analytical solution which is valid throughout the density

gradient is obtained by matching the Airy function solutions (and their

derivatives) to those given by (1.22) in the region where both types of

solutions are valid i.e. in the regions where M2 << — u f u0 << 1 and

M2 << u << 1 (Karney et al., 1979). By using this procedure the solution

which is finite as u + - w is found to have the form



where

11

12

21

22

(A.3)

terms

exp(—

allEyl + alZEyZ

= a Ai(—u) + a21 2231('“)

= (M/S) c2 + £n(- uO)(M2c2

cl — (M/S) c2

1.17

(1.23)

— MScl)

= i(n/2 V5) [M(c2/cl)l/2 - S(cl/C2)%]

= Ai(O) 12 0.355

= - Ai'(0) I? 0.259.

The asymptotic form of (1.23) for u >> 110

and (A.4). The incident MW is represented by the exp(%(— u)3

is obtained using

/2)

in the asymptotic expansions and the reflected MW by the

§(- u)3/2) terms. By comparing the incident wave amplitude to

the reflected wave amplitude, the fractional power lost by the magneto—

sonic wave on reflection from a constant density gradient is found to

have the form (Karney et al., 1979)
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1 2

q = (27W?) [racy/cpl”2 — 5(c1/c2)’§] . (1.24)

It is seen from (1.24) that for S = O i.e. w/Qi = 0, the fractional

power absorbed increases with IMI and is zero for ky = O. The effect

of a finite (0/91 is to increase q for ky/K negative and to decrease q

for ky/K positive with no energy absorption occurring for S = MCZ/Cl'

Note that the above dependence of the energy absorption on ky/K is

similar to that obtained by Cramer and Donnelly (1983) for the damping

of the surface wave due to resonant mode conversion. This similarity

is to be expected as the mode conversion processes are the same in the

two cases and only different boundary conditions applied.

Winglee (1982) extended the work of Karney et a1. (1979) to in—

clude the effect of terms of order MZw/Qi and M of arbitrary magnitude

on the fractional power lost by the MW on reflection from a constant

density gradient. This work is discussed in detail in Chapter 3.

1.3 COMPARISON WITH ION—ION HYBRID RESONANCE HEATING

An alternative heating scheme to the above is the resonant mode

conversion of a magnetosonic (fast) wave into an ion-Bernstein wave in

a two ion-component plasma (Stix, 1975; Perkins, 1977; Jacquinot et al.,

1977; Scharer et al., 1977; Colestock et al., 1980; Chiu et al., 1982).

The analysis is similar to the above except that k2 is assumed to be small

and w/szTe >> 1 (vTe being the electron thermal speed). In this case the

resonance is known as the ion—ion hybrid resonance and occurs for a D—T

plasma at those points within the plasma at which
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1
/2

l.5(l.50T + DD)
w = Q —— 1.2

T pT + 1.50D ( 5)

where QT is the tritium cyclotron frequency and QT and DD are the per-

centage concentrations of tritium and deuterium respectively.

Using the cold plasma approximation (i.e. w/kzv >> 1), Perkins
Te

(1977) found that in the case of a minority light ion species in a

heavy ion plasma roughly equal electron and ion heating is possible.

This type of heating was subsequently demonstrated in a D—majority H—

minority plasma (e.g. JFT—2 Group, 1982; Equipe TFR, 1982). However,

Perkins (1977) found that in the opposite case only electron heating is

possible. This feature implies that if ion—ion hybrid heating is to be

utilized in the heating of a D—T plasma (this plasma having the lowest

ignition temperature) the concentration of tritium must be greater than

the concentration of deuterium. Unfortunately, this configuration is

expensive as tritium does not occur naturally to any great extent.

0n the other hand, in a low 8 plasma, ion heating using the

Alfvén resonance scheme is only possible via the parametric decay of

the shear Alfvén wave into an ion—sound wave (Hasegawa and Chen, 1976).

The need for parametric decay arises from the fact that in a low 8

plasma only the ion—sound wave is subject to ion-Landau damping. However,

the parametric decay is limited to only a small region about the Alfvén

resonance where the wave fields are large so that only a small portion of

the energy mode converted into the shear Alfvén wave is available for ion

heating. Thus, the effectiveness of the Alfvén resonance heating in heat—

ing ions is doubtful. A similar conclusion can be drawn from the experi—

ments using Alfvén resonance heating where there is always a large excess
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of electron heating over ion heating (Section 1.1; Obiki et al., 1977;

de Chambrier et al., 1982b).

The main disadvantage of the ion—ion hybrid resonance heating

scheme is that the resonance occurs on the constant magnetic field sur—

face given by (1.25) so that some surface heating occurs. However, in

the Alfvén resonance heating scheme, the resonance lies approximately

on a surface of constant density (i.e. Ak = 0) which can be well inside

the plasma so that surface heating is inhibited.

1.4 OPTIMIZATION OF RF HEATING
 

In the previously cited references for Alfvén resonance heating,

emphasis has been placed on the absorption of the fast magnetosonic wave

due to mode coupling. There has been little work in determining how to

efficiently heat the ions in the plasma interior. Further, the para—

meter range investigated in many of the previously cited works may not

be representative of the conditions in the tokamak. For example, in a

high power heating experiment where there are many heating coils pre-

sent, it is quite possible that k: = k: = K2 and w/Qi may not be non-

negligible. This parameter range has not been previously examined.

The purpose of the next two Chapters is to obtain an estimate

of the optimum operating conditions for the Alfvén resonance heating

scheme for realistic tokamak operating conditions. To make the estimate

tractable the heating scheme is divided into three individual processes:

(i) the collisionless damping (and dispersion) of the magnetosonic

and shear Alfvén waves in a locally homogeneous plasma

(Chapter 2);
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(ii) the mode conversion of the magnetosonic wave at the Alfvén re—

sonance in an inhomogeneous plasma (Chapter 3);

(iii) the response of an antenna in the presence of the Alfvén re-

sonance (Chapter 3).

The damping of the SAW determines the deposition of energy amongst the

various components of the plasma while the mode conversion processes

determine the actual amount of energy coupled into the SAW. Emphasis

is placed on the Alfvén resonance heating scheme because, as is shown

in the next two Chapters, with the addition of a minority ion species

in the Alfvén resonance heating scheme the problems of both ion—ion

hybrid and Alfvén resonance heating can be overcome.
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CHAPTER 2

ALFVEN RESONANCE HEATING IN A MULTIPLE ION—COMPONENT PLASMA

2.1 INTRODUCTION

In this Chapter, the dispersion, polarization and damping of

the magnetosonic wave (MW) and the shear Alfvén wave (SAW) are deter—

mined as functions of density for typical tokamak parameters (a review

of tokamak operating conditions is given by Rutherford, 1980). Such a

study enables the simulation of the propagation of these waves through

the plasma and thereby enables the determination of the wave parameters

(w, kz and ky) for which heating of the ions in the plasma interior is

possible.

The dispersion and damping of the MW and SAW in a single ion-

component plasma have previously been studied by Akhiezer et a1. (1967,

Ch. 2), Sitenko (1967, Ch. 7), Hasegawa and Chen (1976), Stix (1980) and

Ross et a1. (1982) under various conditions. However, the ion heating

produced by the damping of the SAW (and the MW) in a single ion-component

low—B plasma is small (Chapter 1).

As discussed here and in Winglee (1983a) this problem is over-

come by using Alfvén resonance heating in a multiple ion-component

plasma. This heating scheme, hereafter called minority ion-cyclotron

heating, is similar to the ion-ion hybrid resonance heating scheme ex—

cept that kz is large rather than small. In this case, the minority

ions can gyro-resonantly damp the MW and SAW without significantly mod-

ifying the dispersion of the MW and SAW and mode coupling between

these two waves still occurs via the Alfvén resonance (Section 2.3).
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This heating scheme is thereby able to overcome the problems of both

ion-ion hybrid and Alfvén resonance heating i.e. the problems of excess

electron heating and heating of the plasma surface.

To determine the properties of the MW and SAW, the local dis—

persion equation (Section 2.2) is solved analytically with the in-

clusion of finite Larmor radius, w/Qi, electron mass and minority ion

corrections. Expressions for the dispersion, polarization and damping

of the MW and SAW are given in Sections 2.3, 2.4 and 2.5 respectively.

The dispersion and damping give the regions in the plasma in which the

MW and SAW propagate and heat. The polarization vectors allow a

physical interpretation of the mode coupling processes which is lack-

ing in the previously cited studies on mode coupling. In Section 2.6,

numerical solutions to the dispersion equation are presented. A sum-

mary of results is given in Section 2.7.

2.2 THE DISPERSION EQUATION
 

The wave equation for a locally homogeneous plasma has the form

(Melrose, 19803, p. 49).

Aij(§,w) Ej(§,w) = 0 (2.1)

2 2 2 .

g — €11 - n cos Gk €12 €13 + n cosek51n6k

- - n2 e
812 E22 23

2 . 2 , 2

£13 + n cosek31n6k - €23 €33 n Sln Gk

(2.2)
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where,g is the dielectric tensor, the magnetic field is in the 3—

direction, k is in the 1—3 plane and 8k is the angle between the mag-

netic field and k. The condition for the existence of a non—trivial

solution to (2.1) is that w and k satisfy the dispersion equation

detqp o. (2.3)

The elements of the dielectric tensor are given in standard textbooks

such as Stix (1962, Ch. 8), Krall and Trivelpiece (1973, Ch. 8) and Melrose

(1980b, Ch. 12). To evaluate the dielectric tensor, the plasma is assumed in

the following to consist of electron, majority ion and minority ion com—

ponents with quantities related to these components being denoted by sub-

scripts e, i and m respectively. It is further assumed that w E 9m < 91,

nm << ni and that the plasma has a low 8 with the electron and ion temper—

atures approximately equal. In this case, the dielectric tensor can be

approximated by the form given in Table 2.1.

The dielectric tensor given in Table 2.1 is used in Section 2.6

to evaluate numerical solutions to the dispersion equation (2.3). How-

ever, approximate analytic solutions to (2.3) can be obtained by approx-

imating the plasma dispersion function, a, by either its series

expansion or by its asymptotic expansion, depending on the magnitude of

the arguments of the plasma dispersion function. In particular, for a

10w 8 plasma in which w = ksz 3 gm < 91, these arguments are such that

lyenl >> 1, n = t 1, ye0 is of arbitrary magnitude, lyinl >> 1 for n = 0,

i 1, and Iymnl >> 1, n = O, — 1.. It is also assumed that the minority

ion species is only present if minority ion—cyclotron heating is to be

utilized (i.e. w = 9m) and that the plasma B is sufficiently large so

that
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yflliflsil
ml Qm(xc) va 2B B1/2 ~

AB 1/2
1.e. 2§?;;7 : B

where xC is the position of the centre of the plasma and AB is the change

in the magnetic field across the Alfvén resonance surface. This require-

ment is easily fulfilled for tokamaks in which 8 is greater than a few

percent and the Alfvén resonance is near the centre of the plasma.

Assuming the above inequalities for the arguments of the plasma

dispersion function, the dielectric tensor is found to have the form

given in Table 2.2. By ordering the elements of this dielectric tensor

2 2 2 2. 2 2
in terms of the small parameters w /Qi, vA/c , VTi/VA’ yml and Xi, vA

being the Alfvén speed of the majority ion and retaining only first

order corrections the dispersion equation (2.3) can be approximated by

2 2 2 2
(n cos 6k — €11)[(n -€22) 833 £23]

4 . 2 2 2 2 . 2
— — {n €1151n 6k + £33812 n €1251n Gk

+ 2(2 s'ne co 9 — '29 )} (2 4)“ E512523 1 k S k E11622Sln k '

The terms on the right hand side of (2.4) are first order corrections

as are the contributions from the minorityitmlspecies since nm << ni

by assumption.
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TABLE 2.2 The approximate form of the dielectric tensor for Am i l, lyenl >> 1, n = f l, lyin] >> 1,

n = 0, t l, Iymnl >> 1, n = O, — l and lymll << 1. In (a) the hermitian part is given and

in (b) the antihermitian part.
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2.3 DISPERSION RELATIONS
 

It is seen from (2.4), that the zero—order dispersion relations

for the SAW and MW are nzcoszek = all and n2 = 522 respectively. The

zero—order dispersion relation for a third wave, the ion sound wave, is

given by 833 = O (e.g. Melrose, 1980a, p. 57). However, the properties of

the ion sound wave are not discussed here because this wave can only be

excited in a low 8 plasma by an external antenna via non—linear processes

(e.g. Hasegawa and Chen, 1976).

Solving for the real part of (2.4) perturbatively, the dispers—

ion relation for the SAW is found to have the form for ka/kil >> w/Qi

and for w2 << 2k2v2
2 Te

 

 

2
T 2 2 z n m -A

2 _ 2 2 3 2i e w k i m m __ m
w 1(sz l-A.(4+ T )+ 2 2+—2 n.m 1— e (am+2.5)]

1 Q. kl z 1 1
1 m

(2.5)

and for w2 >> 2k2v2
2 Te

2 2
2 z,m k 2 z, n m —X

002 = k2v2/l-2X.+—w (la—J'+——k)+——1——mm 1—le m(OL+2.5)
A 4 1 2 m. 2 2 2n.m. 2 m

9. 1 k Kl z 1 1
1 z m

(2.6)

where a = /2 y 9 /k v and n , n and z are respectively the number
m ml m z Tm a a a

density, mass and valence number of species a.

Equation (2.5) implies that for w2 << 2kivie the SAW only propa-

gates (i.e. hf > 0) in regions where the plasma density is greater than

the density at the Alfvén resonance i.e. for densities greater than that

at the point where
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2

w2 w2 l Zi nmmm
2 2 - {l — —E-+ 2-—§‘n.m, (am + 0.5)} . (2.7)

k v 9. z 1 1
z A 1 m

2 2 2 . .
On the other hand, for w >> 2kzvTe the SAW only propagates 1n reg1ons

where the density is less than the density at the Alfvén resonance (as

given by (2.6)). Further, the coefficient of kf

small so that, for densities not too close to the density at the Alfvén

2
z.

in (2.5) and (2.6) is

resonance,lkf|>> k

However, near the Alfvén resonance, Rf of the SAW becomes small

and, depending on the magnitude of w/Qi, the inequality [hf/kil << w/Qi

may be satisfied. In this case, the SAW dispersion relation becomes

(for arbitrary w/JE szTe)

m2 a) kz 1 z, n m
v {1 +-—— -——-—— —-—-——-JEJE (a + 0.5)} (2-8)

m, m

where the sign in (2.8) is chosen so that (2.8) is an analytic continu—

ation of (2.5) and (2.6).

By again using a perturbative expansion of (2.4), the dispersion

relation for the MW is found to have the form for lkf/kzl >> w/Qi and

for w2 << 2k:v2

 

 

Te

2k2 v2 2v2 k2
2 2 2 w z 5 T1 lw z kv/l-—}\ ———- —+ —

A 1 92 k2 v2 v2 k

i l A A

z n m 1 _Am
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2
and for w2 >> 2k2v

2 Te
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2 2

2 22 (1)2132 121““
u 2 kV/ l--——--—mm(cx +0.5) (2.10)

A 2 2 2 2 n,m. m

R. kl z 1 1

l m

where vS is the majority ion sound speed.

2 2

The MW dispersion relation is also modified when [hi/kzl << (13/91

and has the form

 

2 w 1 z

/ {1 + EL-f ——-- —--—- mmm (am + 0.5)} (2-11)

where the plus sign is valid on the low density side of the Alfvén re—

sonance and the minus sign on the high density side.

Thus, the MW has two cutoffs (i.e. Kl = 0), a low density cutoff

at

2 z2 n m

2 2 2 w w l i m m
2 —+——-————— . .w ksz {1 + 2 Q. 2 2 n.m. (am + 0 5)} (2 12a)

9i 1 2m 1 1

 
2 2 2 (1)2 w 1 z nmmm

(D 5 1(sz {l +7-Q—,_E—En_m, (Gm-i- 0.5)} . (2.121))

- 9i 1 2m 1 1

These cutoffs can also be derived from the work of Stix (1980).

If w/Qi terms are neglected then the two cutoffs coalesce and

the MW can only propagate on the high density side of the Alfvén reson-

ance. However, if (Jo/{2i terms are retained then the cutoffs are distinct

and the MW can propagate in two regions of different density. The first

region is between the low density cutoff and the Alfvén resonance and in

this region the NW is sometimes called an ion-cyclotron wave (Karney et
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a1., 1979). The second region is the high density side of the high den—

sity cutoff and in this region the MW is sometimes called a compressional

Alfvén or compressional magnetosonic wave (Puri and Tataronis, 1978).

The finite frequency and ion sound speed corrections given here

are the same as Akhiezer et a1. (1967) and Sitenko (1967). The finite

Larmor radius correction for the SAW is the same as that given by

Hasegawa and Chen (1975, 1976). The finite Larmor radius correction is

also similar but not the same as that given by Puri and Tataronis (1978)

and Puri (1979) as they only considered some and not all of the finite

Larmor radius and finite frequency effects.

The importance of the finite frequency, Larmor radius and elect-

ron mass corrections is that they allow the SAW to propagate across the

field lines. On the other hand, the main effect of the minority ions on

the dispersion relations is to shift the Alfvén resonance and the magneto-

sonic wave cutoffs by a small amount. The effect of the minority ions is

small because the thermal velocity spread produces a large spread in the

Doppler shifted wave frequency (as represented by yil << 1) which pre—

vents the minority ions from acting collectively even though the wave

frequency is close to the minority ion cyclotron frequency.

The minority ion corrections can be neglected if these corrections

are much smaller than the finite frequency corrections i.e. if

 

2
2. nm n _ 2

—1 mm Ia + 0.5] = —“‘y 81/2 << 9’— (2.13)
2 n,m. m n. ml 2

2m 1 1 1 9i

Criterion (2.13) is easily satisfied for B greater than about a few per

cent and nm/ni less than about a few per cent.
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2.4 POLARIZATION VECTORS
 

In this Section, the polarization vectors of the SAW and the MW are

presented. These vectors together with the dispersion relations presented

in the previous Section allow a physical interpretation of the features

of the mode coupling between the SAW and MW (as reviewed in Chapter 1).

For simplicity it is assumed that criterion (2.13) is satisfied so that

the effect of the minority ions on the dispersion relations (i.e. on

the hermitian part of the dielectric tensor) can be neglected.

The polarization vectors are obtained by substituting the sol-

utions to (2.3) into (2.1). Noting that w and kz are constants and k1

and v are functions of density, the polarization of the SAW is given
A

approximately by
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Elk v: wZ REV: _E3 = _ _2_ [72. _ T] u) << /2 k VT (2.16a)

9, k v 9. z e1 Z S 1

2 -l

klksz m Kl :2 [ 1 _] 0) >> J? k v (2.16b)
z.m 2 2 Te

9. 1 e 9.
1 1

2 2
for Ihll >> kz.

In the case where w2/9: << 1 and w = ksz, the polarization

vector of the SAW reduces to

 

E1 = 1

wk:
E2 = '19—,7

1 kl

2 (2.17)
wZ vS kl

E3 = ‘gjk‘ w<<5szTe
i A z

wZ z_m kl _7 1e_ w>>/2kv .
Q mi kz 2 Te

1

The polarization given by (2.17) and for w << /5 ksze is equivalent to

that given by Sitenko (1967). The case where w >> /§ ksze was not con-

sidered by Sitenko (1967)-

The polarization of the MW has the approximate form away from

1 . 2

the Alfven resonance (1.e. for lAlll >> [Al3/A33I)

w kiv: wz
E1 = q [1 ‘ T <1 ' p] “‘18)

1
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E2 = 1 (2.19)

f kl kzvz k2c2 2 2 2 2 ‘1
E = .EL.__ 2 s 1 _ _E__ [Q_ _ k C (l _ ELQ]

3 9i kz w2 9? VA w2 9?
1 1

< ._
w < /2 kaTe (2.20a)

1

Kl z m k2v2 kzc2 2 kzc2 2 —l
ig____ 1 e 2 Te + z c _ (l _ EL)

91 k2 m1 w2 92 v2 w2 92
L i A 1

>>(1) J5 ksze. (2.201;)

In the case where w2 << 9: and w2 2 kzv2A’ the polarization vector of the

MW reduces to

 

E = i k_2.

1 9. R2

1 1

E2 = 1 (2.21)

2
E = ifl_:§ klkz

3 Q, 2 k2
1 vA

for arbitrary v as given by Sitenko (1967).
Te

The important thing to note about the polarization vectors is

that in the ideal MHD limit (i.e. neglecting all first order correct-

ions) the electric field of the SAW is parallel to kl (i.e. in the 1—

direction) and its magnetic field is in the 2—direction. Thus, the

Poynting vector of the SAW is directed along the magnetic field lines.

The effect of the first order corrections is to produce a difference

in the average transverse velocities of the electrons and ions as they
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gyrate about the field lines in the presence of the wave fields. This

difference then gives rise to the small E2 and E3 electric field com—

ponents of the SAW (e.g. Stefant, 1970). These additional field com-

ponents allow the SAW to propagate slowly across the field lines.

On the other hand, the MW in the ideal MHD limit has its elec—

tric field in the 2—direction and its magnetic field in the 1—3 plane

perpendicular to E. Thus, the Poynting vector of the MW is parallel to

E and the magnetosonic wave can propagate across the magnetic field.

The first order corrections give the MW finite El and E3 field compon-

ents which modify slightly the group velocity of the MW across the

magnetic field.

To understand the physical mechanism for the mode coupling note

that near the Alfvén resonance the wave frequency and wave number of

the MW are close to that of the SAW i.e. the dispersion relations of

the SAW and MW have almost the same solution. If the MW has field com-

ponents in common with the SAW near the Alfvén resonance then mode

coupling can occur.

The common field components between the MW and the SAW can be

determined by considering El and the polarization vectors, (2.14) —

(2.21). In the tokamak, E1 has a component perpendicular to the den—

sity gradient (hereafter called ky) determined by the antenna and a

component parallel to the density gradient (hereafter called kx) deter-

mined by the plasma dispersion equation. For the SAW, kal is large so

that for tokamak applications k; << Ikil (Hasegawa and Chen, 1976) and

the electric field of the SAW is directed along the density gradient

2
for w << 91 (if ky >> k: then the wave fields have a large spatial de—

cay rate outside the plasma and there is little energy coupled between
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the plasma and the antenna (e.g. Chen and Hasegawa, 1974)). Thus, in

the ideal MHD limit, the MW must have an electric field component par-

allel to the density gradient,i.e. ky must be finite,before mode coupl-

ing can occur. This situation is consistent with the results of Ott et

a1. (1978; their kl is equivalent to ky here) and Karney et a1. (1979).

The retention of first order corrections introduces other field

components which modify the mode coupling. The dominant correction is

the introduction of an El component in the polarization of the MW; the

other corrections to the polarization of the MW and SAW are proportional

to second order terms (e.g. (2.17) and (2.21)). Thus, the dominant mod—

ification to the mode coupling by the first order corrections is via the

coupling between the E fields of the MW and of the SAW. This modifi-
1

cation is independent of temperature because the above fields depend

only on the finite frequency corrections. This conclusion is consistent

with the numerical results of Ross et a1. (1982).

2.5 SPATIAL DAMPING RATES
 

In this Section, the damping of the SAW as it propagates away

from the Alfvén resonance is examined for both single and multiple ion—

component plasmas. For completeness, the damping of the MW is also given.

The temporal damping rates of the SAW and the MW in a single ion—

component plasma have been previously studied by Akhiezer et a1. (1967),

Sitenko (1967), Fejer and Kan (1969), Stefant (1970), Lashmore—Davies

and May (1972) and Hung and Barnes (1973). However, for the tokamak the

frequency is fixed by the antenna so that the relevant parameter is the

spatial damping rate although the physical mechanism for the damping

(i.e. electron and ion Landau damping) is the same in either case.
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The spatial damping rates are obtained by solving (2.4) per—

turbatively for the imaginary part of RE. For a single ion-component

 

 

plasma in which wz << 9: and vii << v: the imaginary part of (2.4) is

significant only if w2 < 2k§vie. In this case, the damping of the SAW

is found to have the form

z T 22 l

Im(k) = [1% “’ Re(k2) exp - [—‘L— . (2.22)
.L eS 3 T. k V J. k—

1 2 Te / k v
z Te

and that of the MW by

2 fl VTe w z'm 2 w 2Im(ki)eM = Ev—kv —;—9Re(kl) exp - [—J . (2.23)
A 2A i fikv

2 Te

The above damping rates arise from the electron component of 8:3 (with

the contributions from Ea and ea being negligible for the SAW and can—
22 23

celling each other for the MW). Physically this situation corresponds

to the MW and SAW being electron Landau damped by electrons resonating

with the axial electric field of these waves (cf. Stix, 1962,

Ch. 7).

The number of ions which can resonate with the axial wave fields

is exponentially small as w2 >> kivii so that the contribution from the

ions to the above damping rates is negligible. The ions can contribute

to the damping through the gyro—resonant interaction with the perpendic—

ular wave fields if m approaches Hi. In this case, the Alfvén resonance

(as given by (2.5)) tends towards the plasma surface unless kz is corres—

pondingly increased. However, increasing kz increases the spatial decay

rate of the wave fields (Ott et al., 1978; see also Section 2.6).

Interior ion heating can be obtained by the addition of a min—

ority ion species whose cyclotron frequency is approximately equal to
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the wave frequency (Winglee, 1983a). The minority ions can then

cyclotron damp the SAW and the MW with bulk ion heating being produced

by Coulomb collisions between the majority and minority ions in a sim—

ilar fashion as in ion-ion hybrid resonance heating. Further, only a

few per centof the minority ion species need be added before electron

and ion heating become approximately equal because the minority ions

gyro—resonantly interact with the perpendicular electric wave fields

rather than the smaller parallel electric field. Specifically, the

damping of the SAW in a multiple ion—component plasma in which criter—

ion (2.13) is satisfied is given by

 

  

92 z T kzv n m

2 2 1 In ‘ ' A w ' 2

Im(Kl) = Im(k..|.)eS + 3- 2- 2 [l — xi ; e 22 k v nmm1 exp[—(Am+yml)]

V . i w z Tm i m J

Ti

(2.24)

and that of the MW by

2

Q n m
2 2 l W ' w ‘ 2

Im(ki) = Im(ki)eM + 2. 2 —% k v n ml exp[—(Am+yml)]. (2.25)

VA 2 Tm i m

Note that the damping due to the electrons increases with kf while

that due to the minority ions decreases with Am and lymll. Because Kl of

the SAW is smallest at densities close to that at the Alfvén resonance

(via (2.6) and (2.7)) minority ion damping tends to dominate electron

damping near the Alfvén resonance. However, if the density gradient is

large near the Alfvén resonance then the SAW propagates into a region

where Kl is large, i.e. where electron damping dominates, before signifi-

cant minority ion damping can occur. Thus the total amount of energy
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deposited in the ions depends not only on the concentration of the

impurity ions and on the variation of the magnetic field but also on

the variation of the density near the Alfvén resonance. These points

are discussed further in the next Section.

2.6 NUMERICAL RESULTS

Presented here and in Winglee (1983a) are numerical solutions

to the dispersion equation, (2.3), with the dielectric tensor as given

in Table 2.1. These solutions were obtained from a complex root—finding

subroutine which was developed by Botten et a1. (1981) for a problem in

diffraction theory. In the following the solutions are shown as funct—

ions of density for (a) a single ion—component plasma for various elect-

ron temperatures and w/Qi and (b) a multiple ion—component plasma for

various w/Qi and impurity concentrations. Such a display of the results

simulates the properties of the MW and the SAW as they propagate through

a density gradient except possibly near the Alfvén resonance. In the

following Te = Ti unless otherwise stated.

