Genetics and genomics of myxomatous mitral valve disease in dogs

Mitchell John O'Brien
Bachelor of Animal and Veterinary Biosciences (Hons I)

Faculty of Science,
School of Life and Environmental Sciences
University of Sydney
Australia

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Acknowledgements

I would like to extend my sincere thanks to the Wade-Waud Laboratory. A special thanks to my PhD supervisor Prof. Claire Wade; your guidance, wealth of knowledge in genomics and love of dogs is unrivalled and a true inspiration. I must also thank Assoc. Prof. Bianca Waud; even though you did not have a supervisory title in my PhD, you played a major role in my learning and development, which I am forever grateful. A special mention to Georgina Samaha for your ongoing support and camaraderie. To my co-supervisor Assoc. Prof. Niek Beijerink; even from across the world you were able to make your mark and provide me with helpful tips and tricks. I would also like to acknowledge the other post-graduate students, both past and present, who endured this PhD journey alongside me; Tracey Chew, Bobbie Cansdale, Jessica Gurr, Niruba Kandasamy and Lillian Brancalion.

Thank you to the University of Sydney's High Performance Computing cluster, Sydney Informatics Hub and ICT departments for their ongoing assistance and resources. I am appreciative of the opportunity to have grown professionally in a world-leading institution and humbled to have been the recipient of the University of Sydney's Postgraduate Award. I am indebted to the University for offering me the ability to further my research goals in animal genetics. My PhD candidature has involved years of arduous research, which has led me to various international conferences and developed in me a passion for scientific practice. I am excited to have completed my research in the field of bioinformatics focusing on animal genetics research and hope to continue working in the field as it progresses and evolves.

To my parents and siblings: Michelle, Michael, Justine, Ashleigh and Erin; your love has made me a better person and your children have given me a way to return it. To my friends, in particular Rosie and Kavya; your life advice and love have always been a source of refuge and comfort. To Andrew, for being truly dependable and lending me your ears even though science is not your forte.

And to the late Mylee; who knew that a heart so small could be so full? A catalyst for this thesis and reason to continue researching canine genetics and diseases.

Declaration

I declare that this thesis is all my own work and has not been previously accepted for an award of another degree or diploma at any institution of tertiary education. The content in this thesis is either the product of my original research and analysis of data or, where it has been derived from the unpublished or published work of others, it has been acknowledged in the text and reference lists included within each chapter. All assistance received throughout the preparation of this thesis, and any sources relied on herein, have been acknowledged and referenced accordingly.

Mitchell John O’Brien
30 June 2021

Table of Contents

Chapter 1 Literature Review 1
1.1 Synopsis 1
1.2 Genetics of canine myxomatous mitral valve disease 2
1.3 Aims of thesis 15
Chapter 2 Refinement of phenotypes to assess the genomics of myxomatous mitral valve disease 16
2.1 Abstract 16
2.2 Introduction 17
2.3 Methods and materials 18
2.3.1 Ethics 18
2.3.2 Sample collection, Diagnosis and Classification of CHF 18
2.3.3 Statistical Analysis 19
2.4 Results 19
2.4.1 Base-line characteristics and correlation analyses 19
2.4.2 Predictive accuracy of echocardiographic variables for the occurrence of CHF inCKCS22
2.4.3 Predictive accuracy of variables for grading MMVD progression 23
2.5 Discussion 24
2.6 References 27
Chapter 3 Candidate gene analysis of myxomatous mitral valve diseases in Cavalier King Charles Spaniels 31
3.1 Abstract 31
3.2 Introduction 31
3.3 Methods and materials 32
3.3.1 Ethics, clinical diagnosis and sample collection 32
3.3.2 Genotyping and next generation sequencing of samples 33
3.3.3 Population structure 33
3.3.4 Selection of candidate genes 33
3.3.5 Candidate gene association and haplotype analysis 33
3.3.6 Risk variant discovery and annotation 34
3.4 Results 35
3.4.1 Candidate gene association 35
3.4.2 Haplotype analysis 37
3.5 Discussion 37
3.6 References 39
Chapter 4 Mapping the genetic basis of severe myxomatous mitral valve disease and congestive heart failure in Cavalier King Charles Spaniels 43
4.1 Abstract 43
4.2 Introduction 43
4.3 Methods and materials 45
4.3.1 Data collection 45
4.3.2 Genome wide association analysis, haplotype discovery and variant annotation45
4.4 Results 46
4.4.1 Congestive heart failure GWAS 47
4.4.2 Quantitative GWAS using echocardiographic measures of cardiac remodelling 54
4.5 Discussion 57
4.6 References 61
Chapter 5 Runs of homozygosity analysis in the Cavalier King Charles Spaniel identifies candidate genes for the pathogenesis myxomatous mitral valve disease 69
5.1 Abstract 69
5.2 Introduction 69
5.3 Methods and materials 71
5.3.1 Ethics, clinical diagnosis and data collection 71
5.3.2 CKCS runs of homozygosity analysis 72
5.3.3 CKCS ROH genes consistent with breed standard hallmark traits 73
5.3.4 CKCS ROH genes consistent with MMVD GO 73
5.3.5 Discovery of private or rare CKCS variants 74
5.3.6 Haplotype analysis of candidate genes 74
5.4 Results 75
5.4.1 CKCS runs of homozygosity 75
5.4.2 ROH in vicinity of breed hallmark trait loci 77
5.4.3 CKCS ROH genes consistent with MMVD GO 78
5.4.4 Variant calling and discovery of private or rare CKCS variants 79
5.4.5 Candidate gene COL11A1 80
5.5 Discussion 81
5.6 References 84
Chapter 6 Concluding remarks 93
6.1 Conclusions derived from Chapter 2 94
6.2 Conclusions derived from Chapter 3 94
6.3 Conclusions derived from Chapter 4 95
6.4 Conclusions derived from Chapter 5 96
6.5 Final remarks 97
6.6 References 98

Appendices

Appendix I: Supplementary data for chapter 4 103
Appendix II: Supplementary data for chapter 5 108
Appendix III: A large deletion on CFA28 omitting ACSL5 gene is associated with intestinallipid malabsorption in the Australian Kelpie dog breed243

List of figures

Chapter 2

Figure 2.1 Classification scheme developed by American College of Veterinary Internal Medicine (ACVIM)
Figure 2.2 Pairwise correlation matrix illustrating the relationship between continuous variable data

Figure 2.3 Fitted Logistic regression model for CHF using echocardiographic measures as a predictive variable 22

Chapter 3

Figure 3.1 (a) MDS-plot of 178 CKCS included in the candidate gene association analysis. Cases represent samples diagnosed with CHF by small animal cardiologist or if key prognostic variable $L A / A 0>2.36$ or LVIDdn >2.4 (b) Quantile-quantile plot showing limited inflation of the test statistics 36

Chapter 4

Figure 4.1 Genome wide association analysis identifies 5 loci associated with myxomatous mitral vale disease (MMVD).

Figure 4.2 Significant variation is observed between samples included for genome wide association analyses

Figure 4.3 A putative functional variant in the obscurin (OBSCN) gene is associated with congestive heart failure (CHF) in Cavalier King Charles Spaniels (CKCS) with myxomatous mitral valve disease
Figure 4.4 A missense variant in the lamin subunit beta-2 (LMNB2) gene is associated with left sided cardiac remodelling in Cavalier King Charles Spaniels (CKCS) with myxomatous mitral valve disease

Chapter 5

Figure 5.1 Results of runs of homozygosity analysis are consistent across two populations of Cavalier King Charles Spaniels 76
Figure 5.2 Autosomal distribution of single nucleotide variants (SNV) in runs of homozygosity (ROH)

List of Tables

Chapter 1

Table 1 Key extracellular matrix remodelling gene/protein expression changes

Chapter 2

Table 2.1 Descriptive statistics of dogs included in the study. Samples have been grouped by ACVIM class 20

Table 2.2 Descriptive statistics for dogs included in the study presented as non-CHF and
CHF samples
Table 2.3 Logistic regression analysis following backward elimination of non-significant
variables identifies echocardiographic measures as the only significant predictors of
congestive heart failure
Table 2.4 Final results of linear regression analysis following backwards elimination of nonsignificant variables. 24

Chapter 3

Table 3.1 Characteristics for the dogs included in the candidate gene association study 35
Table 3.2 A single genomic marker included in the candidate gene association analysis
passed the significant threshold
Table 3.3 Haplotype analysis of the top associated signal identifies a risk haplotype overlapping GNG7

Chapter 4

Table 4.1 Characteristics of the dogs included in the congestive heart failure (CHF) genome wide association study48
Table 4.2 Risk-haplotypes for loci associated with congestive heart failure in the Cavalier King Charles Spaniel 50
Table 4.3 Coding variants matching CHF-risk haplotypes on chromosome 14 51
Table 4.4 Haplotype blocks within regions associated with echocardiographic (Echo) measures of MMVD 54

Table 4.5 Coding variants matching MMVD-risk haplotypes on chromosome 13, 20 and 24

Chapter 5

Table 5.1 Gene associated with Cavalier King Charles Spaniel hallmark traits for breed 73
Table 5.2 Summary of results for runs of homozygosity in Cavalier King Charles Spaniel conducted in plink

Table 5.3 Summary of ROH hotspots validated in two cohorts of Cavalier King Charles Spaniels

Table 5.4 Summary of runs of homozygosity overlapping genes associated with hallmark
traits in the Cavalier King Charles Spaniel 78
Table 5.5 Rare variants in protein coding genes in Cavalier King Charles Spaniels runs of
homozygosity.
Table 5.6 Haplotypes overlapping gene COL11A1 in 274 Cavalier King Charles Spaniels 80
$\begin{array}{ll}\text { Table 5.7 Putative functional variants in COL11A1 concordant with the haplotypes } \\ \text { observed in the Cavalier King Charles Spaniel } & 81\end{array}$

Manuscripts and conference proceedings

2021 O'Brien, M. J., Beijerink, N. J. \& Wade, C. M. Genetics of canine myxomatous mitral valve disease. Animal Genetics, doi:10.1111/age. 13082 (2021).

2020 O’Brien, M. J., Beijerink, N. J., Sansom, M., Thornton, S. W., Chew, T., \& Wade, C. M. A large deletion on CFA28 omitting ACSL5 gene is associated with intestinal lipid malabsorption in the Australian Kelpie dog breed. Scientific Reports 10, 18223, doi:10.1038/s41598-020-75243-x (2020).

2019 Oral presentation \& poster: O’Brien, M.J., Beijerink, N, Wade, C.M. Case study of Australian Kelpie reveals a locus on Chromosome 28 associated a small stature as well as lipid maldigestion and malabsorption. The $10^{\text {th }}$ International Conference on Canine and Feline Genetics and Genomic, May 2019, Berne, Switzerland

Poster: O’Brien, M.J., Montazerolghaem, M, Beijerink, N.J, Wade, C.M. Phenotyping MMVD in the Cavalier King Charles Spaniel. The 10 ${ }^{\text {th }}$ International Conference on Canine and Feline Genetics and Genomic, May 2019, Berne, Switzerland

2017 Poster: O'Brien, M.J., Beijerink, N, Wade, C.M. Genome-wide association study of canine myxomatous mitral valve disease. 2017 EMRC Conference, Charles Perkins Centre, Sydney, NSW, Australia.

Poster: O'Brien, M.J., Beijerink, N, Wade, C.M. Genetic exploration of myxomatous mitral valve disease in the Cavalier King Charles Spaniel. The 9 ${ }^{\text {th }}$ International Conference on Canine and Feline Genetics and Genomics, May 2017, Saint Paul, Minnesota, USA.

2016 Presentation: O’Brien, M.J., Beijerink, N, Wade, C.M. Myxomatous mitral valve disease in the Cavalier King Charles Spaniel. Postgraduate conference, November 2016, Faculty of Veterinary Science, The University of Sydney, NSW, Australia.

Authorship Attribution Statement

Chapter 1.2 of this thesis is published as O'Brien, M. J., Beijerink, N. J. \& Wade, C. M. Genetics of canine myxomatous mitral valve disease. Animal Genetics, doi:10.1111/age. 13082 (2021).

I wrote this review under the supervision of Prof. Claire Wade and Associate Prof. Niek Beijerink. This research was conceptualised together with Prof. Claire Wade and Assoc. Prof. Niek Beijerink. I developed the core ideas and arguments included in the draft manuscript. Critical revisions were made by myself, Prof. Claire Wade and Associate Prof. Niek Beijerink.

Appendix I of this thesis is published as O’Brien, M. J., Beijerink, N. J., Sansom, M., Thornton, S. W., Chew, T., \& Wade, C. M. A large deletion on CFA28 omitting ACSL5 gene is associated with intestinal lipid malabsorption in the Australian Kelpie dog breed. Scientific Reports 10, 18223, doi:10.1038/s41598-020-75243-x (2020).

I conceptualised the study with Prof. Claire Wade, Associate Prof. Niek Beijerink, Mandy Sansom, Dr. Sarah Thornton and Dr. Tracy Chew. Clinical diagnoses were performed by Associate Prof. Niek Beijerink. All experimental work, bioinformatics analyses and data visualisation were carried out by myself under the supervision of Prof. Claire Wade. I developed the ideas and arguments for the draft manuscript. Critical revisions to the manuscript were made by myself, Prof. Claire Wade, Associate Prof. Niek Beijerink, Mandy Samson and Dr. Tracy Chew.

Mitchell John O’Brien
23 June 2021

As supervisor for the candidature upon which this thesis is based, I can confirm that the authorship attribution statements above are correct.

Claire Wade
23 June 2021

Abbreviations

ACVIM	American College of Veterinary Internal Medicine
Ao	Aortic root
bp	Base pair
BWA	Burrows-Wheeler Alignment
CFA	Canis lupus familiaris
CHF	Congestive heart failure
Cl	Confidence Interval
CKCS	Cavalier King Charles Spaniel
ECM	Extracellular matrix
EMMAX	Efficient Mixed-Model Association eXpedited
FROH	Inbreeding coefficients
FS	Fishers exact strand bias
FTA	Flinders Technology Associates
GATK	Genome Analysis Toolkit
GLM	Generalised linear model
GO	Gene Ontology
GPCR	G-protein-coupled receptor
GWAS	Genome-wide association studies
Het	Heterozygous
HKLLS	Hennekam lymphangiectasia-lymphedema syndrome
Hom	Homozygous
IBD	Identity by descent
IQR	Interquartile range
Kb	Kilobases
KC	The Kennel Club
KEGG	Kyoto Encyclopedia of Genes and Genomes
kg	Kilogram
LA	Left atrium
LA/Ao	Left atrium to aortic root ratio
LD	Linkage disequilibrium
LQ	Lower quartile
LVDd	Left ventricular end diastolic diameter
LVIDdn	Left ventricular end diastolic dimension, normalised for body weight
MAF	Minor allele frequency Megabases

MDS	Multidimensional scaling
MMVD	Myxomatous mitral valve disease
MQ	Mapping quality
MR	Mitral regurgitation
Mut	Mutant
MV	Multivariate
NCBI	National Center for Biotechnology Information
OR	Odds ratio
QD	Quality by depth
QQ plot	Quantile-quantile
QUAL	Quality
ROH	Runs of homozygosity
SD	Standard deviation
SIFT	Sort Intolerant From Tolerant
SNV	Single nucleotide variant
SRA	Sequence Read Archive
TGF- β	Transforming growth factor Beta
UCSC	University of California Santa Cruz
UQ	Upper quartile
UTR	Untranslated region
UV	Univariate
VAI	Variant annotation integrator
VCF	Variant call format
VEP	Variant Effect predictor
WGt	Variant quality score recalibration
WGS	Wilde genome sequencing
MA	Ma

Chapter 1 Introduction

1.1 Synopsis

Myxomatous mitral valve disease (MMVD) is a degenerative disease resulting in valvular incompetency that can affect dogs of all breeds. As disease advances, the heart shows signs of left atrial enlargement and volume overload. In the most severe cases, MMVD may culminate in congestive heart failure (CHF). In dogs, the incidence of disease increases with age and is the most frequent cause of cardiovascular morbidity and mortality. Breed specific predisposition, age of onset and rate of progression support a genetic basis to MMVD. Despite an extensive knowledge of MMVD pathology, there remains a significant knowledge gap in the genetic mechanisms contributing to disease. In this chapter, I present a published literature review that highlights the genomic landscape of MMVD research. I briefly describe the clinical nature of MMVD and discuss physiological mechanisms that contribute to disease development. I then describe some of the consistent and contradictory outcomes of MMVD genetic research with a focus on gene profiling and comparative genomic studies. In this review, I highlight some of the successes and pitfalls in MMVD genomic research to date and suggest possible genetic approaches for identifying MMVD genetic risk factors. A major difficulty in comparing and understanding the outcomes of genetic research to date is significant variability in modelling the disease. Throughout this research, I emphasise the importance and benefit of phenotyping MMVD using standardised repeatable measures, particularly echocardiographic measures. The review covers research across all breeds affected by MMVD but highlights the Cavalier King Charles Spaniel (CKCS) as a robust resource in the genetic investigation of MMVD.

Genetics of canine myxomatous mitral valve disease

M. J. O'Brien* (D, N. J. Beijerink ${ }^{\dagger, *}$ (D) and C. M. Wade* (D)
${ }^{*}$ School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia. ${ }^{\dagger}$ Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia. *Veterinaire Specialisten Vught, Reutsedijk 8a, Vught 5264 PC, The Netherlands.

Summary

Abstract

Myxomatous mitral valve disease (MMVD) is the most common heart disease and cause of cardiac death in domestic dogs. MMVD is characterised by slow progressive myxomatous degeneration from the tips of the mitral valves onwards with subsequent mitral valve regurgitation, and left atrial and ventricular dilatation. Although the disease usually has a long asymptomatic period, in dogs with severe disease, mortality is typically secondary to left-sided congestive heart failure. Although it is not uncommon for dogs to survive long enough in the asymptomatic period to die from unrelated causes; a proportion of dogs rapidly advance into congestive heart failure. Heightened prevalence in certain breeds, such as the Cavalier King Charles Spaniel, has indicated that MMVD is under a genetic influence. The genetic characterisation of the factors that underlie the difference in progression of disease is of strong interest to those concerned with dog longevity and welfare. Advanced genomic technologies have the potential to provide information that may impact treatment, prevalence, or severity of MMVD through the elucidation of pathogenic mechanisms and the detection of predisposing genetic loci of major effect. Here we describe briefly the clinical nature of the disorder and consider the physiological mechanisms that might impact its occurrence in the domestic dog. Using results from comparative genomics we suggest possible genetic approaches for identifying genetic risk factors within breeds. The Cavalier King Charles Spaniel breed represents a robust resource for uncovering the genetic basis of MMVD.

Keywords congestive heart failure, dog, endocardiosis, genetics, heart, mitral valve, myxomatous mitral valve disease

Myxomatous mitral valve disease (OMIA 000654-9615)

Myxomatous mitral valve disease (MMVD), also known as mitral valve disease, degenerative mitral valve disease, endocardiosis, and chronic valvular disease, is the result of intra-valvular degenerative processes. MMVD is the most common pathophysiological cause of congestive heart failure (CHF) and cardiac morbidity in dogs (Olsen et al. 1999; Serres et al. 2007; Atkins et al. 2009; Keene et al. 2019). The disease is characterised by the progressive myxomatous degeneration of atrioventricular valves, particularly the mitral valve (MV) apparatus (Thrusfield et al. 1985; Serfass et al. 2006; Serres et al. 2007; Olsen et al.

[^0]2010). Mild MMVD is characterised by the disorganisation of valvular structural components as well as the weakening and elongation of the chordae tendineae (Whitney \& Whitney 1974; Jacobs et al. 1995; Olsen et al. 2010). Disruption in valvular structure causes abnormal coaptation of the MV leaflets during ventricular systole, which permits the backflow of a percentage of the left ventricular (LV) stroke volume backwards into the left atrium (LA), an anomaly called mitral regurgitation (MR). On a microscopic level, as MMVD increases in severity, valvular tissue shows thickening of the spongiosa layer of the valve, altered collagen, glycosaminoglycan infiltration, as well as disruption of valvular interstitial cells (VICs) and valvular endothelial cells (Whitney \& Whitney 1974; Rabkin et al. 2001; Black et al. 2005; Hadian et al. 2007; Disatian et al. 2008; Hadian et al. 2010; Olsen et al. 2010). In later stages, secondary fibrosis can lead to contraction of the leaflets, resulting in substantial worsening of MR and left-sided eccentric hypertrophy. The left-sided cardiac dilatation exaggerates the abnormality in valve apposition leading to
secondary MR, and ultimately left-sided CHF (Olsen et al. 2010; Lord et al. 2011).

Myxomatous MV disease is a progressive disorder that is more prevalent with age and may occur in elderly animals of all breeds. Early onset is common in some breeds including the Cavalier King Charles Spaniel (CKCS) and Dachshund in which MMVD is commonly diagnosed before 6 and 10 years of age respectively (Häggström et al. 1992; Pedersen et al. 1999b; Egenvall et al. 2006; Serres et al. 2007). This higher breed risk is evidence for an inherited component of the condition. Within breeds, the prevalence, progression and mortality rates of MMVD are considered to be higher and more severe in male dogs with a lower age of onset (Thrusfield et al. 1985; Egenvall et al. 2006; Serfass et al. 2006; Serres et al. 2007). Although some dogs have a rapid and early onset of the disease, many can long lives free from clinical signs (Kvart et al. 2002; Atkins et al. 2007; Borgarelli et al. 2008; Meurs et al. 2019). Many dogs that are affected with milder forms of MMVD die from unrelated illnesses before developing CHF (Serfass et al. 2006). Conversely, it is not uncommon for severely affected dogs to be euthanised or die of CHF much before their expected natural lifespan (Borgarelli et al. 2008). Inherited components that impact the pathogenicity and severity of disease remain unclear.

Phenotyping canine MMVD for genetic evaluation

There are several classification systems that categorise the severity of MMVD in dogs. Earlier systems, such as the International Small Animal Cardiac Health Council scheme, categorised dogs into a four-class system (Class I-IV) based on the clinical symptoms exhibited by the dog. Since then, a more stringent system has been developed by the American College of Veterinary Internal Medicine Specialty of Cardiology consensus panel (Atkins et al. 2009; Keene et al. 2019). Classification frameworks are important for clinically comparing patients, directing therapeutic decisions, and for the consistent stratification of individuals used as subjects in MMVD research. Early stages of the disease may be characterised by the presence of a soft apical systolic murmur via auscultation. But murmurs may escape detection and occur in synchrony with every heartbeat or else intermittently (Häggström et al. 1995; Pedersen et al. 1999b). Alternatively, stress and physical activity can generate heart murmurs even in healthy animals and can increase the apparent intensity of the murmur in patients with mild murmurs (Pedersen et al. 1999b). For this reason, echocardiography has become the ideal additional diagnostic tool for evaluating and monitoring the presence and severity of MMVD (Atkins et al. 2009; Keene et al. 2019). Echocardiography allows for the comprehensive and simultaneous visualisation of valve morphology, valve leakage, and secondary heart enlargement, making it possible to evaluate the progression and severity of the disease
(Hansson et al. 2002; Atkins et al. 2009; Bonagura \& Schober 2009; Keene et al. 2019). LA enlargement has been demonstrated to be positively correlated with the advancement of MMVD (Atkins et al. 2009; Keene et al. 2019). A measurement that is considered to be a significant prognostic variable is a comparison between the diameter of the LA with that of the aorta, termed the ratio of the LA to the aortic root (LA:Ao; Borgarelli et al. 2008; Tidholm et al. 2015; Caivano et al. 2018). Similarly, the LV internal diameter in diastole is a good indicator for LV hypertrophy, although the measurement should be normalised for body weight (Cornell et al. 2004; Moonarmart et al. 2010; Hezzell et al. 2012; Boswood et al. 2016; Boswood et al. 2018). LA: Ao along with the normalised left ventricular internal diameter in diastole (LVIDdn) are measurements commonly used as prognostic variables for MMVD (Gordon et al. 2017; Boswood 2018; Boswood et al. 2018; Summerfield 2018).

Given the strong evidence of an inherited component of MMVD, genetic studies have the potential to highlight genes and pathways pivotal in understanding disease pathogenicity. However, given the quantitative and progressive nature of MMVD, isolating convincing controls is difficult. Furthermore, with a prevalence of up to 100% in some breeds, it is possible that major predisposing genetic factors for MMVD are fixed in certain breeds (Beardow \& Buchanan 1993; Swenson et al. 1996; Chetboul et al. 2004; Serfass et al. 2006; Mattin et al. 2015). This makes the accurate phenotyping of the disease and the identification of causative genes challenging. In the case of MMVD, which can negatively impact dog longevity and welfare, it makes sense to amend the focus of genetic research from identifying the genetic causes of disease to identifying genetic factors that impact the speed of progression or severity of the disease. Genetic pathways that stimulate progression of MMVD to the point of CHF are promising targets for pharmaceutical intervention. More importantly, identification of factors pushing dogs toward cardiomegaly and CHF may enable the selection of breeding stock to increase the proportion of animals that can live long asymptomatic lives (Borgarelli et al. 2008). Repeatable, objective prognostic variables, such as LA:Ao, are expected to yield more reliable associations with the underlying genes than categorical measures such as the presence and severity of murmurs.

Canine breed predisposition to MMVD

Over 300 breeds of domestic dog are recognised by the Federation Cynologique Internationale (http://www.fci.be/) and as a result of the historical popularity of certain breeding recommendations and show standards, many dog breeds represent genetically isolated groups (Parker et al. 2010; Parker \& Kilroy-Glynn 2012). Founder effects associated with breed selection have resulted in genetically distinct breeds that exhibit a low within population variance and heterozygosity and extensive linkage
disequilibrium within populations (Sutter et al. 2004; Lindblad-Toh et al. 2005). As such, breed specific predispositions to inherited diseases are not uncommon and can be useful in uncovering the genetic basis of disease. Heredity has been shown to play an important role in the development of MMVD. Evidence for this is a predisposition to early onset of the disease in certain breeds; and an observed similarity of the existence, severity, and age of onset of MMVD in parents and offspring (Swenson et al. 1996; Olsen et al. 1999; Lewis et al. 2011; Garncarz et al. 2013; Summers et al. 2015). The disease is described as having an age-related penetrance with polygenic inheritance (Olsen et al. 1999). MMVD is most commonly diagnosed in small to medium sized dogs but can also occur in large breeds (Thrusfield et al. 1985; Borgarelli et al. 2004; Serfass et al. 2006). The most affected dog breeds include, but are not limited to, Chihuahuas, Cocker spaniels, Dachshunds, Poodles, Whippets, and CKCS (Serfass et al. 2006; Fleming et al. 2011; Mattin et al. 2015). Although the exact reason for the development of MMVD in each cohort is unknown, it is clear that MMVD manifests as a profound welfare problem in some breeds.

The CKCS has been identified as a breed with a major welfare issue relating to MMVD. As a breed the CKCS dates back as far as the $16^{\text {th }}$ century, named as such for being the prized breed of a young King Charles II. Throughout its existence the breed has undergone multiple changes in the preferred facial conformation (Knowler et al. 2019). The modern CKCS was established in the 1920's from a founder of King Charles Spaniels, with a similar appearance but predominantly shorter snout. Since then, the CKCS has become one of the most popular toy breeds (Shariflou et al. 2011). Notably, the popularity of the CKCS along with its relatively recent establishment, means the CKCS is a genetically homogenous breed (Mellanby et al. 2013; Dreger et al. 2016). The incidence of MMVD is significantly higher in the CKCS than other breeds with a prevalence in the breed of up to 100% by the age of 11 years (Swift et al. 2017). CKCS also have a higher risk of disease progression (Mattin et al. 2019), as shown by elevated within-breed mortality resulting from cardiac disorders. Due to the high prevalence of MMVD in the CKCS, the breed represents one of the most studied dog breeds with the disorder (Tarnow et al. 2004; Eriksson et al. 2014; Reimann et al. 2014; Cremer et al. 2015; Lu et al. 2016; Menciotti et al. 2018). Both the presence and severity of cardiac murmurs that arise secondary to MMVD show significant heritability in the CKCS (Lewis et al. 2011). In theory, selective breeding against MMVD is possible, although previous schemes aimed at controlling the problem have had varying success (Lundin et al. 2010; Birkegård et al. 2016). Furthermore, such programs should proceed with caution as it is possible that strong selection against one disorder trait, without consideration of other selection criteria, may increase the risk of other genetic conditions, unless concurrently
managed. For example, it has been suggested that selection against heart disease in the CKCS resulted in an increased prevalence of otherwise rare disorders such as the neurological syndrome syringomyelia (Rusbridge \& Knowler 2004; Rusbridge 2005). Regardless of the efficiency in reducing the incidence of complex disorders through careful breeding, there remains the issue of improving treatment of extant animals that either exhibit the disease or that have a genetic predisposition. The application of advanced genomic technologies has potential to provide information that may impact treatment, prevalence, or severity of MMVD through the elucidation of pathogenic mechanisms and the detection of predisposing genetic loci of major effect. Based on the high prevalence of MMVD in the CKCS, the breed represents a promising resource for understanding the genetic basis of MMVD.

MMVD genetics and genomics

Applications of advanced genetic and genomic technologies can improve our understanding of MMVD pathophysiology at both genomic and transcriptomic levels. The canine genome represents the first companion animal reference genome to be constructed (Lindblad-Toh et al. 2005; Hoeppner et al. 2014). The provision of the genome and its associated resources has dramatically aided the investigation of traits relevant to canine health.

MMVD gene and microRNA expression profiling

Consistent observations in gene expression between diseased and healthy individuals can highlight important aetiological pathways involved in MMVD pathogenesis and inform hypothesis-based studies. To date numerous genes and microRNAs have been identified as differentially expressed between healthy dogs and those either mildly or severely affected by MMVD (Oyama \& Chittur 2006; Moon et al. 2008; Aupperle et al. 2009; Lee et al. 2009; Nam et al. 2010; Moesgaard et al. 2014; Li et al. 2015a; Lu et al. 2015). Similar to gene expression studies, microRNA research has had limited overlap in transcripts expression, although shared functional pathways have been reported (Hulanicka et al. 2014; Li et al. 2015b; Yang et al. 2017; Jung \& Bohan 2018; Yang et al. 2018). To date a single microRNA study has used MV tissue, while the rest assessed circulating microRNAs.
Biological functions highlighted through expression studies are extensive and detailing genes and pathways implicated in MMVD in full is beyond the scope of this article. Some biologically relevant functions to consider when evaluating the role of heritable loci in disease pathogenesis include activation of quiescent cells, extracellular matrix (ECM) remodelling, cardiovascular development, cell signalling and movement, inflammatory/immune-response, cell senescence and apoptosis, endothelial function, and
calcium signalling (Oyama \& Chittur 2006; Zheng et al. 2009; Li et al. 2015b; Yang et al. 2017; Yang et al. 2018; Markby et al. 2020a; Markby et al. 2020b). Here we highlight some of the limitations to MMVD expression studies, briefly describe the driving hypothesis for MMVD development, and discuss how expression studies can benefit our interpretation of heritable loci.

Barriers to gene expression profiling

As with any scientific approach, the reliability of gene expression research is conditional on the reproducibility of results. It is no surprise that the number of samples used in expression analyses can limit reproducibility and bias research outcomes (Tsai et al. 2005; Stretch et al. 2013; Schurch et al. 2016; Maleki et al. 2019). For reasons already mentioned, including varying age of onset and a spectrum of disease severity and classifications, MMVD is difficult to phenotype. Moreover, MV and LV tissue are difficult to acquire, particularly from healthy animals. For this reason, gene expression studies have predominantly examined elderly dogs with severe disease, euthanised due to CHF and compared it to young normal dogs. As such overlapping phenotypes using tissue-, age-, and breedmatched samples are rarely reported, and epigenetic changes are expected to be consequential rather than causative.

Variation can be observed in gene expression profiles across different cardiac tissue (Tabibiazar et al. 2003; Asp et al. 2011; Sun et al. 2013). Arguably, certain tissue types would benefit the assessment of specific phenotypes associated with MMVD, for example the use of LV tissue to assess epigenetic changes during cardiac remodelling. To date, most gene expression studies have utilised tissue from the MV. Alternatively, a single analysis has also been conducted on LV tissue (Zheng et al. 2009) and two studies have interpreted expression in both the MV and LV (Li et al. 2015a; Li et al. 2015b). Within cross-tissue studies, differentiation in gene expression is evident but the major gene categories implicated are similar (Li et al. 2015a; Li et al. 2015b). This alone is not enough to exclude the usefulness of phenotype driven, tissue specific studies and further research is necessary.

Constraints in sampling are frequently discussed within expression studies and have been explicitly highlighted in a few MMVD papers. A key example highlighting breed variation was presented in a recent study that found MV tissue from a multi-breed cohort had gene expression patterns more comparable to healthy valves than age and severity matched dogs of a specific breed, the CKCS (Markby et al. 2020a). Another contentious point for evaluating expression studies is variation in results when equally graded MV tissue is dissected into normal and diseased areas (Markby et al. 2020b). Generally whole tissue samples are collected for analysis, but the ratio of disease to healthy
constituents can influence outcomes. Despite these barriers, significant variation in select genes and pathways, such as those influencing ECM, have been observed across studies (Oyama \& Chittur 2006; Zheng et al. 2009; Li et al. 2015b; Yang et al. 2017; Yang et al. 2018; Markby et al. 2020a; Markby et al. 2020b).

As scientific endeavour moves towards the provision of open access materials, methodologies have been produced which allow for the meta-analysis of gene expression across varying tissue, sequencing, and genotyping platforms (Diego 2019; Toro-Domínguez et al. 2020; Yan \& Wong 2020). Given the difficulty in acquiring tissue for MMVD research, future studies would benefit from the use of metaanalyses to strengthen outcomes or validate findings. For such approaches to be applicable, consistency in the phenotyping and grading systems used in MMVD research is essential. Another justification for implementing the use of replicable measures when grading sample cohorts.

Extracellular matrix remodelling of the MV

The ECM is a macromolecular network of proteins involved in the structural and functional integrity of tissue and organs including valves and myocardial muscle. The valvular ECM is acellular and is composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins (Theocharis et al. 2016). Beyond a role in scaffolding, the ECM may interact in various cellular processes including growth, differentiation, and haemostasis (Frantz et al. 2010; Theocharis et al. 2016). As previously mentioned, MMVD is characterised by the disorganisation of valvular structural components. Disease progression in MMVD is characterised by a build-up of excess proteoglycans and altered collagen in diseased valves (Black et al. 2005; Hadian et al. 2007; Hadian et al. 2010; Han et al. 2010). Although the mechanisms that lead to valve degeneration are poorly understood, there is building evidence to suggest that the activation of quiescent VICs and valvular endothelial cells into active myofibroblasts play an important role in ECM disorganisation (Corcoran et al. 2004; Disatian et al. 2008; Han et al. 2008; Han et al. 2013). Transforming growth factor- β (TGF- β) and serotonergic signalling pathways represent two of the most frequently discussed and convincingly hypothesised effectors of ECM remodelling, with a possible role in VIC activation (Aupperle et al. 2008; Disatian \& Orton 2009; Zheng et al. 2009; Aupperle \& Disatian 2012; Orton et al. 2012; Markby et al. 2020b; Oyama et al. 2020). Some of the most recent evidence proposes eccentric ECM remodelling is a consequence of changes in TGF- β signalling, which dominates other pathways, regardless of disease severity (Markby et al. 2020b). Changes in gene and protein expression that influence valvular ECM remodelling have been extensively reviewed (Aupperle \& Disatian 2012; Connell et al. 2012; Orton et al.

2012; Markby et al. 2017a; Markby et al. 2017b; Oyama et al. 2020). Frequently discussed genes belong to the TGFβ, bone morphogenic protein, serotonin, hyaluronic acid, and matrix metalloproteinase families (Table 1). Additionally, microRNAs that influence ECM remodelling including family members of let7, mir-30, mir-20, mir-17, mir-133, and mir-29 have shown differential expression in MMVD progression and CHF models (Hulanicka et al. 2014; Li et al. 2015b; Yang et al. 2017; Jung \& Bohan 2018; Yang et al. 2018). The given microRNAs are generally downregulated and considered to have a regulatory impact on TGF- β signalling. Given a clear role of these pathways in response to valvular injury and disease progression, genes involved in upstream and downstream processes represent ideal candidates for a heritable component of MMVD.

Using gene expression studies to identify candidate genes and variants

Increasing evidence suggests that heritability of complex traits is influence by genetic variants modulating gene expression (Albert \& Kruglyak 2015; Cookson et al. 2009; Lee et al. 2018). Genes and microRNAs differentially expressed during advancing disease are key in understanding pathogenesis. Pathways highlighted by expressionbased research can help link genetic variation to phenotype. Publicly available databases such as KEGG (Kanehisa 2019), AmiGO (Carbon et al. 2009), and string (Szklarczyk et al. 2018) are valuable resources for categorising gene functions and interactions. Given the growing catalogue of genes and pathways implicated in MMVD such tools are useful to identify candidate genes and variants in heritable loci. Still, it cannot be presumed that variants in genes variably expressed have a direct influence on disease progression unless there is either validation of the gene effects through protein quantification studies using spectral analysis or the loci are individually validated through denovo mapping experiments. Similar to the dog, human MMVD counterparts show marked variation in TGF- β signalling pathways and ECM remodelling (Aupperle \& Disatian 2012; Hulin et al. 2012; Thalji et al. 2015; Greenhouse et al. 2016). Heritable components have not been elucidated in human MMVD and disorders with analogous phenotypes. However, variants in genes from key functional pathways have been identified (Chou et al. 2004a; Chou et al. 2004b; Lardeux et al. 2011; Dugan et al. 2015; Durst et al. 2015), demonstrating a capacity for expression analysis to highlight candidates.

Identification of major MMVD loci

The groundwork for successful complex trait mapping, through genome wide association (GWA) studies, was laid by those working with heart disease and diabetes in humans where many research groups collaborated and
Table 1 Key extracellular matrix remodeling gene/protein expression changes.
 Change: $\uparrow=$ increased, $\downarrow=$ decreased, $-=$ no change, $x=$ undetected. Method: $M A=$ microarray analysis, RT-qPCR = real-time polymerase chain reaction, IHC $=$ immunohistochemistry, RNA-Seq $=$ RNA sequencing. Tissue: $M V=$ mitral valve, $L V=$ left ventricle.
many thousands of human test subjects were included in the analysis (Lohmueller et al. 2003; Cupples et al. 2007; Zeggini et al. 2008; Voight et al. 2010; Strawbridge et al. 2011; Morris et al. 2012). Fortunately, given the unique history of canine domestication and breed development, linkage disequilibrium in the dog breed is extensive and lends itself to genetic mapping of heritable traits. In the dog, mapping of Mendelian traits requires approximately 10 times fewer markers and samples than in humans when conducted on a within-breed basis (Sutter et al. 2004; Lindblad-Toh et al. 2005; Gray et al. 2009). Nevertheless, the application of GWA to complex traits is far more challenging, even given the remarkable population structure of the dog. Still, it has been shown that many complex phenotypes in dog breeds are simply inherited (Jones et al. 2008; Cadieu et al. 2009; Boyko et al. 2010; Shearin et al. 2012; Hayward et al. 2016). This is the basis for complex GWA studies in dogs, which has identified loci and genes associated with obsessivecompulsive disorder, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, systemic lupus erythematosus, and various cancers (Meurs et al. 2010; Wilbe et al. 2010; Mausberg et al. 2011; Meurs et al. 2012; Philipp et al. 2012; Karlsson et al. 2013; Tang et al. 2014; Tonomura et al. 2015; Hayward et al. 2016). Despite the complexity of MMVD, there remain hints of major gene involvement, indicated by the rapid reduction of disease prevalence in a regional population that was subjected to selection against a related phenotype (MV regurgitation; Birkegård et al. 2016). For this reason, GWA is a promising approach for improving our understanding of the genetic changes contributing to MMVD pathogenesis.

Myxomatous MV disease is a complex trait and consequently a refined model and sizable cohort is implicit in identification of associated loci (Karlsson et al. 2007). Despite the usefulness of canine breeds in increasing the power and accuracy of GWA studies our knowledge of individual variants and loci associated with MMVD is lacking (Madsen et al. 2011; French et al. 2012; Stern et al. 2015; Lee et al. 2019). CKCS are implicitly affected by MMVD and present a strong candidate for genetic studies. However, mapping attempts using this breed have produced variable outcomes (Madsen et al. 2011; French et al. 2012). This is likely to be a result of association studies focusing the disease model on the development of MMVD using the presence and severity of MR to determine a case and control cohort. Using this model, a strong association of MMVD to markers on CFA13 and CFA14 was identified (Madsen et al. 2011). However, despite the strength of the association no follow-up research has been published, nor have the loci been validated (Madsen et al. 2011; French et al. 2012). A case-control GWA to determine development of MMVD, based on MR, is hampered when breeds such as CKCS nearly all present
with a murmur by the age of 10 years (Pedersen et al. 1999a; Swift et al. 2017)—meaning that producing a perfect within-cohort control group is near impossible. A further study accounting for the progressive nature, and age-related penetrance of the disease was conducted in Whippets (Stern et al. 2015). Utilising a quantitative phenotype, the analysis identified loci associated with MMVD on CFA2 and CFA15. To date, this GWA has produced the strongest signal in MMVD studies, highlighting the effectiveness of a quantitative approach in mapping MMVD (Stern et al. 2015).

Quantitative measurements, such as echocardiographic dimensions, are heritable in humans (Post et al. 1997; Bella et al. 2004; Jin et al. 2011), and can be considered distinct phenotypes. Such measurements are objective data and are particularly amendable for use in a continuous variable GWA study. It has been demonstrated that the use of empirical models with multiple quantitative trait measures can increase the statistical power and accuracy of locus detection despite the heterogeneity of measurements (Tin et al. 2013). Multi-trait analyses, conducted on cardiac variables, have highlighted trait-specific loci in human research (Vasan et al. 2007; Smith et al. 2010; Fox et al. 2013; Wild et al. 2017; Sáez et al. 2019). The successfulness of this approach may be transferrable to mapping loci in complex canine disease. Numerous quantitative variables, including circulating biomarkers, thoracic radiography and echocardiographic measures, have been shown to reliably detect consequences of MMVD, as well as predict disease severity and survival characteristics (Hansson et al. 2002; Cameli et al. 2011; Moesgaard et al. 2011; Ebisawa et al. 2013; Vieira et al. 2014; Baron Toaldo et al. 2018; Malcolm et al. 2018; Strohm et al. 2018). Well studied measurements like these are replicable and should be encouraged for use in MMVD mapping efforts. Quantitative variables, such as LA:Ao and LVIDdn, can be easily applied to continuous variable GWA studies and are expected to benefit MMVD modelling by removing the difficulty of phenotyping a perfect control cohort. Instead, all subjects are included on a disease severity spectrum. The approach is unlikely to identify MMVD causative genes but could highlight modifier genes and loci contributing to disease heterogeneity. Still, MMVD is a chronically progressive disease and given the prevalence of MMVD with increasing age, a refined model will also factor in an age-related penetrance of the disease by ageadjusting measurements and using a strict age criterion for the inclusion of samples, as has been done in the past (Stern et al. 2015). A multi-trait GWA approach was recently applied when studying MMVD in a population of purebred Maltese dogs (Lee et al. 2019). Here, researchers compared the sample cohort in both a quantitative and binary manner. While the paper did not successfully highlight associated loci, probably due to a small sample size, this method is optimal for studying complex disease
and should be applied to future MMVD GWA. Further modifications to the approach should include quantitative phenotypes, such as LA:Ao and LVIDdn, rather than using semi-quantitative approaches. Future genomic research could also attempt to identify loci influencing the rate of disease progression by repeating measures throughout a specific study period and mapping the rate of change in echocardiographic measures.

A clear distinction exists in the welfare of dogs affected with MMVD. Some develop severe forms of the disease, resulting in CHF, while others remain relatively asymptomatic (Borgarelli et al. 2008). To date, GWA studies have focused on phenotypes relating to the presence of MR and the age of onset (Madsen et al. 2011; French et al. 2012). From a canine welfare standpoint, it makes greater sense to amend the focus of GWA research to identify loci associated with late stage MMVD and the development of CHF. Adjusting the focus of mapping studies on phenotypes quantifying the degree of heart enlargement and CHF would facilitate the identification of candidate genes that impact disease morbidity and regulatory mechanisms promoting fatal outcomes. Additionally, the use of established quantitative measures should limit subjective phenotyping, improve the repeatability of experimental models and allow the combination of samples from multiple study cohorts.

Selective sweep analyses

For traits that have been driven to fixation or near fixation in individual breeds, such as MMVD in the CKCS, identification of genes involved in disease development and early onset can be difficult. In situations where case/control data are difficult to obtain, a selective sweep analysis is warranted. Briefly, in species under selective pressure either through genetic drift or artificial selection, regions of homozygosity or reduced heterozygosity are created surrounding a desirable mutation, referred to as a selective sweep. Evidence suggests that artificial selection throughout domestication results in an accumulation of deleterious variation in genes situated in swept regions (Freedman et al. 2016; Marsden et al. 2016). Using bioinformatics approaches, the genome of individual breeds can be scanned for signatures of selective sweep and monitored for loci with candidate genes for a trait of interest. This approach has been used to identify genes and loci involved in morphology, behaviour, and disease (Sutter et al. 2007; Quilez et al. 2011; Vaysse et al. 2011; Arnott et al. 2015; Friedenberg et al. 2016; Sams \& Boyko 2019; Yang et al. 2019). It has been proposed that causative mutations for MMVD may have undergone selection alongside size-based haplotypes in dogs due to a higher predisposition in small breeds (Parker \& Kilroy-Glynn 2012). Presently, no studies exist that have used this approach to identify genes implicated with MMVD.

Mutation detection

Genetic mapping plays an important role in identifying chromosomal regions associated with a phenotype of interest. To supplement the limitations of mutation detection in mapping data, it is possible to use whole genome sequencing, positional candidate gene sequencing and exome sequencing as methods to explore the underlying genetic architecture in loci of interest. To date, candidate mutations in MMVD loci have not been published. Interestingly, the canine form of the disease is comparable with human valvular disorders (Pedersen et al. 2000; Aupperle \& Disatian 2012; Connell et al. 2012). Evaluation of genes implicated in the human form of the disease was conducted in the CKCS and Dachshund (Meurs et al. 2018). Although no causative mutations were detected, research of this type is warranted, and genes implicated in future human studies should be considered in MMVD research. Nevertheless, in heritable traits such as MMVD, mutation detection would benefit from being directed by GWA and sweep analyses.

Conclusion

The clinical aspects of MMVD are well documented; however, the pathogenesis and aetiology of the disease is far from fully understood. Ongoing genomic research into MMVD exemplifies the difficulty in identifying heritable components of complex traits. While the condition shows an extraordinarily high level of heritability in certain breeds, the culmination of genetics research acts as convincing evidence that the disease is under a polygenic mode of inheritance. Dogs pre-disposed to MMVD, like the CKCS, present a robust resource and unique opportunity to expand on the genetic context of MMVD. Identification of signatures of artificial selection in dogs with a disproportionate prevalence of the MR and early onset disease is warranted. We recommend that future research into this trait maximise sample sizes and use vigorous phenotyping of sample cohorts, utilising echocardiographic measures for increased repeatability of experimental methods. The use of standardised repeatable measures, such as LA:Ao and LVIDdn, are key in phenotyping disease state and will be amendable to meta-analyses as the public repository of MMVD genetic data expands. Dysregulation of ECM remodelling via TGFβ and serotonin signalling remains the leading hypothesis for the development and progression of MMVD, although an underlying genetic cause is yet to be attributed to this feature. Genes and pathways consistently observed in transcriptomic research should help direct candidate gene identification and variant discovery of mapping projects. Where available, research papers will benefit from utilising as much open access data to strengthen and validate implicated variants and loci.

Conflict of interest

Authors declare no conflict of interest.

References

Albert, F.W. \& Kruglyak, L. (2015) The role of regulatory variation in complex traits and disease. Nature Reviews Genetics, 16, 197212.

Arnott E.R., Peek L., Early J.B., Pan AYH, Haase B., Chew T., McGreevy P.D. \& Wade C.M. (2015) Strong selection for behavioural resilience in Australian stock working dogs identified by selective sweep analysis. Canine Genetics and Epidemiology 2, 6.
Asp J., Synnergren J., Jonsson M., Dellgren G. \& Jeppsson A. (2011) Comparison of human cardiac gene expression profiles in paired samples of right atrium and left ventricle collected in vivo. Physiological Genomics 44, 89-98.
Atkins C., Bonagura J., Ettinger S. et al. (2009) Guidelines for the diagnosis and treatment of canine chronic valvular heart disease. Journal of Veterinary Internal Medicine 23, 1142-50.
Atkins C.E., Keene B.W., Brown W.A. et al. (2007) Results of the veterinary enalapril trial to prove reduction in onset of heart failure in dogs chronically treated with enalapril alone for compensated, naturally occurring mitral valve insufficiency. Journal of the American Veterinary Medical Association 231, 1061-9.
Aupperle H. \& Disatian S. (2012) Pathology, protein expression and signaling in myxomatous mitral valve degeneration: comparison of dogs and humans. Journal of Veterinary Cardiology 14, 59-71.
Aupperle H., Marz I., Thielebein J. \& Schoon H.A. (2008) Expression of transforming growth factor-beta 1, -beta 2 and beta 3 in normal and diseased canine mitral valves. Journal of Comparative Pathology 139, 97-107.
Aupperle H., Thielebein J., Kiefer B., März I., Dinges G., Schoon H.A. \& Schubert A. (2009) Expression of genes encoding matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in normal and diseased canine mitral valves. Journal of Comparative Pathology 140, 271-7.
Aupperle, H., Thielebein, J., Kiefer, B., März, I., Dinges, G. \& Schoon, H.A. (2009) An immunohistochemical study of the role of matrix metalloproteinases and their tissue inhibitors in chronic mitral valvular disease (valvular endocardiosis) in dogs. Vet J, 180, 8894.

Baron Toaldo M., Romito G., Guglielmini C., Diana A., Pelle N.G., Contiero B. \& Cipone M. (2018) Prognostic value of echocardiographic indices of left atrial morphology and function in dogs with myxomatous mitral valve disease. Journal of Veterinary Internal Medicine 32, 914-21.
Beardow A.W. \& Buchanan J.W. (1993) Chronic mitral valve disease in cavalier king Charles spaniels: 95 cases (1987-1991). Journal of the American Veterinary Medical Association 203, 10239.

Bella N.J., Maccluer W.J., Roman J.M., Almasy E.L., North G.K., Best T.L., Lee R.E., Fabsitz V.R., Howard B.B. \& Devereux B.R. (2004) Heritability of left ventricular dimensions and mass in American Indians: the strong heart study. Journal of Hypertension 22, 281-6.
Birkegård A.C., Reimann M.J., Martinussen T., Häggström J., Pedersen H.D. \& Olsen L.H. (2016) Breeding restrictions decrease
the prevalence of myxomatous mitral valve disease in cavalier king Charles spaniels over an 8- to 10-year period. Journal of Veterinary Internal Medicine 30, 63-8.
Black A., French A.T., Dukes-McEwan J. \& Corcoran B.M. (2005) Ultrastructural morphologic evaluation of the phenotype of valvular interstitial cells in dogs with myxomatous degeneration of the mitral valve. American Journal of Veterinary Research 66, 1408-14.
Bonagura J.D. \& Schober K.E. (2009) Can ventricular function be assessed by echocardiography in chronic canine mitral valve disease? Journal of Small Animal Practice 50, 12-24.
Borgarelli M., Savarino P., Crosara S. et al. (2008) Survival characteristics and prognostic variables of dogs with mitral regurgitation attributable to myxomatous valve disease. Journal of Veterinary Internal Medicine 22, 120-8.
Borgarelli M., Zini E., D’Agnolo G., Tarducci A., Santilli R.A., Chiavegato D., Tursi M., Prunotto M. \& Häggström J. (2004) Comparison of primary mitral valve disease in German Shepherd dogs and in small breeds. Journal of Veterinary Cardiology 6, 2734.

Boswood A. (2018) Improving outcomes of myxomatous mitral valve disease in dogs. Practice 40, 12-5.
Boswood A., Gordon S.G., Häggström J. et al. (2018) Longitudinal analysis of quality of life, clinical, radiographic, echocardiographic, and laboratory variables in dogs with preclinical myxomatous mitral valve disease receiving pimobendan or placebo: the EPIC study. Journal of Veterinary Internal Medicine 32, 72-85.
Boswood A., Häggström J., Gordon S.G. et al. (2016) Effect of pimobendan in dogs with preclinical myxomatous mitral valve disease and cardiomegaly: the EPIC study-a randomized clinical trial. Journal of Veterinary Internal Medicine 30, 176579.

Boyko A.R., Quignon P., Li L. et al. (2010) A simple genetic architecture underlies morphological variation in dogs. PLoS Biology 8, 49-50.
Cadieu E., Neff M.W., Quignon P. et al. (2009) Coat variation in the domestic dog is governed by variants in three genes. Science 326, 150-3.
Caivano D., Rishniw M., Birettoni F., Patata V., Giorgi M.E. \& Porciello F. (2018) Left atrial deformation and phasic function determined by two-dimensional speckle-tracking echocardiography in dogs with myxomatous mitral valve disease. Journal of Veterinary Cardiology 20, 102-14.
Cameli M., Lisi M., Giacomin E., Caputo M., Navarri R., Malandrino A., Ballo P., Agricola E. \& Mondillo S. (2011) Chronic mitral regurgitation: left atrial deformation analysis by two-dimensional speckle tracking echocardiography. Echocardiography (Mount Kisco N.Y.) 28, 327-34.
Carbon S., Ireland A., Mungall C.J., Shu S., Marshall B., Lewis S., Ami G.O.H. \& Web Presence Working G (2009) AmiGO: online access to ontology and annotation data. Bioinformatics (Oxford, England) 25, 288-9.
Chetboul V., Tissier R., Villaret F., Nicolle A., Dean E., Benalloul T. \& Pouchelon J.L. (2004) Epidemiological, clinical, echo-doppler characteristics of mitral valve endocardiosis in Cavalier King Charles in France: a retrospective study of 451 cases (1995 to 2003). Canadian Veterinary Journal-Revue Veterinaire Canadienne 45, 1012-5.

Chou H.-T., Chen Y.-T., Wu J.-Y. \& Tsai F.-J. (2004a) Association between urokinase-plasminogen activator gene T 4065 C polymorphism and risk of mitral valve prolapse. International Journal of Cardiology 96, 165-70.
Chou H.-T., Hung J.-S., Chen Y.-T., Wu J.-Y. \& Tsai F.-J. (2004b) Association between COL3A1 collagen gene exon 31 polymorphism and risk of floppy mitral valve/mitral valve prolapse. International Journal of Cardiology 95, 299-305.
Cookson, W., Liang, L., Abecasis, G., Moffatt, M. \& Lathrop, M. (2009) Mapping complex disease traits with global gene expression. Nature reviews. Genetics, 10, 184-94.
Connell P.S., Han R.I. \& Grande-Allen K.J. (2012) Differentiating the aging of the mitral valve from human and canine myxomatous degeneration. Journal of Veterinary Cardiology 14, 31-45.
Corcoran B.M., Black A., Anderson H., McEwan J.D., French A., Smith P. \& Devine C. (2004) Identification of surface morphologic changes in the mitral valve leaflets and chordae tendineae of dogs with myxomatous degeneration. American Journal of Veterinary Research 65, 198-206.
Cornell C.C., Kittleson M.D., Torre P.D., Häggström J., Lombard C.W., Pedersen H.D., Vollmar A., Wey A. \& Sveriges L. (2004) Allometric scaling of M-mode cardiac measurements in normal adult dogs. Journal of Veterinary Internal Medicine 18, 311-21.
Cremer S.E., Kristensen A.T., Reimann M.J., Eriksen N.B., Petersen S.F., Marschner C.B., Tarnow I., Oyama M.A. \& Olsen L.H. (2015) Plasma and serum serotonin concentrations and surfacebound platelet serotonin expression in cavalier king charles spaniels with myxomatous mitral valve disease. American Journal of Veterinary Research 76, 520-31.
Cupples L.A., Arruda H.T., Benjamin E.J. et al. (2007) The framingham heart study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports. BMC Medical Genetics 8 (Suppl 1), 1-19.
Diego A.F. (2019) Available software for meta-analyses of genomewide expression studies. Current Genomics 20, 325-31.
Disatian S., Ehrhart Iii E.J., Zimmerman S. \& Orton E.C. (2008) Interstitial cells from dogs with naturally occurring myxomatous mitral valve disease undergo phenotype transformation. Journal of Heart Valve Disease 17, 402-12.
Disatian S. \& Orton E.C. (2009) Autocrine serotonin and transforming growth factor beta 1 signaling mediates spontaneous myxomatous mitral valve disease. The Journal of Heart Valve Disease 18, 44.
Dreger D.L., Rimbault M., Davis B.W., Bhatnagar A., Parker H.G. \& Ostrander E.A. (2016) Whole-genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds to optimize genetic-trait mapping. Disease Models \mathcal{E} Mechanisms 9, 1445.
Dugan S.L., Temme R.T., Olson R.A., Mikhailov A., Law R., Mahmood H., Noor A. \& Vincent J.B. (2015) New recessive truncating mutation in LTBP3 in a family with oligodontia, short stature, and mitral valve prolapse. American Journal of Medical Genetics Part A 167, 1396-9.
Durst R., Sauls K., Peal D.S. et al. (2015) Mutations in DCHS1 cause mitral valve prolapse. Nature (London) 525, 109-13.
Ebisawa T., Ohta Y., Funayama M. et al. (2013) Plasma atrial natriuretic peptide is an early diagnosis and disease severity marker of myxomatous mitral valve disease in dogs. Research in Veterinary Science 94, 717-21.

Egenvall A., Bonnett B.N., Häggström J. \& Sveriges L. (2006) Heart disease as a cause of death in insured Swedish dogs younger than 10 years of age. Journal of Veterinary Internal Medicine 20, 894903.

Eriksson A.S., Häggström J., Pedersen H.D., Hansson K., Järvinen A.-K., Haukka J., Kvart C. \& Sveriges L. (2014) Increased NTproANP predicts risk of congestive heart failure in Cavalier King Charles spaniels with mitral regurgitation caused by myxomatous valve disease. Journal of Veterinary Cardiology 16, 141-54.
Fleming J.M., Creevy K.E. \& Promislow D.E.L. (2011) Mortality in North American dogs from 1984 to 2004: an investigation into age-, size-, and breed-related causes of death. Journal of Veterinary Internal Medicine 25, 187-98.
Fox E.R., Musani S.K., Barbalic M. et al. (2013) Genome-wide association study of cardiac structure and systolic function in African Americans: the Candidate Gene Association Resource (CARe) study. Circulation: Cardiovascular Genetics 6, 37-46.
Frantz C., Stewart K.M. \& Weaver V.M. (2010) The extracellular matrix at a glance. Journal of Cell Science 123, 4195-200.
Freedman A.H., Lohmueller K.E. \& Wayne R.K. (2016) Evolutionary history, selective sweeps, and deleterious variation in the dog. Annual Review of Ecology, Evolution, and Systematics 47, 73-96.
French A.T., Ogden R., Eland C., Hemani G., Pong-Wong R., Corcoran B. \& Summers K.M. (2012) Genome-wide analysis of mitral valve disease in Cavalier King Charles Spaniels. The Veterinary Journal 193, 283-6.
Friedenberg S.G., Meurs K.M. \& Mackay T.F.C. (2016) Evaluation of artificial selection in Standard Poodles using whole-genome sequencing. Mammalian Genome 27, 599-609.
Garncarz M., Garncarz M., Parzeniecka-Jaworska M., ParzenieckaJaworska M., Jank M., Jank M. \& Łój M. (2013) A retrospective study of clinical signs and epidemiology of chronic valve disease in a group of 207 Dachshunds in Poland. Acta Veterinaria Scandinavica 55, 52.
Gordon S.G., Saunders A.B. \& Wesselowski S.R. (2017) Asymptomatic canine degenerative valve disease: current and future therapies. Veterinary Clinics of North America-Small Animal Practice 47, 955.
Gray M.M., Granka J.M., Bustamante C.D., Sutter N.B., Boyko A.R., Zhu L., Ostrander E.A. \& Wayne R.K. (2009) Linkage disequilibrium and demographic history of wild and domestic canids. Genetics 181, 1493-505.
Greenhouse D.G., Murphy A., Mignatti P., Zavadil J., Galloway A.C. \& Balsam L.B. (2016) Mitral valve prolapse is associated with altered extracellular matrix gene expression patterns. Gene $\mathbf{5 8 6}$, 56-61.
Hadian M., Corcoran B.M. \& Bradshaw J.P. (2010) Molecular changes in fibrillar collagen in myxomatous mitral valve disease. Cardiovascular Pathology 19, e141-8.
Hadian M., Corcoran B.M., Han R.I., Grossmann J.G. \& Bradshaw J.P. (2007) Collagen organization in canine myxomatous mitral valve disease: an X-ray diffraction study. Biophysical Journal 93, 2472-6.
Häggström J., Hansson K., Kvart C. \& Swenson L. (1992) Chronic valvular disease in the cavalier king Charles spaniel in Sweden. Veterinary Record 131, 549-53.
Häggström J., Kvart C. \& Hansson K. (1995) Heart sounds and murmurs: changes related to severity of chronic valvular disease
in the Cavalier King Charles spaniel. Journal of Veterinary Internal Medicine 9, 75-85.
Han R.I., Black A., Culshaw G., French A.T. \& Corcoran B.M. (2010) Structural and cellular changes in canine myxomatous mitral valve disease: an image analysis study. Journal of Heart Valve Disease 19, 60-70.
Han R.I., Black A., Culshaw G.J., French A.T., Else R.W. \& Corcoran B.M. (2008) Distribution of myofibroblasts, smooth muscle-like cells, macrophages, and mast cells in mitral valve leaflets of dogs with myxomatous mitral valve disease. American Journal of Veterinary Research 69, 763-9.
Han R.I., Clark C.H., Black A., French A., Culshaw G.J., Kempson S.A. \& Corcoran B.M. (2013) Morphological changes to endothelial and interstitial cells and to the extra-cellular matrix in canine myxomatous mitral valve disease (endocardiosis). The Veterinary Journal 197, 388-94.
Hansson K., Häggström J., Kvart C. \& Lord P. (2002) Left atrial to aortic root indices using two-dimensional and M-mode echocardiography in cavalier King Charles spaniels with and without left atrial enlargement. Veterinary Radiology \& Ultrasound 43, 56875.

Hayward J.J., Castelhano M.G., Oliveira K.C. et al. (2016) Complex disease and phenotype mapping in the domestic dog. Nature Communications 7, 10460.
Hezzell M.J., Boswood A., Moonarmart W. \& Elliott J. (2012) Selected echocardiographic variables change more rapidly in dogs that die from myxomatous mitral valve disease. Journal of Veterinary Cardiology 14, 269-79.
Hoeppner M.P., Lundquist A., Pirun M. et al. (2014) An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts. PLoS One 9, e91172.
Hulanicka M., Garncarz M., Parzeniecka-Jaworska M. \& Jank M. (2014) Plasma miRNAs as potential biomarkers of chronic degenerative valvular disease in Dachshunds. BMC Veterinary Research 10, 205.
Hulin A., Deroanne C.F., Lambert C.A., Dumont B., Castronovo V., Defraigne J.O., Nusgens B.V., Radermecker M.A. \& Colige A.C. (2012) Metallothionein-dependent up-regulation of TGF- $\beta 2$ participates in the remodelling of the myxomatous mitral valve. Cardiovascular Research 93, 480-9.
Jacobs G.J., Jacobs G.J., Calvert C.A., Calvert C.A., Mahaffey M.B., Mahaffey M.B., Hall D.G. \& Hall D.G. (1995) Echocardiographic detection of flail left atrioventricular valve cusp from ruptured chordae tendineae in 4 dogs. Journal of Veterinary Internal Medicine 9, 341-6.
Jin Y., Kuznetsova T., Bochud M., Richart T., Thijs L., Cusi D., Fagard R. \& Staessen J.A. (2011) Heritability of left ventricular structure and function in Caucasian families. European Journal of Echocardiography 12, 326-32.
Jones P., Chase K., Martin A., Davern P., Ostrander E.A. \& Lark K.G. (2008) Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics 179, 1033-44.
Jung S. \& Bohan A. (2018) Genome-wide sequencing and quantification of circulating microRNAs for dogs with congestive heart failure secondary to myxomatous mitral valve degeneration. American Journal of Veterinary Research 79, 163-9.
Kanehisa M. (2019) Toward understanding the origin and evolution of cellular organisms. Protein Science 28, 1947-51.

Karlsson E.K., Baranowska I., Wade C.M. et al. (2007) Efficient mapping of mendelian traits in dogs through genome-wide association. Nature Genetics 39, 1321.
Karlsson E.K., Sigurdsson S., Ivansson E. et al. (2013) Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B. Genome Biology 14, R132.
Keene B.W., Atkins C.E., Bonagura J.D., Fox P.R., Häggström J., Fuentes V.L., Oyama M.A., Rush J.E., Stepien R. \& Uechi M. (2019) ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. Journal of Veterinary Internal Medicine 33, 1127-40.
Knowler S.P., Gillstedt L., Mitchell T.J., Jovanovik J., Volk H.A. \& Rusbridge C. (2019) Pilot study of head conformation changes over time in the Cavalier King Charles spaniel breed. Veterinary Record 184, 122.
Kvart C., Häggström J., Pedersen H.D. et al. (2002) Efficacy of enalapril for prevention of congestive heart failure in dogs with myxomatous valve disease and asymptomatic mitral regurgitation. Journal of Veterinary Internal Medicine 16, 80-8.
Lardeux A., Kyndt F., Lecointe S., Marec H.L., Merot J., Schott J.-J., Le Tourneau T. \& Probst V. (2011) Filamin-a-related myxomatous mitral valve dystrophy: genetic, echocardiographic and functional aspects. Journal of Cardiovascular Translational Research 4, 748-56.
Lee C.-M., Song D.-W., Ro W.-B., Kang M.-H. \& Park H.-M. (2019) Genome-wide association study of degenerative mitral valve disease in Maltese dogs. Journal of Veterinary Science 20, 63-71.
Lee J.S., Pak S.I. \& Hyun C. (2009) Calcium reuptake related genes as a cardiac biomarker in dogs with chronic mitral valvular insufficiency. Journal of Veterinary Internal Medicine 23, 832-9.
Lee, P.H., Lee, C., Li, X., Wee, B., Dwivedi, T. \& Daly, M. (2018) Principles and methods of in-silico prioritization of non-coding regulatory variants. Hum Genet, 137, 15-30.
Lewis T., Swift S., Woolliams J.A. \& Blott S. (2011) Heritability of premature mitral valve disease in Cavalier King Charles spaniels. The Veterinary Journal 188, 73-6.
Li Q., Freeman L.M., Rush J.E., Huggins G.S., Kennedy A.D., Labuda J.A., Laflamme D.P. \& Hannah S.S. (2015a) Veterinary medicine and multi-omics research for future nutrition targets: metabolomics and transcriptomics of the common degenerative mitral valve disease in dogs. OMICS A Journal of Integrative Biology 19, 461-70.
Li Q., Freeman L.M., Rush J.E. \& Laflamme D.P. (2015b) Expression profiling of circulating microRNAs in canine myxomatous mitral valve disease. International Journal of Molecular Sciences 16, 14098-108.
Lindblad-Toh K., Wade C.M., Mikkelsen T.S. et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803.
Lohmueller K.E., Pearce C.L., Pike M., Lander E.S. \& Hirschhorn J.N. (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genetics 33, 177-82.
Lord, P.F., Hansson, K., Carnabuci, C., Kvart, C. \& Häggström, J. (2011) Radiographic heart size and its rate of increase as tests for onset of congestive heart failure in Cavalier King Charles Spaniels with mitral valve regurgitation. J Vet Intern Med, 25, 1312-9.

Lu C.C., Liu M.M., Culshaw G., Clinton M., Argyle D.J. \& Corcoran B.M. (2015) Gene network and canonical pathway analysis in canine myxomatous mitral valve disease: a microarray study. The Veterinary Journal 204, 23-31.
Lu C.C., Liu M.M., Culshaw G., French A. \& Corcoran B. (2016) Comparison of cellular changes in Cavalier King Charles spaniel and mixed breed dogs with myxomatous mitral valve disease. Journal of Veterinary Cardiology 18, 100-9.
Lundin T., Kvart C. \& Sveriges L. (2010) Evaluation of the Swedish breeding program for cavalier King Charles spaniels. Acta Veterinaria Scandinavica 52, 54.
Madsen M.B., Olsen L.H., Häggström J. et al. (2011) Identification of 2 loci associated with development of myxomatous mitral valve disease in Cavalier King Charles Spaniels. The Journal of Heredity 102, S62-7.
Malcolm E.L., Visser L.C., Phillips K.L. \& Johnson L.R. (2018) Diagnostic value of vertebral left atrial size as determined from thoracic radiographs for assessment of left atrial size in dogs with myxomatous mitral valve disease. Journal of the American Veterinary Medical Association 253, 1038-45.
Maleki F., Ovens K., McQuillan I. \& Kusalik A.J. (2019) Size matters: how sample size affects the reproducibility and specificity of gene set analysis. Human Genomics 13, 42.
Markby G.R., Macrae V.E., Corcoran B.M. \& Summers K.M. (2020a) Comparative transcriptomic profiling of myxomatous mitral valve disease in the cavalier King Charles spaniel. BMC Veterinary Research 16, 350.
Markby G.R., Macrae V.E., Summers K.M. \& Corcoran B.M. (2020b) Disease severity-associated gene expression in canine myxomatous mitral valve disease is dominated by TGF β signaling. Frontiers in Genetics 11, 372. https://doi.org/10.3389/fgene. 2020.00372

Markby G.R., Summers K.M., MacRae V.E. \& Corcoran B.M. (2017b) Comparative transcriptomic profiling and gene expression for myxomatous mitral valve disease in the dog and human. Veterinary Sciences 4, 34.
Markby G., Summers K.M., MacRae V.E., Del-Pozo J. \& Corcoran B.M. (2017a) Myxomatous degeneration of the canine mitral valve: from gross changes to molecular events. Journal of Comparative Pathology 156, 371-83.
Marsden C.D., Vecchyo DO.-D., O’Brien D.P., Taylor J.F., Ramirez O., Vilà C., Marques-Bonet T., Schnabel R.D., Wayne R.K. \& Lohmueller K.E. (2016) Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proceedings of the National Academy of Sciences of the United States of America 113, 152-7.
Mattin M.J., Boswood A., Church D.B., López-Alvarez J., McGreevy P.D., O'Neill D.G., Thomson P.C. \& Brodbelt D.C. (2015) Prevalence of and risk factors for degenerative mitral valve disease in dogs attending primary-care veterinary practices in England. Journal of Veterinary Internal Medicine 29, 847-54.
Mattin M.J., Brodbelt D.C., Church D.B. \& Boswood A. (2019) Factors associated with disease progression in dogs with presumed preclinical degenerative mitral valve disease attending primary care veterinary practices in the United Kingdom. Journal of Veterinary Internal Medicine 33, 445-54.
Mausberg T.-B., Wess G., Simak J., Keller L., Drögemüller M., Drögemüller C., Webster M.T., Stephenson H., Dukes-McEwan J. \& Leeb T. (2011) A locus on chromosome 5 is associated with
dilated cardiomyopathy in doberman pinschers. PLoS One 6, e20042.
Mellanby R.J., Ogden R., Clements D.N., French A.T., Gow A.G., Powell R., Corcoran B., Schoeman J.P. \& Summers K.M. (2013) Population structure and genetic heterogeneity in popular dog breeds in the UK. The Veterinary Journal 196, 92-7.
Menciotti G., Borgarelli M., Aherne M., Camacho P., Häggström J., Ljungvall I., Lahmers S.M. \& Abbott J.A. (2018) Comparison of the mitral valve morphologies of Cavalier King Charles Spaniels and dogs of other breeds using 3D transthoracic echocardiography. Journal of Veterinary Internal Medicine 32, 1564-9.
Meurs K.M., Adin D., O’Donnell K., Keene B.W., Atkins C.E., DeFrancesco T. \& Tou S. (2019) Myxomatous mitral valve disease in the miniature poodle: a retrospective study. The Veterinary Journal 244, 94-7.
Meurs K.M., Lahmers S., Keene B.W. et al. (2012) A splice site mutation in a gene encoding for PDK4, a mitochondrial protein, is associated with the development of dilated cardiomyopathy in the Doberman pinscher. Human Genetics 131, 1319-25.
Meurs K.M., Mauceli E., Lahmers S., Acland G.M., White S.N., Lindblad-Toh K., Medicinska F., Medicinska Och Farmaceutiska V., Institutionen för Medicinsk Biokemi Och M. \& Uppsala U. (2010) Genome-wide association identifies a deletion in the 3^{\prime} untranslated region of striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy. Human Genetics 128, 315-24.
Meurs, K.M., Friedenberg, S.G., Williams, B., Keene, B.W., Atkins, C.E., Adin, D., Aona, B., DeFrancesco, T., Tou, S. \& Mackay, T. (2018) Evaluation of genes associated with human myxomatous mitral valve disease in dogs with familial myxomatous mitral valve degeneration. Vet J, 232, 16-9.
Moesgaard S.G., Aupperle H., Rajamäki M.M., Falk T., Rasmussen C.E., Zois N.E. \& Olsen L.H. (2014) Matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs) and transforming growth factor- β (TGF- β) in advanced canine myxomatous mitral valve disease. Research in Veterinary Science 97, 560-7.
Moesgaard S.G., Falk T., Teerlink T., Guðmundsdóttir H.H., Sigurðardóttir S., Rasmussen C.E. \& Olsen L.H. (2011) Brainnatriuretic peptide and cyclic guanosine monophosphate as biomarkers of myxomatous mitral valve disease in dogs. The Veterinary Journal 189, 349-52.
Moon H.S., Choi E. \& Hyun C. (2008) The cardiac sodium-calcium exchanger gene (NCX-1) is a potential canine cardiac biomarker of chronic mitral valvular insufficiency. Journal of Veterinary Internal Medicine 22, 1360-5.
Moonarmart W., Boswood A., Fuentes V.L., Brodbelt D., Souttar K. \& Elliott J. (2010) N-terminal pro B-type natriuretic peptide and left ventricular diameter independently predict mortality in dogs with mitral valve disease. Journal of Small Animal Practice 51, 8496.

Morris A.P., Voight B.F., Teslovich T.M. et al. (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics 44, 981-90.
Nam S.J., Han S.H., Kim H.W. \& Hyun C. (2010) The cardiac biomarker sodium-calcium exchanger (NCX-1) can differentiate between heart failure and renal failure: a comparative study of NCX-1 expression in dogs with chronic mitral valvular
insufficiency and azotemia: NCX-1 expression in CMVI and azotemic dogs. Journal of Veterinary Internal Medicine 24, 1383-7.
Obayashi, K., Miyagawa-Tomita, S., Matsumoto, H., Koyama, H., Nakanishi, T. \& Hirose, H. (2011) Effects of transforming growth factor- $\beta 3$ and matrix metalloproteinase- 3 on the pathogenesis of chronic mitral valvular disease in dogs. American Journal of Veterinary Research, 72, 194-202.
Olsen L.H., Fredholm M. \& Pedersen H.D. (1999) Epidemiology and inheritance of mitral valve prolapse in dachshunds. Journal of Veterinary Internal Medicine 13, 448-56.
Olsen L.H., Häggström J. \& Petersen H.D. (2010) Acquired valvular heart disease. In: Textbook of Veterinary Internal Medicine: Diseases of the Dog and the Cat (ed. by S. Ettinger \& E. Feldman). Elsevier Saunders, St. Louis, MO. 1299-1319.
Orton E.C., Lacerda C.M.R. \& MacLea H.B. (2012) Signaling pathways in mitral valve degeneration. Journal of Veterinary Cardiology 14, 7-17.
Oyama M.A. \& Chittur S.V. (2006) Genomic expression patterns of mitral valve tissues from dogs with degenerative mitral valve disease. American Journal of Veterinary Research 67, 1307-18.
Oyama M.A., Elliott W.C., Loughran K.A., Kossar A.P., Castillero E., Levy R.J. \& Ferrari G. (2020) Comparative pathology of human and canine myxomatous mitral valve degeneration: 5HT and TGF- β mechanisms. Cardiovascular Pathology 46, 107196.
Parker H.G. \& Kilroy-Glynn P. (2012) Myxomatous mitral valve disease in dogs: does size matter? Journal of Veterinary Cardiology 14, 19-29.
Parker H.G., Shearin A.L. \& Ostrander E.A. (2010) Man's best friend becomes biology's best in show: genome analyses in the domestic dog. Annual Review of Genetics 44, 309-36.
Pedersen D., Lorentzen K.A. \& Kristensen B.Ø. (1999a) Echocardiographic mitral valve prolapse in cavalier King Charles spaniels: epidemiology and prognostic significance for regurgitation. Veterinary Record 144, 315.
Pedersen H.D., Häggström J., Falk T., Mow T., Olsen L.H., Iversen L. \& Jensen A.L. (1999b) Auscultation in mild mitral regurgitation in dogs: observer variation, effects of physical maneuvers, and agreement with color doppler echocardiography and phonocardiography. Journal of Veterinary Internal Medicine 13, 56-64.
Pedersen, H.D. \& Häggström, J. (2000) Mitral valve prolapse in the dog: a model of mitral valve prolapse in man. Cardiovascular Research, 47, 234-43.
Philipp U., Vollmar A., Häggström J., Thomas A. \& Distl O. (2012) Multiple loci are associated with dilated cardiomyopathy in irish wolfhounds. PLoS One 7, e36691.
Post W.S., Larson M.G., Myers R.H., Galderisi M. \& Levy D. (1997) Heritability of left ventricular mass. Hypertension 30, 1025-8.
Quilez J., Short A.D., Martínez V., Kennedy L.J., Ollier W., Sanchez A., Altet L. \& Francino O. (2011) A selective sweep of $>8 \mathrm{Mb}$ on chromosome 26 in the Boxer genome. BMC Genomics 12, 339.
Rabkin E., Aikawa M., Stone J.R., Fukumoto Y., Libby P. \& Schoen F.J. (2001) Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104, 2525-32.
Reimann M.J., Møller J.E., Häggström J., Markussen B., Holen AEW, Falk T., Olsen L.H. \& Sveriges L. (2014) R-R interval variations influence the degree of mitral regurgitation in dogs with myxomatous mitral valve disease. The Veterinary Journal 199, 348-54.

Rusbridge C. (2005) Neurological diseases of the Cavalier King Charles spaniel. Journal of Small Animal Practice 46, 265-72.
Rusbridge C. \& Knowler S.P. (2004) Inheritance of occipital bone hypoplasia (Chiari type I malformation) in Cavalier King Charles Spaniels. Journal of Veterinary Internal Medicine 18, 673-8.
Sáez M.E., González-Pérez A., Hernández-Olasagarre B. et al. (2019) Genome Wide Meta-Analysis identifies common genetic signatures shared by heart function and Alzheimer's disease. Scientific Reports, 9, 16665.
Sams A.J. \& Boyko A.R. (2019) Fine-scale resolution of runs of homozygosity reveal patterns of inbreeding and substantial overlap with recessive disease genotypes in domestic dogs. G3: Genes|Genomes|Genetics 9, 117.
Schurch N.J., Schofield P., Gierliński M. et al. (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA (Cambridge) 22, 839-51.
Serfass P., Chetboul V., Sampedrano C.C., Nicolle A., Benalloul T., Laforge H., Gau C., Hébert C., Pouchelon J.-L. \& Tissier R. (2006) Retrospective study of 942 small-sized dogs: prevalence of left apical systolic heart murmur and left-sided heart failure, critical effects of breed and sex. Journal of Veterinary Cardiology 8, 11-8.
Serres F., Chetboul V., Tissier R., Sampedrano C.C., Gouni V., Nicolle A.P. \& Pouchelon J.-L. (2007) Chordae tendineae rupture in dogs with degenerative mitral valve disease: prevalence, survival, and prognostic factors (114 cases, 2001-2006). Journal of Veterinary Internal Medicine 21, 258-64.
Shariflou M.R., James J.W., Nicholas F.W. \& Wade C.M. (2011) A genealogical survey of Australian registered dog breeds. The Veterinary Journal 189, 203-10.
Shearin A.L., Hedan B., Cadieu E. et al. (2012) The MTAP-CDKN2A locus confers susceptibility to a naturally occurring canine cancer. Cancer Epidemiology Biomarkers and Prevention 21, 101927.

Smith N.L., Felix J.F., Morrison A.C. et al. (2010) Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective metaanalysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. Circulation: Cardiovascular Genetics 3, 256-66.
Stern J.A., Hsue W., Song K.-H., Ontiveros E.S., Fuentes V.L. \& Stepien R.L. (2015) Severity of mitral valve degeneration is associated with chromosome 15 loci in whippet dogs. PLoS One 10, e0141234.
Strawbridge R.J., Dupuis J., Prokopenko I. et al. (2011) Genomewide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60, 2624-34.
Stretch C., Khan S., Asgarian N. et al. (2013) Effects of sample size on differential gene expression, rank order and prediction accuracy of a gene signature. PLoS One 8, e65380.
Strohm L.E., Visser L.C., Chapel E.H., Drost W.T. \& Bonagura J.D. (2018) Two-dimensional, long-axis echocardiographic ratios for assessment of left atrial and ventricular size in dogs. Journal of Veterinary Cardiology 20, 330-42.
Summerfield N. (2018) Simplifying mitral valve disease diagnostics. Practice 40, 7-11.
Summers J.F., O'Neill D.G., Church D.B., Thomson P.C., McGreevy P.D. \& Brodbelt D.C. (2015) Prevalence of disorders recorded in

Cavalier King Charles Spaniels attending primary-care veterinary practices in England. Canine Genetics and Epidemiology 2, 4.
Sun W., Zhao R., Yang Y., Wang H., Shao Y. \& Kong X. (2013) Comparative study of human aortic and mitral valve interstitial cell gene expression and cellular function. Genomics 101, 326-35.
Sutter N.B., Bustamante C.D., Chase K. et al. (2007) A single IGF1 allele is a major determinant of small size in dogs. Science (New York, N.Y.) 316, 112-5.
Sutter N.B., Eberle M.A., Parker H.G., Pullar B.J., Kirkness E.F., Kruglyak L. \& Ostrander E.A. (2004) Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Research 14, 2388-96.
Swenson L., Häggström J., Kvart C. \& Juneja R.K. (1996) Relationship between parental cardiac status in Cavalier King Charles Spaniels and prevalence and severity of chronic valvular disease in offspring. Journal of the American Veterinary Medical Association 208, 2009-12.
Swift S., Baldin A. \& Cripps P. (2017) Degenerative valvular disease in the cavalier King Charles spaniel: results of the UK breed scheme 1991-2010. Journal of Veterinary Internal Medicine 31, 9-14.
Szklarczyk D., Gable A.L., Lyon D. et al. (2018) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 47, D607-13.
Tabibiazar R., Wagner R.A., Liao A. \& Quertermous T. (2003) Transcriptional profiling of the heart reveals chamber-specific gene expression patterns. Circulation Research 93, 1193-201.
Tang R., Noh H.J., Wang D. et al. (2014) Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder. Genome Biology 15, R25-R.
Tarnow I., Kristensen A.T., Olsen L.H. \& Pedersen H.D. (2004) Assessment of changes in hemostatic markers in Cavalier King Charles Spaniels with myxomatous mitral valve disease. American Journal of Veterinary Research 65, 1644-52.
Thalji N.M., Hagler M.A., Zhang H., Casaclang-Verzosa G., Nair A.A., Suri R.M. \& Miller J.D. (2015) Nonbiased molecular screening identifies novel molecular regulators of fibrogenic and proliferative signaling in myxomatous mitral valve disease. Circulation: Cardiovascular Genetics 8, 516-28.
Theocharis A.D., Skandalis S.S., Gialeli C. \& Karamanos N.K. (2016) Extracellular matrix structure. Advanced Drug Delivery Reviews 97, 4-27.
Thrusfield M.V., Aitken C.G.G., \& Darker P.G.G. (1985) Observations on breed and sex in relation to canine heart valve incompetence. Journal of Small Animal Practice 26, 709-17.
Tidholm A., Höglund K., Häggström J., Ljungvall I. \& Sveriges L. (2015) Diagnostic value of selected echocardiographic variables to identify pulmonary hypertension in dogs with myxomatous mitral valve disease. Journal of Veterinary Internal Medicine 29, 1510-7.
Tin A., Colantuoni E., Boerwinkle E., Kottgen A., Franceschini N., Astor B.C., Coresh J. \& Kao W.H.L. (2013) Using multiple measures for quantitative trait association analyses: application to estimated glomerular filtration rate. Journal of Human Genetics 58, 461-6.
Tonomura N., Elvers I., Thomas R. et al. (2015) Genome-wide association study identifies shared risk loci common to two malignancies in golden retrievers. PLoS Genetics 11, 1-24.

Toro-Domínguez D., Villatoro-García J.A., Martorell-Marugán J., Román-Montoya Y., Alarcón-Riquelme M.E. \& Carmona-Sáez P. (2020) A survey of gene expression meta-analysis: methods and applications. Briefings in Bioinformatics 22, 1694-705.
Tsai C.-A., Wang S.-J., Chen D.-T. \& Chen J.J. (2005) Sample size for gene expression microarray experiments \dagger. Bioinformatics 21, 1502-8.
Vasan R.S., Larson M.G., Aragam J. et al. (2007) Genome-wide association of echocardiographic dimensions, brachial artery endothelial function and treadmill exercise responses in the Framingham Heart Study. BMC Medical Genetics 8, S2.
Vaysse A., Ratnakumar A., Derrien T. et al. (2011) Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genetics 7, e1002316.
Vieira M.J., Teixeira R., Gonçalves L. \& Gersh B.J. (2014) Left atrial mechanics: echocardiographic assessment and clinical implications. Journal of the American Society of Echocardiography 27, 463-78.
Voight B.F., Scott L.J., Steinthorsdottir V. et al. (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature Genetics 42, 579-89.
Whitney J.G. \& Whitney J.C. (1974) Observations on the effect of age on the severity of heart valve lesions in the dog. Journal of Small Animal Practice 15, 511-22.
Wilbe M., Truvé K., Andersson G. et al. (2010) Genome-wide association mapping identifies multiple loci for a canine SLErelated disease complex. Nature Genetics 42, 250.
Wild P.S., Felix J.F., Schillert A. et al. (2017) Large-scale genomewide analysis identifies genetic variants associated with cardiac structure and function. The Journal of Clinical Investigation 127, 1798-812.
Yan S., Wong K.C. (2020) GESgnExt: gene expression signature extraction and meta-analysis on gene expression omnibus. IEEE Journal of Biomedical and Health Informatics 24, 311-8.
Yang Q., Chen H., Ye J., Liu C., Wei R., Chen C. \& Huang L. (2019) Genetic diversity and signatures of selection in 15 Chinese indigenous dog breeds revealed by genome-wide SNPs. Frontiers in Genetics 10, 1174.
Yang V.K., Loughran K.A., Meola D.M., Juhr C.M., Thane K.E., Davis A.M. \& Hoffman A.M. (2017) Circulating exosome microRNA associated with heart failure secondary to myxomatous mitral valve disease in a naturally occurring canine model. Journal of Extracellular Vesicles 6, 1350088.
Yang V.K., Tai A.K., Huh T.P., Meola D.M., Juhr C.M., Robinson N.A. \& Hoffman A.M. (2018) Dysregulation of valvular interstitial cell let-7c, miR-17, miR-20a, and miR-30d in naturally occurring canine myxomatous mitral valve disease. PLoS One 13, e0188617.
Zeggini E., Scott L.J., Saxena R. et al. (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature Genetics 40, 638-45.
Zheng J.Y., Chen Y.W., Pat B. et al. (2009) Microarray identifies extensive downregulation of noncollagen extracellular matrix and profibrotic growth factor genes in chronic isolated mitral regurgitation in the dog. Circulation 119, 2086-95.

1.3 Aims of thesis

The broad aim of this thesis is to improve our understand of the genetic basis of MMVD in dogs (Canis lupus familiaris) by utilising the CKCS as a disease model. While the clinical aspects of MMVD are well documented, the genetic mechanisms that drive the development and progression of MMVD and increase the risk of congestive heart failure subsequent to MMVD are poorly understood. Ongoing genomic research into MMVD supports a polygenic mode of inheritance and demonstrates the difficulty of identifying disease risk variants in complex traits. Previous research has highlighted processes and pathways involved in disease development and advancement, but identification of loci and genetic variants that underly disease risk are limited and lack validation. Significant heterogeneity in the onset and rate of progression of MMVD makes the disease difficult to phenotype and can make replicating methods and validating results particularly onerous. Nevertheless, dogs predisposed to MMVD, like the CKCS, represent a valuable resource in the genetic investigation of MMVD.

In this thesis, genomic tools developed for the domestic dog were applied to a population of Australian CKCS with MMVD to improve our understanding of the genetic basis of the disease. The studies described apply bioinformatic tools and approaches to MMVD disease investigation.

Specifically, the aims of each research chapter are as follows:

Chapter 2

- Refine phenotypes to assess the genomics of MMVD (used in chapters 3 and 4) by evaluating the strength of the relationship between frequently used prognostic variables and MMVD.

Chapter 3

- Investigate the association of MMVD and candidate genes elected based on known pathways implicated in the development and progression of MMVD.

Chapter 4

- Map the genetic basis of advancing MMVD and CHF in the CKCS through a genome wide association study, and
- Identify MMVD-associated risk haplotypes and variants.

Chapter 5

- Identify signatures of selection and genomic regions near fixation in the CKCS through genome-wide characterisation of runs of homozygosity, and
- Identify candidate genes and risk variants that contribute to the heightened prevalence of MMVD in the CKCS.

Chapter 2 Refinement of phenotypes to assess the genomics of myxomatous mitral valve disease

2.1 Abstract

Myxomatous mitral valve disease (MMVD) is the most common acquired heart disease in the domestic dog. It is characterised by the progressive degeneration of the mitral valve leaflets. When paired with eccentric cardiac remodelling, MMVD may lead to congestive heart failure (CHF) and premature mortality. Within-breeds the age of onset and rate of progression of MMVD varies such that dogs that present with milder forms of MMVD may eventually die from unrelated causes, while others develop severe CHF. The Cavalier King Charles Spaniel (CKCS) is a breed highly predisposed to MMVD that can experience cases of severe early onset. Genetic studies can highlight pathogenic pathways that are pivotal in understanding MMVD, however accurate phenotyping is difficult due to significant heterogeneity in MMVD progression. The disease is frequently classified by a disease severity score defined by American College of Veterinary Internal Medicine (ACVIM). Echocardiographic measures of left-sided heart enlargement are considered strong predictors of CHF. Measures of left atrium to aortic root ratio (LA/Ao) and weight normalised left ventricular end diastolic diameter (LVIDdn) are strongly recommended in the diagnosis and treatment of MMVD. The main objective of this research was to validate LA/Ao and LVIDdn as predictors of MMVD in an Australian population of CKCS, to facilitate accurate phenotyping of the disease. The outcomes of this research will then be utilised in mapping the genetic basis of severe forms of MMVD using samples within the same cohort.

Anthropometrics and heart condition data were collected from 240 Australian owned CKCS. LA/Ao and LVIDdn were calculated for each sample. Predictors of CHF were assessed using a binary logistic regression analysis. Variable data was then applied to the ACVIM classes using multivariate generalised linear model (GLM). Both logistic regression and GLM were performed in a backwards stepwise manner to assess the strength of predictive variables. Logistic regression analyses identified $\mathrm{LA} / \mathrm{Ao}(\mathrm{OR}=0.76 ; \mathrm{Cl} 1.75-2.078, \mathrm{P}<0.001$) and LVIDdn ($O R=2.13$; $\mathrm{Cl} 1.78-2.67, \mathrm{P}<0.001$) as significant predictors for the development of CHF. Along with age ($\mathrm{OR}=1.05, \mathrm{Cl}=1.04-1.07, \mathrm{P}<0.001$), $\mathrm{LA} / \mathrm{Ao}(\mathrm{OR}=2.37, \mathrm{Cl}=2.03-2.76, \mathrm{P}<0.001$), and LVIDdn ($O R=1.80, C l=1.47-2.21, \mathrm{P}<0.001$) were also significant predictors of advancing MMVD. This research demonstrated the utility of variables, LA/Ao and LVIDdn, to predict the development of CHF and advancing MMVD in a cohort of CKCS. The use of individual echocardiographic and composite measurements to phenotype MMVD offers a great opportunity to accurately model disease severity. Repeatable and objective prognostic variables, like LA/Ao and LVIDdn, are expected to reduce error in phenotyping the disease state and aid in the accuracy of gene mapping studies. Similarly, the use of such measures should improve the reproducibility of phenotyping the disease in future research and aid in meta-analyses.

2.2 Introduction

Myxomatous mitral valve disease (MMVD; OMIA 000654-9615) is the most prevalent cardiovascular disease in dogs (Canis lupus familiaris) and frequent cause of congestive heart failure (CHF) ${ }^{2-4}$. The increased prevalence and severity of MMVD in certain breeds is evidence of a heritable component ${ }^{4-8}$. The Cavalier King Charles Spaniel (CKCS) represents the most dramatically affected breed. Almost all CKCS display signs of being affected with MMVD and many dogs demonstrate early onset with severe prognoses ${ }^{9-13}$. Genetic research can highlight heritable mechanisms driving disease pathogenicity. Given the historical process of breed development, the underlying genomic architecture of dogs is beneficial in mapping heritable traits ${ }^{14-16}$. However, the quality of trait phenotyping is fundamental to successful genetic research.

In dogs, MMVD is phenotypically heterogeneous and has a slow rate of progression permitting some individuals to live long asymptomatic lives that never develop into CHF^{17-19}. Still, for dogs that do develop signs of CHF, the survival period is short, regardless of medical intervention ${ }^{18,20-22}$. Clinical assessment of dogs with MMVD involves grading the severity of disease as the disorder progresses. A staging system developed by the American College of Veterinary Internal Medicine (ACVIM) is frequently used to grade dogs from stage A, at-risk with no signs of MMVD, to end-stage D, dogs with evidence of CHF refractory to treatment ${ }^{1,23}$ (Figure 2.1). Stage B represents a preclinical period of MMVD and is characterised by varying degrees of progression ${ }^{18}$. During this period, evidence of cardiac remodelling might include increased measurements of left atrial and/or left ventricular size; measurements that are associated with the development of CHF and a decreased survival time ${ }^{24-27}$. Due to the variability of symptoms in the preclinical period of MMVD, detection of cardiac remodelling through echocardiography is considered a key diagnostic tool for monitoring the presence and severity of MMVD ${ }^{1,23}$.

Figure 2.1. Classification scheme developed by American College of Veterinary Internal Medicine (ACVIM) ${ }^{1}$. Staging system grades dog on a scale from healthy and predisposed to MMVD to dogs with refractory congestive heart failure. Stage B1 and B2 represent the preclinical period of MMVD where dogs can remain indefinitely or, through eccentric left sided cardiac remodelling, progress into stage C and D with evidence of left sided congestive heart failure. Figure is author's own work created with BioRender.com.

Two routinely used and recommended measures of left atrial and left ventricular size are the left atrium to aortic root ratio (LA/Ao) and left ventricular end diastolic dimension, normalised for body weight (LVIDdn) ${ }^{28-31}$. Increasing values for both measures are associated with reduced survival times in dogs with MMVD ${ }^{26,27,29}$. The diverse nature of disease progression can make the isolation of control samples difficult and to date, identification of MMVD genomic risk loci has been limited ${ }^{32-35}$. We contend that objective, repeatable and reliable prognostic markers like LA/Ao and LVIDdn, can benefit MMVD phenotyping and help in the identification of CHF risk loci.

Given the exceptionally high prevalence of MMVD among small dog breeds, particularly the CKCS, understanding the genetic basis of the disease is of strong interest. Identification of loci governing the contrast between dogs that develop CHF and those that live asymptomatically is key in improving the overall welfare of dogs implicitly affected by MMVD. This study highlights prominent variable measurements associated with MMVD disease progression. We test common measures of left-sided heart enlargement, LA/Ao and LVIDdn, as predictors of MMVD progression and propose that phenotyping by applying these variables may improve genetic risk prediction for MMVD in CKCS.

2.3 Methods and materials

2.3.1 Ethics

Recommendations from the Australian Code for the Care and Use of Animals for Scientific Purposes were adhered to throughout the process of the research described. Animal ethics approval was granted by the Animal Ethics Committee at the University of Sydney (approval numbers 2015/902 and 2018/1449).

2.3.2 Sample collection, Diagnosis and Classification of CHF

Anthropometric and heart condition data were collected by a qualified small animal cardiologist from 240 CKCS from both breeders and private owners across Australia. The diagnosis on MMVD was made at this time. Of the animals observed, 59 were seen on multiple occasions for a total of 337 measurements over a period of four years, between 2014 and 2018. At the time of assessment, CKCS owner consent for the collection of blood samples and the use of acquired data for future research was obtained. The group included dogs that were referred to the University of Sydney Veterinary clinic due to MMVD, were requested to be tested for MMVD by CKCS breeders, and others that were sought out for the study. Diagnosis of MMVD was based on the presence of central characteristics of MMVD including mitral valve thickening, irregularity, prolapse and regurgitation. During echocardiographic assessment, key parameters of left heart size were recorded including left atrium (LA), aortic root (Ao) and left ventricular end diastolic diameter (LVDd). From these parameters, a standardised measurement was created for LA/Ao. LVDd was normalised for weight (LVIDdn =

LVIDd(cm)/weight(kg) $\left.)^{0.294}\right)^{1,36}$. In order to ensure unbiased results, all data was collected under the observation of a single small animal cardiologist. All samples were then grouped based on MMVD severity according to the ACVIM descriptions ${ }^{23}$. Diagnosis of CHF because of MMVD was based on a history of CHF, physical examination (dyspnea and/or tachypnea, abnormal lung sounds, A grade $4 / 6$ systolic murmur and tachycardia), echocardiographic and doppler evidence of cardiac remodelling due to volume overload (severe mitral valve regurgitation and left ventricular filling) or radiographic evidence.

2.3.3 Statistical Analysis

Data were analysed with an intention to phenotype CKCS for inclusion in genetic mapping studies. For this reason, prognostic data were first analysed collectively, to identify the predictive strength of echocardiographic measures in a full model. Data were then split into individual models, for both LA/Ao and LVIDdn, to identify quantitative variables that should be included as covariates in trait specific association analyses. Unless otherwise stated, all statistical analyses were conducted in $\mathrm{R}(\mathrm{v} 3.6 .3)^{37}$. The normality of data was evaluated using the Shapiro-Wilk test. For baseline descriptive results, normally distributed data were presented as mean \pm standard deviation, whereas data without a normal distribution were presented as medians (Interquartile range; IQR). Spearman rank correlation coefficients were generated in a pairwise manner for quantitative variables (ACVIM class, LA/Ao, LVIDdn, Age, and weight) and plotted using R package GGally ${ }^{38}$. Multivariable logistic regression models were used to identify the explanatory variables associated with the development of CHF. Univariable logistic regression was then conducted on individual echocardiographic measures and used to determine a predictive threshold for CHF within the Australian CKCS cohort, by calculating the 0.5 value of the regression intercept ($\beta 0$) and slope ($\beta 1$). Next, a multivariate generalised linear model (GLM) was applied on ACVIM classes. To apply the GLM, ACVIM classes were transformed into numerical categories, with ACVIM A corresponding to 1, ACVIM B1 corresponding to 2 , ACVIM B2 corresponding to 3 , ACVIM C corresponding to 4 and ACVIM D corresponding to 5. Finally, a multivariate GLM was conducted on LA/Ao and LVIDdn (employing age, sex and weight as risk factors), to identify explanatory variables that should be used as covariates in mapping studies. A backwards elimination was applied to all models, dropping variables with low significance ($\mathrm{P}>0.05$).

2.4 Results

2.4.1 Base-line characteristics and correlation analyses

All dogs enrolled in the study are purebred CKCS from breeders or private owners across Australia. A total of 337 measurements (from 240 dogs) were recorded over the study period; baseline characteristics are reported for each ACVIM class (Table 2.1). Briefly, the median (IQR) age of the study cohort was $9.25(7.75,10.83)$ with a bodyweight of $8.70(7.80,9.60)$. The largest proportion of dogs were assigned to class B1 (47\%). A small proportion of the study
cohort (8\%) had no observable signs of MMVD. Four of the 28 dogs that showed no signs of MMVD were assessed at least twice during the study period; none were assigned to class A consistently. Only 3 dogs (2\%) assessed over the age of 10 presented as free from MMVD and were assigned to class A. Fifty-three dogs (6\%) were grouped as ACVIM class C or D, indicating evidence of CHF (Table 2.2). Females were overrepresented in the study group (60\%) and were grouped slightly less in the CHF cohort (42\%). Regarding echocardiographic observations, both LA/Ao and LVIDdn were found to increase with each ACVIM grade. The median and interquartile ranges for LA/Ao and LVIDdn did not overlap between CHF and non-CHF observations. A strong correlation was observed between each pairwise comparison of ACVIM class, Age, LA/Ao and LVIDdn ($\mathrm{r}^{2}>0.138, \mathrm{P}<0.001$) (Figure 2.2). A weaker correlation is reported for weight and ACVIM classification ($r^{2}=0.13, P<0.05$), as well as weight and $L A / A O\left(r^{2}>0.14\right.$, $\mathrm{P}<0.05$).

Table 2.1 Descriptive statistics of dogs included in the study. Samples have been grouped by ACVIM class. Categorical data is presented as a count and proportion (\%). The remaining variables did not fit a normal distribution and are reported as median (IQR).

ACVIM $^{\mathrm{a}}$						
	A	B 1	B 2	C	D	Total
	$(\mathrm{N}=28)$	$(\mathrm{N}=161)$	$(\mathrm{N}=95)$	$(\mathrm{N}=49)$	$(\mathrm{N}=4)$	$(\mathrm{N}=337)$
Male	$9(32)$	$53(33)$	$41(43)$	$28(57)$	$3(75)$	$134(40)$
Female	$19(68)$	$108(67)$	$54(57)$	$21(43)$	$1(25)$	$203(60)$
Age (years)	$5.71(3.33$,	$9.08(7.00$,	$9.58(8.71$,	$9.75(8.75$,	$9.75(8.98$,	$9.25(7.75$,
	$8.00)$	$10.67)$	$11.62)$	$10.67)$	$10.23)$	$10.83)$
Bodyweight	$8.95(7.65$,	$8.40(7.50$,	$9.00(8.00$,	$8.70(7.80$,	$3 ; 10.30$	$8.70(7.80$,
(kg)	$9.20)$	$9.30)$	$10.00)$	$10.60)$	$(9.80,10.55)$	$9.60)$
LA/Ao ${ }^{\text {b }}$	$1.29(1.23$,	$1.34(1.23$,	$1.79(1.61$,	$2.43(2.30$,	$3.11(3.03$,	$1.48(1.29$,
	$1.38)$	$1.42)$	$1.95)$	$2.95)$	$3.27)$	$1.87)$
LVIDdn $^{\text {c }}$	$1.55(1.46$,	$1.63(1.49$,	$1.95(1.77$,	$2.43(2.25$,	$2.91(2.78$,	$1.75(1.58$,
	$1.62)$	$1.74)$	$2.18)$	$2.67)$	$2.93)$	$2.09)$

${ }^{a}$ American College of Veterinary Internal Medicine
${ }^{b}$ Left atrium to aortic root ratio
${ }^{c}$ Weight normalised left ventricular end diastolic diameter

Table 2.2 Descriptive statistics for dogs included in the study presented as non-CHF and CHF samples. Categorical data is presented as a count and proportion (\%). The remaining variables did not fit a normal distribution and are reported as median (IQR).

	Non-CHF $^{\text {a }}(\mathrm{N}=\mathbf{2 8 4})$	$\mathrm{CHF}^{\mathrm{a}}(\mathrm{N}=53)$
Male	$103(36)$	$31(58)$
Female	$181(64)$	$22(42)$
Age (years)	$9.08(7.50,10.83)$	$9.75(8.75,10.58)$
Bodyweight (kg)	$8.51(7.77,9.50)$	$52 ; 8.80(7.88,10.65)$
LA/Ao $^{\text {a }}$	$1.41(1.27,1.63)$	$2.59(2.30,3.00)$
LVIDdn $^{\text {b }}$	$1.69(1.55,1.89)$	$2.47(2.28,2.74)$

${ }^{a}$ Congestive heart failure
${ }^{b}$ Left atrium to aortic root ratio
${ }^{c}$ Weight normalised left ventricular end diastolic diameter

Figure 1.2. Pairwise correlation matrix illustrating the relationship between continuous variable data. The distribution of each variable is plotted as a histogram along the diagonal. Below the diagonal are bivariate scatter plots with a fitted line. Above the diagonal is the result of the Spearman's correlation (r) test with the significance level as stars. ${ }^{* * *} \mathrm{P}<.001,{ }^{* *} \mathrm{P}<.01,{ }^{*} \mathrm{P}<.05$, no stars $\mathrm{P}>.05$. figure created with GGally

2.4.2 Predictive accuracy of echocardiographic variables for the occurrence of CHF

in CKCS

Following backward stepwise elimination of predictive variables, highly correlated echocardiographic measures of left atrial enlargement (LA/Ao) and left ventricular enlargement (LVIDdn) remained the only significant predictors of CHF secondary to MMVD (Table 2.3) ($r>0.71, \mathrm{P}<0.001$). A univariate analysis of both variables was then conducted. Both LA/Ao (OR=0.76; Cl 1.75-2.078, $\mathrm{P}<0.001$) and LVIDdn ($\mathrm{OR}=2.13$; $\mathrm{Cl} 1.78-2.67, \mathrm{P}<0.001$) remained significant predictors of CHF secondary to MMVD. By means of the β coefficients from the fitted models in the univariate analyses, we determined a predictive threshold for CHF for each echocardiographic measure. We suggest cut-offs of LA/Ao>2.36 and LVIDdn>2.39 for prediction of CHF in our sample population (Figure 2.3).

Figure 2.3 Fitted Logistic regression model for CHF using echocardiographic measures as a predictive variable. (a) Left atrium to aortic root ratio (LA/Ao) (b) Weight normalised left ventricular end diastolic diameter (LVIDdn). Data points at the top and bottom of the plot represent the true echocardiographic measures for CKCS used in the Logistic model. Fitted values are marked along the regression curve with an X. The dashed red line running vertically along the X axis represents the predictive threshold for CKCS with CHF; 2.36 and 2.39 for LA/Ao and LVIDdn respectively.

Table 2.3 Logistic regression analysis following backward elimination of non-significant variables identifies echocardiographic measures as the only significant predictors of congestive heart failure. This table includes results from three analyses, one multivariate (MV) analysis to assess all predictors and two univariate (UV) analyses, one on each echocardiographic variable, left atrium to aortic root ration (LA/Ao) and weight normalised left ventricular end diastolic diameter (LVIDdn). Echocardiographic variables associated with the left-sided heart enlargement are the only significant predictors of CHF secondary to MMVD. OR, odds ratio; CI, confidence intervals; MV, Multivariate model; UV; Univariate model; significance levels *** $\mathrm{P}<.001,{ }^{* *} \mathrm{P}<.01,{ }^{*} \mathrm{P}<.05$, no stars $\mathrm{P}>.05$

Model	Variable	β coefficient	SE	OR	$\mathrm{Cl}(2.5 \%)$	$\mathrm{Cl}(97.5 \%)$	P
MV	(Intercept)	-17.0	2.50				$1.09 \times 10^{-11 * * *}$
MV	LA/Ao	3.85	0.89	1.47	1.25	1.78	$1.59 \times 10^{-05 * * *}$
MV	LVIDdn $^{\mathrm{b}}$	3.61	1.21	1.44	1.15	1.87	$0.00288^{* *}$
UV	(Intercept)	-12.73	1.61				$3.12 \times 10^{-15 * * *}$
UV	LA/Ao	5.62	0.76	1.75	1.54	2.08	$2.03 \times 10^{-13 * * *}$
UV	(Intercept)	-17.61	2.30	-7.65			$1.95 \times 10^{-14 * * *}$
UV	LVIDdn $^{\text {b }}$	7.56	1.03	2.13	1.78	2.67	$2.09 \times 10^{-13 * * *}$

${ }^{a}$ American College of Veterinary Internal Medicine
${ }^{\text {b }}$ Left atrium to aortic root ratio
${ }^{\text {c }}$ Weight normalised left ventricular end diastolic diameter

2.4.3 Predictive accuracy of variables for grading MMVD progression

Linear regression was conducted on three dependant variables ACVIM, LA/Ao and LVIDdn (Table 2.4). For all three regression analyses, the sex of the CKCS was not a strong predictor of outcomes. When utilising the ACVIM staging system as the dependant variable, all other variables were significant predictors of incrementing ACVIM classes, however Age (OR=1.05, $\mathrm{Cl}=1.04-1.07, \mathrm{p}<0.001$), LAAO ($\mathrm{OR}=2.37, \mathrm{Cl}=2.03-2.76, \mathrm{p}<0.001$), and LVIDdn(OR=1.80, $\mathrm{Cl}=1.47-2.21, \mathrm{P}<0.001$) had a much stronger level of significance when compared to bodyweight ($\mathrm{OR}=1.03, \mathrm{Cl}=1.01-1.06, \mathrm{p}<0.05$). A reduced significance for bodyweight in advancing disease was supported by exclusion of the measure as a predictive variable when modelling MMVD using LA/Ao and LVIDdn as the response variable. Consistent with the expectation, age was a strong predictor of advancing MMVD across all analyses.

Table 2.4 Final results of linear regression analysis following backwards elimination of nonsignificant variables. Linear regression was used to identify variable that are strongly associated with advancing myxomatous mitral valve disease as modelled by graded disease (ACVIM) and left-sided heart enlargement (LA/Ao \& LVIDdn). Age was strongly associated to disease severity in all models. OR, odds ratio; Cl, confidence intervals; significance levels *** $\mathrm{P}<.001,{ }^{* *} \mathrm{P}<.01,{ }^{*} \mathrm{P}<.05$, no stars $\mathrm{P}>.05$

Model	Variable	β coefficient	SE	OR	$\mathrm{Cl}(2.5 \%)$	$\mathrm{Cl}(97.5 \%)$	P
ACVIM $^{\text {a }}$	(Intercept)	-0.79	0.185903				$2.89 \times 10-05 * * *$
ACVIM $^{\text {a }}$	Age	0.05	0.009334	1.05	1.04	1.07	$3.36 \times 10^{-08 * * *}$
ACVIM $^{\text {a }}$	LA/Ao $^{\text {b }}$	0.86	0.078402	2.37	2.03	2.76	$2.00 \times 10^{-16 * * *}$
ACVIM $^{\text {a }}$	LVIDdn $^{\text {c }}$	0.59	0.104154	1.80	1.47	2.21	$3.51 \times 10^{-08 * * *}$
ACVIM $^{\text {a }}$	Bodyweight	0.033	0.014315	1.03	1.01	1.06	0.0232^{*}
LA/Ao $^{\text {b }}$	(Intercept)	1.43	0.10236				$<2 \times 10^{-16 * * *}$
LA/Ao $^{\text {b }}$	Age	0.03	0.01078	1.03	1.01	1.05	$0.0112^{* *}$
LVIDdn c	(Intercept)	1.58	0.076579				2.00×10^{-16}
LVIDdn $^{\text {c }}$	Age	0.03	0.008062	1.03	1.02	1.05	0.000142^{*}

${ }^{\text {a }}$ American College of Veterinary Internal Medicine
${ }^{\text {b }}$ Left atrium to aortic root ratio
${ }^{c}$ Weight normalised left ventricular end diastolic diameter

2.5 Discussion

We evaluated the prognostic significance and predictive capacity of common echocardiographic measures of heart enlargement in CKCS with MMVD. This research identified key characteristics for phenotyping MMVD in CKCS for the purpose of genetic mapping studies. Our modelling efforts identified predictive variables, or risk factors, of advancing MMVD that should be incorporated into phenotypic modelling efforts. We found that echocardiographic measures LA/Ao and LVIDdn are highly correlated in the study population and that both measures are significant predictors of CHF. We propose these measures should be used in a continuous variable genome-wide association analysis, correcting for age. The studied population presented with typical characteristics of MMVD reported within literature, in that most dogs were of medium age, had standard bodyweight, and showed evidence of mitral regurgitation ${ }^{5,7,8}$. A heart murmur was evident in 98% of dogs over ten years of age. This is a distinctive feature of the CKCS, where virtually all geriatric dogs show signs of MMVD ${ }^{7,9,10,39}$. While evidence of cardiac remodelling was substantial, far fewer CKCS (16\%) were symptomatic for CHF. The ability to identify key clinical features that can be used to differentiate asymptomatic dogs with MMVD from those that develop CHF is of key interest for improving dog wellbeing.

Continuous variable GWAS can be applied to phenotypically diverse traits for the identification of quantitative trait loci. The development of MMVD is not strictly quantitative in that some dogs can develop the disease while others do not. However, the prevalence of the disease,
particularly in small breeds, is widespread and heterogenous in the rate of progression and endpoint of disease ${ }^{17-19}$. The ACVIM grading system developed to diagnose and treat affected dogs emphasises the use of echocardiographic measures for the accurate classification of disease severity ${ }^{1}$. The results presented here are in favour of this outlook. As echocardiographic measures are a major tool for clinically evaluating MMVD, measures like LA/Ao and LVIDdn are frequently reported in a clinical context. This is ideal for the future of MMVD mapping research as the measures are readily applied to a continuous variable GWAS.

Strong artificial selection for breed-defining phenotypes has increased the prevalence of major-effect loci in the dog, evident by the few quantitative trait loci that govern diverse traits including chondrodysplasia ${ }^{40,41}$, tail curvature ${ }^{42}$, ears shape ${ }^{42-44}$, coat texture ${ }^{45,46}$ and body size ${ }^{42,44,46-49}$. Despite the complexity of MMVD, a role of large-effect loci is indicated in the CKCS by the successful reduction of disease prevalence when selecting against severe disease in a regional population ${ }^{50}$. This makes GWAS a promising approach for identifying a genetic basis for severe forms of the disease. The use of quantitative measures, like LA/Ao and LVIDdn, are critical in accurately phenotyping complex diseases. This is because quantitative measures allow for fine scaling and ranking of individuals that is not possible when phenotyping animals in a graded manner. An example of this in canine health research is the benefit of using PennHIP distraction index, a quantitative measure, over the Orthopaedic Foundation hip joint scoring system due to its greater accuracy in detection and prediction of canine hip dysplasia ${ }^{51-}$ ${ }^{53}$. It has been suggested that application of echocardiographic variables of MMVD can benefit modelling by minimising the difficulty in identifying a perfect within-breed control cohort ${ }^{34,54}$. The result of this research supports the use of LA/Ao and LVIDdn as quantitative variables in MMVD mapping analyses whilst also proposing a threshold for classifying samples as cases in a CHF-GWAS.

Dogs with eccentric left-sided cardiac remodelling are at an increased risk of developing CHF and have a reduction in survival period ${ }^{10,18,24-27}$. To monitor disease progression, the ACVIM guidelines recommend echocardiographic detection of left-sided cardiac remodelling, via increasing LA and LV measures, for the identification and classification of subclinical dogs with MMVD ${ }^{28-31}$. Here, we assessed two echocardiographic measures, LA/Ao and LVIDdn, that were highly correlated with one another and ACVIM grade. Both measures are strong predictors of graded disease and the development of CHF as diagnosed by certified cardiologist based on evidence of left ventricular filling and volume overload. Univariate analysis of echocardiographic measures suggests that for every 0.1 unit increase in LA/Ao or LVIDdn, CKCS have 1.75 or 2.73 increased odds of developing CHF, respectively. To forecast the development of CHF in mapping efforts, we suggest the use of predictive thresholds 2.36 and 2.39 for LA/Ao and LVIDdn respectively. We predict that using these thresholds to define cases and controls in genome-wide association study will aid in the identification CHF-risk loci.

A distinct relationship between age and progression of MMVD is well documented 11,12,55-59. However, while CHF is expected to occur more frequently in dogs above eight years of age ${ }^{18}$,
age itself is not a significant predictor of mortality or development of $\mathrm{CHF}^{25,60,61}$. This research identified age as a significant predictor for the progression of MMVD through ACVIM grades and for increasing measures of LA/Ao and LVIDdn. However, irrespective of the increasing severity of MMVD in mature dogs, our data established that age is a poor predictor for the development of CHF in the studied population.

Previous research proposes that the prevalence, age of onset, rate of progression and chances of early mortality is higher in male dogs ${ }^{7,8,55,58}$. CKCS-specific research has indicated that for males there is evidence of earlier onset, more rapid progression through ACVIM grades and more frequent heart chamber enlargement ${ }^{11,62}$. A recent study in CKCS reported higher values of LA/Ao and LVIDdn in male dogs, which were common measurements considered in this research ${ }^{62}$. However, even though females were overrepresented in our study cohort (60\%) and made up a smaller part of CHF samples (42\%), our results were contrary to those reported and suggested a low predictive value of sex for all models.

On initiation of the research project, dogs were assessed specifically for echocardiographic measures recommended for treatment of severe MMVD ${ }^{26}$, and for use in a genetic mapping study. As such, LA/Ao and LVIDdn, two strong predictors of left-sided heart enlargement, were picked to be reported. However, LA/Ao and LVIDdn are just two of many echocardiographic measures. Our results are highly representative of the academic cohort and our intention is not to suggest the use of these measurements over any other but rather highlight strength and predictive power of these common variables within the study population. While we were able to limit biases created using multiple clinicians, the collection of samples was not consecutive and thus some selection biases may have occurred. Our study included a disproportionate number of females compared to males and may reflect a greater participation from breeders compared to private owners. As the study was not of a retrospective design, medications known to aid in the progression of MMVD were not withheld from dogs or documented throughout the analysis and thus we could not predict an effect of this variable on outcomes. Finally, the main limitation of this research is the uneven number of dogs assigned to each ACVIM class. Through the study period and generally reflective of disease, dogs with no signs of MMVD (ACVIM A) and dogs in more advanced stages of MMVD (ACVIM C and D) were less frequently identified. In this regard, though the models showed a strong fit, the presence of statistical type II errors cannot be ruled out. Increasing subjects for each grade would have benefited outcomes.

This research demonstrates utility of variables, LA/Ao and LVIDdn, to predict the progression of MMVD through the various stages of disease progression as well as those likely to develop CHF. The predictive thresholds determined can be applied to better assess case-control status for genome-wide association analysis. Other key prognostic variables, particularly age, should be used as covariates for association analysis of quantitative traits LA/Ao and LVIDdn.

2.6 References

1 Keene, B. W. et al. ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. J Vet Intern Med 33, 1127-1140, doi:10.1111/jvim. 15488 (2019).
2 Detweiler, D. K. \& Patterson, D. F. The prevalence and types of cardiovascular disease in dogs. Ann N Y Acad Sci 127, 481-516, doi:10.1111/j.1749-6632.1965.tb49421.x (1965).

3 Olsen, L. H., Häggström, J. \& Petersen, H. D. in Textbook of veterinary internal medicine: diseases of the dog and the cat (eds S. Ettinger \& E. Feldman) Ch. 250, (Elsevier Saunders, 2010). insured Swedish dogs from 1995-2000: II. Breed-specific age and survival patterns and relative risk for causes of death. Acta Vet Scand 46, 121-136, doi:10.1186/1751-0147-46-121 (2005).
5 Borgarelli, M. et al. Comparison of primary mitral valve disease in German Shepherd dogs and in small breeds. J Vet Cardiol 6, 27-34, doi:10.1016/S1760-2734(06)70055-8 (2004).

Fleming, J. M., Creevy, K. E. \& Promislow, D. E. Mortality in north american dogs from 1984 to 2004: an investigation into age-, size-, and breed-related causes of death. J Vet Intern Med 25, 187-198, doi:10.1111/j.1939-1676.2011.0695.x (2011).
7 Serfass, P. et al. Retrospective study of 942 small-sized dogs: Prevalence of left apical systolic heart murmur and left-sided heart failure, critical effects of breed and sex. J Vet Cardiol 8, 11-18, doi:10.1016/j.jvc.2005.10.001 (2006). relation to canine heart valve incompetence. Journal of Small Animal Practice 26, 709717, doi:10.1111/j.1748-5827.1985.tb02199.x (1985). spaniels: 95 cases (1987-1991). J Am Vet Med Assoc 203, 1023-1029 (1993).
10 Chetboul, V. et al. [Epidemiological, clinical, echo-doppler characteristics of mitral valve endocardiosis in Cavalier King Charles in France: a retrospective study of 451 cases (1995 to 2003)]. Can Vet J 45, 1012-1015 (2004).
11 Lewis, T., Swift, S., Woolliams, J. A. \& Blott, S. Heritability of premature mitral valve disease in Cavalier King Charles spaniels. Vet J 188, 73-76, doi:10.1016/j.tvjl.2010.02.016 (2011).
12 Mattin, M. J. et al. Prevalence of and risk factors for degenerative mitral valve disease in dogs attending primary-care veterinary practices in England. J Vet Intern Med 29, 847-854, doi:10.1111/jvim. 12591 (2015).
13 Swift, S., Baldin, A. \& Cripps, P. Degenerative Valvular Disease in the Cavalier King Charles Spaniel: Results of the UK Breed Scheme 1991-2010. J Vet Intern Med 31, 9-14, doi:10.1111/jvim. 14619 (2017).
14 Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803-819, doi:10.1038/nature04338 (2005).
15 Sutter, N. B. et al. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res 14, 2388-2396, doi:10.1101/gr. 3147604 (2004).

Gray, M. M. et al. Linkage disequilibrium and demographic history of wild and domestic canids. Genetics 181, 1493-1505, doi:10.1534/genetics.108.098830 (2009).
17 Atkins, C. E. et al. Results of the veterinary enalapril trial to prove reduction in onset of heart failure in dogs chronically treated with enalapril alone for compensated, naturally occurring mitral valve insufficiency. J Am Vet Med Assoc 231, 1061-1069, doi:10.2460/javma.231.7.1061 (2007).
18 Borgarelli, M. et al. Survival characteristics and prognostic variables of dogs with mitral regurgitation attributable to myxomatous valve disease. J Vet Intern Med 22, 120-128, doi:10.1111/j.1939-1676.2007.0008.x (2008).
Kvart, C. et al. Efficacy of enalapril for prevention of congestive heart failure in dogs with myxomatous valve disease and asymptomatic mitral regurgitation. J Vet Intern Med 16, 80-88, doi:10.1111/j.1939-1676.2002.tb01610.x (2002).
Atkins, C. E. et al. Effects of long-term administration of enalapril on clinical indicators of renal function in dogs with compensated mitral regurgitation. J Am Vet Med Assoc 221, 654-658, doi:10.2460/javma.2002.221.654 (2002).
21 Borgarelli, M. et al. Survival characteristics and prognostic variables of dogs with preclinical chronic degenerative mitral valve disease attributable to myxomatous degeneration. J Vet Intern Med 26, 69-75, doi:10.1111/j.1939-1676.2011.00860.x (2012).

Haggstrom, J. et al. Effect of pimobendan or benazepril hydrochloride on survival times in dogs with congestive heart failure caused by naturally occurring myxomatous mitral valve disease: the QUEST study. J Vet Intern Med 22, 1124-1135, doi:10.1111/j.19391676.2008.0150.x (2008).

Atkins, C. et al. Guidelines for the diagnosis and treatment of canine chronic valvular heart disease. J Vet Intern Med 23, 1142-1150, doi:10.1111/j.1939-1676.2009.0392.x (2009).

24 Lord, P., Hansson, K., Kvart, C. \& Haggstrom, J. Rate of change of heart size before congestive heart failure in dogs with mitral regurgitation. J Small Anim Pract 51, 210218, doi:10.1111/j.1748-5827.2010.00910.x (2010).
25 Reynolds, C. A. et al. Prediction of first onset of congestive heart failure in dogs with degenerative mitral valve disease: the PREDICT cohort study. J Vet Cardiol 14, 193-202, doi:10.1016/j.jvc.2012.01.008 (2012).
26 Boswood, A. et al. Effect of Pimobendan in Dogs with Preclinical Myxomatous Mitral Valve Disease and Cardiomegaly: The EPIC Study-A Randomized Clinical Trial. J Vet Intern Med 30, 1765-1779, doi:10.1111/jvim. 14586 (2016).
27 Hezzell, M. J., Boswood, A., Moonarmart, W. \& Elliott, J. Selected echocardiographic variables change more rapidly in dogs that die from myxomatous mitral valve disease. J Vet Cardiol 14, 269-279, doi:10.1016/j.jvc.2012.01.009 (2012).
28 Boswood, A. Improving outcomes of myxomatous mitral valve disease in dogs. In Practice 40, 12-15, doi:10.1136/inp.k915 (2018).
29 Boswood, A. et al. Longitudinal Analysis of Quality of Life, Clinical, Radiographic, Echocardiographic, and Laboratory Variables in Dogs with Preclinical Myxomatous Mitral Valve Disease Receiving Pimobendan or Placebo: The EPIC Study. J Vet Intern Med 32, 72-85, doi:10.1111/jvim. 14885 (2018).
Gordon, S. G., Saunders, A. B. \& Wesselowski, S. R. Asymptomatic Canine Degenerative Valve Disease: Current and Future Therapies. Vet Clin North Am Small Anim Pract 47, 955-975, doi:10.1016/j.cvsm.2017.04.003 (2017).

31 Summerfield, N. Simplifying mitral valve disease diagnostics. In Practice 40, 7-11, doi:10.1136/inp.k912 (2018). cardiac status in Cavalier King Charles Spaniels and prevalence and severity of chronic valvular disease in offspring. Journal of the American Veterinary Medical Association 208, 2009-2012 (1996).
40 Brown, E. A. et al. FGF4 retrogene on CFA12 is responsible for chondrodystrophy and intervertebral disc disease in dogs. Proc Natl Acad Sci U S A 114, 11476-11481, doi:10.1073/pnas. 1709082114 (2017).
41 Parker, H. G. et al. An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 325, 995-998, doi:10.1126/science. 1173275 (2009).
Vaysse, A. et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet 7, e1002316, doi:10.1371/journal.pgen. 1002316 (2011).
43 Boyko, A. R. et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 8, e1000451, doi:10.1371/journal.pbio. 1000451 (2010).
44 Jones, P. et al. Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics 179, 1033-1044, doi:10.1534/genetics.108.087866 (2008).
Cadieu, E. et al. Coat variation in the domestic dog is governed by variants in three genes. Science 326, 150-153, doi:10.1126/science. 1177808 (2009).
46 Hayward, J. J. et al. Complex disease and phenotype mapping in the domestic dog. Nat Commun 7, 10460, doi:10.1038/ncomms10460 (2016).
47 Plassais, J. et al. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat Commun 10, 1489, doi:10.1038/s41467-019-09373-w (2019).
48 Rimbault, M. et al. Derived variants at six genes explain nearly half of size reduction in dog breeds. Genome Res 23, 1985-1995, doi:10.1101/gr.157339.113 (2013).
Sutter, N. B. et al. A single IGF1 allele is a major determinant of small size in dogs. Science 316, 112-115, doi:10.1126/science. 1137045 (2007).

50 Birkegard, A. C. et al. Breeding Restrictions Decrease the Prevalence of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniels over an 8- to 10-Year Period. J Vet Intern Med 30, 63-68, doi:10.1111/jvim. 13663 (2016).
51 Haney, P. S. et al. Effectiveness of PennHIP and Orthopedic Foundation for Animals measurements of hip joint quality for breeding selection to reduce hip dysplasia in a population of purpose-bred detection dogs. J Am Vet Med Assoc 257, 299-304, doi:10.2460/javma.257.3.299 (2020).
52 Leighton, E. A. et al. Genetic improvement of hip-extended scores in 3 breeds of guide dogs using estimated breeding values: Notable progress but more improvement is needed. PLoS One 14, e0212544, doi:10.1371/journal.pone. 0212544 (2019).
53 Powers, M. Y. et al. Evaluation of the relationship between Orthopedic Foundation for Animals' hip joint scores and PennHIP distraction index values in dogs. J Am Vet Med Assoc 237, 532-541, doi:10.2460/javma.237.5.532 (2010).
54 O'Brien, M. J., Beijerink, N. J. \& Wade, C. M. Genetics of canine myxomatous mitral valve disease. Anim Genet, doi:10.1111/age. 13082 (2021).
55 Egenvall, A., Bonnett, B. N. \& Häggström, J. Heart Disease as a Cause of Death in Insured Swedish Dogs Younger Than 10 Years of Age. Journal of Veterinary Internal Medicine 20, 894-903, doi:10.1111/j.1939-1676.2006.tb01803.x (2006).
56 Haggstrom, J., Hansson, K., Kvart, C. \& Swenson, L. Chronic valvular disease in the cavalier King Charles spaniel in Sweden. Vet Rec 131, 549-553 (1992).
57 Pedersen, H. D. et al. Auscultation in mild mitral regurgitation in dogs: observer variation, effects of physical maneuvers, and agreement with color Doppler echocardiography and phonocardiography. J Vet Intern Med 13, 56-64, doi:10.1111/j.1939-1676.1999.tb02166.x (1999).
58 Serres, F. et al. Chordae tendineae rupture in dogs with degenerative mitral valve disease: prevalence, survival, and prognostic factors (114 cases, 2001-2006). J Vet Intern Med 21, 258-264, doi:10.1892/0891-6640(2007)21[258:ctridw]2.0.co;2 (2007).
Whitney, J. C. Observations on the effect of age on the severity of heart valve lesions in the dog. J Small Anim Pract 15, 511-522, doi:10.1111/j.1748-5827.1974.tb06529.x (1974).

60 Kim, J. H. \& Park, H. M. Usefulness of conventional and tissue Doppler echocardiography to predict congestive heart failure in dogs with myxomatous mitral valve disease. J Vet Intern Med 29, 132-140, doi:10.1111/jvim. 12466 (2015).
61 Boswood, A. et al. Temporal changes in clinical and radiographic variables in dogs with preclinical myxomatous mitral valve disease: The EPIC study. J Vet Intern Med 34, 11081118, doi:10.1111/jvim. 15753 (2020).
62 Bagardi, M. et al. Echocardiographic Evaluation of the Mitral Valve in Cavalier King Charles Spaniels. Animals (Basel) 10, doi:10.3390/ani10091454 (2020).

Chapter 3: Candidate gene analysis of myxomatous mitral valve diseases in Cavalier King Charles Spaniels

3.1 Abstract

Myxomatous mitral valve disease (MMVD) is the most frequent cause of cardiac morbidity and mortality in the dog. Though little is known about the underlying aetiology of the disease, breed-specific characteristics and prevalence suggest that there is a significant genetic basis. Breeds with a high prevalence for the disease, like the Cavalier King Charles Spaniel (CKCS), offer a tremendous opportunity to uncover genetic components contributing to the disease aetiology. Multiple studies from various breeds have been conducted that highlight potential loci associated with MMVD traits, but to date researchers have neither described or validated variants with a putative functional role. Outside of attempts to map genetic components of disease, multiple studies have been conducted that assess the expression of genes and proteins in healthy dogs and those with advancing MMVD. This field of research has highlighted genes and signalling pathways expected to contribute to disease pathogenesis. Gene families and signalling pathways observed consistently across expression studies can help inform hypothesis-based research. Using evidence of several pathways implicated in MMVD disease progression, this research developed a list of candidate genes to test for association with MMVD phenotypes. In this chapter genes were selected from the transforming growth factor Beta (TGF- β), serotonergic signalling, extracellular matrix and calcium signalling pathways. Using genotype data from 178 CKCS, genomic markers within 500 kilobases of candidate genes were extracted and tested for association with the development of congestive heart failure and echocardiographic measures of left-sided cardiac remodelling, LA/Ao and LVIDdn. Haplotype analysis was conducted in the vicinity of single nucleotide variants that passed the genome-wide significant threshold. Using five whole genome sequenced CKCS, variants were assessed for putative functional effects. A genome-wide significant signal was observed within the vicinity of candidate gene GNG7. Further analysis failed to indicate genetic causation in GNG7 or any of the other genes investigated in the dogs studied.

3.2 Introduction

Myxomatous mitral valve disease (MMVD; OMIA 000654-9615) is the most frequently reported cardiac disease in dogs (Canis lupus familiaris) and the most common pathophysiological cause of congestive heart failure (CHF) ${ }^{1-3}$. The condition begins with the myxomatous degeneration of valvular leaflets and increasing deformation of the valves allows backflow of blood (mitral valve regurgitation) ${ }^{4,5}$. As the condition progresses, signs of secondary fibrosis, eccentric hypertrophy and left sided volume overload can occur ${ }^{6,7}$. In severe cases, disease results in mortality due to left-sided $\mathrm{CHF}^{6,7}$. MMVD has a pedigree related
disease susceptibility and increasing prevalence with age ${ }^{8-10}$. No breed is more outstandingly affected than the Cavalier King Charles Spaniel (CKCS) ${ }^{11-16}$.

MMVD is a heterogeneous condition. Given the prevalence of MMVD in the canine population, there is a significant lack of information regarding the genetic basis of disease pathogenesis and progression ${ }^{17,18}$. Although the genetic aetiology of MMVD is unknown, there is a consensus in literature to support a process whereby valvular cells undergo phenotypic transformation, resulting in remodelling of the extracellular matrix (ECM) ${ }^{5,19-23}$. This finding is generally supported by differential expression of ECM genes and proteins in disease valves compared to unaffected valves (Chapter 1. Table 1). Transforming growth factor Beta (TGF- β) and serotonergic signalling pathways represent convincingly hypothesised effectors of ECM remodelling ${ }^{4,17,24-28}$. Genes in these signalling pathways represent candidates for the pathogenesis of MMVD and advancing disease.

Myocardial dysfunction is not a direct consequence of MMVD but is observable in dogs with advancing disease, especially in late stages ${ }^{29-32}$. Left ventricular systolic dimensions have been associated with long-term mortality rates in the CKCS and it has been hypothesised that the breed suffers from systolic dysfunction at an early age ${ }^{33}$. Recently, calcium signalling was identified as a top canonical pathway in the CKCS^{34}. Genes within this pathway were significantly down-regulated when compared to both healthy and affected mitral valves from other dog breeds ${ }^{34}$. It is possible that genes in the calcium signalling pathway exacerbate MMVD, promote an advancement towards CHF or stimulate early onset in the CKCS.

The current study was conducted with the purpose of discovering genetic loci that increase the risk of CHF in CKCS with MMVD using a candidate gene approach. We focused on candidate genes from pathways implicated in the development and progression of MMVD, namely the TGF-beta signalling, seratogenic signalling, ECM-receptor interaction and calcium signalling pathways.

3.3 Methods and materials

3.3.1 Ethics, clinical diagnosis and sample collection

As previously described (Chapter 2.2.1), all recommendations from the Australian Code for the Care and Use of Animals for Scientific Purposes were adhered to. This study included 178 Australian owned CKCS. Informed consent was obtained from the owners of the CKCS for collection of blood samples and the use of acquired data throughout this study. A diagnosis on the presence of MMVD was made by a small animal cardiologist as presented in the methodology of Chapter 2 (Chapter 2.2.2).

3.3.2 Genotyping and next generation sequencing of samples

Genomic DNA was extracted using the PureLink Genomic DNA Mini Kit (Invitrogen, Hilden, Germany), or submitted to the genotyping service provider as whole blood on Whatman Flinders Technology Associates (FTA) cards provided by the genotyping service provider. Genotyping array data were obtained from the Illumina CanineHD BeadChip (Illumina, San Diego, CA) by Neogen (Lincoln, NE USA).

Approximately $5 \mu \mathrm{~g}$ of DNA from three CKCS included in the analysis was submitted for library preparation and whole genome sequencing at the Australian Genome Research Facility (AGRF; University of Queensland, Brisbane, Australia). Illumina paired-end libraries were prepared and sequenced with 150 paired-end reads (55-56x coverage). A further two CKCS, available through Sequence Read Archive (SRA) were also obtained for use in this research (SRX4035783 and SRX4035784; 28x and 30x coverage respectively).

3.3.3 Population structure

Quality control was carried out on all samples using PLINK 1.935. SNPs were excluded with a minor allele frequency (MAF, --maf) of less than 0.1 and a genotyping call rate (--geno) less than 90%. We identified all possible duplicate samples based on pairwise genetic distances (-genome) and excluded one sample from each pair with an identity by descent (IBD) estimate greater than 0.65 . Population stratification was evaluated using a multidimensional scaling (MDS) plot with two dimensions (--mds).

3.3.4 Selection of candidate genes

Kyoto Encyclopedia of Genes and Genomes (KEGG), is a public resource and collection of databases representing biological systems ${ }^{36}$. Utilising the KEGG pathways database, a list of candidate genes from signalling pathways that have been implicated in MMVD pathogenesis and progression was developed. Given the extensive linkage disequilibrium observed in dogs, genomic markers 500 kilobases (kb) upstream and downstream of candidate genes on the genotyping array were extracted and used in a candidate gene association analysis ${ }^{37}$.

3.3.5 Candidate gene association and haplotype analysis

Testing for association between severe MMVD and markers on the canine genotyping array was performed using Efficient Mixed-Model Association eXpedited (EMMAX) ${ }^{38}$ software. The EMMAX model implements a standard linear mixed model approach with a single phenotype, correcting for stratification using a kinship matrix. The top principal component, based on variance-standardised relationship matrix in Plink (--pca), was included as a covariate to control
for any remaining cryptic relatedness. Association analyses to identify loci and genes associated with severe MMVD was performed on three MMVD phenotypes; LA/Ao, LVIDdn and CHF. For echocardiographic measures, LA/Ao and LVIDdn, a quantitative trait analysis was conducted on each measure. Given the strong association between age and left atrial enlargement (Chapter 2.4.3), age was included as a covariate. A case-control model was used to test for association of CHF and markers on the genotyping array, using left atrial enlargement as a covariate. LA/Ao and LVIDdn are highly correlated ($r>0.8, \mathrm{P}<0.001$; Chapter 2.4.1). As such LA/Ao, the strongest predictor of CHF (Chapter 2.4.2), was included as a covariate. Dogs were included as cases in the case-control association if they had been diagnosed with CHF by small animal cardiologist or if their left ventricular echocardiographic measures were indicative of heart failure according to logistic analysis; LA/Ao> 2.36 Or LVIDdn >2.4 (Chapter 2.4.2), hereon referred to as CHF samples. To control for the testing of multiple hypotheses, significant and suggestive thresholds were Bonferroni-corrected, $3.22 \times 10^{-}$ ${ }^{6}$ (Bonferroni cut-off of $\alpha=0.05, \mathrm{n}=15,545$) and 4.25×10^{-5} (Bonferroni cut-off of $\alpha=1.0$, $\mathrm{n}=15,545$), respectively. For loci passing a significant threshold haplotype analysis was conducted using HAPLOVIEW (v4.2) ${ }^{39}$. CHF-associated haplotype blocks were examined in all CKCS individuals and were defined using the four-gamete rule ${ }^{40}$.

3.3.6 Risk variant discovery and annotation

WGS CKCS were aligned to the CanFam3.1 reference genome using Burrows-Wheeler Alignment (BWA) mem version 0.7.15 ${ }^{41}$, with default parameters for paired-end sequencing. Indel realignments and base quality score recalibration was performed using Genome Analysis Toolkit (GATK) version 3.8.1 ${ }^{42}$. Variant calls were made according to best practices using GATK's HaplotypeCaller. A variant call format (VCF) file was generated using GATK's variant quality score recalibration (VQSR) tool, utilising sites from Ensembl's variant database and the Illumina CanineHD BeadChip as training resources. To ensure high quality variants were included for downstream analysis, the VCF was passed to Variant Filtration tool and filtered by quality (QUAL>40.0), Quality by depth (QD>2.0), Root mean square of the mapping quality (MQ>40.0) and Fishers exact strand bias (FS<50). Phenotypic presentation of MMVD is complex. As such, variants within associated haplotype blocks were filtered based on the presence or absence of risk haplotypes irrespective of clinical presentation. Remaining variants were analysed with Ensembl's Variant Effect predictor (VEP) tool ${ }^{43}$ and uploaded as custom tracks to University of California Santa Cruz (UCSC) genome browser where they were annotated with the Variant annotation integrator (VAI) ${ }^{44}$.

3.4 Results

3.4.1 Candidate gene association

178 CKCS that were genotyped on the Illumina canineHD beachchip genotyping array passed quality control. The study included 78 males and 96 females with an average age of 10.24 years. Characteristics of the cohorts are summarised according to ACVIM grading system (Table 3.1). All samples were included for each association analysis. The CHF cohort comprised of 51 cases and 127 controls. Association of genotype markers with echocardiographic traits LA/Ao and LVIDdn was conducted as a continuous variable association analysis. Multidimensional scaling indicated minimal population stratification with all samples clustering closely and no notable outliers (Figure 3.1a). Cases and controls were evenly distributed across the cohort. P-values of the quantile-quantile (QQ) plot for each association test showed no obvious deviation except in the right tail of the distribution (mean $\lambda=1.04$; Fig 3.1b).

Table 3.1 Characteristics for the dogs included in the candidate gene association study. These are reported as a proportion (\%) for categorical variables and mean (standard deviation; SD), median (lower quartile; upper quartile; UQ) for continuous variables. n represents the number of dogs included in each group.

$\mathrm{ACVIM}^{\text {a }}$		$\begin{gathered} \hline A \\ (N=3) \end{gathered}$	$\begin{gathered} \mathrm{B} 1 \\ (\mathrm{~N}=68) \end{gathered}$	$\begin{gathered} \mathrm{B} 2 \\ (\mathrm{~N}=65) \end{gathered}$	$\begin{gathered} C \\ (N=38) \end{gathered}$	$\begin{gathered} \hline D \\ (N=4) \end{gathered}$
Sex	M (\%)	1 (33)	26 (38)	29 (45)	21 (55)	3 (75)
	F (\%)	2 (67)	42 (62)	36 (55)	17 (45)	1 (25)
Age	mean (sd)	8.58 (+- 0.67)	$\begin{aligned} & 10.39 \text { (+- } \\ & 2.18) \end{aligned}$	$\begin{gathered} 10.56 \text { (+- } \\ 1.80) \end{gathered}$	9.69 (+- 1.82)	9.06 (+- 1.03)
	median (IQR)	$\begin{gathered} 8.58 \\ (8.25,8.91) \end{gathered}$	$\begin{gathered} 10.04 \\ (8.54,11.77) \end{gathered}$	$\begin{gathered} 10.33 \\ (9.17,11.58) \end{gathered}$	$\begin{gathered} 9.5 \\ (8.60,10.77) \end{gathered}$	$\begin{gathered} 8.96 \\ (8.67,9.36) \end{gathered}$
Body weight (kg)	mean (sd)	9.70 (+- 2.07)	8.68 (+- 1.89)	8.88 (+- 1.69)	9.42 (+-2.15)	9.25 (+-1.62)
	median (IQR)	$\begin{gathered} 10 \\ (8.75,10.80) \end{gathered}$	$\begin{gathered} 8.5 \\ (7.77,9.22) \end{gathered}$	$\begin{gathered} 8.5 \\ (7.80,9.30) \end{gathered}$	$\begin{gathered} 8.94 \\ (8.00,10.47) \end{gathered}$	$\begin{gathered} 9.6 \\ (8.73,10.12) \end{gathered}$
$L A / A o^{\text {b }}$	mean (sd)	1.26 (+-0.12)	1.31 (+-0.15)	1.76 (+- 0.32)	2.52 (+-0.56)	3.29 (+-0.32)
	median (IQR)	$\begin{gathered} 1.3 \\ (1.22,1.33) \end{gathered}$	$\begin{gathered} 1.31 \\ (1.21,1.41) \end{gathered}$	$\begin{gathered} 1.74 \\ (1.53,1.94) \end{gathered}$	$\begin{gathered} 2.41 \\ (2.14,2.93) \end{gathered}$	$\begin{gathered} 3.3 \\ (3.03,3.56) \end{gathered}$
LVIDdn ${ }^{\text {c }}$	mean (sd)	1.43 (+- 0.11)	1.57 (+- 0.20)	2.03 (+-0.24)	2.40 (+-0.43)	2.75 (+- 0.24)
	median (IQR)	$\begin{gathered} 1.38 \\ (1.37,1.47) \end{gathered}$	$\begin{gathered} 1.6 \\ (1.47,1.72) \end{gathered}$	$\begin{gathered} 2.01 \\ (1.85,2.23) \end{gathered}$	$\begin{gathered} 2.36 \\ (2.15,2.59) \end{gathered}$	$\begin{gathered} 2.83 \\ (2.67,2.92) \end{gathered}$

[^1]

Figure 3.1 (a) MDS-plot of 178 CKCS included in the candidate gene association analysis. Cases represent samples diagnosed with CHF by small animal cardiologist or if key prognostic variable LA/Ao>2.36 or LVIDdn>2.4 (b) Quantile-quantile plot showing limited inflation of the test statistics

A candidate gene association was conducted using multiple phenotypes including LA/Ao, CHF and LVIDdn. Genes ($\mathrm{n}=485$) from four KEGG pathways were included in the analysis; TGF-beta signalling (KEGG ID: cfa04350), serotonergic signalling (KEGG ID: cfa04020), calcium signalling (KEGG ID: cfa04020) and ECM-receptor interaction pathways (KEGG ID: cfa04512). After frequency and genotype pruning, 17,718 SNVs within 500 kb of candidate genes remained for analysis. Of the analyses conducted, a single marker at CFA20:56,661,518 (chr20_56661518; $P_{\text {raw }}=2.68 \times 10^{-06}$) passed the Bonferroni corrected significance threshold and was significantly associated with LA/Ao (Table 3.2). At the given loci, another marker in strong LD with the top associated SNV had a highly suggestive association (CFA20:56,483,566; BICF2P866985; Praw $=$ $4.24 \times 10^{-06} ; r^{2}=0.78$) and was located within the intonic region of serotonergic signalling gene, G Protein Subunit Gamma 7 (GNG7). An additional single nucleotide variant (SNV) had a low suggestive threshold in the CHF association and was observed ~ 1.5 megabases (Mb) downstream from the top associated locus at CFA20:58023254 (BICF2P360101; Praw $=$ 3.62×10^{-05}). No variants passed a suggestive threshold for LVIDdn.

Table 3.2 A single genomic marker included in the candidate gene association analysis passed the significant threshold. Significant and suggestive thresholds were determined through Bonferroni-correction. Genomic markers passing a suggestive threshold are reported. A1 and A2 represent the major and minor allele respectively. Minor allele frequency (MAF) and number of samples with uncalled variants (missing) are reported. A single variant passing the Bonferroni corrected significance level is highlighted in bold.

Phenotype	SNPID	CHR	BP	A1	A2	MAF	MISSING	P
LA/Ao $^{\text {a }}$	chr20_56661518	20	56661518	C	T	0.1048	11	2.68×10^{-06}
LA/Ao	BICF2P866985	20	56483566	G	A	0.1264	0	4.24×10^{-06}
CHF $^{\text {b }}$	BICF2P360101	20	58023254	C	T	0.494	10	3.62×10^{-05}

${ }^{a}$ Left atrium to aortic root ratio
${ }^{\mathrm{b}}$ Congestive heart failure

3.4.2 Haplotype analysis

Haplotype analysis was conducted at the top loci on CFA2O for the identification CHFassociated haplotypes. Two haplotype blocks are reported (Table 3.3), each which contained a SNVs passing the suggestive threshold. The strongest associated haplotype spanned the interval CFA20:56464693-56628267 ($\mathrm{P}_{\mathrm{raw}}=8.93 \times 10^{-05}$) and overlaps the candidate gene GNG7. The risk haplotype was present in 23.5% of CHF cases and 8.3% of controls. Across the haplotype region 456 variants were annotated using VEP and VAI. None of the variants annotated in the candidate gene, GNG7, are predicted to have a functional effect.

Table 3.3 Haplotype analysis of the top associated signal identifies a risk haplotype overlapping GNG7. Results of haplotype association test implemented in haploview.

Haplotype block	Size (kb)	Observed blocks	Associated haplotype	Freq	Case:control Frequency	Haplotype P
$56464693-$	164	4	CTAGCC	0.126	$0.235,0.083$	8.93×10^{-05}
56628267				0.109	$0.192,0.076$	0.0016
$56644215-$	17	3	GT			
56661518						

3.5 Discussion

Association analysis of candidate genes from four signalling pathways implicated in the pathogenesis of MMVD was conducted. Exploitation of echocardiographic measure LA/Ao as a quantitative phenotype identified an associated locus on CFA20. At the associated locus, a risk haplotype, overlapping serotonergic signalling gene GNG7, segregated in 23.5% of CHF samples. Across sources, GNG7 is reported as a long non-coding RNA as well as a protein coding gene (NCBI geneid: 612139). Different sources of gene annotations have high overlap, however characteristics of gene annotations can differ due to variation in annotation strategies and data sources ${ }^{45}$. The Improved Canine Annotation available at UCSC, constructed by the

Broad Institute and Uppsala University, contains transcripts that are considered protein coding in the dog^{46}. This source reports high expression of the GNG7 transcript in heart tissue, proposing a potential role in cardiac function. However, no putative functional variants were identified in the study cohort.

Array markers surrounding genes from the serotonergic signalling pathway were included in this study due to the increasing evidence that serotonin signalling has a prominent role in the initiation of MMVD ${ }^{47-50}$. Serotonin signalling is of key interest in MMVD due to its association with valvopathies and because of its interaction with TGF- β signalling, another prominent signalling pathway in disease pathogensis ${ }^{26-28}$. Serotonergic signalling gene, GNG7, is a subunit of a heterotrimeric G protein complex, which induces G-protein-coupled receptor (GPCR) activation. GPCRs are major signalling mediators that have prominent roles in most physiological processes, including dynamic roles in healthy and diseased hearts ${ }^{51,52}$. Presently, no research exists that specifies a role of GNG7 in serotonin signalling ${ }^{53}$ and the gene has not been directly implicated with MMVD or similar phenotypes. However, thousands of possible heterotrimeric combinations exist that contribute to efficient transmembrane signalling ${ }^{53}$. It is possible that GNG7 plays a role in physiological processes affecting disease pathogenesis that are currently not known. To date, no variation in the GNG7 gene or protein has been observed in canine MMVD studies, which may highlight the marker as a false-positive association. No putative functional variants for GNG7 were found.

Selection of candidate genes for association studies is commonly based on knowledge of genes with a known or predicted effect on the studied trait ${ }^{54}$. The approach is useful for quickly determining an association of genes or genetic variants with a phenotype of interest. However, the proportion of known causative genes governing complex traits is often small ${ }^{55}$. A previous candidate gene approach was conducted in CKCS and Dachshund breeds using whole genome sequenced variant data ${ }^{56}$. The study hypothesised that genes associated with human orthologous phenotypes would be common to canine MMVD ${ }^{56}$. The paper considered 17 candidate genes and found no convincing evidence of a genetic component for MMVD pathogenesis. The candidate gene approach conducted in this chapter employed a novel method that facilitated the identification of a larger catalogue of candidate genes. To assist in gene selection, the KEGG pathways database was used to identify genes from signalling pathways implicated in canine MMVD. This meant genes included in this approach did not rely on knowledge of genes previously associated with similar phenotypes. While this had the benefit of assessing a larger number of genes, signals did not segregate with strong candidates for the disease. A concern with this approach is that annotation of online databases, like KEGG, are ongoing processes and do not necessarily provide the full scope of genes in signalling pathways and are often biased towards well known diseases and genes ${ }^{57}$.

Despite the CKCS representing a high-risk breed for MMVD, a candidate gene approach is most successful at identifying large effect mutations in monogenic traits ${ }^{55}$. This research modestly supported the hypothesis that a genomic basis for severe forms of MMVD exists within major MMVD signalling pathways. Using LA/Ao as a quantitative phenotype, we identified a riskhaplotype at CFA2O associated with left atrial enlargement but were unsuccessful in detecting risk variants in the candidate gene GNG7. Limited evidence was identified in the current cohort that supported a functional effect of GNG7 in the progression of MMVD to CHF. An association of the risk-haplotype with CHF in an external cohort of phenotype individuals is necessary to validate the observed locus. Given the cumulative effects of multiple loci and the phenotypic heterogeneity observed in complex diseases, like MMVD, a genome wide association study is justified.

3.6 References

1 Detweiler, D. K. \& Patterson, D. F. The prevalence and types of cardiovascular disease in dogs. Ann N Y Acad Sci 127, 481-516, doi:10.1111/j.1749-6632.1965.tb49421.x (1965).

2 Olsen, L. H., Häggström, J. \& Petersen, H. D. in Textbook of veterinary internal medicine: diseases of the dog and the cat (eds S. Ettinger \& E. Feldman) Ch. 250, (Elsevier Saunders, 2010).
3 Egenvall, A., Bonnett, B. N., Hedhammar, A. \& Olson, P. Mortality in over 350,000 insured Swedish dogs from 1995-2000: II. Breed-specific age and survival patterns and relative risk for causes of death. Acta Vet Scand 46, 121-136, doi:10.1186/1751-0147-46-121 (2005).
4 Aupperle, H. \& Disatian, S. Pathology, protein expression and signaling in myxomatous mitral valve degeneration: comparison of dogs and humans. J Vet Cardiol 14, 59-71, doi:10.1016/j.jvc.2012.01.005 (2012).
5 Fox, P. R. Pathology of myxomatous mitral valve disease in the dog. J Vet Cardiol 14, 103-126, doi:10.1016/j.jvc.2012.02.001 (2012).
6 Borgarelli, M. et al. Survival characteristics and prognostic variables of dogs with mitral regurgitation attributable to myxomatous valve disease. J Vet Intern Med 22, 120-128, doi:10.1111/j.1939-1676.2007.0008.x (2008).
7 Lord, P., Hansson, K., Kvart, C. \& Haggstrom, J. Rate of change of heart size before congestive heart failure in dogs with mitral regurgitation. J Small Anim Pract 51, 210218, doi:10.1111/j.1748-5827.2010.00910.x (2010).
8 Borgarelli, M. et al. Comparison of primary mitral valve disease in German Shepherd dogs and in small breeds. J Vet Cardiol 6, 27-34, doi:10.1016/S1760-2734(06)70055-8 (2004).