Fig. 2.1 shows hfcz/Q: for the SAW (short perpendicular wave-

length branch) and for the MW versus the normalized density, wz/kivi,

for the given electron temperatures. For m < /2 ksze (Fig. 2.1a) the

SAW propagates on the high density side of the Alfvén resonance with the

IRe(hf)| increasing with decreasing vTe (as given by (2.6)). However,

as vTé approaches m/JE kz (Fig. 2.1b) the analytic results break down

and the lRe(hf)l becomes small so that kf is almost purely imaginary. At

this point the damping of the SAW is at a maximum. If vTe is further de-

creased (Fig. 2.lc) then the SAW propagates on the low density side

of the Alfvén resonance with IRe(hf)l again increasing with decreasing



Fig. 2.1 hfcz/Q: for the SAW and MW branches versus the normalized

density wZ/k:v2 for the given electron temperatures (Te=Ti)

and w/Qi = 0.25 and ch/Qi = 9.0. The real and imaginary

parts of kf are shown in (i) and (ii) respectively. The

SAW propagates (Re(kf) > O) on the high density side of the

Alfvén resonance if m < /E kzv e (Fig. a) and on the low
T

density side if m > V3 k v (Fig. c). For w2 = /E k V
2 e 2 TeT

(Fig. b) the damping of the SAW is at a maximum and Rf is

almost purely imaginary. For the MW, the Re(kf) away from

the Alfvén resonance is approximately independent of elec-

tron temperature while its damping increases with electron

temperature. Near the Alfvén resonance the MW branch merges

into SAW branch and vice versa.
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vTe as given by (2.5). In contrast, the Re(kf) for the MW is approxi-

mately independent of the electron temperature and the damping of the

MW increases monotonically with electron temperature. The damping of

the MW is smaller than that of the SAW because the axial electric field

of the MW is smaller as given by (2.16) and (2.20).

To illustrate some of the features of the polarization of the

MW and the SAW, the Re(E2/iEl) is shown in Fig. 2.2 for w/Qi = 0.495, (1)

ooh/2 ksze = 0.26 and (ii) w/JE kaTe = 1.95. The Im (EZ/iEl) is not

shown because in general lIm(E2/iEl)‘ << iRe(E2/iEl)l as given by (2.14)

- (2.21). It is seen that IEz/iEll of the SAW is always much less than

unity and is temperature dependent. On the other hand EZ/iEl of the MW

is independent of temperature except near the Alfvén resonance where

plasma inhomogeneity effects (i.e. mode coupling) dominate.

Fig. 2.3 shows klc/Qi for various w and kz such that the density

at which the Alfvén resonance occurs is fixed. By increasing w, the low

density MW cutoff is shifted towards the plasma Surface, as given by

(2.12). There is some cyclotron damping present at the higher frequenc—

ies given. These advantages are offset by an increase in the spatial

rate of decay of the MW and an increase in the kz required to keep the

Alfvén resonance at the same density.

Significant ion heating can be obtained for smaller w and k2 if

a minority ion species is introduced as previously discussed. An example

is shown in Fig. 2.4 in which deuterium is the minority ion species in a

hydrogen plasma. Only a 1% doping level with (.0/91 = 0.495 and

kzc/Qi = 18 is needed before the SAW damping rate exceeds that obtained

in a single component plasma with 00/91 = 0.8 and kzc/Qi = 42.
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Ric/9i versus the normalized density wz/k:V:(l - wz/Qi) for var—

ious w and kz such that the Alfvén resonance occurs at the point

2 2 _ 3
where c /vA 10 (vTe

ary parts of hi are shown in (a) and (b) respectively. For a

/c = 0.075, T1 = Te). The real and imagin-

given w/Qi, the portion of the curve with the smaller [kilrepres-

ents the MW branch while the portion with the larger lkil repres-

ents the SAW branch. By increasing w, the region of evanescence

of the MW is reduced but the spatial decay rate is increased.
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that of a single component plasma with w/Qi = 0.8 and

ch/Qi = 42 as given in Fig. 2.3.
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The effect of the addition of a minority ion species in a colder

plasma is shown in Fig. 2.5. For the same impurity concentration and

w/Qi, the resonance occurs at a lower density than in Fig. 2.4. This

shift occurs because kzv is sufficiently small so that
Tm

Iw-Qm|//2 kszm >> 1 and the minority ion species act collectively to

modify the dispersion relation. However, if kzv is sufficiently large

Tm

so that Iw — QmI/E szTm << 1 then the minority ions do not act collect-

ively and only the resonant component interacts with the waves giving

rise to the ion cyclotron damping. This effect is illustrated in Fig. 2.

The modification of the dispersion relation by the minority ion species

is at a maximum when Iw - le/JE kszm 2 l.

The ratio of the total damping to that due to the electrons is

shown in Fig. 2.7 for the given doping levels. The proportion of elec—

tron damping increases as the density increases above that at the

Alfvén resonance. This increase is due to the dependence of the damp—

ing ((2.22)—(2.25)) on kf which in turn depends on the density (as dis—

cussed in Section 2.5). Ion damping dominates near the Alfvén resonance

where hi is small. This damping increases with increasing doping levels

and decreasing Iw — le. When the Alfvén resonance is near the plasma

centre, the variation of the density and the magnetic field over the

region is small so that the ions absorb most of the rf power directly

while the electrons are heated by Coulomb collisions with the ions and

not directly by the rf power. Thus, the minority ion heating scheme

presented here is able to overcome the problem of excess electron heat—

ing as observed in Alfvén resonance and ion—ion hybrid resonance heating

(Section 1.1).
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The dependence of the ion heating on the variation of the mag—

netic field can be reduced by the introduction of a second minority

ion species whose cyclotron frequency lies close to that of the first

minority ion species. The SAW can gyro-resonantly interact with one

of the ion species on the high field side of the plasma and with the

other on the low field side. The enhanced damping due to the presence

of deuterium and tritium minority ion species is shown in Fig. 2.8.

Note also that the modification to the SAW and MW dispersion relations

is smaller than that for the same total doping with one minority ion

species.

It can be seen in Figs. 2.1, 2.6 and 2.7 that the WKB solutions

predict that the MW branch on the low density side of the Alfvén reson-

ance is connected to the SAW branch on the high density side if the

cyclotron damping is small. However, if the cyclotron damping is large

then the MW and the SAW branches are unconnected. This change in the

dispersive properties of the plasma is due to the presence of finite

anti—hermitian parts of E and E . The actual connection is deter-

ll 12

mined by density gradient effects, in particular mode coupling.

2.7 SUMMARY

In this Chapter, the dispersion, polarization and damping of the

MW and SAW were examined in relation to the Alfvén resonance heating of
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tokamak plasmas. Near the Alfvén resonance, the dispersion relations

of the MW and the SAW are approximately the same. This feature allows

mode coupling between the MW and the SAW if these waves have field com—

ponents in common. The field components which produce the mode coupling

depend only on ky and w/Qi and not on the plasma temperature (Section

2.4). Further, if w/Qi corrections are neglected and ky = 0 then the

wave fields of the SAW and MW are orthogonal and no mode coupling oc-

curs. If w/Qi corrections are retained then mode coupling can then

occur even for ky = 0.

The subsequent fate of the energy mode converted into the SAW

is dependent on the plasma temperature. In particular, the SAW propa—

gates on the high density side of the Alfven resonance if m << /5 ksze

and on the low density side if m >> /5 szTe (Section 2.3). This fea-

ture of the SAW assists in the heating of the interior of tokamak plas-

mas with B > zime/mi as the SAW in this case propagates towards the

centre of the plasma.

Unfortunately, in a single ion—component plasma with a low 8

and w2 << 9:, the SAW and MW are principally electron Landau damped and

little ion heating occurs (Section 2.5). The damping of the SAW is

maximum when w = V? k while that of the MW increases monotonically
zVTe

with electron temperature, the damping rate of both waves increases

with increasing kal. This last feature implies that the damping rate

of the SAW increases as it propagates away from the Alfvén resonance.

Efficient heating of the ions in the plasma can be obtained if

(a) w << /5 ksze and (b) there is present a small percentage of a min-

ority ion which can gyro—resonantly damp the SAW. In particular, if

1/2
Iymll = Iw — QmI//§ kszm << 1 (i.e. AB/B << 8 and w = 9m) and
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(Zinmmm)/(Z:nimi) << wz/Qi, then the damping of the SAW is significant-

ly enhanced by minority ion—cyclotron damping with little modification

to the position of the Alfvén resonance and to the dispersion of the

MW and SAW (Section 2.6). Bulk ion heating occurs via Coulomb collis-

ions between the ion species.

Because the resonant ions interact with the perpendicular wave

electric fields and the resonant electrons interact with the smaller

parallel wave electric field, only a few per centof minority ions need

be added before electron and ion heating become equal. Further, if the

Alfvén resonance is near the centre of the plasma then electron heating

is minimized and ion—heating maximized because the variation of the dens—

ity and the magnetic field in the region in which the SAW propagates is

small. An alternate way of increasing the ion heating is by the intro-

duction of a second minority ion species such that 9m < w < Rm <

1 ~ 9i2

and Iw — Qmj|//§ kszm E l for j = 1,2. In this case, minority ion

species 1 damps the SAW in the low magnetic field region of the plasma

and minority ion species 2 damps the SAW in the high magnetic field

region.

Although a hydrogen plasma was assumed in the numerical calcul—

ations to illustrate the ion heating, there is a wide range of plasma

compositions available which allow ion heating and the possibility of

fusion. These compositions include:

. . 4 . . . . . .
(1) a p-majority He-minority plasma in which ion heating can be

demonstrated at low cost but with increased bremsstrahlung radi—

. 4
ation due to the presence of He;

(ii) a p—majority D-minority plasma which is more expensive but
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(iV)
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does not have the problem of increased bremsstrahlung radiation

and allows the possibility of fusion reactions in any supra—

thermal tail of deuterium produced by the rf heating;

a p—majority D-T—minority plasma in which both D—D reactions in

the suprathermal tail of deuterium and D—T reactions in the

thermal components of the minority ion species are possible;

D-majority T—minority plasma or p—majority 3He—minority plasma

with the minority ions participating in both rf heating and in

fusion reactions.



CHAPTER 3

ALFVEN RESONANCE DAMPING OF THE MAGNETOSONIC WAVE

3.1 INTRODUCTION

The minority ion—cyclotron heating scheme examined in Chapter 2

utilizes the collisionless damping of the shear Alfvén to produce ion

heating. The purpose of this Chapter is to determine whether the shear

Alfvén wave can be excited efficiently by the mode conversion of either

a magnetosonic body wave or a magnetosonic surface wave.

In order to treat Alfvén resonance heating in the frequency

range required for minority ion—cyclotron heating, w/Qi is assumed to

be finite but sufficiently small so that wZ/Q: << 1. This frequency

range is also of interest because,in present day tokamaks,w/S2i is non-

negligible (e.g. Karney et al., 1979).

A planar geometry is also assumed as it allows the determin—

ation of general criteria (in terms of the wave frequency, wavenumber

and density profile) for the optimization of Alfvén resonance heating

of the plasma interior. These criteria are expected to apply at least

qualitatively in the more complicated geometry of the tokamak (Chapter

1). Further, such a study is important because, although numerical re—

sults for Alfvén resonance heating have been presented for specific

geometries (e.g. Ross et al., 1982; Appert and Vaclavik, 1982; Donnelly

and Cramer, 1983) general criteria for the optimization of Alfvén re—

sonance heating have not been given.

The wave equation governing the mode conversion of the magneto—

sonic wave into the shear Alfvén wave is derived in Section 3.2. This
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equation is similar to that of Karney et a1. (1979; see also Chapter 1)

except that terms of 0(w2/Qi) are retained. A similar type of wave

equation also appears in the study of the mode conversion of an

ion-cyclotron wave at the Alfvén resonance (Swanson, 1974, 1975;

McKenzie, 1979).

To estimate the mode conversion of the magnetosonic body wave

into a shear Alfvén wave, the power lost at the Alfvén resonance by the

body wave on reflection from a constant density gradient is determined

in Section 3.3. Both the cases where M2 = k:(k:K)—2/3 (K_l being the

scale length of the density gradient) is less than and greater than one

are examined. This work, which is also presented in Winglee (1982),

differs from those reviewed in Chapter 1 in that all terms of 0(w/Qi)

are retained. Ott et a1. (1978) and Karney et a1. (1979) examined the

mode coupling but only for M2 < 1 and neglected terms of 0(w/Qi) and

0(M2w/Qi) respectively. However, these terms are non—negligible if

minority ion—cyclotron heating is to be utilized and must be retained.

In Section 3.4, the mode conversion of a magnetosonic surface

wave to a shear Alfvén wave is determined. The work differs from those

cited in Chapter 1 in that:

(i) a sharp discontinuity (i.e. k: << K2) is not assumed because,

for a finite poloidal mode number, this condition is in general

not valid when the Alfvén resonance is away from the plasma

edge;

2 2 . . .

(ii) ky >> kz 18 not assumed because in the presence of many heating

coils k2 may be of the order of ky.
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The mode conversion of the magnetosonic wave produces a re—

sistive component in the impedance of the antenna which excites these

waves. Large resistances correspond to strong absorption of rf power

by the plasma (Ott et al., 1978). In Section 3.5, the antenna imped-

ance is evaluated and criteria for a resistive antenna impedance are

given. It is shown that, in the parameter range required for minority

ion—cyclotron heating, efficient coupling of energy between the antenna

and the plasma centre is possible. A summary of results is given in

Section 3.6.

3. 2 WAVE EQUATION

Using a similar method to that of Karney et a1. (1979), the

wave equation is derived from Maxwell's equations and the dielectric

tensor. A constant magnetic field is assumed to be directed along the

z axis. The parallel electric field is neglected as the conductivity

in the z direction is large.

Minority ions are assumed to be present only if minority ion-

cyclotron heating is to be utilized i.e. if lymll << 1. In this case,

the contribution from the minority ions to the dispersion and mode con—

version of the magnetosonic wave (i.e. the minority ion contribution to

the hermitian part of the dielectric tensor) can be neglected (Sections

2.3 and 2.6). On the other hand, the majority ions and the electrons

are assumed to comprise a cold plasma with a density gradient in the x

direction. As previously discussed in Chapter 1 and in Section 2.4,

neither the assumption of a cold plasma nor of a planar geometry modify

qualitatively the mode conversion when the dispersion of the magneto—

sonic and shear Alfvén waves is determined primarily by the majority ions.
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All wave quantities are assumed to have the form

p(x) exp(i(kyy + kzz - wt)). However, in the remainder of this Chapter,

the exponential term is omitted for ease of notation.

where

to have

where

With these approximations, Maxwell's equations reduce to

2 d
_ + ' — — = .(Ak ky) Ex 1(Dk ky dx) Ey 0 (3 1)

d d2
- 1(Dk + ky d—X) EX + (Ak +37) Ey = 0 (3.2)

u)2

Ak = y“ k
A

002 U)

Dk = ‘5 ET
WA 1

w: = v2(l - (DZ/s2 )

By eliminating Ex in favour of Ey’ the wave equation is found

 

the form

A dE k D' + D2 k D '
11. ___Jg___.__1 + - Y k k + V kAk E = o (3.3)
dx 2 dx 2 %_ y_ _ 2Ak ky (Ak ky)

dD k Km
D' = k z

k dx 9

K=id_“i
n. dx
1
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and a linear density variation is assumed. A similar equation (i.e.

(1.10)) was derived by Karney et al. (1979) except that they neglected

the terms kth and kyAh in the square bracket of (3.3).

In (3.3), singularities occur at the points x8 and xt where

2 2 2 2w = ksz(xa)(l — wz/Qi) and w = (k: + k3) v:(xt)(l — wZ/Qi). The

first singularity is the Alfvén resonance where mode coupling occurs.

The second is only an apparent singularity (Ince, 1956; Appert et al.,

1974; Swanson, 1975) and represents the magnetosonic wave turning point

for w/Qi << 1.

An alternative form of (3.3) from which WKB solutions can be

deduced (e.g. Mathews and Walker, 1970, Ch. 1) is obtained using the

substitution

E = [(Ak - k§)/Ak]l/2 EY- (3.4)

The wave equation then becomes

 

2
dZEY 2 D: kzk K(k2 + k2) (sz) k2(4Ak — k2

___ J£__ZLJL__JL___£L_ l.__E_____lL_______X_ _
d2+[Ak—ky_Ak+Q. (_k2) '4 2( _k2)2 _EY— 0'
X 1 Ak Ak y Ak Ak y

(3.5)

The WKB solutions to (3.5) are

EYi = K;l/2 exp(f i J dex) (3.6)

where
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2D2 k k K(k2 + k2)
2 2 k + zKX = Ak-k —— 5—H (3.7)

3’ Ak 1 Ak(A.k-ky)

and terms of 0(K2) have been neglected.

If the density gradient in (3.7) is neglected i.e. if terms of

0(K) are neglected then linear turning points (where K: = 0) occur at

densities where

2 2 2 2 2 2
2’ + + .w /wA kz ky Dk/ky (3 8a)

2 2 2 2 2
w /wA — kz - Dk/ky (3.8b)

2 2
for k /k >> w/Q. and at

y Z 1

2 2 2
w /wA — kz + Dk (3.9a)

2 2 2
w /WA — kz - Dk (3.9b)

for ki/k: << w/Qi. When ky = O, the turning points given by (3.9)

coincide with the cutoffs (where kl = 0) of the magnetosonic wave as

derived in Section 2.3. In keeping with the notation of Ott et a1.

(1978), the high density linear turning point given by (3.8a) or

(3.9a) is called the (compressional) magnetosonic wave turning point.

The low density linear turning point given by (3.8b) or (3.9b) is

called the ion-cyclotron wave turning point.

The effect of including the density gradient on K: is shown

in Fig. 3.1. It is seen that the spatial decay rate of the magnetosonic
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2 I

wave (i.e. (- Kx)l/2, K: < 0) at densities less than that at the Alfven

resonance (i.e. Ak < 0) is smaller for kyK positive than for kyK nega-

the spatial decaytive. However, for densities such that O < Ak < ky,

rate is larger for kyK positive than for kyK negative. This dependence

on k K has important consequences on the mode coupling as discussed in

the following Sections.

Magnefosonic Wave

Alfvén 5| Turnuig ’//I --

    C
o
l
l
-
0
0
.
0
0
.
0
0
0
0
.
.
.

   
(5k2 = ky{(l+4D:/ky4)1/2- 1}/2.)

for K = O i.e. neglecting the den—

for kyK positive.

Fig. 3.1 Schematic diagram of K:.

The solid curve gives Kx

sity gradient. The dashed curve gives K:

The dotted curve gives K: for k K negative with the dash-dot
y 2 2>|K/ky |(k2z+ky)/kz and the dash—portion applying when w/Qi

<|1</ky [(k: + k2y)/k: Awaydouble—dot portion when w/Qi

from the zeros and singularities ofyK2 whereythe WKB sol-

K2)1/2utions are valid, the spatial decay rate (i.e. (— x ,

K2 < 0) is smaller for kyK positive than for kyK negative

2
< l h 0 < < k .when Ak O and arger w en Ak y
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The WKB solutions are not valid about the zeros and singular—

ities of Kx. In the following Sections, solutions for Ey which are

valid in these regions are found and used with the WKB solutions to

estimate the mode conversion of the magnetosonic wave.

3.3 MAGNETOSONIC BODY WAVE HEATING

In this Section, the fractional power lost by a magnetosonic

body wave on reflection from a constant density gradient is determined.

The incident magnetosonic wave propagates from high density to low den-

sity towards the magnetosonic wave turning point. Energy is lost by

the incident wave if mode conversion through tunnelling from the turn—

ing point to the Alfvén resonance occurs.

The analysis of the reflection of the magnetosonic body wave

is facilitated by the use of the dimensionless coordinate

(Dz k2
n = T: = [m - I] [F] (3. 10)

z A' y

2 . . . .
(Ak(xa) — 0 and Ak(xt) — ky). U31ng this coordinate, the wave equation

(3.3) becomes

2
d E dE - 2 2 2
___y__ __l______1'+ M6 -F2 _ _ 2 FM4 _ M S + M(S+M F) E =

dn n(n—1) dn __ ((1 )n l) s n n(n—l)_ y 0

(3.11)

2 -1/3
where M = k (k K)

y Z

2s = (w/Q.)(k/K) ”
1 Z

F = w/Qi.
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2

The method used to solve (3.11) depends on the parameter M .

For M2 < 1, an expansion for Ey in M6 is used (Section 3.3.1). For

M2 > 1, the method of matched asymptotic solutions (Nayfeh, 1973, Ch. 7)

is used (Section 3.3.2).

2

In order to determine an analytic solution to (3.11) for M g 1
9

2 2

terms of order m /Qi are neglected so that the wave equation is approx-

imated by

d E dB 6 2

n(1-—n) —21 + —1 - [M n(n—1) + o] E = O (3.11')
dn dn M y

where OM = M(S + MZF). The linearly independent solutions to (3.11')

for Inl >> 1 are given approximately by the Airy functions, Ai(— u) and

Bi(— u), with u = Mzn (Antiosiewiez, 1970).

The power lost by the MW at the Alfvén resonance is obtained by

connecting these Airy function solutions across the singularities of

the wave equation. The method used by Ott et al. (1978) and Karney et

a1. (1979) consisted of connecting the series expansion of Ey about

n = 0 directly onto the Airy function solutions (Section 1.2.2). The

problem with this method is that the connection depends on an arbitrary

point (i.e. u0 in (1.22)). This problem is overcome here by expanding

Ey in terms of functions which can be related to the Airy function in-

dependently of any arbitrary point. In particular, let

['
11 II

II
M
8

j
j 0 5M ej(n) (3.12)

where 6M = M6 << 1. In this case, (3.11') becomes
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2

 

d eO de0

n(l - n) 2 + ———-- OM e0 = 0 (3.13)
dfl dn

dze, de. 2

n(l — n) --1-+ -J’— 0 e. = n(n — 1) e. . (3.14)an dn M J J—l

The linearly independent solutions for e are obtained by noting
0

that (3.13) is the Gauss hypergeometric equation (Oberhettinger, 1970).

Thus, the linearly independent solutions for e about the Alfvén reson—
0

ance (i.e. n = 0) are

(0) = . .e01 2F1(a.b,l,n)

(3.15)

egg) = g(a,b;l;n)

where a = (- l + V1 — 40M)/2 = - OM

b = (- 1 - V1 — 40M)/2 = - (1 - 0M)

and 2F1(a,b;c;n) and g(a,b;c;n) are the Gauss hypergeometric function

and the logarithmic solution to the Gauss hypergeometric equation re—

spectively.

Using the change of variable, C = 1 — n, the linearly independ-

ent solutions for e0 about n = 1 are found to have the form

(1) _ l—a—b . -e01 _ ; 2F1(l—a, 1-b, 2-a*b’ E)

(3.16)
e(1) = Cl—a—b g(1-a, 1_b; 2—a-b; C).02
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The second solution in (3.16) has a logarithmic singularity proportional

2 2

to w /Qi arising from the neglect of these order terms in (3.11'). As

2

terms of 0(w2/Qi) are being neglected here this singularity does not

2 2

affect the mode coupling. Retention of all m /Qi terms removes this

singularity.

Similarly the linearly independent solutions of e0 for n << 1

are

e(’) = (—n)_a F (a a' 1+a—b' l/n)

01 2 l ’ ’ ’

(3.17)

e(_) = (-n)_b F (b b- 1+b-a- l/n)02 2 l 9 $ 9

and for n >> 1

(+) _ -a . _
e01 ( c) 2F1(a, l—b, l+a—b, 1/c)

(3.18)

M = -b . .
e02 ( C) 2F1(b, l-a, 1+b-a, l/C).

Analytic solutions for e0 which are valid throughout the density

gradient are obtained using the connection formulae for the Gauss hyper-

geometric function given by Luke (1969, p- 86)- USing this method, the

linearly independent solutions of eO for In] >> 1 are found to have the

form

e01 = l n << — 1

(3.19)

(
2

l — ino n >> 1



3.12

02

(3.20)
ll (1 + ifloM)(- n)+M2(c0 — in) n >> 1

where c0 = 1.5 + F(O) = 0.92.

Substitution of (3.19) and (3.20) into (3.14) and (3.12), yields

the following linearly independent solutions for E

Eyl 2 f(— u) n << — 1

(3.21)

= (1 — iUOM) f(— u) n >> 1

Eyz : 8(— u) 0 << — l

(3.22)

= (1 + inoM) g(— u) + M2(c0 — in) f(- u) n >> 1

l +-l z3 + ——&-z6 + ...where f(z) 3, £5,

2 + £1 24 + %fi§ Z7 + .3(2)

The functions f and g generate the Airy functions with

(Antosiewicz, 1970)

Ai(— u) = clf(— u) — c2g(- u)

(3.23)

Bi(— u) = /3 (clf(- u) + czg(— u))

where c1 = Ai(0) = 0.36 and c2 = — Ai(0) = 0.26.
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Using (3.21) — (3.23) and the asymptotic forms of the Airy

functions given in Appendix A, the solution which is finite as n + — m

is found to have the form

Ey = Ai(- u) n << - l

(3.24)

= cAAi(— u) + cBBi(- u) n >> 1

-l/4
N (- u) . 2 3/2
— ————f:-“— {(CA + 1cB) 6XP(- 3(- u) )

2/“

+(icA + CB) exp(%(- U)3/2)}

where cA = l — 0.5[M2c0c2/cl — iWMzcz/cl]

(3.25)

CB = - [Mzcocz/C1 - iTr(M2c2/cl — 20M)]/ 2/3.

In (3.24), the term exp(g-(- u)3/2) represents the incoming

magnetosonic wave which propagates from high density to low density to—

/2). . . 2 3
wards the magnetosonic wave turning p01nt. The term exp(— 3(— u)

represents the reflected magnetosonic wave. Thus the ratio of the am-

plitude of the reflected wave to that of the incident wave (hereafter

called the amplitude reflection coefficient) is

  

CA + i c
R = :1?

(3.268.)

A B

n c2 2 2z 1 _ ;; (E. M _ 20M) |oM| < M << 1. (3.26b)
3 1 ~

The corresponding fractional power lost by the magnetosonic wave is

given by
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ZNZJL

Eel

—2 M2 _ 20M) (3.27)

2
for l0 < M << 1.MI

Equation (3.27) implies that:

(i) for w/Qi = 0 and ky = O, the plasma does not absorb energy;

(ii) for w/Qi finite, the plasma absorbs little energy when w and

M are chosen such that

I
?

I
I

c /c

2

(.s + M w/Qi)/M 2 1 0.36; (3.28)

(iii) the power absorbed is greater for ky negative than for k

positive assuming K > 0.

A comparison of the square root of the fractional power absorbed

as determined by Karney et al. (1979) and by (3.26a) is given in Figs.

3.2 and 3.3. It is seen that if terms of 0(M2w/Qi) are neglected then

there is good agreement between the numerical integration of the wave

equation by Karney et al. (1979) and (3.26a) for S f [MI/2 and for

M2 2 1. Note that with the retention of terms of 0(M2w/Qi), the power

absorbed is determined by S + Mzw/Qi rather than by S as given by Karney

et al. (1979). This dependence is of importance because, in tokamaks

where the poloidial wave number is finite, Mzw/Qi is of the order of S

or greater except for very large toroidal mode numbers.
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Fig. 3.2 Contour map of /E as determined by Karney et al. (1979).

(a) Numerical integration of (3.11) with terms of 0(M2w/Q )
neglected. (b) Analytic result (1.23). i

s + M2(w/fli)

. 1.0

- 0.8

  
 

Fig. 3.3 Contour map of J; as determined by (3.26a). Dashed lines
represent the region in which (3.26a) is not valid.
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3.3.2 M2 > 1

2
For M > 1, the method of matched asymptotic expansions (Nayfeh,

1973) is used to determine the reflection coefficient of the magnetosonic

wave. The method can be best understood by considering the dimensionless

form of the wave equation (3.5) which is given by

' 2d BY 2
;;§-+ (AMp(n) + r(n)) EY = o (3.29)

2 23F 32 1 S+M2F
001) = ((l-F)n—l)——2-T+—§—— (3.30)

M M n M n(n - l)

1 4n — 1
rm) = -— —-—— (3.31)

4 n2(n — 1)2

where A; = M6 >> 1.