9 Serfass, P. et al. Retrospective study of 942 small-sized dogs: Prevalence of left apical systolic heart murmur and left-sided heart failure, critical effects of breed and sex. J Vet Cardiol 8, 11-18, doi:10.1016/j.jvc.2005.10.001 (2006).
10 Thrusfield, M. V., Aitken, C. G. G. \& Darker, P. G. G. Observations on breed and sex in relation to canine heart valve incompetence. Journal of Small Animal Practice 26, 709717, doi:10.1111/j.1748-5827.1985.tb02199.x (1985).

11 Beardow, A. W. \& Buchanan, J. W. Chronic mitral valve disease in cavalier King Charles spaniels: 95 cases (1987-1991). J Am Vet Med Assoc 203, 1023-1029 (1993).
12 Mattin, M. J. et al. Prevalence of and risk factors for degenerative mitral valve disease in dogs attending primary-care veterinary practices in England. J Vet Intern Med 29, 847-854, doi:10.1111/jvim. 12591 (2015).
13 Swift, S., Baldin, A. \& Cripps, P. Degenerative Valvular Disease in the Cavalier King Charles Spaniel: Results of the UK Breed Scheme 1991-2010. J Vet Intern Med 31, 914, doi:10.1111/jvim. 14619 (2017).
14 Chetboul, V. et al. [Epidemiological, clinical, echo-doppler characteristics of mitral valve endocardiosis in Cavalier King Charles in France: a retrospective study of 451 cases (1995 to 2003)]. Can Vet J 45, 1012-1015 (2004).
15 Haggstrom, J., Hansson, K., Kvart, C. \& Swenson, L. Chronic valvular disease in the cavalier King Charles spaniel in Sweden. Vet Rec 131, 549-553 (1992).
16 Egenvall, A., Bonnett, B. N. \& Häggström, J. Heart Disease as a Cause of Death in Insured Swedish Dogs Younger Than 10 Years of Age. Journal of Veterinary Internal Medicine 20, 894-903, doi:10.1111/j.1939-1676.2006.tb01803.x (2006).
Markby, G., Summers, K. M., MacRae, V. E., Del-Pozo, J. \& Corcoran, B. M. Myxomatous Degeneration of the Canine Mitral Valve: From Gross Changes to Molecular Events. J Comp Pathol 156, 371-383, doi:10.1016/j.jcpa.2017.01.009 (2017).

O'Brien, M. J., Beijerink, N. J. \& Wade, C. M. Genetics of canine myxomatous mitral valve disease. Anim Genet, doi:10.1111/age. 13082 (2021).
Black, A., French, A. T., Dukes-McEwan, J. \& Corcoran, B. M. Ultrastructural morphologic evaluation of the phenotype of valvular interstitial cells in dogs with myxomatous degeneration of the mitral valve. Am J Vet Res 66, 1408-1414, doi:10.2460/ajvr.2005.66.1408 (2005).
Hadian, M., Corcoran, B. M. \& Bradshaw, J. P. Molecular changes in fibrillar collagen in myxomatous mitral valve disease. Cardiovasc Pathol 19, e141-148, doi:10.1016/j.carpath.2009.05.001 (2010).
21 Hadian, M., Corcoran, B. M., Han, R. I., Grossmann, J. G. \& Bradshaw, J. P. Collagen organization in canine myxomatous mitral valve disease: an x-ray diffraction study. Biophys J 93, 2472-2476, doi:10.1529/biophysj.107.107847 (2007).
Han, R. I. et al. Distribution of myofibroblasts, smooth muscle-like cells, macrophages, and mast cells in mitral valve leaflets of dogs with myxomatous mitral valve disease. Am J Vet Res 69, 763-769, doi:10.2460/ajvr.69.6.763 (2008).
Han, R. I. et al. Morphological changes to endothelial and interstitial cells and to the extra-cellular matrix in canine myxomatous mitral valve disease (endocardiosis). Vet J 197, 388-394, doi:10.1016/j.tvjl.2013.01.027 (2013).
24 Connell, P. S., Han, R. I. \& Grande-Allen, K. J. Differentiating the aging of the mitral valve from human and canine myxomatous degeneration. J Vet Cardiol 14, 31-45, doi:10.1016/j.jvc.2011.11.003 (2012).
Markby, G. R., Summers, K. M., MacRae, V. E. \& Corcoran, B. M. Comparative Transcriptomic Profiling and Gene Expression for Myxomatous Mitral Valve Disease in the Dog and Human. Vet Sci 4, 34, doi:10.3390/vetsci4030034 (2017).
Orton, E. C., Lacerda, C. M. \& MacLea, H. B. Signaling pathways in mitral valve degeneration. J Vet Cardiol 14, 7-17, doi:10.1016/j.jvc.2011.12.001 (2012).

27 Oyama, M. A. et al. Comparative pathology of human and canine myxomatous mitral valve degeneration: 5HT and TGF-beta mechanisms. Cardiovasc Pathol 46, 107196, doi:10.1016/j.carpath.2019.107196 (2020).
28 Oyama, M. A. \& Levy, R. J. Insights into serotonin signaling mechanisms associated with canine degenerative mitral valve disease. J Vet Intern Med 24, 27-36, doi:10.1111/j.1939-1676.2009.0411.x (2010).
29 Borgarelli, M., Tarducci, A., Zanatta, R. \& Haggstrom, J. Decreased systolic function and inadequate hypertrophy in large and small breed dogs with chronic mitral valve insufficiency. J Vet Intern Med 21, 61-67, doi:10.1892/0891-
6640(2007)21[61:dsfaih]2.0.co;2 (2007).
30 Serres, F. et al. Comparison of 3 Ultrasound Methods for Quantifying Left Ventricular Systolic Function: Correlation with Disease Severity and Prognostic Value in Dogs with Mitral Valve Disease. Journal of Veterinary Internal Medicine 22, 566-577, doi:10.1111/j.1939-1676.2008.0097.x (2008).
31 Bonagura, J. D. \& Schober, K. E. Can ventricular function be assessed by echocardiography in chronic canine mitral valve disease? J Small Anim Pract 50 Suppl 1, 12-24, doi:10.1111/j.1748-5827.2009.00803.x (2009).
32 Donghyun, H., Dong-Guk, L. \& Dong-In, J. Echocardiographic evaluation of heart failure in dogs with myxomatous mitral valve disease: a retrospective study. Journal of Biomedical Translational Research 19, 79-85 (2018).
33 Reimann, M. J. et al. Mitral Regurgitation Severity and Left Ventricular Systolic Dimension Predict Survival in Young Cavalier King Charles Spaniels. Journal of veterinary internal medicine 31, 1008-1016, doi:10.1111/jvim. 14759 (2017).
34 Markby, G. R., Macrae, V. E., Corcoran, B. M. \& Summers, K. M. Comparative transcriptomic profiling of myxomatous mitral valve disease in the cavalier King Charles spaniel. BMC Vet Res 16, 350, doi:10.1186/s12917-020-02542-w (2020). Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7, doi:10.1186/s13742-015-0047-8 (2015).
36 Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci 28, 1947-1951, doi:10.1002/pro. 3715 (2019).
37 Karlsson, E. K. et al. Efficient mapping of mendelian traits in dogs through genomewide association. Nature genetics 39, 1321 (2007).
38 Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42, 348-354, doi:10.1038/ng. 548 (2010). Barrett, J. C., Fry, B., Maller, J. \& Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263-265, doi:10.1093/bioinformatics/bth457 (2005).

40 Wang, N., Akey, J. M., Zhang, K., Chakraborty, R. \& Jin, L. Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am J Hum Genet 71, 1227-1234, doi:10.1086/344398 (2002).
41 Li, H. \& Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
42 McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303, doi:10.1101/gr. 107524.110 (2010).

43 McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol 17, 122, doi:10.1186/s13059-016-0974-4 (2016).
44 Hinrichs, A. S. et al. UCSC Data Integrator and Variant Annotation Integrator. Bioinformatics 32, 1430-1432, doi:10.1093/bioinformatics/btv766 (2016).
45 Zhao, S. \& Zhang, B. A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification. BMC Genomics 16, 97, doi:10.1186/s12864-015-1308-8 (2015).
46 Hoeppner, M. P. et al. An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts. PLoS One 9, e91172, doi:10.1371/journal.pone. 0091172 (2014).
$47 \quad$ Lu, C. C. et al. Gene network and canonical pathway analysis in canine myxomatous mitral valve disease: a microarray study. Vet J 204, 23-31, doi:10.1016/j.tvjl.2015.02.021 (2015).
48 Markby, G. R., Macrae, V. E., Summers, K. M. \& Corcoran, B. M. Disease SeverityAssociated Gene Expression in Canine Myxomatous Mitral Valve Disease Is Dominated by TGFbeta Signaling. Front Genet 11, 372, doi:10.3389/fgene.2020.00372 (2020).
49 Oyama, M. A. \& Chittur, S. V. Genomic expression patterns of mitral valve tissues from dogs with degenerative mitral valve disease. Am J Vet Res 67, 1307-1318, doi:10.2460/ajvr.67.8.1307 (2006).
50 Thalji, N. M. et al. Nonbiased Molecular Screening Identifies Novel Molecular Regulators of Fibrogenic and Proliferative Signaling in Myxomatous Mitral Valve Disease. Circ Cardiovasc Genet 8, 516-528, doi:10.1161/CIRCGENETICS.114.000921 (2015).

51 Salazar, N. C., Chen, J. \& Rockman, H. A. Cardiac GPCRs: GPCR signaling in healthy and failing hearts. Biochim Biophys Acta 1768, 1006-1018, doi:10.1016/j.bbamem.2007.02.010 (2007).
52 Wang, J., Gareri, C. \& Rockman, H. A. G-Protein-Coupled Receptors in Heart Disease. Circ Res 123, 716-735, doi:10.1161/CIRCRESAHA.118.311403 (2018).
53 Giulietti, M. et al. How much do we know about the coupling of G-proteins to serotonin receptors? Mol Brain 7, 49, doi:10.1186/s13041-014-0049-y (2014).
54 Kwon, J. M. \& Goate, A. M. The candidate gene approach. Alcohol Res Health 24, 164168 (2000).
55 Tabor, H. K., Risch, N. J. \& Myers, R. M. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3, 391-397, doi:10.1038/nrg796 (2002).
56 Meurs, K. M. et al. Myxomatous mitral valve disease in the miniature poodle: A retrospective study. Vet J 244, 94-97, doi:10.1016/j.tvjl.2018.12.019 (2019).
57 Mooney, S. D., Krishnan, V. G. \& Evani, U. S. in Genetic Variation: Methods and Protocols (eds Michael R. Barnes \& Gerome Breen) 307-319 (Humana Press, 2010).

Chapter 4 Mapping the genetic basis of severe myxomatous mitral valve disease and congestive heart failure in Cavalier King Charles Spaniels

4.1 Abstract

Myxomatous mitral valve disease (MMVD) is the most frequent cause of heart disease in dogs. It is a slow, progressive disorder initiated by myxomatous degeneration of the mitral valve leaflets frequently leading to mitral regurgitation and left sided cardiac remodelling. The disease is recognised as the most prominent cause of cardiac related deaths in dogs that generally occurs because of congestive heart failure (CHF). Although a heightened within breed prevalence of MMVD indicates a strong heritable component, a genetic basis for the disease has never been identified. Cavalier King Charles Spaniels (CKCS) are the most overrepresented breed affected by MMVD. In affected dogs, it is not uncommon to experience a healthy lifespan in the asymptomatic period of disease. However, for a small proportion of dogs, acute disease results in CHF. In this research, a genome-wide association study was conducted in attempts to identify risk-loci associated with severe forms of MMVD and the development of CHF. An Australian population of CKCS were phenotyped for MMVD using echocardiography. Parallel multi-trait GWAS were conducted on CKCS genotyped with the Illumina CanineHD array. Our results indicated five MMVD-associated loci at chromosomes 1, 13, 14, 20, and 24. Positional candidate genes were identified within the associated loci including OBSCN, LMNB2, SULF2 and ADAMTS3. For each locus, risk haplotypes were reported as well as concordant variants from five whole genome sequence samples. Candidate putative functional variants were identified in OBSCN and LMNB2. Both genes have been linked to cardiac phenotypes. The results of this research highlight the potential for identification of complex disease variants using a multi-trait analysis. Variation in candidate genes support the notion that CKCS experience disrupted calcium signalling and cardiac muscle contraction.

4.2 Introduction

Myxomatous mitral valve disease (MMVD; OMIA 000654-9615) is a cardiac disorder with variable progression and the most frequent cause of cardiovascular disease in dogs (Canis lupus familiaris ${ }^{1,2}$. It occurs as the result of Intravalvular degenerative processes, causing loss of valvular mechanical ability and subsequent regurgitation of blood, referred to as mitral regurgitation (MR)³. Following primary mitral valve insufficiency, adaptive compensatory changes take place. As the severity of MMVD advances, clinical signs include progressive MR, eccentric cardiac hypertrophy, left atrial enlargement and systolic dysfunction ${ }^{4-6}$. In the worst instances, extensive remodelling of the heart can lead to congestive heart failure (CHF) and cardiac mortality ${ }^{7,8}$.

MMVD worsens with age and is observed in geriatric dogs regardless of breed ${ }^{3,9}$. While MMVD is observed in all breeds, it has an exceptionally high prevalence rate in small to medium-sized dogs ${ }^{10-12}$. This breed association is evidence for a genetic basis of the disease. The Cavalier King Charles Spaniels (CKCS) has a higher prevalence of MMVD and earlier onset compared with other breeds ${ }^{13-18}$. Both the presence and severity of MMVD in the CKCS is highly heritable ${ }^{16}$. Possibly due to the relatively fixed nature of MMVD in the breed, heart disease is a prominent cause of mortality in the CKCS, even in young dogs ${ }^{2,19}$. As such, the CKCS breed has been the subject of numerous attempts to identify the genetic basis of MMVD with limited success ${ }^{20-22}$.

As a result of domestication and breed line formations in the dog, linkage disequilibrium (LD) within pedigreed populations is extensive ${ }^{23-25}$. Within-breeds genetic heterogeneity is significantly reduced making them effectively genetically isolated populations that require fewer markers and samples to efficiently map traits than humans ${ }^{26}$. As such, dogs are an effective model species for genome-wide association studies (GWAS), particularly when the phenotype of interest is variable within a breed ${ }^{26}$. Although the mode of inheritance for MMVD is yet to be determined, it is regarded as a multifactorial, polygenic threshold trait ${ }^{27,28}$. The high prevalence of MMVD in the CKCS and evidence for an age-related penetrance suggest that the disease may be fixed within this breed. Complex, multigenic diseases that demonstrate a high level of fixation within breeds, like MMVD in the CKCS ${ }^{21,22}$, can complicate disease modelling. Failure to capture, replicate or validate genomic signals for MMVD through GWAS is likely due to the heterogeneity of the disease phenotype, sampling effects, and variation in the models used ${ }^{20-22}$. Identifying causative genes for MMVD in the CKCS through GWAS is unlikely. Still, with accurate phenotyping the breed offers the opportunity to uncover modifier loci responsible for variable disease expression.

Typically, MMVD has a slow rate of progression and affected individuals can be expected to live a relatively asymptomatic and natural lifespan ${ }^{7,29,30}$. But for dogs that do progress beyond the preclinical stages of MMVD and develop signs of CHF, the survival period is short regardless of medical intervention $7,8,31,32$. While MMVD is clinically well described, the underlying processes driving the rapid progression of mild symptoms to CHF have not been revealed. Genetic characterisation of factors influencing the progression of MMVD is important in understanding disease pathogenesis as well as improving canine welfare and longevity, especially in breeds like the CKCS where heart disease is a major contributing factor of mortality ${ }^{2,19}$. To date, no genetic tests have been developed to detect increased risk of early mortality or disease severity in at-risk dogs. Identification of loci that affect the progression and severity of MMVD in CKCS may help increase the effectiveness of breeding protocols and assist in improving the welfare of this breed. In this chapter I conducted a GWAS on a population of Australian CKCS, with a primary focus on incrementing disease severity and the development of CHF. MMVD disease severity was modelled using linear and logistic regression analyses (presented in Chapter 2). The aim of this paper is to identify genetic loci and variants associated with severe MMVD using echocardiographic data to inform phenotype.

4.3 Methods and materials

4.3.1 Data collection

The methodology described for this research was conducted on a population of Australian CKCS previously described and conforms with ethical practices (Chapter 2.2.1). Diagnosis (Chapter 2.2.2), genotyping, whole genome sequencing (WGS)(Chapter 3.2.2), WGS alignment and variant calling (Chapter 3.2.6) are consistent between analyses. Any variation in processes is detailed.

4.3.2 Genome wide association analysis, haplotype discovery and variant annotation

GWAS were conducted on samples genotyped using the CanineHD BeadChip (Illumina, San Diego, CA) SNP array. A phenotype-genotype association analysis was conducted using the Efficient Mixed-Model Association eXpedited (EMMAX) ${ }^{33}$ software, on three phenotypes previously described (Chapter 3.2.5). Briefly, samples were collected across Australia and classified based on disease severity, according to the American College of Veterinary Internal Medicine (ACVIM) classification scheme ${ }^{6}$. At the time of sample collection, diagnoses were made based on the level of cardiac remodelling using two measures recommended for clinical diagnosis, left atrium to aortic root ratio (LA/Ao) and left ventricular end diastolic dimension, normalised for body weight (LVIDdn) ${ }^{6}$. A case-control GWAS was conducted on CKCS where cases represented dogs with evidence of CHF, or with left atrial enlargement surpassing a predictive threshold for the development of congestive heart failure (LA/Ao>2. And LVIDdn>2.39), hereby referred to as CHF dogs. Two further GWAS were conducted as a continuous variable analysis utilising individual quantitative measures of cardiac remodelling, LA/Ao and LVIDdn.

Quality control of genomic markers was performed using PLINK 1.9 ${ }^{34}$. Single nucleotide variants (SNVs) were pruned at a minor allele frequency (MAF) of 0.1 (--maf) and with an individual call rate above 90% (--geno). The genome-wide significance threshold was determined using the empirical 95% confidence interval (CI), determined by running the GWAS 1,000 times with randomly permuted phenotypes generated in PLINK (--make-perm-pheno). The genome-wide significance threshold was set as associations exceeding the 97.5% upper empirical Cl and varies by model ($\mathrm{P}<5.96 \times 10^{-5}$ for CHF, $\mathrm{P}<5.29 \times 10^{-5}$ for $L A / A o$ and $\mathrm{P}<5.84 \times$ 10^{-5} for LVIDdn). The extent of the associated regions was refined in two-steps with LD clumping in PLINK (--clump). Initially, a region of weak LD (r2>0.2) was defined up to 5 Mb of each top SNV and narrowed down to regions of high LD ($22>0.8$) within 2 Mb of the highest associated SNV at each locus.

SNVs within the associated region were submitted for haplotype analysis in HAPLOVIEW (v4.2) ${ }^{35}$. Haplotype blocks were examined in all samples and were defined using the four-
gamete rule ${ }^{36}$. A set of high-quality variants from five WGS CKCS, previously described (Chapter 3.3.6), was used for variant discovery. Haplotypes harbouring SNVs that passed the genomewide significance threshold are reported. WGS variants were filtered for variants within the defined haplotypes. Given the complex phenotype of MMVD, variants within the haplotype blocks were filtered based on the presence or absence of risk haplotypes. SNV with the highest p value within haplotypes were selected as tag SNVs. In the absence of WGS samples homozygous for the risk haplotype, putative functional variants are reported that segregate with the tag SNV. The remaining variants were analysed with Ensembl's Variant Effect predictor (VEP) tool ${ }^{13}$ and uploaded as custom tracks to University of California Santa Cruz (UCSC) genome browser where they were annotated with the Variant annotation integrator (VAI) ${ }^{38}$ tool. Variants detected with putative functional effects were evaluated. The potential impact of amino acid substitutions on protein function were predicted with the Sort Intolerant From Tolerant (SIFT) algorithm ${ }^{39}$. The Broad Institute and Uppsala University comprehensive catalogue of genes and transcripts was used to determine protein coding transcripts and tissue expression ${ }^{40}$.

4.4 Results

A multi-trait GWAS was conducted in an Australian population of CKCS. The study tested for associations between germline variants and the development of severe forms of MMVD. All samples were classified based on disease severity according to the ACVIM grading system using echocardiography (Chapter 3 Table 3.1). Included in the GWAS was 178 CKCS genotyped on the Illumina canine HD array. The final dataset included 90,501 array markers. Some evidence of population stratification can be seen within the study cohort (Chapter 3 Figure 3.1a). False signals caused by cryptic relatedness and population structure were controlled by using a mixed model approach with the top principal component as a covariate ($\lambda<1.1$ Figure 4.1a-c). Across the three phenotypes studied, there was a total of six loci passing a genome-wide significant threshold (Figure 4.1d-f). A total of 71 variants passed the genome-wide significant threshold for genotype-phenotype association (Table S1). Of the top associated variants, 22 are located within predicted genes, $18(81.81 \%)$ are intronic, two (9.09\%) are missense, one (4.54\%) is synonymous, and one (4.54\%) in an untranslated region (UTR). Missense variants were identified in Obscurin (OBSCN) and Laminin subunit beta-2 (LMNB2) genes. The UTR SNV falls within an olfactory receptor family 2 subfamily T member 4C (OR2T4C).

Figure 4.1 Genome wide association analysis identifies 5 loci associated with myxomatous mitral vale disease (MMVD). The QQplots shows no evidence of stratification relative to the expected distribution except in the right tail of distribution for MMVD traits (a) congestive heart failure (CHF) (b) left atrium to aortic root ratio (LA/Ao) and (c) left ventricular end diastolic dimension, normalised for body weight (LVIDdn). Manhattan plots show the -log10p distribution of array markers associated with (d) CHF (e) LA/Ao and (f) LVIDdn. The dashed grey line indicates the 95\% empirically determined significance threshold for each trait. Markers passing the genome wide significance threshold are highlighted in red.

4.4.1 Congestive heart failure GWAS

A total of 178 samples were included in the case-control analysis to test for association between genomic markers and the development of CHF. Of these, 51 were cases and 127 were controls (Table 4.1). In the GWAS cohort, males had slightly higher echocardiographic
measures for both LA/Ao and LVIDdn ($\mathrm{P}<0.05$; Figure 4.2a\&b). This was reflected in the phenotyping of CHF where males made up the greatest proportion of samples in the CHF cohort and a lower proportion of the controls. In genotyped CKCS there was a significant difference in the ages of the CHF and non-CHF groups (Wilcoxon $\mathrm{p}<0.05$; Figure 4.2c), where cases are younger than control samples. The proportion of younger cases in the CHF model provides a powerful comparison of young cases and older controls, fitting for the early onset of disease in CKCS.

Table 4.1 Characteristics of the dogs included in the congestive heart failure (CHF) genome wide association study. Reported as a proportion (\%) for categorical variables and mean (standard deviation; SD), median (lower quartile; LQ, upper quartile; UQ) for continuous variables. n represents the number of dogs included in each group, where cases are dogs with clinical signs of CHF or passing the predictive threshold determined by logistic regression.

		Case $(\mathrm{n}=51)$	Control $(\mathrm{n}=127)$
Sex	Male (\%)	$29(57)$	$51(40)$
	Female (\%)	$22(43)$	$76(60)$
	mean (sd)	$9.72+-1.80$	$10.46+-2.00$
Body weight (kg)	median (IQR)	$9.25(8.67,10.54)$	$10.25(8.96,11.66)$
	mean (sd)	$9.19+-1.91$	$8.85+-1.87$
	median (IQR)	$8.97(7.95,10.35)$	$8.50(7.80,9.34)$
LA/Ao ${ }^{\text {a }}$	mean (sd)	$2.54+-0.56$	$1.47+-0.27$
	median (IQR)	$2.41(2.14,2.95)$	$1.43(1.27,1.64)$
LVIDdn $^{\text {b }}$	mean (sd)	$2.43+-0.39$	$1.74+-0.28$
	median (IQR)	$2.41(2.21,2.60)$	$1.73(1.57,1.88)$

[^2]

Figure 4.2 Significant variation is observed between samples included for genome wide association analyses. Boxplots illustrate the distribution of variable traits between Cavalier King Charles Spaniel (CKCS) groups. The assessed variable is plotted along the y axis and the groups compared are plotted on the xaxis. (a) Distribution of echocardiographic measure left atrium to aortic root ratio (LA/Ao), between male (M) and female (F) CKCS. (b) Distribution of echocardiographic measure left ventricular end diastolic dimension, normalised for body weight (LVIDdn) between M and F CKCS. (c) Distribution of age in years between samples included as cases and controls in the CHF association analysis. *Indicates statistical significance ($\mathrm{p}<0.05$) using a Wilcoxon signed-rank test.

The locus most associated with the development of CHF in the CKCS was observed at chromosome 14 (CFA14). This signal observed at CFA14 the strongest across all three analyses with 59 SNVs passing the genome-wide significance threshold. The most significantly associated marker from the analysis was located at CFA14:669,043 (BICF2P757489; Pgenome $\left.=1.17 \times 10^{-08}\right)$. Extensive LD was observed at the locus. Variants in high LD ($\mathrm{r}^{2}>0.8$) with the top marker spanned up to 4.97 megabases (Mb)(CFA14:581,822-5,559,055). A second clump of SNVs starting within the primary associated region but spanning a further 1.29 Mb also passed the genome-wide significance threshold but fell slightly below the LD criteria for defining the associated region ($r^{2}>0.75$ with the top associated SNV). The associated region, inclusive of the extended markers, was put forward for haplotype analysis (CFA14:581,822$6,844,213)$. Across the studied region 17 haplotype blocks were observed that contained variants passing the genome-wide significance threshold (Table 4.2). Haplotypes blocks cumulatively span 3.2 Mb (51\%) of the associated region. Seven haplotypes overlapped a genomic region dense with olfactory receptor genes and coding sequence variants observed across the region were predominantly found in olfactory receptors genes (Table S2). Twentyfive further coding sequence variants from 11 genes were identified within the remaining haplotype blocks (Table 4.3).

Table 4.2 Risk-haplotypes for loci associated with congestive heart failure in the Cavalier King Charles Spaniel. Haplotype range indicates the base pair positions for the first and last of single nucleotide variants (SNV) included in the haplotype block. P values represent significance value of the tag SNV in the genome wide association analysis.

Range	Haplotype	Freq.	Case, Control Frequencies	Tag SNV	P Value	Genes
$\begin{gathered} 14: 581822- \\ 703675 \end{gathered}$	GCCTCGTACTCAC	0.278	0.471, 0.201	BICF2P757489	1.1×10^{-08}	OBSCN, TRIM11, H2AW, H2BU1, H2BU2
$\begin{gathered} \text { 14:721992- } \\ 825927 \end{gathered}$	GGAGGA	0.309	0.500, 0.232	BICF2P289847	1.43×10^{-07}	$\begin{gathered} \text { OBSCN, GUK1, GJC2, } \\ \text { IBA57 } \end{gathered}$
$\begin{gathered} 14: 897657- \\ 945637 \end{gathered}$	ATC	0.311	0.498, 0.236	BICF2G630517194	1.34×10^{-06}	OR genes
$\begin{gathered} 14: 1418008 \\ -2028857 \end{gathered}$	ATTCGGACAGCGTGAGTC	0.262	0.424, 0.197	chr14_1626211	1.95×10^{-06}	OR genes, TRIM58
$\begin{gathered} 14: 2126986 \\ -2291305 \end{gathered}$	CCCTATTAAG	0.317	0.488, 0.248	BICF2P90189	5.82×10^{-06}	OR genes
$\begin{gathered} 14: 2309870 \\ -2418990 \end{gathered}$	CCCAGAT	0.314	0.500, 0.238	BICF2S23516044	2.98×10^{-07}	OR genes
$\begin{gathered} 14: 2467305 \\ -2526516 \end{gathered}$	TCTG	0.314	0.500, 0.240	BICF2S22917146	3.08×10^{-07}	OR genes
$\begin{gathered} 14: 2562311 \\ -2819625 \end{gathered}$	CGGACCGTTGTC	0.308	0.489, 0.236	chr14_2819625	6.57×10^{-07}	OR genes
$\begin{gathered} 14: 2934833 \\ -2981896 \end{gathered}$	TCT	0.312	0.500, 0.236	chr14_2934833	2.98×10^{-07}	
$\begin{gathered} 14: 2990449 \\ -3264856 \end{gathered}$	CATGGGCGG	0.309	0.490, 0.236	BICF2G630517833	3.98×10^{-07}	AKR1B1, SLC35B4, LRGUK
$\begin{gathered} 14: 4569454 \\ -4695786 \end{gathered}$	GCGTTGTTGGAT	0.284	0.458, 0.214	BICF2G630519056	4.30×10^{-06}	CHCHD3, PLXNA4
$\begin{gathered} 14: 4712847 \\ -4810511 \end{gathered}$	AGTAGG	0.309	0.480, 0.240	BICF2P1409592	4.30×10^{-06}	PLXNA4
$\begin{gathered} 14: 4841400 \\ -5017714 \end{gathered}$	CTCTAGGAGGATTGACAT	0.312	0.480, 0.244	BICF2P84129	3.47×10^{-06}	PLXNA4
$\begin{gathered} 14: 5162250 \\ -5248244 \end{gathered}$	CGCCCA	0.281	0.461, 0.209	BICF2P1095320	3.30×10^{-07}	
$\begin{gathered} 14: 5264341 \\ -5593889 \end{gathered}$	CCGATCACGTCGAG	0.281	0.461, 0.209	BICF2S2364353	2.82×10^{-07}	PODXL
$\begin{gathered} 14: 5859462 \\ -5932681 \end{gathered}$	TGGATGCAG	0.281	0.461, 0.209	BICF2P850224	3.30×10^{-05}	
						$\begin{gathered} \text { COPG2, } \\ \text { MEST, CEP41, } \\ \text { ENSCAFG00000008 } \end{gathered}$
$\begin{gathered} 14: 6379001 \\ -6915563 \end{gathered}$	GACCGGTTCGGGGGGGAA GGTGCC	0.27	0.441, 0.201	BICF2G630519491	8.78×10^{-07}	551, ENSCAFG00000009 988, CPA1, CPA5, CP A4, SSMEM1, TMEM 209, KLHDC10, ZC3 HC1, UBE2H
$\begin{aligned} & \text { 20:5801474 } \\ & \text { 2-58103316 } \end{aligned}$	ACTCGTATAGCAGG	0.491	0.559, 0.453	BICF2P360101	1.31×10^{-05}	$\begin{aligned} & \text { ENSCAFG00000043 } \\ & 280, \text { C2CD4C, } \\ & \text { THEG, MIER2, PLPP2 } \end{aligned}$

Table 4.3 Coding variants matching CHF-risk haplotypes on chromosome 14. Variant annotation was conducted using Variant Effect Predictor (VEP) and Variant Annotation Integrator (VAI). Programs predict functional consequences based on transcript annotations from multiple sources. Transcript annotations used to predict functional consequences include Ensembl (E), National Center for Biotechnology information (N), and University of California Santa Cruz (U) and are reported under transcript source.

Variant ID	CHR	POS	REF	ALT	Gene	Putative Function	Amino Acid	SIFT	Transcript Source
rs851214998	14	599485	C	T	H2BU2	synonymous	D		E,N
	14	604062	C	T	H2BU1	synonymous	V		E,N
rs851936980	14	604149	C	T	H2BU1	synonymous	K		E,N
	14	634098	C	T	TRIM17	5'UTR			E,N
rs851022577	14	635213	G	A	TRIM17	missense	G/D	0	E,N
rs851984265	14	646656	T	C	TRIM17	synonymous	D		E,N
rs852522978	14	646962	G	T	TRIM17	3'UTR			E,N
rs851521752	14	664481	G	-	OBSCN	3'UTR			N
rs852107580	14	669043	C	G	OBSCN	missense	G/R	0.11	N
rs851492077	14	669878	C	A	OBSCN	synonymous	P		N
rs850708053	14	696128	G	T	OBSCN	missense	T/K	0.15	N
rs850956456	14	715836	G	A	OBSCN	splice region			N
	14	721020	C	T	OBSCN	missense	G/S	0.31	N
rs22343182	14	800005	C	A	IBA57	3'UTR			N
	14	826849	C	G	GUK1	5'UTR			E,N
	14	826849	C	G	MRPL55	splice region			E,N
rs852129395	14	2991898	C	G	AKR1B1	5'UTR			E,N,U
rs851065876	14	2991980	G	A	AKR1B1	missense	V/I	1	E,N,U
	14	2992420	A	G	AKR1B1	5'UTR			N
	14	2992445	G	T	AKR1B1	splice region			N
	14	4683923	C	G	PLXNA4	5'UTR			N
rs851422603	14	5004071	G	C	PLXNA4	synonymous	S		E,N
rs852901111	14	5004074	C	T	PLXNA4	synonymous	G		E,N
rs851466365	14	5614640	G	A	PODXL	synonymous	T		E,N, U
	14	6562819	G	A	CPA1	missense	P/L	1	E,N

[^3]The most significantly associated array marker from the CHF analysis, BICF2P757489 (CFA14g.669043C>G; $\mathrm{P}_{\text {genome }}=1.17 \times 10^{-08}$), is a putative functional variant for the development of CHF. The genomic marker captures a missense variant in the coding region of the gene OBSCN. The Broad Institute and Uppsala University comprehensive catalogue of genes and transcripts reports the highest observed expression of OBSCN in muscle and heart tissue of the dog ${ }^{40}$. The CKCS population frequency of the SNV was 0.29 . CKCS genotypes, as determined by genomic markers, are designated as wild-type and mutant, where the wild-type allele is considered the reference allele and the mutant is the alternate. Within the studied cohort, 12 dogs (14.33%) were homozygous for the OBSCN polymorphism, 85 (49\%) were homozygous wild-type, and 75 (43\%) were heterozygous wild-type. The genotype was uncalled in six samples. An additional genomic marker within an intronic region of OBSCN, located ~16 kilobases (kb) downstream from the top variant at CFA14:685,005 (BICF2P813381; $P_{\text {genome }}=9.14 \times 10^{-08}$) also passed the genome-wide significance threshold. This second marker is in complete $L D\left(r^{2}=1\right)$ with the putative variant and had no missing genotypes across all samples. The intronic marker was used as a proxy for the missense variant in further analysis. Cardiac remodelling observed in CKCS homozygous for the observed mutation was significantly greater than both the homozygous wild-type and heterozygous wild-type groups (Wilcoxon $\mathrm{P}<0.005$; Figure 4.3a-d). No significant difference was found between the wildtype groups (Wilcoxon $\mathrm{P}>0.05$). A further five variants were identified in the coding region of OBSCN in WGS samples that matched the genotype of the top associated marker. One (CFA14g.669878C>A) is predicted to be a synonymous variant, two (CFA14g.696128G>T and CFA14g.721020C>T) are missense variants, and another (CFA14g.715836G>A) is a splice region variant.

A single marker associated with CHF passed the genome-wide significance threshold at CFA20:58023254 (BICF2P912253; Pgenome=1.13×10-5). The haplotype containing the genomic marker spans CFA20:58014742-58103316. The risk haplotype was observed in 55.9% of cases and 45.3% of controls. In WGS samples, 29 coding sequence variants segregated with the tag SNV for a total of 31 predicted consequences (Table S3). The majority of consequences were expected to be neutral (41.3\%). The remaining SNVs are six (20\%) missense variants, two (6.89\%) splice region variants and nine (31.03\%) UTR variants in the genes SHC Adaptor Protein 2 (SHC2), C2 Calcium Dependent Domain Containing 4C (C2CD4C), Testicular haploid expressed gene (THEG), Mesoderm induction early response 2 (MIER2), and Phospholipid Phosphatase 2 (PLPP2). Genes observed at the CFA20 signal are not expected to play a major role in pathophysiology of the heart. A final marker passed the genome-wide significance threshold at CFA1:119250918 (BICF2P360101; Pgenome $=3.64 \times 10^{-5}$). This region was excluded from further analyses as the SNV was not in high LD with any of the surrounding markers.

Figure 4.3 A putative functional variant in the obscurin (OBSCN) gene is associated with congestive heart failure (CHF) in Cavalier King Charles Spaniels (CKCS) with myxomatous mitral valve disease. Using Illumina marker BICF2P813381 as a proxy for the highly correlated ($r^{2}=1$) CHF-associated marker BICF2P757489 and missense variant associated with CHF, boxplots illustrate CKCS homozygous for the alternate allele have significantly higher measures of echocardiographic variables. (a) left atrium to aortic root ratio (LA/Ao) (b) Age corrected LA/Ao (c) left ventricular end diastolic dimension, normalised for body weight(LVIDdn) (d) Age corrected LVIDdn. Genotypes as determined by genomic markers are designated as wild-type (Wt) and mutant (Mut), where the wild-type allele is considered the reference allele and the mutant is the alternate. *Statistical significance using Wilcoxon signed-rank test *** p<0.001 and ** $p<0.01$

4.4.2 Quantitative GWAS using echocardiographic measures of cardiac remodelling

To identify loci associated with the increasing severity of MMVD, two continuous trait GWAS were conducted on CKCS using quantitative measures, LA/Ao and LVIDdn, including age as a covariate. Three associated loci were detected across both GWAS (Figure 4.1b\&c). The top locus observed between the two studies was associated with the echocardiographic measure LA/Ao, where CFA24:34932842 (BICF2P912253; $\mathrm{P}_{\text {genome }}=1.22 \times 10^{-5}$) was the most significantly associated marker. Across the associated loci, five haplotype blocks were identified (Table 4.4). The haplotype blocks were $\sim 130.29 \mathrm{~kb}$ long on average, which is not significantly different from the case-control analysis (Wilcoxon $\mathrm{p}=0.73$). However, the genomic range of LD surrounding the top associated variant was less extensive and haplotype blocks were fewer within the quantitative trait loci. Seven coding-region variants were identified within the representative haplotype blocks (Table 4.5).

Table 4.4 Haplotype blocks within regions associated with echocardiographic (Echo) measures of MMVD. Haplotype range indicates the base pair positions for the first and last of single nucleotide variants (SNV) included in the haplotype block. P values represent significance value of the tag SNV from two separate continuous variable genome-wide association analyses; indicated by the associated echo measure.

Associated Echo ${ }^{\text {a }}$ Measure	Range	Haplotype	Freq.	Tag SNV	P Value	Genes
LVIDdn	$\begin{gathered} \text { 13:61496628- } \\ 61539196 \end{gathered}$	TCCTT	0.244	BICF2P555379	$\underbrace{2.51 \times 10^{-}}_{05}$	ADAMTS3
LA/Ao	$\begin{gathered} \text { 20:56464693- } \\ 56628267 \end{gathered}$	CTAGCC	0.13	BICF2P360101	$\begin{aligned} & 1.31 \times 10^{-} \\ & 05 \end{aligned}$	GNG7, DIRAS1
LA/Ao	$\begin{gathered} \text { 20:56644215- } \\ 56661518 \end{gathered}$	GT	0.11	BICF2P866985	$\underset{05}{2.17 \times 10^{-}}$	LMNB2
LA/Ao	$\begin{gathered} 24: 34737337- \\ 34947424 \end{gathered}$	GCTTTTGTTCCG	0.22	BICF2P912253	$\underset{05}{1.22 \times 10^{-}}$	SULF2
LA/Ao	$\begin{gathered} 24: 34999012- \\ 35216909 \end{gathered}$	ATCTTTGACAGT	0.236	TIGRP2P318119	$\underset{05}{5.22 \times 10}$	SULF2

[^4]Table 4.5 Coding variants matching MMVD-risk haplotypes on chromosome 13, 20 and 24. Variant annotation was conducted using Variant Effect Predictor (VEP) and Variant Annotation Integrator (VAI). Programs predict functional consequences based on transcript annotations from multiple sources. Transcript annotations used to predict functional consequences include Ensembl (E), National Center for Biotechnology information (N), and University of California Santa Cruz (U) and are reported under transcript source.

Variant ID	CHR	POS	REF	ALT	Gene	Putative Function	Amino Acid	SIFT	Variant Source
rs851561774	13	61539196	C	T	ADAMTS3	5'UTR		N	
rs852413501	13	61539199	A	G	ADAMTS3	5^{\prime} 'UTR		N	
rs852587856	20	56661518	C	T	LMNB2	missense	S/L	0.01	E,N
rs851285257	24	34736272	A	G	SULF2	synonymous	R	E,N,U	
rs9009460	24	34752654	C	T	SULF2	synonymous	T	E,N,U	
rs23166895	24	34826764	G	T	SULF2	5'UTR		N	
rs852282457	24	34850300	G	C	SULF2	5'UTR		N	

[^5]The most significantly associated genetic marker, located at CFA20:56661518 (chr20_56661518; $\mathrm{P}_{\text {genome }}=1.71 \times 10^{-5}$), is a putatively functional variant. The captured variant is a missense substitution (CFA20.56661518C>T) of the gene LMNB2. SIFT classifies the substitution as deleterious to protein function. The frequency of the observed variant is 0.104 in the studied population. Only two CKCS are homozygous for the risk allele, both with evidence of CHF. The genomic marker was uncalled in 11 samples. Of the remaining dogs, heterozygous wild-type and homozygous-mutant samples demonstrate more advanced cardiac remodelling than homozygous wild-type samples ($\mathrm{P}<0.05$; Figure 4.4a-d). Advancing MMVD was particularly apparent for the associated trait, LA/Ao.

Figure 4.4 A missense variant in the lamin subunit beta-2 (LMNB2) gene is associated with left sided cardiac remodelling in Cavalier King Charles Spaniels (CKCS) with myxomatous mitral valve disease. CKCS carrying the alternate allele for the left atrium to aortic root ratio (LA/Ao) associated marker chr20_56661518 and LMNB2 missense variant have significantly higher measures of echocardiographic variables. (a) LA/Ao (b) Age corrected LA/Ao (c) left ventricular end diastolic dimension, normalised for body weight (LVIDdn) (d) Age corrected LVIDdn. Genotypes as determined by genomic markers are designated as wild-type (Wt) and mutant (Mut), where the wild-type allele is considered the reference allele and the mutant is the alternate. The genomic marker was uncalled in 11 samples (NA). *Statistical significance using Wilcoxon signed-rank test ($p<0.05$) and non-significant differences ($n s ; p>0.05$)

4.5 Discussion

Through parallel multi-trait analyses, we identified the genomic regions associated with the progression of MMVD and development of CHF in the CKCS. Population structure, extensive regions of fixation, and cryptic relatedness in the dog can complicate GWAS and lead to false positive results. To correct for spurious results caused by stratification, we conducted the GWAS in EMMAX, employing a kinship matrix and using the top principal component as a covariate ${ }^{41,42}$. Given the extensive LD observed in dog breeds, genomic markers are not individual tests and so Bonferroni correction for significance is considered too stringent ${ }^{23,43}$. For this reason, we used empirically defined Cls to set a conservative genome-wide significance threshold ${ }^{43,44}$. Modelling MMVD with an emphasis on echocardiographic traits, we were able to identify five loci, positional candidate genes and candidate functional variants associated in the pathogenesis of MMVD in the CKCS breed.

Phenotypes applied in the GWAS were modelled and refined within the study cohort and are expected to reduce phenotyping error and aid in accurate detection of risk-loci (Chapter 2). Logistic regression analysis applied to this population found age was not a significant predictor of CHF but is a significant predictor of cardiac remodelling (Chapter 2.3.3). In the genotyped subset of CKCS used in this research we found that there was a significant difference in age between CHF and non-CHF samples, though cases are younger than control samples. It is possible that through our comparison of younger cases and older controls we identified loci associated with an early onset form of MMVD. Retrospective analysis or prevalence estimates of associated variants in an age-controlled cohort of at-risk dogs are recommended to validate variants.

As a result of canine domestication and breed selection, the underlying genetic architecture of the dog is beneficial in genetic mapping studies ${ }^{23,26}$. An enduring pattern of complex traits in dogs is that relatively few loci of large effect appear to govern most phenotypic differences among breeds ${ }^{45,46}$. As such, genes influencing complex traits with a quantitative phenotype, such as height, coat colour, and skull shape have been mapped with high accuracy ${ }^{45-52}$. This was the basis for the use of echocardiographic measures to map MMVD severity in the CKCS. LA/Ao and LVIDdn are frequently reported measures of cardiac remodelling and are strong predictors of advancing disease ${ }^{6,7,53}$. Although the use of echocardiographic measures did not result in the same statistical power as the case/control analysis, LD observed at each locus was less extensive, and a strong candidate mutation for disease progression was captured by the genomic markers. As a greater number of samples are included in MMVD mapping efforts, it could be expected that highly correlated traits like LA/Ao and LVIDdn will identify overlapping signals associated with MMVD disease progression with a greater significance. Given the prevalence of the MMVD in small dogs, it is possible that a common ancestral mutation is implicated in disease severity and is widely dispersed in the canine population. However, the current data and the continuing difficulty to replicate genomic signals within breed ${ }^{20-22}$
suggests that regardless of the heightened heritability of early onset disease and severity in the CKCS ${ }^{16}$, it is unlikely that only a few genetic variants are implicated in chronic disease.

Mapping studies utilising multiple breeds with the same trait benefit from improved statistical power and accuracy ${ }^{26}$. Quantitative variables such as those implemented in the current study are commonly reported during routine assessment of canine MMVD and would be easily applied across a multibreed cohort. Future studies should attempt to validate and explore variants and loci highlighted in this research by common measures of disease severity. To date, MMVD mapping and variant detection has been conducted in four dog breeds including CKCS, Whippets, Maltese terriers and dachshunds ${ }^{22,54-56}$. Promoting the use of common, objective measures like those utilised in this study would benefit disease research by permitting crossbreed meta-analyses. None of the loci published to date have overlapped between breeds. It is possible that this directly reflects MMVD as a complex trait caused by random assortment of low frequency risk factors. This supports the hypothesis of MMVD as a polygenic trait ${ }^{27,28}$.

The strongest signal and most convincing CHF-association was observed at the CFA14 locus where the top genomic marker (BICF2P757489) identified in the associated region was a missense substitution, CFA14g. $669043 \mathrm{C}>\mathrm{G}$, in the OBSCN gene. OBSCN is a giant sarcomeric protein that plays a prominent role in cardiac structure and function ${ }^{57-59}$. OBSCN is a prime gene of interest in the pathogenesis of heart disease as multiple causal associations for human inherited cardiomyopathies have been reported ${ }^{60,61}$. To date multiple missense, frameshift, and splicing mutations have been linked to occurrences of hypertrophic cardiomyopathy and dilated cardiomyopathy, and have also been associated with left ventricular compaction, lone atrial fibrillation and chronic systolic heart failure ${ }^{60-63}$. OBSCN plays a prominent regulatory role in the heart, particularly in calcium signalling ${ }^{64-66}$. Mouse models have demonstrated that dysfunction of OBSCN can result in cardiac remodelling with a possible age and sex effect ${ }^{\text {64-66 }}$. Genes involved in calcium signalling, cardiac muscle contraction, control and differentiation are significantly down-regulated in the CKCS when compared to both healthy and affected mitral valves from other dog breeds ${ }^{67}$. It is possible that the OBSCN variants observed in the CKCS contribute to abnormal cell signalling in dogs with cases of severe disease, but additional research is required to validate this hypothesis. However, it can be hypothesised that variation in the OBSCN gene may exacerbate cardiac remodelling in CKCS with MMVD and promote early onset disease or an increased risk of CHF. Three further functional variants OBSCN were predicted within the CHF-associated haplotype block. The gene and reported variants warrant further analysis in dogs with MMVD. Two loci at CFA14 have been previously identified in CKCS through GWAS and homozygosity analysis ${ }^{22}$. There is no evidence of overlap with the locus reported in this study.

At CFA20, a putative functional variant in the LMNB2 gene, CFA20.56661518C>T, that encodes a major lamin isoform passed the genome-wide significance threshold. The locus was significantly associated with echocardiographic variable LA/Ao. The observed variant is a
missense variant that is predicted to have a deleterious effect on the LMNB2 protein function. Lamins are widely expressed intermediate filament proteins that provide structural integrity to the nucleus and cytoskeleton, impact gene regulation and genome stability, and are involved in cell signalling ${ }^{68}$. Many disorders have been linked to genetic variants in lamin genes, chiefly lamin A/C (LMNA), colloquially referred to as laminopathies ${ }^{68,69}$. A major disease category of laminopathies include striated and cardiac muscle diseases, where LMNA variation is associated with cardiac phenotypes ${ }^{69-73}$. It is not uncommon for laminopathies to be accompanied by phenotypes affecting cardiac valves, including the mitral valve ${ }^{70,74-78}$. Variation in the LMNB2 gene has not been linked to cardiac disease, but it was recently proposed to play an essential role in mammalian cardiomyocyte karyokinesis and might contribute to the regenerative potential of cardiomyocytes ${ }^{79}$.

It has been hypothesised that selection for favourable coat colours and against severe MMVD may have had an important role in the development of Chiari-like malformation and syringomyelia in the CKCS breed ${ }^{80}$. The heightened prevalence of Chiari-like malformation and syringomyelia in the CKCS ${ }^{80-82}$ as well as anecdotal suggestion of a series of changes in the facial conformation of the CKCS has recently resulted in a heightened interest in genetic components contributing the variation in the CKCS skull shape ${ }^{83,84}$. Heterogeneity in the LMNB2 gene has recently been associated with microcephaly, a condition affecting head size, in humans ${ }^{85}$. The ${ }^{83,84}$. Variants in LMNB2 should be further investigated with attention to both MMVD and craniofacial phenotypes.

The pathophysiology of MMVD is complex and far from fully understood. Advanced stages of MMVD are categorised by the excessive deposition of proteoglycans and the disorganisation of the extracellular matrix (ECM). Two loci associated with increasing echocardiographic measures LA/Ao and LVIDdn were identified at CFA24 and CFA13 respectively and captured candidate genes for ECM remodelling. The associate locus at CFA24 contained the candidate gene sulfatase 2 (SULF2) which encodes a Heparan sulfate 6-O-endosulfatase enzyme. Heparan sulfate proteoglycans (HSPGs) are major elements of the ECM and a biological substrate of SULF2 ${ }^{86}$. The sulfation status of HSPGs is modulated by sulfatases and can have critical impacts on signalling pathways ${ }^{87-91}$. The effects of sulfatases on the binding of growth factors, particularly TGF- β, has meant SULF2 is a driver of transformed cellular phenotypes, evident by its role in multiple cancers ${ }^{88,92-95}$. A hallmark feature of MMVD is the development of nodules along the mitral valve leaflet, expansion of the spongiosa, and disorganisation of the fibrosa ${ }^{96}$. A critical step in the observed changes is the transformation of valvular interstitial cells into an active state, where upregulation of key signalling pathways, TGF- β and serotonin, promote substantial ECM remodelling ${ }^{5,97-101}$. Variation in gene expression during this process suggest valvular cells undergo an endothelial to mesenchymal transition ${ }^{102-105}$. Notably, activity of SULF2 can regulate TGF- β activity and inhibit transformation of cells into a mesenchymal state as well as increase the proliferative activity of cells ${ }^{87,90}$. SULF2 is also expected to play a regenerative role in hearts and attenuate left ventricular remodelling, post-infarction by
mediating angiogenesis and profibrotic activity of TGF- $\beta 1^{106}$. Currently, variable expression of the SULF2 gene and protein has not been observed in MMVD studies but evidence of the genes role in cell signalling and behavioural transformation makes it a candidate gene for advancing MMVD.

A single marker identified in the ADAMTS3 gene was significantly associated with echocardiographic variable LVIDdn. ADMTS3 belongs to the 'A disintegrin and metalloproteinase with thrombospondin motifs' (ADAMTS) family of proteins. ADAMTS and other closely related metalloproteinase families play a prominent role in the turnover and remodelling of the ECM ${ }^{107-109}$ and are variably expressed in proteomic and transcriptomic MMVD studies ${ }^{105,110}$. It is expected that differential expression of metalloprotease genes is a consequence of advancing MMVD, rather than a cause. Still, variation in ADAMTS3 is linked to cardiovascular health with variable expression observed in acute myocardial infarction, blood vessel homeostasis and lymphangiogenesis ${ }^{111,112}$. In humans, variation in the ADAMTS3 gene can cause Hennekam lymphangiectasia-lymphedema syndrome (HKLLS), characterised by lymphatic dysplasia and characteristic facial dysmorphism ${ }^{113,114}$. ADAMTS3 is highly expressed in the craniofacial region and is link to craniofacial phenotypes ${ }^{115,116}$. In dogs, variation in ADAMTS3 is associated with obstructive airway syndrome in the Norwich Terrier but the study found no morphological differences in the skull shape of affected and unaffected dogs ${ }^{117}$. Neither variation in the ADAMTS3 coding sequence nor gene expression have been implicated in the pathogenesis of MMVD in dogs or species with analogous phenotypes. As with the CFA14 locus, the signal observed at this locus does not overlap with the previously reported CKCS MMVD associated CFA13 locus ${ }^{22}$.

Whole genome sequencing and variant annotation is a powerful tool for understanding the inheritance of complex diseases. But the vast amount of information produced by such data introduces new challenges that require novel computational approaches for functional annotation and identification of causal variants in diseases of interest. The difficulty in identifying variants that underlie disease causation is even more difficult in complex disease like MMVD and CHF that involve a complex interplay of genetics with varying modes of selection, as well as metabolic and acquired factors ${ }^{118,119}$. Here, several candidate genes were outlined that might influence the development of CHF in CKCS with MMVD. SIFT was utilised as the main source of variant effect prediction due to its frequent use in canine publications and seamless integration into Ensembl's VEP tool ${ }^{37}$. An external cohort of comprehensively phenotyped individuals is needed to validate the genetic loci and risk factors presented. Furthermore, quantification of variations across species with distinct demographic histories is recommended and could assist in identifying non-coding variants of interest. Further analysis and prioritisation of genetic variants should be considered as novel computational approaches are developed and data are acquired.

This study identified five genomic regions associated with severe forms of MMVD and the development of CHF. Several candidate genes and mutations were identified that highlight
cardiomyocyte organisation, signal transduction, cell phenotype transformation and ECM remodelling as genetic components of advancing MMVD. Two putative functional variants were identified, CFA14g.669043C>G and CFA20.56661518C>T, that are predicted missense variants in the OBSCN and LMNB2 genes respectively. Both candidate variants are captured by genomic markers included on the Illumina canine HD beadchip. Risk loci and variants presented in this research should be validated using a larger cohorts of samples phenotyped according to left ventricular remodelling using echocardiographic variables. The incomplete segregation of MMVD risk loci across the studied samples support the disease as a polygenic threshold disorder. Dual functions of candidate genes in MMVD disease severity and craniofacial phenotypes may imply that selection on morphological phenotypes supported an increased occurrence of risk haplotypes in the CKCS. Contrariwise selection away from severe MMVD or early onset disease might have influenced CKCS skull morphology. Morphometric analysis of CKCS skull shapes are necessary to support this hypothesis.

4.6 References

1 Detweiler, D. K. \& Patterson, D. F. The prevalence and types of cardiovascular disease in dogs. Ann N Y Acad Sci 127, 481-516, doi:10.1111/j.1749-6632.1965.tb49421.x (1965).

2 Egenvall, A., Bonnett, B. N. \& Häggström, J. Heart Disease as a Cause of Death in Insured Swedish Dogs Younger Than 10 Years of Age. Journal of Veterinary Internal Medicine 20, 894-903, doi:10.1111/j.1939-1676.2006.tb01803.x (2006).
3 Fox, P. R. Pathology of myxomatous mitral valve disease in the dog. J Vet Cardiol 14, 103-126, doi:10.1016/j.jvc.2012.02.001 (2012).
4 Borgarelli, M., Tarducci, A., Zanatta, R. \& Haggstrom, J. Decreased systolic function and inadequate hypertrophy in large and small breed dogs with chronic mitral valve insufficiency. J Vet Intern Med 21, 61-67, doi:10.1892/08916640(2007)21[61:dsfaih]2.0.co;2 (2007).
5 Oyama, M. A. et al. Comparative pathology of human and canine myxomatous mitral valve degeneration: 5HT and TGF-beta mechanisms. Cardiovasc Pathol 46, 107196, doi:10.1016/j.carpath. 2019.107196 (2020).
6 Keene, B. W. et al. ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. J Vet Intern Med 33, 1127-1140, doi:10.1111/jvim. 15488 (2019).
7 Borgarelli, M. et al. Survival characteristics and prognostic variables of dogs with mitral regurgitation attributable to myxomatous valve disease. J Vet Intern Med 22, 120-128, doi:10.1111/j.1939-1676.2007.0008.x (2008).
8 Haggstrom, J. et al. Effect of pimobendan or benazepril hydrochloride on survival times in dogs with congestive heart failure caused by naturally occurring myxomatous mitral valve disease: the QUEST study. J Vet Intern Med 22, 1124-1135, doi:10.1111/j.1939-1676.2008.0150.x (2008).

Whitney, J. C. Observations on the effect of age on the severity of heart valve lesions in the dog. J Small Anim Pract 15, 511-522, doi:10.1111/j.1748-5827.1974.tb06529.x (1974).

10 Borgarelli, M. et al. Comparison of primary mitral valve disease in German Shepherd dogs and in small breeds. J Vet Cardiol 6, 27-34, doi:10.1016/S1760-2734(06)70055-8 (2004).

11 Serfass, P. et al. Retrospective study of 942 small-sized dogs: Prevalence of left apical systolic heart murmur and left-sided heart failure, critical effects of breed and sex. J Vet Cardiol 8, 11-18, doi:10.1016/j.jvc.2005.10.001 (2006).
12 Thrusfield, M. V., Aitken, C. G. G. \& Darker, P. G. G. Observations on breed and sex in relation to canine heart valve incompetence. Journal of Small Animal Practice 26, 709717, doi:10.1111/j.1748-5827.1985.tb02199.x (1985).
13 Beardow, A. W. \& Buchanan, J. W. Chronic mitral valve disease in cavalier King Charles spaniels: 95 cases (1987-1991). J Am Vet Med Assoc 203, 1023-1029 (1993).
14 Haggstrom, J., Kvart, C. \& Hansson, K. Heart sounds and murmurs: changes related to severity of chronic valvular disease in the Cavalier King Charles spaniel. J Vet Intern Med 9, 75-85, doi:10.1111/j.1939-1676.1995.tb03276.x (1995).
15 Haggstrom, J., Hansson, K., Kvart, C. \& Swenson, L. Chronic valvular disease in the cavalier King Charles spaniel in Sweden. Vet Rec 131, 549-553 (1992).
16 Lewis, T., Swift, S., Woolliams, J. A. \& Blott, S. Heritability of premature mitral valve disease in Cavalier King Charles spaniels. Vet J 188, 73-76, doi:10.1016/j.tvjl.2010.02.016 (2011).
17 Mattin, M. J. et al. Prevalence of and risk factors for degenerative mitral valve disease in dogs attending primary-care veterinary practices in England. J Vet Intern Med 29, 847-854, doi:10.1111/jvim. 12591 (2015).
18 Swift, S., Baldin, A. \& Cripps, P. Degenerative Valvular Disease in the Cavalier King Charles Spaniel: Results of the UK Breed Scheme 1991-2010. J Vet Intern Med 31, 914, doi:10.1111/jvim. 14619 (2017).
19 Egenvall, A., Bonnett, B. N., Hedhammar, A. \& Olson, P. Mortality in over 350,000 insured Swedish dogs from 1995-2000: II. Breed-specific age and survival patterns and relative risk for causes of death. Acta Vet Scand 46, 121-136, doi:10.1186/1751-0147-46-121 (2005).
20 Bionda, A. et al. A Genomic Study of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniels. Animals (Basel) 10, 1895, doi:10.3390/ani10101895 (2020).
21 French, A. T. et al. Genome-wide analysis of mitral valve disease in Cavalier King Charles Spaniels. Vet J 193, 283-286, doi:10.1016/j.tvjl.2011.09.011 (2012). Madsen, M. B. et al. Identification of 2 loci associated with development of myxomatous mitral valve disease in Cavalier King Charles Spaniels. J Hered 102 Suppl 1, S62-67, doi:10.1093/jhered/esr041 (2011).
23 Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803-819, doi:10.1038/nature04338 (2005).

24 Sutter, N. B. et al. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res 14, 2388-2396, doi:10.1101/gr. 3147604 (2004).
25 Gray, M. M. et al. Linkage disequilibrium and demographic history of wild and domestic canids. Genetics 181, 1493-1505, doi:10.1534/genetics.108.098830 (2009).

26 Karlsson, E. K. et al. Efficient mapping of mendelian traits in dogs through genomewide association. Nature genetics 39, 1321 (2007).
27 Olsen, L. H., Fredholm, M. \& Pedersen, H. D. Epidemiology and inheritance of mitral valve prolapse in Dachshunds. J Vet Intern Med 13, 448-456, doi:10.1892/08916640(1999)013<0448:eaiomv>2.3.co;2 (1999).
28 Swenson, L., Häggström, J., Kvart, C. \& Juneja, R. K. Relationship between parental cardiac status in Cavalier King Charles Spaniels and prevalence and severity of chronic valvular disease in offspring. Journal of the American Veterinary Medical Association 208, 2009-2012 (1996).
29 Atkins, C. E. et al. Results of the veterinary enalapril trial to prove reduction in onset of heart failure in dogs chronically treated with enalapril alone for compensated, naturally occurring mitral valve insufficiency. J Am Vet Med Assoc 231, 1061-1069, doi:10.2460/javma.231.7.1061 (2007).
30 Kvart, C. et al. Efficacy of enalapril for prevention of congestive heart failure in dogs with myxomatous valve disease and asymptomatic mitral regurgitation. J Vet Intern Med 16, 80-88, doi:10.1111/j.1939-1676.2002.tb01610.x (2002).
31 Atkins, C. E. et al. Effects of long-term administration of enalapril on clinical indicators of renal function in dogs with compensated mitral regurgitation. J Am Vet Med Assoc 221, 654-658, doi:10.2460/javma.2002.221.654 (2002).
32 Borgarelli, M. et al. Survival characteristics and prognostic variables of dogs with preclinical chronic degenerative mitral valve disease attributable to myxomatous degeneration. J Vet Intern Med 26, 69-75, doi:10.1111/j.1939-1676.2011.00860.x (2012).

33 Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42, 348-354, doi:10.1038/ng. 548 (2010).
34 Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7, doi:10.1186/s13742-015-0047-8 (2015).
35 Barrett, J. C., Fry, B., Maller, J. \& Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263-265, doi:10.1093/bioinformatics/bth457 (2005).

36 Wang, N., Akey, J. M., Zhang, K., Chakraborty, R. \& Jin, L. Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am J Hum Genet 71, 1227-1234, doi:10.1086/344398 (2002).
37 McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol 17, 122, doi:10.1186/s13059-016-0974-4 (2016).
38 Hinrichs, A. S. et al. UCSC Data Integrator and Variant Annotation Integrator. Bioinformatics 32, 1430-1432, doi:10.1093/bioinformatics/btv766 (2016).
39 Ng, P. C. \& Henikoff, S. Predicting deleterious amino acid substitutions. Genome Res 11, 863-874, doi:10.1101/gr. 176601 (2001).
40 Hoeppner, M. P. et al. An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts. PLoS One 9, e91172, doi:10.1371/journal.pone. 0091172 (2014).
41 Price, A. L. et al. Principal components analysis corrects for stratification in genomewide association studies. Nat Genet 38, 904-909, doi:10.1038/ng1847 (2006).

46 Boyko, A. R. et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 8, e1000451, doi:10.1371/journal.pbio. 1000451 (2010).
47 Cadieu, E. et al. Coat variation in the domestic dog is governed by variants in three genes. Science 326, 150-153, doi:10.1126/science. 1177808 (2009).
48 Schoenebeck, J. J. et al. Variation of BMP3 contributes to dog breed skull diversity. PLoS Genet 8, e1002849, doi:10.1371/journal.pgen. 1002849 (2012).
49 Plassais, J. et al. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat Commun 10, 1489, doi:10.1038/s41467-019-09373-w (2019).
50 Rimbault, M. et al. Derived variants at six genes explain nearly half of size reduction in dog breeds. Genome Res 23, 1985-1995, doi:10.1101/gr.157339.113 (2013).
51 Sutter, N. B. et al. A single IGF1 allele is a major determinant of small size in dogs. Science 316, 112-115, doi:10.1126/science. 1137045 (2007).
52 Marchant, T. W. et al. Canine Brachycephaly Is Associated with a RetrotransposonMediated Missplicing of SMOC2. Curr Biol 27, 1573-1584 e1576, doi:10.1016/j.cub.2017.04.057 (2017).
53 Bagardi, M. et al. Echocardiographic Evaluation of the Mitral Valve in Cavalier King Charles Spaniels. Animals (Basel) 10, doi:10.3390/ani10091454 (2020).
54 Stern, J. A. et al. Severity of Mitral Valve Degeneration Is Associated with Chromosome 15 Loci in Whippet Dogs. PLoS One 10, e0141234, doi:10.1371/journal.pone. 0141234 (2015).
55 Meurs, K. M. et al. Evaluation of genes associated with human myxomatous mitral valve disease in dogs with familial myxomatous mitral valve degeneration. Vet J 232, 16-19, doi:10.1016/j.tvjl.2017.12.002 (2018).
Lee, C. M., Song, D. W., Ro, W. B., Kang, M. H. \& Park, H. M. Genome-wide association study of degenerative mitral valve disease in Maltese dogs. J Vet Sci 20, 63-71, doi:10.4142/jvs.2019.20.1.63 (2019).
57 Arimura, T. et al. Structural analysis of obscurin gene in hypertrophic cardiomyopathy. Biochem Biophys Res Commun 362, 281-287, doi:10.1016/j.bbrc.2007.07.183 (2007).
58 Borisov, A. B. et al. Essential role of obscurin in cardiac myofibrillogenesis and hypertrophic response: evidence from small interfering RNA-mediated gene silencing. Histochem Cell Biol 125, 227-238, doi:10.1007/s00418-005-0069-x (2006).
59 Lange, S. et al. Obscurin determines the architecture of the longitudinal sarcoplasmic reticulum. J Cell Sci 122, 2640-2650, doi:10.1242/jcs. 046193 (2009).
60 Grogan, A. \& Kontrogianni-Konstantopoulos, A. Unraveling obscurins in heart disease. Pflugers Arch 471, 735-743, doi:10.1007/s00424-018-2191-3 (2019).

61 Marston, S. Obscurin variants and inherited cardiomyopathies. Biophys Rev 9, 239243, doi:10.1007/s12551-017-0264-8 (2017).
62 Catalano, J., Paynton, B., Kaniper, S., Gerhard, G. \& Alvarez, R. Identification of a Novel Obscurin Protein Variant in Nonischemic Cardiomyopathy. Journal of the American College of Cardiology 71, A743-A743, doi:10.1016/s0735-1097(18)31284-1 (2018).
63 Rudaka, I., Rots, D., Kalejs, O. \& Gailite, L. Prevalence of Obscn Truncating Variants in Lone Atrial Fibrillation. Journal of the American College of Cardiology 75, 451-451, doi:10.1016/s0735-1097(20)31078-0 (2020).
64 Grogan, A. et al. Deletion of obscurin immunoglobulin domains $\lg 58 / 59$ leads to agedependent cardiac remodeling and arrhythmia. Basic Res Cardiol 115, 60, doi:10.1007/s00395-020-00818-8 (2020).
65 Hu, L. R. \& Kontrogianni-Konstantopoulos, A. Proteomic Analysis of Myocardia Containing the Obscurin R4344Q Mutation Linked to Hypertrophic Cardiomyopathy. Front Physiol 11, 478, doi:10.3389/fphys. 2020.00478 (2020).
$66 \mathrm{Hu}, \mathrm{L}$. R. et al. Deregulated $\mathrm{Ca}(2+$) cycling underlies the development of arrhythmia and heart disease due to mutant obscurin. Sci Adv 3, e1603081, doi:10.1126/sciadv. 1603081 (2017).
67 Markby, G. R., Macrae, V. E., Corcoran, B. M. \& Summers, K. M. Comparative transcriptomic profiling of myxomatous mitral valve disease in the cavalier King Charles spaniel. BMC Vet Res 16, 350, doi:10.1186/s12917-020-02542-w (2020). Gruenbaum, Y. \& Foisner, R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 84, 131-164, doi:10.1146/annurev-biochem-060614-034115 (2015).
69 Maraldi, N. M., Capanni, C., Cenni, V., Fini, M. \& Lattanzi, G. Laminopathies and laminassociated signaling pathways. J Cell Biochem 112, 979-992, doi:10.1002/jcb. 22992 (2011).

70 Baban, A. et al. Cardiovascular Involvement in Pediatric Laminopathies. Report of Six Patients and Literature Revision. Front Pediatr 8, 374, doi:10.3389/fped.2020.00374 (2020).

71 Brull, A., Morales Rodriguez, B., Bonne, G., Muchir, A. \& Bertrand, A. T. The Pathogenesis and Therapies of Striated Muscle Laminopathies. Front Physiol 9, 1533, doi:10.3389/fphys. 2018.01533 (2018).
72 Peretto, G. et al. Updated clinical overview on cardiac laminopathies: an electrical and mechanical disease. Nucleus 9, 380-391, doi:10.1080/19491034.2018.1489195 (2018).

73 Nishiuchi, S. et al. Gene-Based Risk Stratification for Cardiac Disorders in LMNA Mutation Carriers. Circ Cardiovasc Genet 10, doi:10.1161/CIRCGENETICS.116.001603 (2017).

74 Araujo-Vilar, D. et al. A novel phenotypic expression associated with a new mutation in LMNA gene, characterized by partial lipodystrophy, insulin resistance, aortic stenosis and hypertrophic cardiomyopathy. Clin Endocrinol (Oxf) 69, 61-68, doi:10.1111/j.1365-2265.2007.03146.x (2008).
Mahajan, A. M. et al. Sudden Cardiac Arrest in a Patient With Mitral Valve Prolapse and LMNA and SCN5A Mutations. JACC: Case Reports 3, 242-246, doi:10.1016/j.jaccas.2020.11.046 (2021).

76 Marian, A. J. Non-syndromic cardiac progeria in a patient with the rare pathogenic p.Asp300Asn variant in the LMNA gene. BMC Med Genet 18, 116, doi:10.1186/s12881-017-0480-x (2017).
77 Tao, J., Duan, J., Pi, X., Wang, H. \& Li, S. A splicing LMNA mutation causing laminopathies accompanied by aortic valve malformation. J Clin Lab Anal 35, e23736, doi:10.1002/jcla. 23736 (2021).
78 Yukina, M. et al. Atypical progeroid syndrome (p.E262K LMNA mutation): a rare cause of short stature and osteoporosis. Endocrinol Diabetes Metab Case Rep 2021, doi:10.1530/EDM-20-0188 (2021).
79 Han, L. et al. Lamin B2 Levels Regulate Polyploidization of Cardiomyocyte Nuclei and Myocardial Regeneration. Dev Cell 53, 42-59 e11, doi:10.1016/j.devcel.2020.01.030 (2020).

80 Rusbridge, C. \& Knowler, S. P. Inheritance of occipital bone hypoplasia (Chiari type I malformation) in Cavalier King Charles Spaniels. J Vet Intern Med 18, 673-678, doi:10.1892/0891-6640(2004)18<673:ioobhc>2.0.co;2 (2004).
81 Lewis, T., Rusbridge, C., Knowler, P., Blott, S. \& Woolliams, J. A. Heritability of syringomyelia in Cavalier King Charles spaniels. Vet J 183, 345-347, doi:10.1016/j.tvjl.2009.10.022 (2010).
82 Rusbridge, C. Neurological diseases of the Cavalier King Charles spaniel. J Small Anim Pract 46, 265-272, doi:10.1111/j.1748-5827.2005.tb00319.x (2005).
83 Knowler, S. P. et al. Use of Morphometric Mapping to Characterise Symptomatic Chiari-Like Malformation, Secondary Syringomyelia and Associated Brachycephaly in the Cavalier King Charles Spaniel. PLoS One 12, e0170315, doi:10.1371/journal.pone. 0170315 (2017).
84 Knowler, S. P. et al. Pilot study of head conformation changes over time in the Cavalier King Charles spaniel breed. Vet Rec 184, 122, doi:10.1136/vr. 105135 (2019).
85 Parry, D. A. et al. Heterozygous lamin B1 and lamin B2 variants cause primary microcephaly and define a novel laminopathy. Genet Med 23, 408-414, doi:10.1038/s41436-020-00980-3 (2021).
86 Sarrazin, S., Lamanna, W. C. \& Esko, J. D. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3, a004952, doi:10.1101/cshperspect.a004952 (2011).
87 Huo, W. et al. MicroRNA-527 inhibits TGF-beta/SMAD induced epithelialmesenchymal transition via downregulating SULF2 expression in non-small-cell lung cancer. Math Biosci Eng 16, 4607-4621, doi:10.3934/mbe.2019231 (2019).
88 Rosen, S. D. \& Lemjabbar-Alaoui, H. Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opin Ther Targets 14, 935-949, doi:10.1517/14728222.2010.504718 (2010).
89 Uchimura, K. et al. HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 7, 2, doi:10.1186/1471-2091-7-2 (2006).
90 Krishnakumar, K. et al. Multi-tasking Sulf1/Sulf2 enzymes do not only facilitate extracellular cell signalling but also participate in cell cycle related nuclear events. Exp Cell Res 364, 16-27, doi:10.1016/j.yexcr.2018.01.022 (2018).
91 Otsuki, S. et al. Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways. Proc Natl Acad Sci U S A 107, 10202-10207, doi:10.1073/pnas. 0913897107 (2010).

101 Oyama, M. A. \& Levy, R. J. Insights into serotonin signaling mechanisms associated with canine degenerative mitral valve disease. J Vet Intern Med 24, 27-36, doi:10.1111/j.1939-1676.2009.0411.x (2010).
102 Lu, C. C. et al. Gene network and canonical pathway analysis in canine myxomatous mitral valve disease: a microarray study. Vet J 204, 23-31, doi:10.1016/j.tvjl.2015.02.021 (2015).
103 Lu, C. C., Liu, M. M., Culshaw, G., French, A. \& Corcoran, B. Comparison of cellular changes in Cavalier King Charles spaniel and mixed breed dogs with myxomatous mitral valve disease. J Vet Cardiol 18, 100-109, doi:10.1016/j.jvc.2015.12.003 (2016).
104 Markby, G. R., Macrae, V. E., Summers, K. M. \& Corcoran, B. M. Disease SeverityAssociated Gene Expression in Canine Myxomatous Mitral Valve Disease Is Dominated by TGFbeta Signaling. Front Genet 11, 372, doi:10.3389/fgene.2020.00372 (2020).
105 Markby, G. R., Summers, K. M., MacRae, V. E. \& Corcoran, B. M. Comparative Transcriptomic Profiling and Gene Expression for Myxomatous Mitral Valve Disease in the Dog and Human. Vet Sci 4, 34, doi:10.3390/vetsci4030034 (2017).
106 Korf-Klingebiel, M. et al. Heparan Sulfate-Editing Extracellular Sulfatases Enhance VEGF Bioavailability for Ischemic Heart Repair. Circ Res 125, 787-801, doi:10.1161/CIRCRESAHA. 119.315023 (2019).
107 Hulin, A. et al. Metallothionein-dependent up-regulation of TGF-beta2 participates in the remodelling of the myxomatous mitral valve. Cardiovasc Res 93, 480-489, doi:10.1093/cvr/cvr337 (2012).

Kelwick, R., Desanlis, I., Wheeler, G. N. \& Edwards, D. R. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 16, 113, doi:10.1186/s13059-015-0676-3 (2015).
109 Yamamoto, K., Murphy, G. \& Troeberg, L. Extracellular regulation of metalloproteinases. Matrix Biol 44-46, 255-263, doi:10.1016/j.matbio.2015.02.007 (2015).

110 Aupperle, H. \& Disatian, S. Pathology, protein expression and signaling in myxomatous mitral valve degeneration: comparison of dogs and humans. J Vet Cardiol 14, 59-71, doi:10.1016/j.jvc.2012.01.005 (2012).
111 Bekhouche, M. \& Colige, A. The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology. Matrix Biol 44-46, 46-53, doi:10.1016/j.matbio.2015.04.001 (2015).
112 Lee, C. W. et al. Expression of ADAMTS-2, $-3,-13$, and -14 in culprit coronary lesions in patients with acute myocardial infarction or stable angina. J Thromb Thrombolysis 33, 362-370, doi:10.1007/s11239-011-0673-7 (2012).
113 Brouillard, P. et al. Loss of ADAMTS3 activity causes Hennekam lymphangiectasialymphedema syndrome 3. Hum Mol Genet 26, 4095-4104, doi:10.1093/hmg/ddx297 (2017).

114 Scheuerle, A. E. et al. An additional case of Hennekam lymphangiectasia-lymphedema syndrome caused by loss-of-function mutation in ADAMTS3. Am J Med Genet A 176, 2858-2861, doi:10.1002/ajmg.a. 40633 (2018).
115 Janssen, L. et al. ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis 19, 53-65, doi:10.1007/s10456-015-9488-z (2016).
116 Ogino, H. et al. Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin. J Neurosci 37, 3181-3191, doi:10.1523/JNEUROSCI.3632-16.2017 (2017).
117 Marchant, T. W. et al. An ADAMTS3 missense variant is associated with Norwich Terrier upper airway syndrome. PLoS Genet 15, e1008102, doi:10.1371/journal.pgen. 1008102 (2019).
118 O'Brien, M. J., Beijerink, N. J. \& Wade, C. M. Genetics of canine myxomatous mitral valve disease. Anim Genet, doi:10.1111/age. 13082 (2021).
119 Li, Q., Heaney, A., Langenfeld-McCoy, N., Boler, B. V. \& Laflamme, D. P. Dietary intervention reduces left atrial enlargement in dogs with early preclinical myxomatous mitral valve disease: a blinded randomized controlled study in 36 dogs. BMC Veterinary Research 15, 425, doi:10.1186/s12917-019-2169-1 (2019).

Chapter 5. Runs of homozygosity analysis in the Cavalier King Charles Spaniel identifies candidate genes for the pathogenesis myxomatous mitral valve disease

Abstract

5.1 Abstract

The unique history of canine domestication and breed-line development has resulted in dogs breeds exhibiting a diverse repertoire of phenotypic variation. Genomic signatures of selection that reflect this history, are most notably observed in runs of homozygosity (ROH). Identifying regions of selection within dog breeds is a valuable process for gaining insight into the genetic variation that governs breed-specific traits and common diseases that have potentially hitchhiked alongside the selection processes. Myxomatous mitral valve disease (MMVD) is the most frequently diagnosed cardiovascular disease in dogs. The Cavalier King Charles Spaniel (CKCS) is a breed universally affected by MMVD, and genes involved in disease pathogenesis are expected to be near fixation in the population. Given the fixed nature of MMVD in the CKCS, this research sought to identify signatures of selection in this breed through ROH.

ROH were detected in Australian CKCS, genotyped on the Illumina canineHD array and validated in a second cohort of CKCS. ROH with a high incidence in both cohorts were investigated for candidate genes and variants for the pathogenesis of MMVD. MMVD affects all dog breeds, but prevalence estimates are significantly higher in small breeds, like the CKCS. Variants that may have hitchhiked with nearby positively selected size variants were assessed. A single ROH overlapping the FGF4-retrogene, a known size variant that has been implicated in valvulogenesis, was observed at a high frequency in both cohorts. A further candidate gene for the pathogenesis of MMVD, COL11A1, was observed in the longest validated ROH. Three COL11A1 splice region variants were observed in CKCS whole genome sequence data. Mutations in COL11A1 are implicated in connective tissue syndromes in humans that may present with valvular phenotypes and other features observed in the CKCS.

5.2 Introduction

Myxomatous mitral valve disease (MMVD; OMIA 000654-9615) is a chronic, progressive disorder that affects elderly dogs (Canis lupus familiaris) of all sizes, but the highest incidence and greatest susceptibility to the disease is confined to smaller breeds ${ }^{1-3}$. The elevated prevalence of MMVD in small stature breeds has led to the hypothesis that pathogenic variants may have hitchhiked with genes influencing small size ${ }^{4}$. MMVD is the most common cardiac disease in dogs ${ }^{5-7}$. Frequently, the disease is diagnosed with auscultation and is characterised by a systolic murmur caused by the back-flow of blood, known as mitral regurgitation (MR). In most cases, the presence of MR is of minimal concern, but MMVD has the potential to progress
into eccentric left-sided cardiac remodelling that can result in congestive heart failure and premature death ${ }^{8-11}$.

Selective breeding for behavioural and breed defining morphological traits has resulted in genetic bottlenecks that divide purebred dogs into distinct populations with reduced phenotypic and genetic heterogeneity, and extensive linkage disequilibrium (LD) ${ }^{12-14}$. Inadvertently, this process can result in disease-associated risk alleles hitchhiking alongside desirable traits ${ }^{15-17}$. While persistent selective pressure can result in an accumulation of disease risk-alleles, background ancestral variation in the dog remains high, reducing LD across breeds and making it an ideal genetic system for studying complex traits ${ }^{18}$. Taking advantage of the unique genetic background of the dog, significant advances have been made in identifying heritable loci that govern disease risk and other observable phenotypes ${ }^{18-22}$. Genome wide association studies (GWAS) represent a key strategy in mapping heritable traits. However, GWAS largely requires access to equal sizes of affected and unaffected dogs within a breed, and in circumstances where causative genetic polymorphisms have become fixed within a breed by drift or artificial selection, a case/control GWAS is challenging. This is a prominent roadblock when studying MMVD in breeds like the Cavalier King Charles Spaniel (CKCS) where the underlying degeneration of mitral valves is consistent within the breed ${ }^{23,24}$.

Because prevalence of MMVD is so high in the CKCS, identifying fixed genomic regions could be advantageous in the understanding the genetic aetiology. Observing regions under artificial selection has the potential to help identify genomic loci contributing to disease susceptibility and complex traits ${ }^{17}$. Selective sweeps are defined as a reduction in genetic variation surrounding a beneficial or artificially selected mutation and are prominent in populations that have undergone recent intensive selection. Runs of homozygosity (ROH) are a characteristic of populations with a low effective population size and are a key signature of artificial selection ${ }^{25,26}$. ROH describe tracts of genomic homozygosity within breeds that are identical by descent, manifesting because of common ancestry among breed representatives. The size of the tract provides some indication of how recently the selection was applied with longer tracts indicating more recent or stronger selective pressure ${ }^{26,27}$. Canine research supports the notion that deleterious variants and disease-associated genes are enriched in regions of intense artificial selection ${ }^{15,28}$. For traits and diseases considered fixed within a population, like MMVD in the CKCS, it is reasonable to suggest that causative loci exist within ROH.

The CKCS is a toy breed that genetically clusters within the Spaniel group ${ }^{29}$. Historically, the breed is believed to have undergone several conformational changes, mostly affecting head shape ${ }^{30}$. It is possible that during the breed development process, CKCS have acquired an increased prevalence of heritable disorders like MMVD and syringomyelia ${ }^{31}$, because of disease causing variants that have hitchhiked with those under strong selection for hallmark
phenotypic traits. It is also possible that genes involved in heritable diseases share physiological function with genes under selection. The CKCS is recognised as being affected by MMVD more frequently and at a much younger age than other breeds ${ }^{32-35}$. Both the presence and severity of MMVD in the CKCS breed is highly heritable ${ }^{36}$. For this reason, the CKCS is the most represented breed in canine MMVD research ${ }^{37-42}$. The modern-day CKCS remains a highly popular breed in both the United Kingdom and Australia ${ }^{43,44}$. While breeders prioritise avoiding inbreeding, genetic evidence still indicates that the breed has low heterozygosity and a low rate of LD decay ${ }^{45-47}$. Several breed-related health issues are noteworthy in the CKCS ${ }^{31}$ including; myxomatous mitral valve disease ${ }^{37-42}$, Chiari-like malformation, syringomyelia ${ }^{48,49}$, retinal dysplasia, cataracts ${ }^{50}$ and chronic pancreatitis ${ }^{51}$. All of these health related issues are overlapping features of heritable disorders of connective tissue ${ }^{52}$. Detrimental variants in genes regulating connective tissue remodelling and repair may impact the prevalence of such disorders.

This research aims to identify candidate genes and variants involved in the pathogenesis of MMVD by identifying signatures of artificial selection in the CKCS. Given the fixed nature of the disease within the breed, we propose assessing ROH in the CKCS for candidate genes and variants affecting MMVD risk. Due to the exaggerated prevalence of the disease in small dogs, this research attempts to identify variants common in small dogs that may have hitchhiked with nearby positively selected size variants.

5.3 Methods and materials

5.3.1 Ethics, clinical diagnosis, and data collection

The methodology described in Chapter 5 was conducted on a population of Australian CKCS previously reported and conforms with ethical practices (Chapter 2.2.1). Clinical evaluation of MMVD (Chapter 2.2.2), collection of blood and genotyping (Chapter 3.2.2), next generation sequencing (Chapter 3.2.2), whole genome sequence (WGS) alignment and variant calling (Chapter 3.2.6) have been reported.

Genotype data from a secondary group of CKCS ($\mathrm{n}=96$) from the United Kingdom available through the public Gene Expression Omnibus database (accession GSE102906) were included as a validation cohort. The data was previously applied to a genetic investigation of syringomyelia ${ }^{53,54}$.

5.3.2 CKCS runs of homozygosity analysis

Identification of autozygous genomic regions was conducted in two stages. The first stage used locally acquired CKCS genotype data. In the second stage, the same analysis was applied to public-domain CKCS data from a geographically removed population. ROH analysis was conducted in both cohorts using Plink ${ }^{55}$ (--homozyg) in accordance with a protocol previously described and validated ${ }^{56}$. Settings for the minimal density of single nucleotide variants (SNV) (--homozyg-density) and maximal gap size (--homozyg-gap) were empirically determined ${ }^{56}$. To improve accuracy of inbreeding coefficients, input settings were applied at thresholds allowing for the highest coverage of the genome. Scanning window length (--homozyg-window-snp) and scanning window threshold (--homozyg-window-threshold) were calculated using the suggested formula ${ }^{56}$. In accordance with the published protocol by Meyermans et al. (2019), SNPs were not subjected to minor allele frequency (MAF) or LD pruning ${ }^{56}$. The minimal number of SNPs in a ROH was determined for each analysis using a previously described and adapted formula ${ }^{57}$. Further settings allowed for one heterozygous SNP (--homozyg-window-het) and one missing SNP (--homozyg-window-missing) per scanning window for a maximum of one heterozygous SNP in the final segment (--homozyg-het). The incidence of genomic markers in a ROH is calculated as the proportion of times it occurs in a ROH across the analysed population. Genomic regions containing the highest incidence (top 1\%) of SNVs observed in a ROH were considered ROH hotspots ${ }^{57}$. The extent of hotspots was measured by combining SNVs with neighbouring genomic markers that passed the incidence threshold. Autozygous regions underwent further examination if they were consistent in both the initial CKCS and validation cohorts. Inbreeding coefficients (FROH) were calculated for both length of the autosomal genome ($\mathrm{FROH}_{\text {aut }}$) and the length of the genome covered by the array $\left(\mathrm{FROH}_{\text {cov }}\right)^{56}$. Using a Pearson's correlation test, we assessed the relationship between inbreeding coefficients, $\mathrm{FROH}_{\text {aut }}$ and $\mathrm{FROH}_{\text {cov. }}$ A Wilcoxon signed-ranks test was used to determine if ROH results were significantly different between the studied cohorts. Validated ROH tracts were examined for syntenic regions in humans using the Ensembl Bioinformatics database ${ }^{58}$.

5.3.3 CKCS ROH genes consistent with breed standard hallmark traits

Breed hallmark traits that were identified by observation of CKCS breed standards outlined by The Kennel Club (KC; https://www.thekennelclub.org.uk/breed-standards/toy/cavalier-king-charles-spaniel/) and Australian National Kennel Council (ANKC; http://ankc.org.au/Breed/Detail/18). ROH presence and tract size were recorded for genes and chromosomal regions with known association to CKCS breed hallmark traits were identified in the literature (Table 5.1).

Table 5.1 Gene associated with Cavalier King Charles Spaniel hallmark traits for breed.

Phenotype	Gene	Genomic coordinates (Canfam3.1)	Reference
Coat colour - Black and Tan	ASIP	24:23354888-23393896	59
Coat colour - Ruby	MC1R	5:63694296-63695249	60
Coat colour Blenheim/Tricolour	MITF	20:21883312-22101930	18
Skull shape - Skull flat between ears. Nose (3.8 cm)	BMP3	32:5207833-5231966	61
	SMOC2	1:56009740-56168234	62
Coat - long and silky	FGF5	32:4533042-4556071	63,64
Size - small well-	GHR	4:67022252-67290473	65
	HMGA2	10:8352270-8491307	65
	IGF1	15:41202518-41275794	66
	IGF2BP2	34:18369684-18522157	67
	IGF1R	3:41794623-42090387	68
	LCORL	3:91132373-91271686	69
	SMAD2	7:43700445-43769983	65
	STC2	4:39152503-39162343	65
	ZNF608	11:14301410-14405797	69
	FGF4	18:48413694-48415206	21
	FGF4*	12:33710168-33710178	70
	FGF4*	18:23431136-23431136	21
Ears - Pendulous	MSRB3	10:7971606-8151219	69

*Retrogenes associated with phenotype

5.3.4 CKCS ROH genes consistent with MMVD gene ontology

Custom lists of Gene Ontology (GO) annotations associated with MMVD and genes differentially expressed in MMVD transcriptomic studies were produced ${ }^{71-74}$ (Table S1 \& S2).

Genes located within CKCS ROH hotspots were assessed for overlap with annotated terms using Gonet annotation analysis with a custom list ${ }^{75}$.

5.3.5 Discovery of private or rare CKCS variants

Data from next generation sequencing (Chapter 3.2.2), WGS alignment and variant calling (Chapter 3.2.6) were applied to the research described in this chapter. This includes access to WGS alignments and variant call data obtained from five CKCS samples.

CKCS and other small breed dogs are predicted to have a higher frequency of variants driving the development of MMVD compared to larger breeds. Using data from a variant catalogue developed from 722 Canid sequences available on NCBI ${ }^{69}$ (accession number: PRJNA448733), hereby referred to as 'the canine catalogue', we compared the frequency of putative functional variants in the CKCS with other breeds. Prior to assessing the frequency of variants in canine catalogue, dogs were excluded from the analysis if they did not belong to the subspecies Canis Lupus Familiaris or if their breed was mixed or unknown. No more than four samples per breed were included to moderate overrepresentation and prevent breed-driven results. Samples were preferentially selected for highest coverage and a gender balance. Detection of rare CKCS alleles in the remaining dataset was conducted in four steps. First, to ensure variants had a high level of fixation in the CKCS, Bi-allelic variants with a frequency greater than 0.8 were extracted from the high-quality CKCS WGS variant dataset, previously described (Chapter 3.2.6), using VCFtools ${ }^{76}$. Variants were then analysed with Ensembl's Variant Effect predictor (VEP) tool ${ }^{77}$. Next, VEP output was filtered to retain variants with probable functional consequences using the following impact terms: missense_variant, start_lost, stop_lost, stop_retained_variant, stop_gained, splice_region_variant, splice_acceptor_variant, splice_donor_variant, 3_prime_UTR_variant, 5_prime_UTR_variant. Finally, using the genomic coordinates of filtered variants in the CKCS, variants were extracted from the canine catalogue ${ }^{69}$. The frequency of the remaining variants was compared between small dogs predisposed to MMVD, less than nine kilograms ${ }^{4}$, and larger breeds. Rare variants, with a MAF less than 0.05 , in the larger breed cohort were reported.

5.3.6 Haplotype analysis of candidate genes

Haplotype analysis of candidate genes was conducted using Haploview software ${ }^{78}$. Array markers 500 kb upstream and downstream of the gene were extracted from 274 CKCS from both the initial and validation cohort. Haplotypes were generated based on 95% confidence bounds on LD parameter D prime ${ }^{79}$. Variants segregating within the observed haplotypes were extracted from the CKCS WGS VCF using VCF tools ${ }^{76}$ and analysed with VEP. Variants with a putative functional consequence were reported. The genomic markers captured within the CKCS haplotype were extracted from all samples included in the canine catalogue using VCF tools. Individuals in the canine catalogue homozygous across the haplotype were filtered for further analysis. Dogs with matching haplotypes to those observed in the CKCS were used to validate putative functional variants.

5.4 Results

5.4.1 CKCS runs of homozygosity

Final input parameters for the primary and validation ROH analyses were determined to maximise genome coverage (Table S3). Observed ROH were broadly consistent across both cohorts (Table 5.2). Genome coverage, represents the proportion of the genome analysed based on the input parameters and reflects the validity of ROH analysis ${ }^{56}$. Genome coverage for both cohorts averaged 99.8%. Acoss both cohorts, we identified 43,033 individual ROH for all autosomes. The distribution of the ROH tract sizes were consistent across the initial and validation cohorts (Figure 5.1a). The average ROH tract size was $\sim 5,087 \mathrm{~kb}$. The vast majority of ROH (88.37%) of individual runs were less than 10 Mb long. Two inbreeding coefficients were reported for each group, $\mathrm{FROH}_{\text {aut }}$ and $\mathrm{FROH} \mathrm{cov}_{\text {cov }} \mathrm{FROH}_{\text {aut }}$ represents the most reported statistic for inbreeding and uses length of the autosomal genome, while $\mathrm{FROH}_{\text {cov }}$ considers genome coverage based on individual datasets. Within cohorts, inbreeding coefficients were highly correlated ($r=1.0 ; \mathrm{P}<0.001$), we chose to present the value for the autosomal genome. Across populations, inbreeding coefficient FROH was marginally higher in the Australian cohort though not significantly different ($z=1.6211, p=0.105$; Figure 5.1b). The threshold for defining ROH hotspots was 90.44% and 83.87% for the initial and validation cohort respectively. ROH hotspots were accepted as validated if common markers passed incidence threshold in both cohorts. A total of eight ROH passed the considered threshold in the initial cohort, of which six were validated in the secondary analysis (Figure 5.2; Table 5.3). Two hotspots with the highest incidence ($>95 \%$) on chromosomes 7 (CFA7) and chromosome 12 (CFA12) were observed in both cohorts.

Table 5.2 Summary of results for runs of homozygosity in Cavalier King Charles Spaniel conducted in plink

	Initial	Validation
Samples	178	93
Genomic markers	194,794	162,139
Runs of homozygosity	29,533	13,500
Average runs per sample	170.17	151.90
Average size of runs (kb)	4966.53	5319.78
Genomic coverage (\%)	99.85	99.84
Inbreeding coefficient	0.38	0.36
(FROH)		

Figure 5.2 Results of runs of homozygosity analysis are consistent across two populations of Cavalier King Charles Spaniels. (a) distributions of the ROH in the initial and validation cohort of Cavalier King Charles Spaniels. Highest ROH observations were found in the size range $1-5 \mathrm{Mb}$. (b) Inbreeding coefficient measurements were equivalent between both populations. FROHaut and FROHcov are highlighly correlated ($r=1$)

Figure 5.1 Autosomal distribution of single nucleotide variants (SNV) in runs of homozygosity (ROH). The incidence of markers in an ROH was calculated as the percentage of animals with the variant observed within a ROH. (a) initial cohort (b) validation cohort. Highlighted in red are variants passing the top 1% incidence threshold for both populations.

Table 5.3 Summary of ROH hotspots validated in two cohorts of Cavalier King Charles
Spaniels. The position of the ROH hotspot is defined by the common variants passing the top 1% incidence in each cohort.

ROH hotspot position	Size(kb)	number of ROHs Initial	$\begin{gathered} \text { Average size } \\ \text { ROH (Kb) } \\ {[\mathrm{min}-\mathrm{max}]} \\ \text { Initial } \end{gathered}$	number of ROHs Validatio n	$\begin{aligned} & \text { Average size } \\ & \text { ROH (Kb) } \\ & {[\text { min - max] }} \\ & \text { Validation } \end{aligned}$	Genes
$\begin{gathered} \text { 2:2337558- } \\ 2760263 \end{gathered}$	423	166	$\begin{gathered} 4052(1700- \\ 4170) \end{gathered}$	80	$\begin{gathered} 3815 \text { (1360- } \\ 4200) \end{gathered}$	SNRPC, PARD3
$\begin{gathered} \text { 6:44133189- } \\ 50897341 \end{gathered}$	6764	277	$\begin{aligned} & 12172 \\ & (1173- \\ & 72794) \end{aligned}$	124	$\begin{gathered} 13823(1325- \\ 50854) \end{gathered}$	PLPPR5, PLPPR4, PALMD, FRRS1, AGL, SLC35A3, AC118553.2, SASS6, TRMT13, LRRC39, DBT, RTCA, CDC14A, GPR88, VCAM1, EXTL2, SLC30A7, DPH5, S1PR1, OLFM3, COL11A1, RNPC3, PRMT6, NTNG1, MFSD14A
$\begin{gathered} 7: 66802311- \\ 67951538 \end{gathered}$	1149	172	$\begin{gathered} 5066 \text { (1141- } \\ 39705) \end{gathered}$	90	$\begin{gathered} 5623 \text { (1319- } \\ 55747) \end{gathered}$	ADCYAP1, YES1, ENOSF1, TYMS, CLUL1, CETN1, COLEC12, THOC1, USP14, ROCK1, ATP5PD, PLP2
$\begin{gathered} \text { 11:37308771- } \\ 38815495 \end{gathered}$	1507	171	$\begin{aligned} & 14975 \\ & (2232- \\ & 60661) \end{aligned}$	84	$\begin{gathered} 13679(1644- \\ 46775) \end{gathered}$	SAXO1, ADAMTSL1, SH3GL2, CNTLN
$\begin{gathered} \text { 12:33673559- } \\ 35296744 \end{gathered}$	1623	175	$\begin{gathered} 8133 \text { (1612- } \\ 44600) \end{gathered}$	92	$\begin{aligned} & 9027 \text { (1679- } \\ & 72480) \end{aligned}$	FGF4-retrogene, KCNQ5, RIMS1, RIMS1, OGFRL1
$\begin{gathered} 35: 12068890- \\ 12891676 \end{gathered}$	823	171	$\begin{gathered} 5186 \text { (1224- } \\ 24268) \end{gathered}$	83	$\begin{gathered} 5283 \text { (1238- } \\ 22264) \\ \hline \end{gathered}$	GFOD1, TBC1D7, PHACTR1

5.4.2 ROH in vicinity of breed hallmark trait loci

The incidence of ROH overlapping genes associated with traits observable in the CKCS were calculated (Table 5.4). A ROH hotspot spanning 1623 kb overlapped the fibroblast growth factor 4 (FGF4) retrogene and was observed at a high incidence in both cohorts (>96\%). The average minor allele frequency of genomic markers covering the CFA12 ROH hotspot was 0.003 (Table S4). Evidence of an insertion of the FGF4 retrogene at CFA12:33,710,178 was observed in all WGS CKCS (Figure S1).

The genomic region with the next highest incidence of ROH in both cohorts overlapped the Growth Hormone Receptor (GHR) gene but incidence of ROH were significantly lower in both cohorts. Two variants previously described in the GHR gene, GHR(1) (CFA4 g.67040898C>T) and GHR(2) (CFA4 g.67040939G>A), were homozygous across all five WGS CKCS ${ }^{65}$. No further ROH harbouring loci for common morphological traits were observed at a high frequency.

Table 5.4 Summary of runs of homozygosity overlapping genes associated with hallmark traits in the Cavalier King Charles Spaniel. ROH incidence passing the top 1\% threshold in both cohorts in bold.

Gene	ROH Incidence $(\%)$	Initial median size (kb)	ROH Incidence (\%)	Validation median size (kb)
ASIP	35.96	8278	26.88	12396
MC1R	29.78	8651	23.66	9288
MITF	40.45	6038	58.06	2520
BMP3	43.26	4685	50.54	4498
SMOC2	29.78	14375	36.56	23557
FGF5	42.70	4546	43.01	4967
GHR	79.21	3202	83.87	4957
HMGA2	43.26	2045	38.71	3022
IGF1	21.91	5893	31.18	3934
IGF2BP2	30.90	6502	40.86	5024
IGF1R	60.11	7155	61.29	9970
LCORL	24.16	3097	31.18	3324
SMAD2	47.19	7734	46.24	5013
STC2	48.88	9458	50.54	10146
ZNF608	41.01	5721	23.66	7213
FGF4	28.09	5086	18.28	3707
FGF4_(CFA12)	97.75	3954	96.77	6041
FGF4_(CFA18)	39.89	6777	30.11	7783
MSRB3	66.29	1955	40.86	2783

5.4.3 CKCS ROH genes consistent with MMVD GO

The curated list of GO terms derived from MMVD gene expression studies contains 135 GO annotations from all three domains: biological process, molecular function and cellular component. The majority of GO terms ($\mathrm{n}=103$), fall under biological processes followed by cellular components ($n=18$) and molecular function ($n=14$). From the curated list, 69 (51\%) of GO terms shared overlap with at least one gene observed in CKCS ROH. GO term and gene overlap ranged from 0 to 9 with an average of 1 gene per annotation (Table S5). The GO term with the greatest overlap (9 genes) was extracellular space. Of the 50 genes included in the

GOnet analysis, 30 (60\%) had overlap with at least one GO term. On average, genes overlapped 4.73 Goterms. Genes, Vascular Cell Adhesion Molecule 1 (VCAM1), Sphingosine-1-Phosphate Receptor 1 (S1PR1), Rho Associated Coiled-Coil Containing Protein Kinase 1 (ROCK1), Adenylate Cyclase Activating Polypeptide 1 (ADCYAP1), and Fibroblast Growth Factor 4 (FGF4) intersected the most MMVD Goterms with $24,21,16,11$ and 10 respectively. Five genes in ROH hotspots, including the two most represented genes from the GoNet analysis, VCAM1 and S1PR1, have previously been identified as differentially expressed genes in MMVD studies ${ }^{71-74}$ (Table S6). Excluding S1PR1, all genes showed consistent directional changes in expression regardless of study or model.

5.4.4 Variant calling and discovery of private or rare CKCS variants

A summary of genomic variants annotated across consensus ROH, before and after biallelic MAF-filtering, is provided in supplementary materials (Table S7). After MAF filtering, 21,082 biallelic variants, assigned to 36,220 functional classes, remained across five CKCS. The number of functional classes is higher than the total number of variants because overlapping genes and transcripts result in multiple annotations. Within the consensus regions, 11,317 (53.7\%) variants were novel variants and 9,765 (46.3%) had been previously annotated. Using the impact classification scheme defined by VEP, 36,220 variants (99.47\%) are predicted to have no impact on protein function and are predominantly located in intronic or intergenic regions. Variants annotated to protein coding regions included 87 (54.03\%) synonymous variants, 55 (34.26%) missense variants, 10 (6.211%) frameshift variants, 5 (3.1\%) in-frame insertions, and $4(2.48 \%)$ in-frame deletions. Two splice region variants were predicted and accounted for less than 1% of all variants.

Variants with putative functional consequences in the CKCS were observed in comparison with dogs from the canine catalogue. After filtering to exclude non-domesticated canids, mixedbreed dogs and samples from over-represented breeds, 314 dogs from 143 unique breeds remained for comparison with the CKCS (Table S8). In the remaining dataset, 261 dogs (121 breeds) represented dogs with a breed average weight over 9 kg while the remaining 53 dogs (22 breeds) fell into the weight range consistent with a high-risk for MMVD ${ }^{4}$. After filtering variants with a MAF <0.05 in the dogs greater than 9 kg , only two variants with putative functional consequences remained (Table 5.5). Both variants are five prime untranslated region (UTR) variants observed at a low frequency in both large and small breeds.

Table 5.5 Rare variants in protein coding genes in Cavalier King Charles Spaniels runs of homozygosity. Variants are five prime untranslated region variants

| Chromosome | Position
 (Canfam3.1) | Variant ID | REF | ALT | CKCS
 AF | MAF
 dog
 $>9 \mathrm{~kg}$ | MAF
 dog
 $<9 \mathrm{~kg}$ | Gene | Ensembl GeneID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 49232668 | rs850617503 | C | T | 1 | 0.045 | 0.109 | EXTL2 | ENSCAFG000000020002 |
| 6 | 44397940 | . | C | A | 0.9 | 0.046 | 0.029 | NTNG1 | ENSCAFG000000019958 |

5.4.5 Candidate gene COL11A1

Given the nature of extracellular matrix remodelling in MMVD, collagen genes represent strong candidates for disease pathogenesis ${ }^{80-84}$. The swept region on CFA6 contained collagen gene Collagen Type XI Alpha 1 Chain (COL11A1). Haplotype analysis was performed using 90 genomic markers surrounding COL11A1, between and inclusive of CFA6:47000519 and CFA6:47986362. A single haplotype block spanning CFA6:47477037-47583958 ($\sim 35.6 \mathrm{~kb}$), was identified. Two CKCS haplotypes are reported (Table 5.6). Of the observed haplotypes, one was significantly overrepresented in the CKCS population and no samples were homozygous for the alternate. A single marker within the observed haplotype (CFA6:47559821) did not differentiate within the CKCS and was not represented in the canine catalogue, suggesting it is monomorphic in canids and was excluded. The haplotype block was observed in samples in the canine catalogue. Two hundred and twenty-one dogs homozygous across the haplotype block were filtered to avoid ambiguity of haplotype calling. A further 15 haplotypes were detected in the extended dataset (Table S9), of which five are unique to non-domesticated canid species.

Table 5.6 Haplotypes overlapping gene COL11A1 in 274 Cavalier King Charles Spaniels

Chromosome	Position	Haplotype block	Frequency
6	$47477037-47583958$	CCTTTTAGCT	0.937
		TTGGAACATC	0.048

In the five WGS CKCS, three samples were homozygous for the frequently observed haplotype and two were heterozygous. After extracting variants within the genomic markers bordering the haplotype, 371 variants segregated with the haplotypes. Most variants identified were intronic variants (98\%). Three synonymous SNVs and three splice site variants segregated in the coding region of COL11A1 (Table 5.7). Two of the three splice site variants occur outside of the haplotype block, between the last SNV in the block and the neighbouring array marker. Within the canine catalogue, 38 and 16 dogs of various breeds were homozygous for the common and rare CKCS haplotypes respectively. Splice site variants from 58 dogs (95%) had genotypes consistent with expectation (Table S10). In samples homozygous for the common CKCS haplotype, the splice site variants segregated in perfect concordance, excluding one sample with a missing call. For samples with the rare CKCS haplotype, CFA6:g.47507204C>T
was in high concordance, but two samples were heterozygous, one which had a further heterozygous call at splace variant CFA6:g.47591604A>G.

Table 5.7 Putative functional variants in COL11A1 concordant with the haplotypes observed in the Cavalier King Charles Spaniel. Alleles in bold segregate with the overrepresented haplotype in the Cavalier King Charles Spaniel.

Position	Variant ID	REF	ALT	Putative function	Frequency canine catalogue
47507204	rs24324848	C	T	Splice region variant Splice region variant Splice region variant	0.3331
47590602^{*}	rs24299845	G	A	0.412	
47591604^{*}	rs852596807	A	G	0.4115	

*Variants identified between the last genomic marker of the haplotype and the neighbouring genomic marker

The splice variants were observed in the remaining haplotypes observed in the canine catalogue samples. To the exclusion of one dog in the homozygous cohort, the observed genotype for CFA6:g.47507204C>T was consistent for all samples with a shared haplotype. Inheritance of the remaining splice variants was inconsistent. Across all samples in the canid catalogue, array marker at CFA6:47507204 is in high LD with splice variant CFA6:g.47507204C>T ($r^{2}=0.959$). Notably, for 36 homozygous samples from 10 uncommon haplotype groups, the genomic marker and splice variant have an inverse relationship from the rest of the cohort. The samples are predominantly non-domesticated canids, but also includes village dogs (Borneo and China), Chongqing Dog, Chow Chow, Tibetan Mastiff, Alaskan Husky, Sberian Husky, Great Danes and an Italian Greyhound.

5.5 Discussion

This research identified genomic regions with a high level of fixation in the CKCS and proposed candidate genes and loci contributing to MMVD pathogenesis. The current study highlighted a ROH in the CKCS breed overlapping the FGF4 retrogene, previously implicated in body size in small and medium sized dog breeds ${ }^{70,85}$. The research also identified a strong candidate gene for MMVD, COL11A1, in a swept region on CFA6. An overrepresented COL11A1 haplotype in the CKCS harbouring a splice region variant was described.

Selective sweeps are a reduction in genetic diversity surrounding a beneficial or desirable mutation and are indicative of positive selection. Hitchhiking alleles are those in the vicinity of favourable variants that inadvertently undergo a shift in allelic frequency alongside selected variants ${ }^{86}$. Kennel clubs set out breed standards for the registration of purebred dogs. Genes
that govern phenotypic traits that meet breed standards likely to be under positive selection. Selection for a small size in dogs is predicted to have resulted in the hitchhiking of variants associated with MMVD ${ }^{4}$. As such, the incidence of ROHs in genomic regions harbouring genes associated with breed defining traits were assessed in the CKCS to infer a basis for the observed ROH. The CKCS showed limited evidence of selective sweeps in genomic regions of genes associated with traits under selection in the breed. This is possibly influenced by quantitative loci governing architype traits, like size ${ }^{65}$, or because heterogeneity within some breed standard traits, like coat colour exist ${ }^{87}$. Similarly, LD surrounding loci historically under selection might have since been broken down by recombination so that they were too small to be to be detect using parameters specified in this study ${ }^{88,89}$. Still, the ROH overlapping the FGF4 retrogene had a high frequency in the CKCS cohorts (>99.99\%) and the retrogene is expected to be fixed in the CKCS. This is consistent with previous research where the FGF4 retrogene on CFA12 was consistently observed in all CKCS samples ${ }^{90,91}$. The genomic region containing the FGF4 retrogene has also been associated with large pendulous ears ${ }^{69}$, another key trait of the CKCS. Though no variants have been implicated, it is possible that the FGF4 retrogene also contributes to this trait ${ }^{92}$.

Two functional retrogenes derived from FGF4 are recognised in the dog genome ${ }^{45,67}$. Both retrogenes contribute to the overexpression of FGF4, resulting in altered limb length ${ }^{21,70,90}$. At CFA12, the FGF4 retrogene is also associated with premature intervertebral disc degeneration ${ }^{21,70,93}$. Notably, the highest incidences of MMVD occurs in chondrodystrophic dog breeds ${ }^{2,3,5}$. Both the CKCS and Dachshund, a considerably chondrodystrophic dog, are similarly predisposed to an early onset form of MMVD ${ }^{94,95}$. FGF signalling plays various roles in heart development and disease ${ }^{96,97}$. In studies focusing on chicken valvulogenesis, FGF4 signalling is proposed to play a role in cardiac valve development ${ }^{98,99}$. Overexpression of FGF4 can result in precocious expansion of valvular leaflets during formation ${ }^{99}$ and is also expected to influence gene expression profiles of the extracellular matrix ${ }^{98}$. Remarkably, even in young healthy CKCS, mitral valve morphology differs from that of other healthy dogs but is characteristically similar to dogs affected by MMVD ${ }^{42,100}$. Given the overwhelming prevalence of MMVD in the CKCS and results indicative of fixation of the FGF4 retrogene in this breed, future research should evaluate the effects of the FGF4 retrogene on mitral valve morphology. Given a role of FGF4 in valvulogenesis and results indicating the FGF4 retrogene is fixed in this breed, this research might suggest that valvular dysfunction predisposing the CKCS to MMVD is apparent from birth.

The size of ROH can suggest the timing of selection with longer tracts indicating a recent selective pressure ${ }^{26,27}$. Canine research suggests deleterious variants accumulate in long runs of homozygosity ${ }^{101}$. The longest ROH observed in the CKCS was on CFA6 (6764 kb), implying recent selection in the CKCS. The extensive length of this run makes it a strong candidate locus for deleterious variants contributing to disease pathogenesis. The ROH on CFA6 had no clear candidate genes under positive selection in the CKCS but encompassed two genes, VCAM1 and

S1PR1, that had the most overlap with GOterms previously implicated with MMVD and that are variably expressed in MMVD pathogenesis ${ }^{71-74}$. VCAM1 is a vascular adhesion molecule that has increased expression with advancing stages of MMVD and in CKCS compared to healthy dogs ${ }^{73,74}$. Recent investigation of VCAM1 suggests expression is marked in both inflamed and degenerative valves ${ }^{102-105}$ and it has been predicted to play a role in the pathogenesis of mitral regurgitation ${ }^{106}$. S1PR1 is a G protein-coupled receptor that protects the heart during the pathogenesis of disease ${ }^{107-109}$. Recent research also proposes a role of S1PR1 signalling in attenuating valvular damage in rheumatic heart disease studies ${ }^{107,110,111}$. It is probable that an increased expression of VCAM1 and S1PR1 is a consequence of MMVD rather than causative and requires further investigation.

Collagens make up a considerable component of the mitral valve extracellular matrix (ECM) ${ }^{112}$. As MMVD progresses, it is characterised by the disorganisation of the ECM, including a buildup of excess proteoglycans and altered collagen ${ }^{113-116}$. In human MMVD, the disease can occur as an individual ailment (namely Barlow's disease) or be part of a larger connective tissue syndrome ${ }^{117-119}$. The high prevalence of MMVD, as well as Chiari-like malformation in the CKCS, may lend evidence to a global connective tissue disorder in the breed. COL11A1 was identified in a swept region on CFA6. No rare variants for COL11A1 were observed in the CKCS here or in a previous candidate gene approach ${ }^{84}$. Both papers used relatively strict cut-offs for variant filtration and operated under the assumption that genes implicated in MMVD in the breed would occur at a low frequency in external breeds. Still, within the study population, an overrepresented haplotype was identified with a concordant splice region variant, CFA6:g.47507204C>T. In humans, mutations in COL11A1 can result in the rare connective tissue disorders, Stickler syndrome and Marshall syndrome. Both disorders are identifiable through ocular, craniofacial and joint anomalies, but can include a series of other clinical phenotypes including; hearing loss, spinal abnormalities, short stature, and mitral valve prolapse ${ }^{120-122}$. However, the prevalence of mitral valve prolapse in individuals with these syndromes is disputed ${ }^{123,124}$. Mutations in ECM genes are generally expected to follow Mendelian inheritance but evidence exists that collective effects of multiple less-damaging mutations can influence disease risk, fitting with polygenic inheritance ${ }^{125}$. In the CKCS, a rare missense variant in COL5A1 also exists ${ }^{84}$. Transcriptomic analysis of the of the COL11A1 gene could be used to test the effects of predicted splice site variants.

Two UTR variants in genes Exostosin Like Glycosyltransferase 2 (EXTL2) and Netrin-G1 (NTNG1) were identified with a high incidence in the CKCS and low frequency in other dogs. Although UTR variants are not expected to change the predicted sequence of a protein, it is possible for variants of this type to impact gene expression and disease pathogenesis ${ }^{126}$. Still, neither of the rare gene variants observed in this study represent strong candidates for MMVD and currently gene expression studies do not support differential gene expression in dogs with MMVD ${ }^{71-74}$. Constraints used for the definition of rare alleles in this study were stringent. The analysis was conducted under the assumption that the CKCS is likely harbouring a high impact
mutation contributing to the breeds overall susceptibility. For this reason, variants were filtered using a minor allele frequency of 0.05 . Given the overall heterogeneity of the disease and its complex inheritance, it is possible that dogs in the control population share functional alleles at a higher frequency than expected and were filtered out.

Although the ROH hotspots presented here are assumed to be driven by positive selection, most observed signals show no clear link to underlying biological mechanisms. It is possible that complex traits, like behaviour, with an unobvious phenotypic expression that are desirable and breed-typical contribute to these ROH hotspots ${ }^{127-129}$. ROH hotspots may also be driven by population bottlenecks, repressed recombination, or artefacts caused by copy number variants or SNV gaps ${ }^{130,131}$. The optimisation process used in this study was designed to minimise gap effects ${ }^{56}$. Within a canine population, autozygosity levels may also be driven by popular sire effects ${ }^{132}$, although the CKCS breeding population is at low risk due to its large breeding registry ${ }^{44}$. The initial and validation CKCS cohorts shared similar results for size and length of ROH as well as overall inbreeding coefficients. The inbreeding coefficient for autosomal length ($\mathrm{FROH}_{\text {aut }}$) and length of the covered genome ($\mathrm{FROH}_{\text {cov }}$) were highly correlated in this study. A positive reflection of marker density on the Illumina CanineHD BeadChip genotyping array and a good indication of its suitability to study ROH. Overall, the inbreeding coefficient, ~0.37, for the CKCS is on the high end of values reported in other breeds ${ }^{45,101}$, consistent with comparatively high levels of within-breed LD ${ }^{16}$.

Clinical signs of MMVD are universally observed in the CKCS and causative genetic polymorphisms are expected to be fixed within the breed. The present study identified and validated six genomic regions swept in the CKCS population. Within the swept regions, plausible genes involved in MMVD were documented. A promising variant, the FGF4 retrogene, was identified in a swept region on CFA 12 and is predicted to be fixed in the CKCS population. Among other traits, the FGF4 retrogene is documented as having a significant effect on the size of dogs. Given the prevalence of MMVD in small breeds and a role of FGF4 in valvulogenesis, the current study may provide preliminary evidence for a role of the FGF4 retrogene in the development of MMVD.

5.6 References

1 Fleming, J. M., Creevy, K. E. \& Promislow, D. E. Mortality in north american dogs from 1984 to 2004: an investigation into age-, size-, and breed-related causes of death. J Vet Intern Med 25, 187-198, doi:10.1111/j.1939-1676.2011.0695.x (2011).
2 Mattin, M. J. et al. Prevalence of and risk factors for degenerative mitral valve disease in dogs attending primary-care veterinary practices in England. J Vet Intern Med 29, 847-854, doi:10.1111/jvim. 12591 (2015). insured Swedish dogs from 1995-2000: II. Breed-specific age and survival patterns and relative risk for causes of death. Acta Vet Scand 46, 121-136, doi:10.1186/1751-0147-46-121 (2005).
8 Fox, P. R. Pathology of myxomatous mitral valve disease in the dog. J Vet Cardiol 14, 103-126, doi:10.1016/j.jvc.2012.02.001 (2012).
9 Haggstrom, J. et al. Effect of pimobendan or benazepril hydrochloride on survival times in dogs with congestive heart failure caused by naturally occurring myxomatous mitral valve disease: the QUEST study. J Vet Intern Med 22, 1124-1135, doi:10.1111/j.1939-1676.2008.0150.x (2008).
10 Lord, P., Hansson, K., Kvart, C. \& Haggstrom, J. Rate of change of heart size before congestive heart failure in dogs with mitral regurgitation. J Small Anim Pract 51, 210218, doi:10.1111/j.1748-5827.2010.00910.x (2010).
11 Reynolds, C. A. et al. Prediction of first onset of congestive heart failure in dogs with degenerative mitral valve disease: the PREDICT cohort study. J Vet Cardiol 14, 193202, doi:10.1016/j.jvc.2012.01.008 (2012).
12 Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803-819, doi:10.1038/nature04338 (2005).

13 Sutter, N. B. et al. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res 14, 2388-2396, doi:10.1101/gr. 3147604 (2004).
14 Gray, M. M. et al. Linkage disequilibrium and demographic history of wild and domestic canids. Genetics 181, 1493-1505, doi:10.1534/genetics.108.098830 (2009).
15 Marsden, C. D. et al. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proceedings of the National Academy of Sciences of the United States of America 113, 152-157 (2016).
16 Boyko, A. R. et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 8, e1000451, doi:10.1371/journal.pbio.1000451 (2010).
17 Vaysse, A. et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet 7, e1002316, doi:10.1371/journal.pgen. 1002316 (2011).
18 Karlsson, E. K. et al. Efficient mapping of mendelian traits in dogs through genomewide association. Nature genetics 39, 1321 (2007).
19 Goldstein, O. et al. An ADAM9 mutation in canine cone-rod dystrophy 3 establishes homology with human cone-rod dystrophy 9. Mol Vis 16, 1549-1569 (2010).

20 Meurs, K. M. et al. Genome-wide association identifies a deletion in the 3' untranslated region of striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy. Hum Genet 128, 315-324, doi:10.1007/s00439-010-0855-y (2010).
21 Parker, H. G. et al. An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 325, 995-998, doi:10.1126/science. 1173275 (2009).
Seppala, E. H. et al. LGI2 truncation causes a remitting focal epilepsy in dogs. PLoS Genet 7, e1002194, doi:10.1371/journal.pgen. 1002194 (2011).
23 Madsen, M. B. et al. Identification of 2 loci associated with development of myxomatous mitral valve disease in Cavalier King Charles Spaniels. J Hered 102 Suppl 1, S62-67, doi:10.1093/jhered/esr041 (2011).
24 French, A. T. et al. Genome-wide analysis of mitral valve disease in Cavalier King Charles Spaniels. Vet J 193, 283-286, doi:10.1016/j.tvjl.2011.09.011 (2012).
25 Bosse, M. et al. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genet 8, e1003100, doi:10.1371/journal.pgen. 1003100 (2012).
26 Curik, I., Ferenčaković, M. \& Sölkner, J. Inbreeding and runs of homozygosity: A possible solution to an old problem. Livestock Science 166, 26-34, doi:10.1016/j. .livsci. 2014.05.034 (2014).
27 Pemberton, T. J. et al. Genomic patterns of homozygosity in worldwide human populations. Am J Hum Genet 91, 275-292, doi:10.1016/j.ajhg.2012.06.014 (2012).
28 Freedman, A. H., Lohmueller, K. E. \& Wayne, R. K. Evolutionary History, Selective Sweeps, and Deleterious Variation in the Dog. Annual Review of Ecology, Evolution, and Systematics 47, 73-96, doi:10.1146/annurev-ecolsys-121415-032155 (2016). Parker, H. G. et al. Genomic Analyses Reveal the Influence of Geographic Origin, Migration, and Hybridization on Modern Dog Breed Development. Cell Rep 19, 697708, doi:10.1016/j.celrep.2017.03.079 (2017).
30 Knowler, S. P. et al. Pilot study of head conformation changes over time in the Cavalier King Charles spaniel breed. Vet Rec 184, 122, doi:10.1136/vr. 105135 (2019).
31 Summers, J. F. et al. Prevalence of disorders recorded in Cavalier King Charles Spaniels attending primary-care veterinary practices in England. Canine Genet Epidemiol 2, 4, doi:10.1186/s40575-015-0016-7 (2015).
32 Bagardi, M. et al. Echocardiographic Evaluation of the Mitral Valve in Cavalier King Charles Spaniels. Animals (Basel) 10, doi:10.3390/ani10091454 (2020).
33 Beardow, A. W. \& Buchanan, J. W. Chronic mitral valve disease in cavalier King Charles spaniels: 95 cases (1987-1991). J Am Vet Med Assoc 203, 1023-1029 (1993).
34 Chetboul, V. et al. [Epidemiological, clinical, echo-doppler characteristics of mitral valve endocardiosis in Cavalier King Charles in France: a retrospective study of 451 cases (1995 to 2003)]. Can Vet J 45, 1012-1015 (2004).
35 Haggstrom, J., Hansson, K., Kvart, C. \& Swenson, L. Chronic valvular disease in the cavalier King Charles spaniel in Sweden. Vet Rec 131, 549-553 (1992).
36 Lewis, T., Swift, S., Woolliams, J. A. \& Blott, S. Heritability of premature mitral valve disease in Cavalier King Charles spaniels. Vet J 188, 73-76, doi:10.1016/j.tvjl.2010.02.016 (2011).
37 Cremer, S. E. et al. Plasma and serum serotonin concentrations and surface-bound platelet serotonin expression in Cavalier King Charles Spaniels with myxomatous mitral valve disease. Am J Vet Res 76, 520-531, doi:10.2460/ajvr.76.6.520 (2015).

44 Shariflou, M. R., James, J. W., Nicholas, F. W. \& Wade, C. M. A genealogical survey of Australian registered dog breeds. Vet J 189, 203-210, doi:10.1016/j.tvjl.2011.06.020 (2011).

45 Dreger, D. L. et al. Whole-genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds to optimize genetic-trait mapping. Dis Model Mech 9, 1445-1460, doi:10.1242/dmm. 027037 (2016). Kriangwanich, W. et al. Genetic variations and dog breed identification using intersimple sequence repeat markers coupled with high resolution melting analysis. PeerJ 8, e10215, doi:10.7717/peerj. 10215 (2020).
47 Wijnrocx, K., Francois, L., Goos, P., Buys, N. \& Janssens, S. Assessing the relative importance of health and conformation traits in the cavalier king Charles spaniel. Canine Genet Epidemiol 5, 1, doi:10.1186/s40575-017-0056-2 (2018).
48 Rusbridge, C. \& Knowler, S. P. Inheritance of occipital bone hypoplasia (Chiari type I malformation) in Cavalier King Charles Spaniels. J Vet Intern Med 18, 673-678, doi:10.1892/0891-6640(2004)18<673:ioobhc>2.0.co;2 (2004).
49 Lewis, T., Rusbridge, C., Knowler, P., Blott, S. \& Woolliams, J. A. Heritability of syringomyelia in Cavalier King Charles spaniels. Vet J 183, 345-347, doi:10.1016/j.tvjl.2009.10.022 (2010).
50 Gelatt, K. N. \& Mackay, E. O. Prevalence of primary breed-related cataracts in the dog in North America. Vet Ophthalmol 8, 101-111, doi:10.1111/j.1463-5224.2005.00352.x (2005).

51 Watson, P. J. et al. Prevalence and breed distribution of chronic pancreatitis at postmortem examination in first-opinion dogs. J Small Anim Pract 48, 609-618, doi:10.1111/j.1748-5827.2007.00448.x (2007).
52 Murphy-Ryan, M., Psychogios, A. \& Lindor, N. M. Hereditary disorders of connective tissue: a guide to the emerging differential diagnosis. Genet Med 12, 344-354, doi:10.1097/GIM.0b013e3181e074f0 (2010).
53 Ancot, F. et al. A genome-wide association study identifies candidate loci associated to syringomyelia secondary to Chiari-like malformation in Cavalier King Charles Spaniels. BMC Genet 19, 16, doi:10.1186/s12863-018-0605-z (2018).

54 Knowler, S. P. et al. Use of Morphometric Mapping to Characterise Symptomatic Chiari-Like Malformation, Secondary Syringomyelia and Associated Brachycephaly in the Cavalier King Charles Spaniel. PLoS One 12, e0170315, doi:10.1371/journal.pone. 0170315 (2017).
55 Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7, doi:10.1186/s13742-015-0047-8 (2015).
56 Meyermans, R., Gorssen, W., Buys, N. \& Janssens, S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 21, 94, doi:10.1186/s12864-020-6463-x (2020).

57 Purfield, D. C., McParland, S., Wall, E. \& Berry, D. P. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS One 12, e0176780, doi:10.1371/journal.pone. 0176780 (2017).
58 Herrero, J. et al. Ensembl comparative genomics resources. Database (Oxford) 2016, doi:10.1093/database/bav096 (2016).
59 Dreger, D. L. \& Schmutz, S. M. A SINE insertion causes the black-and-tan and saddle tan phenotypes in domestic dogs. J Hered 102 Suppl 1, S11-18, doi:10.1093/jhered/esr042 (2011).
60 Newton, J. M. et al. Melanocortin 1 receptor variation in the domestic dog. Mamm Genome 11, 24-30, doi:10.1007/s003350010005 (2000).
61 Schoenebeck, J. J. et al. Variation of BMP3 contributes to dog breed skull diversity. PLoS Genet 8, e1002849, doi:10.1371/journal.pgen. 1002849 (2012).
62 Marchant, T. W. et al. Canine Brachycephaly Is Associated with a RetrotransposonMediated Missplicing of SMOC2. Curr Biol 27, 1573-1584 e1576, doi:10.1016/j.cub.2017.04.057 (2017).
63 Cadieu, E. et al. Coat variation in the domestic dog is governed by variants in three genes. Science 326, 150-153, doi:10.1126/science. 1177808 (2009).
64 Housley, D. J. \& Venta, P. J. The long and the short of it: evidence that FGF5 is a major determinant of canine 'hair'-itability. Anim Genet 37, 309-315, doi:10.1111/j.13652052.2006.01448.x (2006).

65 Rimbault, M. et al. Derived variants at six genes explain nearly half of size reduction in dog breeds. Genome Res 23, 1985-1995, doi:10.1101/gr.157339.113 (2013).
66 Sutter, N. B. et al. A single IGF1 allele is a major determinant of small size in dogs. Science 316, 112-115, doi:10.1126/science. 1137045 (2007).
67 Jones, P. et al. Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics 179, 1033-1044, doi:10.1534/genetics.108.087866 (2008).
68 Hoopes, B. C., Rimbault, M., Liebers, D., Ostrander, E. A. \& Sutter, N. B. The insulinlike growth factor 1 receptor (IGF1R) contributes to reduced size in dogs. Mamm Genome 23, 780-790, doi:10.1007/s00335-012-9417-z (2012).
69 Plassais, J. et al. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat Commun 10, 1489, doi:10.1038/s41467-019-09373-w (2019).
70 Brown, E. A. et al. FGF4 retrogene on CFA12 is responsible for chondrodystrophy and intervertebral disc disease in dogs. Proc Natl Acad Sci U S A 114, 11476-11481, doi:10.1073/pnas. 1709082114 (2017).

71 Li, Q. et al. Veterinary Medicine and Multi-Omics Research for Future Nutrition Targets: Metabolomics and Transcriptomics of the Common Degenerative Mitral Valve Disease in Dogs. OMICS 19, 461-470, doi:10.1089/omi.2015.0057 (2015).
72 Lu, C. C. et al. Gene network and canonical pathway analysis in canine myxomatous mitral valve disease: a microarray study. Vet J 204, 23-31, doi:10.1016/j.tvjl.2015.02.021 (2015).
73 Markby, G. R., Macrae, V. E., Summers, K. M. \& Corcoran, B. M. Disease SeverityAssociated Gene Expression in Canine Myxomatous Mitral Valve Disease Is Dominated by TGFbeta Signaling. Front Genet 11, 372, doi:10.3389/fgene.2020.00372 (2020).
74 Markby, G. R., Macrae, V. E., Corcoran, B. M. \& Summers, K. M. Comparative transcriptomic profiling of myxomatous mitral valve disease in the cavalier King Charles spaniel. BMC Vet Res 16, 350, doi:10.1186/s12917-020-02542-w (2020).
75 Pomaznoy, M., Ha, B. \& Peters, B. GOnet: a tool for interactive Gene Ontology analysis. BMC Bioinformatics 19, 470, doi:10.1186/s12859-018-2533-3 (2018).
76 Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156-2158, doi:10.1093/bioinformatics/btr330 (2011).
77 McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol 17, 122, doi:10.1186/s13059-016-0974-4 (2016).
78 Barrett, J. C., Fry, B., Maller, J. \& Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263-265, doi:10.1093/bioinformatics/bth457 (2005).

79 Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225-2229, doi:10.1126/science. 1069424 (2002).
80 Aupperle, H. \& Disatian, S. Pathology, protein expression and signaling in myxomatous mitral valve degeneration: comparison of dogs and humans. J Vet Cardiol 14, 59-71, doi:10.1016/j.jvc.2012.01.005 (2012).
81 Markby, G., Summers, K. M., MacRae, V. E., Del-Pozo, J. \& Corcoran, B. M. Myxomatous Degeneration of the Canine Mitral Valve: From Gross Changes to Molecular Events. J Comp Pathol 156, 371-383, doi:10.1016/j.jcpa.2017.01.009 (2017).

82 Markby, G. R., Summers, K. M., MacRae, V. E. \& Corcoran, B. M. Comparative Transcriptomic Profiling and Gene Expression for Myxomatous Mitral Valve Disease in the Dog and Human. Vet Sci 4, 34, doi:10.3390/vetsci4030034 (2017).
83 Oyama, M. A. et al. Comparative pathology of human and canine myxomatous mitral valve degeneration: 5HT and TGF-beta mechanisms. Cardiovasc Pathol 46, 107196, doi:10.1016/j.carpath. 2019.107196 (2020).
84 Meurs, K. M. et al. Evaluation of genes associated with human myxomatous mitral valve disease in dogs with familial myxomatous mitral valve degeneration. Vet J 232, 16-19, doi:10.1016/j.tvjl.2017.12.002 (2018).
Batcher, K. et al. Phenotypic Effects of FGF4 Retrogenes on Intervertebral Disc Disease in Dogs. Genes (Basel) 10, 435, doi:10.3390/genes10060435 (2019).
86 Smith, J. M. \& Haigh, J. The hitch-hiking effect of a favourable gene. Genet Res 23, 2335, doi:10.1017/S0016672300014634 (1974).
87 Workman, M. J. \& Robinson, R. Coat colours of the Cavalier King Charles Spaniel. Journal of Animal Breeding and Genetics 108, 66-68, doi:10.1111/j.14390388.1991.tb00158.x (1991).

88 Ceballos, F. C., Hazelhurst, S. \& Ramsay, M. Assessing runs of Homozygosity: a comparison of SNP Array and whole genome sequence low coverage data. BMC Genomics 19, 106, doi:10.1186/s12864-018-4489-0 (2018).
Szmatola, T., Gurgul, A., Jasielczuk, I., Fu, W. \& Ropka-Molik, K. A detailed characteristics of bias associated with long runs of homozygosity identification based on medium density SNP microarrays. J Genomics 8, 43-48, doi:10.7150/jgen. 39147 (2020).

90 Batcher, K. et al. Phenotypic Effects of FGF4 Retrogenes on Intervertebral Disc Disease in Dogs. Genes (Basel) 10, doi:10.3390/genes10060435 (2019).
91 Dickinson, P. J. \& Bannasch, D. L. Current Understanding of the Genetics of Intervertebral Disc Degeneration. Front Vet Sci 7, 431, doi:10.3389/fvets.2020.00431 (2020).

92 Wright, T. J. \& Mansour, S. L. FGF signaling in ear development and innervation. Curr Top Dev Biol 57, 225-259, doi:10.1016/s0070-2153(03)57008-9 (2003).
93 Hayward, J. J. et al. Complex disease and phenotype mapping in the domestic dog. Nat Commun 7, 10460, doi:10.1038/ncomms10460 (2016).
94 Olsen, L. H., Fredholm, M. \& Pedersen, H. D. Epidemiology and inheritance of mitral valve prolapse in Dachshunds. J Vet Intern Med 13, 448-456, doi:10.1892/08916640(1999)013<0448:eaiomv>2.3.co;2 (1999).
95 Pedersen, H. D., Lorentzen, K. A. \& Kristensen, B. O. Echocardiographic mitral valve prolapse in cavalier King Charles spaniels: epidemiology and prognostic significance for regurgitation. Vet Rec 144, 315-320, doi:10.1136/vr.144.12.315 (1999).
Itoh, N., Ohta, H., Nakayama, Y. \& Konishi, M. Roles of FGF Signals in Heart Development, Health, and Disease. Front Cell Dev Biol 4, 110, doi:10.3389/fcell.2016.00110 (2016).
97 O'Donnell, A. \& Yutzey, K. E. Mechanisms of heart valve development and disease. Development 147, doi:10.1242/dev. 183020 (2020).
98 Lincoln, J., Alfieri, C. M. \& Yutzey, K. E. BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells. Dev Biol 292, 292-302, doi:10.1016/j.ydbio.2005.12.042 (2006).
99 Sugi, Y. et al. Fibroblast growth factor (FGF)-4 can induce proliferation of cardiac cushion mesenchymal cells during early valve leaflet formation. Dev Biol 258, 252263, doi:10.1016/s0012-1606(03)00099-x (2003).
100 Jassar, A. S. et al. Regional annular geometry in patients with mitral regurgitation: implications for annuloplasty ring selection. Ann Thorac Surg 97, 64-70, doi:10.1016/j.athoracsur.2013.07.048 (2014).
101 Sams, A. J. \& Boyko, A. R. Fine-Scale Resolution of Runs of Homozygosity Reveal Patterns of Inbreeding and Substantial Overlap with Recessive Disease Genotypes in Domestic Dogs. G3 (Bethesda) 9, 117-123, doi:10.1534/g3.118.200836 (2019).
102 Muller, A. M. et al. Expression of endothelial cell adhesion molecules on heart valves: up-regulation in degeneration as well as acute endocarditis. The Journal of Pathology 191, 54-60, doi:10.1002/(sici)1096-9896(200005)191:1<54::Aid-path568>3.0.Co;2-y (2000).

103 Dvorin, E. L., Jacobson, J., Roth, S. J. \& Bischoff, J. Human pulmonary valve endothelial cells express functional adhesion molecules for leukocytes. J Heart Valve Dis 12, 617624 (2003).

108 Deng, S. et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int J Biochem Cell Biol 114, 105564, doi:10.1016/j.biocel.2019.105564 (2019).
Jozefczuk, E., Guzik, T. J. \& Siedlinski, M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol Res 156, 104793, doi:10.1016/j.phrs.2020.104793 (2020).
110 Xian, S. et al. Research Square, doi:10.21203/rs.3.rs-70809/v1 (2020).
111 Wu, X. D., Zeng, Z. Y., Gong, D. P., Wen, J. L. \& Huang, F. Potential involvement of S1PR1/STAT3 signaling pathway in cardiac valve damage due to rheumatic heart disease. Biotech Histochem 94, 398-403, doi:10.1080/10520295.2019.1574028 (2019).

112 Theocharis, A. D., Skandalis, S. S., Gialeli, C. \& Karamanos, N. K. Extracellular matrix structure. Adv Drug Deliv Rev 97, 4-27, doi:10.1016/j.addr.2015.11.001 (2016).
113 Black, A., French, A. T., Dukes-McEwan, J. \& Corcoran, B. M. Ultrastructural morphologic evaluation of the phenotype of valvular interstitial cells in dogs with myxomatous degeneration of the mitral valve. Am J Vet Res 66, 1408-1414, doi:10.2460/ajvr.2005.66.1408 (2005).
Hadian, M., Corcoran, B. M. \& Bradshaw, J. P. Molecular changes in fibrillar collagen in myxomatous mitral valve disease. Cardiovasc Pathol 19, e141-148, doi:10.1016/j.carpath.2009.05.001 (2010).
115 Hadian, M., Corcoran, B. M., Han, R. I., Grossmann, J. G. \& Bradshaw, J. P. Collagen organization in canine myxomatous mitral valve disease: an x-ray diffraction study. Biophys J 93, 2472-2476, doi:10.1529/biophysj.107.107847 (2007).
116 Han, R. I., Black, A., Culshaw, G., French, A. T. \& Corcoran, B. M. Structural and cellular changes in canine myxomatous mitral valve disease: an image analysis study. J Heart Valve Dis 19, 60-70 (2010).
117 Chahal, C. \& Bouatia-Naji, N. Genetics of mitral valve prolapse and its clinical impact. J Cardiol Pract 16, 35 (2019).
118 LaHaye, S., Lincoln, J. \& Garg, V. Genetics of valvular heart disease. Curr Cardiol Rep 16, 487, doi:10.1007/s11886-014-0487-2 (2014).
119 Padang, R., Bagnall, R. D. \& Semsarian, C. Genetic basis of familial valvular heart disease. Circ Cardiovasc Genet 5, 569-580, doi:10.1161/CIRCGENETICS.112.962894 (2012).

121 Khalifa, O. et al. Marshall syndrome: further evidence of a distinct phenotypic entity and report of new findings. Am J Med Genet A 164A, 2601-2606, doi:10.1002/ajmg.a. 36681 (2014).
122 Majava, M. et al. A report on 10 new patients with heterozygous mutations in the COL11A1 gene and a review of genotype-phenotype correlations in type XI collagenopathies. Am J Med Genet A 143A, 258-264, doi:10.1002/ajmg.a. 31586 (2007).

123 Ahmad, N. et al. Prevalence of mitral valve prolapse in Stickler syndrome. Am J Med Genet A 116A, 234-237, doi:10.1002/ajmg.a. 10619 (2003).
124 Liberfarb, R. M. \& Goldblatt, A. Prevalence of mitral-valve prolapse in the Stickler syndrome. Am J Med Genet 24, 387-392, doi:10.1002/ajmg. 1320240302 (1986).
125 Haller, G. et al. A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis. Hum Mol Genet 25, 202-209, doi:10.1093/hmg/ddv463 (2016).
Steri, M., Idda, M. L., Whalen, M. B. \& Orru, V. Genetic variants in mRNA untranslated regions. Wiley Interdiscip Rev RNA 9, e1474, doi:10.1002/wrna. 1474 (2018).
127 Svartberg, K. Breed-typical behaviour in dogs-Historical remnants or recent constructs? Applied Animal Behaviour Science 96, 293-313, doi:10.1016/j.applanim.2005.06.014 (2006).

129 Wilson, B., Serpell, J., Herzog, H. \& McGreevy, P. Prevailing Clusters of Canine Behavioural Traits in Historical US Demand for Dog Breeds (1926(-)2005). Animals (Basel) 8, 197, doi:10.3390/ani8110197 (2018).
130 Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. \& Wilson, J. F. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet 19, 220-234, doi:10.1038/nrg.2017.109 (2018).
131 Nandolo, W. et al. Misidentification of runs of homozygosity islands in cattle caused by interference with copy number variation or large intermarker distances. Genet Sel Evol 50, 43, doi:10.1186/s12711-018-0414-x (2018).
132 Leroy, G. Genetic diversity, inbreeding and breeding practices in dogs: results from pedigree analyses. Vet J 189, 177-182, doi:10.1016/j.tvjl.2011.06.016 (2011).

Chapter 6. Concluding remarks

The overall aim of this thesis was to improve the knowledge gap in the genetic basis of canine myxomatous mitral valve disease (MMVD) using an Australian Cavalier King Charles Spaniel (CKCS) population as a case study and genetic model for disease research. MMVD represents the most frequent cause of cardiovascular morbidity and mortality in the canine population ${ }^{1-}$ ${ }^{3}$, making it a prominent welfare issue and concern within the canine community. MMVD is an acquired disease that results in valvular dysfunction and in the most severe cases, can result in the development of congestive heart failure (CHF) ${ }^{4,5}$. Despite a comprehensive understanding of the clinical aspects of $M M V D^{5}$, information on the genetic mechanisms that drive disease onset and progression are significantly lacking. Heightened within breed prevalence of MMVD, particularly in small breeds, is evidence of a genetic basis for disease ${ }^{3,6-9}$ and suggests that breeding programs could help reduce the presence and severity of disease. However, current genomic research supports a polygenic mode of inheritance and exemplifies the difficulty in identifying disease risk variants in complex traits ${ }^{10-15}$. No genetic tests have been developed to detect increased risk for the development of MMVD or dogs at-risk for early onset and severe forms of the disease. Throughout this research, genomic workflows were used to investigate MMVD in the CKCS, but I trust the approaches used would be easily applied to other breeds as well as a multi-breed cohort. For this project, I first assessed the strength of MMVD phenotypes for use in comparative genomic studies. Then, through bioinformatic approaches, I explored multiple questions that can be answered with a single genomic dataset and access to publicly available data.

Comparative genetic studies offer a major opportunity to highlight the genetic basis of disease, but common genetic approaches rely on accurate phenotyping of disease and access to approximately equal sizes of cases and controls ${ }^{16}$. Two significant roadblocks exist for mapping loci implicated in the pathogenesis of MMVD. One, the exact prevalence of MMVD in certain breeds is not comprehensively evaluated and it is predicted that geriatric dogs from all breeds show clinical signs of MMVD on post-mortem ${ }^{17}$. Two, there is significant heterogeneity in the rate of disease progression ${ }^{18-20}$. For these reasons collection of a perfect control cohort is near impossible and a traditional case-control approach for studying the genetic basis of disease is difficult. Death sequalae to MMVD is typically mediated by CHF ${ }^{19}$. Frequently, dogs with MMVD live long lives such that they never develop CHF and die from unrelated causes ${ }^{18-20}$. For MMVD, which negatively impacts dog longevity, it is logical to modify the focus of genetic research from identifying genetic causation to identifying genetic factors that influence the rate of disease progression and the development of CHF. Identification of risk-loci and variants associated with cardiomegaly and CHF can enable the selection of breeding stock to increase the proportion of animals that can live long asymptomatic lives.

6.1 Conclusions derived from Chapter 2

In Chapter 2, I sought to refine the phenotypes used for association mapping throughout this thesis. Over the course of four years, CKCS anthropometric and heart condition data was collected for the same population considered for genetic analysis. At this time, age, sex, weight, and echocardiographic measures LA/Ao and LVIDdn were recorded for each animal alongside a severity score according to the ACVIM system ${ }^{21}$. Using logistic and linear regression analysis, I evaluated the use of echocardiographic variables, LA/Ao and LVIDdn, as predictors of CHF and MMVD severity. As expected, Chapter 2 demonstrated the utility of prognostic variables, LA/Ao and LVIDdn, in phenotyping disease severity and predicting CHF. This research supports the use of echocardiographic measures as a continuous variable trait for association analysis. Additionally, through this research, I was also able to suggest a predictive threshold for the development of CHF using LA/AO and LVIDdn, which could be applied to a case-control mapping study. Unsurprisingly, this research also found that age was a significant predictor of disease severity. For this reason, we chose to include older dogs in our association analyses and apply age as a covariate for quantitative traits LA/Ao and LVIDdn.

6.2 Conclusions derived from Chapter 3

Despite extensive literature available regarding pathological, cellular and molecular features of MMVD, the exact mechanism and a genetic basis for the disease is unknown. Previous studies have highlighted important aetiological processes and pathways likely involved in disease pathogenesis ${ }^{22-26}$. The aim of Chapter 3 was to investigate an association between severe MMVD phenotypes (validated in Chapter 2) and candidate genes elected using knowledge of signalling pathways identified by MMVD gene and protein expression studies. I used the Illumina Canine HD array and whole genome sequenced data to identify genomic regions of disease association across a subset of samples included in Chapter 2. To prioritise genes within candidate pathways, this research utilised the publicly available Kyoto Encyclopedia of Genes and Genomes Pathway database. Candidate genes included in this approach did not rely on knowledge of genes previously associated with the same phenotype. Candidate genes from four pathways were included in this Chapter: transforming growth factor Beta (TGF- β), serotonergic signalling, Extracellular matrix-receptor interaction and calcium signalling pathways.

In Chapter 3, a single marker within the vicinity of serotonergic signalling gene GNG7, passed the genome-wide significant threshold for association with LA/Ao. GNG7 has not previously been associated with cardiovascular disease and no evidence for variable expression of this gene in canine MMVD exists. We were unable to identify any genetic causation in GNG7. Common array markers were significantly associated with LA/Ao again in Chapter 4, where a novel variant in a candidate gene outside of the considered pathways, LMNB2, contained a putative functional variant.

6.3 Conclusions derived from Chapter 4

Continuing development of genetic resources, like the canine HD array, which now holds greater than 200K genotype markers, has dramatically expanded the capacity for researchers to move beyond candidate gene approaches towards hypothesis free investigations. For this reason, using the same genetic data from my previous investigation (Chapter 3) in Chapter 4, I attempted to identify loci associated with severe MMVD on a genome-wide basis. GWAS have resulted in a deluge of discoveries by means of genetic risk factors for disease as well as morphological traits ${ }^{27-31}$. In the modern dog, population history that established pedigreed standards and well-defined breeds have resulted in populations suitable for association analyses ${ }^{32-34}$. Arguably, GWAS are strongly suited to studying the genetic basis of simply inherited traits. Still, mapping complex traits in dogs is promising with considerable evidence of large effect loci governing complex traits ${ }^{30,31,35-38}$. For dogs affected by MMVD in general, but especially in the CKCS, it could be argued that a causative disease variant is fixed within the genome and that modifier loci are responsible for the heterogeneity of disease outcomes. Using the phenotypes validated in Chapter 2, Chapter 4 focused on identifying loci with the potential to exacerbate features of MMVD and increase risk of premature mortality.

In Chapter 4, I reported five loci on chromosomes 1, 13, 14, 20, and 24 associated with MMVD disease severity. Strong, positional candidate genes for severe forms of MMVD were observed within the associated loci including OBSCN, LMNB2, SULF2 and ADAMTS3. Two of the candidate genes, OBSCN and LMNB2, harboured putative functional variants. The most convincing variant observed in the context of this research was in the OBSCN gene, which was significantly associated with progression of MMVD to CHF. In humans OBSCN has been associated with multiple cardiomyopathies and is expected to play a prominent regulatory role in heart function, particularly in calcium signalling ${ }^{39,40}$. A second gene with a putative functional variant, LMNB2, was associated with cardiac remodelling using quantitative measure LA/Ao. While limited evidence exists for a role of LMNB2 in cardiac remodelling, it was recently suggested to play a role in cardiomyocyte regeneration ${ }^{41}$. The identification of genes involved in cardiac signalling, regeneration and the pathogenesis of cardiomyopathies supports research claiming CKCS experience disrupted calcium signalling and cardiac muscle contraction ${ }^{42}$. Deranged signalling and regenerative capacity of cardiac tissue in CKCS with MMVD might precede the development of CHF and influence the rate of disease progression. Putative variants identified in this chapter should be validated in a larger MMVD cohort. For MMVD which is frequently observed in multiple breeds, validation analyses would benefit from CKCS and across-breed validations ${ }^{16,43}$.

Multiple GWAS for early onset and severe forms of MMVD have been published ${ }^{10-12,14,15}$. However, the study presented in Chapter 4 is the only research to date that has reported putative functional variants at associated loci. Previous attempts at mapping MMVD have used niche phenotyping systems, often with arbitrary cut-offs for case-control analyses. Arguably, the use of echocardiographic measures that are frequently reported in the clinical detection
of MMVD, limits the subjectivity in disease modelling and makes phenotyping more accurate and repeatable. It's likely that the success of the GWAS analyses conducted in Chapter 4 was the use of echocardiographic parameters to phenotype MMVD. Phenotyping samples using echocardiographic measures of cardiac remodelling has the added benefit of being able to combine MMVD datasets if future researchers report in a consistent manner. Group collaboration and the combination of many test subjects has resulted in successful mapping of complex traits in human research and sets a solid framework for investigating complex disease in dog ${ }^{44-49}$.

6.4 Conclusions derived from Chapter 5

Identification of autozygous genomic regions can provide insights into genetic variation that underlies breed-specific traits or diseases and is a particularly useful approach when traits are fixed ${ }^{37,38,50-54}$. As a breed, the CKCS is ubiquitously affected by MMVD and causative variants for the disease are expected to be fixed ${ }^{55-60}$. This is a prominent barrier in detecting a genetic basis for MMVD, as common genetic approaches (like GWAS) require access to phenotypically diverse samples to identify loci associated with a specific trait. As such the association analyses from previously discussed chapters, Chapter 3 and Chapter 4, focused on severe forms of MMVD including CHF and increasing measures of cardiac remodelling. Alternatively, the research conducted in Chapter 5 sought to determine genomic regions that have a high level of fixation in the CKCS, through a runs of homozygosity analysis. Within swept regions of the CKCS genome we attempted to locate candidate genes implicated in the development of MMVD. To account for regions that have become fixed in our Australian population, by processes like popular sire effects or limited access to extensive pedigrees based on physical distance, we chose to include a second population of CKCS with genotype data available in the public repertoire as a validation cohort. Six autozygous regions were captured consistently across both cohorts.

MMVD can be observed in geriatric dogs of all breeds, although specific breeds have a heightened prevalence ${ }^{5,17,59}$. MMVD is the frequently observed in small dogs, leading researchers to hypothesise that the genetic basis of MMVD has hitchhiked alongside genes that govern size ${ }^{61}$. In Chapter 5, the research focused identifying variants within CKCS ROH that were common to small breeds. This was conducted in two steps. First, I observed ROH overlapping genomic regions with variants previously implicated in canine size morphology. Second, we filtered rare variants with putative functional effects across our six autozygous regions and estimated their frequency in small dogs compared to larger breeds using data from the publicly available 722 dog consortium variant call file. No rare variants observed in this study had a high frequency in small breeds compared to large breeds. But the genomic region harbouring the FGF4-retrogene on CFA12 was fixed across all CKCS samples. FGF4 functional retrogenes are common in small dogs and the gene has been linked to valvulogenesis ${ }^{62-64}$.

Results of this method might imply that the FGF4-retrogenes contribute to MMVD pathogenesis.

Canine specific research has indicated that long runs of homozygosity disproportionately harbour deleterious variants compared to short tracts ${ }^{54}$. In Chapter 5, I also found an extensive ROH on CFA6, approximately four times greater than the second longest ROH. Observed within this ROH was a strong candidate gene for the development of MMVD, COL11A1. This gene has been previously implicated in connective tissue disorders in humans, such as Ehlers-Danlos Syndrome and Stickler Syndrome ${ }^{65-67}$, that can present with similar phenotypes to diseases observed in the CKCS, like MMVD and Chiari-like malformation. Three splice region variants were identified in COL11A1. None of the reported variants were observed at a low frequency when compared with 722 dog consortium. Still, it is possible that COL11A1 plays a role in CKCS connective tissue disease phenotypes.

6.5 Final remarks

Bioinformatic workflows are ever growing and increasingly becoming more important in everyday research. As the scientific world advances, improved sequencing technologies and computational power have allowed greater access to high quality 'omic datasets, especially for non-model species. This has expanded the scope of genetic research available to animal geneticists and increased research opportunities. The work presented in this thesis took advantage of the domestic history of modern dogs that resulted in unique population structures and patterns of genome organisation that make the canine genome particularly amenable to genetic research. In studying the genetic basis of MMVD, I was able to demonstrate the value of this species in investigating complex disease.