Near the singularities, n = 0 and n = l, approximate solutions

to (3.29) can be obtained by retaining in (3.30) and (3.31) only the

leading order terms in n about n = 0 and n — 1 about n = 1. Because

kg >> 1, A§p(n) dominates r(n) except very close to the singularities

and the asymptotic expansions of these solutions can be matched to the

WKB solutions (where the term r(n) is neglected; Section 3.2) to give

solutions which are valid throughout the density gradient.

In the simplest case i.e. when 00/91 = 0, p(n) and r(n) reduce

to

I?om pom - u)“ [1 + om - 11)]

I?r(n) r0(n - u)_2[l + 0(n - u)]
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about u = 0 and 1 where n 2 O and pO,r0 are constants. Solving (3.29)

with the neglect of the above terms of 0(n — u) in p(n) and r(n) and

using the transformation (3.4), the linearly independent solutions for

Ey are found to have the form

(1) _ -1/2 .1

Eyl — H Al (El)

(3.32)

y2 n 1 1

about n = l and the form

1/2

(0) _ -1/4 1/4 3/2
Eyl — n (n - 1) [1 — (1 — n) 1 10(50)

(3.33)
1/2

(0) _ -l/2 1/4 3/2

Ey2 — n (n - l) [l — (l — n) ] K0050)

2/3

M
/ (l — n). Noteabout n = 0 where £0 = g-AM(1 — (l — n)3 2) and £1 = A

that (a) (3.33) reduces to the Bessel function solutions of Chen and

Hasegawa (1974) for Inl << 1 and (b) the logarithm in K0 is consistent

with the definition given by (1.17) if n is assumed to have a small

positive imaginary part.

The asymptotic expansions of the functions in (3.32) and (3.33)

are (Budden, 1961, p. 311; Luke, 1969, p. 205)

Ai'(€l) = --% “-l/zgl/Aexp(- g—Ei/Z) —-§ N E argE1 f-§ n

= %n‘1/2€“"<— exp<—§ i”) + i expé tin»

A

w
l
b

:

2
3.“ : argEl _
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v ‘1 2 .Bi (gl) 2 é—Tr / g1/4(—1 exp(- % gin) + 2 exp(% (ii/2))

0 f arggl E é-fi

z % {Hail/4&1 exP(- % Q”) + eXp(% Ei/ZD

%»N E argil f 3-H

10(EO) 2 (2fl€0)_1/2(exp(€0) + exp(- £0 - % Ni)

— n < arggO f 0

= (2na0)'1/2(exp(a0) + exp(- :50 + § vi)

0 f arggo < N

N 1/2K0(€O) - (W/ZEO) exp(- E0) Iargzl f 3fl/2.

Using the above formulae, the asymptotic expansions of (3.32)

are found to be linear combinations of the asymptotic expansions of

(3.33) in the region where l/AM f n f l - l/AM. By matching these

asymptotic expansions, the linearly independent solutions for Ey which

are valid throughout the density gradient are obtained. In particular,

the solution which is finite as XMn + — m is found to have the form

E = E(0) + in E(0) n < 0
y y2 yl ~

(3.34)

= c1E(1) + clE(l) n > 1
A yl B y2 ~
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1 _ _ . '— -2/3 g_ _ 2
where cA — 1 V3 WXM [exp(3 AM) + exp( 3 AM)]

1 _ —2/3 2
cB — /§ NAM exp(- 3 AM).

For wave fields described by (3.34), the amplitude reflection

coefficients is given by

c + i c

i= + —[1 2 exp( 3

-1
AM)] . (3.35)m u

>
H
‘
>
H

w
P
a
w
H

A similar procedure is used when (11/91 is finite except that it is

complicated by the fact that 0(n) now has poles at n = O and n = l and

Zeros at

no 2 - (M282 + OM)/(M6 + ZSFMZ‘)

nl = 1 + oM/(M6F2 + zsm‘l + M282) (3.36a)

2 2 6 2
nT = l+(F+S/M)—oM/MF

where FM3 >> 1 is assumed. The zeros, no and nT, correspond to the low

and high density turning points given by (3.8) with finite density grad—

ient effects included. For IMSI < l, the gradient effects dominate with

N 6

n0 — oM/M

6 2

n1 _ 1 + oM/M F (3.36b)

2 6 2

”T _ l+F+OM/MF.
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Assuming IMSI < l, the linearly independent solutions to (3.29)

about these zeros and singularities are (using the transformations (258),

(200) and (215) given in Murphy (1960)):

(i) for n = n
T

12$) = <¢<n)/o(n))1/“ Ai(— Ari/3001))
(3.37)

Eff? = (¢(n)/p(n))l/4Bi(->\b24/3p(n))

n

where % ¢3/2 = I p(n)l/2 dn;
nT

(ii) for In — 1| 5 61, [n1 — 1| << 61 << 1

ES) = g-l/zea

(3.38)
(1) _ 3/2 E: ,,_

EYZ — E e lFl(2,3, 2E)

where E = OM(n - l) and Fl(a;c;z) is the confluent hypergeo—
1

metric function (Slater, 1970);

(iii) for lnl < 60, [no] << 60 << 1

(0) _ 1/2 —vn _ .
EYl — n e lF1(aR,l,2vn)

(3.39)

Eég) = nl/Z e-Vn g(aR;1;2vn)
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where aR = (l + a/v)/2

a = M3F + Ms + 52142

v = |M3|(1 + ZSF/M2)1/2

2
laRl’ [MS], F, l/M S l and g(a;c;z) is the logarithmic

solution to the confluent hypergeometric equation.

On the high density side of nT, the Airy function solutions represent

propagating (compressional) magnetosonic body waves. However, no such

oscillating solutions occur between the low density cutoff and the

Alfvén resonance i.e. in the vicinity of no. In this case, the ion—

cyclotron wave does not propagate as the magnitude of ky and the den-

sity gradient are such that the region in which it can propagate is

less than a wavelength. '

In Appendix A, the amplitude reflection coefficient is derived

with the inclusion of finite w/SZi corrections. The derivation consists

of matching the WKB solution (i.e. (3.8)) which is evanescent in the

low density side of the Alfvén resonance to the asymptotic expansions

of the solutions about no. These solutions are in turn matched to the

WKB solutions in the region 0 < n < l and similarly about n and nT.
1

From (A.20), the amplitude reflection coefficient is given by

R = |(1 + ieMexp(— 2x))_ll (3.40)
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1

1—6 nT

where x = J (- A§p(n))1/2 dn + J (' A§o(n))l/2 dn

0 l

6 1+6

_ F(a )

6M = (2n) a/V TTI:EET [- l + exp(— iZWaR)] exp(iNaR).

Note that for w/Qi = 0, (3.40) reduces to (3.35).

Fig. 3.4 shows /E as determined from (3.26a), (3.35) and from

the numerical results of Karney et al. (1979) for m/Qi = 0. The solid

curve gives an upper limit for /E which has a maximum at [M] 2 0.7.

This maximum arises from the dependence of the mode coupling on the

magnitude of EX near the Alfvén resonance (Section 2.4). In partic-

ular, the magnitude of EX relative to Ey increases with k; but the total

amount of energy reaching the Alfvén resonance is limited by the evan-

escence of the wave fields between the Alfvén resonance and the magneto—

sonic wave turning point. This evanescence is represented by the ex—

ponential terms in (3.35) and (3.40) and increases with M2.

 
so 100

[M

 

Fig. 3.4 Square root of the fractional power absorbed neglecting finite

frequency effect. (A) Analytic result using (3.26a). (B) Using

(3.35). (C) Numerical integration by Karney et al. (1979). The

power absorbed is limited by the evanescence of the wave fields

between the magnetosonic wave turning point and the Alfvén

resonance.
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Figs 3.5 and 3.6 show the fractional power absorbed as given

by (3.40) with (Jo/£2i finite. The finite w/Qi corrections alter the

power absorbed in two ways. The first way is by modifying the polar—

ization of the MW and hence the mode coupling (cf. Section 2.4).

This effect is represented by the 6M term in (3.40) which is larger

for M negative than for M positive. The second way the finite w/Qi

corrections act is by modifying the spatial decay rate and region of

evanescence of the magnetosonic wave between its turning point and

the Alfvén resonance. This effect is represented by the x term in

(3.40) with the evanescence being smaller for M negative than for M

positive as discussed in Section 3.2 and illustrated in Fig. 3.6.

These two effects combine to enhance the absorption for kyK negative

and to reduce the absorption for kyK positive.

3.4 MAGNETOSONIC SURFACE WAVE HEATING
 

In the previous Section, the wave and plasma parameters were

assumed to be such that the magnetosonic wave turning point was pres—

ent in the plasma. However, if the Alfvén resonance lies near the

maximum plasma density and k: z k: then the magnetosonic wave turning

point is not present within the plasma. In this case, an external

antenna can only excite a magnetosonic surface wave (i.e. a cutoff

magnetosonic wave).

The damping of the magnetosonic surface wave due to mode coup-

ling has been previously studied by Ionson (1978), Wentzel (1979a,

1979b) and Cramer and Donnelly (1983) using a density profile of the

form shown in Fig. 1.1. In these works a sharp discontinuity,i.e.
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(a) s

 
 

 

109 M

(b) . 1.0

  

 

Fig. 3.5 Contour map of /E as given by (3.35) for S finite, F << 1

and (a) M > 1 and (b) M < - l. The results about M2 = l

are consistent with those given in Fig. 3.2.
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(a)

  

 

0.4

109 M

1.0(b) ,5
0.9

0.8

OJ
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05

OJ

0.3

   04
logbm

Fig. 3.6 Square root of the fractional power absorbed for the given values

of F = S, and (a) M > 0 and (b) M < 0. The finite frequency and

density gradient effects enhance the evanescence of the MW for k

positive and decrease it for ky negative (assuming K > 0). y
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ki/K2 << 1,is assumed. However, in the tokamak, away from the plasma

edge, ky/K is of the order of the poloidal mode number so that for a

finite poloidal mode number ki/K2 : l and the assumption of a sharp

discontinuity is invalid. Further, for a finite poloidal wave number,

k: i k: and hence M2 2 1 except for large toroidal mode numbers.

Because of this limitation in the previous works, the proper—

ties of the magnetosonic surface wave are now derived for the case where

M2 3 l and for a density profile of the form shown in Fig. 1.1. The

wave fields in the density gradient are as described in Subsection

3.3.2 and Appendix A except that here the magnetosonic wave turning

point is assumed to be absent from the plasma. Thus, assuming

$1 = vn(xl) <<-l,the solution for Ey about X = x which connects onto
2

the solution which is finite as x + — w is found to have the form

 

 

_ . (0) _ . (O)
Ey — Sin(flaR) Ey2 + flexp( ifiaR) Eyl x < x2

= {sin(flaR) ep2 + flexp(— iWaR) epl} exp[kx2(x—x2)] (3.41)

+ {sin(flaR) en2 + flexp(— iflaR) enl} exp[- kx2(x-x2)] x > x2

(0)
_ 1 [ (0) dExi ]

e . - —' E . +
pl 2 y1 dvn x

2 (3.42)
(0)

d_ i [Em _ Exie . - .
n1 2 k y1 an x

2

_ 2 1/2 (0) = _ 1/2 - =where kx2 — (- Kx(x2)) |K=0’ Eyi ((n l)/n) EYi’ 1 1,2 and

la < 1. In the derivation of (3.41) and (3.42), continuity of EyRI
and its derivative at x2 has been used.
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The dispersion relation for the surface wave is obtained by

requiring that Ey remain finite as x goes to positive infinity i.e.

1T8 H 0pl exp(- iflaR) + ep2 sin(flaR) (3.43)

Depending on the position of the Alfvén resonance with respect to x

. . . . . 0
either the asymptotic expan51ons or the series expan51ons of Eéi) are

2

used to evaluate epl and e via (3.42). It is found that a solution
p2

to (3.43) only exists if $2 = vn(x2) < 1. In this case,

I?e 1 + a/V
pl

(3.44)

(l + a/V + GWZ/V) £n(w2) + l/(U2 - (0.12 — 1.35 a/v)[Zep2

2 .
where (a/v) << l 15 assumed.

On substitution of (3.44) into (3.43), the dispersion relation

of the surface wave is found to have the form

02 = 0.10 — 0.06 0L/v — i(0.l9 — 0.22 0L/v) (3.45)

1.6.

2 2 2 K .3 _m _ kzwA(x2) [1 + |k |(0.10 - 0.06 0L/v) - llk |(0.19 0.22 WW]
y V

(3.45')

Using a similar procedure but assuming lel < 1 (rather than leI >> 1)

a second type of surface wave is found to exist. (In the limit w/Qi + 0,

the dispersion relation of this wave is given by $1 = - 0.10 — i 0.19.)
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However, this case is not of interest as it corresponds to the heat-

ing of the plasma surface rather than the plasma interior.

Neglecting finite w/Qi corrections (i.e. terms of 0(a/v)),

the dispersion relation (3.45') is similar to that given by (1.19b)

for a sharp discontinuity except that:

(i) the damping increases with IK/ky| rather than with Iky/KI as

in the case of a sharp discontinuity;

(ii) the Alfvén resonance occurs at (l + 0.10 lK/kyl)—l of the max-

imum plasma density while for the sharp discontinuity it oc—

curs at half the maximum plasma density.

This behaviour is to be expected because as K + 0 the plasma becomes

homogeneous so that no mode coupling can occur and the dispersion

equation (3.45) reduces to that of the Alfvén wave.

With the introduction of finite w/Qi corrections, the low fre-

quency surface wave (i.e. the surface wave given by (3.45') for

00/91 = 0) is found to be split into two modes whose properties depend

on the sign of ky. (A similar result was also obtained by Cramer and

Donnelly (1983) for the case of a sharp plasma boundary.) In partic—

ular, it is seen from (3.45') that (a) the Alfvén resonance occurs at

higher densities for the surface wave with ky positive than for the

wave with ky negative and (b) the damping of the wave with ky negative

is larger than the damping of the wave with ky positive. Indeed,

when a/v 3 aR = l i.e. when

k > 0
y

(3.46)

w/Q.(l+k2/k2) z 1
1 z y
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the dispersion relation (3.43) reduces to

w = k w (x

N

N
N

{
>
N

2){l - (K/|ky[)(tan(fiaR) + i tan2(flaR))/n (l + a/V)} (3.45")

and little damping occurs when aR = 1. Note that for aR > 1 the Alfvén

resonance is absent from the plasma and the approximations used in the

derivation of the dispersion relation are no longer valid.

3.5 ANTENNA RESPONSE

3.5.1 Introduction

The absorption of energy at the Alfvén resonance gives the an-

tenna impedance a finite resistive component. To determine whether this

coupling between the antenna and the plasma is efficient,the antenna re-

sponse is characterized by 6, the ratio of the circulating power to the

absorbed power i.e. the ratio of the imaginary (or reactive) part of the

impedance to the real (or resistive) part of the impedance. (Alternat-

ively, the antenna response can be characterized by Q, the ratio of the

wave frequency at peak resistance to the frequency bandwidth at half

height with Q being approximately inversely proportional to a (Ross et

al., 1982).) For efficient coupling of energy between the plasma and

the antenna, 6 needs to be less than or about unity otherwise most of

the input power appears as circulating power in the antenna and very

large voltages (and currents) are needed to obtain the desired plasma

heating. Further, the resistance of the antenna due to the mode coup-

ling needs to be greater than about the ohmic resistance of the driving

circuit (which is unlikely if Q is large and the impedance is small)

otherwise little input power actually goes into the heating of the

plasma.
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In this Section, conditions are determined for when a of the

antenna is small and the antenna resistance large. Attention is re—

stricted to the parameter range in which w/Qi : 0.5 so as to simulate

conditions in TORTUS (Cross et al., 1982) and to include the parameter

range for which minority ion—cyclotron heating is effective.

When (Jo/SBi is non-negligible and the Alfvén resonance is near

the centre of the plasma, the magnetosonic wave turning point is un-

likely to be present in the plasma and surface wave heating must be

utilized. The antenna response for this situation is examined in

some detail in the remainder of this Section and only a qualitative

discussion is given on the antenna response in the analogous case of

body wave heating.

Previously, Donnelly (1982) examined the excitation in TORTUS

of waves with zero poloidal mode number. He found that these waves

are unlikely to produce efficient Alfvén resonance heating in TORTUS.

Because of this result, the poloidal mode number is assumed here to be

finite i.e. M2 > 1. The parameter range in which M2 > 1 and 00/91 is

finite is also of interest because it has not been studied previously.

For example, Chen and Hasegawa (1974), Hasegawa and Chen (1976) and

Cramer and Donnelly (1983) assumed a sharp plasma boundary such that

2 2
kz < ky << K2 and Ott et a1. (1978) and Karney et a1. (1979) assumed

M2 << 1. In the numerical results of Ross et al. (1982), Appert and

Vaclavik (1982) and Donnelly and Cramer (1983) some of the above par—

ameters were examined but the role of finite frequency and density

gradient corrections was not studied extensively.

A similar geometry to that used in Section 3.4 is considered

here (see Fig. 3.7) except that a perfectly conducting wall is located
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Fig. 3.7 Schematic diagram of the cavity and the density profile.

at x = xw, an antenna at x = XS and, to simulate conditions at the

plasma edge, a step discontinuity in the density occurs at x = x1.

The plasma is assumed to be of semi-infinite extent because the mag-

netosonic wave is, by assumption, everywhere cutoff so that the con-

tribution from the far side of the plasma is exponentially small.

The current density in the antenna is assumed to have the

form

2
L
: II is 6(x — xs)exp(i(kyy + kzz — wt))

(3.47)

2 2 _l/2 A A

J = J0(kz + ky) (kzl - kyE



where j
~

ively.
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A

and k are the unit vectors in the y and 2 directions respect-

This form of the current density is chosen so as to satisfy

the condition V.J = 0 i.e. that no free charges accumulate on the

Current sheet. Transient effects are also neglected i.e. w, ky and

kZ are assumed to be real.

3.5.2

1970, p.

(a)

(b)

(C)

(d)

Boundary Conditions

The boundary conditions for the fields are (Lorrain and Corson,

565; Ott et a1., 1978):

the tangential electric field vanish at xw i.e. Ey(xw) = 0

(Ez is neglected as the plasma conductivity in the z-direction

is large);

Ey is continuous as there are no free charges present;

Ey must remain finite as x + co;

the magnetic field and hence dEy/dx is continuous except pos-

sibly at the antenna and at the plasma discontinuity. At the

antenna, the magnetic field has a step discontinuity due to

the antenna current as given by Ampere's circuital law. At

the plasma discontinuity, the boundary conditions for the

magnetic field or equivalently for dEy/dx is obtained by in—

tegrating the wave equation (3.3) across the plasma discontin—

uity. Thus, the boundary condition at the plasma discontinuity

is that

+
X-l

2 d l _
[(Ak - ky) (Ak a - kka) Ey]x_ - 0

l



3.33

+ ..

where x1(xl) is infinitesimally greater (smaller) than x1.

This condition implies that B2 is continuous across the dis—

continuity (Cramer and Donnelly, 1983).

3.5.3 The Antenna Impedance
 

3.5.3.1 Derivation

The antenna impedance is defined by

5

Z E — J dx E.J*/J.J* (3.48)

where x;(x:) is infinitesimally smaller (greater) than xs. The pro-

duct §.£* is determined by applying the above boundary conditions to

the solutions of the wave equation (3.3).

Using the first boundary condition the y component of the

electric field in the region xw < x < xS is found to have the form
~

F
! ll

ey yosinh[k;l(x — xw)] (3.49)

/2 2 2 1/2

(ky + kz) (3.50)W

|| '
2

_ l

(- K:<x1))

where Kx is defined by (3.9).

In the region x < x < x E has the form

3 Y

1,

E = eylexp(kx1x) + eyzexp(- kxlx) (3.51)

where from the boundary conditions,(b) and (d),
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' - _ = - + - — 0ey031nh[kxl(xs xw)] eylexp(kx1xs) eyzexp( kxlxs) (3 52)

and

4NJO = — 1(kzc/w){ey0cosh[kxl(xS - xw)]

_ [eylexp(kxlxs) - eyzexp(— kxlxs)]} . (3.53)

In the derivation of (3.53), terms of 0(m/kc) have been neglected.

By substituting (3.49)—(3.53) into (3.48) the antenna imped-

ance is found to have the form

 

z = 41T(w/kxlc)zN (3.54)

. -l
ZN = — 1{coth(xsw/2) - (1 - eR)/(1 + eR)} (3.55a)

X 'X
ie SW(l — e SW)(l + 9R)

= _ X (3.55b)

2(1 + e SWe )
R

where Xsw = 2kxl(xs - xv) and eR = (eyz/eyl)exp(— 2kx1xs). (The term

eR is evaluated in Section 3.5.3.3 by continuing the wave fields

described by (3.51) through the density gradient and applying the

boundary conditions given in Section 3.5.2).

A similar expression to (3.55a) was obtained by Ott et a1.

(1978) except that they assumed R: was much less than k: so that (k;l)2

was approximated by k:. Further, Ott et a1. (1978) only determined the

properties of the impedance numerically and no criteria for the general
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response of the antenna were given. In the following Sections,

these criteria are derived.

3.5.3.2 General Characteristics
 

Two observations about the antenna impedance can be made from

(3.54) and (3.55) without the actual evaluation of eR. The first ob—

servation is that the resistive component of the antenna arises from a

finite Im(eR). The second observation is that a of the antenna de—

pends not only on Im(eR) but also on the proximity of the antenna to

the wall. In particular if the antenna is brought closer to the wall

(i.e. as x5 + xw) the antenna impedance as given by (3.55) decreases

and a approaches infinity independently of the magnitude of Im(eR). A

similar phenomenon was noted by Oct et al. (1978) and is attributed to

oppositely directed image currents in the wall which produce fields

which tend to cancel those of the antenna. Thus, a minimum requirement

for the efficient coupling of energy between the antenna and the plasma

is that

k_ (x - x ) > 1.
x1 5 w ~

This condition is assumed in the remainder of this Section.

To see the dependence of the resistance on Im(eR), first sup-

pose that IIm(eR)I >> 1. In this case, (3.55) reduces to

ZN - i{coth(xSW/2) + 1 - 2/eR}_l. (3.56)

It is seen from (3.56) that the antenna always has a large Q so that
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the coupling of energy between the antenna and the plasma is inefficient.

This situation corresponds to "mush" heating (Stix, 1980) where the ab-

sorption at the Alfvén resonance is large.

Similarly, suppose |Re(eR)l >> IIm(eR)l and Re(eR) ¢ — 1 or

Re(eR) ¢ — exp(- Xxs) then a (as derived from (3.55b)) is again large

and the coupling between the antenna and the plasma is inefficient.

However, more efficient coupling is possible when

[Im(eR)| < 1 (3.57)

_XSWlRe(eR) + e | << I Im(eR) I

i.e. when

Re(eR) + e S“ = o. (3.57')

In this case, (3.55b) reduces to

x x
— (1 — e SW)(1 — e S“ + iIm(eR))/21m(eR) (3.58)N II

x
Im(eR)/(l - e SW). (3.59)s: H. n :r

‘

o

1

Thus, when IIm(eR)I is small and Xsw is large, the antenna impedance is

large and g is small.

The situation in which the impedance is described by (3.58)

corresponds to "eigenmode" heating of Stix (1980) with the resistance

being peaked when the antenna excites a weakly damped cavity eigenmode

whose dispersion relation is given by (3.57'). Note that very small 6

(i.e. very small [Im(eR)|) is undesirable as the frequency bandwidth in

which the impedance is resistive (i.e. when (3.57) is satisfied) is

small and mode—tracking may be required as the plasma conditions change.
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An intermediate type of heating between mush heating and

eigenmode heating is obtained when

IIm(eR)| : l

 

(3.60)

iRe(eR) + 1] << IIm(eR)I.

In this case, (3.55b) reduces to

(l - e SW) Im(eR)

ZN = - _ (3.61)

2(1 - e SW ‘ iIm(eR))

with 6 again given by

~ _Xsw
Q = Im(eR)/(l - e ). (3.62)

Although low Q heating is obtained for IIm(eR)| small and Xsw large,

small impedances are also obtained which is undesirable.

3.5.3.3 Specific Characteristics
 

It is seen from the above arguments that the most efficient

coupling of energy occurs when criterion (3.57) is satisfied. The

term eR is now evaluated and conditions for which (3.57) is satisfied

are determined.

Because the emphasis of this Section is on the heating of the

plasma interior for a finite poloidal mode number, M2 >> 1 and the

Alfvén resonance near the high density edge of the density gradient

(i.e. xa = x2) are assumed. In this case,the antenna fields as given

by (3.51) can be continued across the density gradient using the
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procedure described in Section 3.4 and applying the boundary con-

ditions given in Section 3.5.2. Using this method, eR is found

to have the form

[exp(xax) Ak — G168]
 

 

 

e = G exp(x ) _ (3.63)
R 0 xs [ea Hlexp(xax) Ak]

nexp(- inaR)

Ak _ sin(fiaR) epl + ep2 (3'64)

__ a/v 2
Ga - (2v) (F(l - aR)) ep1 (3.65)

l + G l - G l - H
k k k

G = -—-——- G = -—————— H = ——————— (3.66)
0 l + HR 1 l + GR 1 l — Hk

+ 2 - - — +_ _ k
_ Ak ky Akkxl kka y Dk

Gk ‘ + + — 2 + + 2 (3.67)
Ak kxl Ak - ky Ak - ky

+ 2 — - + )
- k k + k D k D

Hk = Ak y Ak xl g _ y k (3 68)
+ + - + ’
Ak kx1 Ak _ ky Ak - ky

i + 2 1/2
where kxl =ka(xl), kx = (— KX) , Xxs = 2kxl(xl — x )

'6 2 1/2 + + + +

Xax = 2 J (— AMpm» dn, Ak = Ak(xl), Dk = Dk(x1> and aR<<1>,
n(xl)

a, v, epl and ep2 are as defined in (3.39) and (3.42).

Note that G0 = 0 corresponds to the dispersion relation of the

magnetosonic surface wave propagating in a sharp plasma boundary as de-

rived by Cramer and Donnelly (1983) while Ak = 0 corresponds to the dis-

persion relation of the magnetosonic surface wave propagating in a dif—

fuse plasma boundary as derived in Section 3.4. However, here, Ak can

only vanish if there is no mode coupling as w is real (being determined
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by the antenna) rather than being complex as in Section 3.4. Further,

conditions are assumed here such that the Alfvén resonance is assumed

to be in the plasma interior rather than at the plasma edge so that

A: < 0 and G > 0 (assuming wZ/Q: << 1).
O

The terms G1 and H1 represent modifications to the wave fields

due to reflection at the plasma edge. For a large jump in the density

at the plasma edge (i.e. if n 2 n2) then G 2 H = — 1. In this case
1 l

eR(= Goexp(xxs)) is real and positive so that 6 >> 1 and the coupling

1

of energy between the antenna and the plasma centre is inefficient.