The work produced within this thesis represents the first time precise and validated phenotypic definitions of MMVD have been described and applied to the genomic analysis of this disease. Using validated methodologies, it was possible to produce results and conclusions that significantly add to the understanding of the genetics and genomics of MMVD in the CKCS. The main features of this thesis include; the validation of two echocardiographic measures as predictors of MMVD progression and CHF in CKCS; testing for association in novel candidate genes in biologically relevant gene pathways; a GWAS resulting in the identification of five chromosomal loci associated with the disease state, where putative functional variants were reported in two phenotypically relevant genes; and the analysis for signatures of selection via runs of homozygosity resulting in the identification of candidate genes for MMVD pathogenesis. This thesis outlines a process that can be applied to the trait in future research and ideally to other breeds. A prominent outcome of this research includes the identification of putative functional variants with a predicted pathogenic effect in two genes, OBSCN and LMNB2, with phenotypic relevance to the disease. Finally, it has been long hypothesised that the development of MMVD was selected for alongside small size in dogs. Using genomic signatures of selection, we were able to identify a long run of homozygosity surrounding the

FGF4-retrogene on CFA12, a gene associated with small stature in dogs that has also been implicated with a role in valvulogenesis. It is possible that this retrogene, with clear evidence for selection in the CKCS, may be involved in the pathogenesis of MMVD in this breed and other breeds with a high incidence of MMVD and selection for this retrogene, such as the Dachshund

In addition to the discoveries relating to MMVD in the CKCS, during my candidature I also applied strategies developed in this thesis to map a disease variant in a second dog breed that published in scientific reports (Appendix III). In the manuscript titled 'A large deletion on CFA28 omitting ACSL5 gene is associated with intestinal lipid malabsorption in the Australian Kelpie dog breed' a GWAS was applied to investigate intestinal lipid malabsorption in a population of Australian Kelpies (AK). At the top associated locus a 103.3 kb deletion (NC_006610.3CFA28:g.23380074_23483377del), containing genes Acyl-CoA Synthetase Long Chain Family Member 5 (ACSL5) and Zinc Finger DHHC-Type Containing 6 (ZDHHC6) was identified through whole transcriptomic analysis of an affected individual. A PCR-based diagnostic test was developed to validate the variant in an extended cohort of AK and is now a commercially available diagnostic test.

To summarise, the research conducted throughout this thesis has demonstrated the utility of genomic tools developed for the domestic dog in investigating complex traits. By utilising the same genomic dataset for Chapters 3 to 5 , my research has exemplified the capacity to answer numerous research questions using multiple bioinformatic approaches. Finally, my research was frequently accompanied by data available in the public repertoire, demonstrating the importance of shared resources in improving research outcomes.

6.6 References

1 Detweiler, D. K. \& Patterson, D. F. The prevalence and types of cardiovascular disease in dogs. Ann N Y Acad Sci 127, 481-516, doi:10.1111/j.1749-6632.1965.tb49421.x (1965).

2 Olsen, L. H., Häggström, J. \& Petersen, H. D. in Textbook of veterinary internal medicine: diseases of the dog and the cat (eds S. Ettinger \& E. Feldman) Ch. 250, (Elsevier Saunders, 2010).
3 Egenvall, A., Bonnett, B. N., Hedhammar, A. \& Olson, P. Mortality in over 350,000 insured Swedish dogs from 1995-2000: II. Breed-specific age and survival patterns and relative risk for causes of death. Acta Vet Scand 46, 121-136, doi:10.1186/1751-0147-46-121 (2005).
4 Aupperle, H. \& Disatian, S. Pathology, protein expression and signaling in myxomatous mitral valve degeneration: comparison of dogs and humans. J Vet Cardiol 14, 59-71, doi:10.1016/j.jvc.2012.01.005 (2012).
5 Fox, P. R. Pathology of myxomatous mitral valve disease in the dog. J Vet Cardiol 14, 103-126, doi:10.1016/j.jvc.2012.02.001 (2012).

Borgarelli, M. et al. Comparison of primary mitral valve disease in German Shepherd dogs and in small breeds. J Vet Cardiol 6, 27-34, doi:10.1016/S1760-2734(06)70055-8 (2004).

7 Fleming, J. M., Creevy, K. E. \& Promislow, D. E. Mortality in north american dogs from 1984 to 2004: an investigation into age-, size-, and breed-related causes of death. J Vet Intern Med 25, 187-198, doi:10.1111/j.1939-1676.2011.0695.x (2011).
8
Serfass, P. et al. Retrospective study of 942 small-sized dogs: Prevalence of left apical systolic heart murmur and left-sided heart failure, critical effects of breed and sex. J Vet Cardiol 8, 11-18, doi:10.1016/j.jvc.2005.10.001 (2006).
9 Thrusfield, M. V., Aitken, C. G. G. \& Darker, P. G. G. Observations on breed and sex in relation to canine heart valve incompetence. Journal of Small Animal Practice 26, 709717, doi:10.1111/j.1748-5827.1985.tb02199.x (1985).
10 Bionda, A. et al. A Genomic Study of Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniels. Animals (Basel) 10, 1895, doi:10.3390/ani10101895 (2020).
11 French, A. T. et al. Genome-wide analysis of mitral valve disease in Cavalier King Charles Spaniels. Vet J 193, 283-286, doi:10.1016/j.tvjl.2011.09.011 (2012).
12 Madsen, M. B. et al. Identification of 2 loci associated with development of myxomatous mitral valve disease in Cavalier King Charles Spaniels. J Hered 102 Suppl 1, S62-67, doi:10.1093/jhered/esr041 (2011).
13 Meurs, K. M. et al. Evaluation of genes associated with human myxomatous mitral valve disease in dogs with familial myxomatous mitral valve degeneration. Vet J 232, 16-19, doi:10.1016/j.tvjl.2017.12.002 (2018).
14 Stern, J. A. et al. Severity of Mitral Valve Degeneration Is Associated with Chromosome 15 Loci in Whippet Dogs. PLoS One 10, e0141234, doi:10.1371/journal.pone. 0141234 (2015).

15 Lee, C. M., Song, D. W., Ro, W. B., Kang, M. H. \& Park, H. M. Genome-wide association study of degenerative mitral valve disease in Maltese dogs. J Vet Sci 20, 63-71, doi:10.4142/jvs.2019.20.1.63 (2019).
16 Karlsson, E. K. et al. Efficient mapping of mendelian traits in dogs through genome-wide association. Nature genetics 39, 1321 (2007).
17 Whitney, J. C. Observations on the effect of age on the severity of heart valve lesions in the dog. J Small Anim Pract 15, 511-522, doi:10.1111/j.1748-5827.1974.tb06529.x (1974).

18 Atkins, C. E. et al. Results of the veterinary enalapril trial to prove reduction in onset of heart failure in dogs chronically treated with enalapril alone for compensated, naturally occurring mitral valve insufficiency. J Am Vet Med Assoc 231, 1061-1069, doi:10.2460/javma.231.7.1061 (2007).
19 Borgarelli, M. et al. Survival characteristics and prognostic variables of dogs with mitral regurgitation attributable to myxomatous valve disease. J Vet Intern Med 22, 120-128, doi:10.1111/j.1939-1676.2007.0008.x (2008).
20 Kvart, C. et al. Efficacy of enalapril for prevention of congestive heart failure in dogs with myxomatous valve disease and asymptomatic mitral regurgitation. J Vet Intern Med 16, 80-88, doi:10.1111/j.1939-1676.2002.tb01610.x (2002).
21 Keene, B. W. et al. ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. J Vet Intern Med 33, 1127-1140, doi:10.1111/jvim. 15488 (2019).
$24 \mathrm{Lu}, \mathrm{C}$. C. et al. Gene network and canonical pathway analysis in canine myxomatous mitral valve disease: a microarray study. Vet J 204, 23-31, doi:10.1016/j.tvjl.2015.02.021 (2015).
25 Markby, G. R., Macrae, V. E., Summers, K. M. \& Corcoran, B. M. Disease SeverityAssociated Gene Expression in Canine Myxomatous Mitral Valve Disease Is Dominated by TGFbeta Signaling. Front Genet 11, 372, doi:10.3389/fgene.2020.00372 (2020).
26 Oyama, M. A. \& Chittur, S. V. Genomic expression patterns of mitral valve tissues from dogs with degenerative mitral valve disease. Am J Vet Res 67, 1307-1318, doi:10.2460/ajvr.67.8.1307 (2006).
27 Boyko, A. R. et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 8, e1000451, doi:10.1371/journal.pbio. 1000451 (2010).
28 Cadieu, E. et al. Coat variation in the domestic dog is governed by variants in three genes. Science 326, 150-153, doi:10.1126/science. 1177808 (2009).
29 Shearin, A. L. et al. The MTAP-CDKN2A locus confers susceptibility to a naturally occurring canine cancer. Cancer Epidemiol Biomarkers Prev 21, 1019-1027, doi:10.1158/1055-9965.EPI-12-0190-T (2012).
30 Hayward, J. J. et al. Complex disease and phenotype mapping in the domestic dog. Nat Commun 7, 10460, doi:10.1038/ncomms10460 (2016).
31 Jones, P. et al. Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics 179, 1033-1044, doi:10.1534/genetics.108.087866 (2008).
32 Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803, doi:10.1038/nature04338
https://www.nature.com/articles/nature04338\#supplementary-information (2005).
33 Sutter, N. B. et al. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res 14, 2388-2396, doi:10.1101/gr. 3147604 (2004).
34 Gray, M. M. et al. Linkage disequilibrium and demographic history of wild and domestic canids. Genetics 181, 1493-1505, doi:10.1534/genetics.108.098830 (2009).
35 Plassais, J. et al. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat Commun 10, 1489, doi:10.1038/s41467-019-09373-w (2019).
36 Rimbault, M. et al. Derived variants at six genes explain nearly half of size reduction in dog breeds. Genome Res 23, 1985-1995, doi:10.1101/gr.157339.113 (2013).
37 Sutter, N. B. et al. A single IGF1 allele is a major determinant of small size in dogs. Science 316, 112-115, doi:10.1126/science. 1137045 (2007).
38 Vaysse, A. et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet 7, e1002316, doi:10.1371/journal.pgen. 1002316 (2011).
39 Grogan, A. \& Kontrogianni-Konstantopoulos, A. Unraveling obscurins in heart disease. Pflugers Arch 471, 735-743, doi:10.1007/s00424-018-2191-3 (2019).
40 Marston, S. Obscurin variants and inherited cardiomyopathies. Biophys Rev 9, 239-243, doi:10.1007/s12551-017-0264-8 (2017).

41 Han, L. et al. Lamin B2 Levels Regulate Polyploidization of Cardiomyocyte Nuclei and Myocardial Regeneration. Dev Cell 53, 42-59 e11, doi:10.1016/j.devcel.2020.01.030 (2020).

42 Markby, G. R., Macrae, V. E., Corcoran, B. M. \& Summers, K. M. Comparative transcriptomic profiling of myxomatous mitral valve disease in the cavalier King Charles spaniel. BMC Vet Res 16, 350, doi:10.1186/s12917-020-02542-w (2020).
43 Mikkola, L. et al. An across-breed validation study of 46 genetic markers in canine hip dysplasia. BMC Genomics 22, 68, doi:10.1186/s12864-021-07375-x (2021).
44 Cupples, L. A. et al. The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports. BMC Med Genet 8 Suppl 1, S1, doi:10.1186/1471-2350-8-S1-S1 (2007).
45 Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. \& Hirschhorn, J. N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33, 177-182, doi:10.1038/ng1071 (2003). Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44, 981-990, doi:10.1038/ng. 2383 (2012).
47 Voight, B. F. et al. Twelve type 2 diabetes susceptibility loci identified through largescale association analysis. Nat Genet 42, 579-589, doi:10.1038/ng. 609 (2010).
48 Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40, 638-645, doi:10.1038/ng. 120 (2008).
49 Strawbridge, R. J. et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60, 2624-2634, doi:10.2337/db11-0415 (2011).

50 Arnott, E. R. et al. Strong selection for behavioural resilience in Australian stock working dogs identified by selective sweep analysis. Canine Genetics and Epidemiology 2, 6, doi:10.1186/s40575-015-0017-6 (2015).
51 Quilez, J. et al. A selective sweep of $>8 \mathrm{Mb}$ on chromosome 26 in the Boxer genome. BMC Genomics 12, 339, doi:10.1186/1471-2164-12-339 (2011).
52 Yang, Q. et al. Genetic Diversity and Signatures of Selection in 15 Chinese Indigenous Dog Breeds Revealed by Genome-Wide SNPs. Front Genet 10, 1174, doi:10.3389/fgene.2019.01174 (2019).
53 Friedenberg, S. G., Meurs, K. M. \& Mackay, T. F. Evaluation of artificial selection in Standard Poodles using whole-genome sequencing. Mamm Genome 27, 599-609, doi:10.1007/s00335-016-9660-9 (2016).
54 Sams, A. J. \& Boyko, A. R. Fine-Scale Resolution of Runs of Homozygosity Reveal Patterns of Inbreeding and Substantial Overlap with Recessive Disease Genotypes in Domestic Dogs. G3 (Bethesda) 9, 117-123, doi:10.1534/g3.118.200836 (2019).
55 Beardow, A. W. \& Buchanan, J. W. Chronic mitral valve disease in cavalier King Charles spaniels: 95 cases (1987-1991). J Am Vet Med Assoc 203, 1023-1029 (1993).
56 Haggstrom, J., Kvart, C. \& Hansson, K. Heart sounds and murmurs: changes related to severity of chronic valvular disease in the Cavalier King Charles spaniel. J Vet Intern Med 9, 75-85, doi:10.1111/j.1939-1676.1995.tb03276.x (1995).
57 Haggstrom, J., Hansson, K., Kvart, C. \& Swenson, L. Chronic valvular disease in the cavalier King Charles spaniel in Sweden. Vet Rec 131, 549-553 (1992).

58 Lewis, T., Swift, S., Woolliams, J. A. \& Blott, S. Heritability of premature mitral valve disease in Cavalier King Charles spaniels. Vet J 188, 73-76, doi:10.1016/j.tvjl.2010.02.016 (2011).
59 Mattin, M. J. et al. Prevalence of and risk factors for degenerative mitral valve disease in dogs attending primary-care veterinary practices in England. J Vet Intern Med 29, 847-854, doi:10.1111/jvim. 12591 (2015).
60 Swift, S., Baldin, A. \& Cripps, P. Degenerative Valvular Disease in the Cavalier King Charles Spaniel: Results of the UK Breed Scheme 1991-2010. J Vet Intern Med 31, 9-14, doi:10.1111/jvim. 14619 (2017).
61 Parker, H. G. \& Kilroy-Glynn, P. Myxomatous mitral valve disease in dogs: does size matter? J Vet Cardiol 14, 19-29, doi:10.1016/j.jvc.2012.01.006 (2012).
62 Batcher, K. et al. Phenotypic Effects of FGF4 Retrogenes on Intervertebral Disc Disease in Dogs. Genes (Basel) 10, 435, doi:10.3390/genes10060435 (2019).
63 Brown, E. A. et al. FGF4 retrogene on CFA12 is responsible for chondrodystrophy and intervertebral disc disease in dogs. Proc Natl Acad Sci U S A 114, 11476-11481, doi:10.1073/pnas. 1709082114 (2017).
64 Lincoln, J., Alfieri, C. M. \& Yutzey, K. E. BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells. Dev Biol 292, 292-302, doi:10.1016/j.ydbio.2005.12.042 (2006).
65 Brizola, E. et al. Variable clinical expression of Stickler Syndrome: A case report of a novel COL11A1 mutation. Mol Genet Genomic Med 8, e1353, doi:10.1002/mgg3.1353 (2020).

66 Khalifa, O. et al. Marshall syndrome: further evidence of a distinct phenotypic entity and report of new findings. Am J Med Genet A 164A, 2601-2606, doi:10.1002/ajmg.a. 36681 (2014).
67 Majava, M. et al. A report on 10 new patients with heterozygous mutations in the COL11A1 gene and a review of genotype-phenotype correlations in type XI collagenopathies. Am J Med Genet A 143A, 258-264, doi:10.1002/ajmg.a. 31586 (2007).

Appendix I: Supplementary data for chapter 4

Table S1. Variants passing the genome-wide significant threshold for association with three MMVD phenotypes including Congestive heart failure (CHF), Left atrium to aortic root ration (LA/Ao), weight normalised Left ventricular end diastolic diameter (LVIDdn)

Model	CHR	POS	Array Marker	A1	A2	Putative Function	Gene	Gene Prediction	Amino Acid Change	MAF	P
CHF	14	669043	BICF2P757489	G	C	missense	OBSCN		G/R	0.29	$1.17 \mathrm{E}-08$
CHF	14	685005	BICF2P813381	T	C	intron	OBSCN	E,N	-	0.28	$9.14 \mathrm{E}-08$
CHF	14	581822	BICF2P1196270	G	A					0.31	$1.43 \mathrm{E}-07$
CHF	14	606955	BICF2P1391846		A					0.31	$1.43 \mathrm{E}-07$
CHF	14	628308	BICF2P386682	C	T					0.31	$1.43 \mathrm{E}-07$
CHF	14	786206	BICF2P289847		G					0.31	$1.43 \mathrm{E}-07$
CHF	14	5559055	BICF2S2364353		G					0.28	$2.82 \mathrm{E}-07$
CHF	14	2309870	BICF2S2351604	C	T					0.31	$2.98 \mathrm{E}-07$
CHF	14	2934833	chr14_2934833	T	C					0.31	$2.98 \mathrm{E}-07$
CHF	14	2948414	BICF2G6305178		T					0.31	$2.98 \mathrm{E}-07$
CHF	14	2467305	BICF2S2291714	T	C	3'UTR	OR2T4C	N	-	0.31	$3.08 \mathrm{E}-07$
CHF	14	5167461	BICF2P1095320	G	A					0.29	$3.30 \mathrm{E}-07$
CHF	14	2990449	BICF2G6305178		A					0.31	$3.98 \mathrm{E}-07$
CHF	14	5444436	G814f50S305		G					0.29	$4.20 \mathrm{E}-07$
CHF	14	2500989	BICF2G6305176		T					0.31	$4.35 \mathrm{E}-07$
CHF	14	645047	BICF2P693197	T	C	intron	TRIM17	E	-	0.33	$4.44 \mathrm{E}-07$
CHF	14	2819625	chr14_2819625	C	T					0.32	$6.57 \mathrm{E}-07$
CHF	14	2717089	BICF2G6305177		C					0.31	$6.83 \mathrm{E}-07$
CHF	14	5342684	BICF2S2291087		G					0.29	7.08E-07
CHF	14	6830641	BICF2G6305194		A					0.31	$8.78 \mathrm{E}-07$
CHF	14	6844213	BICF2P271536	T	C	intron	ZC3HC1	E,N	-	0.31	$8.78 \mathrm{E}-07$
CHF	14	904357	BICF2G6305171		C					0.31	$1.34 \mathrm{E}-06$
CHF	14	2354354	BICF2G6305175	C	T					0.33	$1.73 \mathrm{E}-06$
CHF	14	6668504	BICF2G6305194	G	A	intron	SSMEM1	N	-	0.30	$1.89 \mathrm{E}-06$
CHF	14	1626211	chr14_1626211		G					0.31	$1.95 \mathrm{E}-06$
CHF	14	1709234	chr14_1709234		G					0.31	$1.95 \mathrm{E}-06$
CHF	14	1760541	chr14_1760541	C	A					0.31	$1.95 \mathrm{E}-06$
CHF	14	1797074	chr14_1797074	G	T					0.31	$1.95 \mathrm{E}-06$
CHF	14	1857818	BICF2S2324424		G					0.31	$1.95 \mathrm{E}-06$
CHF	14	4866764	BICF2P84129	C	G	intron	PLXNA4	E,N	-	0.31	$3.47 \mathrm{E}-06$
CHF	14	2562311	BICF2S2342169	C	T					0.30	4.04E-06
CHF	14	2802415	BICF2G6305177	C	T					0.45	4.23E-06
CHF	14	4675587	BICF2G6305190		A					0.31	4.30E-06
CHF	14	4685857	BICF2G6305190	A	G	intron	PLXNA4	E,N	-	0.31	4.30E-06
CHF	14	4757486	BICF2P1409592	T	C	intron	PLXNA4	E,N	-	0.31	4.30E-06
CHF	14	4845378	BICF2P752059		C					0.31	4.30E-06
CHF	14	4889665	BICF2P942451	A	T	intron	PLXNA4	E,N	-	0.31	4.30E-06
CHF	14	5017714	BICF2P459975	T	C	intron	PLXNA4	E,N	-	0.31	4.30E-06

CHF	14	2783652	BICF2G6305177	T	G					0.45	4.77E-06
CHF	14	2621160	BICF2P830830	A	G					0.45	5.27E-06
CHF	14	2698552	BICF2G6305177	A	T					0.45	$5.41 \mathrm{E}-06$
CHF	14	2185062	BICF2P90189	C	T					0.35	5.82E-06
CHF	14	2191219	BICF2G6305173	T	G					0.35	5.82E-06
CHF	14	2213041	BICF2G6305173	A	G					0.35	$5.82 \mathrm{E}-06$
CHF	14	2224605	BICF2G6305173	T	C					0.35	$5.82 \mathrm{E}-06$
CHF	14	2248006	BICF2G6305174	T	C					0.35	5.82E-06
CHF	14	2263592	BICF2G6305174	A	G					0.35	5.82E-06
CHF	14	2291305	BICF2G6305174	G	A					0.35	5.82E-06
CHF	14	5615896	BICF2P381585	G	T	intron	PODXL	E, U	-	0.34	6.14E-06
CHF	14	5029359	BICF2P514405	A	G	intron	PLXNA4	E,N	-	0.34	7.71E-06
CHF	14	4621355	BICF2P681553	T	C					0.31	8.07E-06
CHF	14	4906217	BICF2G6305191	G	A	intron	PLXNA4	E,N	-	0.31	8.07E-06
CHF	14	2393780	BICF2S2342856	G	A					0.45	1.07E-05
CHF	14	4643701	BICF2G6305189	T	C					0.28	$1.11 \mathrm{E}-05$
CHF	14	2643986	BICF2S2365948	G	A					0.45	1.21E-05
LA/Ao	24	34932842	BICF2P912253	C	T					0.31	$1.22 \mathrm{E}-05$
CHF	20	58023254	BICF2P360101	T	C					0.49	$1.31 \mathrm{E}-05$
LA/Ao	20	56661518	chr20_5666151	T	C	missense	LMNB2	E,N	S/L	0.10	$1.71 \mathrm{E}-05$
CHF	14	2270530	BICF2G6305174	A	G					0.31	2.02E-05
LA/Ao	20	56483566	BICF2P866985	A	G	intron	GNG7	E,N	-	0.13	$2.17 \mathrm{E}-05$
LA/Ao	24	34869455	BICF2P1268671	C	A					0.30	2.30E-05
LVIDdn	13	61496628	BICF2P555379	T	C	intron	ADAMTS3	E,N	-	0.24	$2.51 \mathrm{E}-05$
LA/Ao	24	34752654	TIGRP2P317522	C	T	synonymous	SULF2	E,N,U	T/T	0.29	$2.62 \mathrm{E}-05$
LA/Ao	24	34775608	TIGRP2P317533	T	C	intron	SULF2	E,N,U	-	0.29	$2.62 \mathrm{E}-05$
LA/Ao	24	34790784	BICF2P132951	T	C	intron	SULF2	E,N,U	-	0.29	$2.62 \mathrm{E}-05$
LA/Ao	24	34816494	BICF2P494910	T	A	intron	SULF2	E,N,U	-	0.29	$2.62 \mathrm{E}-05$
CHF	14	2339529	chr14_2339529	A	C					0.44	$2.93 \mathrm{E}-05$
CHF	14	5830017	BICF2P850224	A	C					0.47	3.30E-05
CHF	1	119250918	BICF2S2293194	A	T	intron	TDRD12	E,N	-	0.48	3.64E-05
CHF	14	2665383	BICF2G6305177	C	T					0.50	3.85E-05
LA/Ao	24	35206390	TIGRP2P318119	G	A					0.35	5.22E-05

Table S2. Variants in olfactory receptor genes that match CHF-risk haplotypes. Variant annotation was conducted using Variant Effect Predictor (VEP) and Variant Annotation Integrator (VAI). Programs predict functional consequences based on transcript annotations from multiple sources. Transcript annotations used to predict functional consequences include Ensemble (E), National Center for Biotechnology information (N), and University of California Santa Cruz (U) and are reported under variant source.

Variant ID	CHR	POS	Allele	Gene	Amino Futative acid	Variant Source
rs851214998	14	599485	T	LOC1006836	XM_0034318 synonymous_ D/D	N
chr14_60406:	14	604062	T	LOC482202	XM_539321. synonymous V/V	N
rs851936980	14	604149	T	LOC482202	XM_539321. ${ }^{\text {synonymous_ K/K }}$	N
rs850983105	14	1572608	A	OR2W3	XM_0034318 synonymous_ N/N	E,N
chr14_16951،	14	1695143	C	LOC607634	XM_0224271 synonymous_ R/R	N
rs850817693	14	1732158	T	LOC1008567	XM_0056287 missense_va H/Q	N
rs852293968	14	1732579	T	LOC10085	XM_0056287 missense_va G/D	N
rs851880642	14	1897064	T	COR2AV2	XM_844479. missense_va L/F	N
rs852157133	14	1994994	C	LOC1006853	XM_0034318 missense_va M/T	N
rs850942138	14	1994995	A	LOC1006853:	XM_0034318 missense_va M/I	N
rs853103865	14	2127908	T	OR2T15	XM_539347.: missense_va C/F	, N
rs852131491	14	2181384	A	OR2L13	ENSCAFT000 missense_va R/L	E
rs853046839	14	2222559	C	OR2T22	XM_0224271 synonymous I/I	, N
rs850534321	14	2223104	G	OR2T22	XM_0224271 missense_va Q / R	E,N
rs850807966	14	2351787	A	OR2M9	XM_539353.: synonymous_ P/P	E,N
rs852221250	14	2352400	A	OR2M9	XM_539353.: missense_va T/l	E, N
rs850747725	14	2352472	G	OR2M9	XM_539353.: missense_va V/A	E,N
rs852016364	14	2385542	A	LOC1065596	XM_0141188 missense_va V/I	N
rs851506475	14	2466122	A	OR2T4C	ENSCAFT000 start_lost M/I	E
rs22318561	14	2467305	T	LOC482236	XM_539355.! 3_prime_UT\| -	N
rs851029001	14	2595298	C	OR2T6	XM_844720.: synonymous C/C	E,N
rs851365258	14	2663514	A	OR2T2	XM_539359.: missense_va A/T	E,N
rs852892266	14	2663658	G	OR2T2	XM_539359.: missense_va N/D	E,N
rs851159810	14	2663665	A	OR2T2	XM_539359.: missense_va R/Q	E,N
rs851347718	14	2663666	C	OR2T2	XM_539359.: synonymous_ R/R	E,N
rs22309057	14	2695700	A	OR2T11	NM_001256، synonymous L/L	E,N, U
rs22309054	14	2696141	C	OR2T11	NM_001256، missense_va L/F	E,N,U
rs22302697	14	2712186	G	LOC1006865	XM_0034318 missense_va G/A	E,N
rs22302696	14	2712232	A	OR2T4B	XM_0034318 synonymous L/L	E,N
rs22302695	14	2712357	A	OR2T4B	XM_0034318 missense_va S/F	E, N
rs22302694	14	2712451	C	OR2T4B	XM_0034318 missense_va T/A	E, N
rs852392222	14	2712844	C	OR2T4B	XM_0034318 missense_va M/V	E,N
rs852675194	14	2712874	T	OR2T4B	XM_0034318 missense_va V/M	E, N
rs852301949	14	2712988	T	OR2T4B	XM_0034318 missense_va L/M	E, N
rs850771806	14	2763602	T	OR2T4D	XM_539362.: missense_va Q / K	E, N
rs851422085	14	2764295	C	OR2T4D	XM_539362.: missense_va M/V	E,N

rs850709377	14	2764308 G	OR2T4D	XM_539362.: synonymous_ V/V	E,N
rs853173325	14	2764325 T	OR2T4D	XM_539362.: missense_va V/M	E,N
rs850948801	14	2764440 A	OR2T4D	XM_539362.: synonymous_ F/F	E,N
rs852097145	14	2764497 G	OR2T4D	XM_539362.: missense_va E/D	E,N
rs850861730	14	2764513 C	OR2T4D	XM_539362.: missense_va E/G	E,N
rs853005857	14	2784661 A	OR1412	XM_0034318 missense_va R/W	E,N
chr14_31064i	14	3106483 G	LOC10655	(XR_0013176! splice_regior -	N
rs852500847	14	4736948 T	LOC11109	: XR_0026328 splice_regior -	N

Table S3. Coding variants matching CHF-risk haplotypes on CFA20. Variant annotation was conducted using Variant Effect Predictor (VEP) and Variant Annotation Integrator (VAI). Programs predict functional consequences based on transcript annotations from multiple sources. Transcript annotations used to predict functional consequences include Ensemble (E), National Center for Biotechnology information (N), and University of California Santa Cruz (U) and are reported under variant source.

Variant ID	CHR	POS	REF	ALT	Gene	Putative Function	Amino Acid Change	SIFT	Variant
Source									

Appendix II: Supplementary data for chapter 5

Table S1. Lists of Gene Ontology (GO) terms reported from transcriptomic profiling of canines

GO:0009897	external side of plasma membrane	The leaflet of the plasma membrane that faces away from the cytoplasm and any proteins embedded or anchored in it or attached to its surface.	cellular_component
		The chemical reactions and pathways involving collagen, any of a group of fibrous proteins of very high tensile strength that form the main component of connective tissue in animals. Collagen is highly enriched in glycine	
	collagen metabolic process	(some regions are 33% glycine) and proline, occurring predominantly as 3-hydroxyproline (about 20\%).	biological process
GO:0032963		The attachment of a cell, either to another cell or to an underlying substrate such as the extracellular matrix, via cell	
GO:0007155	cell adhesion	adhesion molecules.	biological_process
		The region of the plasma membrane that includes the basal end and sides of the cell. Often used in reference to animal polarized epithelial membranes, where the basal	
	basolateral plasma membrane	membrane is the part attached to the extracellular matrix, or in plant cells, where the basal membrane is defined with respect to the zygotic axis.	cellular_component
GO:0016323		Interacting selectively and non-covalently with a nucleotide, any compound consisting of a nucleoside that is esterified with (ortho)phosphate or an oligophosphate at any hydroxyl	
GO:0000166	nucleotide binding	group on the ribose or deoxyribose.	molecular_function
	positive regulation of	Any process that activates or increases the activity of a	
GO:0043547	GTPase activity	GTPase.	biological_process
		Catalysis of the hydrolysis of internal, alpha-peptide bonds	
		in a polypeptide chain by a mechanism in which water acts	
		as a nucleophile, one or two metal ions hold the water	
	metalloendopeptidas	molecule in place, and charged amino acid side chains are	
GO:0004222	e activity	ligands for the metal ions.	molecular_function
	regulation of cellular senescence	Any process that modulates the frequency, rate or extent of cellular senescence.	biological_process
GO:2000772		The component of the plasma membrane consisting of the gene products and protein complexes having at least some	
	integral component of	part of their peptide sequence embedded in the	
GO:0005887	plasma membrane	hydrophobic region of the membrane.	cellular_component
		The directed movement of endocytosed material through the cell and its exocytosis from the plasma membrane at	
GO:0045056	transcytosis	the opposite side.	biological_process
		Interacting selectively and non-covalently with calcium ions	
GO:0005509	calcium ion binding	(Ca2+).	molecular_function
	regulation of cell	Any process that modulates the frequency, rate or extent of	
GO:0030334	migration	cell migration.	biological_process

GO:0001666	response to hypoxia	cellular and organismal level.	biological_process
		The immediate defensive reaction (by vertebrate tissue) to infection or injury caused by chemical or physical agents.	
		The process is characterized by local vasodilation,	
	inflammatory	extravasation of plasma into intercellular spaces and	
GO:0006954	response	accumulation of white blood cells and macrophages.	biological_process
	cytosolic large		
GO:0022625	ribosomal subunit	The large subunit of a ribosome located in the cytosol.	cellular_component
		Any immune system process that functions in the calibrated	
		response of an organism to a potential internal or invasive	
GO:0006955	immune response	threat.	biological_process
		Innate immune responses are defense responses mediated	
	innate immune	by germline encoded components that directly recognize	
GO:0045087	response	components of potential pathogens.	biological_process
		A process that is carried out at the cellular level which	
	extracellular matrix	results in the assembly, arrangement of constituent parts,	
GO:0030198	organization	or disassembly of an extracellular matrix.	biological_process
		Any protein complex that undergoes combination with a	
		hormone, neurotransmitter, drug or intracellular messenger	
GO:0043235	receptor complex	to initiate a change in cell function.	cellular_component
		The formation of bone or of a bony substance, or the	
		conversion of fibrous tissue or of cartilage into bone or a	
GO:0001503	ossification	bony substance.	biological_process
		Any process that results in a change in state or activity of a	
		cell or an organism (in terms of movement, secretion,	
		enzyme production, gene expression, etc.) as a result of an	
		insulin stimulus. Insulin is a polypeptide hormone produced	
		by the islets of Langerhans of the pancreas in mammals,	
GO:0032868	response to insulin regulation of cytoskeleton	and by the homologous organs of other organisms.	biological_process
		Any process that modulates the frequency, rate or extent of	
		the formation, arrangement of constituent parts, or	
GO:0051493	organization positive regulation of inflammatory	disassembly of cytoskeletal structures.	biological_process
		Any process that activates or increases the frequency, rate	
GO:0050729	response	or extent of the inflammatory response.	biological_process
		The process in which the branching structure of the ureteric	
		bud is generated and organized. The ureteric bud is an	
	branching involved in	epithelial tube that grows out from the metanephric duct.	
	ureteric bud	The bud elongates and branches to give rise to the ureter	
GO:0001658	morphogenesis	and kidney collecting tubules.	biological_process
		A secretory organelle, typically 50 nm in diameter, of	
		presynaptic nerve terminals; accumulates in high	
		concentrations of neurotransmitters and secretes these into	
		the synaptic cleft by fusion with the 'active zone' of the	
GO:0008021	synaptic vesicle	presynaptic plasma membrane.	cellular_component

GO:0007189	adenylate cyclaseactivating G proteincoupled receptor signaling pathway	The series of molecular signals generated as a consequence of a G protein-coupled receptor binding to its physiological ligand, where the pathway proceeds through activation of adenylyl cyclase activity and a subsequent increase in the concentration of cyclic AMP (cAMP).	biological_process
		The directed movement of a neutrophil cell, the most numerous polymorphonuclear leukocyte found in the blood, in response to an external stimulus, usually an infection or	
GO:0030593	neutrophil chemotaxis positive regulation of	wounding. Any process that activates or increases the frequency, rate	biological_process
GO:0045785	cell adhesion	or extent of cell adhesion. The series of molecular signals generated as a consequence of a G protein-coupled receptor binding to its	biological_process
GO:0007200	phospholipase Cactivating G proteincoupled receptor signaling pathway	physiological ligand, where the pathway proceeds with activation of phospholipase C (PLC) and a subsequent increase in the concentration of inositol trisphosphate (IP3) and diacylglycerol (DAG).	biological_process
GO:0071356	cellular response to tumor necrosis factor ephrin receptor	Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a tumor necrosis factor stimulus.	biological_process
GO:0005003	activity	Combining with an ephrin to initiate a change in cell activity. The binding of a cell to the extracellular matrix via adhesion	molecular_function
GO:0007160	cell-matrix adhesion blood vessel	molecules. The process in which the anatomical structures of blood vessels are generated and organized. The blood vessel is	biological_process
GO:0048514	morphogenesis	the vasculature carrying blood. A collagen heterotrimer containing type IV alpha chains; [alpha1(IV)]2alpha2(IV) trimers are commonly observed, although more type IV alpha chains exist and may be present in type IV trimers; type IV collagen triple helices	biological_process
GO:0005587	collagen type IV trimer	associate to form 3 dimensional nets within basement membranes.	cellular_component
GO:0042593	glucose homeostasis regulation of heart rate by cardiac	Any process involved in the maintenance of an internal steady state of glucose within an organism or cell. A cardiac conduction process that modulates the frequency	biological_process
GO:0086091	conduction epithelial to mesenchymal	or rate of heart contraction. A transition where an epithelial cell loses apical/basolateral polarity, severs intercellular adhesive junctions, degrades basement membrane components and becomes a	biological_process
GO:0001837	transition negative regulation of	migratory mesenchymal cell. Any process that stops, prevents, or reduces the frequency,	biological_process
GO:0016525	angiogenesis negative regulation of inflammatory	rate or extent of angiogenesis. Any process that stops, prevents, or reduces the frequency,	biological_process
GO:0050728	response	rate or extent of the inflammatory response.	biological_process

GO:0071456
GO:0033089

GO:0060548
cellular response to hypoxia positive regulation of T cell differentiation in thymus

Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating lowered oxygen tension. Hypoxia, defined as a decline in O 2 levels below normoxic levels of 20.8-20.95\%, results in metabolic adaptation at both the cellular and organismal level.
biological_process

Any process that activates or increases the frequency, rate
or extent of T cell differentiation in the thymus. Any process that decreases the rate or frequency of cell death. Cell death is the specific activation or halting of processes within a cell so that its vital functions markedly negative regulation of cease, rather than simply deteriorating gradually over time, cell death which culminates in cell death. The function of a family of small chemotactic cytokines; their name is derived from their ability to induce directed chemotaxis in nearby responsive cells. All chemokines possess a number of conserved cysteine residues involved in intramolecular disulfide bond formation. Some chemokines are considered pro-inflammatory and can be induced during an immune response to recruit cells of the immune system to a site of infection, while others are considered homeostatic and are involved in controlling the migration of cells during normal processes of tissue maintenance or development. Chemokines are found in all vertebrates, some viruses and some bacteria.
Any process that modulates the frequency, rate or extent of behavior, the internally coordinated responses (actions or inactions) of whole living organisms (individuals or groups) regulation of behavior to internal or external stimuli.

Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a response to wounding stimulus indicating damage to the organism. positive regulation of Any process that activates or increases the frequency, rate cell motility or extent of cell motility. The orderly movement of a myoblast from one site to another, often during the development of a multicellular organism. A myoblast is a cell type that, by fusion with other myoblasts, gives rise to the myotubes that eventually develop into skeletal muscle fibers. biological_process
A change in the morphology or behavior of a cell resulting from exposure to an activating factor such as a cellular or soluble ligand.
The process in which the anatomical structures of the
embryonic viscerocranium are generated and organized during the embryonic phase. The viscerocranium is the part of the skull viscerocranium morphogenesis
comprising the facial bones.
biological_process
biological_process
biological_process
molecular_function
biological_process
biological_process
biological_process
biogical_process
\qquad

號
biological_process

GO:0001568	blood vessel development	The process whose specific outcome is the progression of a blood vessel over time, from its formation to the mature structure. The blood vessel is the vasculature carrying blood.	biological_process
		Any process in which a receptor is transported to, and/or maintained at the synapse, the junction between a nerve	
	receptor localization to synapse	fiber of one neuron and another neuron or muscle fiber or glial cell.	
GO:0097120	embryonic cranial skeleton	The process in which the anatomical structures of the cranial skeleton are generated and organized during the	
GO:0048701	morphogenesis	embryonic phase.	biological_process
	negative regulation of		
	endothelial cell apoptotic proces	Any process that stops, prevents or reduces the frequency,	
GO:2000352		The chemical reactions and pathways resulting in the	
	nucleoside	breakdown of a nucleoside triphosphate, a compound	
	triphosphate catabolic	consisting of a nucleobase linked to a deoxyribose or ribose	
GO:0009143	process	sugar esterified with triphosphate on the sugar.	biological_process
	regulation of cell	Any process that modulates the frequency, rate or extent of	
GO:2000145	motility	cell motility.	biological_process
	organelle fission	The creation of two or more organelles by division of one organelle.	biological_process
GO:0048285		Any process that stops, prevents, or reduces the frequency,	
	negative regulation of protein kinase B	rate or extent of protein kinase B signaling, a series of reactions mediated by the intracellular serine/threonine	
GO:0051898	signaling regulation of	kinase protein kinase B.	biological_process
	epithelial cell proliferation	Any process that modulates the frequency, rate or extent of epithelial cell proliferation.	biological_process
GO:0050678		The process whose specific outcome is the progression of the circulatory system over time, from its formation to the mature structure. The circulatory system is the organ system that passes nutrients (such as amino acids and electrolytes), gases, hormones, blood cells, etc. to and from	
	circulatory system development	cells in the body to help fight diseases and help stabilize body temperature and pH to maintain homeostasis.	
GO:0072359	regulation of blood	Any process that modulates the frequency, rate or extent of	ogical_process
GO:0030193	coagulation	blood coagulation.	biological_process
		Combining with a peptide and transmitting the signal across	
	G protein-coupled peptide receptor	the membrane by activating an associated G-protein; promotes the exchange of GDP for GTP on the alpha	
GO:0008528	activity	subunit of a heterotrimeric G-protein complex. The process whose specific outcome is the progression of the cardiovascular system over time, from its formation to the mature structure. The cardiovascular system is the	molecular_function
	cardiovascular system	anatomical system that has as its parts the heart and blood	
GO:0072358	development	vessels.	biological_process
		A change in morphology and behavior of a leukocyte resulting from exposure to a specific antigen, mitogen,	
GO:0045321	leukocyte activation	cytokine, cellular ligand, or soluble factor.	biological_process

GO:0034383	low-density	The process in which a low-density lipoprotein particle is	biological_process
	lipoprotein particle clearance	removed from the blood via receptor-mediated endocytosis and its constituent parts degraded.	
		and its constituent parts degraded.	
GO:0016941	natriuretic peptide receptor activity	Combining with a natriuretic peptide and transmitting the signal to initiate a change in cell activity.	molecular_function
		The chemical reactions and pathways resulting in the	
	nucleoside	formation of a nucleoside triphosphate, a compound	
	triphosphate	consisting of a nucleobase linked to a deoxyribose or ribose	
GO:0009142	biosynthetic process	sugar esterified with triphosphate on the sugar.	biological_process
	positive regulation of		
	transcription from		
	RNA polymerase II		
	promoter involved in	Any positive regulation of transcription from RNA	
	smooth muscle cell	polymerase II promoter that is involved in smooth muscle	
GO:2000721	differentiation	cell differentiation.	biological_process
	positive regulation of	Any process that activates or increases the frequency, rate,	
GO:0002687	leukocyte migration	or extent of leukocyte migration.	biological_process
		A transition where a mesenchymal cell establishes apical/basolateral polarity, forms intercellular adhesive	
	mesenchymal to	junctions, synthesizes basement membrane components	
GO:0060231	epithelial transition	and becomes an epithelial cell.	biological_process
		The movement of an eosinophil in response to an external	
GO:0048245	eosinophil chemotaxis	stimulus.	biological_process
		Any process that stops, prevents or reduces the rate or	
	negative regulation of	extent of growth, the increase in size or mass of all or part	
GO:0045926	growth	of an organism.	biological_process
	positive regulation of cytoskeleton	Any process that activates or increases the frequency, rate or extent of the formation, arrangement of constituent	
GO:0051495	organization	parts, or disassembly of cytoskeletal structures.	biological_process
		The movement of a monocyte in response to an external	
GO:0002548	monocyte chemotaxis	stimulus.	biological_process
	CCR chemokine	Interacting selectively and non-covalently with a CCR	
GO:0048020	receptor binding	chemokine receptor.	molecular_function
	lymphocyte	The directed movement of a lymphocyte in response to an	
GO:0048247	chemotaxis	external stimulus.	biological_process
	positive regulation of	Any process that activates or increases the frequency, rate	
GO:0040017	locomotion	or extent of locomotion of a cell or organism.	biological_process
	positive regulation of		
	cellular component	Any process that activates or increases the frequency, rate	
GO:0051272	movement	or extent of the movement of a cellular component.	biological_process
	regulation of cellular		
	component	Any process that modulates the frequency, rate or extent of	
GO:0051270	movement	the movement of a cellular component.	biological_process
		Any process that activates or increases the frequency, rate,	
GO:0002684	positive regulation of ir or extent of an immune system process. Source: GOC:add		biological_process
		The attachment of a cell or organism to a substrate, another cell, or other organism. Biological adhesion includes	
GO:0022610	biological adhesion	intracellular attachment between membrane regions.	biological_process
		Any process that activates or increases the frequency, rate	
GO:0050867	positive regulation of c	or extent of activation	biological_process

A organ system process carried out by any of the organs or tissues of the circulatory system. The circulatory system is an organ system that moves extracellular fluids to and from
circulatory system proc tissue within a multicellular organism
Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus reflecting the presence, absence, or concentration
response to oxygen lev of oxygen
biological_process
biological_process

A process that is carried out at the cellular level which results in the assembly, arrangement of constituent parts, or disassembly of structures in the space external to the outermost structure of a cell. For cells without external protective or external encapsulating structures this refers to space outside of the plasma membrane, and also covers
reticulum membrane
Regulation of ventricular cardiac muscle action potential Regulation of force of L-methionine
voltage-gated calcium channel complex
cellular_component
heart contraction Any process that modulates the extent of heart contraction, c biological_process
biosynthetic process The chemical reactions and pathways resulting in the from formation of L-methionine, the L-enantiomer of (2S)-2methylthioadenosine amino-4-(methylsulfanyl)butanoic acid. Source: GOC:ecd cardiac chronotropy, regulation of heart contraction rate, regulation of rate of heart contraction The lipid bilayer surrounding the sarcoplasmic reticulum. Source: GOC:rph
cellular_component The aggregation, arrangement and bonding together of proteins to form the actin-based thin filaments of myofibrils
Skeletal muscle thin
filament assembly
Intercalated disc
in skeletal
muscle. Source: GOC:mtg_muscle, GOC:ef, GOC:mah biological_process A complex cell-cell junction at which myofibrils terminate in c cellular_component

	Combining with any modified low-density lipoprotein (LDL)
or other polyanionic ligand and delivering the ligand into the	
cell via endocytosis. Ligands include acetylated and oxidized	
LDL, Gram-positive and Gram-negative bacteria, apoptotic	
cells, amyloid-beta fibrils, and advanced glycation end	
products	

Table S2. List of Differentially expressed genes in transcriptomic studies of canine Myxomatous Mitral Valve Disease

Study	Model	Fold	Gene Symbol
Markvy et al (2020)	CKCS vs Normal	-14.26	CASQ2
Markvy et al (2020)	CKCS vs Normal	-7.65	NEBL
Markvy et al (2020)	CKCS vs Normal	-6.78	CASQ2
Markvy et al (2020)	CKCS vs Normal	-5.01	LAMA2
Markvy et al (2020)	CKCS vs Normal	-4.5	FSTL4
Markvy et al (2020)	CKCS vs Normal	-3.74	FSTL4
Markvy et al (2020)	CKCS vs Normal	-3.41	LAMA2
Markvy et al (2020)	CKCS vs Normal	-3.24	KCND2
Markvy et al (2020)	CKCS vs Normal	-2.97	ADCY2
Markvy et al (2020)	CKCS vs Normal	-2.95	ADCY2
Markvy et al (2020)	CKCS vs Normal	-2.85	SLC24A2
Markvy et al (2020)	CKCS vs Normal	-2.73	PDZD2
Markvy et al (2020)	CKCS vs Normal	-2.68	SDK1
Markvy et al (2020)	CKCS vs Normal	-2.68	SLIT2
Markvy et al (2020)	CKCS vs Normal	-2.68	TMEFF2
Markvy et al (2020)	CKCS vs Normal	-2.64	NEBL
Markvy et al (2020)	CKCS vs Normal	-2.46	KCND2
Markvy et al (2020)	CKCS vs Normal	-2.4	PDZD2
Markvy et al (2020)	CKCS vs Normal	-2.24	KCNQ5
Markvy et al (2020)	CKCS vs Normal	-2.21	TMEFF2
Markvy et al (2020)	CKCS vs Normal	-2.17	NID1
Markvy et al (2020)	CKCS vs Normal	-2.15	SDK1
Markvy et al (2020)	CKCS vs Normal	-2.14	DOK6
Markvy et al (2020)	CKCS vs Normal	-2.05	SLIT2
Markvy et al (2020)	CKCS vs Normal	-2.04	NTN1
Markvy et al (2020)	CKCS vs Normal	-1.99	NID1
Markvy et al (2020)	CKCS vs Normal	-1.97	SNTB1
Markvy et al (2020)	CKCS vs Normal	-1.85	ADCY2
Markvy et al (2020)	CKCS vs Normal	-1.82	SNTB1
Markvy et al (2020)	CKCS vs Normal	-1.77	KCNQ5
Markvy et al (2020)	CKCS vs Normal	-1.73	TANC2
Markvy et al (2020)	CKCS vs Normal	-1.68	MAML3
Markvy et al (2020)	CKCS vs Normal	-1.64	NTN1
Markvy et al (2020)	CKCS vs Normal	-1.62	TANC2
Markvy et al (2020)	CKCS vs Normal	-1.56	SEL1L3
Markvy et al (2020)	CKCS vs Normal	-1.55	MAML3
Markvy et al (2020)	CKCS vs Normal	1.53	PLCB1
Markvy et al (2020)	CKCS vs Normal	1.53	PLCB1
Markvy et al (2020)	CKCS vs Normal	1.54	ADAM22
Markvy et al (2020)	CKCS vs Normal	1.65	RTCA
Markvy et al (2020)	CKCS vs Normal	1.74	BNC2
Markvy et al (2020)	CKCS vs Normal	1.87	ADAM22
Markvy et al (2020)	CKCS vs Normal	2	BNC2
Markvy et al (2020)	CKCS vs Normal	2.07	VCAM1
Markvy et al (2020)	CKCS vs Normal	3.02	PLCXD3

Markvy et al (2020)	CKCS vs Normal	4.41	COL6A5
Markvy et al (2020)	CKCS vs Normal	4.63	HSP70
Markvy et al (2020)	CKCS vs Normal	4.92	COL6A5
Markvy et al (2020)	CKCS vs Normal	4.92	COL6A5
Markvy et al (2020)	CKCS vs Normal	4.92	COL6A5
Markvy et al (2020)	CKCS vs Normal	5.44	HSP70
Markvy et al (2020)	CKCS vs Normal	6.14	CDKN2A
Markvy et al (2020)	CKCS vs Normal	8.01	CDKN2A
Markvy et al (2020)	CKCS vs Normal	-17.18	MB
Markvy et al (2020)	CKCS vs Normal	-15.05	MYL4
Markvy et al (2020)	CKCS vs Normal	-12.94	ACTN2
Markvy et al (2020)	CKCS vs Normal	-12.82	ACTA1
Markvy et al (2020)	CKCS vs Normal	-10.64	CKM
Markvy et al (2020)	CKCS vs Normal	-10.48	TTN
Markvy et al (2020)	CKCS vs Normal	-10.21	NRAP
Markvy et al (2020)	CKCS vs Normal	-10.1	MYH7
Markvy et al (2020)	CKCS vs Normal	-9.22	DSC2
Markvy et al (2020)	CKCS vs Normal	-9.18	NKAIN2
Markvy et al (2020)	CKCS vs Normal	-9.02	PGAM2
Markvy et al (2020)	CKCS vs Normal	-6.82	CILP
Markvy et al (2020)	CKCS vs Normal	-6.04	TNMD
Markvy et al (2020)	CKCS vs Normal	-5.99	ALPK2
Markvy et al (2020)	CKCS vs Normal	-5.36	COX6A2
Markvy et al (2020)	CKCS vs Normal	-5.32	PALLD
Markvy et al (2020)	CKCS vs Normal	-5.29	HHATL
Markvy et al (2020)	CKCS vs Normal	-5.01	C28H10orf71
Markvy et al (2020)	CKCS vs Normal	-4.92	MEI4
Markvy et al (2020)	CKCS vs Normal	-4.91	GJB6
Markvy et al (2020)	CKCS vs Normal	-4.84	WIF1
Markvy et al (2020)	CKCS vs Normal	-4.71	ATP1A3
Markvy et al (2020)	CKCS vs Normal	-4.65	TNNI3
Markvy et al (2020)	CKCS vs Normal	-4.56	CMYA5
Markvy et al (2020)	CKCS vs Normal	-4.5	PPARGC1A
Markvy et al (2020)	CKCS vs Normal	-4.33	LMO3
Markvy et al (2020)	CKCS vs Normal	-4.27	KLHL41
Markvy et al (2020)	CKCS vs Normal	-4.25	LOC488818
Markvy et al (2020)	CKCS vs Normal	-4.23	ADRA1A
Markvy et al (2020)	CKCS vs Normal	-4.09	SLITRK6
Markvy et al (2020)	CKCS vs Normal	-3.99	FREM1
Markvy et al (2020)	CKCS vs Normal	-3.92	PLA2G5
Markvy et al (2020)	CKCS vs Normal	-3.9	ADPRHL1
Markvy et al (2020)	CKCS vs Normal	-3.85	MYL3
Markvy et al (2020)	CKCS vs Normal	-3.84	MIR99A-1
Markvy et al (2020)	CKCS vs Normal	-3.81	HIF3A
Markvy et al (2020)	CKCS vs Normal	-3.55	SCN3B
Markvy et al (2020)	CKCS vs Normal	-3.5	SCN4B
Markvy et al (2020)	CKCS vs Normal	-3.45	ADAMTS15
Markvy et al (2020)	CKCS vs Normal	-3.39	SYNPO2L

Markvy et al (2020)	CKCS vs Normal	-3.32	LRRC2
Markvy et al (2020)	CKCS vs Normal	-3.31	GRIN2A
Markvy et al (2020)	CKCS vs Normal	-3.27	FMO2
Markvy et al (2020)	CKCS vs Normal	-3.22	CORIN
Markvy et al (2020)	CKCS vs Normal	-3.22	NT5E
Markvy et al (2020)	CKCS vs Normal	-3.2	LOC479934
Markvy et al (2020)	CKCS vs Normal	-3.17	HAPLN1
Markvy et al (2020)	CKCS vs Normal	-3.16	MPZL2
Markvy et al (2020)	CKCS vs Normal	-3.07	TXLNB
Markvy et al (2020)	CKCS vs Normal	-3.05	AMIGO2
Markvy et al (2020)	CKCS vs Normal	-3.04	GFRA2
Markvy et al (2020)	CKCS vs Normal	-3.03	ABCA6
Markvy et al (2020)	CKCS vs Normal	-2.99	ASB12
Markvy et al (2020)	CKCS vs Normal	-2.99	DSP
Markvy et al (2020)	CKCS vs Normal	-2.96	POPDC3
Markvy et al (2020)	CKCS vs Normal	-2.93	TMEM132C
Markvy et al (2020)	CKCS vs Normal	-2.9	SLC2A12
Markvy et al (2020)	CKCS vs Normal	-2.87	ABCC9
Markvy et al (2020)	CKCS vs Normal	-2.85	TCAP
Markvy et al (2020)	CKCS vs Normal	-2.83	MIR218-1
Markvy et al (2020)	CKCS vs Normal	-2.76	CA14
Markvy et al (2020)	CKCS vs Normal	-2.75	MYLK3
Markvy et al (2020)	CKCS vs Normal	-2.72	TNXB
Markvy et al (2020)	CKCS vs Normal	-2.71	RGS6
Markvy et al (2020)	CKCS vs Normal	-2.71	TRDN
Markvy et al (2020)	CKCS vs Normal	-2.69	KERA
Markvy et al (2020)	CKCS vs Normal	-2.65	GPR37
Markvy et al (2020)	CKCS vs Normal	-2.64	CILP2
Markvy et al (2020)	CKCS vs Normal	-2.63	PTP4A3
Markvy et al (2020)	CKCS vs Normal	-2.61	MYOC
Markvy et al (2020)	CKCS vs Normal	-2.6	F2RL2
Markvy et al (2020)	CKCS vs Normal	-2.6	RASGRF2
Markvy et al (2020)	CKCS vs Normal	-2.58	CDH22
Markvy et al (2020)	CKCS vs Normal	-2.57	KCNJ8
Markvy et al (2020)	CKCS vs Normal	-2.57	KIAA1024L
Markvy et al (2020)	CKCS vs Normal	-2.57	SRL
Markvy et al (2020)	CKCS vs Normal	-2.56	COLCA2
Markvy et al (2020)	CKCS vs Normal	-2.52	WIPF3
Markvy et al (2020)	CKCS vs Normal	-2.51	LIFR
Markvy et al (2020)	CKCS vs Normal	-2.51	SLC22A23
Markvy et al (2020)	CKCS vs Normal	-2.5	ACKR1
Markvy et al (2020)	CKCS vs Normal	-2.5	NEGR1
Markvy et al (2020)	CKCS vs Normal	-2.48	CDC42EP2
Markvy et al (2020)	CKCS vs Normal	-2.46	LMOD2
Markvy et al (2020)	CKCS vs Normal	-2.45	HCN1
Markvy et al (2020)	CKCS vs Normal	-2.42	CNTFR
Markvy et al (2020)	CKCS vs Normal	-2.42	KDR
Markvy et al (2020)	CKCS vs Normal	-2.39	PYGM

Markvy et al (2020)	CKCS vs Normal	-2.38	RYR2
Markvy et al (2020)	CKCS vs Normal	-2.37	RGS7BP
Markvy et al (2020)	CKCS vs Normal	-2.36	LAMA1
Markvy et al (2020)	CKCS vs Normal	-2.35	RNF128
Markvy et al (2020)	CKCS vs Normal	-2.33	CAV3
Markvy et al (2020)	CKCS vs Normal	-2.31	FAM20A
Markvy et al (2020)	CKCS vs Normal	-2.31	NPR3
Markvy et al (2020)	CKCS vs Normal	-2.31	PCSK6
Markvy et al (2020)	CKCS vs Normal	-2.31	PER2
Markvy et al (2020)	CKCS vs Normal	-2.3	DRP2
Markvy et al (2020)	CKCS vs Normal	-2.28	PI15
Markvy et al (2020)	CKCS vs Normal	-2.28	S100B
Markvy et al (2020)	CKCS vs Normal	-2.27	SLC1A3
Markvy et al (2020)	CKCS vs Normal	-2.24	ENPEP
Markvy et al (2020)	CKCS vs Normal	-2.22	ANGPTL5
Markvy et al (2020)	CKCS vs Normal	-2.22	LOC478001
Markvy et al (2020)	CKCS vs Normal	-2.21	ADRB1
Markvy et al (2020)	CKCS vs Normal	-2.21	FAM13A
Markvy et al (2020)	CKCS vs Normal	-2.21	GJB2
Markvy et al (2020)	CKCS vs Normal	-2.2	APOBEC2
Markvy et al (2020)	CKCS vs Normal	-2.2	CACNA1H
Markvy et al (2020)	CKCS vs Normal	-2.19	MASP1
Markvy et al (2020)	CKCS vs Normal	-2.19	SLC37A1
Markvy et al (2020)	CKCS vs Normal	-2.17	IGSF3
Markvy et al (2020)	CKCS vs Normal	-2.17	TTYH1
Markvy et al (2020)	CKCS vs Normal	-2.16	RASIP1
Markvy et al (2020)	CKCS vs Normal	-2.15	MN1
Markvy et al (2020)	CKCS vs Normal	-2.15	SGCG
Markvy et al (2020)	CKCS vs Normal	-2.14	GPLD1
Markvy et al (2020)	CKCS vs Normal	-2.14	HRC
Markvy et al (2020)	CKCS vs Normal	-2.14	SERINC2
Markvy et al (2020)	CKCS vs Normal	-2.14	TRPM3
Markvy et al (2020)	CKCS vs Normal	-2.12	CHRM2
Markvy et al (2020)	CKCS vs Normal	-2.11	TOX
Markvy et al (2020)	CKCS vs Normal	-2.1	ADCK3
Markvy et al (2020)	CKCS vs Normal	-2.1	ADGRL3
Markvy et al (2020)	CKCS vs Normal	-2.1	LAPTM4B
Markvy et al (2020)	CKCS vs Normal	-2.09	KCNJ2
Markvy et al (2020)	CKCS vs Normal	-2.08	GNAO1
Markvy et al (2020)	CKCS vs Normal	-2.07	CYGB
Markvy et al (2020)	CKCS vs Normal	-2.07	KANK3
Markvy et al (2020)	CKCS vs Normal	-2.06	AFF2
Markvy et al (2020)	CKCS vs Normal	-2.06	DECR1
Markvy et al (2020)	CKCS vs Normal	-2.06	FAM171A1
Markvy et al (2020)	CKCS vs Normal	-2.06	SLC4A4
Markvy et al (2020)	CKCS vs Normal	-2.05	SEMA3D
Markvy et al (2020)	CKCS vs Normal	-2.03	FRMD3
Markvy et al (2020)	CKCS vs Normal	-2.03	SLC10A6

Markvy et al (2020)	CKCS vs Normal	-2.02	FAM159A
Markvy et al (2020)	CKCS vs Normal	-2.02	SCN2B
Markvy et al (2020)	CKCS vs Normal	-2.01	EDNRA
Markvy et al (2020)	CKCS vs Normal	-2	KCNJ5
Markvy et al (2020)	CKCS vs Normal	-2	PCLO
Markvy et al (2020)	CKCS vs Normal	-1.99	ADCYAP1R1
Markvy et al (2020)	CKCS vs Normal	-1.99	AMIGO1
Markvy et al (2020)	CKCS vs Normal	-1.98	CCK
Markvy et al (2020)	CKCS vs Normal	-1.98	FAM81A
Markvy et al (2020)	CKCS vs Normal	-1.97	VWDE
Markvy et al (2020)	CKCS vs Normal	-1.97	WFIKKN2
Markvy et al (2020)	CKCS vs Normal	-1.94	FAM19A4
Markvy et al (2020)	CKCS vs Normal	-1.94	GRIA3
Markvy et al (2020)	CKCS vs Normal	-1.93	MPP6
Markvy et al (2020)	CKCS vs Normal	-1.93	SORL1
Markvy et al (2020)	CKCS vs Normal	-1.92	PTGFR
Markvy et al (2020)	CKCS vs Normal	-1.92	RBPMS2
Markvy et al (2020)	CKCS vs Normal	-1.91	ANGPTL4
Markvy et al (2020)	CKCS vs Normal	-1.91	ARGLU1
Markvy et al (2020)	CKCS vs Normal	-1.91	FAM53B
Markvy et al (2020)	CKCS vs Normal	-1.91	LIX1
Markvy et al (2020)	CKCS vs Normal	-1.91	SLCO5A1
Markvy et al (2020)	CKCS vs Normal	-1.91	TNFRSF19
Markvy et al (2020)	CKCS vs Normal	-1.9	ATP2A2
Markvy et al (2020)	CKCS vs Normal	-1.9	NGFR
Markvy et al (2020)	CKCS vs Normal	-1.89	ABCA9
Markvy et al (2020)	CKCS vs Normal	-1.89	CRISPLD2
Markvy et al (2020)	CKCS vs Normal	-1.89	MAP2K6
Markvy et al (2020)	CKCS vs Normal	-1.88	KIAA1755
Markvy et al (2020)	CKCS vs Normal	-1.87	KIAA1671
Markvy et al (2020)	CKCS vs Normal	-1.87	PROX1
Markvy et al (2020)	CKCS vs Normal	-1.86	ACKR2
Markvy et al (2020)	CKCS vs Normal	-1.86	C37H2orf88
Markvy et al (2020)	CKCS vs Normal	-1.86	RNF207
Markvy et al (2020)	CKCS vs Normal	-1.85	ARHGAP32
Markvy et al (2020)	CKCS vs Normal	-1.85	FPGT
Markvy et al (2020)	CKCS vs Normal	-1.84	ABHD10
Markvy et al (2020)	CKCS vs Normal	-1.84	TMEM52
Markvy et al (2020)	CKCS vs Normal	-1.83	CACNA2D2
Markvy et al (2020)	CKCS vs Normal	-1.82	C1QTNF4
Markvy et al (2020)	CKCS vs Normal	-1.82	TMEM63C
Markvy et al (2020)	CKCS vs Normal	-1.8	CACHD1
Markvy et al (2020)	CKCS vs Normal	-1.78	GATA2
Markvy et al (2020)	CKCS vs Normal	-1.78	RFX2
Markvy et al (2020)	CKCS vs Normal	-1.77	CEP126
Markvy et al (2020)	CKCS vs Normal	-1.77	ENPP2
Markvy et al (2020)	CKCS vs Normal	-1.77	WNT9B
Markvy et al (2020)	CKCS vs Normal	-1.76	SCARA5

Markvy et al (2020)	CKCS vs Normal	-1.76	SOX10
Markvy et al (2020)	CKCS vs Normal	-1.76	THSD7A
Markvy et al (2020)	CKCS vs Normal	-1.76	VAMP2
Markvy et al (2020)	CKCS vs Normal	-1.75	ADAMTS8
Markvy et al (2020)	CKCS vs Normal	-1.75	DYSF
Markvy et al (2020)	CKCS vs Normal	-1.75	PPAP2B
Markvy et al (2020)	CKCS vs Normal	-1.75	PPP1R16B
Markvy et al (2020)	CKCS vs Normal	-1.74	ADHFE1
Markvy et al (2020)	CKCS vs Normal	-1.74	CABYR
Markvy et al (2020)	CKCS vs Normal	-1.73	SEMA6C
Markvy et al (2020)	CKCS vs Normal	-1.73	SYT17
Markvy et al (2020)	CKCS vs Normal	-1.72	CCDC65
Markvy et al (2020)	CKCS vs Normal	-1.72	COL6A3
Markvy et al (2020)	CKCS vs Normal	-1.72	LIPC
Markvy et al (2020)	CKCS vs Normal	-1.72	ST8SIA5
Markvy et al (2020)	CKCS vs Normal	-1.71	ANK1
Markvy et al (2020)	CKCS vs Normal	-1.71	ATP9A
Markvy et al (2020)	CKCS vs Normal	-1.71	DDX31
Markvy et al (2020)	CKCS vs Normal	-1.71	NFATC1
Markvy et al (2020)	CKCS vs Normal	-1.71	WDR54
Markvy et al (2020)	CKCS vs Normal	-1.7	BAIAP2
Markvy et al (2020)	CKCS vs Normal	-1.7	LAMC3
Markvy et al (2020)	CKCS vs Normal	-1.7	NRSN2
Markvy et al (2020)	CKCS vs Normal	-1.7	RCAN2
Markvy et al (2020)	CKCS vs Normal	-1.7	SHANK3
Markvy et al (2020)	CKCS vs Normal	-1.7	UBE2QL1
Markvy et al (2020)	CKCS vs Normal	-1.7	ZCCHC24
Markvy et al (2020)	CKCS vs Normal	-1.69	ABL1
Markvy et al (2020)	CKCS vs Normal	-1.69	DLG2
Markvy et al (2020)	CKCS vs Normal	-1.69	FHOD3
Markvy et al (2020)	CKCS vs Normal	-1.69	GCNT4
Markvy et al (2020)	CKCS vs Normal	-1.69	OGN
Markvy et al (2020)	CKCS vs Normal	-1.69	PTGDS
Markvy et al (2020)	CKCS vs Normal	-1.68	B4GAT1
Markvy et al (2020)	CKCS vs Normal	-1.68	CKMT2
Markvy et al (2020)	CKCS vs Normal	-1.68	ESR1
Markvy et al (2020)	CKCS vs Normal	-1.67	FAM184B
Markvy et al (2020)	CKCS vs Normal	-1.67	LGI3
Markvy et al (2020)	CKCS vs Normal	-1.66	ABI3
Markvy et al (2020)	CKCS vs Normal	-1.66	MDGA1
Markvy et al (2020)	CKCS vs Normal	-1.66	TNIK
Markvy et al (2020)	CKCS vs Normal	-1.65	CCND2
Markvy et al (2020)	CKCS vs Normal	-1.65	SETBP1
Markvy et al (2020)	CKCS vs Normal	-1.65	TBX1
Markvy et al (2020)	CKCS vs Normal	-1.65	TMOD1
Markvy et al (2020)	CKCS vs Normal	-1.64	CACNA2D1
Markvy et al (2020)	CKCS vs Normal	-1.64	MYH7B
Markvy et al (2020)	CKCS vs Normal	-1.64	SEMA4B

Markvy et al (2020)	CKCS vs Normal	-1.64	WNK4
Markvy et al (2020)	CKCS vs Normal	-1.63	ELOVL6
Markvy et al (2020)	CKCS vs Normal	-1.62	C5H11orf63
Markvy et al (2020)	CKCS vs Normal	-1.62	IL17RD
Markvy et al (2020)	CKCS vs Normal	-1.62	ISM1
Markvy et al (2020)	CKCS vs Normal	-1.62	MOB3B
Markvy et al (2020)	CKCS vs Normal	-1.61	CYP27A1
Markvy et al (2020)	CKCS vs Normal	-1.61	LOC479922
Markvy et al (2020)	CKCS vs Normal	-1.61	MICAL3
Markvy et al (2020)	CKCS vs Normal	-1.61	MOK
Markvy et al (2020)	CKCS vs Normal	-1.61	NAPEPLD
Markvy et al (2020)	CKCS vs Normal	-1.6	ALDH5A1
Markvy et al (2020)	CKCS vs Normal	-1.6	APOLD1
Markvy et al (2020)	CKCS vs Normal	-1.6	DSG2
Markvy et al (2020)	CKCS vs Normal	-1.6	NFIA
Markvy et al (2020)	CKCS vs Normal	-1.6	OLFML1
Markvy et al (2020)	CKCS vs Normal	-1.6	STARD9
Markvy et al (2020)	CKCS vs Normal	-1.6	TRIM4
Markvy et al (2020)	CKCS vs Normal	-1.6	TTC21A
Markvy et al (2020)	CKCS vs Normal	-1.59	ITGA2
Markvy et al (2020)	CKCS vs Normal	-1.58	ADAMTSL4
Markvy et al (2020)	CKCS vs Normal	-1.58	KIAA0355
Markvy et al (2020)	CKCS vs Normal	-1.58	SIK3
Markvy et al (2020)	CKCS vs Normal	-1.57	C32H4orf36
Markvy et al (2020)	CKCS vs Normal	-1.57	CCDC92
Markvy et al (2020)	CKCS vs Normal	-1.57	CFAP54
Markvy et al (2020)	CKCS vs Normal	-1.57	IDNK
Markvy et al (2020)	CKCS vs Normal	-1.57	INSR
Markvy et al (2020)	CKCS vs Normal	-1.57	LOC607276
Markvy et al (2020)	CKCS vs Normal	-1.57	PER3
Markvy et al (2020)	CKCS vs Normal	-1.57	PLSCR4
Markvy et al (2020)	CKCS vs Normal	-1.56	CACNA1G
Markvy et al (2020)	CKCS vs Normal	-1.56	HACD4
Markvy et al (2020)	CKCS vs Normal	-1.56	KSR1
Markvy et al (2020)	CKCS vs Normal	-1.56	LOC102152842
Markvy et al (2020)	CKCS vs Normal	-1.56	PDGFRL
Markvy et al (2020)	CKCS vs Normal	-1.55	DCLK1
Markvy et al (2020)	CKCS vs Normal	-1.55	ECM1
Markvy et al (2020)	CKCS vs Normal	-1.55	MYLK
Markvy et al (2020)	CKCS vs Normal	-1.55	PDE3B
Markvy et al (2020)	CKCS vs Normal	-1.55	PHKA2
Markvy et al (2020)	CKCS vs Normal	-1.55	PPP1R12B
Markvy et al (2020)	CKCS vs Normal	-1.55	SYNE3
Markvy et al (2020)	CKCS vs Normal	-1.54	ADGRD1
Markvy et al (2020)	CKCS vs Normal	-1.54	FAM189A2
Markvy et al (2020)	CKCS vs Normal	-1.54	SALL3
Markvy et al (2020)	CKCS vs Normal	-1.53	AURKB
Markvy et al (2020)	CKCS vs Normal	-1.53	PIK3C2B

Markvy et al (2020)	CKCS vs Normal	-1.53	SLC25A42
Markvy et al (2020)	CKCS vs Normal	-1.53	SLC8B1
Markvy et al (2020)	CKCS vs Normal	-1.52	C4H10orf54
Markvy et al (2020)	CKCS vs Normal	-1.52	LOC480788
Markvy et al (2020)	CKCS vs Normal	-1.52	PDGFRA
Markvy et al (2020)	CKCS vs Normal	-1.51	CLIC5
Markvy et al (2020)	CKCS vs Normal	-1.51	FZD4
Markvy et al (2020)	CKCS vs Normal	-1.51	KCNA1
Markvy et al (2020)	CKCS vs Normal	-1.51	NCAM1
Markvy et al (2020)	CKCS vs Normal	-1.51	SLC7A2
Markvy et al (2020)	CKCS vs Normal	-1.51	TLE2
Markvy et al (2020)	CKCS vs Normal	-1.51	ZBTB45
Markvy et al (2020)	CKCS vs Normal	-1.51	ZSWIM1
Markvy et al (2020)	CKCS vs Normal	1.51	ACSL4
Markvy et al (2020)	CKCS vs Normal	1.51	ATP6VOB
Markvy et al (2020)	CKCS vs Normal	1.51	CCDC159
Markvy et al (2020)	CKCS vs Normal	1.51	CORO2A
Markvy et al (2020)	CKCS vs Normal	1.51	COX7A1
Markvy et al (2020)	CKCS vs Normal	1.51	DUSP6
Markvy et al (2020)	CKCS vs Normal	1.51	GSPT2
Markvy et al (2020)	CKCS vs Normal	1.51	NLRP3
Markvy et al (2020)	CKCS vs Normal	1.51	NUDT22
Markvy et al (2020)	CKCS vs Normal	1.51	PPP1R14B
Markvy et al (2020)	CKCS vs Normal	1.51	PRDX1
Markvy et al (2020)	CKCS vs Normal	1.51	PRR7
Markvy et al (2020)	CKCS vs Normal	1.51	RAB31
Markvy et al (2020)	CKCS vs Normal	1.51	RBM28
Markvy et al (2020)	CKCS vs Normal	1.51	SHMT2
Markvy et al (2020)	CKCS vs Normal	1.51	SPC25
Markvy et al (2020)	CKCS vs Normal	1.52	GNE
Markvy et al (2020)	CKCS vs Normal	1.52	PRDM5
Markvy et al (2020)	CKCS vs Normal	1.53	CRIP1
Markvy et al (2020)	CKCS vs Normal	1.53	DRAP1
Markvy et al (2020)	CKCS vs Normal	1.53	DSTN
Markvy et al (2020)	CKCS vs Normal	1.53	SLC46A1
Markvy et al (2020)	CKCS vs Normal	1.54	CHEK1
Markvy et al (2020)	CKCS vs Normal	1.54	GORAB
Markvy et al (2020)	CKCS vs Normal	1.54	POLR3K
Markvy et al (2020)	CKCS vs Normal	1.54	SKA2
Markvy et al (2020)	CKCS vs Normal	1.55	ARMC6
Markvy et al (2020)	CKCS vs Normal	1.55	LOC480571
Markvy et al (2020)	CKCS vs Normal	1.55	SUCLG1
Markvy et al (2020)	CKCS vs Normal	1.56	ATOX1
Markvy et al (2020)	CKCS vs Normal	1.56	COMMD8
Markvy et al (2020)	CKCS vs Normal	1.56	TMEM106C
Markvy et al (2020)	CKCS vs Normal	1.56	UBTD1
Markvy et al (2020)	CKCS vs Normal	1.57	AZIN2
Markvy et al (2020)	CKCS vs Normal	1.57	GNPNAT1

Markvy et al (2020)	CKCS vs Normal	1.57	MIR8824
Markvy et al (2020)	CKCS vs Normal	1.57	OSTM1
Markvy et al (2020)	CKCS vs Normal	1.57	SLC38A5
Markvy et al (2020)	CKCS vs Normal	1.58	ALDH1L2
Markvy et al (2020)	CKCS vs Normal	1.58	CASS4
Markvy et al (2020)	CKCS vs Normal	1.58	CBWD2
Markvy et al (2020)	CKCS vs Normal	1.58	CYR61
Markvy et al (2020)	CKCS vs Normal	1.58	MED10
Markvy et al (2020)	CKCS vs Normal	1.58	PAM16
Markvy et al (2020)	CKCS vs Normal	1.58	SSX2IP
Markvy et al (2020)	CKCS vs Normal	1.59	ACYP2
Markvy et al (2020)	CKCS vs Normal	1.59	COL4A1
Markvy et al (2020)	CKCS vs Normal	1.59	EAF1
Markvy et al (2020)	CKCS vs Normal	1.59	RNASET2
Markvy et al (2020)	CKCS vs Normal	1.59	TAF9
Markvy et al (2020)	CKCS vs Normal	1.6	CCND3
Markvy et al (2020)	CKCS vs Normal	1.6	H2AFZ
Markvy et al (2020)	CKCS vs Normal	1.6	HSPA13
Markvy et al (2020)	CKCS vs Normal	1.6	LOC607207
Markvy et al (2020)	CKCS vs Normal	1.6	NDUFB2
Markvy et al (2020)	CKCS vs Normal	1.61	BPNT1
Markvy et al (2020)	CKCS vs Normal	1.61	CALCA
Markvy et al (2020)	CKCS vs Normal	1.61	GLIPR1
Markvy et al (2020)	CKCS vs Normal	1.61	PLA2G4A
Markvy et al (2020)	CKCS vs Normal	1.61	PLXNC1
Markvy et al (2020)	CKCS vs Normal	1.61	SLC31A2
Markvy et al (2020)	CKCS vs Normal	1.61	ST8SIA4
Markvy et al (2020)	CKCS vs Normal	1.62	CKAP4
Markvy et al (2020)	CKCS vs Normal	1.62	FST
Markvy et al (2020)	CKCS vs Normal	1.62	MED21
Markvy et al (2020)	CKCS vs Normal	1.62	MGARP
Markvy et al (2020)	CKCS vs Normal	1.62	PARP8
Markvy et al (2020)	CKCS vs Normal	1.62	RBBP8
Markvy et al (2020)	CKCS vs Normal	1.63	MAPK13
Markvy et al (2020)	CKCS vs Normal	1.63	MNF1
Markvy et al (2020)	CKCS vs Normal	1.63	PDLIM4
Markvy et al (2020)	CKCS vs Normal	1.63	RND1
Markvy et al (2020)	CKCS vs Normal	1.63	SLC16A12
Markvy et al (2020)	CKCS vs Normal	1.63	SPIRE1
Markvy et al (2020)	CKCS vs Normal	1.63	TAGLN
Markvy et al (2020)	CKCS vs Normal	1.63	ZNF428
Markvy et al (2020)	CKCS vs Normal	1.64	CD48
Markvy et al (2020)	CKCS vs Normal	1.64	FKBP2
Markvy et al (2020)	CKCS vs Normal	1.64	HERC5
Markvy et al (2020)	CKCS vs Normal	1.64	NME2
Markvy et al (2020)	CKCS vs Normal	1.64	PTPRC
Markvy et al (2020)	CKCS vs Normal	1.65	NANS
Markvy et al (2020)	CKCS vs Normal	1.65	SUGCT