For small jumps in the plasma density at x1, IHlI and lGll are

much less than unity and G0 is of order unity. In this case, if w/Qi

is negligible or w/Qi finite and ky < 0 then low—efficiency high—6

heating is again obtained because either IIm(eR)| > 1 or

Re(eR) > IIm(eR)l > 0. However, for aR = l i.e. for

k > 0
y

(3.69)

(w/Q.)(l+k2/k2) = 1
1 z y

more efficient heating is possible (i.e. criterion (3.57) is satisfied)

when

w2 _ 1 z .1: sin(fiaR)

2 2kzwA(x2) ky 17(1 + a/v)

J a/v _l
x l1 — n(2v) [exp(- xaw)/G0 — exp(— Xax)Gl]/Sin(waR) (3.70)

with
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(2v)—a/v

Im(eR) = -G exp()(as) sin2(1TaR) (3.71)
O

Xaw = Xax + Xxs + Xsw’ vn(x2) << 1 is assumed and terms of 0(Hl exp-xxw,

H101) have been neglected.

Equation (3.70) is the dispersion relation for the surface wave

eigenmode with (3.69) being the condition that the damping of this eig-

enmode be weak. This dispersion relation is similar to that given by

(3.45") except that here corrections due to the presence of the con—

ducting wall and the density jump at the plasma edge are included.

These modifications are such that the Alfvén resonance occurs at higher

densities (and hence is further into the plasma) if the effective sep-

aration between the plasma and the conducting wall is increased (i.e.

if kxl(xl - xw) is increased) or if the plasma edge is diffuse rather

than sharp (i.e. if |G1I, [H1] # 1).

If the corrections due to the presence of the conducting wall

and the density jump are small then the Alfvén resonance moves towards

the plasma centre as aR approaches unity. In the frequency range re-

quired for minority ion heating (i.e. w z'% 91), aR = 1 when k: = k2.
y

For smaller frequencies k: must be larger than k;.

The antenna resistance is limited by the evanescence of the

wave fields between the current sheet and the Alfvén resonance (as re-

presented by the tennxas in (3.71)). Assuming k: is fixed, this evan—

escence is minimized if (i) XS 2 x1, (ii) ky is positive rather than

2 2
2negative (Section 3.2) and (iii) k < ky. Hence optimum c0upling of

energy between the antenna and the plasma interior is expected when

w = l-Q, and k2 = k2.
2 1 z y

Note also that the Alfvén resonance is no longer present in

the plasma (i.e. wz/kiw:(x2) - l < 0) when
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/\)
sin(TraR) 5 (ma Tr(exp(- Xaw)/GO — exp(- Xax) cl). (3.72)

Because of this limitation on sin(flaR), the IIm(eR)I (as given by

(3.71)) cannot be made indefinitely small so that at best only moder-

ately small values of a are expected.

In the analogous case of body wave heating (e.g. Karney et al.,

1979), low a heating is only expected when the absorption of the body

wave, as calculated in Section 3.3, is weak and when the evanescence

of the wave fields between x1 and x8 is small. These conditions are

equivalent to the requirement that criterion (3.28) is satisfied (i.e.

s + Mzw/Qi = 0.36 M).

The main disadvantage with body wave heating arises from the

fact that the ratio of the density at the magnetosonic wave turning

point (as given by (3.8a) or (3.9a) to the density at the Alfvén re—

sonance is of the order of the maximum of l + kj/k: and l + w/Qi.

Because body wave heating requires the presence of the magnetosonic

wave turning point in the plasma, the Alfvén resonance occurs at a

density significantly lower than the maximum plasma density when the

antenna frequency is of the order of the ion-cyclotron frequency. If

a density profile of the form shown in Fig. 3.7 is also assumed then

the Alfvén resonance occurs close to the plasma edge. Thus, in the

frequency range required for minority ion-cyclotron heating, coupling

of energy between the antenna and the plasma centre is unlikely if

body wave heating is utilized.
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3.6 SUMMARY

In this Chapter, the Alfvén resonance damping of a magnetosonic

wave has been examined in relation to the Alfvén resonance heating of

tokamaks. The finite frequency and density gradient effects have been

examined in some detail since they modify both the dispersion and mode

coupling of the magnetosonic wave and are relevant in tokamaks like

TORTUS and PLT. Finite frequency effects are also important if minor-

ity ion—cyclotron heating is utilized.

To estimate the strength of the mode conversion of a magneto-

sonic wave, the fractional power lost by a body wave on reflection

from a density gradient has been determined. The fractional power

lost in this case depends primarily on the magnitude of Ex of the in-

cident wave near the Alfvén resonance and, for a constant density

gradient, is at a maximum when IMI = 0.7. This maximum occurs because,

although the magnitude of Ex relative to Ey increases with k:, the

total amount of energy reaching the Alfvén resonance is limited by the

evanescence of the wave fields between the resonance and the magneto-

sonic wave turning point which increaseswith kg.

In the absence of finite w/Qi corrections the absorption de—

pends only on the magnitude of M and not on its sign. The introduct—

ion of finite w/Qi terms modifies the polarization and the evanescence

of the magnetosonic wave so that for S + MZF E [Ml/2 the energy lost

by the magnetosonic wave is enhanced for ky negative and reduced for

ky positive (assuming K > 0). Little absorption occurs when

S + M F = 0.36 M.
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The damping of the magnetosonic surface wave due to mode con—

version shows a similar dependence on ky in that when w/Qi is finite

the damping is smaller for ky positive than for ky negative. Little

damping occurs when

k > O
Y

(w/Qi)(l + k

N
M 2 ~/ky) — 1.

Depending on the antenna configuration either the magnetosonic

body wave or the magnetosonic surface wave can be used in the heating

of the plasma. However, for a finite poloidal mode number and the

Alfvén resonance near the plasma centre, the magnetosonic wave turning

point is not present within the plasma and surface wave heating must

be utilized. In this case, efficient coupling of energy between the

antenna and the plasma centre (i.e. a < l) is only possible if

(i) the antenna is far from the conducting wall (i.e.

_ _ > .

kxl(xs Xw) ~ l)’

(ii) the evanescence of the fields between the antenna and the

Alfvén resonance is small (i.e. k— _ << >x1(xl XS) 1, ky O

and w/Qi finite);

(iii) the absorption at the Alfvén resonance is weak (i.e. ky > 0,

(w/Qi)(l + ki/ki) =1 and the surface wave eigenmode is excited

(i.e. if dispersion relation (3.65) is satisfied).

Optimum coupling of energy between the antenna and the plasma interior

2
is expected when w/Qi = 0.5 and kz = k:(ky > O). This is because, for

these parameters, the Alfvén resonance is close to the plasma centre
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and the evanescence of the fields between the antenna and the Alfven

resonance is minimized.

The frequency range required for minority ion—cyclotron heat-

ing is consistent with the above criteria. Thus, surface wave heating

in a multiple ion—component plasma is expected to yield efficient heat—

ing of the ions in the plasma interior without the problems of excess

electron heating and plasma surface heating.

Similar results are expected when a body wave eigenmode is ex—

cited if its absorption at the Alfven resonance is weak i.e. if

S + MZF = 0.36 M. However, in the frequency range required for min-

ority ion—cyclotron heating, body wave heating requires that the Alfven

resonance occur at a much lower plasma density than in surface wave

heating so that the coupling of energy into the ions in the plasma in-

terior is less efficient.

Although the above results were obtained using a planar geo-

metry, similar results are expected to apply in the more complicated

geometry of the tokamak (e.g. Karney et al., 1979; Donnelly, 1982) if ky

is replaced by — m/r and kz by n/R where m and n are the poloidal and

toroidal mode numbers respectively, R is the major radius of the tok—

amak and r is the radial distance from the plasma centre (ky corres—

ponds to - m/r as the x and y direction of Fig. 3.7 are oppositely

directed to the radial and azimuthal directions).
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CHAPTER 4

INTERRELATION BETWEEN THE AZIMUTHAL

BUNCHING AND WU AND LEE INSTABILITIES

4.1 INTRODUCTION

4.1.1 The Azimuthal Bunching and Wu and Lee Instabilities

In this Chapter, the interrelation between two similar but

seemingly different electron cyclotron instabilities, the azimuthal

bunching instability (e.g. Chu and Hirshfield, 1978) and the Wu and

Lee instability (e.g. Wu and Lee, 1979),is investigated. These in-

stabilities are similar in that both arise from the relativistic de-

pendence of mass on energy but differ in that the azimuthal bunching

instability is driven by an essentially monoenergetic beam of elec-

trons while the Wu and Lee instability is driven by an anisotropic

electron distribution with a velocity spread.

The main interest in the azimuthal bunching instability is

in the development of the gyrotron (for reviews see Hirshfield and

Granatstein, 1977; Sprangle and Drobot, 1977; Flyagin et al., 1977;

Chu et al., 1979). In this device, a mildly relativistic beam of

electrons, travelling along a magnetic field, interacts with a cavity

eigenmode via the azimuthal bunching instability to produce radiation

at a frequency near the electron—cyclotron frequency and possibly at

its harmonics (e.g. Chu, 1978).

Because the wavelength of the emitted radiation is determined

primarily by the electron—cyclotron frequency and hence the strength of

the magnetic field, the cavity can be large compared to the wavelength
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of the emitted radiation. This feature enables the gyrotron to pro—

duce millimetre and submillimetre radiation at a power level superior

to conventional devices such as the travelling wave tube and the mag—

netron where the cavity is of the order of the wavelength of the

emitted radiation and hence subject to voltage breakdown. Further,

the wavelength of the emitted radiation can be tuned by varying the

strength of the magnetic field. The fineness of the tuning is however

limited by the spacing of the cavity eigenmodes.

Possible applications for high power gyrotrons include

electron-cyclotron resonance heating of tokamak plasmas (Alikaev et al.,

1976) and in radar and communications (Chu et al., 1980a). A low power

tunable gyrotron is being developed at the University of Sydney as a

possible source for spectroscopy and for plasma scattering experiments

in the study of wave fluctuations (Brand et al., 1982).

The main interest in the Wu and Lee instability is in the in—

terpretation of certain astrophysical phenomena. These phenomena in-

clude Jupiter's decametric radio emission, hereafter called DAM,

terrestrial kilometric radiation, hereafter called TKR, and solar

spike bursts (e.g. Wu and Lee, 1979; Lee et al., 1980; Holman et al.,

1980; Hewitt et al., 1981, 1982; Wu et al., 1982; Melrose et al., 1982;

0midi and Gurnett, 1982; Dusenbery and Lyons, 1982; Melrose and Bulk,

1982; Sharma et al., 1982). In these phenomena, an energetic electron

component with a velocity spread produces maser-type emission at fre-

quencies near the electron-cyclotron frequency and perhaps also near

its harmonics. However, unlike the gyrotron, a denser cold electron

component may influence the dispersion of the emitted radiation.
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4.1.2 The Maser Instability
 

The maser-type emission was first discussed by Twiss (1958),

Schneider (1959) and Bekefi et a1. (1961). Twiss (1958) used de—

tailed balancing and the Einstein coefficients to treat the emission

from relativistic electrons. He showed that negative absorption

(i.e. maser—type emission) of gyro radiation by electrons with zero

axial momentum can occur if

(A) the energy distribution for the ensemble of electrons,

F(E), is such that BF/BE is positive over a finite range

of E and

(B) the transition probability has a maximum at some finite

value of E.

Maser-type emission is most favoured when the transition probability

is sharply peaked at the value of E at which BF/BE has a positive maxi—

mum. Similar conclusions were obtained by Bekefi et al. (1961) in

their study of the radiation temperature of non-Maxwellian distri—

butions for emission perpendicular to the ambient magnetic field.

The emission was treated quantum mechanically by Schneider

(1959). He considered an initially monoenergetic distribution of

electrons with zero axial velocity in state n with energy En in a

uniform magnetic field in the presence of photons of frequency w.

Due to the relativistic dependence of mass on energy, the spac—

ing of the quantized energy levels decreases with increasing en—

ergy. In this case, stimulated emission (n + n — 1) can be

. . > _ > _
more probable than true absorption 1f hw En €n—1( €n+l 8n).
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Schneider also pointed out that if instead the electrons have a dis-

tribution of energies then stimulated emission can still be more

probable than true absorption if there is an overpopulation of higher

energy states .

4.1.3 The Bunching Instability
 

The azimuthal bunching instability was first treated by

Gaponov (1959). He considered the trajectories (rather than the

energy levels) of monoenergetic electrons interacting with an electro-

magnetic wave in a static uniform magnetic field. During the inter—

action with the wave, the relativistic cyclotron frequency decreases

for those electrons which gain energy while it increases for those

electrons which lose energy. This difference in the cyclotron fre—

quencies of the electrons causes them to bunch in the azimuth. The

ultimate phase distribution or azimuthal bunching favours emission

over absorption if m — kzvz > Qe/Y where Y is the Lorentz factor and

9e is the rest mass electron cyclotron frequency (e.g. Sprangle and

Drobot, 1977).

The maser and bunching instabilities are similar in that each

depends explicitly on the relativistic variation of the electron mass

with energy. Because of this common feature, Gaponov's bunching in—

stability is sometimes called the electron cyclotron maser instability

(e.g. Sprangle and Drobot, 1977). However, this nomenclature is mis-

leading: the bunching instability described by Gaponov (1959) is
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physically different from the maser—type emission described by Twiss

(1958), Schneider (1959) and Bekefi et a1. (1961). To avoid confusion

with the maser-type emission, the alternate nomenclature of Chu and

Hirshfield (1978) is adopted with Gaponov‘s bunching instability being

referred to as the azimuthal bunching instability.

4.1.4 Alternate Descriptions of the Maser and Bunching Instabilities

In the theory of Gaponov (1959), the instability is driven by

azimuthal bunching of an essentially monoenergetic beam of electrons.

Such an instability corresponds to a reactive—medium instability in the

notation of Briggs (1964). In this type of instability, the plasma can

be considered to be lossless (i.e. the antihermitian part of the die—

lectric tensor, 2(a),is negligible) and the resulting dispersion

equation implies the existence of intrinsically growing waves. These

waves can also be considered as negative energy waves where, due to the

phase bunching of the electrons, the energy associated with the wave be—

comes more negative and the wave grows (e.g. Bekefi, 1966, p.289).

On the other hand, the maser-type emission described by Twiss

(1958), Schneider (1959) and Bekefi et a1. (1961) corresponds to a re—

sistive-medium instability (Briggs, 1964). In this type of instability,

the velocity spread in the distribution gives rise to a finite anti—

hermitian part of the dielectric tensor and the resulting dispersion

equation implies negative absorption (rather than dissipation by col-

lisionless damping). This instability is sometimes called the semi-

relativistic maser cyclotron instability; semirelativistic because the

instability can still occur for v2/c2 finite but much less than unity

(Hewitt et al., 1982). It is also called the Wu and Lee instability
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(Wong et al., 1982; Winglee, 1983b). This alternate nomenclature arises

from the fact that, although Twiss (1958), Schneider (1959) and Bekefi

et a1. (1961) were the first to discuss this type of maser emission,

their theories were restricted to the cases where either the axial vel—

ocity of the electrons is zero or where the radiation is emitted perpen—

dicular to the magnetic field. Both cases correspond to neglecting the

Doppler shift in the resonance condition. Wu and Lee (1979) included

both the Doppler shift and the relativistic effect explicitly.

Another practical difference between the azimuthal bunching

and Wu and Lee instabilities is in the plasma conditions under which

they occur. The main interest in the Wu and Lee instability at present

is in the understanding of DAM, TKR and solar spike bursts as mentioned

in Subsection 4.1.1. In these astrophysical applications, the Wu and

Lee instability is usually driven by a low density component of en—

ergetic electrons with a denser cold component determining the dispers-

ion of the radiation. In contrast, the main interest in the azimuthal

bunching instability is in the development of the gyrotron where any

cold plasma and any velocity spread are usually neglected.

The purpose of this Chapter is to present a theory (Winglee,

1983b) which interrelates the Wu and Lee and azimuthal bunching instab-

ilities. It is shown that not only can these instabilities exist in

the same plasma but that they are just two different cases of the same

instability with the Wu and Lee instability passing over into the azi—

muthal bunching instability when the effective velocity spread of the

suprathermal component is decreased.

Previously, Melrose (1973) studied the interrelation between

the reactive— and resistive—medium forms of a similar but nonrelativistic
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electron-cyclotron instability. However, the treatment of Melrose

(1973) was heuristic. Here, physical models of the resistive- and

reactive—medium instabilities are developed.

In order to analyse both the Wu and Lee and azimuthal bunch-

ing instabilities simultaneously, it is assumed throughout this

Chapter that the wave frequency is approximately equal to the electron-

cyclotron frequency and that the mean energy of the suprathermal elec—

tron component is such that <v2>/c2 (<v2> := J d3Y vzf) is finite but

much less than unity and kf <vf>/Q: << 1. This parameter range is

often valid in the astrophysical and laboratory applications mentioned

earlier.

The general properties of the Wu and Lee and azimuthal bunch—

ing instabilities, as well as their nonrelativistic counterparts are

reviewed in Section 4.2. The dielectric tensor is evaluated in

Section 4.3 (and also in Winglee, 1983b) for a plasma in which both the

Wu and Lee and azimuthal bunching instabilities can be treated together.

Specific characteristics of the Wu and Lee and azimuthal bunching in—

stabilities derived from this dielectric tensor are given in Section

4.4 for the case where the cold electron component is absent. The mod—

ification to the growth rates due to a cold electron component is dis—

cussed in Section 4.5. In Section 4.6, a physical model interrelating

these two instabilities is given and its predictions compared with the

results given in the previous Sections. A summary of the results is

presented in Section 4.7.
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4.2 RESISTIVE- AND REACTIVE-MEDIUM ELECTRON-CYCLOTRON INSTABILITIES
 

4.2.1 A Simplified Form of the Dielectric Tensor for w = 9e

The properties of the resistive— and reactive—medium instabil—

ities discussed in the previous Section can be illustrated by consider-

ing a simplified form of the dielectric tensor for a plasma at wave

frequencies near the electron cyclotron frequency. In this frequency

range, the contribution to the dielectric tensor from the plasma ions

is negligible. As mentioned previously, it is also assumed that the

electron distribution is such that <v2>/c2 << 1 and kf <vf>/Q: << 1.

The full relativistic form of the dielectric tensor is given

for example in Baldwin et a1. (1969). This form is based on standard

linear theory and describes the time asymptotic behaviour of the normal

modes of oscillation of the plasma (e.g. Stix, 1962, Ch. 8; Krall and

Trivelpiece, 1973, Ch. 8). In the present context it can be approxi—

mated by

2 oo 00

ma 3 3 AA

2 = i + 2H 3 —%— I dvz J dvivz (vi 5;—-— v2 551) fbb

w _m 0 z

2 oo oo

+2-nz—P—O‘ dv dvT(w-kv)§—+kv3—f (4.1)
2 z i z z z avl z i av

Otw _oo 0 Z

where I is the unit tensor, b is the unit vector in the z direction

which is chosen to be parallel to B, T’is as given in Table 4.1, the

sum over a is the sum over the various electron components and k is in

the x-z plane.
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In the derivation of (4.1), only the contributions to the die-

lectric tensor from the Bessel functions of order n = O, i l are re—

tained and these Bessel functions are approximated by their series

expansions to first order in their arguments kivi/Yfle because

2

kf < vf>/Q << 1 and w = Q . Since <v2>/c2 << 1, the Lorentz factor

Y = (l - v2/c )_1/2 is set equal to unity everywhere except in the de-

nominator A1. Wu and Lee (1979) and Lee et al. (1980) pointed out that

it is important that a relativistic form of Y be used in Al since the

resulting correction to the electron cyclotron frequency can be of the

same order as the frequency mismatch between the Doppler shifted wave

frequency and 9e in situations where Al is close to zero. The integrals

appearing in (4.1) are evaluated in the standard way using the Landau

prescription (e.g. Krall and Trivelpiece, 1973, Ch. 8) i.e.

l 1

w — wo + i0 = P w — mo _ i“6(w _ mo) (4'2)

where P denotes the Cauchy principal value.

 

4.2.2 Resistive—Medium Electron-Cyclotron Instabilities

2 1/2

For m = 9e >> lkz|<vz> , the dominant contribution to the

antihermitian part of the dielectric tensor and hence to the growth

rate of a resistive-medium instability comes from those electrons which

can gyro-resonate with the wave i.e. from those electrons which satisfy

the resonance condition

m — kzvz - Qe/Y = 0. (4.3)
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In order to determine when the relativistic correction is

important, Hewitt et al. (1981) interpreted the resonance condition

(4.3) for given values of w, Re and kz as an ellipse in vZ - Vl space.

They found that in the limit kic2 >> wz, the resonance ellipse is

highly eccentric and the physical portion of the curve can be approxi—

mated by the straight line vz = (w — Qe)/kz. This result is equivalent

to the non—relativistic resonance condition obtained by setting Y = 1.

In the opposite limit k:c2 << wz, the resonance ellipse is approximately

a circle with centre

= -— kc2/ — o (4 4)v v .— z w, Vi — .

and radius

2 1/2

c[(kzc/w) — 2(w - Re)/§2e] . (4.5)<

II

(A similar curve results from approximating the Lorentz factor in (4.3)

-l

by (l — v2/2c2) .) It should be stressed that since m = Re this reson-

ance circle can lie entirely within regions of v — Vi space where
Z

2 2 .
v /c << 1 and cannot be apprOXimated by the non—relativistic resonance

condition.

The corresponding growth rate arising from these resonant

electrons is given approximately by

F = J d3v H(E’Y) 6(w - kzvZ - Qe/Y)Bf (4.6)

where

A Q

Df — [fig—+k 3— f (4.7)
VJ. vi 2 V
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and H is positive; the actual form of H (which is given in Wu and Lee,

1979; Melrose et al., 1982) is unimportant in the following. In all

discussions of the resistive—medium electron—cyclotron instabilities,

the electron distribution f is taken to have a finite spread in vel—

ocity space. Distributions which have been considered include stream—

ing bi—Maxwellian distributions, Dory, Guest and Harris distributions

(Dory et al., 1965) and one or two sided loss-cone distributions (e.g.

Melrose, 1976; Wu and Lee, 1979; Lee et a1., 1980; Melrose et al.,

1982; Omidi and Gurnett, 1982). In most cases, the plasma also has a

dense cold background component which determines the dispersive pro—

perties of the waves.

Resonant electrons give positive contributions to growth in

(4.6) if Df is positive and negative contributions if Df is negative.

However, the two limiting forms of the resonance ellipse imply different

conditions for the stability of waves. In particular, when kic2 << w2

the resonance curve is approximately a circle with the maximum vl along

the resonance curve, Vlmax’ being much less than c. In this case,

A Q
Ik v I << 0 and Df = —E-§£— if EE— and §£—-have comparable magnitudes.

z 1 e V1 avl avi sz

Thus, if §£_ > 0 for v < V then growth occurs. This situation
avi ~ imax

corresponds to the Wu and Lee instability.

On the other hand when Ric2 >> wz (i.e. when the nonrelativis—

tic resonance condition is valid), the resonance curve is approximately

a straight line parallel to the vi axis and lies both in regions where

EE— < O and where fii— > 0. Since the resonance condition is independent

8f .
of v , the total contribution to the growth rate from the 5;- term in Df

1

can be evaluated by integrating (4.6) by parts. This contribution is

always negative for the distributions mentioned above (Hewitt et a1.,
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1981). Thus, growth can only occur in this case if kZ 3%- along the

z

resonance ellipse is positive and large enough to overcome the net

9

negative contribution from —E-§£—-. This type of instability is
V1 8V1

sometimes called the nonrelativistic maser cyclotron instability

(Hewitt et al., 1982). In general,rather large anisotropies are re-

quired before this instability can occur because Ikzl is usually much

smaller than Qe/<vl> (Melrose 1976; Melrose et al., 1982).

It is also seen from (4.6) that the maximum growth rate for

the Wu and Lee instability is obtained when the resonance ellipse

samples those regions in velocity space where 33: is large and positive

(Hewitt et al., 1981). Further, because the position of the resonance

ellipse is a sensitive function of w and k, the growth rate and hence

the emission are also sensitive functions of w and k.

4.2.3 Reactive-Medium Electron—Cyclotron Instabilities
 

The simplest example of this class of instability occurs for

waves propagating parallel to the magnetic field in a plasma which

only has an energetic electron component (cf. Chu and Hirshfield, 1978).

In this case, the dispersion equation (2.3)) reduces to

2 2 2+ . _ _ . _ _ = .
(Exx isxy nz)(EXX lexy nz)(€zz nz) 0 (4 8)

where n: = kicz/w2 and $.15 given by (4.1).

The mode of interest is described by the factor

6 + is — kZCZ/wz — 0 I (4.9)
xx xy 2
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i.e.

2 2 2
m - k c 8f 3f

2 °° °° W - kzvz) w + sz1 w]
= - flw J Vfdvl J dvz i Z (4.10a)

0 _w w - kzvz - Qe/Y

2 w w w — k v vf (wQ — k2c2) 1
Z 2 e Z

= 2nw [ Vldvl [ dvzf w _ k v _ Q / — 2 2

p70 1m 22 U 2c (w—ksz—sze/wj

(4.10b)

where mp is the plasma frequency. Since w = Re and <v2>/c2 << 1, (4.10)

is essentially the dispersion relation given by Chu and Hirshfield (1978;

a slight difference arises because all y's in(4.10), except in the re—

sonant denominator, have been set equal to unity). This mode is right

hand polarized i.e. the wave fields rotate in the same sense as an elec—

tron gyrates, and is therefore subject to electron-cyclotron bunching

instabilities.

In applications involving the reactive-medium instability, the

distribution function f is sharply peaked in velocity space. A distri—

bution which is frequently used (e.g. Sprangle and Drobot, 1977; Chu

and Hirshfield, 1978; Chu et al., 1979) is the delta function distri—

bution

f = 6(vl — i0) 6(vz)/2in. (4.11)

With this distribution, (4.10b) reduces to

w2 — kit:2 = w2 w 

2 2 2
v (wfl — k C )
1° 9 z ] (4.12)

P w ’ Qe/Y 2c2 (w - Qe/Y)2
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In this case, the anti-hermitian part of the dielectric tensor is

identically zero because there are no resonant electrons. Less ex—

tremely peaked distributions can be approximated by (4.11) when the

number of resonant electrons is negligible.

It is seen from (4.12) if [kicz - wzl f wlw — Qe/YI then the

last term on the right hand side of (4.12) is negligible compared to

the first term on the right hand side. In this case the plasma is

stable.

0n the other hand, instabilities can occur when

Ikic2 — wzl >> wlw - Qe/YI and w = Re. In this case, the solutions to

 

 

(4.12) are

1 32 g:
w — Qe/y z E-wp {Q t [ 2 — 2 (4.13)

e 9 c
e

for kicz/w2 << 1 and

1/2
1 w 9 w 9e 2 2vf

w-Q/‘Y:__w £+_P_ _ 0 (4.14)
e 2 p k2c2 - k2C2 C2

2 z

2 2 2 . . . . . . .
for kzc /w >> 1. The a21muthal bunching instability is described by

(4.13) and OCCurs when

2 2
k c << w (4.15a)

w /92 < ZVE /c2 (4.15b)
e o"

U
N
N
N

while the axial bunching instability as given by (4.14) occurs when
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kicz >> wz (4.16a)

(w 9 /k2c2)2 < 2v2 /c2. (4.16b)

p e 2 io

The terms azimuthal and axial are used because the electrons bunch in

these directions to produce the corresponding instability (Chu and

Hirshfield, 1978).

Note that the condition (4.15a) for the azimuthal bunching

instability is the same as that for the Wu and Lee instability while

condition (4.16a) for the axial bunch instability is the same as that

for the nonrelativistic maser cyclotron instability. Further, the

azimuthal bunching instability like the Wu and Lee instability is only

present if relativistic effects are included in the evaluation of the

resonant denominator w — kzvz - Qe/Y. In fact if Y is set equal to

unity in (4.10a), the dispersion relation obtained for the delta

function distribution is

v2 k2 2

2 2 2 _ w2[ w + lo 2C

p‘” ' 9e 2c2 (w - ne)2J

 . (4.17)

. . . . . 2 2

The main difference between this equation and (4.12) is that — kzc re—

places the factor wQe — kic2 in the second term on the right hand side.