Markvy et al (2020)	CKCS vs Normal	1.65	TCEAL4
Markvy et al (2020)	CKCS vs Normal	1.65	TMEM256
Markvy et al (2020)	CKCS vs Normal	1.65	UGGT2
Markvy et al (2020)	CKCS vs Normal	1.66	AKAP5
Markvy et al (2020)	CKCS vs Normal	1.66	DYNLRB1
Markvy et al (2020)	CKCS vs Normal	1.66	FAM174A
Markvy et al (2020)	CKCS vs Normal	1.66	FAM188A
Markvy et al (2020)	CKCS vs Normal	1.66	SATB2
Markvy et al (2020)	CKCS vs Normal	1.67	CA5B
Markvy et al (2020)	CKCS vs Normal	1.67	GJB3
Markvy et al (2020)	CKCS vs Normal	1.68	CD84
Markvy et al (2020)	CKCS vs Normal	1.68	CLIC1
Markvy et al (2020)	CKCS vs Normal	1.68	ENOPH1
Markvy et al (2020)	CKCS vs Normal	1.68	NGEF
Markvy et al (2020)	CKCS vs Normal	1.68	TMEM261
Markvy et al (2020)	CKCS vs Normal	1.69	ALCAM
Markvy et al (2020)	CKCS vs Normal	1.69	CCDC115
Markvy et al (2020)	CKCS vs Normal	1.69	CDKN1A
Markvy et al (2020)	CKCS vs Normal	1.69	LAP3
Markvy et al (2020)	CKCS vs Normal	1.69	MAPKAPK3
Markvy et al (2020)	CKCS vs Normal	1.69	SEMA6B
Markvy et al (2020)	CKCS vs Normal	1.7	NUAK1
Markvy et al (2020)	CKCS vs Normal	1.7	RAI14
Markvy et al (2020)	CKCS vs Normal	1.7	SOSTDC1
Markvy et al (2020)	CKCS vs Normal	1.71	CFB
Markvy et al (2020)	CKCS vs Normal	1.71	ELL2
Markvy et al (2020)	CKCS vs Normal	1.71	SYNC
Markvy et al (2020)	CKCS vs Normal	1.72	GNG11
Markvy et al (2020)	CKCS vs Normal	1.72	KCNN4
Markvy et al (2020)	CKCS vs Normal	1.72	LBH
Markvy et al (2020)	CKCS vs Normal	1.72	LOC102156311
Markvy et al (2020)	CKCS vs Normal	1.72	PDE7B
Markvy et al (2020)	CKCS vs Normal	1.73	C17H1orf162
Markvy et al (2020)	CKCS vs Normal	1.73	KCNK1
Markvy et al (2020)	CKCS vs Normal	1.73	PLAU
Markvy et al (2020)	CKCS vs Normal	1.73	RHNO1
Markvy et al (2020)	CKCS vs Normal	1.73	SLC45A1
Markvy et al (2020)	CKCS vs Normal	1.74	ANGPTL1
Markvy et al (2020)	CKCS vs Normal	1.74	BLNK
Markvy et al (2020)	CKCS vs Normal	1.74	EPHA2
Markvy et al (2020)	CKCS vs Normal	1.74	SEC11C
Markvy et al (2020)	CKCS vs Normal	1.75	LOC102154654
Markvy et al (2020)	CKCS vs Normal	1.75	NCF2
Markvy et al (2020)	CKCS vs Normal	1.76	BANK1
Markvy et al (2020)	CKCS vs Normal	1.76	LAMTOR2
Markvy et al (2020)	CKCS vs Normal	1.77	NCAPG2
Markvy et al (2020)	CKCS vs Normal	1.77	RGS18
Markvy et al (2020)	CKCS vs Normal	1.77	RNASEH2C

Markvy et al (2020)	CKCS vs Normal	1.78	C1RL
Markvy et al (2020)	CKCS vs Normal	1.78	COL4A2
Markvy et al (2020)	CKCS vs Normal	1.79	LSM1
Markvy et al (2020)	CKCS vs Normal	1.79	PHPT1
Markvy et al (2020)	CKCS vs Normal	1.8	HDAC9
Markvy et al (2020)	CKCS vs Normal	1.8	NKX3-1
Markvy et al (2020)	CKCS vs Normal	1.81	C24H2Oorf24
Markvy et al (2020)	CKCS vs Normal	1.81	GAP43
Markvy et al (2020)	CKCS vs Normal	1.82	DZIP1
Markvy et al (2020)	CKCS vs Normal	1.82	ENO1
Markvy et al (2020)	CKCS vs Normal	1.82	PRC1
Markvy et al (2020)	CKCS vs Normal	1.83	CENPF
Markvy et al (2020)	CKCS vs Normal	1.83	LOXL3
Markvy et al (2020)	CKCS vs Normal	1.83	TYROBP
Markvy et al (2020)	CKCS vs Normal	1.84	CD86
Markvy et al (2020)	CKCS vs Normal	1.84	GREM1
Markvy et al (2020)	CKCS vs Normal	1.85	C17H1orf54
Markvy et al (2020)	CKCS vs Normal	1.86	FBXO27
Markvy et al (2020)	CKCS vs Normal	1.87	ATP8B1
Markvy et al (2020)	CKCS vs Normal	1.87	NPAS3
Markvy et al (2020)	CKCS vs Normal	1.87	PRR15
Markvy et al (2020)	CKCS vs Normal	1.88	OSBPL10
Markvy et al (2020)	CKCS vs Normal	1.89	ETF1
Markvy et al (2020)	CKCS vs Normal	1.89	LOC100856200
Markvy et al (2020)	CKCS vs Normal	1.89	RNF19B
Markvy et al (2020)	CKCS vs Normal	1.9	PDPN
Markvy et al (2020)	CKCS vs Normal	1.9	SBSPON
Markvy et al (2020)	CKCS vs Normal	1.91	ARNTL2
Markvy et al (2020)	CKCS vs Normal	1.91	BTK
Markvy et al (2020)	CKCS vs Normal	1.91	CKAP2L
Markvy et al (2020)	CKCS vs Normal	1.91	SEC61B
Markvy et al (2020)	CKCS vs Normal	1.93	CD70
Markvy et al (2020)	CKCS vs Normal	1.93	CDKN2B
Markvy et al (2020)	CKCS vs Normal	1.93	LOC611446
Markvy et al (2020)	CKCS vs Normal	1.93	MFSD2A
Markvy et al (2020)	CKCS vs Normal	1.94	VAV1
Markvy et al (2020)	CKCS vs Normal	1.95	SKAP2
Markvy et al (2020)	CKCS vs Normal	1.96	FOXS1
Markvy et al (2020)	CKCS vs Normal	1.97	NOV
Markvy et al (2020)	CKCS vs Normal	1.97	TBXAS1
Markvy et al (2020)	CKCS vs Normal	1.97	USP18
Markvy et al (2020)	CKCS vs Normal	1.99	NME1
Markvy et al (2020)	CKCS vs Normal	2	LRRC25
Markvy et al (2020)	CKCS vs Normal	2	LTBP2
Markvy et al (2020)	CKCS vs Normal	2.02	LYZF2
Markvy et al (2020)	CKCS vs Normal	2.02	MRVI1
Markvy et al (2020)	CKCS vs Normal	2.02	SLC5A3
Markvy et al (2020)	CKCS vs Normal	2.02	SPI1

Markvy et al (2020)	CKCS vs Normal	2.04	UCHL1
Markvy et al (2020)	CKCS vs Normal	2.05	BMP6
Markvy et al (2020)	CKCS vs Normal	2.05	PON3
Markvy et al (2020)	CKCS vs Normal	2.05	SYTL2
Markvy et al (2020)	CKCS vs Normal	2.06	CH25H
Markvy et al (2020)	CKCS vs Normal	2.09	DDC
Markvy et al (2020)	CKCS vs Normal	2.11	BLVRB
Markvy et al (2020)	CKCS vs Normal	2.11	SYNDIG1
Markvy et al (2020)	CKCS vs Normal	2.12	STK17B
Markvy et al (2020)	CKCS vs Normal	2.14	LOC100856638
Markvy et al (2020)	CKCS vs Normal	2.15	IFITM10
Markvy et al (2020)	CKCS vs Normal	2.16	CLEC3A
Markvy et al (2020)	CKCS vs Normal	2.17	CCL5
Markvy et al (2020)	CKCS vs Normal	2.17	SERPINI1
Markvy et al (2020)	CKCS vs Normal	2.18	ADAM28
Markvy et al (2020)	CKCS vs Normal	2.2	ARAP2
Markvy et al (2020)	CKCS vs Normal	2.21	CGREF1
Markvy et al (2020)	CKCS vs Normal	2.21	TREM2
Markvy et al (2020)	CKCS vs Normal	2.21	TYSND1
Markvy et al (2020)	CKCS vs Normal	2.22	TNFRSF12A
Markvy et al (2020)	CKCS vs Normal	2.24	ID3
Markvy et al (2020)	CKCS vs Normal	2.25	HENMT1
Markvy et al (2020)	CKCS vs Normal	2.27	MT2A
Markvy et al (2020)	CKCS vs Normal	2.31	DAPP1
Markvy et al (2020)	CKCS vs Normal	2.32	GCSAM
Markvy et al (2020)	CKCS vs Normal	2.32	NLGN4X
Markvy et al (2020)	CKCS vs Normal	2.35	C10H2orf40
Markvy et al (2020)	CKCS vs Normal	2.37	TNFRSF11B
Markvy et al (2020)	CKCS vs Normal	2.38	CXHXorf21
Markvy et al (2020)	CKCS vs Normal	2.38	NTRK3
Markvy et al (2020)	CKCS vs Normal	2.39	HAVCR1
Markvy et al (2020)	CKCS vs Normal	2.39	LOC487977
Markvy et al (2020)	CKCS vs Normal	2.39	RGS2
Markvy et al (2020)	CKCS vs Normal	2.4	EVI2B
Markvy et al (2020)	CKCS vs Normal	2.5	ABCC4
Markvy et al (2020)	CKCS vs Normal	2.51	LOC100856577
Markvy et al (2020)	CKCS vs Normal	2.52	C3AR1
Markvy et al (2020)	CKCS vs Normal	2.53	EPHA3
Markvy et al (2020)	CKCS vs Normal	2.57	RXFP1
Markvy et al (2020)	CKCS vs Normal	2.58	KCNMB1
Markvy et al (2020)	CKCS vs Normal	2.59	HOXD8
Markvy et al (2020)	CKCS vs Normal	2.62	PTGS2
Markvy et al (2020)	CKCS vs Normal	2.69	HTR2B
Markvy et al (2020)	CKCS vs Normal	2.7	CCL8
Markvy et al (2020)	CKCS vs Normal	2.74	HTR3B
Markvy et al (2020)	CKCS vs Normal	2.75	CNN1
Markvy et al (2020)	CKCS vs Normal	2.77	PAPPA2
Markvy et al (2020)	CKCS vs Normal	2.79	FCGR1A

Markvy et al (2020)	CKCS vs Normal	2.81	IL18
Markvy et al (2020)	CKCS vs Normal	2.87	KCNJ15
Markvy et al (2020)	CKCS vs Normal	2.9	LOC612564
Markvy et al (2020)	CKCS vs Normal	2.97	LRRC3B
Markvy et al (2020)	CKCS vs Normal	2.99	ANGPT1
Markvy et al (2020)	CKCS vs Normal	3.07	CLEC5A
Markvy et al (2020)	CKCS vs Normal	3.28	TPM2
Markvy et al (2020)	CKCS vs Normal	3.34	TUBB3
Markvy et al (2020)	CKCS vs Normal	3.38	KCNK2
Markvy et al (2020)	CKCS vs Normal	3.43	CASP14
Markvy et al (2020)	CKCS vs Normal	3.48	SLCO2A1
Markvy et al (2020)	CKCS vs Normal	3.52	LOC611538
Markvy et al (2020)	CKCS vs Normal	3.58	MYH11
Markvy et al (2020)	CKCS vs Normal	4.03	IL1RL1
Markvy et al (2020)	CKCS vs Normal	4.06	ACTA2
Markvy et al (2020)	CKCS vs Normal	4.18	IGFBP2
Markvy et al (2020)	CKCS vs Normal	4.28	CRLF1
Markvy et al (2020)	CKCS vs Normal	4.51	TNFSF15
Markvy et al (2020)	CKCS vs Normal	4.6	CCL7
Markvy et al (2020)	CKCS vs Normal	4.75	FGG
Markvy et al (2020)	CKCS vs Normal	4.75	RGS4
Markvy et al (2020)	CKCS vs Normal	5.07	SERPINE1
Markvy et al (2020)	CKCS vs Normal	5.4	CLEC7A
Markvy et al (2020)	CKCS vs Normal	5.74	SFRP2
Markvy et al (2020)	CKCS vs Normal	6.24	CCL13
Markvy et al (2020)	CKCS vs Normal	7.46	LRRN1
Markvy et al (2020)	CKCS vs NON-CKCS	-25.48	CASQ2
Markvy et al (2020)	CKCS vs NON-CKCS	-22.59	ACTN2
Markvy et al (2020)	CKCS vs NON-CKCS	-19.33	TTN
Markvy et al (2020)	CKCS vs NON-CKCS	-17	NRAP
Markvy et al (2020)	CKCS vs NON-CKCS	-15.91	ACTA1
Markvy et al (2020)	CKCS vs NON-CKCS	-15.85	MYH7
Markvy et al (2020)	CKCS vs NON-CKCS	-12.51	PGAM2
Markvy et al (2020)	CKCS vs NON-CKCS	-12.14	NEBL
Markvy et al (2020)	CKCS vs NON-CKCS	-11.74	ALPK2
Markvy et al (2020)	CKCS vs NON-CKCS	-11.38	CASQ2
Markvy et al (2020)	CKCS vs NON-CKCS	-10.64	HHATL
Markvy et al (2020)	CKCS vs NON-CKCS	-8.97	C28H10orf71
Markvy et al (2020)	CKCS vs NON-CKCS	-8.96	LMO3
Markvy et al (2020)	CKCS vs NON-CKCS	-8.75	PALLD
Markvy et al (2020)	CKCS vs NON-CKCS	-8.74	TNNI3
Markvy et al (2020)	CKCS vs NON-CKCS	-8.62	DSC2
Markvy et al (2020)	CKCS vs NON-CKCS	-8.57	ATP1A3
Markvy et al (2020)	CKCS vs NON-CKCS	-7.97	CMYA5
Markvy et al (2020)	CKCS vs NON-CKCS	-6.86	COX6A2
Markvy et al (2020)	CKCS vs NON-CKCS	-6.69	CORIN
Markvy et al (2020)	CKCS vs NON-CKCS	-6.53	KLHL41
Markvy et al (2020)	CKCS vs NON-CKCS	-6.22	ITGB6

Markvy et al (2020)	CKCS vs NON-CKCS	-5.99	PLA2G5
Markvy et al (2020)	CKCS vs NON-CKCS	-5.95	ADPRHL1
Markvy et al (2020)	CKCS vs NON-CKCS	-5.76	SYNPO2L
Markvy et al (2020)	CKCS vs NON-CKCS	-5.43	HPGDS
Markvy et al (2020)	CKCS vs NON-CKCS	-5.11	HPGDS
Markvy et al (2020)	CKCS vs NON-CKCS	-5.05	TXLNB
Markvy et al (2020)	CKCS vs NON-CKCS	-5.05	TSHB
Markvy et al (2020)	CKCS vs NON-CKCS	-4.89	TCAP
Markvy et al (2020)	CKCS vs NON-CKCS	-4.87	LAMA2
Markvy et al (2020)	CKCS vs NON-CKCS	-4.82	MYLK3
Markvy et al (2020)	CKCS vs NON-CKCS	-4.73	DSP
Markvy et al (2020)	CKCS vs NON-CKCS	-4.71	CA14
Markvy et al (2020)	CKCS vs NON-CKCS	-4.68	ASB12
Markvy et al (2020)	CKCS vs NON-CKCS	-4.62	LRRC2
Markvy et al (2020)	CKCS vs NON-CKCS	-4.51	SRL
Markvy et al (2020)	CKCS vs NON-CKCS	-4.41	PYGM
Markvy et al (2020)	CKCS vs NON-CKCS	-4.19	CACNA1H
Markvy et al (2020)	CKCS vs NON-CKCS	-4.1	TRDN
Markvy et al (2020)	CKCS vs NON-CKCS	-4.02	ENSCAFG0000002806
Markvy et al (2020)	CKCS vs NON-CKCS	-3.98	APOBEC2
Markvy et al (2020)	CKCS vs NON-CKCS	-3.96	PTP4A3
Markvy et al (2020)	CKCS vs NON-CKCS	-3.8	MLIP
Markvy et al (2020)	CKCS vs NON-CKCS	-3.78	GNAO1
Markvy et al (2020)	CKCS vs NON-CKCS	-3.7	KCNE1
Markvy et al (2020)	CKCS vs NON-CKCS	-3.7	RGS6
Markvy et al (2020)	CKCS vs NON-CKCS	-3.53	LMOD2
Markvy et al (2020)	CKCS vs NON-CKCS	-3.53	CHRM2
Markvy et al (2020)	CKCS vs NON-CKCS	-3.49	NPR3
Markvy et al (2020)	CKCS vs NON-CKCS	-3.44	ART3
Markvy et al (2020)	CKCS vs NON-CKCS	-3.29	LAMA2
Markvy et al (2020)	CKCS vs NON-CKCS	-3.2	HSPB3
Markvy et al (2020)	CKCS vs NON-CKCS	-3.13	FPGT
Markvy et al (2020)	CKCS vs NON-CKCS	-3.08	LOC479934
Markvy et al (2020)	CKCS vs NON-CKCS	-3.04	HRC
Markvy et al (2020)	CKCS vs NON-CKCS	-2.96	MYZAP
Markvy et al (2020)	CKCS vs NON-CKCS	-2.83	FABP3
Markvy et al (2020)	CKCS vs NON-CKCS	-2.76	SLC22A3
Markvy et al (2020)	CKCS vs NON-CKCS	-2.74	CAV3
Markvy et al (2020)	CKCS vs NON-CKCS	-2.74	GPX3
Markvy et al (2020)	CKCS vs NON-CKCS	-2.72	FREM1
Markvy et al (2020)	CKCS vs NON-CKCS	-2.72	RGS7BP
Markvy et al (2020)	CKCS vs NON-CKCS	-2.69	ADCK3
Markvy et al (2020)	CKCS vs NON-CKCS	-2.65	PCLO
Markvy et al (2020)	CKCS vs NON-CKCS	-2.64	PLN
Markvy et al (2020)	CKCS vs NON-CKCS	-2.64	HSPB7
Markvy et al (2020)	CKCS vs NON-CKCS	-2.62	ENO3
Markvy et al (2020)	CKCS vs NON-CKCS	-2.58	XIRP2
Markvy et al (2020)	CKCS vs NON-CKCS	-2.52	ADGRL3

Markvy et al (2020)	CKCS vs NON-CKCS	-2.52	KCNJ5
Markvy et al (2020)	CKCS vs NON-CKCS	-2.51	ATP2A2
Markvy et al (2020)	CKCS vs NON-CKCS	-2.44	DYSF
Markvy et al (2020)	CKCS vs NON-CKCS	-2.43	KLHL31
Markvy et al (2020)	CKCS vs NON-CKCS	-2.43	CXADR
Markvy et al (2020)	CKCS vs NON-CKCS	-2.4	CCDC85A
Markvy et al (2020)	CKCS vs NON-CKCS	-2.4	ITGA7
Markvy et al (2020)	CKCS vs NON-CKCS	-2.38	CPNE5
Markvy et al (2020)	CKCS vs NON-CKCS	-2.33	FITM1
Markvy et al (2020)	CKCS vs NON-CKCS	-2.32	KCNJ8
Markvy et al (2020)	CKCS vs NON-CKCS	-2.31	DECR1
Markvy et al (2020)	CKCS vs NON-CKCS	-2.31	SLIT2
Markvy et al (2020)	CKCS vs NON-CKCS	-2.25	ADGRL3
Markvy et al (2020)	CKCS vs NON-CKCS	-2.23	SDK1
Markvy et al (2020)	CKCS vs NON-CKCS	-2.17	RBPMS2
Markvy et al (2020)	CKCS vs NON-CKCS	-2.17	DES
Markvy et al (2020)	CKCS vs NON-CKCS	-2.14	TNXB
Markvy et al (2020)	CKCS vs NON-CKCS	-2.14	ESRRG
Markvy et al (2020)	CKCS vs NON-CKCS	-2.13	DNAJC6
Markvy et al (2020)	CKCS vs NON-CKCS	-2.08	TMEM132C
Markvy et al (2020)	CKCS vs NON-CKCS	-2.05	COBL
Markvy et al (2020)	CKCS vs NON-CKCS	-2.04	PER2
Markvy et al (2020)	CKCS vs NON-CKCS	-2.03	ADAMTS8
Markvy et al (2020)	CKCS vs NON-CKCS	-2.01	FHOD3
Markvy et al (2020)	CKCS vs NON-CKCS	-1.96	NID1
Markvy et al (2020)	CKCS vs NON-CKCS	-1.96	EDNRA
Markvy et al (2020)	CKCS vs NON-CKCS	-1.96	SLC37A1
Markvy et al (2020)	CKCS vs NON-CKCS	-1.93	SLC2A12
Markvy et al (2020)	CKCS vs NON-CKCS	-1.92	NGFR
Markvy et al (2020)	CKCS vs NON-CKCS	-1.91	HEYL
Markvy et al (2020)	CKCS vs NON-CKCS	-1.89	LOC488818
Markvy et al (2020)	CKCS vs NON-CKCS	-1.86	PLTP
Markvy et al (2020)	CKCS vs NON-CKCS	-1.83	TOX
Markvy et al (2020)	CKCS vs NON-CKCS	-1.82	FAM13A
Markvy et al (2020)	CKCS vs NON-CKCS	-1.82	PTGDS
Markvy et al (2020)	CKCS vs NON-CKCS	-1.81	NID1
Markvy et al (2020)	CKCS vs NON-CKCS	-1.81	PPP1R12B
Markvy et al (2020)	CKCS vs NON-CKCS	-1.79	FITM2
Markvy et al (2020)	CKCS vs NON-CKCS	-1.78	PPARA
Markvy et al (2020)	CKCS vs NON-CKCS	-1.76	RFX2
Markvy et al (2020)	CKCS vs NON-CKCS	-1.76	GOT1
Markvy et al (2020)	CKCS vs NON-CKCS	-1.75	BVES
Markvy et al (2020)	CKCS vs NON-CKCS	-1.75	CASZ1
Markvy et al (2020)	CKCS vs NON-CKCS	-1.74	MLLT11
Markvy et al (2020)	CKCS vs NON-CKCS	-1.72	RAB33A
Markvy et al (2020)	CKCS vs NON-CKCS	-1.71	DRP2
Markvy et al (2020)	CKCS vs NON-CKCS	-1.7	NCAM1
Markvy et al (2020)	CKCS vs NON-CKCS	-1.67	MCAM

Markvy et al (2020)	CKCS vs NON-CKCS	-1.66	PROX1
Markvy et al (2020)	CKCS vs NON-CKCS	-1.64	HACD4
Markvy et al (2020)	CKCS vs NON-CKCS	-1.63	ATP9A
Markvy et al (2020)	CKCS vs NON-CKCS	-1.62	FAM160A1
Markvy et al (2020)	CKCS vs NON-CKCS	-1.62	CEP126
Markvy et al (2020)	CKCS vs NON-CKCS	-1.61	RCAN2
Markvy et al (2020)	CKCS vs NON-CKCS	-1.6	FAM184B
Markvy et al (2020)	CKCS vs NON-CKCS	-1.59	L1CAM
Markvy et al (2020)	CKCS vs NON-CKCS	-1.58	ACO2
Markvy et al (2020)	CKCS vs NON-CKCS	-1.55	IQSEC1
Markvy et al (2020)	CKCS vs NON-CKCS	-1.55	MDH2
Markvy et al (2020)	CKCS vs NON-CKCS	-1.55	CACNA1G
Markvy et al (2020)	CKCS vs NON-CKCS	-1.54	TBC1D8
Markvy et al (2020)	CKCS vs NON-CKCS	-1.53	SEMA4D
Markvy et al (2020)	CKCS vs NON-CKCS	-1.53	SLC8B1
Markvy et al (2020)	CKCS vs NON-CKCS	-1.51	CCDC92
Markvy et al (2020)	CKCS vs NON-CKCS	1.51	LOC106558240
Markvy et al (2020)	CKCS vs NON-CKCS	1.51	MAT2B
Markvy et al (2020)	CKCS vs NON-CKCS	1.52	ENOPH1
Markvy et al (2020)	CKCS vs NON-CKCS	1.54	SWI5
Markvy et al (2020)	CKCS vs NON-CKCS	1.56	CXHXorf21
Markvy et al (2020)	CKCS vs NON-CKCS	1.57	C24H2Oorf24
Markvy et al (2020)	CKCS vs NON-CKCS	1.57	TMEM106C
Markvy et al (2020)	CKCS vs NON-CKCS	1.59	DYNLRB1
Markvy et al (2020)	CKCS vs NON-CKCS	1.61	BLVRB
Markvy et al (2020)	CKCS vs NON-CKCS	1.61	ETF1
Markvy et al (2020)	CKCS vs NON-CKCS	1.65	MASTL
Markvy et al (2020)	CKCS vs NON-CKCS	1.67	SEC11C
Markvy et al (2020)	CKCS vs NON-CKCS	1.67	NKX3-1
Markvy et al (2020)	CKCS vs NON-CKCS	1.68	SYNDIG1
Markvy et al (2020)	CKCS vs NON-CKCS	1.71	NOP10
Markvy et al (2020)	CKCS vs NON-CKCS	1.72	LOC102155956
Markvy et al (2020)	CKCS vs NON-CKCS	1.83	HENMT1
Markvy et al (2020)	CKCS vs NON-CKCS	1.84	EVI2B
Markvy et al (2020)	CKCS vs NON-CKCS	1.86	ABCC4
Markvy et al (2020)	CKCS vs NON-CKCS	2.23	C3AR1
Markvy et al (2020)	CKCS vs NON-CKCS	2.26	TMEM261
Markvy et al (2020)	CKCS vs NON-CKCS	2.32	LOC612564
Markvy et al (2020)	CKCS vs NON-CKCS	2.46	LOC100856577
Markvy et al (2020)	CKCS vs NON-CKCS	2.48	IL18
Markvy et al (2020)	CKCS vs NON-CKCS	2.52	RASL11A
Markvy et al (2020)	CKCS vs NON-CKCS	3.97	LOC476900
Markvy et al (2020)	CKCS vs NON-CKCS	4.77	CLEC7A
Markvy et al (2020)	CKCS valves compared to both normal val Down- regulated ACTA1		
Markvy et al (2020)	CKCS valves compared to both normal val Down- regulated ACTN2		
Markvy et al (2020)	CKCS valves compared to both normal val Down- regulated ADAMTS8		
Markvy et al (2020)	CKCS valves compared to both normal val Down- regulated ADCK3		
Markvy et al (2020)	CKCS valves compared to both normal val Down- regulated ADGRL3		

Markvy et al (2020)

CKCS valves compared to both normal val Down- regulated ADPRHL1 CKCS valves compared to both normal val Down- regulated ALPK2 CKCS valves compared to both normal val Down- regulated APOBEC2 CKCS valves compared to both normal val Down- regulated ASB12 CKCS valves compared to both normal val Down- regulated ATP1A3 CKCS valves compared to both normal val Down- regulated ATP2A2 CKCS valves compared to both normal val Down- regulated ATP9A CKCS valves compared to both normal val Down- regulated C28H10orf71 CKCS valves compared to both normal val Down- regulated CA14 CKCS valves compared to both normal val Down- regulated CACNA1G CKCS valves compared to both normal val Down- regulated CASQ2 CKCS valves compared to both normal val Down- regulated CCDC92 CKCS valves compared to both normal val Down- regulated CMYA5 CKCS valves compared to both normal val Down- regulated COBL CKCS valves compared to both normal val Down- regulated CORIN CKCS valves compared to both normal val Down- regulated COX6A2 CKCS valves compared to both normal val Down- regulated DECR1 CKCS valves compared to both normal val Down- regulated DRP2 CKCS valves compared to both normal val Down- regulated DSC2 CKCS valves compared to both normal val Down- regulated DSP CKCS valves compared to both normal val Down- regulated DYSF CKCS valves compared to both normal val Down- regulated EDNRA CKCS valves compared to both normal val Down- regulated FAM13A CKCS valves compared to both normal val Down- regulated FAM184B CKCS valves compared to both normal val Down- regulated FHOD3 CKCS valves compared to both normal val Down- regulated FITM1 CKCS valves compared to both normal val Down- regulated FREM1 CKCS valves compared to both normal val Down- regulated GNAO1 CKCS valves compared to both normal val Down- regulated HACD4 CKCS valves compared to both normal val Down- regulated HHATL CKCS valves compared to both normal val Down- regulated HRC CKCS valves compared to both normal val Down- regulated ITGB6 all diseased valves and normal valves -4.86 TNMD all diseased valves and normal valves -4.65 NKAIN2 all diseased valves and normal valves -4.44 CILP all diseased valves and normal valves -3.68 LOC10215413 -3.46 LOC488818 -3.27 NELL2 -3.05 NT5E -2.94 GPR85 -2.82 SCN3B -2.81 TMEFF2 -2.77 FSTL4 -2.62 ADAMTS15 -2.39 KCND2 -2.37 TMEFF2 -2.36 SLC24A2 -2.23 CYP2B6

Markvy et al (2020)
Lu et al (2015)
all diseased valves and normal valves
KCNQ5
VWDE

ALDH1A1
PNMT
SCIN
PTGFR
AFF2
CRISPLD2
TRPM3
LGI2
KCNQ5
PDZD2
ENOX1
C1QTNF4
DLG2
TRPC5
SCARA5
ENPP2
ITGA2
TANC2
COL11A2
GCNT4
OLFML1
PDE3B
ADAMDEC1
HSP70
ACTG2
ANGPTL1
IL6
cdkn2A
SFRP2
IL18
C4BPA
CCL13
IGKC
RGS2
HTR2B
SNORD14B
CXCL10
CD180
MS4A7
RGS4
HOXD8
CXCL14
MYH11
DNAJB1
IRGM

Lu et al (2015) Lu et al (2015)

MMVD in CKCS compared to normal dogs MMVD in CKCS compared to normal dogs
4.66
4.64
4.63
4.31
4.24
4.19
4.16
4.04

4
3.98
3.87
3.82
3.73
3.69
3.68
3.67
3.66
3.66
3.65
3.64
3.61
3.59
3.56
3.56
3.55
3.51
3.51
3.46
3.38
3.36
3.35
3.35
3.34
3.32
3.22
3.22
3.19
3.16
3.15
3.12
3.07
3.04
3.02
2.98
2.97
2.96
2.95
2.94

CSTA
OLR1
CPNE4
KCNE4
LOC100855494
MDGA2
PLCXD3
BLVRB
CLEC3A
PTGS2
FCGR1A
MMP12
UCHL1
CTSC
DAPP1
MIA
FGG
C5H17orf61
ANGPT1
DNAH6
EVI2B
ENPP6
TLR8
LOC100856456
LOC100855953
ARAP2
CASP8
ZBTB11
LOC100855873
RAB1B
CYP4B1
KCNJ15
EPHA3
FCGR3A
LST1
MSR1
BANK1
CDH6
LOC478384
RPS27A
CLDN1
PDCD1LG2
SELE
CXHXorf21
GMFG
S100A4
C3AR1
IGJ

Lu et al (2015) Lu et al (2015)

MMVD in CKCS compared to normal dogs MMVD in CKCS compared to normal dogs
2.92
2.92
2.9
2.9
2.86
2.84
2.83
2.83
2.82
2.81
2.79
2.76
2.71
2.71
2.71
2.67
2.67
2.66
2.64
2.64
2.64
2.64
2.63
2.62
2.61
2.6
2.6
2.58
2.58
2.58
2.58
2.58
2.56
2.56
2.5
2.5
2.5
2.5
2.49
2.48
2.48
2.48
2.47
2.47
2.45
2.45
2.45
2.44

ATP8B1
TLR1
SLC7A11
LOC100669834
GPR34
STK17B
EMR1
SCN1B
HNRNPH2
TACR1
CD48
ARSK
LOC100856186
LSMD1
ACP5
CFI
PLA2G4A
SKAP2
NOV
PLXNC1
SLC2A5
AKAP5
BNC2
GCLM
CECR1
CD300C
MUSTN1
SLC16A12
F13A1
PIR
CGREF1
ALOX5AP
MRPL51
SERPINB8
OSR1
FAM174A
FKBP2
LOC100855806
DYNC111
PCOLCE2
RNASE8
LOC100856330
LPXN
KCNMB1
C1QC
PDCD10
LSM1
PEPD

ATP8B1
TLR1 SLC7A11
LOC100669834 GPR34 STK17B SCN1B HNRNPH2 TACR1 ARSK OC100856186

LSMD1
ACP

PLA2G4A

NOV
PLXNC1
SLC2A5

BNC2
GCLM
CECR1

MUSTN1
SLC16A12
13A1

CGREF1
ALOX5AP
MRPL51
SERPINB8

FAM174A
FKBP2
LOC100855806
DYNC1I1
PCOLCE2
RNASE8
LOC100856330

KCNMB1
C1QC

LSM1
PEPD

Lu et al (2015) Lu et al (2015)

MMVD in CKCS compared to normal dogs MMVD in CKCS compared to normal dogs
2.44
2.44
2.43
2.42
2.42
2.4
2.4
2.4
2.39
2.39
2.38
2.38
2.38
2.38
2.37
2.37
2.37
2.36
2.36
2.36
2.35
2.35
2.34
2.34
2.34
2.33
2.32
2.31
2.3
2.3
2.29
2.29
2.29
2.29
2.28
2.28
2.28
2.28
2.28
2.27
2.27
2.27
2.27
2.26
2.26
2.25
2.24
2.24

```
CYBB SOD2 LRRC25 HLA-DMB CASP4 TAGLN
LOC100855439
    P2RX7
        AIF1
        GBP7
        ACSL4
        BMP6
        THAP5
        EIF4E
LOC100856347
        CCDC90A
        PLCL1
        PTP4A1
    LOC488754
        ACSL5
LOC100855575
        TLR4
        KCNK1
        PBX2
        PSMD4
        SENP7
        BUD31
        CD86
LOC100688295
        MNF1
        LOC607096
        COMMD8
        YKT6
        BLNK
        TAF9
        LMO2
        ARNTL2
        COCH
    LOC481020
        HEXA
        RARRES3
        CTSS
        PIGF
        SLC41A2
        TMEM100
        ARPC1B
LOC100856417
        CLIC2
```

Lu et al (2015) Lu et al (2015)

MMVD in CKCS compared to normal dogs MMVD in CKCS compared to normal dogs
2.23
2.23
2.22
2.22
2.22
2.21
2.21
2.21
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.19
2.19
2.19
2.18
2.18
2.18
2.17
2.17
2.17
2.17
2.16
2.16
2.15
2.14
2.14
2.14
2.14
2.14
2.14
2.14
2.14
2.14
2.13
2.13
2.13
2.13
2.12
2.12
2.12
2.11
2.11
2.11
2.11

SRA1
ARMCX3
PLDN
DNASE2
JAK2
TMEM70
GALNT1
EMILIN1
PLEK
CHST11
GABARAPL1
BMPR1B
HNRNPC
PDE12
C7H1orf27
HEBP1
TSR2
HAS2
UQCRQ
AIMP1
GUCY1B3
CARD6
CKS1B
LOC100855614
GTF2A2
FBXO28
LOC100855771
TWF1
LOC100856165
ABRACL
NUP43
C8H14orf109
CFB
CCR1
C18H11orf46
C4H10orf57
C19H2orf76
TIFA
TTLL7
PIK3AP1
CCL5
HAUS3
LOC100856241
TMEM90B
LCP1
CDKN1A
SNRPF

SEC11C SRA1
ARMCX3

DNASE2
JAK2
TMEM70

EMILIN1
PLEK

GABARAPI1
BMPR1B
HNRNPC

C7H1orf27
HEBP1

HAS2
UQCRQ
AIMP1

CARD6
CKS1B
LOC100855614
GTF2A2
LOC100855771
TWF1
LOC100856165
ABRACL
NUP43

CFB
CCR1
C18H11orf46
C4H10orf57
C19H2orf76
TIFA
TILL

CCL5
HAUS3
LOC100856241
TMEM90B
LCP1

SNRPF

Lu et al (2015) Lu et al (2015)

MMVD in CKCS compared to normal dogs
2.1
2.1
2.1
2.1
2.09
2.09
2.09
2.09
2.09
2.09
2.09
2.09
2.08
2.08
2.08
2.07
2.07
2.07
2.07
2.07
2.07
2.07
2.07
2.06
2.06
2.05
2.05
2.05
2.05
2.04
2.04
2.04
2.04
2.03
2.03
2.03
2.03
2.03
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.01
2.01
2.01

HAVCR1
DNAJB9
TXNL4A
RASGEF1B
MID1IP1
ADAM22
LOC100855747
PRDX1
P2RY12
PDPN
LOC100856271
LOC100855962
SPI1
LOC100682990
ERI1
LSM5
C21H11orf73
ITFG1
C18H11orf48
UGDH
NCF4
KCTD16
RPS6KA1
ITGBL1
NQO2
CHN2
C1orf162
UGGT2
HSD17B11
CHSY1
NPAS3
LOC612968
MFSD7
CREM
HTATSF1
PSMB6
RAB9A
LOC100856388
FLT3LG
HSPA1L
SLC25A5
C18H7orf25
REEP4
CDKN2AIP
CYP7B1
S100A6
ATP1B1
LOC100686047

HAVCR1 TXNL4A
RASGEF1B MID1IP1

ADAM22
LOC100855747
PRDX1
2RY12
PDPN
100856271

SPI1

ERI1
LSM5
C21H11orf73
ITFG1

UGDH
NCF4

RPS6KA1
ITGBL1
NO2

C1orf162
UGGT2

CHSY1
NPAS3
LOC612968

HTATSF1

RAB9A
OC100856388
FLT3LG
HSPA1L
SLC25A5
18H7orf25

CDKN2AIP
CYP7B1
S100A6

LOC100686047

Lu et al (2015) Lu et al (2015)

MMVD in CKCS compared to normal dogs	2.01	POLE3
MMVD in CKCS compared to normal dogs	2.01	HINT1
MMVD in CKCS compared to normal dogs	2	GPR126
MMVD in CKCS compared to normal dogs	2	EID2
MMVD in CKCS compared to normal dogs	2	FAR2
MMVD in CKCS compared to normal dogs	1.91	DUSP12
MMVD in CKCS compared to normal dogs	1.9	RPS19
MMVD in CKCS compared to normal dogs	1.88	ATP6V0E1
MMVD in CKCS compared to normal dogs	1.88	GNG10
MMVD in CKCS compared to normal dogs	1.83	NPC2
MMVD in CKCS compared to normal dogs	1.82	DSTN
MMVD in CKCS compared to normal dogs	1.77	PRKCDBP
MMVD in CKCS compared to normal dogs	1.75	SERPINE2
MMVD in CKCS compared to normal dogs	1.74	SULT1C4
MMVD in CKCS compared to normal dogs	1.73	OST4
MMVD in CKCS compared to normal dogs	1.73	LOC100686444
MMVD in CKCS compared to normal dogs	1.73	PLXDC1
MMVD in CKCS compared to normal dogs	1.72	FRZB
MMVD in CKCS compared to normal dogs	1.71	RPS16
MMVD in CKCS compared to normal dogs	1.7	ATG3
MMVD in CKCS compared to normal dogs	1.68	SEC24D
MMVD in CKCS compared to normal dogs	1.67	HIF1A
MMVD in CKCS compared to normal dogs	1.66	CLN5
MMVD in CKCS compared to normal dogs	1.66	GAS6
MMVD in CKCS compared to normal dogs	1.65	MIEN1
MMVD in CKCS compared to normal dogs	1.65	VAMP7
MMVD in CKCS compared to normal dogs	1.64	RAB5C
MMVD in CKCS compared to normal dogs	1.62	DNAJA1
MMVD in CKCS compared to normal dogs	1.61	LOC100682978
MMVD in CKCS compared to normal dogs	1.61	ATP6V1F
MMVD in CKCS compared to normal dogs	1.6	LOC100855678
MMVD in CKCS compared to normal dogs	1.6	RPSA
MMVD in CKCS compared to normal dogs	1.6	RBPJ
MMVD in CKCS compared to normal dogs	1.58	FUCA2
MMVD in CKCS compared to normal dogs	1.58	RPS21
MMVD in CKCS compared to normal dogs	1.58	RER1
MMVD in CKCS compared to normal dogs	1.58	RAB10
MMVD in CKCS compared to normal dogs	1.57	RBX1
MMVD in CKCS compared to normal dogs	1.57	CLTC
MMVD in CKCS compared to normal dogs	1.56	SPCS1
MMVD in CKCS compared to normal dogs	1.56	AIDA
MMVD in CKCS compared to normal dogs	1.56	FOLR2
MMVD in CKCS compared to normal dogs	1.55	RPS7
MMVD in CKCS compared to normal dogs	1.55	ARPC2
MMVD in CKCS compared to normal dogs	1.55	PGM2
MMVD in CKCS compared to normal dogs	1.55	LGMN
MMVD in CKCS compared to normal dogs	1.54	DLA-DRA
MMVD in CKCS compared to normal dogs	1.53	ACTR2

Lu et al (2015) Lu et al (2015)

MMVD in CKCS compared to normal dogs
1.53
1.52 1.52 1.52
1.52
1.52
1.52
1.52
1.51
1.5
1.5
-9.41
-8.55
-6.2
-5.48
-5.27
-5.18
-5.16
-4.98
-4.64
-4.52
-4.43
-4.36
-4.3
-4.23
-4.11
-3.84
-3.77
-3.61
-3.53
-3.35
-3.33
-3.32
-3.26
-3.24
-3.22
-3.17
-3.11
-3.1
-3.1
-3.09
-3.01
-3
-2.97
-2.95
-2.91
-2.9
-2.88

PIGY
STT3A
C2OH19orf42
SCARB2
ITGB1
TMED2
DAD1
PTP4A2
GNAI3
ANXA1
HSP90AA1
RNU6-21
KIAA1024L
CILP
TNMD
GJB6
DSC2
LAMA2
SNORA55 CCNJL
ADAMTS19
IGSF10
ZNF267
HCN1
LOC479934
RN5-8S
LOC606860
NNAT
CBR1
FSTL4
CDC42EP2
EIF1
VAMP2
SCN3B
ATAT1
PDZD2
CHAD
CILP2
KIF5A
DOCK6 NID1
ADCY4
MYBPC3
TMEFF2
NICN1
SYT17
MOK
LGALS12

Lu et al (2015) Luet al (2015) Lu et al (2015)

MMVD in CKCS compared to normal dogs MMVD in CKCS compared to normal dogs
-2.88 -2.87 -2.87 -2.87 -2.87
-2.85 -2.85 -2.84 -2.84 -2.82 -2.81 -2.78
-2.69
-2.67
-2.67
-2.67
-2.65
-2.64
-2.64
-2.64
-2.63
-2.63
-2.63
-2.6
-2.59
-2.58
-2.58
-2.56
-2.55
-2.54
-2.53 -2.52
-2.52
-2.49
-2.47
-2.47
-2.47
-2.47
-2.46
-2.44
-2.44
-2.44
-2.44
-2.43
-2.42
-2.42
-2.42
-2.41

MPZL2
LOC100683463
CLDN11
PCLO
LENG8
TSPAN7
MLXIP
ZFP36L1
ZMIZ1
LOC100855498
MAPT
AUTS2
FREM1
HIF3A
ZNF283
LOC100686634
IGFBP5
RYR3
LOC100855805
ATP1A3
LOC100856492
CCBP2
FAM222B
CNTFR
LOC100855971
GRK4
MMP16
MAMLD1
LOC100684029
PRAM1
MXRA8
CTTNBP2
ADAMTSL4
TTC39A
GFRA3
TANC2
SUGP2
COL6A3
SRSF4
TTYH1
FAM65A
DQX1
NPAS2
TTLL4
PIK3C2B
SIK3
SZT2
MICAL3

Lu et al (2015) Lu et al (2015)
MMVD in CKCS compared to normal dogs
-2.41
-2.41
-2.4
-2.39 -2.38
-2.37 -2.37 -2.37 -2.36 -2.33 -2.33 -2.33 -2.32 -2.32
-2.32
-2.31
-2.31
-2.29
-2.28
-2.28
-2.28
-2.27
-2.27
-2.27
-2.26
-2.26
-2.25
-2.25
-2.25
-2.24
-2.24
-2.23
-2.23
-2.23
-2.23
-2.22
-2.22
-2.22
-2.22
-2.21
-2.2
-2.2
-2.19
-2.18
-2.18
-2.17
-2.17
-2.17

TMEM232
ISYNA1
RFX2
FAM193B
TNXB
GJB2
PLEKHH1
SGK494
NSUN5
CRTC3
NOTCH1
LOC100855789
SIK2
LOC612180
HIPK2
PER2
KIAA1875
KERA
EIF4EBP2
TCF7L2
NELL2
PCDHB6
LOC100855882
RAMP2
MTHFS
TMEM205
BAZ2A
TMEM127
RBPMS2
RAD52
DCAKD
WBP2
CSNK2B
ITGB4
ITGB1BP2
PTP4A3
ZNF414
KCNQ5
PEX14
SLC4A4
CCDC101
FAM160B2
RASIP1
SLC24A6
ALAS1
NXF1
RABGGTB
PPP1R12B

Lu et al (2015) Lu et al (2015)

MMVD in CKCS compared to normal dogs
-2.17 -2.16 -2.16 -2.16 -2.16
-2.15 -2.14 -2.13 -2.13
-2.13
-2.13 -2.13
-2.12
-2.12
-2.12
-2.12
-2.12
-2.12
-2.12
-2.12
-2.11
-2.11
-2.11
-2.1
-2.1
-2.1
-2.1
-2.09
-2.09
-2.08
-2.08
-2.08
-2.08
-2.08
-2.07
-2.07
-2.07
-2.06
-2.06
-2.06
-2.06
-2.05
-2.04
-2.04
-2.03
-2.03
-2.01
-2.01

TMEM63B STARD9

MTMR11
MZF1 AMT

OLFML2A
TRAM2
C29H8orf37
NFATC2
LOC611704
ATXN7L1
LIPC
ZMYND17
NAV2
SRL
PDLIM7
NT5E
DRP2
CTC1
SEMA4B
SRRM2
CCDC158
ELK4
SMPD4
N4BP1
LPCAT4
ATP2A2
AS3MT
LOC483226
WASF2
MAP3K9
TMEM234
NFIX
IFT172
ATF7
LOC608835
TENC1
LOC611426
BCL6B
MEIS1
NEBL
CBR4
CRISPLD2
LOC100856195
GIT1
ATXN2L
BBS1
LOC100856242

Lu et al (2015) Lu et al (2015)

MMVD in CKCS compared to normal dogs MMVD in CKCS compared to normal dogs
-2.01
-2.01
-2.01
-2.01
-2.01
-2.01
-2
-2
-2
-1.99
-1.99
-1.98
-1.98
-1.94
-1.92
-1.91
-1.89
-1.89
-1.87
-1.87
-1.86
-1.86
-1.85
-1.85
-1.85
-1.85
-1.81
-1.8
-1.79
-1.78
-1.76
-1.76
-1.75
-1.74
-1.74
-1.74
-1.74
-1.73
-1.72
-1.72
-1.72
-1.71
-1.7
-1.7
-1.69
-1.69
-1.68
-1.67

INO80D
FAM171A1
GREB1
CREBBP
SP110
BCL9
LSM10
C26H12orf51 FRAS1
SORBS2
RHBDD2 CD55 KLF3 MKL2
RNPS1
CERS4
DDX39B
SF3A1
SF1
NFATC1
SYVN1
PTPN14
SSH1
LOC100856259
TULP4
SLC43A3
GATAD2B
LAMB1
ATXN2
EPAS1
C10orf54
EMP3
SAMD4A
LOC100856450
PROSER1
USP11
HEG1
SOX9
GAB2
SNTB1
KCNN3
TECR
MYO1E ECM1 MAP4
LRRC37A2
YPEL3
GOT1

Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.66	CSDA
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.66	NFE2L1
Lu et al (2015)	MMVD in CKCS compared to normal dogs	-1.65	RCAN2
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.65	HPRT1
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.65	ACO2
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.64	ENPP2
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.63	ELK3
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.63	MAPRE2
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.62	ARHGAP21
Lu et al (2015)	MMVD in CKCS compared to normal dogs	-1.61	MED13L
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.61	CYB5R3
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.6	TSC22D2
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.6	TNFAIP1
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.6	ECE1
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.6	PSMF1
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.59	ZNF532
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.59	SRSF6
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.59	RAB11B
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.58	DPYSL2
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.58	PRRC2C
Luetal (2015)	MMVD in CKCS compared to normal dogs	-1.56	ATP10A
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.56	DEDD
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.56	FAT4
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.56	SPPL3
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.56	PTN
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.56	INTS3
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.56	LOC488929
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.55	VGLL4
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.55	KIAA0430
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.55	LOC100856258
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.54	DDR2
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.54	TRAFD1
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.53	MMP14
Luetal (2015)	MMVD in CKCS compared to normal dogs	-1.52	PNISR
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.52	ENG
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.51	CAPNS1
Luetal (2015)	MMVD in CKCS compared to normal dogs	-1.51	HUWE1
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.51	LPAR1
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.51	ZBTB20
Luet al (2015)	MMVD in CKCS compared to normal dogs	-1.5	TMED4
Markby et al ., (2020b)	Grade 1 with normal	-10.46	LOC476900
Markby et al ., (2020b)	Grade 1 with normal	-2.34	RANBP3L
Markby et al ., (2020b)	Grade 1 with normal	-2.33	MIR218-1
Markby et al ., (2020b)	Grade 1 with normal	-2.09	FSTL4
Markby et al ., (2020b)	Grade 1 with normal	-2.05	FSTL4
Markby et al ., (2020b)	Grade 1 with normal	-1.96	VWDE
Markby et al ., (2020b)	Grade 1 with normal	-1.95	NELL2
Markby et al ., (2020b)	Grade 1 with normal	-1.92	ADCYAP1

Markby et al ., (2020b)	Grade 1 with normal	-1.86	NKAIN2
Markby et al., (2020b)	Grade 1 with normal	-1.86	MIR1838
Markby et al ., (2020b)	Grade 1 with normal	-1.84	ADCY2
Markby et al ., (2020b)	Grade 1 with normal	-1.8	ENSCAFG0000002827 8.1
Markby et al ., (2020b)	Grade 1 with normal	-1.8	ENSCAFG00000002363 7.2
Markby et al ., (2020b)	Grade 1 with normal	-1.73	MIR328
Markby et al ., (2020b)	Grade 1 with normal	-1.73	$\begin{aligned} & \text { ENSCAFT0000002374 } \\ & \underline{9} \end{aligned}$
Markby et al ., (2020b)	Grade 1 with normal	-1.68	ENSCAFG00000000697 3
Markby et al ., (2020b)	Grade 1 with normal	-1.67	ADCY2
Markby et al ., (2020b)	Grade 1 with normal	-1.65	ENSCAFG00000000205 3
Markby et al ., (2020b)	Grade 1 with normal	-1.65	RBPJL
Markby et al ., (2020b)	Grade 1 with normal	-1.62	ENSCAFG00000001904 4
Markby et al ., (2020b)	Grade 1 with normal	-1.61	ENSCAFG0000001006 4
Markby et al ., (2020b)	Grade 1 with normal	-1.58	LOC100684200
Markby et al., (2020b)	Grade 1 with normal	-1.55	$\begin{aligned} & \text { ENSCAFG00000003242 } \\ & 2 \end{aligned}$
Markby et al ., (2020b)	Grade 1 with normal	-1.54	TMEM132C
Markby et al., (2020b)	Grade 1 with normal	-1.52	DOK3; DDX41
Markby et al., (2020b)	Grade 1 with normal	1.51	JPH3
Markby et al., (2020b)	Grade 1 with normal	1.51	ACHE
Markby et al., (2020b)	Grade 1 with normal	1.51	HMGB3
Markby et al ., (2020b)	Grade 1 with normal	1.52	TIMP4
Markby et al., (2020b)	Grade 1 with normal	1.52	GRID2
Markby et al., (2020b)	Grade 1 with normal	1.52	$\begin{aligned} & \text { ENSCAFG0000002558 } \\ & 9 \end{aligned}$
Markby et al ., (2020b)	Grade 1 with normal	1.53	CASP14
Markby et al., (2020b)	Grade 1 with normal	1.53	$\begin{aligned} & \text { ENSCAFG00000000710 } \\ & 0 \end{aligned}$
Markby et al ., (2020b)	Grade 1 with normal	1.54	CYTL1
Markby et al., (2020b)	Grade 1 with normal	1.54	LOC478701
Markby et al ., (2020b)	Grade 1 with normal	1.54	$\begin{aligned} & \text { ENSCAFG0000001258 } \\ & 2 \end{aligned}$
Markby et al ., (2020b)	Grade 1 with normal	1.55	GRID2
Markby et al., (2020b)	Grade 1 with normal	1.56	F3
Markby et al., (2020b)	Grade 1 with normal	1.57	MCAM
Markby et al., (2020b)	Grade 1 with normal	1.58	$\begin{aligned} & \text { ENSCAFG0000000468 } \\ & 9 \end{aligned}$
Markby et al ., (2020b)	Grade 1 with normal	1.58	ABCC9
Markby et al., (2020b)	Grade 1 with normal	1.6	Mar-01
Markby et al ., (2020b)	Grade 1 with normal	1.6	ENSCAFG00000001224 2
Markby et al., (2020b)	Grade 1 with normal	1.6	LOC100856200
Markby et al., (2020b)	Grade 1 with normal	1.62	TACR1

Markby et al ., (2020b)	Grade 1 with normal	1.62	CADM2
Markby et al ., (2020b)	Grade 1 with normal	1.62	ENSCAFG0000002356 2
Markby et al ., (2020b)	Grade 1 with normal	1.63	FHDC1
Markby et al ., (2020b)	Grade 1 with normal	1.63	MAL
Markby et al ., (2020b)	Grade 1 with normal	1.65	PRR15
Markby et al ., (2020b)	Grade 1 with normal	1.69	THBS4
Markby et al ., (2020b)	Grade 1 with normal	1.69	CXHXorf36
Markby et al ., (2020b)	Grade 1 with normal	1.7	SIX1
Markby et al., (2020b)	Grade 1 with normal	1.71	SFRP5
Markby et al ., (2020b)	Grade 1 with normal	1.72	ENSCAFG0000002088 6
Markby et al ., (2020b)	Grade 1 with normal	1.72	CLEC3A
Markby et al., (2020b)	Grade 1 with normal	1.73	NRXN1
Markby et al ., (2020b)	Grade 1 with normal	1.73	GPC3
Markby et al ., (2020b)	Grade 1 with normal	1.73	ENSCAFG0000003732 2
Markby et al ., (2020b)	Grade 1 with normal	1.76	LRRN1
Markby et al ., (2020b)	Grade 1 with normal	1.8	MAGI2
Markby et al ., (2020b)	Grade 1 with normal	1.81	VAT1L
Markby et al ., (2020b)	Grade 1 with normal	1.81	RSAD2
Markby et al ., (2020b)	Grade 1 with normal	1.82	SLIT3
Markby et al ., (2020b)	Grade 1 with normal	1.88	NRXN1
Markby et al ., (2020b)	Grade 1 with normal	1.95	LOC102157036
Markby et al ., (2020b)	Grade 1 with normal	2.22	KITLG
Markby et al ., (2020b)	Grade 1 with normal	2.46	ZNF385B
Markby et al ., (2020b)	Grade 1 with normal	2.49	ZNF385B
Markby et al ., (2020b)	Grade 1 with normal	2.54	LOC100687667
Markby et al ., (2020b)	Grade 1 with normal	2.56	LYZF2
Markby et al., (2020b)	Grade 2 with normal	-4.62	LOC476900
Markby et al ., (2020b)	Grade 2 with normal	-3.93	ENSCAFG0000002649 8
Markby et al ., (2020b)	Grade 2 with normal	-2.04	$\begin{aligned} & \text { ENSCAFG0000001911 } \\ & 4 \end{aligned}$
Markby et al ., (2020b)	Grade 2 with normal	-1.79	NKAIN2
Markby et al ., (2020b)	Grade 2 with normal	-1.78	GPBAR1
Markby et al ., (2020b)	Grade 2 with normal	-1.74	NT5E
Markby et al ., (2020b)	Grade 2 with normal	-1.72	CYTH1
Markby et al., (2020b)	Grade 2 with normal	-1.68	MIR328
Markby et al ., (2020b)	Grade 2 with normal	-1.67	TMEFF2
Markby et al ., (2020b)	Grade 2 with normal	-1.63	ENSCAFG0000003979 5
Markby et al ., (2020b)	Grade 2 with normal	-1.62	ENSCAFG0000002093 5
Markby et al ., (2020b)	Grade 2 with normal	-1.6	ENSCAFG00000000316 8
Markby et al ., (2020b)	Grade 2 with normal	-1.59	AGAP1
Markby et al., (2020b)	Grade 2 with normal	-1.58	MIR218-1
Markby et al ., (2020b)	Grade 2 with normal	-1.58	ENSCAFG0000000693 6

Markby et al ., (2020b)	Grade 2 with normal		ENSCAFG0000003027
		-1.58	6
Markby et al ., (2020b)	Grade 2 with normal	-1.57	RXRA
Markby et al ., (2020b)	Grade 2 with normal	-1.57	ENSCAFG0000000911
		-1.57	0
Markby et al ., (2020b)	Grade 2 with normal	-1.52	ZCCHC8
Markby et al ., (2020b)	Grade 2 with normal	-1.52	NCOA2
Markby et al ., (2020b)	Grade 2 with normal	1.53	WBSCR27
Markby et al ., (2020b)	Grade 2 with normal	1.54	TTPA
Markby et al ., (2020b)	Grade 2 with normal	1.55	ENSCAFG0000001559
			3
Markby et al ., (2020b)	Grade 2 with normal	1.55	TMEM132B
Markby et al ., (2020b)	Grade 2 with normal	1.57	TREM2
Markby et al ., (2020b)	Grade 2 with normal	1.58	VAT1L
Markby et al ., (2020b)	Grade 2 with normal	1.58	ELOVL7
Markby et al ., (2020b)	Grade 2 with normal	1.59	PCP4L1
Markby et al ., (2020b)	Grade 2 with normal	1.59	GPC3
Markby et al ., (2020b)	Grade 2 with normal	1.6	DYSF
Markby et al ., (2020b)	Grade 2 with normal	1.6	SLIT3
Markby et al ., (2020b)	Grade 2 with normal	1.62	CDKN2A
Markby et al ., (2020b)	Grade 2 with normal	1.62	FAM159A
Markby et al ., (2020b)	Grade 2 with normal	1.64	CASP14
Markby et al ., (2020b)	Grade 2 with normal	1.64	M ARC1
Markby et al ., (2020b)	Grade 2 with normal	1.64	MAGI2
Markby et al ., (2020b)	Grade 2 with normal	1.64	IFIT1
Markby et al ., (2020b)	Grade 2 with normal	1.67	CRLF1
Markby et al ., (2020b)	Grade 2 with normal	1.69	CLEC5A
Markby et al ., (2020b)	Grade 2 with normal	1.73	PDE6H
Markby et al ., (2020b)	Grade 2 with normal	1.74	NRXN1
Markby et al ., (2020b)	Grade 2 with normal	1.75	LRRN1
Markby et al ., (2020b)	Grade 2 with normal	1.92	GPC3
Markby et al ., (2020b)	Grade 2 with normal	1.97	SLIT3
Markby et al ., (2020b)	Grade 2 with normal	2.09	ENSCAFG0000003025
			8
Markby et al ., (2020b)	Grade 2 with normal	2.14	GPD1
Markby et al ., (2020b)	Grade 2 with normal	2.16	SLC22A1
Markby et al ., (2020b)	Grade 2 with normal	2.17	ENSCAFG0000002974
			3
Markby et al ., (2020b)	Grade 2 with normal	2.27	CSTA
Markby et al ., (2020b)	Grade 2 with normal	2.45	LOC100687667
Markby et al ., (2020b)	Grade 2 with normal	3.19	ENSCAFG0000003090
			8
Markby et al ., (2020b)	Grade 2 with normal	3.2	ENSCAFG0000002411
			1
Markby et al ., (2020b)	Grade 2 with normal	3.29	LOC608320
Markby et al ., (2020b)	Grade 2 with normal	3.31	LOC612122
Markby et al ., (2020b)	Grade 2 with normal	3.58	ENSCAFG0000003025
			8
Markby et al ., (2020b)	Grade 2 with normal	3.66	ENSCAFG0000003090
			8

Markby et al ., (2020b)	Grade 2 with normal	4.28	ENSCAFG0000003175
			3
Markby et al ., (2020b)	Grade 2 with normal	4.67	ENSCAFG0000002472
			0
Markby et al ., (2020b)	Grade 2 with normal	5.5	ENSCAFG0000003175
			3
Markby et al ., (2020b)	Grade 3 with normal	-16.93	CASQ2
Markby et al ., (2020b)	Grade 3 with normal	-14.74	ACTN2
Markby et al ., (2020b)	Grade 3 with normal	-11.73	MYL4
Markby et al ., (2020b)	Grade 3 with normal	-11.49	MB
Markby et al ., (2020b)	Grade 3 with normal	-11.49	ACTA1
Markby et al ., (2020b)	Grade 3 with normal	-11.24	ENSCAFG0000001079
			8
Markby et al ., (2020b)	Grade 3 with normal	-10.22	ENSCAFG0000001402
			5
Markby et al ., (2020b)	Grade 3 with normal	-9.88	PGAM2
Markby et al ., (2020b)	Grade 3 with normal	-8.56	ACTC1
Markby et al ., (2020b)	Grade 3 with normal	-7.81	CKM
Markby et al ., (2020b)	Grade 3 with normal	-7.8	DSC2
Markby et al ., (2020b)	Grade 3 with normal	-7.66	ENSCAFG0000000825
			3
Markby et al ., (2020b)	Grade 3 with normal	-7.28	TNMD
Markby et al ., (2020b)	Grade 3 with normal	-6.45	NKAIN2
Markby et al ., (2020b)	Grade 3 with normal	-6.45	ENSCAFG0000000825
			3
Markby et al ., (2020b)	Grade 3 with normal	-5.86	CILP
Markby et al ., (2020b)	Grade 3 with normal	-5.51	LAMA2
Markby et al ., (2020b)	Grade 3 with normal	-5.23	WIF1
Markby et al ., (2020b)	Grade 3 with normal	-4.84	ENSCAFG0000002806
			6
Markby et al ., (2020b)	Grade 3 with normal	-4.6	PPARGC1A
Markby et al ., (2020b)	Grade 3 with normal	-4.55	ENSCAFG0000001417
			8
Markby et al ., (2020b)	Grade 3 with normal	-4.53	AQP4
Markby et al ., (2020b)	Grade 3 with normal	-4.35	MMP3
Markby et al ., (2020b)	Grade 3 with normal	-4.02	LOC488818
Markby et al ., (2020b)	Grade 3 with normal	-4.02	ENSCAFG0000000825
			3
Markby et al ., (2020b)	Grade 3 with normal	-3.86	GJB6
Markby et al ., (2020b)	Grade 3 with normal	-3.72	LAMA2
Markby et al ., (2020b)	Grade 3 with normal	-3.67	MIR99A-1
Markby et al ., (2020b)	Grade 3 with normal	-3.47	ADAMTS15
Markby et al ., (2020b)	Grade 3 with normal	-3.43	SLITRK6
Markby et al ., (2020b)	Grade 3 with normal	-3.4	MIRLET7C
Markby et al ., (2020b)	Grade 3 with normal	-3.39	ENSCAFG0000002273
			2
Markby et al ., (2020b)	Grade 3 with normal	-3.37	MEI4
Markby et al ., (2020b)	Grade 3 with normal	-3.24	LOC482182
Markby et al ., (2020b)	Grade 3 with normal	-3.15	HIF3A

Markby et al ., (2020b)	Grade 3 with normal	-2.99	$\begin{aligned} & \text { ENSCAFG0000002517 } \\ & 2 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-2.96	FREM1
Markby et al ., (2020b)	Grade 3 with normal	-2.95	GRIN2A
Markby et al ., (2020b)	Grade 3 with normal	-2.93	NT5E
Markby et al ., (2020b)	Grade 3 with normal	-2.92	SCN3B
Markby et al ., (2020b)	Grade 3 with normal	-2.91	FSTL4
Markby et al ., (2020b)	Grade 3 with normal	-2.83	FMO2
Markby et al ., (2020b)	Grade 3 with normal	-2.83	ABCA6
Markby et al ., (2020b)	Grade 3 with normal	-2.83	ENSCAFG00000002274 3
Markby et al ., (2020b)	Grade 3 with normal	-2.82	HAPLN1
Markby et al ., (2020b)	Grade 3 with normal	-2.79	FGL1
Markby et al ., (2020b)	Grade 3 with normal	-2.78	TSHR
Markby et al ., (2020b)	Grade 3 with normal	-2.78	ENSCAFG00000003168 2
Markby et al ., (2020b)	Grade 3 with normal	-2.74	SLC24A2
Markby et al ., (2020b)	Grade 3 with normal	-2.72	NEBL
Markby et al ., (2020b)	Grade 3 with normal	-2.68	TMEFF2
Markby et al ., (2020b)	Grade 3 with normal	-2.66	LOC479934
Markby et al ., (2020b)	Grade 3 with normal	-2.65	CDH22
Markby et al ., (2020b)	Grade 3 with normal	-2.61	ENSCAFG00000002843 4
Markby et al ., (2020b)	Grade 3 with normal	-2.6	SLC2A12
Markby et al ., (2020b)	Grade 3 with normal	-2.6	WNT16
Markby et al ., (2020b)	Grade 3 with normal	-2.6	ENSCAFG00000002272 1
Markby et al ., (2020b)	Grade 3 with normal	-2.59	ADRA1A
Markby et al ., (2020b)	Grade 3 with normal	-2.59	ABCC9
Markby et al ., (2020b)	Grade 3 with normal	-2.56	ADCY2
Markby et al ., (2020b)	Grade 3 with normal	-2.56	ENSCAFG00000002273 8
Markby et al ., (2020b)	Grade 3 with normal	-2.56	ENSCAFG00000000144 6
Markby et al ., (2020b)	Grade 3 with normal	-2.56	$\begin{aligned} & \text { ENSCAFG0000000144 } \\ & 6 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-2.56	ENSCAFG00000000144 6
Markby et al ., (2020b)	Grade 3 with normal	-2.54	KCND2
Markby et al ., (2020b)	Grade 3 with normal	-2.53	AMIGO2
Markby et al ., (2020b)	Grade 3 with normal	-2.53	MPZL2
Markby et al ., (2020b)	Grade 3 with normal	-2.52	GFRA2
Markby et al ., (2020b)	Grade 3 with normal	-2.45	KCNQ5
Markby et al ., (2020b)	Grade 3 with normal	-2.43	CCBE1
Markby et al ., (2020b)	Grade 3 with normal	-2.43	KCNJ8
Markby et al ., (2020b)	Grade 3 with normal	-2.42	CILP2
Markby et al ., (2020b)	Grade 3 with normal	-2.42	TMEM132C
Markby et al ., (2020b)	Grade 3 with normal	-2.42	ANGPTL5
Markby et al ., (2020b)	Grade 3 with normal	-2.4	TMEFF2
Markby et al ., (2020b)	Grade 3 with normal	-2.37	GPR37

Markby et al ., (2020b)	Grade 3 with normal	-2.36	TNXB
Markby et al ., (2020b)	Grade 3 with normal	-2.35	PI15
Markby et al ., (2020b)	Grade 3 with normal	-2.35	PCSK6
Markby et al ., (2020b)	Grade 3 with normal	-2.35	LAYN
Markby et al ., (2020b)	Grade 3 with normal	-2.34	$\begin{aligned} & \text { ENSCAFG0000003126 } \\ & 4 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-2.34	$\begin{aligned} & \text { ENSCAFG0000002271 } \\ & 2 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-2.32	GPM6A
Markby et al ., (2020b)	Grade 3 with normal	-2.32	FAM20A
Markby et al ., (2020b)	Grade 3 with normal	-2.31	FSTL4
Markby et al ., (2020b)	Grade 3 with normal	-2.31	ADCYAP1R1
Markby et al ., (2020b)	Grade 3 with normal	-2.3	RASGRF2
Markby et al ., (2020b)	Grade 3 with normal	-2.29	MIR218-1
Markby et al ., (2020b)	Grade 3 with normal	-2.29	CDC42EP2
Markby et al ., (2020b)	Grade 3 with normal	-2.29	SCN4B
Markby et al ., (2020b)	Grade 3 with normal	-2.29	$\begin{aligned} & \text { ENSCAFG0000002273 } \\ & 7 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-2.27	TSPAN2
Markby et al ., (2020b)	Grade 3 with normal	-2.27	SLC22A23
Markby et al ., (2020b)	Grade 3 with normal	-2.27	$\begin{aligned} & \text { ENSCAFG0000000144 } \\ & 6 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-2.27	ENSCAFG0000000144 6
Markby et al ., (2020b)	Grade 3 with normal	-2.27	$\begin{aligned} & \text { ENSCAFG0000000144 } \\ & 6 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-2.26	SLC37A1
Markby et al ., (2020b)	Grade 3 with normal	-2.24	ACKR2
Markby et al ., (2020b)	Grade 3 with normal	-2.24	BICD1
Markby et al ., (2020b)	Grade 3 with normal	-2.24	GRIN2A
Markby et al ., (2020b)	Grade 3 with normal	-2.23	F2RL2
Markby et al ., (2020b)	Grade 3 with normal	-2.23	ENSCAFG0000002901 5
Markby et al ., (2020b)	Grade 3 with normal	-2.22	SLC26A5
Markby et al ., (2020b)	Grade 3 with normal	-2.21	ADCY2
Markby et al ., (2020b)	Grade 3 with normal	-2.2	WIPF3
Markby et al ., (2020b)	Grade 3 with normal	-2.2	ETNPPL
Markby et al ., (2020b)	Grade 3 with normal	-2.2	RYR2
Markby et al ., (2020b)	Grade 3 with normal	-2.2	SDK1
Markby et al ., (2020b)	Grade 3 with normal	-2.19	LIFR
Markby et al ., (2020b)	Grade 3 with normal	-2.18	KLF9
Markby et al ., (2020b)	Grade 3 with normal	-2.18	CA3
Markby et al ., (2020b)	Grade 3 with normal	-2.16	MMP16
Markby et al ., (2020b)	Grade 3 with normal	-2.16	ENSCAFG0000001823 6
Markby et al ., (2020b)	Grade 3 with normal	-2.15	KDR
Markby et al ., (2020b)	Grade 3 with normal	-2.15	RANBP3L
Markby et al ., (2020b)	Grade 3 with normal	-2.14	RNF128
Markby et al ., (2020b)	Grade 3 with normal	-2.12	$\begin{aligned} & \text { ENSCAFG0000000074 } \\ & 1 \end{aligned}$

Markby et al., (2020b)	Grade 3 with normal	-2.12	SLIT2
Markby et al ., (2020b)	Grade 3 with normal	-2.12	IGFBP5
Markby et al ., (2020b)	Grade 3 with normal	-2.12	$\begin{aligned} & \text { ENSCAFG0000001498 } \\ & 0 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-2.12	DRP2
Markby et al., (2020b)	Grade 3 with normal	-2.1	KERA
Markby et al., (2020b)	Grade 3 with normal	-2.09	ALDH1A1
Markby et al., (2020b)	Grade 3 with normal	-2.09	PTPRB
Markby et al., (2020b)	Grade 3 with normal	-2.07	IGSF3
Markby et al., (2020b)	Grade 3 with normal	-2.07	TOX
Markby et al., (2020b)	Grade 3 with normal	-2.06	AK5
Markby et al., (2020b)	Grade 3 with normal	-2.05	WFDC5
Markby et al., (2020b)	Grade 3 with normal	-2.05	HMCN1
Markby et al., (2020b)	Grade 3 with normal	-2.04	LAMA1
Markby et al., (2020b)	Grade 3 with normal	-2.03	SEMA3G
Markby et al ., (2020b)	Grade 3 with normal	-2.03	ENSCAFG0000002363 7
Markby et al., (2020b)	Grade 3 with normal	-2.03	NEGR1
Markby et al., (2020b)	Grade 3 with normal	-2.02	LHCGR
Markby et al., (2020b)	Grade 3 with normal	-2.02	KCND2
Markby et al., (2020b)	Grade 3 with normal	-2.02	HCN1
Markby et al., (2020b)	Grade 3 with normal	-2.01	CCM2L
Markby et al., (2020b)	Grade 3 with normal	-2.01	SLC10A6
Markby et al., (2020b)	Grade 3 with normal	-2.01	IGF2BP2
Markby et al., (2020b)	Grade 3 with normal	-2	MSTN
Markby et al., (2020b)	Grade 3 with normal	-1.99	DLL1
Markby et al., (2020b)	Grade 3 with normal	-1.99	LOC478001
Markby et al., (2020b)	Grade 3 with normal	-1.99	FAT3
Markby et al., (2020b)	Grade 3 with normal	-1.98	PDZD2
Markby et al ., (2020b)	Grade 3 with normal	-1.98	WNT9B
Markby et al., (2020b)	Grade 3 with normal	-1.97	KCNJ2
Markby et al ., (2020b)	Grade 3 with normal	-1.96	STC1
Markby et al., (2020b)	Grade 3 with normal	-1.95	FRMD3
Markby et al., (2020b)	Grade 3 with normal	-1.95	VWDE
Markby et al., (2020b)	Grade 3 with normal	-1.94	GPLD1
Markby et al., (2020b)	Grade 3 with normal	-1.94	SLC1A3
Markby et al., (2020b)	Grade 3 with normal	-1.94	CRISPLD2
Markby et al ., (2020b)	Grade 3 with normal	-1.94	$\begin{aligned} & \text { ENSCAFG0000002272 } \\ & 7 \end{aligned}$
Markby et al., (2020b)	Grade 3 with normal	-1.93	SLC24A2
Markby et al., (2020b)	Grade 3 with normal	-1.93	SLC4A4
Markby et al., (2020b)	Grade 3 with normal	-1.93	LIPC
Markby et al., (2020b)	Grade 3 with normal	-1.93	ENSCAFG0000001327 5
Markby et al., (2020b)	Grade 3 with normal	-1.93	PTGFR
Markby et al., (2020b)	Grade 3 with normal	-1.93	ENSCAFG00000001028 4
Markby et al ., (2020b)	Grade 3 with normal	-1.92	CAPN6