. . . . 2 2 2

This correction 18 not important when kzc >> w . However, for

:C2 << wz, (4.17) predicts that the plasma is stable i.e. the azimuthalk

bunching instability is not present (Chu and Hirshfield, 1978).

For an arbitrary angle of propagation the relevant dispersion

2

relation is essentially the same as (4.12) except that kic on the left

hand side of (4.12) is replaced by kzc2 (e.g. Sprangle and Drobot, 1977).
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2 2
For k c << N2, the growth rate of the azimuthal bunching instability

is still given approximately by (4.13). The azimuthal bunching in—

stability can also occur for w2 = kzc2 1/2

1/2

2 Re if (wp/Qe) f klvlo/Qe;

when (wp/Qe) << klviO/Qe, the growth rate 18 approx1mately given by

Im(w) = (/§/2)(w:kfva/2kc)l/3 (Sprangle and Drobot, 1977).

It follows from the above that if condition (4.15b) is satis—

fied then the azimuthal bunching instability occurs over a large range

of E with its growth rate being an insensitive function of k when

kzc << wz. This property is used in later sections to distinguish it

from the Wu and Lee instability which occurs only over a narrow range

of k.
~

4.3 EVALUATION OF THE DIELECTRIC TENSOR FOR w 2 9e
 

To determine the interrelation between the Wu and Lee and

azimuthal bunching instabilities, both the hermitian and antihermitian

parts of the dielectric tensor (4.1) are now evaluated using the approx—

. . 2 2 ‘1 . . .
1mat10n Y = (l - v /2c ) . In the calculations, 1t is assumed that the

electrons have a cold component and an energetic component with a finite

velocity Spread.

The energetic component is described by a Dory, Guest and

Harris (DGH) distribution of the form (Dory et a1., 1965)

f = fi(vl) fz(vz) (4.18)

fi = (2flvij!)_ (vi/VfiwT)2j exp(- vf/Zvi) (4.19)

-1
f2 = ((2101/2 VT) exp(— vi/Zvi) (4.20)

where j is a positive integer. Related types of distributions have been
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used in discussion of the Wu and Lee instability (e.g. Wu and Lee,

1979; Lee et al., 1980; Hewitt et al., 1981). Note that for this dis-

tribution

<vl> := [ d3v vlf = Jiv I‘(j + 3/2)/T(j + 1) (4.21a)

J ~ T

2 . 2
<vi> = 2(j + 1) vT (4.21b)

< 2 2 , . . 2
(vi - <vi>) > = 2VT J + 1 — [M3 + 3/2)/1“(J + 1)) .(4.21c)

When j = O, (4.19) reduces to a Maxwellian distribution. For j # 0, the

DGH distribution is peaked about v2 = O and V1 = (V1>' The peak is

evident in the contour plot of (4.18) for j = 5 as shown in Fig. 4.1.

Further, if j + w and v + 0 in such a way that VGV remains constant

T

then (4.18) reduces to the delta function distribution (4.12) with

T

v10 = <Vl> (4.22)

since F(j + 3/2)/F(j + l) + /j as j + W (Davis, 1970). Thus, the DGH

distribution also allows the effect of a non—zero velocity spread on

the azimuthal bunching instability to be determined.

Previously it was noted, both experimentally (e.g. Zaytsev

et al., 1974) and theoretically (Sprangle and Drobot, 1977; Uhm and

Davidson, 1979a,b) that a small but finite energy spread and/or axial

momentum spread can have a large stabilizing influence on the azimuthal

bunching instability. However, the initial electron distributions con—

sidered by Sprangle and Drobot (1977) and Uhm and Davidson (1979a,b)

were restricted to a delta function distribution and to a Heaviside

step-function distribution respectively, neither of which allow the

presence of the Wu and Lee instability nor of cyclotron damping.



Fig. 4.1

4.

vl/lsz
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Contour plot of a DGH distribution for j = 5. The dis—

 
~

19

tribution is peaked about vZ = 0 and Vi 2 2.25 JEYT — <Vi>.

Successive contour lines indicate decreases by factors of

10.
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Tsai et al. (1981) have also determined the dielectric tensor

for a plasma with a weakly relativistic energetic electron component.

Wu et al. (1981) and Wong et al. (1982) used Tsai et al.'s (1981) re—

sults to determine the growth rate of the extraordinary mode for var—

ious densities of cold and suprathermal electron components. However,

the azimuthal bunching instability was not considered in these studies.

For a plasma consisting of cold and energetic electron com—

ponents, the general form of the dielectric tensor as given by (4.1)

can be decomposed into the following form

+ O + O (4.23)

am RH R d

E . . . .
where the terms QC and Q represent the contributions to the dielectric

~' ~“

tensor from the cold and suprathermal components respectively. The

contribution from the cold electrons is given by (Stix, 1962, p. 10)

c _ c c
g — Ql Qxy O

C C
—QXy Ql 0 (4.24)

C
o 0 QZ

where 2

w
c _ _ l_ pc w w

Ql ‘ 2[ w ] [w - Q + w + n ] (4‘25)
e e

w 2

c_ -l_P.C_ __“J____L_
Qxy — 1 2[ w ] [w — Q m + Q ] (4'26)

e e

2

C — BEE 4 27Qz"[w (.)

and wpc = (Anean/me)l/2 is the "cold” plasma frequency.
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The contribution from the energetic electron component is

more complicated as it contains integrals of the form (via (4.1) and

 

Table 4.1)

oo oo 2 m

V k v
_ 1 i z 3 8

Im’n - TY I dVz J dVJ. A [ Q ] [(00 _ kzvz) 8v_L + kzvi 8v] f
_w 0 n e z

(4.28)

where m = O, l or 2 and An is as defined at the foot of Table 4.1.

The integrals with n = 0, -1 can be calculated using the nonrelativis-

tic theory of Stix (1962, Ch. 8). The integrals with n = l are

calculated in Appendix B and the resultant form for QE is given in

Table 4.2. In this Table, w is the plasma frequency of the energetic
pe

electron component,

_ . -l m .31M. — (151.2%) (kl/9e) (me,_1+31<sz+1,_1) (4.29)

2 k m
_ C_ __i_ g . _.

Im91 ' 2 k9] {s2 ((3 +1) Jej+2,m 3 Jej+1,mJ
VT e e

kz 1

+ a; 3 Jej+1,m+1] (4.30)

. p 2
1(J2vT) zp e-z

Fp,s = prs) = "TI z.—a‘dz (4-31)
1T —CX)

w — sfle
and as = -——-——— . The properties of F are given by Stix (1962, p. 179).

J2ksz p

The function Je m is described in Appendix B and is related to F0
9

through the functions

m 2
-2

F = P J -—EL——-dz + wl/z exp(- a2) (4.32)
z - a i

.00 f

where
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  l
+

3‘11,1

+B

Table 4.2 Elements of QE

Element Expression

E l 2

Qxx ' 3(“pE/w) (10,1 + Bog)

QE QE +(w kv/wn)2 (- +1)[i('+2)(w//§kV)F + ']
yy xx pE l T e J J z T 0,0 J

QB (00 /k v )2(1 + i(w//§k v ) F )— la» /(.o)2(I + B )
zz pE Z T z T 0,0 2 pE 2,1 2,j

E E -l 2 _

Qxy’ ' ny 1 2(wa/w) (10,1 B0,3“)

E E l 2

sz’ sz — 2(wa/m) (11,1 - Blaj)

QE - QE - i<w /w)2[(j + 1)(k w/k 9 )(1 + imNEk v ) F )
yz zy pE i z e z T 0,0

.)]
1,3
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2(kzc me i ue)/(/EVT) (4.33)Q ll

/2. (4.34)C II c((kzc/Qe)2 — 2(w — Qe)/Qe)l

The functions F0+ have been defined according to the Landau prescription

i.e. the contour for F0— has been taken below the pole a_ while for F0+

it has been taken above the pole a+.

Numerical solutions to the dispersion equation ((2.3)) using

the above dielectric tensor are presented in the following two Sections

(Winglee, 1983b). The numerical solutions were obtained using a complex

root finding subroutine developed by Botten et al. (1981). Emphasis is

placed on the dispersion and growth rate of the extraordinary mode in a

. . 2 2 2 2
plasma in which w = w + w << 9 because, for these parameters, the

p pc pE e

extraordinary mode,being right hand elliptically polarized,is subject to

both relativistic instabilities (Section 4.2).

4.4 GROWTH RATES FOR 9pc = 0
 

The effect of a velocity spread in the electron distribution on

the growth rate and dispersion of the extraordinary mode (hereafter

called x mode) is examined in this Section for the case where there is

no cold electron component i.e. wpc = 0. The modification to the growth

rate and dispersion due to a cold electron component is discussed in

Section 4.5.

Consider first the case in which the x mode propagates parallel

to the magnetic field and the electrons have the delta—function distri-

bution given by (4.11). In this case, the dispersion relation for the

X mode is given by (4.12).
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Solutions to (4.12) are shown in Fig. 4.2. It is seen that

the x mode has three branches; an upper, a middle and a lower branch

with the upper and lower branches being separated by a stop band in

frequency. For m 2 Re, the branches are as described by (4.13) and

(4.14) with the upper and lower branches given by the plus solutions

in (4.13) and (4.14) and the middle branch by the minus solutions.

For wp/Qe >> Vic/C (Fig. 4.2a) the three branches are stable with the

upper and lower branches well approximated by "cold” plasma theory

(i.e. vlo = 0). The middle branch is due to a finite Vlo and repres—

ents an approximately non-propagating "wave" arising from the cyclotron

motion of the electrons.

However, for VEle/C : wp/Qe, the azimuthal and axial bunching

instabilities can occur; an example is shown in Fig. 4.2b. The azi—

muthal bunching instability occurs for Re(w) = wr2>lkzlc with the upper

and middle branches corresponding to complex conjugate solutions; the

axial bunching instability occurs for wr < Ikzlc with the lower and

middle branches corresponding to complex conjuguate solutions. Note

that these instabilities are characterized by an almost constant growth

rate over a large range of kz.

Suppose instead that the electrons have a DGH distribution

with a small value of j (see (4.18» rather than a delta function dis—

tribution (j 9 00). In this case the solutions of the dispersion re-

lation are always complex because the velocity spread and hence the

antihermitian part of the dielectric tensor are non—zero. The real

parts of the solutions to the dispersion equation are shown in Fig. 4.3

for a distribution with similar mean electron energy (i.e. <v2>) and

similar (up/Qe to those in Fig. 4.2. The upper and lower branches in
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Fig. 4.2 Dispersion relation of the x mode for 1~<II1~3, w /Qe = 0.1 and for a

delta function distribution with (a) Vlo/C = 0.0141 and (b) Vic/C = 0.141.

In (a) the three branches, the upper (U), the middle (M) and the lower (L)

branches, are distinct. In (b) the upper and middle branches are complex
conjugates for kzc/Qe 5 0.7 with the growing solution representing the
azimuthal bunching instability; for kzc/Qe Z 1.25 the lower and middle
branches are complex conjugates with growth due to the axial bunching

instability.
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Fig. 4.3 have the same form as those in Fig. 4.2 with the width of the

stopband decreasing with wp/Qe. However, the middle branch is replaced

by a series of Landau modes (Derfler and Simonen, 1969) of which only

the least damped modes are shown. The Landau modes are always damped

with their damping rates being faster than that of either the upper or

lower branches.

Fig. 4.4a shows the damping of the upper branch for the same

distribution as in Fig. 4.3 and for a range of values of wP/Qe. For

some values of kzc/Qe growth occurs rather than damping; in this case,

the imaginary part of the solution is shown in Fig. 4.4b. For

wp/Qe = 0.1, the upper mode is damped for kzc/SZe : 0.25 and for

kzc/Qe f 0.1 and growing for 0.1 f ch/Qe : 0.25. The rapid variation

with kz indicates that growth is due to the Wu and Lee instability.

For the smaller values of wP/Qe shown, growth occurs for kzc/Qe less

than certain critical values. Except for wp/Qe = 0.09 and mp/Qe = 0.022

the growth rates rise rapidly and then remain essentially constant as

sz/Qe decreases; in these cases growth is due to the azimuthal bunching

instability. The case wp/Qe = 0.09 is an example of a transition be-

tween the Wu and Lee and azimuthal bunching instabilities.

When wp/Qe = vT/c, the azimuthal bunching instability is

suppressed at low values of kzc/Qe, by the spread in velocities. This

occurs for example when wp/Qe = 0.022 in Fig. 4.4b. This suppression

is due to a reduction of the phase synchronism between the gyrating

electrons and the wave when the average of the frequency mismatch is of

the order of its variation over the distribution i.e. when

<A>2 = <(A — <A>)2> where for ease of notation A = Al = Qe/Y + kzvz - w.



(a)

(b)

Fig. 4.4
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Wave—number vs Im (frequency) diagram for the upper branch of

the x mode for Eng euw for a DGH distribution with j = 5,

vT/c = 0.02 with the given values of wp/Qe. (a) shows the

damping rates mi < 0 and (b) shows the growth rates mi > 0.

The Wu and Lee instability occurs in (b) when 0.1 < sz/Qe f 0.3

and the azimuthal bunching instability occurs when ch/Qe < 0.1.
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The axial bunching instability does not occur (i.e. the lower branch

is stable) for the parameters considered in Figs. 4.3 and 4.4 because

the velocity spread acting through the Doppler shift produces large

variations in A when kit:2 >> w: and thereby prevents net phase

bunching.

Fig. 4.5 shows the variation of the growth rate for the azi—

muthal bunching instability as a function of j when wP/Qe and <vf> are

held constant at values 0.025 and 0.0048 respectively. As j increases

and the velocity spread decreases, the growth rate approaches the result

for a delta function distribution with the same <vf> indicated by the

dashed line; the plasma is stable to the azimuthal bunching instability

for 0 f j E 3. Also evident in Fig. 4.5 is the suppression of the in—

stability at the larger values of kicz/Q: due to the velocity spread.

As mp/Qe is reduced below vT/c, the difference between the

electron cyclotron frequency and the wave frequency becomes much smaller

than the variation of the frequency mismatch over the distribution when

n2 2 1. In this case, the phase synchronism between the wave and the

electrons is destroyed and the upper and lower branches reconnect so

that the stopband vanishes. This is shown in Fig. 4.6 for two values

of j, i.e. j = 0 (Fig. 4.6a) and j = 5 (Fig. 4.6b). In each case the

reconnection of the upper and lower branches occurs when wp/Qe f 0.01.

Fig. 4.7 shows the damping and growth rates for the upper

branch of the x mode for j = 5, wp/Qe = 0.025, vT/c = 0.02 and for var—

ious angles of propagation with respect to the magnetic field. The

growth rates are essentially independent of RE i.e. there is no strongly

favoured direction of emission for the azimuthal bunching instability.

This is because, for w = 9e and kzcz/Q: << 1, the growth rate is
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the x mode, ENE, (Di > 0, wp/Qe = 0.025 and for the values of

j and VT shown. The parameters j and vT have been chosen so

that the value of <vf> remains constant at 0.0048. The dashed

line gives the result for a delta function distribution with

the same wp/Qe and <Vf>. The growth rate for the DGH distri—

bution approaches that for the delta function distribution as

vT decreases and j increases.



      1 1 I ’41. 0.97 1 1 l

0'97 098 099 T00 l01
0'97 0'98 0'99 1'00 T01

sz/Qe

sz / De

097

VT/C = 0.02 and (a) j = O, (b) j = 5 and for the

Fig. 4.6 The dispersion relation of the x mode for kHB,

= 0.01 for both values of j.

given values of wp/Qe. The upper (U) and lower (L) reconnect at mp/Qe

'
7

I
E



 

 

r
(
f
r
—
W
W
-
_

 
 

4.32

  

. r- 0 —-¢ .—

1 0 25.‘ I

so”???
a; //
C 5° 13/
‘\ 7 -o-- //UN )+
A: //o/' ___ LJ‘(O

10-1 r-— /g '

V’DA

'+.-—-’O’a’-/

tits—:fi;”‘:ofl
0‘»

0+

\ ~ mi) 0

10'? — :5

°\

10-3 1 1 1 J

10-5 1o“ 10-3 10-2 1o-1
lwil/Qe
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growth rate of the azimuthal bunching instability, i.e.
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independent of k2 (cf. Section 4.2.2) except through its dependence

on the spread of A over the distribution which is a function of k2

and not hi.

The Wu and Lee instability also occurs for the plasma of

Fig. 4.7 when kc/Qe = l and kzc/Qe << 1. However, its bandwidth is

too small to be shown in Fig. 4.7 and a discussion of its features is

left to the following Section.

4.5 GROWTH RATES FOR A NON—ZERO wpc
 

The properties of the x mode in a plasma with cold and ener—

getic electron components are now examined. The situation considered

here is similar to that studied by Wu and Lee (1979), Lee et a1. (1980)

and Hewitt et al. (1982) except that the results are not restricted to

the case where wa/wpc << 1.

The effect of the cold electron component on the dispersion re—

lation of the x mode is shown in Fig. 4.8 for six values of w c/Qe and

for the same energetic component used in Fig. 4.3c. To avoid confusion

only the four least damped branches appear. The upper (U) and lower (L)

branches, indicated by solid lines, are separated by a stopband as in

the case pr/Qe = 0 (see Figs. 4.2a, 4.3c). The lower middle (LM)

branch, indicated by dashed lines, is also present in Fig. 4.3c as a

Landau mode. The upper middle (UM) branch, also indicated by dashed

lines, is the analogue of the middle branch of Fig. 4.2a (i.e. when the

electrons have an energetic delta function distribution).

In the regime kc/Qe < 0.9, the dispersive properties of the

portions of the branches with wr > Re are determined by the cold electron
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Fig. 4.8 The dispersion relation of the x mode for an angle of propagation

of 75°, j = 5, wa/Qe = 0.025, vT/c = 0.02 and for the given values of

pr/Qe. The upper (U, solid curve), upper middle (UM, dashed curve) and

lower (L, solid curve)are respectively topologically similar to the upper,

middle and lower branches of Fig. 4.2a. The lower middle branch (LM)

corresponds to the Landau branch of Fig. 4.3c. For kc/Qe g 0.9, the dis—

persive properties of the portions of the branches wr > Qe are determined

by the cold electron component while those portions with wr < 9e are de-

termined by the energetic component. The upper and upper middle branches

reconnect at pr/Qe = 0.0175.
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component while those portions with wr < 9e are determined by the

energetic component. Note that for the lowest value of pr/Qe, i.e.

0.01, the upper branch lies below the upper middle branch when

kc/Qe f 0.9. For the higher values of pr/Qe shown, the converse is

true with the two branches reconnecting when kc/Qe = l and

pr/Qe = 0.0175. This reconnection is important because in some astro—

physical and laboratory applications where the plasma density gradient

is small, radiation can escape only if it is generated above its cutoff

i.e. on the upper branch.

For the distributions considered here, instabilities occur

only in the upper and upper—middle branches. The growth rates for

these instabilities are shown in Figs. 4.9 and 4.10 for the same ener—

getic component as in Fig. 4.8 and for the indicated values of pr/Qe.

The Wu and Lee instability (again indicated by a sharply peaked growth

rate) occurs on both the upper and upper-middle branches in two regions,

0.1 < kc/SZe f 0.8 (Fig. 4.9) and kc/Qe = 1 (Fig. 4.10). The latter is

shown separately as its bandwidth is too narrow to be included in

Fig. 4.9. The bandwidth for kc/Qe = 1 is very narrow because wr and

hence the position of the resonance ellipse depend sensitively on E.

For the given values of pr/Qe, the Wu and Lee instability is always

present on the upper branch in at least one of these regions of k space.

On the other hand, the azimuthal bunching instability occurs

on the upper branch only if pr/Qe E 0.01 and on the upper middle

branch if 0.0175 : pr/Qe : 0.025. Note also that its growth rate de—

creases with increasing overall plasma electron density in a similar

fashion to that described by (4.14) and (4.16).
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Fig. 4.9 Wavenumber vs Im (frequency) for the upper (U) and upper middle

(UM) branches of the x mode for an angle of propagation of 75° to the

magnetic field, j = 5, vT/c = 0.02, wa/Qe = 0.025 and for the given val—

ues of pr/Qe. The azimuthal bunching instability occurs only on the

upper branch for pr/Qe S 0.01 and for kc/Qe g 0.1. The Wu and Lee in—

stability occurs between 0.1 S kc/Qe 5 l and for a small bandwidth about

kC/Qe = 1 (for clarity this latter region is shown in Fig. 4.10). In at

least one of these regions, the Wu and Le instability occurs on the

upper branch.
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In Fig. 4.11, the solid curves show the growth rate of the Wu

and Lee instability as a function of frequency for various propagation

angles. The points near these curves were calculated by Hewitt (1981)

using the method described in Hewitt et a1. (1982). In their calcul—

ations, the hermitian part of the dielectric tensor was determined by

the cold electron component and the antihermitian part (which was

evaluated numerically in the fully relativistic limit) by the en—

ergetic component. Agreement between the two calculations is good ex—

cept for very small growth rates where discrepancies arise from errors

associated with the numerical techniques used in the non-analytic code

2 2'1
and the use of the approximation Y = (l — v /2c ) in the present

work. Both these calculations confirm the result that the radiation

with the largest growth rate from the Wu and Lee instability is emitted

almost perpendicularly to the magnetic field.

4.6 THE PHYSICAL MECHANISM
 

To clarify the nature of the physical mechanisms driving these

instabilities, the dispersion equation is rederived here using the

equation of motion of an electron in the presence of the wave fields.

In this way, the growth rates and the electron trajectories can then be

determined self-consistently.

4.6.1 Electron Trajectories
 

For simplicity, the cold electron component is neglected and

the wave is assumed to be in the x mode propagating parallel to the am—

bient magnetic field B0 which is again assumed to be in the z direction.
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In this case, the wave is right hand circularly polarized with an

electric field (in a Cartesian frame) of the form

E = (EcosW, - EsinW, 0)

t

o f

E = E exp J widt (4.35)

0

t

V = k z — [ w dt, t > 0

z 0 r

In this and subsequent equations, the initial values of quantities

(i.e. those at t = O) are denoted by a superscript zero. Note that

the real and imaginary parts of w (i.e. wr and wi)are each allowed to

have a ”slow" time dependence so that the evolution of the wave fields

and the electron distribution can be determined self—consistently.

The equation of motion for an electron interacting with the

wave can be written in terms of the polar coordinates vz, Vl and 6 where

6, the angle between - E and Yi’ is given by

6 = W + ® (4.36)

and

0

ll tan—1(v /v ). (4.37)
y x

—1

In the limit where Y = (1 — v2/2c2) and w: << mi, the equation of

motion is

dvZ

___. = _ . 8dt uflevinrcose (4 3 )

dvl

dt— = - uQec(l - nrvz/c) cosG (4-39)
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de _ 2 2 _ .
a? — Qe(l — v /2c ) + kzvz wr + uQe(c/vi)(1 — nrvz/c)51n6

(4.40)

where nr = kzc/wrand u = E/BO. The rate of change of kinetic energy of

the electron is

2 dvz dvl}
1
_ —_. = —+ _—

2 me 2 me Vz dt V1 dt J

(4.41)

— meuflevic cose.

In the following, it is assumed that the electrons first en—

dwr- dwi 2 2
counter the wave at time t = 0. Thus, if Ijiffl, [75?) << mi + Ar then

linearized solutions to (4.38) — (4.40) are

, O 0 0 0 . O
{AD(wicoseO + Ar81n90) - D (wicose + Ar31ne )}V11,21 = ‘ Gl,z

t (4.42)

e = e0 + I A dt := 90 + H t (4.43)
0 r r

0

_ 0 - . _ -
61 — u Qe(c/yi0)(l — anZO/c){AD(w151n60 Arcosoo)

- D0(wgsin60 - Aocoseo)}
1 r

0
+ u Qe(vi0/c)(S2e - kzcnr) X

2 2 2 .
X {AD ((wi - Ar) c0560 + 2Arwi51n60)

02 02— D ((w, — A02) c0560 + ZAOwgsineo)
l r r].

- tD0(w(i)cosE)0 + Agsineo)} {4-44)
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where

= _ 2 2 _
A Qe(l v0/2c ) + kzvzo wr (4-45)

t

and G2 — u ViODrQe’ Gl - u c(l nrvzo/c) Re, A exp(Hit), Hit [0 widt

and D = (w: + A:)—1. Here the subscripts zero and unity respectively

indicate unperturbed and perturbed values. This linearization is only

dBO del

valid if '75? >> ITETI i.e. if u << 1 and if Ar is not identically equal

to zero.

Now consider the trajectories of a group of electrons with the

same values of vi0 and v which are initially uniformly distributed in

20 de
phase angle 6. Equation (4.43) indicates that :fi: = Ar is the same for

all electrons in the group since the frequency mismatch A is the same

dB

for each electron. 0n the other hand, (4.44) indicates that :fi: depends

on the phase angle 60. Hence the relative phase of the electrons

changes as they interact with the wave. This phenomenon is known as

phase bunching and is shown for a group of 8 electrons in Fig. 4.12.

Phase bunching is most efficient when the electrons are reson—

2 2
ant or near resonant i.e. when Ar < wi. If these electrons also have

~

energies Such that

2
o < (l — anzO/c) < (Vic/c) |(ne — kzcnr)/Al (4.46)

then



(a)

(b)

Fig. 4.12

4.43

~7T/2 O 1T/2 TY 3TT/2

l l 1 1

47/2 O 77/2 TT 37T/2

9

Schematic diagram of a group of electrons with the same

values of ViO and v and which are initially uniformly

distributed in phaszoangle, e. The initial distribution

is shown in (a) as a function of 6. Electrons 8, l and

2 tend to lose energy while electrons 4, 5 and 6 tend to

gain energy. If IdG/dtl is also smaller for electrons

8, l and 2 than for electrons 4, 5 and 6 the electrons

tend to bunch in the regions — fi/Z < 6 < n/Z and the

wave grows. This bunching is shown in (b).
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del 2 2
Ta? 2 ‘ (Viovil/C + "20"21/C ) Qe + kzvzl (4'473)

v k cn
N 0 2 _£9, 2
— ufle C (1- fl )

e

. O 0 0 0 . 0
X {AD(wicoseO + Ar81n60) — D (wicose + Ar31n6 )} .

(4.47b)

2 2 del
It can be seen from (4.47b) that if Ar < mi and mi > 0 then TE: is posi—

tive for electrons with — g < 60 < g (e.g. electrons 8, l and 2 in

Fig. 4.12a) and negative for electrons with %-< 60 < %; (e.g. electrons

2 2 2 , £191
4, 5 and 6) when kzc << wr. The reverse Signs for TEE-apply when

kzc2 >> wz.
z r

In (4.47a), the terms proportional to 9e arise from a pertur—

bation in the relativistic cyclotron frequency while the term kzvzl

arises from a perturbation in the Doppler shift in (4.40). For

kZCZ << w2
2 r1 the perturbation in the Doppler shift (which is represented

by the term kzcnr/Qe in (4.47b)) is negligible. In this case, the

electrons stream along the magnetic field at approximately the same

axial velocity but rotate about the magnetic field at different rates so

that the electrons become azimuthally bunched. On the other hand for

Ric2 >> mi, the perturbation in the cyclotron frequency is negligible

and the perturbation in v2 results in axial bunching. The change in the

direction of the electric field along the axis is responsible for a non-

d6

zero -——-in this case.
dt

Although the electrons become bunched in 6, they become dis-

persed in Vi and v2 because the accelerations experienced by electrons

of the group are different (as given by (4.42)). This spreading increases
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as the wave grows; an example of this phenomenon is given in the com—

puter simulations of Sprangle and Drobot (1977).

During the interaction, the kinetic energy lOSt by the elec-

trons is transferred to the wave. To second order in u, (4.41) for the

rate of change of kinetic energy of any one electron of the group is

l dv2

2 me dt
0 .

— meQeAu c[vio(cose0 - 9181n90) + vilcoseo] . (4.48)

2 2 .> . . .
In the case where Ar < mi, mi 0 and (4.46) is satisfied, lvll/v10' is

much less than 81 and hence the rate of change of kinetic energy is pro-

portional to — (c0390 - 6151n60) = — cos(e0 + 61) = - c036. Over time

scales such that IHrtl > 2W, the electron passes through all phase angles

6 from 0 to Zn. During one traversal from 9 = 0 to 6 = 2N the electron

. . . . . 1T TI

on average loses energy if it remains longer in the region — §-< 6 < —
2

n 3n de d91. . ‘_ < ___. . ___ = ___
than in the region 2 8 < 2 1.e. if ldt ( |Ar-+ dt I) for

1r 1r . d6 “n 3n
— 2 < 6 <-§ is less than ldtl for 2 < 6 < 2 . Conversely, the electron

gains energy if the reverse inequality for |§§W applies.

d8

As discussed earlier for kic << wr, :fii- is positive for

— g—< 60 < E-and negative for E-< 6 < 23- when (4.46) is satisfied and
2 2 0 2

A: < mi, mi > 0. Thus, electrons on average lose energy if Ar < 0 and

. . . . 2 2 2 d91
gain energy if Ar > 0. In the opposite limit when kzc >> wr, :fi: has

the opposite sign and hence the electrons lose energy if Ar > 0 and

gain energy if Ar < 0.

These conditions for phase bunching and net loss of energy to

the wave are restricted to cases where A: < m: and where condition (4.46)

is satisfied. However, they can be derived without these restrictions by

considering the total response of a group of electrons with the delta

function distribution of (4.11) and with number density ne.
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For this group of electrons, conservation of total wave and

particle energy requires that

 
u) kzcz 2i z 2 _ 3 g dv
4n [1 + wz ] E — - neme I d v 2 dt (4.49)

I

when m: << mi. By using (4.42)-(4.44), (4.48) and considering a time t

such that Hit >> 1, (4.49) can be written as

   

 

kc) (L). (Re-ken)3w.

w,1+22J= —w2{21_2+vizoe zz_§2r1}(450)
1 wr p wi + Ar c (mi + Ar)

where Ar = J d3v fAr. The dependence of the right hand side of (4.50)

on wi may be attributed to the energy exchange between the electrons and

the wave modifying the electron trajectories. 0n solving for mi the

growth rate is found to have the form

2w? 2 - (2A2 + mzw )
l r p n

2

+ [(ZAZ + wzw )
r p n

2 1/2

”120422"
— 4 Ar + Arw w + ——— Arwp2(Qe — k cn ) w (4.51)

rp n CZ z r n

-l

where w = (l + kzcz/wz)
n z r

For A: = (Re/Y - w)2 << wfiwn (which is valid for the bunching

instabilities; see (4.13) and (4.14)), (4.51) reduces to

v2

-2 v10
U) : -[Ar+——2 3(9e — kzcnr)) . (4.52)

Equation (4.52) implies that growth can occur for kic2 << w: = 9: only if
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—-——— Q < Z < 0 (4.53)

while for kic2 >> w: growth can occur only if

2 2 2
_ v_L0 kzc

0 < A < -———
r 2

c

 Q: (4.54)

The conditions for growth derived from the qualitative examination of

the electron trajectories are consistent with the criteria (4.53) and

(4.54).

The growth rates for the azimuthal and axial bunching insta-

bilities for a delta function distribution (i.e. (4.13) and (4.14)) can

also be derived from (4.52) if Zr is assumed to have the value given by

 

the solution to the dispersion relation. In particular for kic2 << w:

and Z = - wz/ZQ a (4.52) reduces to
r P e

2v2 wz 1/2
1 l 10 _2l

w = — w — (4.55)

i 2 p C2 9:)

2 _ 2 2 2
while for kzc2 >> w and A = w 9 /2k C (4.52) reduces to

z r r P e Z

 
1 2VJ2_0 m Re 2 1/2

m. = —-w - -1L—- . (4.56)
1 2 p 2 2 2

c k c
2

4.6.2 The Dispersion Relation with Phase Information
 

For wave fields described by (4.35), Maxwell's equations take

the form



4.48

E(m+wicos¢ + m_wrsinw) — 4TTJx (4.57a)

E(m+w sinw — m_wrcosw) 4NJ (4.57b)

i

where m+ = l t kicz/(w: + mi). The current density, J(x,t) is pro-

portional to the sum of the velocities of all electrons arriving at x

at time t i.e.

_ 3 3 O 0 O 0

J — ene J d YO I d § f(vi0,vzo,9 ) Vx,y(§ ’YO’ t) 6(§-§(§ ,v0,t)).

(4.58)

. . . . . . 0 .

The 1n1t1a1 distribution, f(vl0’v20’e ) is chosen to have an unperturbed

component which is independent of azimuthal angle and a perturbed com—

ponent i.e.

0 0

f(vl0,vzo,6 ) — f0(vio,vzo) + f1(vlo’vz0’e ) . (4.59)

The term fl is necessary to make the electron distribution and the wave

fields self-consistent at t = 0.

The dispersion relation is obtained by integrating sinw times

(4.57) and cosw times (4.57) over all positions x and has the form

2 2
E - = - < ' > + '< — ' > ,
(w kzc lw) 4n{ Jx31nw + chosw x 1 chosw Jysinw x}

(4.60)

Here w = wr + iw and <(...)>x denotes a spatial average, i.e.

i

<(...)>x = (volume)_1 X I d3x(...). Substitution of (4.36), (4.37),

(4.58) and (4.59) into (4.60) yields

2 2 3 .

E(w - kzc lw) — 4Ne ne J d Y <(cose0 — 151n60) I>x (4.61)

~
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where

I = iviOfO + 1(v10f1 + VllfO) + ViOelfO ‘ (4.62)

On substitution of (4.42) - (4.44) into (4.61), the dispersion

relation is found to be

 

2 2 2 2 3 (w ' kzvz)(l ' X)
m - k c = - w d v f

2 ~ 0 A

2
v —

l 2 2 (1—x) _ itX
+ —_7f (wQe — kzc ) [ l}

2c A2 A —

iw 41Tene 3

+-—TT-—--——— I d Y yi<(coseo — isineo) fl>x (4.63)

E exp(Hit) ~

. _ 2 2 _ .

where A — Ar - 1mi — Qe(1 v /2c ) + kzvz m, X — exp( 1Ht),

Ht = Hrt — iHit. The subscript zero on v has been dropped to simplify

the notation. Note that the terms involving f0 are identically zero

for t = 0. If fl is also zero then w2 = kic2 at t = 0. This situation

corresponds to the unphysical case where the plasma appears suddenly in

the wave fields at t = O. In the present application fl is assumed to

be finite and such that the uSual x—mode dispersion relation is approxi-

mately satisfied at t = 0. In this case, Ar and mi can be assumed to be

approximately constant since the wave remains predominantly in the x

mode. The actual form of fl is unimportant here because for growing

modes the contribution from fl decreases exponentially in time and the

contribution from f0 dominates. Thus, the contribution to the growth

rate from fl is neglected here.
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An alternative form of the dispersion relation (4.63) is

w2 — kzcz = i (n2 J d3v(l - X)/A) in (4.64)
z 2 p ~

where

13f = (w—kv)vai+kv28i

z z i avi z 1 3V1

and the contribution from fl has been neglected.(Equation (4.63) can be

obtained from (4.64) by integration by parts.) The reactive behaviour

of the plasma is most conveniently described using the form (4.63) and

the resistive behaviour using the form (4.64).

4.6.3 Physical Interpretation

Consider first the limit where the variation of Ar over the

distribution (hereafter denoted by BAr) is much smaller than [mi].

In this case, the electron distribution can be considered as a single

group of electrons with the same values of vi and v2 i.e. fO can be

approximated by a delta function distribution. The electrons of the

group become phase bunched. The bunch rotates with respect to the wave

fields with a slow time period tp = 2fl/IZII if the wave is not growing

(see Section 4.6.1). The corresponding current gives rise to the

trigonometric terms in (4.63). In this case the solution to the dis-

persion relation (4.63) is oscillatory with the slow time period tp.

In an unstable plasma (i.e. mi > 0) these oscillations decay

in time since the electrons become bunched in a fixed region of the

wave fields (i.e. in the region where they lose energy to the wave).

This result is supported by the computer simulations of Sprangle and

Smith (1980) in their linear regime. For Hit >> 1, [XIis much less
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than unity and the dispersion relation (4.63) becomes

2 2 2 L02 P I d3v f0 {00 wQ—fzjzk ’ Vi2 We — kicz 2}
_ e Y zvz 2c (w - Qe/Y - kzvz)

(4.65)

The solution to (4.65) is the same as that derived using the Vlasov

theory (i.e. (4.10b)) assuming that the resistive properties of the

plasma are negligible.

On the other hand in the limit BAr >> lwil the electron compon—

ent consists of a series of groups of electrons with a spread in Ar

rather than a single group of electrons. Each individual group phase

bunches but, because of the spread in Ar, these bunches rotate at dif-

ferent rates with respect to the wave fields and there is no overall

macroscopic phase bunching. Further, the groups can have either sign

for Ar so that some groups lose energy while others gain energy

(Section 4.6.1). Whether the wave grows or damps depends on the net con-

tribution from the various groups.

This net contribution can be evaluated by integrating the tri-

gonometric functions (4.6.4) over the distribution. Since BAr >> Iwil,

there exists a time such that Hit << 1 and BArt >> 1. In this limit,

these integrals approach the asymptotic values (Stix, 1962, p. 134;

Zucker, 1970)

J d3x~r g(\~r) (1 - Re(X))/A g p I d3x~7 g(Y)/A (4.66)

I2J d3v g(Y) Im(X)/A - 7TJ d3Y g(v) 5(A) (4.67)
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Equations (4.66) and (4.67) lead to the usual Landau prescription (4.2).

Thus, (4.64) reduces to the dispersion equation (4.103) which incorpor—

ates the resistive properties of the plasma. The condition for the re—

sistive behaviour of the plasma to dominate i.e. BAr >> lwi' is equiv-

alent to the condition that the random phase approximation (Melrose,

1973) is valid.

Both the resistive- and reactive—medium instabilities can occur

in the same plasma because BAr is a function of k2 with the resistive—

medium instability passing over into the reactive medium instability when

2

BAr = mi. In particular, for a DGH distribution with <vl> >> <v:>

2 1/2

v <v > k c

3A: = Jf—T i +l—Z—). (4.68)

§?—- c c 9e

e

. . . 2 2 2 2 2

If (4.55) is used as an estimate for mi and 1f kzc /Qe < <vl>/c << 1

then 3A = w. when

r 1

wi/Q: = 2<vf>/c2

(4.69)

2<vi>/c2 — (DZ/Q2 = v2/c2.
p e T

When criteria (4.69) are satisfied, the Wu and Lee instability passes

over into the azimuthal bunching instability as occurs for example in

Fig. 4.3b at wp/Qe = 0.09 (<vf>/c2 = 0.0048 and vT/c = 0.02).
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4.7 SUMMARY

In this Chapter, a theory which interrelates the Wu and Lee

and azimuthal bunching instabilities has been presented. The theory

shows that these instabilities are different limiting cases of the same

instability, both instabilities being driven by azimuthal bunching pro-

duced by the relativistic dependence of the electron cyclotron frequency

on the velocity of the electron. The free energy for these instabilit-

ies is provided by an anisotropy in the electron distribution.

The Wu and Lee instability unlike the azimuthal bunching in-

stability tends to occur when the variation of the frequency mismatch

over the electron distribution (i.e. aAr) is much greater than the

growth rate i.e. when the spread in electron velocities is large. In

this case, the total contribution from the phase bunching tends to can-

cel so that there is no macroscopic bunching. Whether or not growth

occurs depends on the details of the distribution function in the

neighbourhood of the resonance ellipse as in the standard treatment of

this instability.

On the other hand, the azimuthal bunching instability tends to

occur when BAr << mi i.e. when the spread in electron velocities is

small. In this case, the electrons become macroscopically phase bunched

with wave growth occurring if Ar is negative. A finite velocity spread

partially destroys the phase bunching and hence reduces the growth rate

of the azimuthal bunching instability.

Because BAr depends on both the wave parameters and the vel—

ocity spread in the electron distribution, both the Wu and Lee and azi-

muthal bunching instabilities can occur simultaneously in the same plasma.
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Further, the Wu and Lee instability can merge into the azimuthal

bunching instability (and vice versa) when the wave and/or plasma

parameters change so that BAr = wi i.e. when criteria (4.69) are

satisfied.
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CHAPTER 5

AMPLIFICATION AND TRIGGERING 0F DISCRETE VLF EMISSIONS

5.1 INTRODUCTION

Gyro—resonant interaction between electrons and waves is the

basis of theories for discrete VLF emissions i.e. narrow band emissions

in the very low frequency (VLF) band (from 200 Hz to 30 kHz) propagat—

ing in the whistler mode in the magnetosphere. These emissions tend

to propagate in ducts which are field aligned regions of enhanced

ionization acting as waveguides for the whistlers. VLF emissions can

be excited or "triggered" by other naturally occurring whistlers or by

manmade signals, such as Morse—code signals, propagating in the whistler

mode (Helliwell et al., 1964; Helliwell, 1965). Amplification of the

wave which triggers the emission can also occur (McNeill, 1968).

In Section 5.2, the main observations of the amplification and

triggering are reviewed. One of the most striking features is the dash—

dot anomaly i.e. the tendency of Morse-code dashes (duration 150 ms)

rather than dots (50 ms) to trigger emissions (Helliwell et al., 1964;

Helliwell, 1965). This feature implies the existence of a minimum

duration for the signal before triggering can occur. Helliwell (1965)

has also argued that this feature implies that the triggering wave

(hereafter called TW) is organizing charged particles in the magneto—

sphere in such a way that they radiate coherently. Other observations

such as the dependence of the amplification on the duration and phase

of the TW (Helliwell and Katsufrakis, 1974; Koons et al., 1976; Chang

and Helliwell, 1979) confirm that the TW is organizing particles with

respect to the phase of the Tw to produce the triggered emission (here—

after TE).
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The idea of the TW organizing particles was incorporated in a

phenomenological model developed by Helliwell (1967) to account for the

various spectral forms of the triggered emission. In this model (which

is reviewed in Section 5.3) the TW is assumed to phase bunch electrons

through a gyro-resonant interaction. The current associated with the

phase-bunched electrons then radiates to produce the TE.

More detailed theories for the phase bunching and/or amplifi-

cation mechanisms are based on Helliwell's model for the interaction;

these theories are reviewed in Section 5.3 (cf. also Matsumoto, 1979).

Standard linear theory for the time asymptotic behaviour of whistlers

cannot account for many of the features of the amplification and

triggering (e.g. Ashour-Abdalla, 1970; Roux and Pellat, 1978) and

hence nonlinear processes (with respect to the wave amplitude) were

considered. Possibly relevant nonlinear processes include quasi-linear

diffusion (Ashour—Abdalla, 1972) and trapping (Dysthe, 1971). It is

argued in Section 5.3 that these "nonlinear" theories are not consist~

ent with all the observed features of the amplification. In particular,

they require that the TW amplitude exceed a threshold value before they

become effective_and waves with amplitudes well below this threshold

have been observed to trigger emissions (Inan et al., 1977).

In this Chapter, an alternative theory for the dynamics of the

phase bunching of electrons and the amplification of the TW is developed

using the formalism of the previous Chapter. The features of the TE are

derived from the details of the phase bunching mechanism and Helliwell's

(1967) phenomenological model. The essential difference between this theory

and existing theories is that the time asymptotic assumption is relaxed in

evaluating the response of the plasma. Trapping is explicitly neglected
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in the theory, i.e. the wave amplitude is assumed to be insufficient

to trap electrons.

The mechanism by which the TW produces the phase bunching is

discussed in Section 5.4. The phase-bunched electrons cause the TW

to grow and excite the TE (as in Helliwell's (1967) phenomenological

model). The growth rate for the amplification is derived in Section

5.5 and the features of the amplification and triggering are compared

with observations in Section 5.6. A summary and discussion of the

theory are given in Section 5.7.

5.2 EXPERIMENTAL OBSERVATIONS
 

In this Section, the main experimental observations of amplifi—

cation and triggering are reviewed. Early observations (i.e. those

from the mid 1960's to mid 1970's) were mainly concerned with the var-

ious spectral forms of the TE and with the dash—dot anomaly; they

are reviewed in Section 5.2.1. More detailed information about the

dependence of amplification and triggering on the properties of the TW

was provided by special transmitters and detectors established in the

mid 1970's (Helliwell and Katsufrakis, 1974; McPherson et a1. 1974).

Observations from these installations of triggering and amplification

are reviewed in Sections 5.2.2 and 5.2.3 respectively.

5.2.1 Early Observations

5.2.1.1 Spectral Forms

Triggering of discrete VLF emissions was first detected by

Helliwell et a1. (1964) during Morse-code transmissions. An example

is shown in Fig. 5.1. The spectrum of the detected subionospheric or



(a)

(b)

Fig. 5.1
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Triggering of discrete VLF emissions by a Morse—code transmission at 14.7 kHz (after Helliwell, 1965).

The spectrum of the detected subionospheric or direct signal is shown in (a). The spectrum of the

signal which propagates through the magnetosphere is shown in (b). Emissions characterized by a

sharply-defined centre frequency which is a function of time are triggered by the magnetospheric wave.
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direct signal is shown in Fig. 5.1a. The spectrum of the magnetospheric

signal is shown in Fig. 5.1b. The TE are characterized by a sharply—

defined centre frequency which is a function of time and are excited

only by the magnetospheric signal.

The frequency of the TE may decrease (known as a ”faller”),

increase (known as a "riser") with time or successively rise and fall to

produce patterns in the spectrum like "hooks" or "inverted hooks”.

Triggering can occur at both the termination of the TW (which is called

termination triggering) or prior to the termination of the TW (called

pretermination triggering).

5.2.1.2 The Dash-Dot Anomaly
 

The dash-dot anomaly (Helliwell et al., 1964) is apparent in

Fig. 5.1: dashes rather than dots trigger emissions. Further observ—

ations by Helliwell (1965) and Lasch (1969) showed that when dots do

trigger an emission, the emission is usually in the form of a weak

faller; dashes tend to trigger risers.

5.2.2 Triggering

5.2.2.1 Triggering as a Function of the Fregyency and Duration of the TW

The dependence of triggering (as well as amplification) on the

frequency and duration of the TW was investigated in detail by Helliwell

and Katsufrakis (1974). Instead of using a Morse—code format as in pre-

vious experiments, they switched the transmitter frequency between 5.0

and 5.5 kHz periodically at intervals between 50 ms to 400 ms. An ex-

ample of the spectrum of the detected signal is shown in Fig. 5.2. It

can be seen that
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(a) there is significant activity at 5.5 kHz and little activity

at 5.0 kHz which implies that triggering is restricted to a

narrow frequency bandwidth : 0.5 kHz;

(b) triggering only occurs for pulses of duration greater than

about 100 ms, consistent with the dash—dot anomaly;

(c) the longer duration pulses (duration 2 300 ms) trigger risers

while the shorter pulses (duration 5 300 ms) trigger fallers;

(d) triggering occurs in the absence of naturally occurring VLF

emissions of similar intensity to the TE and in fact is often

observed to occur when there are no other detectable magneto-

spheric signals in ground—based recordings (Helliwell et al.,

1980).

50 hso 250
m [£09 200 [tool {200: I 3% § :aoo ms;

1 ”
>qfl”4“0l‘p///j \‘s“v\“‘1fiiJ-Q~¢’$JOJOI%§
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Fig. 5.2 Triggering by a variable pulse length sequence (after Helliwell

and Katsufrakis, 1974). The pulsed output was produced by

switching the frequency between 5.0 and 5.5 kHz at periods

varying from 50 to 400 ms in 50 ms steps. No triggering occurs

for pulses less than 100 ms duration. Fallers are triggered by

pulses of duration between 100 ms and 300 ms and risers by

pulses of duration greater than 300 ms.
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Although the triggering in Fig. 5.2 occurs continuously over a

period of tens of seconds, triggering is also observed to occur inter—

mittently with gaps between triggering events of between a few seconds

to a few tens of seconds (e.g. McPherson et al., 1974; Stiles and

Helliwell, 1977; Dowden, 1981; Park, 1981). This feature implies that

conditions of the medium along the propagation path of the TW are vary—

ing on this time scale (McPherson et al. 1974).

5.2.2.2 Triggering as a Function of the have Amplitude

Early observations indicated that triggering occurred for sig-

nals from both high power transmitters (1 MW, 14.7 kHz, Cutler, Maine;

Helliwell et al., 1964) and low power transmitters (100 W, 10.2 kHz,

Forest Port, New York; Kimura, 1967; 1968). However, the duration re—

quired to produce triggering for the low power transmission was about

1 s, i.e. considerably longer than the 150 ms dash which produced

triggering in the high power signals. This feature implies that either

the product of power and duration of the TW needs to be high before

triggering occurs (Kimura, 1967) or the position and frequency of the

transmitter rather than the wave amplitude are important in determining

the triggering (Kimura, 1968).

Helliwell et a1. (1980) examined the triggering as a function

of the wave amplitude using the controlled VLF wave injection experiment

of Siple Station, Antarctica, established by Helliwell and Katsufrakis

(1974). They found that triggering (and amplification) can occur for

radiated powers as low as 1 W. This threshold implies that either (i)

the triggering mechanism is a function of the wave amplitude and that it

vanishes below this threshold or (ii) that the triggering mechanism is
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independent of the wave amplitude and that background noise suppresses

triggering at small wave amplitudes (Helliwell et al., 1980).

Although there is as yet no compelling evidence in favour of

either interpretation of the triggering threshold, there is some cir—

cumstantial evidence which favours the latter interpretation. In

particular, Raghuram et a1. (1977) observed that amplification and

triggering can be suppressed by whistler mode echoes. They attributed

this suppression to the reduction of the coherence of the total unam—

plified signal caused by the presence of the echoes. Chang et a1.

(1980) also observed suppression of the triggering when they modulated

the frequency of the TW.

Inan et a1. (1977) used a spacecraft to measure the wave mag—

netic amplitude in situ in the magnetosphere for a signal from the Siple

Station transmitter which produced triggering. They found that for the

transmitter operating at several hundred watts the unamplified amplitude

was about 0.2 mY (l mY = 10.12 T). The l W triggering threshold ob—

served by Helliwell et al. (1980) implies that the in situ TW amplitude

can be as small as 0.02 mY and still trigger emissions.

5.2.3 Amplification

5.2.3.1 Quasi-Exponential Growth and Pulsation Phenomenon

McNeill (1968) reported that waves which trigger emissions can

also be amplified. This was examined in greater detail by Helliwell and

Katsufrakis (1974). They found that amplification,like triggering,is

restricted to a narrow frequency range and that it is a function of the

duration of the TW.
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A specific example of the dependence of the growth rate on the

duration of the TW is illustrated in Fig. 5.3 where the average ampli—

tude of the 150—, 200—, 250— and 400— ms pulses (5.5 kHz) of Fig. 5.2

is shown as a function of time from the start of the pulse. It can be seen

that during the first 80 ms of each pulse there is little amplification.

Between 80 and 200 ms, the growth is exponential, and after 200 ms, the

amplitude reaches a saturation level. Such temporal behaviOur of the

amplitude is hereafter called quasi—exponential growth.

(18
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Fig. 5.3 Average amplitude of the 150-, 200—, 250— and 400 ms pulses

(5.5 kHz) of Fig. 5.2 as a function of time from the start

of the pulse (after Helliwell and Katsufrakis, 1974). A1

is the initial wave amplitude. Total growth is A.In — Ai= 30dB.

For the first 80 ms there is little amplification; exponential

growth occurs between 80 ms and 200 ms. After this period

saturation occurs.
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Other observations indicate that the amplification need not

necessarily be quasi-exponential. Specifically, Bell and Helliwell

(1971) and Likhter et al.(l97l) observed periodic oscillations in the

amplitude as shown in Fig. 5.4. This ”pulsation phenomenon" was also

observed by Dowden et a1. (1978) who found that the oscillations in the

wave amplitude occurred after a period of quasi—exponential growth.
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Fig. 5.4 Pulsation phenomena. (a) Relative amplitude of a key—down

whistler—mode signal at 17.8 kHz (after Bell and Helliwell,

1971). (b) Pulsation in amplitude and corresponding spec—

tral broadening of 800— ms whistler mode pulse (after

Likhter et al., 1971).



5.2.3.2 The Dependence of the Growth Rate on the Phase of the wave
 

The amplification of the TW is also a function of the phase of

the TW. This was shown explicitly by Koons et al. (1976) who modified

the phase of the TW by using a direct phase change in the driving

voltage of the transmitter and by Chang and Helliwell (1979) who in-

serted a very short pulse with a frequency offset into the TW. After

the phase change, the amplitude of the TW was observed to decrease

and then recover to an amplitude comparable to that prior to the phase

change.

5.3 THEORIES FOR AMPLIFICATION AND TRIGGERING
 

5.3.1 Outline of the Various Theories
 

In early theoretical work on VLF emissions, instabilities involv-

ing whistlers were examined (e.g. Dungey, 1963; Nakada et al., 1965;

Kennel and Petschek, 1966; Roberts, 1966; Kimura, 1967). These theories

used standard linear theory to determine the growth rate for the time

asymptotic behaviour of the normal modes of oscillation of the plasma

(cf. Section 4.2).

The growth rate implied by these theories is independent of both

the length and phase of the TW which is inconsistent with observations

(see Section 5.2.2). These theories are also inconsistent with the

observation that amplification and triggering can occur in the absence

of naturally occurring emissions in ground—based recordings (Section

5.2.2.1). Specifically, these theories imply that the growth rates for

background noise and the TW are equal. However, the observed absence

of naturally occurring VLF emissions in ground-based recordings implies

that the growth rate for background noise is smaller than the loss rate



5.12

(e.g. due to leakage from the duct and/or attenuation in the ionosphere)

while the observed amplification of the TW implies that the growth rate

for the TW must be larger than this loss rate.

As discussed in Section 5.1, the idea that the TW organizes

particles (specifically electrons) to produce the TE was introduced in a

phenomenological model developed by Helliwell (1967). This model is

able to account for the various spectral forms of the TE (Section

5.2.1.1) and is reviewed in Section 5.3.2.

Helliwell's (1967) phenomenological model did not specify how

the TW actually organizes electrons to produce amplification and trigger—

ing. This point was addressed in later theories (reviewed in Subsection

5.3.3) which involve non—linear effects.

One of the major shortcomings of these later theories is that

amplitudes greater than a certain threshold value (of a few milligamma)

are required to produce the observed amplification while TW's with

amplitudes well below this threshold have been observed to be amplified

and trigger emissions (Section 5.2.2.2).

5.3.2 Triggering: HelliwellH;Phenomenological Model

In Helliwell's (1967) phenomenological model the TW is assumed

to phase bunch gyro-resonant electrons producing an oscillating current.

This oscillating current then excites the TE. The frequency and wave—

number of the TE are assumed to be determined by the region where the

phase bunching and energy delivered to the TW by the electrons are at

a maximum i.e. where the electrons are able to gyro-resonate with the

TW for a long time.
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Due to theinhomogeneityof the geomagnetic field, both the

cyclotron frequency and the Doppler shifted wave frequency vary spat-

ially and an electron can gyro-resonate with the TW for only a finite

time. Long lasting resonance in this case requires that

A = Q + k v - w = O (5.13)
r e Z Z I

dA
.r_ g 0. (5.11))

dz

In (5.1) the z axis is along the magnetic field and the Lorentz factor

Y is set to unity (since kic2 >> 9: for whistlers). Equations (5.1a)

and (5.1b) are called the "consistent—wave condition" (Helliwell, 1967).