Markby et al ., (2020b)	Grade 3 with normal	-1.92	ENSCAFG0000001087
			7
Markby et al ., (2020b)	Grade 3 with normal	-1.91	SAMD12
Markby et al ., (2020b)	Grade 3 with normal	-1.91	ENPEP
Markby et al ., (2020b)	Grade 3 with normal	-1.9	RASIP1
Markby et al ., (2020b)	Grade 3 with normal	-1.9	ENSCAFG0000002359 1
Markby et al ., (2020b)	Grade 3 with normal	-1.9	VWDE
Markby et al ., (2020b)	Grade 3 with normal	-1.9	FLT1
Markby et al ., (2020b)	Grade 3 with normal	-1.89	PODXL
Markby et al ., (2020b)	Grade 3 with normal	-1.89	PDK4
Markby et al ., (2020b)	Grade 3 with normal	-1.89	COLCA2
Markby et al ., (2020b)	Grade 3 with normal	-1.88	ENSCAFG0000002649 8
Markby et al ., (2020b)	Grade 3 with normal	-1.88	KIAA1024L
Markby et al ., (2020b)	Grade 3 with normal	-1.88	ECSCR
Markby et al ., (2020b)	Grade 3 with normal	-1.88	WNT11
Markby et al ., (2020b)	Grade 3 with normal	-1.88	RASL10A
Markby et al ., (2020b)	Grade 3 with normal	-1.88	LIX1
Markby et al ., (2020b)	Grade 3 with normal	-1.88	FAM81A
Markby et al ., (2020b)	Grade 3 with normal	-1.88	NTN1
Markby et al ., (2020b)	Grade 3 with normal	-1.87	ENSCAFG00000001292 7
Markby et al ., (2020b)	Grade 3 with normal	-1.86	MET
Markby et al ., (2020b)	Grade 3 with normal	-1.86	LOC608987; CCNJL
Markby et al ., (2020b)	Grade 3 with normal	-1.86	ENSCAFG0000002881 7
Markby et al ., (2020b)	Grade 3 with normal	-1.85	ANGPTL4
Markby et al ., (2020b)	Grade 3 with normal	-1.85	MN1
Markby et al ., (2020b)	Grade 3 with normal	-1.85	AFF2
Markby et al ., (2020b)	Grade 3 with normal	-1.84	ENSCAFG00000002093 5
Markby et al ., (2020b)	Grade 3 with normal	-1.84	DOK6
Markby et al ., (2020b)	Grade 3 with normal	-1.84	ADAMTS19
Markby et al ., (2020b)	Grade 3 with normal	-1.84	KANK3
Markby et al ., (2020b)	Grade 3 with normal	-1.84	PPP1R16B
Markby et al ., (2020b)	Grade 3 with normal	-1.84	ACADM
Markby et al ., (2020b)	Grade 3 with normal	-1.84	ENSCAFG0000002366 9
Markby et al ., (2020b)	Grade 3 with normal	-1.83	SLCO5A1
Markby et al ., (2020b)	Grade 3 with normal	-1.83	TMEM52
Markby et al ., (2020b)	Grade 3 with normal	-1.82	LAPTM4B
Markby et al ., (2020b)	Grade 3 with normal	-1.82	TMCC3
Markby et al ., (2020b)	Grade 3 with normal	-1.82	ENSCAFG0000001025 6
Markby et al ., (2020b)	Grade 3 with normal	-1.82	GAS2
Markby et al ., (2020b)	Grade 3 with normal	-1.82	ACKR1
Markby et al ., (2020b)	Grade 3 with normal	-1.81	MIR491
Markby et al ., (2020b)	Grade 3 with normal	-1.81	ADAMTS5

Markby et al ., (2020b)	Grade 3 with normal	-1.81	TSPAN14
Markby et al ., (2020b)	Grade 3 with normal	-1.81	ENSCAFG0000001487 5
Markby et al ., (2020b)	Grade 3 with normal	-1.81	WFIKKN2
Markby et al ., (2020b)	Grade 3 with normal	-1.81	OLFML2A
Markby et al ., (2020b)	Grade 3 with normal	-1.8	LOC486009
Markby et al ., (2020b)	Grade 3 with normal	-1.8	GDPD2
Markby et al ., (2020b)	Grade 3 with normal	-1.79	VIPR1
Markby et al ., (2020b)	Grade 3 with normal	-1.79	NID1
Markby et al ., (2020b)	Grade 3 with normal	-1.79	LHX9
Markby et al ., (2020b)	Grade 3 with normal	-1.79	$\begin{aligned} & \text { ENSCAFG0000002302 } \\ & 2 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-1.78	FAM171A1
Markby et al ., (2020b)	Grade 3 with normal	-1.78	ILDR2
Markby et al ., (2020b)	Grade 3 with normal	-1.77	MPP6
Markby et al ., (2020b)	Grade 3 with normal	-1.77	SEMA3D
Markby et al ., (2020b)	Grade 3 with normal	-1.77	CCNA1
Markby et al ., (2020b)	Grade 3 with normal	-1.77	GABRA1
Markby et al ., (2020b)	Grade 3 with normal	-1.77	PROX1
Markby et al ., (2020b)	Grade 3 with normal	-1.76	BCAM
Markby et al ., (2020b)	Grade 3 with normal	-1.76	SOX10
Markby et al ., (2020b)	Grade 3 with normal	-1.75	SEMA6C
Markby et al ., (2020b)	Grade 3 with normal	-1.75	SGCG
Markby et al ., (2020b)	Grade 3 with normal	-1.75	ENSCAFG0000001380 6
Markby et al ., (2020b)	Grade 3 with normal	-1.75	ITGA11
Markby et al ., (2020b)	Grade 3 with normal	-1.75	C37H2orf88
Markby et al ., (2020b)	Grade 3 with normal	-1.75	ENSCAFG0000002273 1
Markby et al ., (2020b)	Grade 3 with normal	-1.75	TSPAN7
Markby et al ., (2020b)	Grade 3 with normal	-1.75	$\begin{aligned} & \text { ENSCAFG0000000274 } \\ & 4 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-1.74	GFRA3
Markby et al ., (2020b)	Grade 3 with normal	-1.74	ADGRB3
Markby et al ., (2020b)	Grade 3 with normal	-1.74	P2RY1
Markby et al ., (2020b)	Grade 3 with normal	-1.74	ITGA2
Markby et al ., (2020b)	Grade 3 with normal	-1.74	ST8SIA5
Markby et al ., (2020b)	Grade 3 with normal	-1.73	FRMD3
Markby et al ., (2020b)	Grade 3 with normal	-1.73	TRPM3
Markby et al ., (2020b)	Grade 3 with normal	-1.73	PERP
Markby et al ., (2020b)	Grade 3 with normal	-1.73	CNTFR
Markby et al ., (2020b)	Grade 3 with normal	-1.73	PDZD2
Markby et al ., (2020b)	Grade 3 with normal	-1.72	NFATC1
Markby et al ., (2020b)	Grade 3 with normal	-1.72	CACNA2D3
Markby et al ., (2020b)	Grade 3 with normal	-1.72	ADRB1
Markby et al ., (2020b)	Grade 3 with normal	-1.72	FAM13A
Markby et al ., (2020b)	Grade 3 with normal	-1.72	MYOC
Markby et al ., (2020b)	Grade 3 with normal	-1.72	TANC2

Markby et al ., (2020b)	Grade 3 with normal	-1.72	ENSCAFG0000001545
		-1.72	0
Markby et al ., (2020b)	Grade 3 with normal	-1.71	ANGPTL7
Markby et al ., (2020b)	Grade 3 with normal	-1.71	DCLK1
Markby et al ., (2020b)	Grade 3 with normal	-1.71	LGI2
Markby et al ., (2020b)	Grade 3 with normal	-1.71	MASP1
Markby et al ., (2020b)	Grade 3 with normal	-1.71	SDK1
Markby et al ., (2020b)	Grade 3 with normal	-1.7	PLLP
Markby et al ., (2020b)	Grade 3 with normal	-1.7	ENSCAFG0000001003 4
Markby et al ., (2020b)	Grade 3 with normal	-1.69	COL6A3
Markby et al ., (2020b)	Grade 3 with normal	-1.69	ANO2
Markby et al ., (2020b)	Grade 3 with normal	-1.69	CCDC65
Markby et al ., (2020b)	Grade 3 with normal	-1.68	ARHGAP32
Markby et al ., (2020b)	Grade 3 with normal	-1.68	CYGB
Markby et al ., (2020b)	Grade 3 with normal	-1.67	ELOVL4
Markby et al ., (2020b)	Grade 3 with normal	-1.67	SERINC2
Markby et al ., (2020b)	Grade 3 with normal	-1.67	AS3MT
Markby et al ., (2020b)	Grade 3 with normal	-1.67	FAM53B
Markby et al ., (2020b)	Grade 3 with normal	-1.67	NID1
Markby et al ., (2020b)	Grade 3 with normal	-1.67	ENSCAFG0000001222 6
Markby et al ., (2020b)	Grade 3 with normal	-1.66	SYTL3
Markby et al ., (2020b)	Grade 3 with normal	-1.66	TTYH1
Markby et al ., (2020b)	Grade 3 with normal	-1.66	SHISA3
Markby et al ., (2020b)	Grade 3 with normal	-1.66	APOLD1
Markby et al ., (2020b)	Grade 3 with normal	-1.66	PENK
Markby et al ., (2020b)	Grade 3 with normal	-1.66	NTN1
Markby et al ., (2020b)	Grade 3 with normal	-1.66	C5H11orf63
Markby et al ., (2020b)	Grade 3 with normal	-1.66	CACHD1
Markby et al ., (2020b)	Grade 3 with normal	-1.65	AKAP12
Markby et al ., (2020b)	Grade 3 with normal	-1.65	CBD108
Markby et al ., (2020b)	Grade 3 with normal	-1.65	EFCC1
Markby et al ., (2020b)	Grade 3 with normal	-1.65	SCARA5
Markby et al ., (2020b)	Grade 3 with normal	-1.65	MOK
Markby et al ., (2020b)	Grade 3 with normal	-1.65	$\begin{aligned} & \text { ENSCAFG0000000293 } \\ & 9 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-1.64	PTPRD
Markby et al ., (2020b)	Grade 3 with normal	-1.64	ENPP2
Markby et al ., (2020b)	Grade 3 with normal	-1.64	FOXP2
Markby et al ., (2020b)	Grade 3 with normal	-1.64	THSD7A
Markby et al ., (2020b)	Grade 3 with normal	-1.64	IGF2; INS
Markby et al ., (2020b)	Grade 3 with normal	-1.64	SLIT2
Markby et al ., (2020b)	Grade 3 with normal	-1.64	ANKRD45
Markby et al ., (2020b)	Grade 3 with normal	-1.64	ADCYAP1
Markby et al ., (2020b)	Grade 3 with normal	-1.64	ABCA9
Markby et al ., (2020b)	Grade 3 with normal	-1.64	ENSCAFG0000002273 9

Markby et al ., (2020b)	Grade 3 with normal	-1.64	ENSCAFG0000000072
			2
Markby et al ., (2020b)	Grade 3 with normal	-1.63	CD8A
Markby et al ., (2020b)	Grade 3 with normal	-1.63	SEMA3A
Markby et al ., (2020b)	Grade 3 with normal	-1.63	TNFRSF19
Markby et al ., (2020b)	Grade 3 with normal	-1.63	CIT
Markby et al ., (2020b)	Grade 3 with normal	-1.63	ERG
Markby et al ., (2020b)	Grade 3 with normal	-1.63	GRIA3
Markby et al ., (2020b)	Grade 3 with normal	-1.63	ENSCAFG00000000090 3
Markby et al ., (2020b)	Grade 3 with normal	-1.62	WDR54
Markby et al ., (2020b)	Grade 3 with normal	-1.62	ENSCAFG0000002169 3
Markby et al ., (2020b)	Grade 3 with normal	-1.62	CDH5
Markby et al ., (2020b)	Grade 3 with normal	-1.61	COL14A1
Markby et al ., (2020b)	Grade 3 with normal	-1.61	C1QTNF4
Markby et al., (2020b)	Grade 3 with normal	-1.61	B4GAT1
Markby et al ., (2020b)	Grade 3 with normal	-1.61	ISM1
Markby et al ., (2020b)	Grade 3 with normal	-1.61	CCND2
Markby et al ., (2020b)	Grade 3 with normal	-1.61	FGF12
Markby et al., (2020b)	Grade 3 with normal	-1.61	KCNT2
Markby et al ., (2020b)	Grade 3 with normal	-1.61	CFH
Markby et al ., (2020b)	Grade 3 with normal	-1.61	DSG2
Markby et al ., (2020b)	Grade 3 with normal	-1.61	LHFPL1
Markby et al ., (2020b)	Grade 3 with normal	-1.61	$\begin{aligned} & \text { ENSCAFG0000003218 } \\ & 7 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-1.61	ENSCAFG00000001994 1
Markby et al ., (2020b)	Grade 3 with normal	-1.61	ENSCAFG00000000768 6
Markby et al ., (2020b)	Grade 3 with normal	-1.6	KCNQ5
Markby et al ., (2020b)	Grade 3 with normal	-1.6	CACNA2D1
Markby et al ., (2020b)	Grade 3 with normal	-1.6	IRS2
Markby et al ., (2020b)	Grade 3 with normal	-1.6	CCK
Markby et al ., (2020b)	Grade 3 with normal	-1.6	ADHFE1
Markby et al., (2020b)	Grade 3 with normal	-1.6	SCN2B
Markby et al ., (2020b)	Grade 3 with normal	-1.6	S1PR1
Markby et al ., (2020b)	Grade 3 with normal	-1.6	CD55
Markby et al ., (2020b)	Grade 3 with normal	-1.6	F8
Markby et al ., (2020b)	Grade 3 with normal	-1.6	ENSCAFG00000001295 9
Markby et al., (2020b)	Grade 3 with normal	-1.59	TEK
Markby et al ., (2020b)	Grade 3 with normal	-1.59	HSPA12B
Markby et al ., (2020b)	Grade 3 with normal	-1.59	ADCY2
Markby et al., (2020b)	Grade 3 with normal	-1.59	PRLR
Markby et al ., (2020b)	Grade 3 with normal	-1.59	SSTR1
Markby et al ., (2020b)	Grade 3 with normal	-1.58	FBXO10
Markby et al ., (2020b)	Grade 3 with normal	-1.58	SNTB1
Markby et al ., (2020b)	Grade 3 with normal	-1.58	EDNRA

Markby et al ., (2020b)	Grade 3 with normal	-1.58	GPR171
Markby et al ., (2020b)	Grade 3 with normal	-1.58	GFRA1
Markby et al ., (2020b)	Grade 3 with normal	-1.58	MAP2K6
Markby et al ., (2020b)	Grade 3 with normal	-1.58	ABI3
Markby et al ., (2020b)	Grade 3 with normal	-1.57	OGN
Markby et al ., (2020b)	Grade 3 with normal	-1.57	ADAMTS2
Markby et al ., (2020b)	Grade 3 with normal	-1.57	TMOD1
Markby et al ., (2020b)	Grade 3 with normal	-1.57	LOC102152109
Markby et al ., (2020b)	Grade 3 with normal	-1.57	LOC487080
Markby et al ., (2020b)	Grade 3 with normal	-1.57	CNTN4
Markby et al ., (2020b)	Grade 3 with normal	-1.57	DOCK9
Markby et al ., (2020b)	Grade 3 with normal	-1.57	ZHX3
Markby et al ., (2020b)	Grade 3 with normal	-1.57	DCLK1
Markby et al ., (2020b)	Grade 3 with normal	-1.57	SEMA4B
Markby et al ., (2020b)	Grade 3 with normal	-1.57	ESAM
Markby et al ., (2020b)	Grade 3 with normal	-1.57	ENSCAFG00000001532 4
Markby et al ., (2020b)	Grade 3 with normal	-1.56	ENSCAFG00000001209 2
Markby et al ., (2020b)	Grade 3 with normal	-1.56	OMD
Markby et al ., (2020b)	Grade 3 with normal	-1.56	IDNK
Markby et al ., (2020b)	Grade 3 with normal	-1.56	SNTB1
Markby et al., (2020b)	Grade 3 with normal	-1.56	MAML3
Markby et al ., (2020b)	Grade 3 with normal	-1.56	CGNL1
Markby et al ., (2020b)	Grade 3 with normal	-1.56	MKL2
Markby et al ., (2020b)	Grade 3 with normal	-1.55	FAM184A
Markby et al ., (2020b)	Grade 3 with normal	-1.55	KIAA0355
Markby et al ., (2020b)	Grade 3 with normal	-1.55	ENSCAFG0000002365 5
Markby et al ., (2020b)	Grade 3 with normal	-1.55	CFAP54
Markby et al ., (2020b)	Grade 3 with normal	-1.55	PDE3B
Markby et al ., (2020b)	Grade 3 with normal	-1.55	ATP9A
Markby et al ., (2020b)	Grade 3 with normal	-1.55	GATSL3
Markby et al ., (2020b)	Grade 3 with normal	-1.55	ENG
Markby et al ., (2020b)	Grade 3 with normal	-1.54	SEMA3C
Markby et al ., (2020b)	Grade 3 with normal	-1.54	SOX7
Markby et al ., (2020b)	Grade 3 with normal	-1.54	ABHD10
Markby et al ., (2020b)	Grade 3 with normal	-1.54	$\begin{aligned} & \text { ENSCAFG0000001672 } \\ & 2 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	-1.54	ENSCAFG0000001006 4
Markby et al ., (2020b)	Grade 3 with normal	-1.53	THBS2
Markby et al ., (2020b)	Grade 3 with normal	-1.53	POU3F1
Markby et al ., (2020b)	Grade 3 with normal	-1.53	LRP1B
Markby et al ., (2020b)	Grade 3 with normal	-1.53	FAM198A
Markby et al ., (2020b)	Grade 3 with normal	-1.53	LGI3
Markby et al ., (2020b)	Grade 3 with normal	-1.53	PHKA2
Markby et al ., (2020b)	Grade 3 with normal	-1.53	ENSCAFG00000000323 3

Markby et al ., (2020b)	Grade 3 with normal	-1.52	FIBIN
Markby et al ., (2020b)	Grade 3 with normal	-1.52	NFIA
Markby et al ., (2020b)	Grade 3 with normal	-1.52	NPR1
Markby et al ., (2020b)	Grade 3 with normal	-1.52	TANC2
Markby et al ., (2020b)	Grade 3 with normal	-1.51	LOC102152842
Markby et al ., (2020b)	Grade 3 with normal	-1.51	KIAA1462
Markby et al ., (2020b)	Grade 3 with normal	-1.51	CAMK1D
Markby et al., (2020b)	Grade 3 with normal	-1.51	ARGLU1
Markby et al ., (2020b)	Grade 3 with normal	-1.51	MSI1
Markby et al ., (2020b)	Grade 3 with normal	-1.51	DECR1
Markby et al ., (2020b)	Grade 3 with normal	-1.51	KCNN3
Markby et al ., (2020b)	Grade 3 with normal	1.51	CDKN1A
Markby et al ., (2020b)	Grade 3 with normal	1.51	CCND3
Markby et al ., (2020b)	Grade 3 with normal	1.51	SUGCT
Markby et al ., (2020b)	Grade 3 with normal	1.51	NUDT22; DNAJC4
Markby et al ., (2020b)	Grade 3 with normal	1.51	NXPH2
Markby et al ., (2020b)	Grade 3 with normal	1.51	EPHA2
Markby et al ., (2020b)	Grade 3 with normal	1.51	CALCA
Markby et al ., (2020b)	Grade 3 with normal	1.51	CD40
Markby et al ., (2020b)	Grade 3 with normal	1.51	NGEF
Markby et al ., (2020b)	Grade 3 with normal	1.51	TMEM106C
Markby et al ., (2020b)	Grade 3 with normal	1.51	ELL2
Markby et al ., (2020b)	Grade 3 with normal	1.51	ACSBG1
Markby et al ., (2020b)	Grade 3 with normal	1.51	BECN1
Markby et al ., (2020b)	Grade 3 with normal	1.51	LOC480571
Markby et al ., (2020b)	Grade 3 with normal	1.52	FBXO27
Markby et al ., (2020b)	Grade 3 with normal	1.52	PPP1R14B
Markby et al ., (2020b)	Grade 3 with normal	1.52	STAB1
Markby et al ., (2020b)	Grade 3 with normal	1.52	TLR1
Markby et al ., (2020b)	Grade 3 with normal	1.52	NPNT
Markby et al ., (2020b)	Grade 3 with normal	1.52	MED10
Markby et al ., (2020b)	Grade 3 with normal	1.52	SATB2
Markby et al ., (2020b)	Grade 3 with normal	1.52	SMIM3
Markby et al ., (2020b)	Grade 3 with normal	1.52	ENSCAFG0000001672 2
Markby et al ., (2020b)	Grade 3 with normal	1.52	ENSCAFG0000002597 3
Markby et al ., (2020b)	Grade 3 with normal	1.53	NUAK1
Markby et al ., (2020b)	Grade 3 with normal	1.53	TREML1
Markby et al ., (2020b)	Grade 3 with normal	1.53	PRR15
Markby et al ., (2020b)	Grade 3 with normal	1.53	TBXAS1
Markby et al ., (2020b)	Grade 3 with normal	1.53	ENSCAFG00000000423 4
Markby et al ., (2020b)	Grade 3 with normal	1.53	P2RX7
Markby et al ., (2020b)	Grade 3 with normal	1.53	$\begin{aligned} & \text { ENSCAFG0000001233 } \\ & 1 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	1.53	NLRP1
Markby et al ., (2020b)	Grade 3 with normal	1.53	IGFBP4
Markby et al ., (2020b)	Grade 3 with normal	1.54	GLIPR1

Markby et al ., (2020b)	Grade 3 with normal	1.54	CSRP2
Markby et al ., (2020b)	Grade 3 with normal	1.54	RNASEH2C
Markby et al ., (2020b)	Grade 3 with normal	1.54	SEMA6B
Markby et al ., (2020b)	Grade 3 with normal	1.54	LOC486400
Markby et al ., (2020b)	Grade 3 with normal	1.54	LOC610887
Markby et al ., (2020b)	Grade 3 with normal	1.54	EGR2
Markby et al ., (2020b)	Grade 3 with normal	1.54	SAMD11
Markby et al ., (2020b)	Grade 3 with normal	1.54	FZD9
Markby et al ., (2020b)	Grade 3 with normal	1.54	ENSCAFG0000002558 9
Markby et al ., (2020b)	Grade 3 with normal	1.54	ENSCAFG0000001237 6
Markby et al ., (2020b)	Grade 3 with normal	1.55	ENSCAFG0000001559 3
Markby et al ., (2020b)	Grade 3 with normal	1.55	WISP1
Markby et al ., (2020b)	Grade 3 with normal	1.55	ADAM22
Markby et al ., (2020b)	Grade 3 with normal	1.55	GNG11
Markby et al ., (2020b)	Grade 3 with normal	1.55	TNFAIP8L2
Markby et al ., (2020b)	Grade 3 with normal	1.55	ARMC6
Markby et al ., (2020b)	Grade 3 with normal		ENSCAFG0000000423
		1.55	4/ENSCAFG00000025
			939
Markby et al ., (2020b)	Grade 3 with normal	1.55	UBTD1
Markby et al ., (2020b)	Grade 3 with normal		ENSCAFG0000000423
		1.55	4/ENSCAFG00000025
			939
Markby et al ., (2020b)	Grade 3 with normal	1.55	LOC479476
Markby et al ., (2020b)	Grade 3 with normal	1.56	ATP8B1
Markby et al ., (2020b)	Grade 3 with normal	1.56	LOC611446; LOC100688921
Markby et al ., (2020b)	Grade 3 with normal	1.56	MGARP
Markby et al ., (2020b)	Grade 3 with normal	1.56	COL4A2
Markby et al ., (2020b)	Grade 3 with normal	1.56	EAF1
Markby et al ., (2020b)	Grade 3 with normal	1.56	SLC16A12
Markby et al ., (2020b)	Grade 3 with normal	1.56	PARP8
Markby et al ., (2020b)	Grade 3 with normal	1.57	KCNN4
Markby et al ., (2020b)	Grade 3 with normal	1.57	TYROBP
Markby et al ., (2020b)	Grade 3 with normal	1.57	PAPPA
Markby et al ., (2020b)	Grade 3 with normal	1.57	SYNC
Markby et al ., (2020b)	Grade 3 with normal	1.57	LAMTOR2
Markby et al ., (2020b)	Grade 3 with normal	1.57	UBL4A
Markby et al ., (2020b)	Grade 3 with normal	1.58	COX7A1
Markby et al ., (2020b)	Grade 3 with normal	1.58	MAPK13
Markby et al ., (2020b)	Grade 3 with normal	1.58	BCL2A1
Markby et al ., (2020b)	Grade 3 with normal	1.58	FAM174A
Markby et al ., (2020b)	Grade 3 with normal	1.58	ACHE
Markby et al ., (2020b)	Grade 3 with normal	1.58	AKAP5
Markby et al ., (2020b)	Grade 3 with normal	1.58	ENSCAFG0000003140

Markby et al ., (2020b)	Grade 3 with normal	1.59	TAL1
Markby et al., (2020b)	Grade 3 with normal	1.59	MSR1
Markby et al., (2020b)	Grade 3 with normal	1.59	TWIST2
Markby et al ., (2020b)	Grade 3 with normal	1.59	$\begin{aligned} & \text { ENSCAFG0000001103 } \\ & 9 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	1.59	$\begin{aligned} & \text { ENSCAFG0000000929 } \\ & 2 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	1.59	TNFRSF14
Markby et al ., (2020b)	Grade 3 with normal	1.59	ENSCAFG0000001928 6
Markby et al ., (2020b)	Grade 3 with normal	1.6	CCDC159
Markby et al., (2020b)	Grade 3 with normal	1.6	FOLH1
Markby et al., (2020b)	Grade 3 with normal	1.6	GREM1
Markby et al ., (2020b)	Grade 3 with normal	1.6	HSPB2
Markby et al., (2020b)	Grade 3 with normal	1.61	WFS1
Markby et al ., (2020b)	Grade 3 with normal	1.61	$\begin{aligned} & \text { ENSCAFG0000002037 } \\ & 3 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	1.61	RTCA
Markby et al., (2020b)	Grade 3 with normal	1.62	LRRC25
Markby et al., (2020b)	Grade 3 with normal	1.62	WSCD2
Markby et al ., (2020b)	Grade 3 with normal	1.62	$\begin{aligned} & \text { SLC5A3; } \\ & \text { LOC100856716 } \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	1.62	STK17B
Markby et al., (2020b)	Grade 3 with normal	1.62	PHPT1
Markby et al., (2020b)	Grade 3 with normal	1.62	$\begin{aligned} & \text { ENSCAFG00000000450 } \\ & 0 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	1.63	ACYP2
Markby et al., (2020b)	Grade 3 with normal	1.63	BNC2
Markby et al., (2020b)	Grade 3 with normal	1.63	ARMC2
Markby et al., (2020b)	Grade 3 with normal	1.63	DDC
Markby et al., (2020b)	Grade 3 with normal	1.63	BAMBI
Markby et al., (2020b)	Grade 3 with normal	1.63	DYNLRB1
Markby et al., (2020b)	Grade 3 with normal	1.63	C1RL
Markby et al., (2020b)	Grade 3 with normal	1.63	CYTIP
Markby et al., (2020b)	Grade 3 with normal	1.63	CLCA1
Markby et al., (2020b)	Grade 3 with normal	1.63	CYR61
Markby et al., (2020b)	Grade 3 with normal	1.64	MYL9
Markby et al., (2020b)	Grade 3 with normal	1.64	LMOD1
Markby et al., (2020b)	Grade 3 with normal	1.64	BATF
Markby et al., (2020b)	Grade 3 with normal	1.65	LOC481248
Markby et al., (2020b)	Grade 3 with normal	1.65	ENSCAFG00000002755 2
Markby et al ., (2020b)	Grade 3 with normal	1.65	C5
Markby et al., (2020b)	Grade 3 with normal	1.66	PDE7B
Markby et al., (2020b)	Grade 3 with normal	1.66	CCDC115
Markby et al., (2020b)	Grade 3 with normal	1.66	PDLIM2
Markby et al ., (2020b)	Grade 3 with normal	1.66	SLC45A1
Markby et al., (2020b)	Grade 3 with normal	1.66	$\begin{aligned} & \text { ENSCAFG00000001029 } \\ & 2 \end{aligned}$

Markby et al ., (2020b)	Grade 3 with normal	1.67	CFB; C2
Markby et al ., (2020b)	Grade 3 with normal	1.67	RNF19B
Markby et al ., (2020b)	Grade 3 with normal	1.67	MAPKAPK3
Markby et al ., (2020b)	Grade 3 with normal	1.67	DZIP1
Markby et al ., (2020b)	Grade 3 with normal	1.67	GRID2
Markby et al ., (2020b)	Grade 3 with normal	1.67	LPP
Markby et al ., (2020b)	Grade 3 with normal	1.67	ENO1
Markby et al ., (2020b)	Grade 3 with normal	1.67	WFDC1
Markby et al., (2020b)	Grade 3 with normal	1.68	SKAP2
Markby et al ., (2020b)	Grade 3 with normal	1.68	LBH
Markby et al ., (2020b)	Grade 3 with normal	1.68	C17H1orf54
Markby et al ., (2020b)	Grade 3 with normal	1.68	C24H20orf24
Markby et al., (2020b)	Grade 3 with normal	1.68	GAP43
Markby et al ., (2020b)	Grade 3 with normal	1.69	RHNO1
Markby et al ., (2020b)	Grade 3 with normal	1.7	HSPH1
Markby et al ., (2020b)	Grade 3 with normal	1.7	TAGLN
Markby et al., (2020b)	Grade 3 with normal	1.71	ITGA8
Markby et al ., (2020b)	Grade 3 with normal	1.71	GALNT6
Markby et al ., (2020b)	Grade 3 with normal	1.71	CD86
Markby et al ., (2020b)	Grade 3 with normal	1.72	CNN2
Markby et al ., (2020b)	Grade 3 with normal	1.72	LAP3
Markby et al., (2020b)	Grade 3 with normal	1.72	ALCAM
Markby et al ., (2020b)	Grade 3 with normal	1.72	ENSCAFG00000001577 4
Markby et al ., (2020b)	Grade 3 with normal	1.73	SEC61B
Markby et al ., (2020b)	Grade 3 with normal	1.73	ETF1
Markby et al ., (2020b)	Grade 3 with normal	1.73	$\begin{aligned} & \text { ENSCAFG0000000274 } \\ & 2 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	1.73	$\begin{aligned} & \text { ENSCAFG0000003275 } \\ & 0 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	1.74	CACNA1D
Markby et al., (2020b)	Grade 3 with normal	1.74	BTK
Markby et al ., (2020b)	Grade 3 with normal	1.75	ENSCAFG0000000200 7
Markby et al ., (2020b)	Grade 3 with normal	1.76	BLVRB
Markby et al ., (2020b)	Grade 3 with normal	1.76	SEC11C
Markby et al., (2020b)	Grade 3 with normal	1.76	VASH2
Markby et al ., (2020b)	Grade 3 with normal	1.77	POU2F2
Markby et al ., (2020b)	Grade 3 with normal	1.77	CAPG
Markby et al ., (2020b)	Grade 3 with normal	1.77	FOXS1
Markby et al., (2020b)	Grade 3 with normal	1.77	LOC100856200
Markby et al ., (2020b)	Grade 3 with normal	1.78	VAV1
Markby et al., (2020b)	Grade 3 with normal	1.78	HAVCR1
Markby et al ., (2020b)	Grade 3 with normal	1.78	PNCK
Markby et al ., (2020b)	Grade 3 with normal	1.78	ENSCAFG0000000208 6
Markby et al ., (2020b)	Grade 3 with normal	1.79	SPI1
Markby et al ., (2020b)	Grade 3 with normal	1.79	ENSCAFG0000000534 5

Markby et al ., (2020b)	Grade 3 with normal	1.79	ENSCAFG0000002924
		1.79	8
Markby et al ., (2020b)	Grade 3 with normal	1.8	SLC7A11
Markby et al ., (2020b)	Grade 3 with normal	1.8	ARNTL2
Markby et al ., (2020b)	Grade 3 with normal	1.8	ENSCAFG00000002637 3
Markby et al ., (2020b)	Grade 3 with normal	1.8	LTBP2
Markby et al ., (2020b)	Grade 3 with normal	1.81	LOXL3
Markby et al ., (2020b)	Grade 3 with normal	1.81	NDNF
Markby et al ., (2020b)	Grade 3 with normal	1.82	BNC2
Markby et al ., (2020b)	Grade 3 with normal	1.82	TLR10
Markby et al ., (2020b)	Grade 3 with normal	1.82	MYOCD
Markby et al ., (2020b)	Grade 3 with normal	1.83	LYZF2
Markby et al ., (2020b)	Grade 3 with normal	1.83	ENSCAFG00000000534 5
Markby et al ., (2020b)	Grade 3 with normal	1.84	TREM2
Markby et al ., (2020b)	Grade 3 with normal	1.85	DLA-79
Markby et al ., (2020b)	Grade 3 with normal	1.86	ENSCAFG00000002552 9
Markby et al ., (2020b)	Grade 3 with normal	1.86	ADAM28
Markby et al ., (2020b)	Grade 3 with normal	1.86	C3AR1
Markby et al ., (2020b)	Grade 3 with normal	1.86	LOC487977
Markby et al ., (2020b)	Grade 3 with normal	1.87	LOC102156311
Markby et al ., (2020b)	Grade 3 with normal	1.87	NOV
Markby et al ., (2020b)	Grade 3 with normal	1.87	LOC478984
Markby et al ., (2020b)	Grade 3 with normal	1.88	SENP3
Markby et al ., (2020b)	Grade 3 with normal	1.88	CLEC3A
Markby et al ., (2020b)	Grade 3 with normal	1.89	BMP6
Markby et al ., (2020b)	Grade 3 with normal	1.9	LOC100686271
Markby et al ., (2020b)	Grade 3 with normal	1.91	RSAD2
Markby et al ., (2020b)	Grade 3 with normal	1.91	CGREF1
Markby et al ., (2020b)	Grade 3 with normal	1.91	SYNDIG1
Markby et al ., (2020b)	Grade 3 with normal	1.91	CYTL1
Markby et al ., (2020b)	Grade 3 with normal	1.91	UCHL1
Markby et al ., (2020b)	Grade 3 with normal	1.91	NPAS3
Markby et al ., (2020b)	Grade 3 with normal	1.92	ITGA10
Markby et al ., (2020b)	Grade 3 with normal	1.92	RGS2
Markby et al ., (2020b)	Grade 3 with normal	1.93	SBSPON
Markby et al ., (2020b)	Grade 3 with normal	1.94	CDKN2B
Markby et al ., (2020b)	Grade 3 with normal	1.94	NTRK3
Markby et al ., (2020b)	Grade 3 with normal	1.95	IL18
Markby et al ., (2020b)	Grade 3 with normal	1.96	NME1
Markby et al ., (2020b)	Grade 3 with normal	1.97	TNFRSF11B
Markby et al ., (2020b)	Grade 3 with normal	1.98	ID3
Markby et al ., (2020b)	Grade 3 with normal	1.99	MIA
Markby et al ., (2020b)	Grade 3 with normal	1.99	IFITM10
Markby et al ., (2020b)	Grade 3 with normal	1.99	SYTL2
Markby et al ., (2020b)	Grade 3 with normal	2	LOC612564
Markby et al ., (2020b)	Grade 3 with normal	2	GPER1

Markby et al ., (2020b)	Grade 3 with normal	2	LOC100856638; UPP1
Markby et al ., (2020b)	Grade 3 with normal	2.01	DAPP1
Markby et al ., (2020b)	Grade 3 with normal	2.01	VCAM1
Markby et al ., (2020b)	Grade 3 with normal	2.02	PILRA
Markby et al ., (2020b)	Grade 3 with normal	2.04	TNFRSF12A
Markby et al ., (2020b)	Grade 3 with normal	2.04	ENSCAFG0000003322 8
Markby et al ., (2020b)	Grade 3 with normal	2.05	MRVI1
Markby et al ., (2020b)	Grade 3 with normal	2.06	TMEM61
Markby et al., (2020b)	Grade 3 with normal	2.08	DDX60
Markby et al ., (2020b)	Grade 3 with normal	2.11	SPN
Markby et al ., (2020b)	Grade 3 with normal	2.11	TVP23A
Markby et al ., (2020b)	Grade 3 with normal	2.12	DNAJB1
Markby et al ., (2020b)	Grade 3 with normal	2.12	HTR2A
Markby et al ., (2020b)	Grade 3 with normal	2.12	USP18
Markby et al ., (2020b)	Grade 3 with normal	2.12	HOXD8
Markby et al ., (2020b)	Grade 3 with normal	2.12	HENMT1
Markby et al ., (2020b)	Grade 3 with normal	2.13	ENSCAFG0000003841 5
Markby et al ., (2020b)	Grade 3 with normal	2.14	HTR2B
Markby et al., (2020b)	Grade 3 with normal	2.14	TYSND1
Markby et al ., (2020b)	Grade 3 with normal	2.15	PTGS2
Markby et al., (2020b)	Grade 3 with normal	2.16	CCL5
Markby et al ., (2020b)	Grade 3 with normal	2.17	EVI2B
Markby et al ., (2020b)	Grade 3 with normal	2.19	ENSCAFG00000001365 1
Markby et al ., (2020b)	Grade 3 with normal	2.22	C10H2orf40
Markby et al., (2020b)	Grade 3 with normal	2.24	ZNF385B
Markby et al ., (2020b)	Grade 3 with normal	2.24	C6
Markby et al ., (2020b)	Grade 3 with normal	2.25	FCGR1A
Markby et al ., (2020b)	Grade 3 with normal	2.26	RARRES3
Markby et al., (2020b)	Grade 3 with normal	2.27	PAPPA2
Markby et al ., (2020b)	Grade 3 with normal	2.3	ARAP2
Markby et al ., (2020b)	Grade 3 with normal	2.33	RXFP1
Markby et al ., (2020b)	Grade 3 with normal	2.33	ENSCAFG00000000294 7
Markby et al., (2020b)	Grade 3 with normal	2.36	CXHXorf21
Markby et al ., (2020b)	Grade 3 with normal	2.38	CSTA
Markby et al ., (2020b)	Grade 3 with normal	2.39	NLGN4X
Markby et al ., (2020b)	Grade 3 with normal	2.4	CASP14
Markby et al., (2020b)	Grade 3 with normal	2.4	SLCO2A1
Markby et al ., (2020b)	Grade 3 with normal	2.41	ENSCAFG00000003248 3
Markby et al ., (2020b)	Grade 3 with normal	2.42	$\begin{aligned} & \text { ENSCAFG0000001732 } \\ & 6 \end{aligned}$
Markby et al ., (2020b)	Grade 3 with normal	2.44	KCNMB1
Markby et al ., (2020b)	Grade 3 with normal	2.46	ENSCAFG00000000056 2.
Markby et al ., (2020b)	Grade 3 with normal	2.46	ABCC4

Markby et al ., (2020b)	Grade 3 with normal	2.47	LOC485235
Markby et al ., (2020b)	Grade 3 with normal	2.5	EPHA3
Markby et al ., (2020b)	Grade 3 with normal	2.63	ENSCAFG0000000208 6
Markby et al ., (2020b)	Grade 3 with normal	2.65	CLEC5A
Markby et al ., (2020b)	Grade 3 with normal	2.65	ENSCAFG0000001166 6
Markby et al ., (2020b)	Grade 3 with normal	2.69	KCNK2
Markby et al ., (2020b)	Grade 3 with normal	2.7	IL1RL1
Markby et al ., (2020b)	Grade 3 with normal	2.71	ZNF385B
Markby et al ., (2020b)	Grade 3 with normal	2.74	ANGPT1
Markby et al ., (2020b)	Grade 3 with normal	2.77	LRRC3B
Markby et al ., (2020b)	Grade 3 with normal	2.8	TNFSF15
Markby et al ., (2020b)	Grade 3 with normal	2.87	MMP12
Markby et al ., (2020b)	Grade 3 with normal	2.92	SERPINA1
Markby et al ., (2020b)	Grade 3 with normal	2.97	HSP70
Markby et al ., (2020b)	Grade 3 with normal	2.98	PLCXD3
Markby et al ., (2020b)	Grade 3 with normal	3.01	LOC100687667
Markby et al ., (2020b)	Grade 3 with normal	3.03	CRLF1
Markby et al ., (2020b)	Grade 3 with normal	3.03	CLEC7A
Markby et al ., (2020b)	Grade 3 with normal	3.07	ENSCAFG0000003273 1
Markby et al ., (2020b)	Grade 3 with normal	3.09	HSP70
Markby et al ., (2020b)	Grade 3 with normal	3.1	CNN1
Markby et al ., (2020b)	Grade 3 with normal	3.17	COL6A5
Markby et al ., (2020b)	Grade 3 with normal	3.17	SERPINE1
Markby et al ., (2020b)	Grade 3 with normal	3.24	LOC611538
Markby et al ., (2020b)	Grade 3 with normal	3.31	CXCL14
Markby et al ., (2020b)	Grade 3 with normal	3.35	IGFBP2
Markby et al ., (2020b)	Grade 3 with normal	3.38	TUBB3
Markby et al ., (2020b)	Grade 3 with normal	3.4	ENSCAFG0000001166 6
Markby et al ., (2020b)	Grade 3 with normal	3.4	CCL8
Markby et al ., (2020b)	Grade 3 with normal	3.43	TPM2
Markby et al ., (2020b)	Grade 3 with normal	3.66	ENSCAFG0000000604 6
Markby et al ., (2020b)	Grade 3 with normal	3.78	ENSCAFG0000002956 8
Markby et al ., (2020b)	Grade 3 with normal	3.87	CXCL8
Markby et al ., (2020b)	Grade 3 with normal	3.87	MYH11
Markby et al ., (2020b)	Grade 3 with normal	3.92	ENSCAFG0000000604 6
Markby et al ., (2020b)	Grade 3 with normal	4.07	FGG
Markby et al ., (2020b)	Grade 3 with normal	4.28	RGS4
Markby et al ., (2020b)	Grade 3 with normal	4.43	ACTA2
Markby et al ., (2020b)	Grade 3 with normal	4.57	ACTG2
Markby et al ., (2020b)	Grade 3 with normal	5.34	CDKN2A
Markby et al ., (2020b)	Grade 3 with normal	5.42	SFRP2
Markby et al ., (2020b)	Grade 3 with normal	6.1	LRRN1

Markby et al ., (2020b)	Grade 3 with normal	7.35	ENSCAFG0000002955
			3
Markby et al ., (2020b)	Grade 3 with normal	7.79	CDKN2A
Markby et al., (2020b)	Grade 3 with normal	11.7	ENSCAFG0000002274
			3
Markby et al ., (2020b)	Grade 4 with normal	-4.32	ENSCAFG0000002517
			2
Markby et al ., (2020b)	Grade 4 with normal	-4.04	RANBP3L
Markby et al ., (2020b)	Grade 4 with normal	-3.81	TNMD
Markby et al ., (2020b)	Grade 4 with normal	-3.75	ENSCAFG0000002363
			7
Markby et al ., (2020b)	Grade 4 with normal	-3.68	NKAIN2
Markby et al ., (2020b)	Grade 4 with normal	-3.68	WFDC5
Markby et al ., (2020b)	Grade 4 with normal	-3.65	MIR99A-1
Markby et al ., (2020b)	Grade 4 with normal	-3.64	CILP
Markby et al ., (2020b)	Grade 4 with normal	-3.55	LHCGR
Markby et al ., (2020b)	Grade 4 with normal	-3.34	MMRN1
Markby et al ., (2020b)	Grade 4 with normal	-3.32	ADRA1A
Markby et al ., (2020b)	Grade 4 with normal	-3.28	SLC26A5
Markby et al., (2020b)	Grade 4 with normal	-3.16	FSHR
Markby et al ., (2020b)	Grade 4 with normal	-3.04	MIRLET7C
Markby et al., (2020b)	Grade 4 with normal	-2.99	NT5E
Markby et al., (2020b)	Grade 4 with normal	-2.9	LOC488818
Markby et al., (2020b)	Grade 4 with normal	-2.89	NELL2
Markby et al., (2020b)	Grade 4 with normal	-2.77	AQP4
Markby et al., (2020b)	Grade 4 with normal	-2.73	TMEFF2
Markby et al., (2020b)	Grade 4 with normal	-2.73	FSTL4
Markby et al., (2020b)	Grade 4 with normal	-2.73	MIR214
Markby et al., (2020b)	Grade 4 with normal	-2.68	SLC24A2
Markby et al., (2020b)	Grade 4 with normal	-2.68	IGSF10
Markby et al., (2020b)	Grade 4 with normal	-2.65	ADCYAP1
Markby et al., (2020b)	Grade 4 with normal	-2.63	ENSCAFG0000001911
			4
Markby et al ., (2020b)	Grade 4 with normal	-2.6	WIF1
Markby et al., (2020b)	Grade 4 with normal	-2.6	MIR218-1
Markby et al., (2020b)	Grade 4 with normal	-2.56	KCND2
Markby et al ., (2020b)	Grade 4 with normal	-2.56	MPZL2
Markby et al., (2020b)	Grade 4 with normal	-2.51	MMP3
Markby et al., (2020b)	Grade 4 with normal	-2.49	GRIN2A
Markby et al., (2020b)	Grade 4 with normal	-2.48	ENSCAFG0000002649
			8
Markby et al ., (2020b)	Grade 4 with normal	-2.47	KCND2
Markby et al., (2020b)	Grade 4 with normal	-2.43	HAPLN1
Markby et al., (2020b)	Grade 4 with normal	-2.42	GJB6
Markby et al., (2020b)	Grade 4 with normal	-2.4	ADCY2
Markby et al., (2020b)	Grade 4 with normal	-2.4	ACKR1
Markby et al., (2020b)	Grade 4 with normal	-2.39	MEI4
Markby et al., (2020b)	Grade 4 with normal	-2.39	GAS2
Markby et al ., (2020b)	Grade 4 with normal	-2.37	FSTL4

Markby et al ., (2020b)	Grade 4 with normal	-2.36	ENSCAFG0000002272
			1
Markby et al ., (2020b)	Grade 4 with normal	-2.34	LOC482182
Markby et al., (2020b)	Grade 4 with normal	-2.34	SCN3B
Markby et al ., (2020b)	Grade 4 with normal	-2.33	CCBE1
Markby et al., (2020b)	Grade 4 with normal	-2.32	FMO2
Markby et al ., (2020b)	Grade 4 with normal	-2.3	ENSCAFG0000004045 1
Markby et al ., (2020b)	Grade 4 with normal	-2.25	GFRA2
Markby et al ., (2020b)	Grade 4 with normal	-2.24	ENSCAFG0000001025 6
Markby et al ., (2020b)	Grade 4 with normal	-2.23	ADAMTS15
Markby et al ., (2020b)	Grade 4 with normal	-2.21	GRIN2A
Markby et al ., (2020b)	Grade 4 with normal	-2.2	ENSCAFG0000000074 1
Markby et al ., (2020b)	Grade 4 with normal	-2.19	ENSCAFG0000002491 6
Markby et al ., (2020b)	Grade 4 with normal	-2.16	VWDE
Markby et al., (2020b)	Grade 4 with normal	-2.15	SLC24A2
Markby et al ., (2020b)	Grade 4 with normal	-2.15	MOXD1
Markby et al ., (2020b)	Grade 4 with normal	-2.13	ENSCAFG0000002806 6
Markby et al ., (2020b)	Grade 4 with normal	-2.08	HIF3A
Markby et al., (2020b)	Grade 4 with normal	-2.08	VWDE
Markby et al., (2020b)	Grade 4 with normal	-2.07	KCNQ5
Markby et al., (2020b)	Grade 4 with normal	-2.05	SV2B
Markby et al ., (2020b)	Grade 4 with normal	-2.04	PTPRD
Markby et al., (2020b)	Grade 4 with normal	-2.03	FAM20A
Markby et al ., (2020b)	Grade 4 with normal	-2.03	MYOC
Markby et al., (2020b)	Grade 4 with normal	-2.02	CAPN6
Markby et al., (2020b)	Grade 4 with normal	-2.02	RBPJL
Markby et al., (2020b)	Grade 4 with normal	-2.02	PPP1R1B
Markby et al., (2020b)	Grade 4 with normal	-2.01	COLCA2
Markby et al., (2020b)	Grade 4 with normal	-2.01	LRP1B
Markby et al ., (2020b)	Grade 4 with normal	-2	ALDH1A1
Markby et al., (2020b)	Grade 4 with normal	-2	IGF2BP2
Markby et al ., (2020b)	Grade 4 with normal	-2	$\begin{aligned} & \text { ENSCAFG0000002273 } \\ & 9 \end{aligned}$
Markby et al., (2020b)	Grade 4 with normal	-1.99	KANK3
Markby et al., (2020b)	Grade 4 with normal	-1.98	ENSCAFG0000001866 1
Markby et al ., (2020b)	Grade 4 with normal	-1.97	ANGPTL5
Markby et al., (2020b)	Grade 4 with normal	-1.96	KDR
Markby et al ., (2020b)	Grade 4 with normal	-1.96	PDZD2
Markby et al., (2020b)	Grade 4 with normal	-1.95	TMEFF2
Markby et al., (2020b)	Grade 4 with normal	-1.95	ADCY2
Markby et al., (2020b)	Grade 4 with normal	-1.95	FAM209B
Markby et al ., (2020b)	Grade 4 with normal	-1.94	ENSCAFG0000002169 3

Markby et al ., (2020b)	Grade 4 with normal	-1.94	ENSCAFG0000001994 1
Markby et al ., (2020b)	Grade 4 with normal	-1.93	CRISPLD2
Markby et al ., (2020b)	Grade 4 with normal	-1.93	KIAA1024L
Markby et al ., (2020b)	Grade 4 with normal	-1.91	GPR37
Markby et al ., (2020b)	Grade 4 with normal	-1.91	LOC474938
Markby et al ., (2020b)	Grade 4 with normal	-1.9	WNT9B
Markby et al ., (2020b)	Grade 4 with normal	-1.9	AFF2
Markby et al ., (2020b)	Grade 4 with normal	-1.9	LGI2
Markby et al., (2020b)	Grade 4 with normal	-1.9	MASP1
Markby et al ., (2020b)	Grade 4 with normal	-1.9	ADGRB3
Markby et al ., (2020b)	Grade 4 with normal	-1.88	ANGPTL4
Markby et al ., (2020b)	Grade 4 with normal	-1.88	TRPM3
Markby et al ., (2020b)	Grade 4 with normal	-1.88	S100B
Markby et al ., (2020b)	Grade 4 with normal	-1.88	$\begin{aligned} & \text { ENSCAFG00000002824 } \\ & 2 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	-1.87	RASGRF2
Markby et al ., (2020b)	Grade 4 with normal	-1.87	SGCG
Markby et al ., (2020b)	Grade 4 with normal	-1.87	ENSCAFG0000001006 4
Markby et al ., (2020b)	Grade 4 with normal	-1.86	PTGFR
Markby et al ., (2020b)	Grade 4 with normal	-1.86	$\begin{aligned} & \text { ENSCAFG0000002193 } \\ & 1 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	-1.85	OVGP1
Markby et al ., (2020b)	Grade 4 with normal	-1.84	ENSCAFG0000002359 1
Markby et al ., (2020b)	Grade 4 with normal	-1.84	ARGLU1
Markby et al ., (2020b)	Grade 4 with normal	-1.84	SCIN
Markby et al ., (2020b)	Grade 4 with normal	-1.83	LAMA2
Markby et al ., (2020b)	Grade 4 with normal	-1.82	ABCA6
Markby et al ., (2020b)	Grade 4 with normal	-1.82	DRP2
Markby et al ., (2020b)	Grade 4 with normal	-1.82	MIR491
Markby et al ., (2020b)	Grade 4 with normal	-1.82	ADGRB3
Markby et al ., (2020b)	Grade 4 with normal	-1.82	PDZD2
Markby et al ., (2020b)	Grade 4 with normal	-1.82	MIRLET7D
Markby et al ., (2020b)	Grade 4 with normal	-1.81	CDC42EP2
Markby et al ., (2020b)	Grade 4 with normal	-1.81	LAMA1
Markby et al ., (2020b)	Grade 4 with normal	-1.81	$\begin{aligned} & \text { ENSCAFG00000003706 } \\ & 9 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	-1.8	ENSCAFG0000002901 5
Markby et al ., (2020b)	Grade 4 with normal	-1.8	TNFRSF19
Markby et al ., (2020b)	Grade 4 with normal	-1.8	ENSCAFG0000000878 4
Markby et al ., (2020b)	Grade 4 with normal	-1.8	$\begin{aligned} & \text { ENSCAFG00000002624 } \\ & 9 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	-1.79	RNF128
Markby et al ., (2020b)	Grade 4 with normal	-1.79	ADAMTS19
Markby et al ., (2020b)	Grade 4 with normal	-1.79	FGF12
Markby et al ., (2020b)	Grade 4 with normal	-1.79	CCK

Markby et al ., (2020b)	Grade 4 with normal	-1.79	MAP2K6
Markby et al., (2020b)	Grade 4 with normal	-1.77	TMEM132C
Markby et al ., (2020b)	Grade 4 with normal	-1.77	SLC4A4
Markby et al., (2020b)	Grade 4 with normal	-1.77	SEMA3D
Markby et al., (2020b)	Grade 4 with normal	-1.77	GJB2
Markby et al., (2020b)	Grade 4 with normal	-1.77	ENSCAFG0000002498 5
Markby et al ., (2020b)	Grade 4 with normal	-1.76	ENSCAFG0000001286 0
Markby et al ., (2020b)	Grade 4 with normal	-1.75	KCNJ2
Markby et al., (2020b)	Grade 4 with normal	-1.75	SHISA3
Markby et al., (2020b)	Grade 4 with normal	-1.74	NEBL
Markby et al., (2020b)	Grade 4 with normal	-1.74	TSPAN2
Markby et al., (2020b)	Grade 4 with normal	-1.74	SOX10
Markby et al., (2020b)	Grade 4 with normal	-1.73	SNTB1
Markby et al., (2020b)	Grade 4 with normal	-1.72	SLC2A12
Markby et al ., (2020b)	Grade 4 with normal	-1.72	ENSCAFG0000000274 4
Markby et al ., (2020b)	Grade 4 with normal	-1.72	CD8A
Markby et al., (2020b)	Grade 4 with normal	-1.71	CDH22
Markby et al., (2020b)	Grade 4 with normal	-1.71	KCNQ5
Markby et al., (2020b)	Grade 4 with normal	-1.71	TTC21A
Markby et al., (2020b)	Grade 4 with normal	-1.71	FLVCR2
Markby et al., (2020b)	Grade 4 with normal	-1.7	SLC22A23
Markby et al ., (2020b)	Grade 4 with normal	-1.7	ENSCAFG00000002366 9
Markby et al., (2020b)	Grade 4 with normal	-1.7	SYT17
Markby et al., (2020b)	Grade 4 with normal	-1.7	ENSCAFG00000000289 7
Markby et al ., (2020b)	Grade 4 with normal	-1.69	CILP2
Markby et al ., (2020b)	Grade 4 with normal	-1.69	$\begin{aligned} & \text { ENSCAFG00000000293 } \\ & 9 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	-1.69	ENSCAFG0000002608 6
Markby et al., (2020b)	Grade 4 with normal	-1.69	LOC479911
Markby et al., (2020b)	Grade 4 with normal	-1.69	$\begin{aligned} & \text { ENSCAFG0000003242 } \\ & 2 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	-1.69	ENSCAFG0000001929 4
Markby et al ., (2020b)	Grade 4 with normal	-1.69	ENSCAFG0000001929 4
Markby et al ., (2020b)	Grade 4 with normal	-1.69	ENSCAFG0000001929 4
Markby et al., (2020b)	Grade 4 with normal	-1.68	WNT16
Markby et al ., (2020b)	Grade 4 with normal	-1.68	$\begin{aligned} & \text { ENSCAFG0000001498 } \\ & 0 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	-1.68	HCN1
Markby et al., (2020b)	Grade 4 with normal	-1.68	ADAMTSL2
Markby et al., (2020b)	Grade 4 with normal	-1.67	LAMA2
Markby et al ., (2020b)	Grade 4 with normal	-1.67	PI15

Markby et al ., (2020b)	Grade 4 with normal	-1.67	SLC10A6
Markby et al ., (2020b)	Grade 4 with normal	-1.67	SLC1A3
Markby et al ., (2020b)	Grade 4 with normal	-1.67	ENSCAFG0000002601 1
Markby et al ., (2020b)	Grade 4 with normal	-1.66	$\begin{aligned} & \text { ENSCAFG0000003435 } \\ & 0 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	-1.66	UBE2QL1
Markby et al ., (2020b)	Grade 4 with normal	-1.65	```ENSCAFG0000001327 5```
Markby et al ., (2020b)	Grade 4 with normal	-1.65	LIX1
Markby et al ., (2020b)	Grade 4 with normal	-1.65	CNTFR
Markby et al ., (2020b)	Grade 4 with normal	-1.65	WDR54
Markby et al ., (2020b)	Grade 4 with normal	-1.65	PDGFRL
Markby et al ., (2020b)	Grade 4 with normal	-1.65	ENSCAFG0000000848 2
Markby et al ., (2020b)	Grade 4 with normal	-1.64	IGF2; INS
Markby et al ., (2020b)	Grade 4 with normal	-1.64	GLS2
Markby et al ., (2020b)	Grade 4 with normal	-1.64	DLG2
Markby et al ., (2020b)	Grade 4 with normal	-1.64	SEL1L3
Markby et al ., (2020b)	Grade 4 with normal	-1.63	PCSK6
Markby et al ., (2020b)	Grade 4 with normal	-1.63	TMEM52
Markby et al ., (2020b)	Grade 4 with normal	-1.63	SNTB1
Markby et al ., (2020b)	Grade 4 with normal	-1.63	ENSCAFG0000002611 8
Markby et al ., (2020b)	Grade 4 with normal	-1.63	DDX31
Markby et al ., (2020b)	Grade 4 with normal	-1.62	F2RL2
Markby et al ., (2020b)	Grade 4 with normal	-1.62	C1QTNF4
Markby et al ., (2020b)	Grade 4 with normal	-1.62	HSPA12B
Markby et al ., (2020b)	Grade 4 with normal	-1.62	PTN
Markby et al ., (2020b)	Grade 4 with normal	-1.62	GCNT4
Markby et al ., (2020b)	Grade 4 with normal	-1.61	ADCY2
Markby et al ., (2020b)	Grade 4 with normal	-1.61	LOC607729
Markby et al ., (2020b)	Grade 4 with normal	-1.6	GPLD1
Markby et al ., (2020b)	Grade 4 with normal	-1.6	RASIP1
Markby et al ., (2020b)	Grade 4 with normal	-1.6	ITGA2
Markby et al ., (2020b)	Grade 4 with normal	-1.6	CACNA2D1
Markby et al ., (2020b)	Grade 4 with normal	-1.6	PLSCR4
Markby et al ., (2020b)	Grade 4 with normal	-1.6	$\begin{aligned} & \text { ENSCAFG0000000790 } \\ & 9 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	-1.6	LPAR4
Markby et al ., (2020b)	Grade 4 with normal	-1.59	MPP6
Markby et al ., (2020b)	Grade 4 with normal	-1.59	SCARA5
Markby et al ., (2020b)	Grade 4 with normal	-1.59	RHOU
Markby et al ., (2020b)	Grade 4 with normal	-1.59	LOC490151
Markby et al ., (2020b)	Grade 4 with normal	-1.58	IGSF3
Markby et al ., (2020b)	Grade 4 with normal	-1.58	ENPP2
Markby et al ., (2020b)	Grade 4 with normal	-1.58	ENSCAFG0000001209 2

Markby et al ., (2020b)	Grade 4 with normal	-1.58	ENSCAFG0000002703
			9
Markby et al ., (2020b)	Grade 4 with normal	-1.58	TYW3
Markby et al ., (2020b)	Grade 4 with normal	-1.58	ACOT6
Markby et al ., (2020b)	Grade 4 with normal	-1.58	SLC35F4
Markby et al ., (2020b)	Grade 4 with normal	-1.57	FGL1
Markby et al ., (2020b)	Grade 4 with normal	-1.57	ENSCAFG00000001087
			7
Markby et al ., (2020b)	Grade 4 with normal	-1.57	ENSCAFG0000001087
			7
Markby et al ., (2020b)	Grade 4 with normal	-1.57	ENSCAFG0000001087
			7
Markby et al ., (2020b)	Grade 4 with normal	-1.57	KCNT2
Markby et al ., (2020b)	Grade 4 with normal	-1.57	THBS2
Markby et al ., (2020b)	Grade 4 with normal	-1.57	ENSCAFG00000000541
			9
Markby et al ., (2020b)	Grade 4 with normal	-1.57	KIAA1755
Markby et al ., (2020b)	Grade 4 with normal	-1.56	ACKR2
Markby et al ., (2020b)	Grade 4 with normal	-1.56	KERA
Markby et al ., (2020b)	Grade 4 with normal	-1.56	ENSCAFG0000001028
			4
Markby et al ., (2020b)	Grade 4 with normal	-1.56	CNR1
Markby et al ., (2020b)	Grade 4 with normal	-1.56	RAD52
Markby et al ., (2020b)	Grade 4 with normal	-1.56	ENSCAFG0000001372
			6
Markby et al ., (2020b)	Grade 4 with normal	-1.56	BCL6B
Markby et al ., (2020b)	Grade 4 with normal	-1.55	FREM1
Markby et al ., (2020b)	Grade 4 with normal	-1.55	LIPC
Markby et al ., (2020b)	Grade 4 with normal	-1.55	AASS
Markby et al., (2020b)	Grade 4 with normal	-1.55	ENOX1
Markby et al ., (2020b)	Grade 4 with normal	-1.55	NEIL1
Markby et al ., (2020b)	Grade 4 with normal	-1.55	ENSCAFG0000003027
			6
Markby et al ., (2020b)	Grade 4 with normal	-1.55	ACAP1
Markby et al ., (2020b)	Grade 4 with normal	-1.55	PRMT6
Markby et al ., (2020b)	Grade 4 with normal	-1.54	GRIA3
Markby et al ., (2020b)	Grade 4 with normal	-1.54	C17H1orf56
Markby et al ., (2020b)	Grade 4 with normal	-1.54	LOC100686869
Markby et al., (2020b)	Grade 4 with normal	-1.54	RAB9B
Markby et al ., (2020b)	Grade 4 with normal	-1.53	RASL10A
Markby et al ., (2020b)	Grade 4 with normal	-1.53	THPO
Markby et al ., (2020b)	Grade 4 with normal	-1.53	SLC16A9
Markby et al ., (2020b)	Grade 4 with normal	-1.53	ENSCAFG0000002356
			7
Markby et al ., (2020b)	Grade 4 with normal	-1.52	SLCO5A1
Markby et al ., (2020b)	Grade 4 with normal	-1.52	MOB3B
Markby et al ., (2020b)	Grade 4 with normal	-1.52	NLGN1
Markby et al ., (2020b)	Grade 4 with normal	-1.52	ENSCAFG0000001089
			9

Markby et al ., (2020b)	Grade 4 with normal	-1.52	LOC489911; ZNF785; LOC100683431
Markby et al ., (2020b)	Grade 4 with normal	-1.51	ANKRD45
Markby et al ., (2020b)	Grade 4 with normal	-1.51	FKBPL
Markby et al ., (2020b)	Grade 4 with normal	-1.51	PKHD1L1
Markby et al ., (2020b)	Grade 4 with normal	-1.51	FAM107B
Markby et al ., (2020b)	Grade 4 with normal	-1.51	ERBB4
Markby et al ., (2020b)	Grade 4 with normal	-1.51	CABYR
Markby et al ., (2020b)	Grade 4 with normal	-1.51	SRSF2
Markby et al ., (2020b)	Grade 4 with normal	-1.51	CHAD
Markby et al ., (2020b)	Grade 4 with normal	1.51	FAM174A
Markby et al ., (2020b)	Grade 4 with normal	1.51	SGK1
Markby et al ., (2020b)	Grade 4 with normal	1.51	ALK
Markby et al ., (2020b)	Grade 4 with normal	1.51	HYOU1
Markby et al ., (2020b)	Grade 4 with normal	1.51	CDR2
Markby et al ., (2020b)	Grade 4 with normal	1.51	GNPNAT1
Markby et al ., (2020b)	Grade 4 with normal	1.52	TYROBP
Markby et al ., (2020b)	Grade 4 with normal	1.52	PDE7B
Markby et al ., (2020b)	Grade 4 with normal	1.52	FAT1
Markby et al ., (2020b)	Grade 4 with normal	1.52	TPX2
Markby et al ., (2020b)	Grade 4 with normal	1.52	PLCB1
Markby et al ., (2020b)	Grade 4 with normal	1.52	RND1
Markby et al ., (2020b)	Grade 4 with normal	1.52	HN1
Markby et al ., (2020b)	Grade 4 with normal	1.52	LOC491973
Markby et al ., (2020b)	Grade 4 with normal	1.52	ENSCAFG0000001095 8
Markby et al ., (2020b)	Grade 4 with normal	1.52	$\begin{aligned} & \text { ENSCAFG0000001321 } \\ & 7 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	1.52	$\begin{aligned} & \text { ENSCAFG0000001321 } \\ & 7 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	1.52	$\begin{aligned} & \text { ENSCAFG0000001321 } \\ & 7 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	1.53	TBXAS1
Markby et al ., (2020b)	Grade 4 with normal	1.53	GALNT6
Markby et al ., (2020b)	Grade 4 with normal	1.53	CACNA1D
Markby et al ., (2020b)	Grade 4 with normal	1.53	SPI1
Markby et al ., (2020b)	Grade 4 with normal	1.53	TMEM200A
Markby et al ., (2020b)	Grade 4 with normal	1.53	DYNC1I1
Markby et al ., (2020b)	Grade 4 with normal	1.53	LIF
Markby et al ., (2020b)	Grade 4 with normal	1.53	ERAP2
Markby et al ., (2020b)	Grade 4 with normal	1.53	ITGA1
Markby et al ., (2020b)	Grade 4 with normal	1.53	ITGAX
Markby et al ., (2020b)	Grade 4 with normal	1.53	NEXN
Markby et al ., (2020b)	Grade 4 with normal	1.54	EVI2B
Markby et al ., (2020b)	Grade 4 with normal	1.54	SOSTDC1
Markby et al ., (2020b)	Grade 4 with normal	1.54	KCNQ1
Markby et al ., (2020b)	Grade 4 with normal	1.54	ACP5
Markby et al ., (2020b)	Grade 4 with normal	1.54	LRRC32
Markby et al ., (2020b)	Grade 4 with normal	1.54	SNRNP35

Markby et al ., (2020b)	Grade 4 with normal	1.54	BANK1
Markby et al ., (2020b)	Grade 4 with normal	1.55	SYNDIG1
Markby et al ., (2020b)	Grade 4 with normal	1.55	ST5
Markby et al ., (2020b)	Grade 4 with normal	1.55	$\begin{aligned} & \text { ENSCAFG0000003101 } \\ & 6 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	1.55	RAI14
Markby et al ., (2020b)	Grade 4 with normal	1.55	IL10RA
Markby et al ., (2020b)	Grade 4 with normal	1.55	ENSCAFG00000002005 9
Markby et al ., (2020b)	Grade 4 with normal	1.55	KCNA3
Markby et al ., (2020b)	Grade 4 with normal	1.56	$\begin{aligned} & \text { ENSCAFG0000001907 } \\ & 2 \end{aligned}$
Markby et al ., (2020b)	Grade 4 with normal	1.56	BLVRB
Markby et al ., (2020b)	Grade 4 with normal	1.56	NPAS3
Markby et al ., (2020b)	Grade 4 with normal	1.56	STK32B
Markby et al ., (2020b)	Grade 4 with normal	1.56	SCG3
Markby et al., (2020b)	Grade 4 with normal	1.57	SERPINI1
Markby et al ., (2020b)	Grade 4 with normal	1.57	PCP4L1
Markby et al ., (2020b)	Grade 4 with normal	1.57	DDAH1
Markby et al ., (2020b)	Grade 4 with normal	1.58	CYR61
Markby et al ., (2020b)	Grade 4 with normal	1.58	CKAP2L
Markby et al ., (2020b)	Grade 4 with normal	1.58	EPHX3
Markby et al ., (2020b)	Grade 4 with normal	1.58	FLNA
Markby et al ., (2020b)	Grade 4 with normal	1.59	LOC479476
Markby et al ., (2020b)	Grade 4 with normal	1.59	LOC100856200
Markby et al ., (2020b)	Grade 4 with normal	1.59	FILIP1
Markby et al ., (2020b)	Grade 4 with normal	1.59	MT2A
Markby et al ., (2020b)	Grade 4 with normal	1.59	ARL4C
Markby et al ., (2020b)	Grade 4 with normal	1.59	DBX2
Markby et al ., (2020b)	Grade 4 with normal	1.59	MNS1
Markby et al ., (2020b)	Grade 4 with normal	1.6	MX1
Markby et al ., (2020b)	Grade 4 with normal	1.61	NUAK1
Markby et al ., (2020b)	Grade 4 with normal	1.61	MSR1
Markby et al ., (2020b)	Grade 4 with normal	1.61	KHDRBS3
Markby et al ., (2020b)	Grade 4 with normal	1.61	C16H8orf4
Markby et al ., (2020b)	Grade 4 with normal	1.61	ENTPD3
Markby et al ., (2020b)	Grade 4 with normal	1.61	CYBB
Markby et al ., (2020b)	Grade 4 with normal	1.62	CDKN1A
Markby et al ., (2020b)	Grade 4 with normal	1.62	CCL8
Markby et al ., (2020b)	Grade 4 with normal	1.62	ID4
Markby et al ., (2020b)	Grade 4 with normal	1.62	SLIT3
Markby et al ., (2020b)	Grade 4 with normal	1.62	ANXA8L1
Markby et al., (2020b)	Grade 4 with normal	1.62	SEPTIN6
Markby et al ., (2020b)	Grade 4 with normal	1.63	SEMA6B
Markby et al ., (2020b)	Grade 4 with normal	1.63	MGARP
Markby et al ., (2020b)	Grade 4 with normal	1.63	ENSCAFG00000002944 2
Markby et al ., (2020b)	Grade 4 with normal	1.63	LOXL2
Markby et al ., (2020b)	Grade 4 with normal	1.63	MX2

Markby et al ., (2020b)	Grade 4 with normal	1.63	ETV4
Markby et al ., (2020b)	Grade 4 with normal	1.64	SYTL2
Markby et al ., (2020b)	Grade 4 with normal	1.64	TNC
Markby et al ., (2020b)	Grade 4 with normal	1.64	ECE2
Markby et al ., (2020b)	Grade 4 with normal	1.64	ADAM19
Markby et al ., (2020b)	Grade 4 with normal	1.64	DHX58
Markby et al ., (2020b)	Grade 4 with normal	1.65	NOV
Markby et al ., (2020b)	Grade 4 with normal	1.65	NME1
Markby et al ., (2020b)	Grade 4 with normal	1.65	GCSAM
Markby et al ., (2020b)	Grade 4 with normal	1.66	CCL5
Markby et al ., (2020b)	Grade 4 with normal	1.66	CLEC7A
Markby et al ., (2020b)	Grade 4 with normal	1.66	HDAC9
Markby et al ., (2020b)	Grade 4 with normal	1.66	GIMAP2
Markby et al ., (2020b)	Grade 4 with normal	1.66	COL4A1
Markby et al ., (2020b)	Grade 4 with normal	1.66	OSBPL10
Markby et al ., (2020b)	Grade 4 with normal	1.66	PIK3AP1
Markby et al ., (2020b)	Grade 4 with normal	1.67	SKAP2
Markby et al ., (2020b)	Grade 4 with normal	1.67	IL18
Markby et al ., (2020b)	Grade 4 with normal	1.67	ENSCAFG0000003248 3
Markby et al ., (2020b)	Grade 4 with normal	1.67	ANLN
Markby et al ., (2020b)	Grade 4 with normal	1.67	TMEM178A
Markby et al ., (2020b)	Grade 4 with normal	1.67	SIX1
Markby et al ., (2020b)	Grade 4 with normal	1.68	GRID2
Markby et al ., (2020b)	Grade 4 with normal	1.68	LOC100856638; UPP1
Markby et al ., (2020b)	Grade 4 with normal	1.68	ENSCAFG0000003015 6
Markby et al ., (2020b)	Grade 4 with normal	1.68	AHNAK2
Markby et al ., (2020b)	Grade 4 with normal	1.69	EGR2
Markby et al ., (2020b)	Grade 4 with normal	1.69	LPP
Markby et al ., (2020b)	Grade 4 with normal	1.69	MEOX2
Markby et al ., (2020b)	Grade 4 with normal	1.69	RELN
Markby et al ., (2020b)	Grade 4 with normal	1.7	BNC2
Markby et al ., (2020b)	Grade 4 with normal	1.7	DAPP1
Markby et al ., (2020b)	Grade 4 with normal	1.7	C5AR1
Markby et al ., (2020b)	Grade 4 with normal	1.7	ADAM 22
Markby et al ., (2020b)	Grade 4 with normal	1.7	CACNA1A
Markby et al ., (2020b)	Grade 4 with normal	1.71	LMOD1
Markby et al ., (2020b)	Grade 4 with normal	1.72	BNC2
Markby et al ., (2020b)	Grade 4 with normal	1.72	ABCC4
Markby et al ., (2020b)	Grade 4 with normal	1.73	SATB2
Markby et al ., (2020b)	Grade 4 with normal	1.73	DDC
Markby et al ., (2020b)	Grade 4 with normal	1.73	VASH2
Markby et al ., (2020b)	Grade 4 with normal	1.73	VCAM1
Markby et al ., (2020b)	Grade 4 with normal	1.74	RSAD2
Markby et al ., (2020b)	Grade 4 with normal	1.74	OSR1
Markby et al., (2020b)	Grade 4 with normal	1.74	ENSCAFG0000002534
			5

Markby et al ., (2020b)	Grade 4 with normal	1.74	ENSCAFG0000002534
			5
Markby et al ., (2020b)	Grade 4 with normal	1.74	ENSCAFG0000002534
			5
Markby et al ., (2020b)	Grade 4 with normal	1.75	CYTL1
Markby et al ., (2020b)	Grade 4 with normal	1.75	THBS 4
Markby et al ., (2020b)	Grade 4 with normal	1.76	HAVCR1
Markby et al ., (2020b)	Grade 4 with normal	1.76	ZNF804B
Markby et al ., (2020b)	Grade 4 with normal	1.77	ENSCAFG0000002558
			9
Markby et al ., (2020b)	Grade 4 with normal	1.77	ENSCAFG0000003100
			3
Markby et al ., (2020b)	Grade 4 with normal	1.77	LBH
Markby et al ., (2020b)	Grade 4 with normal	1.77	NDNF
Markby et al ., (2020b)	Grade 4 with normal	1.77	SLCO2A1
Markby et al ., (2020b)	Grade 4 with normal	1.77	ENSCAFG0000002039
			2
Markby et al ., (2020b)	Grade 4 with normal	1.78	GAP43
Markby et al ., (2020b)	Grade 4 with normal	1.79	STK17B
Markby et al ., (2020b)	Grade 4 with normal	1.79	ARNTL2
Markby et al ., (2020b)	Grade 4 with normal	1.79	MCAM
Markby et al ., (2020b)	Grade 4 with normal	1.8	CD86
Markby et al ., (2020b)	Grade 4 with normal	1.8	SBSPON
Markby et al ., (2020b)	Grade 4 with normal	1.81	WISP1
Markby et al ., (2020b)	Grade 4 with normal	1.81	BTK
Markby et al ., (2020b)	Grade 4 with normal	1.81	LOC612564
Markby et al ., (2020b)	Grade 4 with normal	1.81	TMEM236
Markby et al ., (2020b)	Grade 4 with normal	1.81	TMEM255A
Markby et al ., (2020b)	Grade 4 with normal	1.82	ATP8B1
Markby et al ., (2020b)	Grade 4 with normal	1.82	FOXS1
Markby et al ., (2020b)	Grade 4 with normal	1.82	TNFRSF11B
Markby et al ., (2020b)	Grade 4 with normal	1.82	TYSND1
Markby et al ., (2020b)	Grade 4 with normal	1.82	PXDNL
Markby et al ., (2020b)	Grade 4 with normal	1.83	ENSCAFG0000001732
			6
Markby et al ., (2020b)	Grade 4 with normal	1.83	CLEC4G
Markby et al ., (2020b)	Grade 4 with normal	1.84	LTBP2
Markby et al ., (2020b)	Grade 4 with normal	1.85	ADAM28
Markby et al ., (2020b)	Grade 4 with normal	1.85	SMPDL3A
Markby et al ., (2020b)	Grade 4 with normal	1.86	CPNE4
Markby et al ., (2020b)	Grade 4 with normal	1.86	EGR3
Markby et al ., (2020b)	Grade 4 with normal	1.87	GPER1
Markby et al ., (2020b)	Grade 4 with normal	1.87	CLEC5A
Markby et al ., (2020b)	Grade 4 with normal	1.87	EDN1
Markby et al ., (2020b)	Grade 4 with normal	1.87	IL7R
Markby et al ., (2020b)	Grade 4 with normal	1.88	SLC7A11
Markby et al ., (2020b)	Grade 4 with normal	1.88	CGREF1
Markby et al ., (2020b)	Grade 4 with normal	1.88	ARAP2
Markby et al ., (2020b)	Grade 4 with normal	1.88	CD70