A schematic diagram of the interaction between the electrons and

the TW is shown in Fig. 5.5. The region in the magnetosphere in which

"interactionthe consistent wave condition is satisfied is called the

region". It lies near the magnetic equator where the spatial gradient

of the magnetic field is smallest and (5.1) is most easily satisfied.

Since wr < Re for whistlers, the gyro—resonant electrons travel in the

opposite direction to the TW (i.e. kzvz < 0).

The various spectral forms of the TB are attributed to motion

of the interaction region to maintain a balance between the input power

from the electrons and the output wave power (Helliwell, 1967). A

faller is triggered if the interaction region moves towards the

equator, i.e. in the direction of decreasing gyrofrequency, and a riser

is triggered if it moves away from the equator. A hook is triggered if

the interaction region first moves towards the equator and then away from

the equator; an inverted hook is triggered if the interaction region first

moves away from the equator and then towards the equator.
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Fig. 5.5 Schematic diagram of the interaction between the whistler

and gyro—resonant electrons. If the interaction region

(IR) moves away from the equator, risers (R) are triggered

while if it moves towards the equator fallers (F) are

triggered.
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Helliwell (1967) also argued that when the input electron flux

and/or the length of the TW exceeds the value required for the wave to

reach saturation the interaction region moves in the direction of the

streaming electrons; when the particle flux and/or the length of the

TW is less than this value, the interaction region drifts in the opposite

direction i.e. in the direction of the TW. This implies that if the

interaction region is downstream (upstream) of the magnetic equator

and saturation occurs then risers (fallers) are triggered; if satur—

ation does not occur then fallers (risers) are triggered. Since long

duration Tw's are more likely to reach saturation than short duration

TW's, this model implies that long duration TW's tend to trigger risers

and short duration TW's fallers (consistent with observations;

Sections 5.2.1.2, 5.2.2.1) only when the interaction region is down-

stream of the magnetic equator.

5.3.3 Existing Theories for Phase Bunching and Amplification
 

Another class of theories concerns how the fields of the TW

affects the electron trajectories to produce phase bunching and/or

amplification. Specifically the wave fields, depending on their am—

plitude, may produce small perturbations in the trajectories (in which

case the electrons are called untrapped) or they may cause the phase

of an electron with respect to the wave to become bounded about some

fixed phase angle (in which case the electron is called trapped;

Dysthe, 1971). Theories which do not involve trapping are reviewed

in Section 5.3.3.1 and theories involving trapped electrons are re-

viewed in (Section 5.3.3.2).



5.16

5.3.3.1 Theories which invoke Quasi-Linear Difjusion
 

Das (1968), Ashour-Abdalla (1972), Brinca (1972), Denavit and

Sudan (1972) and Welti et al. (1973) examined the interaction between

the TW and untrapped resonant and near-resonant electrons using quasi—

linear theory. They found that the interaction causes these electrons

to diffuse in both pitch angle and energy. Due to the diffusion, a

slot develops in the distribution about the resonant velocity

vR = (w - Qe)/kz with the gradients in the distribution at vR being

reduced and the gradient at the edge being enhanced (Ashour—Abdalla,

1972). The increase in the gradients at the edge of the slot enhances

the growth rate near the TW frequency and triggers the emission.

A major shortcoming of this mechanism is that to produce the

slot on a time scale of the order of several tens of seconds (e.g.

Ashour-Abdalla, 1972) an initial wave amplitude of about 10 my is

required whereas TW's with much smaller amplitudes and duration are ob—

served to trigger emissions (Section 5.2.2). This mechanism is also

unable to account for the observed dependence of the growth rate on the

phase of the TW (Section 5.2.3.2).

5.3.3.2 Theories which Invoke Trapping
 

Two possible mechanisms for amplification and triggering involv-

ing trapped electrons have been considered. The first utilizes a dis—

tortion in the electron distribution produced by trapping. The second

utilizes a nonlinear current produced by the phase bunching of trapped

electrons.
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Distortion of the Electron Distribution by Trapping
 

Asseo et a1. (1972), Karpman et al. (19743,b), Roux and Pellat

(1976,1978), Cornilleau-Wehrlin and Gendrin (1979) and Melrose et al.

(1983) considered the distortion of the electron distribution produced

by the difference in the trajectories of trapped and untrapped elec—

trons arising from the inhomogeneityof the geomagnetic field. They

showed from constants of motion obtained by averaging over time that

the motions of trapped electrons are governed by vZ = vR(z) and

v constant and those of untrapped electrons by vi a B0(z) and

v constant. Due to the inhomogeneity these trajectories are differ-

ent. This difference causes a distortion in the velocity distribution

which in turn modifies the growth rate.

This mechanism like quasi-linear diffusion modifies the growth

rate of a wave with an initial amplitude of a few milligamma only after

several seconds (e.g. Cornilleau—Wehrlin and Gendrin, 1979). As such

this mechanism can be effective only for continuous transmissions and

not for pulsed transmissions.

Phase Bunching of Trapped Electrons
 

Other theories are based on the nonlinear current produced by

the phase bunching of trapped electrons. Specifically, Knox (1969),

Ashour-Abdalla (1970), Istomin and Karpman (1972,1973a,b), Gendrin

(1974) and Newman (1977) examined the phase bunching in a homogeneous

magnetic field. They found that the phase bunching produced oscillations

in the wave amplitude. These theories were, however, unable to identify

a mechanism for producing quasi-exponential growth (Matsumoto, 1979).

To obtain quasi—exponential growth, Helliwell and Crystal (1973)

considered a feedback system between the stimulated emission and
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incoming resonant electrons which were simulated by discrete current

sheets (rather than a continuous current). A phenomenological model

of this feedback system was developed by Helliwell and Inan (1982) to

explain pretermination triggering.

There is, however, some controversy over the validity of the

simulation in Helliwell and Crystal's (1973) theory (e.g. Nunn, 1975;

Helliwell and Crystal, 1975; Roux and Pellat, 1976; Newman, 1977;

Matsumoto, 1979). In particular, Roux and Pellat (1976) suggested

that the amplification in Helliwell and Crystal's (1973) theory is

due to a beam—plasma instability which is inconsistent with the ab-

sence of naturally OCCurring VLF emissions in ground based recordings

(Subsection 5.3.1).

Dysthe (1971) first pointed out than if the phase bunching of

trapped electrons is to produce amplification,an inhomogeneous magnetic

field is required. This is because the force acting on a trapped elec—

tron causes the phase of the electron to vary sinusoidally and there is

no net energy exchange averaged over time; an inhomogeneous magnetic

field introduces an extra non-sinusoidal force which results in net

energy exchange. This effect was examined in detail in numerical

studies by Nunn (1971,1973,1974), Vomvoridis and Denavit (1979,1980),

Matsumoto et a1. (1980), Matsumoto and Omura (1981) and Omura and

Matsumoto (1982).

Although wave amplification is possible in these theories,

trapping by the TW in the inhomogenity of the geomagnetic field is only

possible for wave amplitudes greater than a few milligamma (e.g. Dysthe,

1971; Nunn, 1975). This is inconsistent with observations which indi—

cate that wave amplitudes less than about 0.2 my can be amplified and

trigger emissions (Section 5.2.2.2).
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5.4 PHASE BUNCHING 0F UNTRAPPED ELECTRONS
 

5.4.1 Introduction

An alternative theory for the amplification and triggering of

discrete VLF emissions which incorporates Helliwell's (1967) phenomeno-

logical model is developed here. It is shown in Section 5.4.2 that

untrapped electrons can be phase bunched by the front of the TV with-

out significant energy exchange between the electrons and the wave;

this occurs in a region where the magnitude of the mismatch between the

electron cyclotron frequency and the Doppler shifted wave frequency is

greater than about the magnitude of the growth rate arising from the

bunching i.e. where IArI : Iwil. As these electrons move through the

magnetosphere Ar changes due to theinhomogeneityin the magnetic field.

The phase bunched electrons can then interact with a later portion of

the TW in a region where Ar = O to produce the amplification and the

TE.

The growth rate for the amplification arising from this process

is derived in Section 5.5. This growth rate is independent of the in—

itial wave amplitude, unlike those for the theories reviewed in the

previous Section. The implied features of the amplification and trig-

gering are compared with observational data in Section 5.6.

A similar mechanism was proposed by Sprangle and Smith (1980)

and Chu et al. (1980b) to improve the efficiency of gyrotrons. In

these theories the bunching is azimuthal; here however kic2 > R: which

implies that axial bunching is relevant (cf. Section 4.2).

In common with other theories of VLF emissions (e.g. Helliwell,

1967; Dysthe, 1971; Matsumoto, 1979) the TW is assumed to be a whistler
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wave propagating parallel to the magnetic field (in the z direction)

and amplification and triggering are assumed to occur near the mag—

netic equator. The variation of the velocity of an electron due to

conservation of the adiabatic invariant is neglected since the change

in the magnetic field near the magnetic equator is small. The vari-

ation in Re is, however, retained in Ar = Qe + kzvz - wr where small

variations in 9e are important for Ar = 0. Further, the spatially

varying ambient magnetic field as seen by an electron is simulated by

a temporally varying magnetic field i.e. Qe(z) + Qe(vzt) and terms

of order-——2 are neglected (cf. Sprangle and Smith, 1980). In effect
dt

it is assumed that the variation of the magnetic field is sufficiently

dAr dwi 2 2
—— — << + .slow that I dt I, dt I Ar wi

When the above inequalities are satisfied, the trajectories of

the untrapped electrons are as described in Section 4.6. These tra-

jectories are used to determine the phase bunching and the growth rate

in the following Sections. (The notation used in this Chapter is the

same as in Section 4.6-)

The neglect of the variation of the velocity due to the con-

servation of the adiabatic invariant and the assumption of a temporally

varying magnetic field are valid only when the interacting electrons

have small average pitch angles. This is the case for the parameters

considered here which are thought to be appropriate for the relevant

region of the magnetosphere (Section 5.6.1). In Appendix C, the

growth rate is derived for the case where the magnetic field along the

TW varies spatially. It is shown that the growth rate is essentially

the same as derived in the following Sections except that instead of
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the variation of Ar depending solely on Qe it also depends on the

variation of the electron velocity due to the conservation of the

adiabatic invariant.

5.4.2 Physical Picture of the Bunching and Amplification

A schematic diagram of the interaction between the TW and re-

sonant and near—resonant electrons as envisaged here is shown in Fig.

5.6. In the following the interaction is referred to as resonant if

Ar 2 0, specifically if IArI < Iwil, and off—resonant if [Ar] 3 [mi].

Due to the variation of the geomagnetic field, the interaction can

change from off—resonant to resonant. The region in which Ar = 0

corresponds to Helliwell's (1967) "interaction region" but is called

here the "resonant interaction region" or RIR to distinguish it from

the region prior to the RIR where the electrons interact off—

resonantly with the TW. This latter region is called the "off—

resonant interaction region" or OIR.

The resonant interaction between a right hand polarized elec—

tromagnetic wave and a group of electrons initially uniformly distrib—

uted in phase was examined in Section 4.6.1. It was shown there that,

due to the energy exchange between the wave and the electrons, the

electrons become bunched in phase but become dispersed in v1 and vz,

and that this bunching could give rise to reactive- and resistive—

medium instabilities. This phase bunching mechanism is hereafter

called the "resonant bunching mechanism" or RBM and is relevant in the

RIR.

The size of the RIR is, however, limited by the inhomogeneity

of the geomagnetic field. A group of electrons which are not bunched
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Fig. 5.6

Wave

Schematic diagram of the variation of the frequency mismatch

between the electron cyclotron frequency (solid curve) and

the Doppler shifted frequency of the TW. The Doppler shift-

ed frequency is determined by the whistler dispersion re—

lation and may always be less than the cyclotron frequency

(dashed curve) or may exceed the cyclotron frequency at some

point depending on the velocity of the streaming electrons.

Electrons can exchange energy in the region (called the re—

sonant interaction region on RIR) where Ar is small. A larger

growth rate can be obtained if, on entering the RIR, the el-

ectrons are bunched by the front of the TW in the off-

resonant interaction region or OIR.
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when they enter the RIR cause little amplification if the corresponding

growth rate is smaller than the reciprocal of the traversal time across

the RIR. When the growth rate is sufficiently small for this to happen,

the amplification is said to be "ineffective".

Naturally occurring VLF noise usually has no phase coherence

and hence does not bunch electrons before they enter the RIR. Obser—

vations indicate that such noise does not cause amplification and

triggering (Section 5.2.2.1). Thus, it is assumed in the following

that amplification due to unbunched electrons entering the RIR is

ineffective.

Amplification of the Tw can occur nevertheless if the TW is

sufficiently long to bunch the electrons in the OIR before they enter

the RIR (Fig. 5.6). Without phase bunching half the electrons lose

energy and half gain energy in the RIR (this may be seen from (4.41)

which implies that the rate of change of kinetic energy of an electron

is proportional to c059). Net energy exchange between the group of

electrons and the TW arises only from perturbations in the electron

trajectories. If instead the electrons are phase bunched on entering

the RIR, they all lose or gain energy depending on the phase at which

they are bunched. Thus, the energy transfer and the corresponding

growth rate can be enhanced considerably.

The mechanism by which the front of the TW bunches electrons

(hereafter called the "off—resonant bunching mechanism” or OBM) can

be understood as follows. Consider the trajectories (i.e. (4.38)—

(4.44)) of a group of electrons with the same value of vlo and vzo

which are initially uniformly distributed in phase angle 6 (Fig. 4.12a).
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In the DIR, A: z m: but for simplicity let it be assumed that A: >> mi.

Then the time average (defined by <...>

t

:= l-f dt(...)) of the rate

t t 0

of change of phase angle 8 (cf. (4.40)) of an electron in the group

1: t

after time t such that In t = f A dtl >> 1 and IH,t = j w,dtl << 1
r 0 r 1 0 1

is given by

d0 N 2 2
<dt>t — <Ar — (vlovll/c + vzovzl/c ) 9e + kzvzl

+ er(c/vlo)(l — nrsz/c) sin6>t (5.2)

N 02 00.0
— <Ar> u Qe(vlo/c)(l - nrkzc/Qe) D Ar51n8 . (5.3)

t

In the derivation of (5.3) it is assumed that Ar is approximately

constant. It follows that for nrkzc/Qe > 1 the rate of change in 8

is on average larger for electrons with 0 < 90 < n (i.e. electrons 2,3

and 4 of Fig. 4.12a) than for electrons with N < 90 < 2“ (i.e. electrons

6, 7 and 8 of Fig. 4.12a). Hence, the electrons become phase bunched.

This phase bunching occurs because the average axial velocity of an

electron is dependent on its initial phase with respect to the wave

fields. There is little net energy exchanged between the electrons and

the wave because of the rapid rotation (at a frequency Ar) of the elec-

trons with respect to the wave fields.

When the electrons enter the RIR i.e. when Ar becomes small,

the hunch is able to resonate with the wave to produce amplification.

During the amplification the electrons continue to become bunched via

the RBM but become dispersed in vi and vz. According to Helliwell's
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(1967) phenomenological model, these phase-bunched electrons on emerg—

ing from the end of the TW radiate at their own natural frequency to

produce the TE.

5.5 THE WHISTLER DISPERSION RELATION

The effects of the OBM are now included in the dispersion re—

lation for a whistler. As stated previously the whistler is assumed

to be propagating parallel to the magnetic field whose spatial vari—

ation is simulated by a temporal variation. In Section 5.5.2, this dis—

persion relation is evaluated for the specific case where the plasma has

cold and energetic components, as assumed by Nunn (1971,1974), Karpman

(1974) and Omura and Matsumoto (1982).

5.5.1 Generalized Dispersion Relation
 

Since a whistler propagating parallel to the magnetic field is

right hand circularly polarized, the derivation of the dispersion re—

lation is similar to that in Section 4.6 except that (i) the magnetic

field is assumed to be slowly varying in time, and (ii) the electron

distribution is allowed to have more than one component. The initial

magnitude of Ar, [Agl,is aSSumed to be much greater than the initial

growth rate i.e. [Ag] >> lwgl (cf. Section 5.4.2). Because the TW is

not necessarily growing, the contribution to the dispersion relation

from the perturbed distribution, fl, need not be exponentially small

(as in Section 4.6) and must be retained if the evolution of the TW is

to be determined self—consistently.
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In order for w and kz to satisfy the usual dispersion relation

(i.e. (4.11)) at t = 0, fl is assumed to have the form

_ o o 0
fl — g 2p (c/vlo) Refojcose

2 2 0 0 0
X [(1 - anZO/C) + (viO/Zc )(Qe — nrsz)/Ar]/Ar (5.4)

where f0j is the unperturbed distribution of the jth electron component.

On substitution of (4.62) and (5.4) into (4.61), the dispersion relation

is found to be

 

2

2 2 2 2 3 w ‘ kzvz) Vi (We ‘ kzcz)‘
w — kzc + E w , J d v f0. A + 2 2

j p] ~ J 2c A —

2 O 2 2
2 3 Vi (wfle — kzc )

= it 2 w I d v __§'_—_-_Tr——___'Xf0' (5.5)
j W ” 2c A 3

t

where X = exp(- i J A dt)

0

The left hand side of (5.5) when equated to zero gives the usual

time asymptotic dispersion relation. The right hand side of (5.5)

arises from the secular term in <(cose0 - isineo) vioelf in (4.61)>
0 x

and represents the modification to the dispersion relation by the phase

bunching via the OBM of the unperturbed distribution f For a given00

t, the magnitude of this term increases with increasing IVE/AS  . How-

ever, because X is oscillatory, this term phase mixes in a time in—

versely proportional to the variation of Ar over the distribution.

Hence, enhanced growth via the OBM is possible only for distributions

with a narrow velocity spread and with mean energy such that <vi> ¢ 0 and
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<AO> is small, i.e. for a sufficiently anisotropic electron distribution.
r

The dependence of the growth rate on the anisotropy can be de-

termined explicitly by writing (5.5) in the form

3f . 3f rf

w2 — kzcz + n 2 m2, dv v dv (w — k v ) v ——91-+ k v2 ——91 /A
z j p] z i i z z i Bvi z 1 8V2—

{
= - n z a}, J dv I dvi

J- PJ 7- Vl \A0

(5.5')

(Equation (5.5) can be obtained from (5.5') by integration by parts.)

The semirelativistic and nonrelativistic resistive—medium instabilities

3f . 3f .

(cf. Section 4.2) are driven by the 5391 and 5391 terms respectively on

i z
the left hand side of (5.5'). Amplification due to the OBM is driven by

v f . v f ,

the term-§—- C‘LJIH for w2 >> kzc2 and by the term-§—- Gé—QlJ for
Bvi A0 r z sz A0

w2 << kzcz.
2

Thus, in the case of whistlers the dominant contribution to

amplification via the OBM comes from regions of the distribution where

v f .
%;- (‘LBQJJ is large. This derivative can be large if the distribution

2 A
has a beam—like component or if the distribution has a "knee" i.e. if

the distribution has a step—like feature with respect to vz.

5.5.2 Whistlers in a Plasma with Cold and Energetic Electron Components

The time-dependent whistler dispersion relation is now evaluated

for a plasma with a cold component and a beam-like energetic component.

If amplification by phase-random electron entering the RIR is effective

then the growth rate for the amplification is given by time asymptotic

theory. Amplification in this case is due to either a reactive-or

V f . V f . 1
[(w_kzvz)%—{_fll] +kV 3— [fl] X-
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resistive — medium instability (cf. Sections 4.2 and 4.6). Con—

ditions and growth rates for these instabilities are derived in

Section 5.5.2.2. The growth rate for the amplification produced by

the bunching of electrons by the OBM before their entry into the RIR

is derived in Section 5.5.2.3. It is shown that under certain con-

ditions the amplification due to the OBM can exceed that from the

reactive - and resistive — medium instabilities.

5.5.2.1 Evaluation of the Dispersion Relation

The unperturbed cold and energetic components are assumed to

be described respectively by

foc(vi,vz) = (vai)—1 soil) 6(vz) (5.6)

and

f0E(vJ_,vz) = flu/l) fz(vz)

fl = (21Tvilj!)_l (vi/J2— m)“ exp(- vf/Zvil) (5.7)

£2 = ((2n)1/2vT)"1 exp(-(vz — V20)2/2v,i)

where j is a positive integer. In the following,

V2-=Id3 2f =2('+1) 2 Th t' t d tl . 3 vi OE J le' e energe 1c componen re uces o a

beam distribution with <vi> # 0 when VT, le + 0, j + w and JEVTL

remains constant.

For a whistler it can be assumed that w < Qe and kic2 >> ug.

In this case substitution of (5.6) and (5.7) into (5.5) yields the whist-

ler dispersion relation
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k2c2+w2w/(w-Q)+w2 £339 — -w2 5i“ (5.8)
2 pc e pc n pc n

where
2 _

U = (1—(j+l)v/v)+SZ—(j+1)—A——-—, (5.9)
T1 T e 2 . /—

v — 1 2k V
T z T

t _

F (y(O) + 16 )
w = l tkz v2 exp(— i Zdt) exp(- 82) —O—-——T— , (5.10)

2 z J. T f—
2k v

0 z T

and where A(t) = gem = sz20 - 0.)(t), y = A/JszvT, 8T = kszt/n/2,

Gn/n is the ratio of the densities of the energetic and cold electron

components, wpc is the plasma frequency of the cold electron component

and F0 is the plasma dispersion function in the notation of Stix (1962,

p. 179). Appropriate parameters in the region of the magnetosphere

where the interaction is thought to occur (i.e. near the magnetic

equator at four earth radii) are 6n/n << 1, wpc =JI)QOE and w 2 2-90E

where 90E = 2N X 14 kHz is the equatorial electron cyclotron frequency

(e.g. Vomvoridis and Denavit, 1979; Omura and Matsumoto, 1982;

Helliwell and Inan, 1982).

For Gn/n = 0, (5.8) reduces to the cold plasma dispersion re-

lation for whistlers (e.g. Dysthe, 1971)

_ __ 22 22 2
w — w . Qekzc /(kzc + wpc) . (5.11)

2
pC'

The low density energetic component causes a small shift in

1 2 2
F 2 _— . ' ' zor w 2 QOE’ (5 11)1mp11es that kzc w

the frequency given by (5.11) and more importantly can lead to amplifi-

cation of the wave via resistive — and reactive - medium instabilities

(described by the term U) or via the OBM (described by the term W).
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5.5.2.2 Amplification due to Resistive - and Reactive — Medium
Instabilities

Consider first the case where the right hand side of (5.8) is

negligible so that amplification is due to either a resistive — or

reactive - medium instability. The reactive—medium instability applies

when the axial velocity spread is sufficiently small. Specifically when

  

2 2 1/3
Ikszl < §E_ kzyi (5 12)

9 c
9e k8]?! Q:

the solutions to (5.8) for w = 2'Qe and mic = kic2 (Section 5.5.2.1)

correspond to 1;] > 1; the imaginary part of U is then exponentially

small and hence any growth due to a resistive—medium instability is

negligible. The reactive—medium instability can occur when the fre—

quency of the whistler, w also satisfies the resonance condition 5 = O

i.e. when

m 2 mo + 6w

and

= 2 2 2 2 2 2mo Qekzc /(kzc + wpc) szzo 9e. (5.13)

In this case, (5.8) reduces to

(kicz + “2c)(5w)3 2 (3n 1 2 2________JL______ ___ _. =“0 _ 9e + QEC r1 (fleéw + 2 kZYl) 0. (5.14)

On solving for 6w, growth is found to occur only over a bandwidth of the

order of k2V2/292 and for
z i e

 
{kV

§E < F2% 27 i z i) , (5.15)
n n . 2

cr1t
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When 6n/n is much smaller than this critical value

2 2 2 1/3
V3] 5n w cszl(Qe _ wO)

6w 2 [- 0.5 +i—é—J [2— 2 2 2 J

n kzc + w

PC (5.16)
1/3

N . _§_ QE 2 2
— [- 0.5 + 1 1:] [8n sziQeJ

2
for w = k2c2 and w = -£ 9 .

pc 2 2 e

When the inequality in (5.12) is reversed, the reactive-medium

instability passes over into the resistive-medium instability (cf.

Section 4.6.3). The growth rate in this case is given by

 

 

2 2
(.0 (Q - U3) —Vl " _

k c /§k v 2v —
z z T T

Growth occurs if

— Vii
A—z' > 9 (5.18)

e
2vT

and damping occurs if the inequality is reversed.

It follows from the above that the plasma is stable to the

reactive-medium instability if

 

2k v
§E > [ z 21] (5.19)

29
e

and stable to the resistive—medium instability if

k V
l2 . (5.20)

29
e

2 2
z
 lkszI <<
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5.5.2.3 Amplification due to the OBM

The modification to the dispersion relation (5.8) arising from

the OBM, represented by the term W, can be considered as a transient

response of the plasma. This is because on a time scale t >> l//2IkzlvT

the bunching arising from the OBM phase mixes to zero and the term W is

negligible. Amplification due to the OBM can occur even when the

plasma is stable to reactive — and resistive — medium instabilities,i.e.

when conditions (5.19) and (5.20) are satisfied. In particular,

suppose the term U in (5.8) is negligible, as is the case when

/2[kz|th : l and conditions (5.19) and (5.20) are satisfied. On solv—

ing (5.8), the frequency of the TW and the growth rate due to the OBM

are found to be given by

 

 

 

u) = [w2 6—“ 1m (w) mi + Qe (kzcz + m2 E Re(W))]/R (5.21)
r pc z pc n

w2 5—“ Im (w) 9e [1 — (kic2 +002 5—“ Re(W))/R]
w. = wpc 2 (Sun 2pc (5.22)

1 R + (u) — Im(W)) 2/R
pC

1 Vi tkicz 1 2 —
Im(W) = - §--§ £0 exp(-[§-(kszt) + Hit]) cos(Hrt) (5.23)

C r

1 Vi tkicz 1 2 -
Re(W) = - §-—§- 20 exp(—[§(kszt) + HitJ) s1n(Hrt) (5.24)

C r

2 2 2 - t -
where R = k c + m (l + (Sn/n) Re(W)), H t = J A dt and

z pc r r

E = £2 + k v - m . If 0
r e z 20 r

2 2 2 2
I(6n/n) Re(w)| << (ch + pr)/mpc (5.25)

then (5.21) and (5.22) reduce to
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r 0 rl

Iwz (5.21)

001 = 5—“ z—RC—i—(n —w)Re(W)
r n k c + w e

2 pc

m2
_ @ _P_c___ .mi — n 2 2 2 (Re-w)1m(W) (5.22)

k c + w
2 pc

where wo is given by (5.11). When the amplitude of the TW is very much

less than its initial amplitude (i.e. if Hit << — l), IRe(W)I can be

very much larger than unity and the condition 6n/n << 1 is not suff—

icient to ensure that the inequality (5.25) is satisfied.

The magnitude of the growth rate given by (5.22) or (5.22')

increases in time but the sign of the growth rate is oscillatory

(through its dependence on the term W). In terms of the physical model

presented in Section 5.4.2, this corresponds to the electrons becoming

increasingly phase bunched and rotating with respect to the wave fields.

When IZrI becomes small i.e. when [Zrl E [mi] the bunch resonates with

the wave and amplification occurs.

The magnitude of the growth rate also increases with increasing

(5n/n)(Yf/AS). This corresponds to the growth rate being an increasing

function of the number of electrons being bunched (i.e. on 6n/n) and on

the rate at which they become bunched (i.e. on the magnitude of the

perturbation in fig which, as given by (5.3), is proportional to

vf/Ag for w: = 0).
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5.6 FEATURES OF THE AMPLIFICATION AND TRIGGERING DUE TO THE OBM

A numerical example of the phase bunching and amplification due

to the OBM using parameters thought to apply in the relevant region of

the magnetosphere is presented in Section 5.6.1. In Section 5.6.2,

general conditions are derived for the amplification of the TW due to

the OBM. Conditions for triggering are also derived using Helliwell's

(1967) phenomenological model and the results are compared with experi—

mental observations.

5.6.1 A Specific Example

In the example of phase bunching and amplification due to the

OBM, the following assumptions are made. The TW propagates in the

negative 2 direction and the energetic electrons stream in the positive

2 2.. _ ~22-
z direction. The plasma parameters are Vzolc — 5 X 10 , wpc/QOE 10 ,

90E (the equatorial cyclotron frequency) = 2n X 14 kHz (cf. Helliwell

—4 —6 2 2 —5
and Inan, 1982), Sn/n = 10 , vT/c = 10 and Vl/c = 2 X 10 . The

last three values have been chosen so that the energetic component has

a similar number density and average perpendicular energy to the aniso—

tropic component of the distribution about v2 = VzO reported by Edgar

and Koons (1982).

The magnetic field as seen by the energetic electrons is assumed

to have the form

B = BOE(1 + a(Vzo/c)2 (T — rs)2) (5.26)

where a = 8 X 10-8, T is the normalized time 90 t and Ts = 1.2 X 104
E

(cf. Omura and Matsumoto, 1982). The time Ts/QOE is that taken by an
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electron with v2 = VzO and initially at the front of the wave to reach

the magnetic equator. The initial wave amplitude is assumed to be 10-6

of the equatorial magnetic field, consistent with the observations of

Inan et a1. (1977).

The wave number kz of the TW is assumed to be — 9.98 ROE/c so

For these parameters, Ar is initially 1.6 X 10—2 Rthat w = i Q —
2 0E' OE

and decreases to a minimum of approximately 2 X 10—3 90E at T = T

i.e. at the magnetic equator. A non—zero value of Zr(TS) has been

chosen to illustrate that effective amplification can occur for Zr(TS)

small but not necessarily zero. Also,for these parameters,the plasma

is stable to reactive — and resistive — medium instabilities (i.e.

conditions (5.19) and (5.20) are satisfied and the term U in (5.8) is

negligible).

Fig. 5.7 shows the temporal evolution of the normalized wave

amplitude, A = exp(Hit). It can be seen that the normalized amplitude

oscillates about a mean value of unity for T f 6 X 103. As discussed

in Sections 5.4.2 and 5.5.2.3, these oscillations represent the bunch—

ing and rotation of the bunched electrons with respect to the wave

fields in the OIR. The magnitude of these oscillations increases as

the electrons become increasingly phase bunched.

As T increases and Zr(T) decreases, the electrons enter the

RIR where they resonate with the TW to produce net amplification. The

average growth rate for the amplification in Fig. 5.7 is about 150 dB/s.

This growth rate is comparable to that inferred from the observations of

Helliwell and Katsufrakis (1974, Fig. 5.3).

Fig. 5.8 shows the temporal evolution of a group of 20 electrons

Wlth vlo = Vl’ vzo = VZO and initlally uniformly distributed in G,



Fig. 5.7

 

5.

  
 

The temporal evolution of the normalized wave amplitude,

A = exp(Hit). For T f 6 X 103, there is little net am—

plification of the wave. During this period the electrons

are becoming increasingly bunched. This is represented by

the increasing magnitude of the oscillations of the ampli-

tude. For T i 6 X 103, [Zr] is sufficiently small to allow

the bunched electrons to resonate and amplify the wave.
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Fig. 5.8 (continued) Vl’ vZO

distributed in 6 during their interaction with the wave fields given in Fig. 5.7.

= Vz0 and initially uniformlyThe temporal evolution of a group of 20 electrons with vi0 =

Fig. (a) shows the initial

distribution. The bunching first becomes evident for T = 7 X 103 (Fig. d). Bunching is also present for

smaller T but cannot be seen due to the coarseness of the scale. As the electrons amplify the TW, they con—

tinue to bunch in 9 but become spread in v2 (Figs. e—h) and Vl (which is not shown). In Fig. (i) the pertur—

bation in 9 due to the wave fields is of order unity and linear theory is no longer valid.

S
E
'
S
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during their interaction with the wave fields given in Fig. 5.7. (The

electron trajectories were determined self-consistently from (4.42)-

(4.44), (5.21) and (5.22).) Bunching is present at all times but is

not evident until T = 7 X 103 (Fig. 5.8d) because of the smallness of

the initial wave amplitude and the coarseness of the scale. During

the amplification of the TW, the electrons continue to bunch in 6 via

the RBM but become spread in vZ and V1 (Figs. 5.8e—h).

In Fig. 5.81, I6 is of order unity for some of the electrons|1

so that linear theory is no longer valid and nonlinear effects must be

included. The actual time at which these nonlinear effects become im—

portant depends on the initial wave amplitude.

Similar phase distributions (and oscillations in the wave

amplitude) were also obtained by Sprangle and Drobot (1977) and Sprangle

and Smith (1980) in their studies of the azimuthal bunching instability.

They found that amplification saturates when nonlinear effects become

important.

Fig. 5.9 shows the temporal evolution of the real part of the

frequency for the wave fields shown in Fig. 5.7. The frequency has two

components. The first component is non-oscillatory and is due to the

variation of the magnetic field. This component is represented by the

dashed line which shows mo (i.e. (5.11)) as a function of time. The

second component is oscillatory and, like the oscillations in the

amplitude, is due to the bunching and rotation of the bunched electrons

with respect to the wave fields. The period of these oscillations in-

creases as the magnitude of the frequency mismatch [Zr] decreases.

The magnitude of the frequency shift due to the bunched elec—

trons (i.e. w — mo) becomes large when the wave amplitude becomes very
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The temporal evolution of the real part of the frequency

for the wave fields shown in Fig. 5.7. The dashed line

shows the real part of the frequency when there is no

energetic component. The phase bunching of the energetic

component gives the frequency an oscillatory component with

large frequency shifts occurring when the wave amplitude

becomes very small i.e. at T = 4.4 X 103 and 5.3 X 103.
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small or "null". This occurs in Figs. 5.7 and 5.9 at T = 4.4 X 103

and 5.3 X 103. (Although the frequency is sharply peaked during these

periods, the assumption of a slowly varying frequency is still valid

dwr dwi 2 2
' ———- ———- < + . ' —Since ldt I, dt I ~ [wi Ar] ) These nulls arise when phase bunched

electrons enter a region of the wave fields where they gain sufficient

energy from the wave to cause the wave amplitude to become small. The

wave amplitude does not remain small because the electrons, being

bunched, reradiate the energy.

Helliwell and Inan (1982) also observed nulls in their feedback

oscillator model. They attributed pretermination triggering to nulls

on the basis that a null resembles the end of the TW which is known to

cause triggering.

5.6.2 Conditions for Amplification and Triggering

Amplification due to the OBM must occur within a time period

less than about td(= /2/Ikz|vT) otherwise the current arising from the

bunching phase mixes to zero due to the variation of Ar over the dis—

tribution. Further, net amplification occurs only in a region where

IA I < Iw,l (Section 5.5.2.3).
r ~ 1

Thus, a criterion for net wave amplification is that

 

2 2

T = lwi(tB) : wpc 6n wr(tB) ' Qe(tB) Vi tBl > 1
Z (t ) a? + k2c2 II yo Z (t ) 2v2 td N
r B pc 2 r B T

(5.27)

where tB(< td) is the time the electrons are in the OIR and

§0 = ZS//2ksz. Equation (5.27) is valid only when |§0| > 1. This in—

equality applies when the conditions (5.l9) and (5.20) for the plasma

to be stable to reactive — and resistive - medium instabilities are
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satisfied. If |§0| << 1 then the term §O in (5.27) must be replaced

by (2§0)-l so that T is at a maximum when |§01 = l. Criterion (5.27)

must be satisfied for a period greater than about l/lwil if amplifi-

cation of several dB is to occur.

Conditions for amplification are most favourable when both

the phase bunching in the OIR and the time the electrons are in the

RIR are at a maximum i.e. when tB/IZSI is large and Zr and liggl for

t : tB are small. These conditions are analogous to Helliwell's

(1967) "consistent—wave condition" (Section 5.3.2).

From (5.22') and (5.27), the following properties of the am-

plification and triggering of discrete VLF emissions can be deduced.

(a) If the energetic component has a Maxwellian distribution the

whistler is stable; this is because 6n/n << 1, w: = kicz,

YE = 2v; and §0 2 1 imply T << 1.

(b) Amplification is favoured when the energetic component has a

small velocity spread and a streaming velocity such that

Zr = 0 near the equator.

(c) For given plasma parameters, T increases with increasing tB

so that triggering is more likely for dashes than dots. This

is consistent with the dash—dot anomaly (Helliwell et al.,

1964).

(d) The growth rate is independent of the initial wave amplitude

so that triggering can be induced by both high power and low

power transmissions. The threshold effect observed by

Helliwell et a1. (1980) is attributed here to the presence of

background noise of similar amplitude to the TW. This noise
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reduces the coherence of the total signal and thereby prevents

phase bunching.

Amplification and triggering occur only for those frequencies

dA

and in those regions where IZSI and l7fi§¢ are small. These

conditions imply that maximum amplification occurs when erl

is at a minimum near the magnetic equator (i.e. IZSI > IAr(tB)l,

dA

__£.

dt

tB

sides of the magnetic equator. In this case, Helliwell's (1967)

= O) and the front and back ends of the TW are on opposite

phenomenological model implies that long TW's are more likely to

trigger risers and_short TW's fallers. Further, the bandwidth

in which E: and liégl are small is narrow. These features are

consistent with the observations of Helliwell and Katsufrakis

(1974).

A change of only a few percent in either V20 or Be (arising

possibly from changes in the position of the duct guiding the TW)

is required to change T from above threshold to below threshold

(and vice—versa). This can produce the intermittent amplifi—

cation and triggering observed by McPherson et a1. (1974),

Stiles and Helliwell (1977), Dowden (1981) and Park (1981).

The bandwidth in which criterion (5.27) is satisfied increases

with increasing (6n/n)(Vf/c2) i.e. with increasing density and

perpendicular energy of the energetic component. The growth

rate also increases with (6n/n)(Vf/c2).

The amplification saturates if (i) Z: exceeds mi, (ii) the time

of interaction exceeds 1/lkzl VT or (iii) the number density of

the interacting electrons decreases (e.g. due to particle pre-

cipitation) to below the threshold given by (5.27). Saturation
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is also expected to occur when the amplitude becomes suffic—

iently large so that the nonlinear effects become important

(e.g. Sprangle and Smith, 1980).

5.7 SUMMARY AND DISCUSSION
 

In the theory for discrete VLF emissions presented here, amplifi—

cation and triggering is attributed to resonant interactions between the

TW and phase bunched electrons. The interaction is envisaged to occur

in two stages and for convenience these two stages are regarded as

occurring in two spatially adjoint regions called the OIR and the RIR.

In the OIR where IArl 3 lw1', the front of the TW phase bunches electrons

without significant energy exchange between the TW and the electrons. As

the electrons move through the magnetosphere Ar changes due to the in—

homogeneityof the geomagnetic field. The bunched electrons then reson—

antly interact with a later portion of the TW (in the RIR) to produce

amplification. On emerging from the end of the TW, the bunched electrons

radiate to produce the TE as in Helliwell's (1967) phenomenological model.

An important new idea in the theory is the relaxation of the time

asymptotic assumption in evaluating the plasma response. The bunching in

the OIR phases mixes to zero on a time scale inversely proportional to

the variation of Ar over the interacting electrons and its effects would

therefore be excluded if time asymptotic theory were used. Put another

way, the phase bunching is a transient effect. The amplification,however,

occurs on a timescale shorter than that over which phase mixing would

cause the initial phase bunching to be destroyed. Being a transient,

this effect is not described by time asymptotic theory.
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This theory supplies the unspecified phase—bunching mechanism

assumed in Helliwell's (1967) phenomenological model for the various

spectral forms of TE. The theory also overcomes fundamental objections

to existing theories. Theories which appeal to growth in the usual

time—asymptotic limit imply that background noise should be amplified

and that this growth should be independent of the phase of the wave.

Observations are not consistent with this and seem to require that am-

plification occur only in a narrow frequency range about the frequency

of the TW (Sections 5.2.2 and 5.3.1). Theories which appeal to non-

linear effects, notably quasi—linear diffusion and trapping, require

the amplitude of the TW to exceed some threshold before the nonlinear

effects become significant (Section 5.3.3). Observations indicate that

amplification and triggering can occur when the TW has an amplitude

well below this threshold (Section 5.2.2.2). In the theory presented

here, enhanced growth about the frequency of the TW is attributed to

the phase bunching of untrapped electrons by the TW. This theory is

linear in the wave amplitude. A condition for it to produce amplifi—

cation is that the amplitude be well above the noise level otherwise

the noise affects the coherence of the signal and prevents phase

bunching.

Both theinhomogeneity of the geomagnetic field and the bunching

of electrons are important in the theory. Theinhomogeneity limits the

width of the RIR. Amplification by a phase random group of electrons

entering the RIR is ineffective if the corresponding growth rate is

much less than the reciprocal of the time to traverse the RIR. If in—

stead the electrons are phase bunched on entering the RIR they all lose

or gain energy (depending on their phase). The corresponding growth
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rate can be much larger than for a phase random group where approximat-

ely half the electrons lose energy and half gain energy.

Effective amplification of the TW by bunching of electrons in

the 01R prior to their entry into the RIR requires (a) an electron dis—

tribution with a component which has a narrow axial velocity spread

and a mean energy such that (Vi) ¢ 0 and <Ag> is small (i.e. a compon—

ent where 5E7-(:££9 is large) and (b) that the frequency and duration of
A0

the TW satisfy cfiterion (5.27). Amplification can occur in a plasma

which is stable to both time independent reactive — and resistive -

medium instabilities (Section 5.5.2.2). This may explain the observ-

ation that amplification and triggering can occur in the absence of

other detectable VLF emissions in ground—based recordings (Section 5.4.2).

A weakness in the existing form of the theory is that the mag—

netic field as seen by an electron interacting with the TW is simulated

by a temporally varying magnetic field. In a more realistic theory,

the magnetic field should be spatially inhomogeneous and the electrons

and the TW should move through the spatial inhomogeneity. The details

of the evolution of the wave packet may not be treated adequately by

the present theory since it describes the amplification arising from

interactions in only one region of the magnetosphere. Further work is

required to include contributions to the amplification from all points

along the propagation path of the TW.

The model is also limited by the neglect of nonlinear effects

such as electron trapping and electron diffusion in velocity space.

The view adopted here is that these processes are unimportant in the

actual phase bunching and amplification mechanisms and they become im—

portant only as saturation mechanisms.
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In conclusion, the theory presented here complements Helliwell's

(1967) phenomenological model for triggering of discrete VLF emissions

by providing a mechanism which allows enhanced narrow—band wave growth

due to phase bunching of electrons by the TW. Existing theories do

not describe this bunching and nonlinear theories require a threshold

which is inconsistent with observational data. The essentially new

feature is the relaxation of the time asymptotic assumption in eval—

uating the linear response of the plasma. This introduces a new phen—

omenon, off—resonant bunching of electrons, which in the theory

presented here, eventually gives rise to amplification and triggering.

Although several aspects of the theory need to be examined in greater

detail, this bunching seems likely as the basic mechanism for the am—

plification and triggering of discrete VLF emissions.
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APPENDIX A

DERIVATION OF THE AMPLITUDE REFLECTION COEFFICIENT FOR M2 3 1

In this Appendix, the amplitude reflection coefficient for the

magnetosonic wave is evaluated using the method of matched asymptotic

solutions (Nayfeh, 1973) to analytically continue the solutions to the

wave equation (Section 3.3.2) through the density gradient.

The asymptotic expansions of the confluent hypergeometric

function, lFl’ the logarithmic hypergeometric function and the Airy

functions are, respectively (Budden, 1961; Luke, 1969)

T _ . a _

1F1(a;c;z) 2 T%%%ET (2 1e16“) + %%§% ezza C (A.l)

g(a;c;z) 2 (_)m+lm! I‘(a-m)z-a larg(z)l < %

(A.2)

z ne—iflea n
z e g(c-a;c;—z) - EEETEET lFl(a;c;z) 5-: larg(z)| < n

Ai(2) = %‘W—1/22-1/4€@(' %z3/2) - %N f art—3(2) f éfir

(A.3)

z _:_fl-1/2z-1/4{exp(_ €23”) + iexp(§-z3/2)}

A

“
fi
f
’

éfl : arg(z) _
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31(2) = %fl—l/zz_l/4{iexp(- §z3/2) + 2expc—z3’2)}

0 f arg(z) 5 %fl

‘ (A.4)

: %fl—l/22—1/4{_ iexp(- %z3/2) + e p(%23/2)}

éfl : arg(z) : gm

where T is the gamma function, '2' >> 1, m = c - 1, e = 1 if Im(z) > 0

and e = — 1 if Im(z) < 0 and Ial < 1.

Using (A.1) — (A.4), the asymptotic expansions of (3.37) —

(3.39) are

(0) n1/Ze—vn —iTr -aR n1/2evn(2\)n)aRR-l

BY]. 3 W (2vne ) + ————I.(—a‘R—)———— 2V7] << - l

(A.5)

-1
1/2 -vn . -aR 1/2 W] aR

'3

Egg) 2 — nl/ze'Vn F(aR)(2vn) R |2vn| >> 1 (A.6)

Eéi) = 5‘1/2 exp<£> Igl >> 1 (A.7)

Egg) 2 §£‘1/2 exp(a) — gl/z eXP(-€) IEI >> 1 (A 8)

Eéi’ = %’1/2(-AM)“(o<n)>'1/4exp(- §AM(-¢>3’2) n < nT

(A.9)

N %-1/2 —1/4 2 3/2

— (——AM)1“<o(n)) {exp(— 3AM(-¢) )

+ iexp(%AM(-¢)3/2) } n > nT~

(A.10)
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The WKB solutions in the region 50 < n < 1 - 51 have the form

n

33> = <- pr(n))‘1exp(— AMJOJ— o(n)dn)
60

n

ESL) = (- XMp(n))-1Moexp(>\MI /— o(n').‘dn)
60

These WKB solutions reduce to

_ l/2—a

Egg) = (v) l/zn R exP(- vn)

_ a -1/2

Egg) = (v) llzn R exp(vn)

for n = 60 and to

1—61

Eég) 2 Oil/Zln-lll/2 exp(- AM J V— p(n)dn) exp(—€)
50

1—51

as?) =0M1/zln'u-1l2eXpuMJ /-o<n)dn) exp<a>
60

for n = 1 - 61.

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

The WKB solutions in the region 1 + 61 < n < nT have the form

n

E8) = (- A:p(n))—l/4 exp(- AM J /-—“p(n)dn)
1

1+6

1/2
= oi (n-l)l/2 eXP(-€) In -(1+61)| < 61

(A.17)
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n

Eéi) = (- XMO(U))1Mexp(AM J1
V- p(n)dn)

1+61(A.18)

3 gl/2(n-l)-l/2 exp(€) In -(1+51)| : 61.

By matching the asymptotic forms (A.5) - (A.18), the WKB solution

which is finite for AMn << — 1 is found to have the form

flexp(—1flaR)

_ E+(0) E(0) ~

EY — EYZ sin(WaR)EY1 n _ 0

1—51

= - ial exp(- AM J0 )EEéi) 1 + 51 < n < ”T

6

1—51

+ iazexpOxM J0) E(1)

60

_ (T) (T)
— blEYl + szYZ

n i ”T (A.19)

where

a = v1/2(2v)aR r(a )[- 1 +-ex (-2fla 1)]
1 R P R

a -1

32 = v1/2(2v) R r(1—aR) exp(— ifiaR)

b2 = - iv(- XM)1/ lexp(-X)

bl = in(— XM)12exp(x) — ib2



1—51 1-51

I = J V- o(n)dn

5° 5°

1-61 “T

From (A.l9) the amplitude reflection coefficient is found to

have the form

b + ib

R lEl—:—E53| = |1 + 19M exp(- 2x)|’1 (A.20)
l 2

where

6M ' (2V)—a/V(T(aR)/F(l—aR)) exp(iflaR) [- 1 + exp(- iZHaR)].



APPENDIX B

EVALUATION OF THE INTEGRAL Im 1

The purpose of this Appendix is to evaluate the integral IIn l

which appears in the dielectric tensor (Section 4.3). The distribution

is assumed to have the form given by (4.19) except that it is general-

ized to include a streaming velocity parallel to the magnetic field i.e.

fz in (4.20) is replaced by

 

-1_ 1/2 2 2
f2 — [(Zfl) VT] exp[— (vz V20) /2vT) . (B.1)

In this case, I reduces to
m,l

m {2j(w-kv)—(v2/v2)(w—kv )}f(kv/Q)m
_ z z i T z 20 i z e

Im l — - fl vldvl dvz 2 2

0 _w w — 98(1 — v /2c ) - kzvz

2 k “1 w—kV
_ EL. _£_ z 20 . _ gL_.

' 2 [a] { 52 (3 + 1) Jej+2,m n J Jem+1,m
v e e e
T

+ 3(kz/ne) Jem+1,m+1} (13.2)

where

00

_ m
Jen,m — J dvz vz fz exp(Fe) En(Fe)

.00

co

-1
= aJ[(2fi)l/2 VT] J dvz v: En exp(— afivz) (3,3)

-0)
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r = c2{(w - s2 - k v m2 + v2/2c2}/v2

e e z z e z T

_ 2 2 2 2

aj — exp{c (w — 9e)/(VTQe) - Vzo/ZVT}

O = c(k c/Q - V /c)/v2

v z e zO T

and En is the nth exponential integral (Gautschi and Cahill, 1970).

It can be shown using integration by parts that the Je

functions are related as follows

Jen,0 = Jen
(3-4)

Jen,l = w(Jen — Jen+l) + VzoJen+1
(3.5)

Je = sze + w2(J — 2Je + Je )

n,2 T n+1 en n+1 n+2

+ 2V w(Je - Je ) + V2 Je (B 6)

z0 n+1 n+2 zO n+2 '

Je = w3(Je — 3Je + 3Je — Je )

n,3 n n+1 n+2 n+3

+ (V /c) w2(2Je - 6Je + 3Je )

zO n+1 n+2 n+3

+ 3V2 c w(Je - Je ) + V3 Je

zO n+2 n+3 zO n+3

+ v2(2w(Je — Je ) + 2V Je ) (B 7)

T n+1 n+2 zO n+2 '

where

n—l i VT me 21 :28 vz “+1

Jen = .2 (_) Ci,n n—i [—5— E—c] /[1 — —C T] (B.8)

1=0 z z

1 °° Q n

_ 1/2 ' V_z e -1 2 2‘

An - [(Zfi) VT) J dv [l - c c] Fe exp[— (vz — Vzo) /2vTJ



C0,n = 1

Ci,n = (n ' 1) Ci—l,n + Ci,n—l

w = k cz/Q .
Z 6

The function, An’ has the recursion relation

B’.3

[Ref u: VTQe 2 0° Qe vz n—2

An ‘ k—c —2 An_2+ [? k—c] J dvz fz 2[1 ' 175?]
c z _m 2

v
1 '1‘

A = —— — (F - F )
0 /2— ue 0+ 0—

i VT 9e
A = -—————(F +F ) (13.10)
1 J5 c zc 0+ 0

where F0+ are described by (4.32) except that CX+ must now be replaced by

' = — + . .OL+ (w Vzo _ ue)/ f2— VT (B 11)
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APPENDIX C

THE WHISTLER DISPERSION RELATION FOR A SPATIALLY

INHOMOGENEOUS MAGNETIC FIELD

In this Appendix, the dispersion relation is derived for a

whistler propagating parallel to a magnetic field directed along the

z axis. It is assumed that the magnetic field is a function of z and

that the plasma has cold and energetic components. The energetic com-

ponent is assumed to be streaming in the positive 2 direction and in

the opposite direction to the whistler.

The derivation is similar to that in Sections 4.6 and 5.5 ex—

cept that the whistler wave fields in the spatial inhomogenity are

assumed to be described by

E = (Ecosw, - Esinw, 0)

z

E = Eoexp(- J k dz) (0.1)

0 zi

z

w = J0 kzrdz — wt, 2 > 0

rather than by (4.35). In this and subsequent equations, the initial

values of quantities (i.e. those at z = O) are denoted by superscript

zero.

The equation of motion of an electron in the presence of a wave

described by (0.1) in the limit v2/c2 << 1 is



 

 

 

 

 

dv v v 89 v
.L zi e 0 2 13(2)—— —— — — — c.2

dt 29 8z 9 (1 Hr c ) BO cose ( )

2
dv v 39

z = _ l e O E(z)
EE—- '§§—-5;— e yin: 0 c056 (C.3)

e B

v

99 = 9 (1 - v2/2c2) + k v - w + :20 E— (1 — n —z—) E(z) sine. (0.4)
dt e z z e i r c B0

The unperturbed velocity is

2 _ 13(2)~ 02
V10 ' 0 V1

(c.5)
B

2 _ 02 02 2 _ 02 02 o
vzO — vz + Vi — v_L0 — vz + vi (1 — B(z)/B ) (C.6)

t

_ 0
60 — 6 — J 0 Ar(zo)dt A (C.7a)

t

Z A (z )O
= 9° —J 3—0— dz (C.7b)

v 0
0 z0

where t0 is the time the electron passes the point z = O. The perturbed

velocity is given by (4.42)—(4.44) except that mi is replaced by

0
_ v = = _ . . _
k t by t z/vzo t t and le and VzO appearlng 1n coef
ziVZO’

. O . 0 0 0 .
flcients of cose and Slne by Vi and v2 respectlvely.

The dispersion relation is obtained by averaging Maxwell's

equations over a wave period (rather than a wavelength as in Sections

4.6 and 5.5). In this case the dispersion relation is given by
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z

Eoexp(- J kzidz)(w — kicZ/w)

0

t + 27r/w

_ ii. 0 0 0 O 0

- 2 4nenj 2n J Vldvl J dvz J d8 J dz J dt vlfj

J
t

. . 0 O

X (Sine + icose) 6(z - z(z ,v ,t)) . (C.8)

If the distribution is assumed to have the form

H
1 II

. f . + f . c.9

J OJ lJ ( )

 

where H
1

H

II

0 o (l-n VO/c) yfz (no—n k c)

2p (C/Vf) QefojaSe [ r02 + 2 e 322 :

Ar 2c Ar

(0.10)

(cf. Section 5.4.3) then on substitution of the perturbed and unper—

turbed velocities into (C.8) the dispersion equation is found to have

 

the form

2 2 2

2 2 2 2 3 o w ' szZO vlo (“9e ' kzc )

w — kzc + Z w . J d v f0. [ A( ) + 2 2 1

j p] ~ J z 2c A (z)

02 2 2 2

v w§2 ~ k c

= i z wz, J d3v0 —$§-3%-——9——6—E—— exp(- i j 3351 dz) . (c.11)

j P3 “ 2c vz Ar o 20

The right hand side of (C.ll) represents the modification to the

dispersion relation by the OBM. The magnitude of this term increases

with increasing lvE2/Agl and phase mixes to zero in a distance inversely

proportional to the variation of A(z)/vZO over the distribution (cf.

Section 5}5.l). Hence, enhanced growth Via the OBM is possible only
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for distributions with a narrow axial velocity spread and with mean

energy such that <ul> ¢ 0 and <Ag> 2 0. Further, if the distribution

also has a small average pitch angle and if the magnetic field changes

by only a few percent, then the variation of vlo and VzO arising from

gradients in the magnetic field can be neglected and (0.11) reduces to

(5.15) with z = v t and mi = — k
20 ziVZO'
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