Markby et al ., (2020b)	Grade 4 with normal	1.89	ANGPTL1
Markby et al ., (2020b)	Grade 4 with normal	1.9	CAPG
Markby et al ., (2020b)	Grade 4 with normal	1.9	TNFRSF12A
Markby et al., (2020b)	Grade 4 with normal	1.9	ENSCAFG0000000604 6
Markby et al ., (2020b)	Grade 4 with normal	1.9	ENSCAFG0000000604 6
Markby et al ., (2020b)	Grade 4 with normal	1.9	ENSCAFG0000000604 6
Markby et al ., (2020b)	Grade 4 with normal	1.9	MFSD2A
Markby et al., (2020b)	Grade 4 with normal	1.9	ALK
Markby et al., (2020b)	Grade 4 with normal	1.91	DLA-79
Markby et al., (2020b)	Grade 4 with normal	1.91	RGS2
Markby et al ., (2020b)	Grade 4 with normal	1.91	MRVI1
Markby et al., (2020b)	Grade 4 with normal	1.91	SMOC2
Markby et al., (2020b)	Grade 4 with normal	1.91	NID2
Markby et al., (2020b)	Grade 4 with normal	1.91	NXPH3
Markby et al., (2020b)	Grade 4 with normal	1.92	USP18
Markby et al ., (2020b)	Grade 4 with normal	1.93	ENSCAFG0000001904 8
Markby et al., (2020b)	Grade 4 with normal	1.94	LYZF2
Markby et al., (2020b)	Grade 4 with normal	1.95	TREML1
Markby et al., (2020b)	Grade 4 with normal	1.95	CLEC3A
Markby et al., (2020b)	Grade 4 with normal	1.95	DDX60
Markby et al., (2020b)	Grade 4 with normal	1.97	DAPK2
Markby et al., (2020b)	Grade 4 with normal	1.99	ADAM22
Markby et al., (2020b)	Grade 4 with normal	1.99	SLIT3
Markby et al., (2020b)	Grade 4 with normal	2	HTR2A
Markby et al., (2020b)	Grade 4 with normal	2	FNDC1
Markby et al., (2020b)	Grade 4 with normal	2.01	AGMO
Markby et al., (2020b)	Grade 4 with normal	2.03	COL4A2
Markby et al., (2020b)	Grade 4 with normal	2.03	PLCXD3
Markby et al., (2020b)	Grade 4 with normal	2.05	PAPPA
Markby et al., (2020b)	Grade 4 with normal	2.07	CYTIP
Markby et al., (2020b)	Grade 4 with normal	2.07	C6
Markby et al., (2020b)	Grade 4 with normal	2.07	CD80
Markby et al., (2020b)	Grade 4 with normal	2.08	TREM1
Markby et al., (2020b)	Grade 4 with normal	2.09	TREM2
Markby et al., (2020b)	Grade 4 with normal	2.1	ENSCAFG0000000208 6
Markby et al ., (2020b)	Grade 4 with normal	2.1	TNFSF15
Markby et al., (2020b)	Grade 4 with normal	2.15	PTGS2
Markby et al., (2020b)	Grade 4 with normal	2.16	UCHL1
Markby et al., (2020b)	Grade 4 with normal	2.16	FCGR1A
Markby et al ., (2020b)	Grade 4 with normal	2.19	BMP6
Markby et al., (2020b)	Grade 4 with normal	2.19	ELFN1
Markby et al., (2020b)	Grade 4 with normal	2.2	ENSCAFG0000000604 6

Markby et al ., (2020b)	Grade 4 with normal	2.2	ENSCAFG0000000604
			6
Markby et al ., (2020b)	Grade 4 with normal	2.2	ENSCAFG0000000604
			6
Markby et al ., (2020b)	Grade 4 with normal	2.22	CASP14
Markby et al ., (2020b)	Grade 4 with normal	2.23	RGS4
Markby et al ., (2020b)	Grade 4 with normal	2.25	KCNMB1
Markby et al., (2020b)	Grade 4 with normal	2.25	SDK2
Markby et al ., (2020b)	Grade 4 with normal	2.33	ANGPT1
Markby et al ., (2020b)	Grade 4 with normal	2.35	LOC486400
Markby et al., (2020b)	Grade 4 with normal	2.35	PAPPA2
Markby et al ., (2020b)	Grade 4 with normal	2.35	LOC100686047
Markby et al ., (2020b)	Grade 4 with normal	2.38	SPN
Markby et al ., (2020b)	Grade 4 with normal	2.38	HOXD8
Markby et al., (2020b)	Grade 4 with normal	2.4	NTRK3
Markby et al., (2020b)	Grade 4 with normal	2.41	RGS1
Markby et al ., (2020b)	Grade 4 with normal	2.45	CLDN1
Markby et al ., (2020b)	Grade 4 with normal	2.5	CSTA
Markby et al., (2020b)	Grade 4 with normal	2.51	NLGN4X
Markby et al., (2020b)	Grade 4 with normal	2.51	SERPINA1
Markby et al., (2020b)	Grade 4 with normal	2.52	LOC611538
Markby et al ., (2020b)	Grade 4 with normal	2.54	MYOCD
Markby et al., (2020b)	Grade 4 with normal	2.55	CNN1
Markby et al., (2020b)	Grade 4 with normal	2.73	LRRC3B
Markby et al., (2020b)	Grade 4 with normal	2.76	IGFBP2
Markby et al., (2020b)	Grade 4 with normal	2.83	TPM2
Markby et al., (2020b)	Grade 4 with normal	2.88	RXFP1
Markby et al., (2020b)	Grade 4 with normal	3	FGG
Markby et al., (2020b)	Grade 4 with normal	3.11	HTR2B
Markby et al., (2020b)	Grade 4 with normal	3.19	EPHA3
Markby et al ., (2020b)	Grade 4 with normal	3.2	ENSCAFG0000000208 6
Markby et al., (2020b)	Grade 4 with normal	3.23	CDKN2A
Markby et al., (2020b)	Grade 4 with normal	3.24	ACTA2
Markby et al ., (2020b)	Grade 4 with normal	3.44	ENSCAFG0000000294 7
Markby et al ., (2020b)	Grade 4 with normal	3.68	CRLF1
Markby et al., (2020b)	Grade 4 with normal	3.77	MMP12
Markby et al., (2020b)	Grade 4 with normal	3.82	CCL13
Markby et al ., (2020b)	Grade 4 with normal	3.89	LRRN1
Markby et al., (2020b)	Grade 4 with normal	4.02	MYH11
Markby et al., (2020b)	Grade 4 with normal	4.13	CCL24
Markby et al., (2020b)	Grade 4 with normal	4.18	ACTG2
Markby et al ., (2020b)	Grade 4 with normal	4.34	SERPINE1
Markby et al., (2020b)	Grade 4 with normal	4.97	CEMIP
Markby et al., (2020b)	Grade 4 with normal	5.07	CDKN2A
Markby et al., (2020b)	Grade 4 with normal	5.63	CXCL8
Markby et al ., (2020b)	Grade 4 with normal	5.72	ENSCAFG0000002956 8

Markby et al ., (2020b) Grade 4 with normal
5.72
5.89
9.57

Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 16.73
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 16.64
Markby et al., (2020b) "disease" dissected with "normal" dissectı - 16.27
Markby et al., (2020b) "disease" dissected with "normal" dissecti - 16.25
Markby et al.,(2020b) "disease" dissected with "normal" dissectı - 12.87
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 12.85
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 9.72
Markby et al ., (2020b) "disease" dissected with "normal" dissecti - 8.95
Markby et al ., (2020b) "disease" dissected with "normal" dissectı -8.91
Markby et al ., (2020b) "disease" dissected with "normal" dissecti - 8.9
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 8.49
Markby et al ., (2020b) "disease" dissected with "normal" dissectı -8.09
Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 7.81
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 7.59
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 6.72
Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 6.59
Markby et al ., (2020b) "disease" dissected with "normal" dissecti - 5.99
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 5.77
Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 5.73
Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 5.49
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 5.22
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 5.18
Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 4.82
Markby et al ., (2020b) "disease" dissected with "normal" dissect - -4.7
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 4.66
Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 4.58
Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 4.32
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 4.31
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 4.28
Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 4.22
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 4.02
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 4
Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 3.79
Markby et al ., (2020b) "disease" dissected with "normal" dissectı -3.78
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 3.71
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 3.69
Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 3.51
Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 3.43
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 3.42
Markby et al ., (2020b) "disease" dissected with "normal" dissectı -3.4
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 3.23
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 3.19

ENSCAFG0000002956 8

ENSCAFG0000002956
8
SFRP2
ENSCAFG0000002274
3

ADIPOQ

PCK1
PLIN4
CIDEC
F3
THRSP
MMRN1
FGL1
SLC22A1
DGAT2
SCN7A
LOC479668
GPD1
CIDEA
PLIN1
FFAR4
PHEX
CILP
AGT
TUSC5
EPYC
MGST1
AQP3
LGALS12
CD36
ACVR1C
TSHR
SGK2
PCP4
TNMD
PPARG
ASPA
COMP
SIX1
CXCL12
ZNF385B
OMD
ZNF385B
PROKR1
NRXN1
CLCA2
MAL

Markby et al ., (2020b) "disease" dissected with "normal" dissecti - 3.12

NRXN1
LOC476900
CFH
FMO2
IGF2
CHL1
SDR16C5
CALB2
MAL2
LYZF2
KLKB1
ABCA6
LIPE
ACKR4
WDR88
KCNT2
SLITRK6
ACSM3
GALNT15
NNAT
LGI1
BMP5
ERICH3
ENPEP
ABCD2 LEP LRIG3 AGMO WISP3 CLDN5 Mar-01 FAM213A
NMUR2
PDE8B
MLXIPL
ISM1
F2RL2
CFD
FAT3
ALDH1A3
ANGPTL5
TENM2
PCOLCE2 SDK1 LPAR4
RASGRF2
ANGPTL7 CCK

Markby et al ., (2020b) "disease" dissected with "normal" dissect - 2.02

SCD
OGN MRAP SDK1

KANK3
TLL1
ADIPOR2
LPIN1
TMEM235
ABCA8
HGF
SEMA3D
VEGFC
LAYN
ESR1
INSIG1
UCP1
SYBU
C1QTNF7
GPLD1
ENOX1
CDRT4
ADRA1A
MYBL1
THSD7A
THSD7A
THSD7A
STC2
HMGCS1
COL14A1
LEPR
LIFR
EYA4
MCHR1
ADGRB3
WISP2
GREM2
ADH4
LOC476006
SEMA3C
HCAR1
AMPH
PLA2G16
TENM2
CDKL1
SCNN1B
SGCG
SLC10A6

Markby et al ., (2020b) "disease" dissected with "normal" dissecti - 1.67
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.67
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.66
Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.65
Markby et al ., (2020b) "disease" dissected with "normal" dissectı -1.64 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.63 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.63 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.62 Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 1.61 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.61 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.59 Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 1.58 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.58 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.57 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.57 Markby et al ., (2020b) "disease" dissected with "normal" dissectı -1.57 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.56 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.56 Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 1.55 Markby et al ., (2020b) "disease" dissected with "normal" dissectı -1.55 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.55 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.54 Markby et al ., (2020b) "disease" dissected with "normal" dissectı -1.54 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.53 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.53 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.53 Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 1.53 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.52 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.52 Markby et al ., (2020b) "disease" dissected with "normal" dissectı - 1.52 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.51 Markby et al ., (2020b) "disease" dissected with "normal" dissect - 1.51 Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.51 Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.51 Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.51 Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.51 Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.52 Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.52 Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.52 Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.52 Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.52 Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.52 Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.52 Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.52 Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.52 Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.53 Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.53 Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.54

SIDT1
LOC490151
MAP2K6
FMN2
ADGRB3
SLC18A2
SCN9A
GHR
SVEP1
LYVE1
LOC610975
NIPSNAP1
GRIA1
HMGCLL1 EBF2

SMOC1
ADAMTS9
C28H10orf10
AGMO
EFCC1
IGFBP2
SLC4A4
HRH2
MAB21L2 FZD4

IGFBP6
GPR1
PDE3B
EPHX2
SIX4
EBF2
PLCL1
LOC100683099
BMP8B
ANPEP
SCG3
SHC3
PARVG
DLA-DMB
CDK6
CACNA1A
SLC4A8
PIK3AP1
LY9
CAMTA1
LOC484897
BLNK
IKZF1

Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.54
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.54
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.54
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.54
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.55
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.55
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.56
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.56
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.56
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.57
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.57
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.57
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.57
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.57
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.57
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.58
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.58
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.58
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.58
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.59
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.59
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.59
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.59
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.6
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.6
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.6
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.6
Markby et al., (2020b) "disease" dissected with "normal" dissectı 1.6
Markby et al., (2020b) "disease" dissected with "normal" dissectı 1.6
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.6
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.61
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.61
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.61
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.61
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.62
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.62
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.62
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.63
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.63
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.63
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.64
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.64
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.65
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.65
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.66
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.66
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.67
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.67

PTPN5
CD86
LOC478984
CDH23
IL31RA
CSF2RA
CSF3R
FCGR1A
HEPACAM
PHLDA1
CAPG
HTR2B
TMEM229B
GJC1
PCYT1B
ELOF1
PRPH
CD80
HAVCR1
CLEC7A
ENO2
DAPP1
SLC16A6
PLAUR
CYTH4
ALOX5AP
HHEX
DUSP5
IL21R
APCDD1
LOC481722
TBXAS1
FERMT3
ARAP2
KCNN4
LOC482987
LOC100856638
CA12
CLDN1
CYTIP
TMEM59L
RGS10
LY86
HTR4
MRVI1
ASPM
WISP1
LPXN

Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.67
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.67
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.67
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.67
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.67
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.7
Markby et al., (2020b) "disease" dissected with "normal" dissect 1.7
Markby et al., (2020b) "disease" dissected with "normal" dissect 1.7
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.71
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.71
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.71
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.71
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.72
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.72
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.74
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.74
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.76
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.76
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.77
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.79
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.79
Markby et al., (2020b) "disease" dissected with "normal" dissect 1.8
Markby et al.,(2020b) "disease" dissected with "normal" dissect 1.8
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.8
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.81
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.83
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.89
Markby et al., (2020b) "disease" dissected with "normal" dissectı 1.9
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.93
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.94
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.95
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.95
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.95
Markby et al ., (2020b) "disease" dissected with "normal" dissect 1.96
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 1.99
Markby et al ., (2020b) "disease" dissected with "normal" dissect 2.07
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 2.11
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 2.13
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 2.22
Markby et al ., (2020b) "disease" dissected with "normal" dissect 2.25
Markby et al ., (2020b) "disease" dissected with "normal" dissect 2.26
Markby et al ., (2020b) "disease" dissected with "normal" dissecti 2.27
Markby et al ., (2020b) "disease" dissected with "normal" dissect 2.27
Markby et al ., (2020b) "disease" dissected with "normal" dissect 2.33
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 2.38
Markby et al ., (2020b) "disease" dissected with "normal" dissect 2.41
Markby et al ., (2020b) "disease" dissected with "normal" dissect 2.49
Markby et al ., (2020b) "disease" dissected with "normal" dissectı 2.59

ADGRG1 CCR5
MMP12
IL10RA
TRIM9
PLAT
ADAM28
CH25H
TNFSF8
UNC5D
CLSTN2
KMO
CTHRC1
LPAR3
LOC102152056
NDP
SMPDL3A
DLA-DMA
DLA-DQB1
ACTA2
ITGAX
CLEC5A
GJB2
CCL24
SALL3
C5AR1
UBE2C
HBEGF
FNDC1
EGR2
TREM1
SLC10A4
SELL
TVP23A
CDKN2A
TUBB3
LOC611538
IL2RA
RGS4
SELE
SERPINA1
LOC481248
SBSPON
CCL3
CSTA
SFRP2
CDKN2A
CNTNAP4

Markby et al ., (2020b) "disease" dissected with "normal" dissect 2.6

CCL13
CRLF1
SLITRK2 CCL7

OPRD1
LOC612122
LOC608320
HPRT1
GABRG3
CAPN6
KCNK1
TSPAN2
MIRLET7D
FBXO48
CDH2
WDR54
SLC2A12
LOC102156643
CDKN2AIP
NELL2
TMEM55A
TMEM35
ARMT1
C15H12orf29
ATP6V0E2
MCAT
MBLAC2
PURA
ASB7
PSAT1
SEC62
ADCY2
TSPAN12
PSMD9
MTO1
NEU3
PTGS1
SPIN4
CMTM6
GATM
MYCN
SEC22A
LOC102152109
MOB3C
SEH1L
SNAI2
PACRGL
MARS2

Markby et al ., (2020b)	"normal" dissected with whole valve norn	-1.53	PMP22
Markby et al ., (2020b)	"normal" dissected with whole valve norn	-1.52	ALOX5AP
Markby et al ., (2020b)	"normal" dissected with whole valve norn	-1.51	RMDN3
Markby et al ., (2020b)	"normal" dissected with whole valve norn	-1.51	PABPC5
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.51	FBXO46
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.51	MGARP
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.51	MEDAG
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.51	NPAS3
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.52	RABAC1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.52	AGPAT4
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.52	DNTTIP1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.52	TP53RK
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.52	PSMD1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.52	TLR1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.52	CLCN2
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.52	LMF1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.53	RNASET2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.53	NUAK1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.53	MNF1
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.53	CPSF1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.53	INSIG1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.53	PREB
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.53	SP100
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.53	DECR1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.53	MINK1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.53	SNX29
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.53	VASH1
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.54	APBA1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.54	TYROBP
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.54	C12H6orf136
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.54	RGS22
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.54	NUDT17
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.54	SLC10A6
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.54	NEXN
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.55	SMARCC2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.55	ZC3H3
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.55	PYCRL
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.55	TSTA3
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.55	GSTK1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.55	SUCLG1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.55	TAS1R2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.55	RPL21
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.56	HIVEP2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.56	COQ10A
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.56	LOC102155065
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.56	NDUFB7
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.56	LOC100687825
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.56	PHB

Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.56	ADGRG2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.57	RABEP2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.58	TBC1D10C
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.58	GTPBP4
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.58	USE1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.58	LOC611113
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.58	DNAJC6
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.58	STX1B
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.58	SLC25A29
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.59	JRK
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.59	LIMK2
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.6	ADIPOR2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.6	GHDC
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.61	METTL17
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.61	ANGPT2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.61	RPL27A
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.61	NFKB2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.61	ALCAM
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.61	PLEKHA6
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.62	FOXE3
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.63	SLC22A4
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.63	TRMT112
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.63	LOC106557821
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.63	C5H16orf74
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.63	LPAR3
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.64	RNF32
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.64	LOC106558651
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.64	LOC488298
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.64	DNAJB2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.64	CLDN3
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.64	IRAK1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.65	SYTL3
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.65	UBAC2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.66	HOXA5
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.66	RPL23
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.67	CLEC5A
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.67	SLC39A12
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.67	IGFBP6
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.67	KIAA2012
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.67	ASPSCR1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.68	STEAP1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.69	FAM110A
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.69	WSCD2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.69	AAAS
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.69	LOC607806
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.7	METTL24
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.7	RGS22
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.7	AMDHD1

Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.7	LOC611835
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.7	NAT6
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.7	GREM2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.71	RPL7
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.71	FBXO28
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.72	CAECAM1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.72	CMPK1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.72	LOC102153034
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.72	TMEM256
Markby et al ., (2020b)	"normal" dissected with whole valve norm	1.73	PLA2G16
Markby et al ., (2020b)	"normal" dissected with whole valve norm	1.73	GPC5
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.73	PHF23
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.74	LOC612471
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.74	PRR16
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.74	SNX21
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.76	PSMC3
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.76	CAPS
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.76	NFATC4
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.77	MYBL1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.78	CHSY3
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.79	DAPK2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.79	VASH2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.81	GPIHBP1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.81	C18H11orf85
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.81	LOC102151205
Markby et al ., (2020b)	"normal" dissected with whole valve norm	1.81	ECI2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.81	ZC3H12B
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.82	MFSD2A
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.82	INPP1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.82	RPS2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.83	SYN2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.83	MRPL48
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.84	FGF1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.84	VAT1L
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.87	TMEM200A
Markby et al., (2020b)	"normal" dissected with whole valve norn	1.88	RETN
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.92	MAL
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.93	WISP1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.93	GMPPA
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.95	TREM2
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.95	MX1
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.96	CA3
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.97	UBA52
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.99	PTPN23
Markby et al ., (2020b)	"normal" dissected with whole valve norn	1.99	ADAM33
Markby et al ., (2020b)	"normal" dissected with whole valve norn	2	DUSP22
Markby et al ., (2020b)	"normal" dissected with whole valve norn	2.01	CMTM8
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.03	SIT1

Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.03	KRT18
Markby et al ., (2020b)	"normal" dissected with whole valve norn	2.07	LOC106559613
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.11	GTF2A2
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.13	ANGPTL1
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.13	HLF
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.18	NMUR2
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.18	CIDEA
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.23	B3GAT3
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.25	TYSND1
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.29	LEPR
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.42	TCEANC
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.49	CALB2
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.68	IL1RL1
Markby et al ., (2020b)	"normal" dissected with whole valve norm	2.88	F3
Markby et al ., (2020b)	"normal" dissected with whole valve norm	3.1	LOC608162
Markby et al ., (2020b)	"normal" dissected with whole valve norm	3.5	DGAT2
Markby et al ., (2020b)	"normal" dissected with whole valve norm	3.63	LYZF2
Liet al ., (2015)	LV tissue	-3.81	A5H028
Liet al ., (2015)	LV tissue	NA	A7XZY9
Liet al., (2015)	LV tissue	-6.45	AADAC
Liet al ., (2015)	LV tissue	-2.9	ABCA2
Liet al ., (2015)	LV tissue	-3.56	ABCA3
Liet al., (2015)	LV tissue	3	ABCC4
Liet al., (2015)	LV tissue	-5.49	ABCC8
Li et al ., (2015)	LV tissue	-2.29	ABHD6
Liet al ., (2015)	LV tissue	2.27	ABRA
Li et al ., (2015)	LV tissue	3.64	ABRACL
Li et al ., (2015)	LV tissue	5.91	ACER2
Li et al ., (2015)	LV tissue	-3.67	ACPP
Liet al ., (2015)	LV tissue	-2.98	ACSL1
Liet al ., (2015)	LV tissue	2.43	ACTB
Li et al ., (2015)	LV tissue	3.09	ACTG1
Liet al ., (2015)	LV tissue	3.71	ACTN1
Liet al ., (2015)	LV tissue	4.23	ADAMTS1
Li et al ., (2015)	LV tissue	13.36	ADAMTS4
Li et al ., (2015)	LV tissue	-4.12	ADAMTS7
Liet al ., (2015)	LV tissue	13.83	ADAMTS9
Liet al ., (2015)	LV tissue	-2.74	ADCY3
Liet al., (2015)	LV tissue	-2.67	ADCY5
Li et al ., (2015)	LV tissue	-4.65	ADCYAP1R1
Liet al ., (2015)	LV tissue	3.29	ADML
Liet al ., (2015)	LV tissue	2.22	ADSS
Liet al ., (2015)	LV tissue	-3.45	AFAP1L2
Li et al ., (2015)	LV tissue	-5.02	AGXT2L1
Liet al., (2015)	LV tissue	100.55	AHSP
Liet al., (2015)	LV tissue	5.42	AKAP12
Liet al., (2015)	LV tissue	2.38	ALAS1
Liet al., (2015)	LV tissue	3.59	ALAS2

Li et al ., (2015)	LV tissue	2.79	AMIGO2
Li et al ., (2015)	LV tissue	-3.32	AMOT
Liet al ., (2015)	LV tissue	3.87	ANF
Li et al ., (2015)	LV tissue	-4.22	ANGEL1
Li et al ., (2015)	LV tissue	-7.2	ANGPTL1
Li et al ., (2015)	LV tissue	-2.99	ANK1
Liet al ., (2015)	LV tissue	-2.99	ANKRD29
Li et al., (2015)	LV tissue	3.18	ANKRD37
Liet al ., (2015)	LV tissue	2.71	AOFA
Liet al., (2015)	LV tissue	3.4	AP1S3
Liet al., (2015)	LV tissue	3.07	AP3S1
Liet al., (2015)	LV tissue	-9.21	APLNR
Li et al ., (2015)	LV tissue	-2.18	APOL5
Liet al., (2015)	LV tissue	7.67	APOLD1
Liet al., (2015)	LV tissue	2.38	AQP1
Li et al ., (2015)	LV tissue	53.71	AQP9
Li et al ., (2015)	LV tissue	2.19	ARF4
Liet al., (2015)	LV tissue	7.42	ARHGAP15
Liet al., (2015)	LV tissue	3.55	ARID5A
Li et al ., (2015)	LV tissue	4.41	ARL4A
Li et al ., (2015)	LV tissue	3.68	ARNTL
Li et al., (2015)	LV tissue	2.8	ARPC1B
Li et al., (2015)	LV tissue	2.94	ARPC3
Liet al ., (2015)	LV tissue	2.38	ART3
Liet al., (2015)	LV tissue	-5.58	ART5
Liet al., (2015)	LV tissue	-2.98	ASB13
Liet al., (2015)	LV tissue	-3.46	ASB18
Liet al ., (2015)	LV tissue	2.98	ASB9
Liet al ., (2015)	LV tissue	4.45	ASNS
Liet al., (2015)	LV tissue	-3.06	ASPA
Liet al., (2015)	LV tissue	2.73	ATP13A3
Liet al., (2015)	LV tissue	2.52	ATP1B3
Liet al ., (2015)	LV tissue	-3.37	ATP2B4
Li et al ., (2015)	LV tissue	-4.58	ATXN7L1
Liet al., (2015)	LV tissue	51.17	B0FF11
Liet al., (2015)	LV tissue	-4.46	B2CRU9
Liet al., (2015)	LV tissue	-6.96	B8PZS8
Li et al ., (2015)	LV tissue	-4.21	BCAR3
Liet al ., (2015)	LV tissue	32.42	BCL2A1
Liet al., (2015)	LV tissue	5.59	BCL3
Liet al., (2015)	LV tissue	-2.41	BCL7A
Li et al., (2015)	LV tissue	13.87	BDNF
Li et al ., (2015)	LV tissue	3.2	BHLHE40
Liet al., (2015)	LV tissue	-7.47	BMF
Liet al ., (2015)	LV tissue	6.33	BSPRY
Liet al., (2015)	LV tissue	2.59	BTG2
Liet al., (2015)	LV tissue	2.29	BZW1
Liet al ., (2015)	LV tissue	3.53	C10orf10

Li et al ., (2015)	LV tissue	-3.3	C12orf52
Li et al ., (2015)	LV tissue	5	C13orf33
Liet al., (2015)	LV tissue	3.93	C14orf37
Liet al., (2015)	LV tissue	20.59	C15orf48
Li et al ., (2015)	LV tissue	-2.49	C17orf28
Li et al ., (2015)	LV tissue	6.54	C17orf64
Liet al., (2015)	LV tissue	16.02	C19orf59
Liet al., (2015)	LV tissue	-3.63	C19orf68
Li et al ., (2015)	LV tissue	-3.64	C1orf192
Li et al ., (2015)	LV tissue	2.57	C1QA
Liet al., (2015)	LV tissue	2.97	C1QB
Liet al., (2015)	LV tissue	2.31	C1QC
Li et al ., (2015)	LV tissue	-3.39	C1QTNF2
Li et al ., (2015)	LV tissue	-2.94	C1QTNF7
Li et al ., (2015)	LV tissue	13.47	C5AR1
Li et al., (2015)	LV tissue	-2.3	C5orf4
Li et al ., (2015)	LV tissue	6.86	C5orf62
Li et al ., (2015)	LV tissue	-3.08	C5orf65
Li et al ., (2015)	LV tissue	2.86	C9orf153
Li et al., (2015)	LV tissue	NA	CA3
Li et al ., (2015)	LV tissue	5.5	CA4
Liet al., (2015)	LV tissue	-5.3	CA8
Liet al ., (2015)	LV tissue	-8.98	CAMKV
Li et al., (2015)	LV tissue	-9.3	CAPN11
Liet al., (2015)	LV tissue	-2.55	CASZ1
Liet al., (2015)	LV tissue	10.92	CCBP2
Liet al., (2015)	LV tissue	4.89	CCDC172
Li et al ., (2015)	LV tissue	-4.55	CCDC68
Liet al., (2015)	LV tissue	-5.76	CCDC8
Liet al., (2015)	LV tissue	-21.24	CCDC85C
Liet al., (2015)	LV tissue	19.56	CCL2
Liet al., (2015)	LV tissue	-9.34	CCL24
Li et al ., (2015)	LV tissue	-2.73	CCND1
Li et al., (2015)	LV tissue	2.39	CCNL1
Li et al ., (2015)	LV tissue	2.72	CD163
Li et al ., (2015)	LV tissue	2.46	CD22
Li et al ., (2015)	LV tissue	-2.67	CD248
Liet al., (2015)	LV tissue	12.83	CD274
Li et al., (2015)	LV tissue	4.77	CD300C
Li et al., (2015)	LV tissue	-10.19	CD300LG
Li et al ., (2015)	LV tissue	-7.32	CDH15
Liet al., (2015)	LV tissue	10.44	CH25H
Li et al., (2015)	LV tissue	-3.21	CIDEA
Liet al., (2015)	LV tissue	-7.25	CIDEC
Liet al., (2015)	LV tissue	9.45	CLDN1
Liet al., (2015)	LV tissue	-3.38	CLDN4
Liet al., (2015)	LV tissue	-3.31	CLEC3B
Liet al ., (2015)	LV tissue	2.45	CLIC1

Li et al., (2015)	LV tissue	4.35	CLIC2
Li et al., (2015)	LV tissue	2.34	CLK1
Liet al., (2015)	LV tissue	-2.59	CLN6
Liet al., (2015)	LV tissue	-7.93	CMA1
Liet al., (2015)	LV tissue	2.48	CNN2
Liet al., (2015)	LV tissue	-2.67	COL14A1
Liet al., (2015)	LV tissue	2.7	COL16A1
Liet al., (2015)	LV tissue	2.72	CORO1A
Liet al., (2015)	LV tissue	2.83	COTL1
Liet al., (2015)	LV tissue	-5.86	CPA3
Liet al., (2015)	LV tissue	3.54	CPS1
Li et al., (2015)	LV tissue	NA	CRHR1
Li et al., (2015)	LV tissue	2.93	CRISPLD2
Li et al., (2015)	LV tissue	-4.59	CSAD
Li et al., (2015)	LV tissue	3.95	CSF1
Liet al., (2015)	LV tissue	10.55	CSF2RA
Li et al., (2015)	LV tissue	10.57	CSF3R
Liet al., (2015)	LV tissue	-3.9	CSGALNACT1
Liet al., (2015)	LV tissue	7.11	CSRNP1
Liet al., (2015)	LV tissue	6.85	CTGF
Liet al., (2015)	LV tissue	3.77	CTHRC1
Li et al., (2015)	LV tissue	2.61	CTTNBP2NL
Liet al., (2015)	LV tissue	8.09	CXCL14
Li et al., (2015)	LV tissue	3.33	CXCL16
Liet al., (2015)	LV tissue	2.28	CXorf36
Li et al., (2015)	LV tissue	-3.69	CYB561
Li et al., (2015)	LV tissue	-13.74	CYP1A1
Li et al., (2015)	LV tissue	3.5	CYP1B1
Liet al., (2015)	LV tissue	3.19	CYR61
Li et al., (2015)	LV tissue	-6.2	MMP11
Li et al., (2015)	LV tissue	-3.69	DACT1
Li et al., (2015)	LV tissue	-8.37	DAO
Liet al., (2015)	LV tissue	14.6	DARC
Liet al., (2015)	LV tissue	11.55	DDIT4
Li et al., (2015)	LV tissue	-7.03	DDN
Li et al., (2015)	LV tissue	3.44	DEF6
Liet al., (2015)	LV tissue	2.57	DEGS1
Li et al., (2015)	LV tissue	-2.44	DGCR2
Li et al., (2015)	LV tissue	6.4	DKK2
Li et al., (2015)	LV tissue	3.77	DLL1
Li et al., (2015)	LV tissue	3.13	DOK2
Liet al., (2015)	LV tissue	-18.13	DPP10
Li et al., (2015)	LV tissue	5.95	DRAM1
Liet al., (2015)	LV tissue	18.3	DUSP5
Li et al., (2015)	LV tissue	2.9	DUSP6
Liet al., (2015)	LV tissue	4.62	E5D812
Li et al., (2015)	LV tissue	-3.47	E5G722
Liet al., (2015)	LV tissue	5.43	E7ECW0

Li et al ., (2015)	LV tissue	3.66	EDNRB
Li et al., (2015)	LV tissue	5.27	EGR1
Li et al ., (2015)	LV tissue	-2.43	EHMT2
Li et al ., (2015)	LV tissue	2.34	ELL
Li et al ., (2015)	LV tissue	3.55	ELOVL7
Li et al., (2015)	LV tissue	4.78	EMB
Li et al ., (2015)	LV tissue	2.51	EMCN
Li et al ., (2015)	LV tissue	7.26	EMP1
Liet al., (2015)	LV tissue	3.16	EMR1
Liet al ., (2015)	LV tissue	4.16	ENTPD3
Liet al., (2015)	LV tissue	2.46	EPHA2
Li et al ., (2015)	LV tissue	-3.41	ERBB3
Li et al ., (2015)	LV tissue	-2.36	ERMP1
Liet al., (2015)	LV tissue	3.48	ERO1L
Liet al., (2015)	LV tissue	3.81	ERRFI1
Li et al ., (2015)	LV tissue	2.89	ESM1
Li et al ., (2015)	LV tissue	3.59	ETS2
Liet al., (2015)	LV tissue	-7.61	EXPH5
Liet al., (2015)	LV tissue	-4.11	EXTL1
Li et al ., (2015)	LV tissue	-2.85	EYA1
Li et al ., (2015)	LV tissue	-11.29	F1SX83
Li et al ., (2015)	LV tissue	-2.87	FADS1
Li et al., (2015)	LV tissue	-4.03	FAM110B
Li et al ., (2015)	LV tissue	3.19	FAM110D
Liet al ., (2015)	LV tissue	-2.42	FAM115A
Liet al., (2015)	LV tissue	-9.08	FAM166B
Li et al., (2015)	LV tissue	7.34	FAM176C
Liet al., (2015)	LV tissue	-3.32	FAM180B
Li et al ., (2015)	LV tissue	2.85	FAM188A
Liet al., (2015)	LV tissue	-4.36	FAM198B
Liet al ., (2015)	LV tissue	-4.93	FAM212A
Liet al., (2015)	LV tissue	-3.9	FAM26F
Liet al., (2015)	LV tissue	2.53	FAM43A
Liet al., (2015)	LV tissue	-3.14	FAM78A
Liet al., (2015)	LV tissue	-3.38	FAT1
Liet al., (2015)	LV tissue	-4.48	FBLN7
Li et al ., (2015)	LV tissue	-4.13	FBN2
Li et al., (2015)	LV tissue	-2.72	FBXO40
Li et al ., (2015)	LV tissue	7.13	FCGR1A
Li et al ., (2015)	LV tissue	-3.65	FCHO1
Liet al., (2015)	LV tissue	2.2	FDX1
Li et al., (2015)	LV tissue	20.22	FFAR2
Li et al ., (2015)	LV tissue	5.21	FGF7
Li et al ., (2015)	LV tissue	-3.54	FGFBP1
Li et al ., (2015)	LV tissue	5.68	FGL2
Li et al., (2015)	LV tissue	4.05	FGR
Liet al., (2015)	LV tissue	2.76	FHL1
Liet al ., (2015)	LV tissue	-2.83	FITM2

Li et al ., (2015)	LV tissue	3.76	FKBP5
Liet al ., (2015)	LV tissue	2.69	FLNB
Li et al ., (2015)	LV tissue	-3.18	FLYWCH2
Liet al., (2015)	LV tissue	-5.61	FMO2
Li et al ., (2015)	LV tissue	-3.73	FMO3
Liet al ., (2015)	LV tissue	-4.29	FNDC1
Liet al ., (2015)	LV tissue	9.93	FOS
Liet al., (2015)	LV tissue	NA	FOSL1
Li et al ., (2015)	LV tissue	8.08	FOSL2
Li et al ., (2015)	LV tissue	-19.56	FOXR1
Liet al., (2015)	LV tissue	-5.23	FREM2
Liet al., (2015)	LV tissue	2.28	FRIL
Li et al ., (2015)	LV tissue	2.32	FRIL
Li et al ., (2015)	LV tissue	2.85	FRMD8
Liet al ., (2015)	LV tissue	2.32	FSTL3
Liet al ., (2015)	LV tissue	-3	FYCO1
Li et al ., (2015)	LV tissue	-5.38	FZD8
Li et al ., (2015)	LV tissue	5.39	G0ZS87
Liet al ., (2015)	LV tissue	-4.04	GAB3
Liet al ., (2015)	LV tissue	6.4	GADD45B
Liet al ., (2015)	LV tissue	-4.67	GALNTL1
Liet al., (2015)	LV tissue	-2.23	GATA4
Li et al ., (2015)	LV tissue	-4.63	GBP6
Liet al., (2015)	LV tissue	3.17	GEM
Liet al ., (2015)	LV tissue	5.08	GFPT2
Liet al., (2015)	LV tissue	-5.99	GFRA2
Liet al., (2015)	LV tissue	-3.9	GJA1
Liet al., (2015)	LV tissue	-3.33	GLE1
Liet al., (2015)	LV tissue	2.94	GLIPR2
Liet al., (2015)	LV tissue	-17.35	GLT25D2
Liet al., (2015)	LV tissue	-3.43	GLTPD1
Liet al., (2015)	LV tissue	-2.57	GM2A
Liet al., (2015)	LV tissue	41.66	GNAT1
Liet al., (2015)	LV tissue	-2.42	GNB3
Li et al ., (2015)	LV tissue	2.91	GNE
Li et al., (2015)	LV tissue	13.94	GNRH1
Liet al ., (2015)	LV tissue	-4.53	GPD1
Liet al., (2015)	LV tissue	-3.08	GPR162
Liet al ., (2015)	LV tissue	2.93	GPR4
Liet al., (2015)	LV tissue	-2.79	GPT
Li et al ., (2015)	LV tissue	-3.23	GPT2
Liet al ., (2015)	LV tissue	2.36	GRAMD3
Liet al., (2015)	LV tissue	-4.49	GRIA3
Liet al., (2015)	LV tissue	2.56	GSTM3
Liet al., (2015)	LV tissue	3.82	HAPLN3
Liet al., (2015)	LV tissue	37.31	HAS1
Liet al., (2015)	LV tissue	58.03	HBA
Li et al ., (2015)	LV tissue	84.56	HBM

Li et al., (2015)	LV tissue	5.31	HGF
Li et al., (2015)	LV tissue	6.43	HIVEP3
Liet al., (2015)	LV tissue	5.76	HK2
Li et al., (2015)	LV tissue	-5.12	GDA
Liet al., (2015)	LV tissue	9.35	ENSCAFG0000000740 1
Li et al., (2015)	LV tissue	10.16	ENSCAFG0000002340 1
Liet al., (2015)	LV tissue	11.1	ENSCAFG0000003273 1
Liet al., (2015)	LV tissue	11.21	ENSCAFG0000000715 4
Liet al., (2015)	LV tissue	13.63	$\begin{aligned} & \text { ENSCAFG0000001126 } \\ & 3 \end{aligned}$
Liet al., (2015)	LV tissue	15.77	$\begin{aligned} & \text { ENSCAFG0000003217 } \\ & 3 \end{aligned}$
Liet al., (2015)	LV tissue	28.57	ENSCAFG0000000719 9
Liet al., (2015)	LV tissue	33.62	$\begin{aligned} & \text { ENSCAFG0000001495 } \\ & 0 \end{aligned}$
Liet al., (2015)	LV tissue	50.49	ENSCAFG0000003261 5
Liet al., (2015)	LV tissue	53.57	ENSCAFG0000000039 9
Liet al., (2015)	LV tissue	2.19	$\begin{aligned} & \text { ENSCAFG0000000251 } \\ & 7 \end{aligned}$
Liet al., (2015)	LV tissue	2.22	ENSCAFG0000000274 8
Liet al., (2015)	LV tissue	2.23	ENSCAFG0000000874 1
Liet al., (2015)	LV tissue	2.24	$\begin{aligned} & \text { ENSCAFG0000003155 } \\ & 7 \end{aligned}$
Liet al., (2015)	LV tissue	2.24	H3F3A
Liet al., (2015)	LV tissue	2.26	$\begin{aligned} & \text { ENSCAFG0000001722 } \\ & 1 \end{aligned}$
Liet al., (2015)	LV tissue	2.26	ENSCAFG0000000657 7
Liet al., (2015)	LV tissue	2.28	$\begin{aligned} & \text { ENSCAFG0000001590 } \\ & 3 \end{aligned}$
Liet al., (2015)	LV tissue	2.3	ENSCAFG0000001195 4
Liet al., (2015)	LV tissue	2.31	$\begin{aligned} & \text { ENSCAFG0000000711 } \\ & 2 \end{aligned}$
Liet al., (2015)	LV tissue	2.31	$\begin{aligned} & \text { ENSCAFG0000001222 } \\ & 2 \end{aligned}$
Liet al., (2015)	LV tissue	2.32	ENSCAFG0000002495 5
Liet al., (2015)	LV tissue	2.32	
Liet al., (2015)	LV tissue	2.33	ENSCAFG0000001496 8

Li et al ., (2015)	LV tissue	2.35	ENSCAFG0000001399
			0
Liet al ., (2015)	LV tissue	2.36	ENSCAFG0000001613
			1
Li et al ., (2015)	LV tissue	2.38	ENSCAFG0000000136
			9
Liet al ., (2015)	LV tissue	2.41	ENSCAFG0000000056
			5
Liet al ., (2015)	LV tissue	2.41	ENSCAFG0000000233
			6
Li et al ., (2015)	LV tissue	2.42	ENSCAFG0000000458
			9
Liet al ., (2015)	LV tissue	2.42	ENSCAFG0000003253
			7
Liet al ., (2015)	LV tissue	2.43	ENSCAFG0000001967
			7
Li et al ., (2015)	LV tissue	2.43	ENSCAFG0000000208
			4
Li et al ., (2015)	LV tissue	2.5	ENSCAFG0000002874
			4
Liet al ., (2015)	LV tissue	2.51	ENSCAFG0000000845
			6
Li et al ., (2015)	LV tissue	2.54	ENSCAFG0000001479
			0
Liet al ., (2015)	LV tissue	2.55	ENSCAFG0000001914
			1
Liet al ., (2015)	LV tissue	2.6	ENSCAFG0000000640
			3
Liet al ., (2015)	LV tissue	2.6	ENSCAFG0000003094
			2
Liet al ., (2015)	LV tissue	2.61	ENSCAFG0000003094
			3
Liet al ., (2015)	LV tissue	2.64	ENSCAFG0000003129
			9
Li et al ., (2015)	LV tissue	2.66	ENSCAFG0000002311
			1
Li et al ., (2015)	LV tissue	2.66	ENSCAFG0000000906
			5
Li et al ., (2015)	LV tissue	2.77	ENSCAFG0000000786
			5
Liet al ., (2015)	LV tissue	2.8	ENSCAFG0000000223
			7
Liet al ., (2015)	LV tissue	2.85	ENSCAFG0000002506
			3
Liet al ., (2015)	LV tissue	2.93	ENSCAFG0000001111
			9
Liet al ., (2015)	LV tissue	2.95	ENSCAFG0000000388
			0
Li et al ., (2015)	LV tissue	3.08	ENSCAFG0000003049
			8
Liet al ., (2015)	LV tissue	3.1	ENSCAFG0000003018
			7

Li et al ., (2015)	LV tissue	3.19	ENSCAFG0000001223
			3
Li et al ., (2015)	LV tissue	3.31	ENSCAFG0000001468
			9
Li et al ., (2015)	LV tissue	3.36	ENSCAFG0000001915
			9
Li et al ., (2015)	LV tissue	3.58	ENSCAFG0000001844
			0
Liet al ., (2015)	LV tissue	3.61	ENSCAFG0000000449
			6
Liet al ., (2015)	LV tissue	3.61	ENSCAFG0000001425
			6
Liet al ., (2015)	LV tissue	3.63	ENSCAFG0000000898
			9
Li et al ., (2015)	LV tissue	3.91	ENSCAFG0000002494
			4
Li et al ., (2015)	LV tissue	4	ENSCAFG0000000585
			2
Li et al ., (2015)	LV tissue	4.26	ENSCAFG0000003154
			3
Liet al ., (2015)	LV tissue	4.72	ENSCAFG0000003074
			6
Liet al ., (2015)	LV tissue	4.74	ENSCAFG0000000062
			4
Li et al ., (2015)	LV tissue	5.06	ENSCAFG0000000726
			9
Li et al ., (2015)	LV tissue	5.1	ENSCAFG0000000864
			8
Li et al ., (2015)	LV tissue	5.48	ENSCAFG0000000557
			5
Li et al ., (2015)	LV tissue	5.7	ENSCAFG0000001380
			5
Li et al ., (2015)	LV tissue	6.25	ENSCAFG0000000730
			7
Li et al ., (2015)	LV tissue	6.45	ENSCAFG0000001919
			8
Liet al ., (2015)	LV tissue	6.76	ENSCAFG0000002893
			2
Li et al ., (2015)	LV tissue	6.94	ENSCAFG0000003186
			9
Li et al ., (2015)	LV tissue	7.78	ENSCAFG0000003184
Li et al ., (2015)	LV tissue	8.89	ENSCAFG0000003130
			6
Li et al ., (2015)	LV tissue	-10.77	ENSCAFG0000000564
			5
Li et al ., (2015)	LV tissue	-10.71	ENSCAFG0000000240
			9
Liet al ., (2015)	LV tissue	-9.47	ENSCAFG0000002271
			9
Li et al ., (2015)	LV tissue	-9.12	ENSCAFG0000002272
			1

Li et al ., (2015)	LV tissue	-8.8	ENSCAFG0000002272
			2
Li et al ., (2015)	LV tissue	-8.19	ENSCAFG0000002272
			0
Li et al ., (2015)	LV tissue	-7.76	ENSCAFG0000000712
			0
Li et al ., (2015)	LV tissue	-6.71	ENSCAFG0000002882
			9
Liet al ., (2015)	LV tissue	-6.56	ENSCAFG0000002864
			2
Liet al ., (2015)	LV tissue	-6.32	ENSCAFG0000002272
			5
Liet al ., (2015)	LV tissue	-6.02	ENSCAFG0000000901
			4
Liet al ., (2015)	LV tissue	-5.86	ENSCAFG0000003008
			9
Li et al ., (2015)	LV tissue	-5.58	ENSCAFG0000002932
			4
Li et al ., (2015)	LV tissue	-5.4	ENSCAFG0000001684
			8
Liet al ., (2015)	LV tissue	-5.16	ENSCAFG0000000674
			5
Liet al ., (2015)	LV tissue	-5.07	ENSCAFG0000002464
			1
Li et al ., (2015)	LV tissue	-4.99	ENSCAFG0000003066
			2
Li et al ., (2015)	LV tissue	-4.41	ENSCAFG0000000567
			5
Li et al ., (2015)	LV tissue	-4.39	ENSCAFG0000003184
			8
Li et al ., (2015)	LV tissue	-4.27	ENSCAFG0000000049
			7
Li et al ., (2015)	LV tissue	-4.01	ENSCAFG0000001161
			6
Li et al ., (2015)	LV tissue	-3.81	ENSCAFG0000002271
			2
Liet al ., (2015)	LV tissue	-3.73	ENSCAFG0000003014
			0
Li et al ., (2015)	LV tissue	-3.57	ENSCAFG0000000381
			8
Li et al ., (2015)	LV tissue	-3.31	ENSCAFG0000001682
Li et al ., (2015)	LV tissue	-3.19	ENSCAFG0000003133
			7
Li et al ., (2015)	LV tissue	-3.12	ENSCAFG0000002271
			6
Li et al ., (2015)	LV tissue	-3.05	ENSCAFG0000002273
			1
Li et al ., (2015)	LV tissue	-2.86	ENSCAFG0000001995
			0
Li et al ., (2015)	LV tissue	-2.38	ENSCAFG0000001603
			1

Li et al ., (2015)	LV tissue	2.12	ENSCAFG0000001607
			2
Liet al ., (2015)	LV tissue	-9.36	ENSCAFG0000000359
			5
Li et al ., (2015)	LV tissue	3.45	STAT3
Liet al., (2015)	LV tissue	41.8	STC1
Liet al., (2015)	LV tissue	-5.54	SV2B
Li et al ., (2015)	LV tissue	2.65	SWAP70
Li et al ., (2015)	LV tissue	-4.07	SYNPO2L
Liet al., (2015)	LV tissue	-8.15	SYT7
Liet al., (2015)	LV tissue	-2.63	TAB1
Li et al ., (2015)	LV tissue	-2.3	TACO1
Li et al ., (2015)	LV tissue	3.17	TAF7L
Li et al ., (2015)	LV tissue	2.42	TAGLN
Li et al., (2015)	LV tissue	2.85	TAGLN2
Li et al ., (2015)	LV tissue	-2.61	TBC1D2B
Li et al ., (2015)	LV tissue	-10.56	TCEAL7
Li et al ., (2015)	LV tissue	-4.72	TCF15
Liet al., (2015)	LV tissue	-5.74	TDRD1
Li et al ., (2015)	LV tissue	3.81	TEAD4
Liet al., (2015)	LV tissue	-2.84	TEF
Liet al., (2015)	LV tissue	24.88	TESPA1
Li et al., (2015)	LV tissue	2.58	TGFBR2
Liet al., (2015)	LV tissue	2.75	THBD
Liet al., (2015)	LV tissue	17.77	THBS1
Liet al., (2015)	LV tissue	5.45	THBS4
Li et al ., (2015)	LV tissue	-2.83	THNSL2
Liet al., (2015)	LV tissue	-3.29	THSD1
Li et al ., (2015)	LV tissue	-3.81	TK1
Liet al., (2015)	LV tissue	6.51	TKTL1
Li et al ., (2015)	LV tissue	2.68	TLR4
Li et al ., (2015)	LV tissue	-5.23	TMC5
Li et al ., (2015)	LV tissue	-2.44	TMC6
Li et al., (2015)	LV tissue	-3.91	TMEM164
Li et al ., (2015)	LV tissue	3.18	TMEM176A
Li et al ., (2015)	LV tissue	2.65	TMEM181
Liet al., (2015)	LV tissue	3.69	TMEM182
Li et al., (2015)	LV tissue	2.3	TMEM2
Liet al., (2015)	LV tissue	-2.78	TMEM205
Li et al ., (2015)	LV tissue	-3.52	TMEM97
Li et al ., (2015)	LV tissue	2.43	TMM47
Li et al., (2015)	LV tissue	-11.61	TMOD4
Liet al., (2015)	LV tissue	11.98	TNC
Li et al ., (2015)	LV tissue	3.45	TNFAIP3
Liet al., (2015)	LV tissue	-4.06	TNFSF10
Liet al., (2015)	LV tissue	9.35	TNFSF9
Li et al ., (2015)	LV tissue	-2.41	TOM1
Li et al ., (2015)	LV tissue	4.15	TPM4
Li et al ., (2015)	LV tissue	6.15	TREM2

Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Liet al., (2015)	LV tissue
Li et al., (2015)	LV tissue
Liet al., (2015)	LV tissue

3.28	TRIB1
2.98	TRMT11
-4.37	TRYT
3.41	TSPAN19
-3.12	TSPAN9
-3.22	TTC28
-3.82	TTC34
-6.55	TTYH2
2.68	TUBA1B
2.31	TUBA1C
7.55	TUBB6
NA	TUSC5
2.57	TXN
3.44	TYROBP
11.52	U3
-2.46	UACA
2.4	UAP1
4.15	UGCG
2.92	UGDH
-2.13	UNC45B
-2.65	USP9X
4.9	VCAN
-3.76	VIPR1
4.99	VIPR2
-3.07	VPS13D
-44.28	VWCE
3.45	VWF
6.17	WDR89
15.05	WFDC1
13.34	WNT9B
-3.21	WSCD1
-2.95	XIRP2
NA	Xist_exon4
-3.26	ZBTB12
-5.21	ZBTB20
-3.73	ZBTB40
7.81	ZFP36
-5.27	ZNF446
-2.13	ZNF532
-16.8	ZNF835
19.74	ZP2
9.51	ZPLD1
NA	ENSCAFG0000003029
	9
-17.68	ENSCAFG0000001712
	5
-16.91	ENSCAFG0000000050
	2

Li et al ., (2015)	LV tissue	-12.31	ENSCAFG0000002848
			2
Li et al ., (2015)	LV tissue	-12.11	ENSCAFG0000001265
			7
Liet al ., (2015)	LV tissue	-60.39	MYH13
Li et al ., (2015)	LV tissue	-48.34	MYH4
Li et al ., (2015)	LV tissue	-3.13	MYH7B
Li et al ., (2015)	LV tissue	-2.43	MYH8
Li et al ., (2015)	LV tissue	11.51	MYL1
Li et al ., (2015)	LV tissue	5.55	MYOC
Liet al ., (2015)	LV tissue	5.85	MYOF
Li et al ., (2015)	LV tissue	-4.05	N4BP3
Liet al ., (2015)	LV tissue	-4.42	NAALAD2
Li et al ., (2015)	LV tissue	3.45	NABP1
Li et al ., (2015)	LV tissue	-3.39	NAV3
Li et al ., (2015)	LV tissue	2.91	NDRG1
Li et al ., (2015)	LV tissue	-2.53	NDST1
Li et al ., (2015)	LV tissue	-12.29	NDST3
Li et al ., (2015)	LV tissue	-5.35	NEURL1B
Liet al ., (2015)	LV tissue	5.19	NFE2
Li et al ., (2015)	LV tissue	2.15	NFIL3
Li et al ., (2015)	LV tissue	-2.84	NFIX
Li et al ., (2015)	LV tissue	4.25	NFKBIA
Li et al ., (2015)	LV tissue	4.98	NFKBIZ
Li et al ., (2015)	LV tissue	-9.89	NGFR
Liet al ., (2015)	LV tissue	-2.29	NID1
Li et al ., (2015)	LV tissue	-6.74	NIPAL1
Li et al ., (2015)	LV tissue	-3.94	NLRX1
Li et al ., (2015)	LV tissue	-21.84	NOS2
Li et al ., (2015)	LV tissue	-2.74	NOTCH3
Liet al ., (2015)	LV tissue	2.44	NOV
Liet al ., (2015)	LV tissue	-4.48	NOX5
Liet al ., (2015)	LV tissue	2.7	NPNT
Liet al ., (2015)	LV tissue	3.08	NPPB
Liet al ., (2015)	LV tissue	-2.7	NPR3
Li et al ., (2015)	LV tissue	-4.21	NPTXR
Li et al ., (2015)	LV tissue	-2.24	NR1D2
Li et al ., (2015)	LV tissue	-2.48	NR2F6
Li et al ., (2015)	LV tissue	3.04	NR4A1
Li et al ., (2015)	LV tissue	-5.81	NRIP2
Li et al ., (2015)	LV tissue	-2.53	NRP1
Li et al ., (2015)	LV tissue	-3.34	NT5C1A
Li et al ., (2015)	LV tissue	-4.12	NTHL1
Li et al ., (2015)	LV tissue	2.51	097530
Li et al ., (2015)	LV tissue	4.41	097702
Li et al ., (2015)	LV tissue	-3.26	OBSCN
Liet al ., (2015)	LV tissue	2.16	ODC1
Li et al ., (2015)	LV tissue	-3.2	OLFML1
Li et al ., (2015)	LV tissue	-5.36	OLFML2A

Li et al., (2015)	LV tissue	2.45	OR51E2
Li et al., (2015)	LV tissue	41.64	OSM
Li et al ., (2015)	LV tissue	5.4	OSMR
Lietal., (2015)	LV tissue	-4.39	OSR2
Li et al ., (2015)	LV tissue	3.2	OTUD1
Li et al., (2015)	LV tissue	-3.21	P2RY1
Liet al., (2015)	LV tissue	-3.19	PABPC1L
Li et al ., (2015)	LV tissue	6.71	PADI4
Li et al ., (2015)	LV tissue	-2.47	PAK6
Li et al ., (2015)	LV tissue	-7.97	PCDH12
Li et al ., (2015)	LV tissue	-48.44	PCP2
Li et al., (2015)	LV tissue	2.44	PDE4B
Li et al ., (2015)	LV tissue	-2.34	PDGFB
Li et al ., (2015)	LV tissue	-2.3	PDIA2
Li et al ., (2015)	LV tissue	2.54	PDXK
Li et al., (2015)	LV tissue	-2.36	PDZRN3
Li et al ., (2015)	LV tissue	-3.75	PER3
Li et al., (2015)	LV tissue	2.26	PFN2
Li et al ., (2015)	LV tissue	-4.32	PGBD5
Li et al., (2015)	LV tissue	4.86	PGF
Li et al., (2015)	LV tissue	-3.41	PHACTR3
Liet al., (2015)	LV tissue	3.27	PIK3R5
Liet al., (2015)	LV tissue	-2.29	PLA2G4A
Li et al ., (2015)	LV tissue	-4.89	PLA2G5
Liet al., (2015)	LV tissue	6.45	PLAC8
Li et al., (2015)	LV tissue	2.84	PLAGL1
Li et al., (2015)	LV tissue	17.27	PLAUR
Li et al ., (2015)	LV tissue	6.02	PLBD1
Li et al ., (2015)	LV tissue	-2.93	PLCD1
Liet al., (2015)	LV tissue	-2.59	PLCE1
Li et al., (2015)	LV tissue	4.77	PLEK
Li et al ., (2015)	LV tissue	-22.27	PLIN1
Li et al ., (2015)	LV tissue	2.23	PLK2
Liet al., (2015)	LV tissue	3.26	PLK3
Li et al., (2015)	LV tissue	-4.09	PLP1
Li et al., (2015)	LV tissue	2.99	PLP2
Li et al., (2015)	LV tissue	-4.07	PLSCR4
Liet al., (2015)	LV tissue	-5.03	PLXDC1
Liet al., (2015)	LV tissue	-2.31	PLXNA1
Liet al., (2015)	LV tissue	-3.74	PLXNB1
Li et al., (2015)	LV tissue	-2.5	PLXND1
Li et al., (2015)	LV tissue	2.88	PM20D2
Liet al., (2015)	LV tissue	4.52	PMEPA1
Liet al., (2015)	LV tissue	2.55	PNPLA8
Liet al., (2015)	LV tissue	12.43	POSTN
Liet al., (2015)	LV tissue	-10.36	PPP1R16B
Li et al ., (2015)	LV tissue	-6.23	PPP1R1B
Liet al., (2015)	LV tissue	-4.87	PPP1R1C

Liet al., (2015)	LV tissue	-2.3	PPP1R3A
Li et al., (2015)	LV tissue	-2.7	PRICKLE1
Liet al., (2015)	LV tissue	-2.55	PRKAR2B
Li et al., (2015)	LV tissue	-5.3	PROM1
Li et al., (2015)	LV tissue	7.17	PRPH
Li et al., (2015)	LV tissue	-2.55	PRR12
Li et al., (2015)	LV tissue	4.39	PRSS23
Li et al., (2015)	LV tissue	3.81	PTGIR
Li et al., (2015)	LV tissue	8.99	PTHR
Liet al., (2015)	LV tissue	-2.53	PTPRE
Liet al., (2015)	LV tissue	58.92	PTX3
Li et al., (2015)	LV tissue	5.29	PVR
Li et al., (2015)	LV tissue	3.39	PXDC1
Liet al., (2015)	LV tissue	-2.52	Q19KA9
Liet al., (2015)	LV tissue	42.54	Q1ERY9
Li et al., (2015)	LV tissue	23.73	Q2EG92
Li et al., (2015)	LV tissue	54.31	Q2LC20
Liet al., (2015)	LV tissue	-10.62	Q3HTT6
Liet al., (2015)	LV tissue	-3.51	Q3HTT9
Li et al., (2015)	LV tissue	-4.18	Q4PLA8
Li et al., (2015)	LV tissue	-2.74	Q5BMM8
Li et al., (2015)	LV tissue	-2.37	Q5J2F2
Li et al., (2015)	LV tissue	-3.11	Q5SBJ3
Liet al., (2015)	LV tissue	-3.03	Q5YLN6
Liet al., (2015)	LV tissue	5.66	Q683K8
Liet al., (2015)	LV tissue	47.68	TIMP1
Li et al., (2015)	LV tissue	5.72	NOS3
Liet al., (2015)	LV tissue	2.43	Q6SLL2
Li et al., (2015)	LV tissue	NA	Q6TN20
Liet al., (2015)	LV tissue	29.66	Q7YSA1
Li et al., (2015)	LV tissue	2.22	Q866G8
Liet al., (2015)	LV tissue	2.23	Q866G8
Liet al., (2015)	LV tissue	-3.22	Q8HYR4
Liet al., (2015)	LV tissue	2.28	Q8SPM0
Li et al., (2015)	LV tissue	12.51	Q8SPQ9
Li et al., (2015)	LV tissue	-2.74	Q8WMS5
Liet al., (2015)	LV tissue	-31.79	Q95159
Li et al., (2015)	LV tissue	-23.23	Q95J95
Liet al., (2015)	LV tissue	584.84	IL6
Liet al., (2015)	LV tissue	-6.5	Q9GK59
Li et al., (2015)	LV tissue	NA	MMP9
Li et al., (2015)	LV tissue	-4.3	RAB33A
Liet al., (2015)	LV tissue	3.62	RAI14
Liet al., (2015)	LV tissue	3.22	RALB
Liet al., (2015)	LV tissue	2.6	RAP1B
Li et al., (2015)	LV tissue	-2.24	RAPSN
Liet al., (2015)	LV tissue	-5.03	RARG
Liet al., (2015)	LV tissue	2.64	RASA2

Li et al., (2015)	LV tissue	-7.37	RASD2
Liet al., (2015)	LV tissue	-2.37	RASGRP3
Li et al., (2015)	LV tissue	3.44	RASSF1
Li et al., (2015)	LV tissue	2.97	RASSF5
Liet al., (2015)	LV tissue	2.74	RBM3
Liet al., (2015)	LV tissue	-14.32	RCOR2
Li et al., (2015)	LV tissue	7.83	RDH10
Li et al., (2015)	LV tissue	2.23	RELL1
Liet al., (2015)	LV tissue	5.9	RETN
Liet al., (2015)	LV tissue	2.81	RFX2
Liet al., (2015)	LV tissue	21.69	RGS1
Li et al., (2015)	LV tissue	9.68	RGS2
Liet al., (2015)	LV tissue	2.36	RHOB
Li et al., (2015)	LV tissue	3.5	RHOJ
Li et al., (2015)	LV tissue	2.85	RHOU
Liet al., (2015)	LV tissue	2.1	RIOK3
Liet al., (2015)	LV tissue	2.99	RND3
Liet al., (2015)	LV tissue	-2.58	RNF128
Li et al., (2015)	LV tissue	3.2	ROBO4
Liet al., (2015)	LV tissue	3.26	ROR1
Li et al., (2015)	LV tissue	2.48	RPF2
Liet al., (2015)	LV tissue	2.29	RPL21
Li et al., (2015)	LV tissue	2.26	RPS6KA2
Liet al., (2015)	LV tissue	-2.98	RSG1
Liet al., (2015)	LV tissue	2.57	S100A11
Li et al., (2015)	LV tissue	29.89	S100A12
Liet al., (2015)	LV tissue	2.31	S100A6
Li et al., (2015)	LV tissue	25.07	S100A8
Liet al., (2015)	LV tissue	19.31	S100A9
Li et al., (2015)	LV tissue	10.8	S100P
Liet al., (2015)	LV tissue	3.07	S1PR1
Li et al., (2015)	LV tissue	2.24	SAMD8
Liet al., (2015)	LV tissue	-2.86	SARDH
Li et al., (2015)	LV tissue	-3.31	SCN2B
Liet al., (2015)	LV tissue	-4.35	SDC1
Li et al., (2015)	LV tissue	2.23	SDC4
Liet al., (2015)	LV tissue	3.11	SDF2L1
Li et al., (2015)	LV tissue	-15.18	SDSL
Liet al., (2015)	LV tissue	9.94	SELE
Li et al., (2015)	LV tissue	10.52	SELL
Liet al., (2015)	LV tissue	8.54	SELP
Li et al., (2015)	LV tissue	5.85	SEMA3F
Liet al., (2015)	LV tissue	-4.67	SEMA3G
Liet al., (2015)	LV tissue	-3.57	SEMA5B
Li et al., (2015)	LV tissue	-3.21	SEMA6C
Li et al., (2015)	LV tissue	4.09	HK3
Liet al., (2015)	LV tissue	-2.68	HMCN1
Li et al., (2015)	LV tissue	-4.53	HMGCLL1

Li et al ., (2015)	LV tissue	10.53	HSD17B13
Li et al ., (2015)	LV tissue	5.22	ICAM1
Liet al., (2015)	LV tissue	5.3	ICOSLG
Li et al ., (2015)	LV tissue	-2.52	IDH1
Li et al ., (2015)	LV tissue	3.14	IER3
Li et al ., (2015)	LV tissue	4.57	IER5L
Liet al ., (2015)	LV tissue	-3.17	IFI35
Li et al., (2015)	LV tissue	-5.34	IFIT2
Liet al ., (2015)	LV tissue	2.63	IFRD1
Liet al., (2015)	LV tissue	6.28	IGFBP2
Liet al., (2015)	LV tissue	-5.49	IGSF11
Liet al., (2015)	LV tissue	5.04	IL15
Li et al ., (2015)	LV tissue	8.3	IL18RAP
Liet al., (2015)	LV tissue	16.57	IL1B
Liet al ., (2015)	LV tissue	4.28	IL1R2
Li et al ., (2015)	LV tissue	10.38	IL1RL1
Liet al., (2015)	LV tissue	2.87	IL33
Liet al., (2015)	LV tissue	2.66	IL4R
Liet al ., (2015)	LV tissue	135.16	IL8
Li et al ., (2015)	LV tissue	-5.14	INHA
Li et al ., (2015)	LV tissue	23.44	INHBB
Liet al., (2015)	LV tissue	-3.35	INPP55
Li et al., (2015)	LV tissue	6.26	IRF4
Liet al ., (2015)	LV tissue	3.17	IRS2
Liet al., (2015)	LV tissue	-3.18	ITGA11
Liet al., (2015)	LV tissue	-2.5	ITIH5
Liet al., (2015)	LV tissue	-5.69	ITPKB
Liet al., (2015)	LV tissue	-2.7	JPH2
Li et al., (2015)	LV tissue	6.07	JUNB
Li et al ., (2015)	LV tissue	-3.88	KANK4
Liet al., (2015)	LV tissue	-4.67	KCNK13
Li et al ., (2015)	LV tissue	3.22	KDM6B
Li et al ., (2015)	LV tissue	3.96	KIAA0556
Li et al ., (2015)	LV tissue	-3.03	KIAA1161
Liet al., (2015)	LV tissue	-2.21	KIAA1462
Liet al., (2015)	LV tissue	-2.43	KIAA1467
Liet al., (2015)	LV tissue	-3.85	KIF26A
Li et al., (2015)	LV tissue	-2.46	KLF11
Li et al., (2015)	LV tissue	3.4	KLF4
Li et al., (2015)	LV tissue	3.54	KLF5
Liet al., (2015)	LV tissue	2.39	KLHL2
Li et al., (2015)	LV tissue	3.61	KLHL29
Li et al., (2015)	LV tissue	4.05	KRT80
Li et al., (2015)	LV tissue	-4.79	LAMA3
Liet al., (2015)	LV tissue	-4.33	LAMC3
Liet al., (2015)	LV tissue	-2.56	LARS2
Liet al., (2015)	LV tissue	-2.85	LGALS9
Liet al ., (2015)	LV tissue	-4.98	LGR6

Li et al., (2015)	LV tissue	5.61	LOX
Li et al ., (2015)	LV tissue	-2.8	LRRC10
Li et al ., (2015)	LV tissue	-7.9	LRRC14B
Liet al., (2015)	LV tissue	6.55	LRRC25
Li et al ., (2015)	LV tissue	4.09	LRRC32
Li et al., (2015)	LV tissue	-5.94	LRRC38
Liet al., (2015)	LV tissue	3.32	LRRC8C
Liet al., (2015)	LV tissue	5.85	LY86
Li et al ., (2015)	LV tissue	3.8	LY9
Li et al ., (2015)	LV tissue	21.5	LYSC1
Li et al ., (2015)	LV tissue	4.23	LYVE1
Li et al., (2015)	LV tissue	-2.42	MACROD1
Li et al ., (2015)	LV tissue	11.63	MAFF
Li et al ., (2015)	LV tissue	-4.44	MAL
Li et al ., (2015)	LV tissue	2.29	MALL
Li et al ., (2015)	LV tissue	-2.66	MAP4K2
Li et al ., (2015)	LV tissue	-2.54	MAPK12
Li et al., (2015)	LV tissue	6.71	MAPK13
Li et al ., (2015)	LV tissue	-4.28	MAPT
Li et al., (2015)	LV tissue	-2.16	MCAM
Li et al., (2015)	LV tissue	2.45	MCL1
Liet al., (2015)	LV tissue	-2.36	MEOX2
Liet al., (2015)	LV tissue	-2.78	MGAT5
Li et al ., (2015)	LV tissue	35.1	MIOX
Li et al., (2015)	LV tissue	-23.52	MKRN2-AS1
Li et al., (2015)	LV tissue	-2.68	MLYCD
Li et al., (2015)	LV tissue	2.56	MMD
Li et al ., (2015)	LV tissue	-3.39	MMP15
Li et al ., (2015)	LV tissue	162.28	MMP8
Liet al., (2015)	LV tissue	-2.93	MOCS1
Li et al., (2015)	LV tissue	-3.89	MOGAT1
Li et al ., (2015)	LV tissue	-2.52	MPI
Li et al ., (2015)	LV tissue	-3.15	MPP2
Liet al., (2015)	LV tissue	2.87	MSX1
Li et al ., (2015)	LV tissue	24.13	MT1
Li et al., (2015)	LV tissue	134.14	MT2
Li et al., (2015)	LV tissue	4.79	MTHFD1L
Liet al., (2015)	LV tissue	3.72	MTHFD2
Liet al., (2015)	LV tissue	5.02	MUC20
Liet al., (2015)	LV tissue	5.24	MYC
Li et al., (2015)	LV tissue	-4.13	MYH1
Li et al., (2015)	LV tissue	3.97	SEMA7A
Liet al., (2015)	LV tissue	8.31	SERPINA1
Liet al., (2015)	LV tissue	6.78	SERPINA3
Li et al ., (2015)	LV tissue	8.59	SERPINB10
Liet al., (2015)	LV tissue	6.02	SERPINE2
Li et al., (2015)	LV tissue	-2.17	SERPINF1
Li et al ., (2015)	LV tissue	-2.92	SETD7

Li et al., (2015)	LV tissue	4.68	SGK1
Li et al., (2015)	LV tissue	2.17	SGMS1
Li et al ., (2015)	LV tissue	2.56	SH2D3C
Liet al., (2015)	LV tissue	-2.61	SH3BP5
Li et al ., (2015)	LV tissue	4.2	SIGIRR
Li et al., (2015)	LV tissue	7.17	SIK1
Liet al., (2015)	LV tissue	2.65	SKIL
Liet al., (2015)	LV tissue	7.6	SLC11A1
Li et al ., (2015)	LV tissue	-3.82	SLC12A7
Li et al ., (2015)	LV tissue	4.84	SLC16A3
Li et al ., (2015)	LV tissue	2.94	SLC1A5
Li et al., (2015)	LV tissue	4.18	SLC20A1
Li et al ., (2015)	LV tissue	2.76	SLC25A25
Li et al ., (2015)	LV tissue	2.21	SLC25A33
Li et al ., (2015)	LV tissue	-2.55	SLC25A34
Li et al., (2015)	LV tissue	-2.99	SLC25A42
Li et al ., (2015)	LV tissue	7.16	SLC26A7
Li et al., (2015)	LV tissue	16.51	GLUT3
Li et al., (2015)	LV tissue	-4.16	GLUT5
Li et al., (2015)	LV tissue	11.72	GLUT6
Li et al., (2015)	LV tissue	2.71	SLC35D1
Liet al., (2015)	LV tissue	2.83	SLC3A1
Liet al., (2015)	LV tissue	-2.47	SLC40A1
Li et al ., (2015)	LV tissue	-2.18	SLC41A1
Liet al., (2015)	LV tissue	-3.4	SLC4A5
Li et al., (2015)	LV tissue	48.85	SLC7A5
Li et al., (2015)	LV tissue	-4.13	SLC8A3
Li et al ., (2015)	LV tissue	3.26	SLCO1C1
Lietal., (2015)	LV tissue	15.34	SLCO2A1
Liet al., (2015)	LV tissue	50.74	SLCO4A1
Li et al., (2015)	LV tissue	4.85	SLCO6A1
Li et al ., (2015)	LV tissue	-5.99	SLITRK6
Li et al., (2015)	LV tissue	-2.44	SLX4
Liet al., (2015)	LV tissue	2.94	SMAD6
Li et al., (2015)	LV tissue	4.99	SNAI1
Li et al., (2015)	LV tissue	6.25	SNORA25
Li et al., (2015)	LV tissue	NA	SNORD113
Liet al., (2015)	LV tissue	2.94	SOAT1
Liet al., (2015)	LV tissue	-5.92	SORCS1
Liet al., (2015)	LV tissue	2.78	SORL1
Li et al., (2015)	LV tissue	-4.04	SOX12
Li et al., (2015)	LV tissue	4.86	SOX17
Liet al., (2015)	LV tissue	3.02	SOX9
Liet al., (2015)	LV tissue	-3.29	SPESP1
Liet al., (2015)	LV tissue	-2.4	SPG7
Liet al., (2015)	LV tissue	4.3	SPINK4
Li et al ., (2015)	LV tissue	-3.53	SPOCK2
Liet al., (2015)	LV tissue	5.04	SPP1

Li et al ., (2015)	LV tissue
Li et al ., (2015)	LV tissue
Liet al ., (2015)	LV tissue
Li et al ., (2015)	LV tissue
Li et al ., (2015)	LV tissue
Li et al ., (2015)	LV tissue
Liet al ., (2015)	LV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Liet al., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Liet al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue
Li et al ., (2015)	MV tissue

2.41	SPSB1
-4.58	SPTBN2
-2.33	SREBF2
5.99	SRGN
2.47	SRSF3
-3.06	ST3GAL2
3.94	ST6GALNAC3
16.57	5_8S_r
9.21	7SK
3.12	A7E3K
28.56	A7XZY9
-3.33	ACOT6
-2.57	ACSL1
4.07	ACTG2
3.15	ADAM2
7.45	ADAMT
-4.8	ADIPO
-3.11	ADSSL1
-8.07	AGT
4.06	AMPN
-8.39	ASB18
2.51	ATP8B
2.48	BOFF1
3.67	BCL3
3.53	BPI
2.6	C13o
2.64	C1QA
4.35	C1QB
3.21	C1QC
-11.06	C3orf43
4.42	C5AR1
-7.13	CA3
-5.1	CAPN6
3.14	CCL2
5.52	CCL24
3.98	CD163
4.22	CD53
3.48	CD55
4.25	CD74
3.44	CDH11
2.75	CGNL1
4.6	CH25
13.38	CHGB
-4.07	CIDEA
6.14	CLDN1
2.56	CLIC2
-4.61	CNKSR2
25.76	CNTNAP

Li et al., (2015)	MV tissue	10.18	COL13A
Li et al., (2015)	MV tissue	5.18	COL23
Liet al., (2015)	MV tissue	8.79	COL6A
Li et al., (2015)	MV tissue	2.76	CSF1
Li et al., (2015)	MV tissue	6.47	CSF2R
Li et al., (2015)	MV tissue	11.45	CSF3R
Liet al., (2015)	MV tissue	2.46	CSGAL
Li et al., (2015)	MV tissue	3.4	CTSC
Li et al., (2015)	MV tissue	2.31	CTSH
Li et al., (2015)	MV tissue	3.07	CTSS
Li et al., (2015)	MV tissue	-6.85	CYP1A1
Li et al., (2015)	MV tissue	2.79	CYTL1
Liet al., (2015)	MV tissue	8.85	DDIT4
Liet al., (2015)	MV tissue	3.92	DLA-D
Liet al., (2015)	MV tissue	3.64	DLL1
Li et al., (2015)	MV tissue	-7.82	DPP6
Liet al., (2015)	MV tissue	3.39	EDN1
Liet al., (2015)	MV tissue	2.38	ELN
Liet al., (2015)	MV tissue	5.17	EMCN
Li et al., (2015)	MV tissue	-3.6	ENO3
Liet al., (2015)	MV tissue	2.95	ENPP6
Liet al., (2015)	MV tissue	6.82	ENTPD
Liet al., (2015)	MV tissue	4.6	ESPN
Li et al., (2015)	MV tissue	-7.29	EXTL1
Li et al., (2015)	MV tissue	-2.81	EYA1
Liet al., (2015)	MV tissue	2.94	F13A1
Li et al., (2015)	MV tissue	9.96	F5
Liet al., (2015)	MV tissue	-2.91	FABP4
Liet al., (2015)	MV tissue	3.53	FAM17
Liet al., (2015)	MV tissue	-4.3	FGF13
Li et al., (2015)	MV tissue	-2.51	FHL2
Liet al., (2015)	MV tissue	2.69	FNDC1
Li et al., (2015)	MV tissue	5.14	FOSL2
Li et al., (2015)	MV tissue	3.84	FOXC2
Li et al., (2015)	MV tissue	4.14	GADD4
Liet al., (2015)	MV tissue	3.64	GALNT
Liet al., (2015)	MV tissue	4.12	GATA3
Liet al., (2015)	MV tissue	-2.26	GMPR
Liet al., (2015)	MV tissue	-4.25	GPD1
Liet al., (2015)	MV tissue	-11.89	GPR162
Liet al., (2015)	MV tissue	-2.97	GPR98
Liet al., (2015)	MV tissue	-3.2	GPT
Li et al., (2015)	MV tissue	-2.56	GSTP1
Liet al., (2015)	MV tissue	-4.46	HAND1
Li et al., (2015)	MV tissue	17.56	HBA
Li et al., (2015)	MV tissue	3.81	HLA-D
Li et al., (2015)	MV tissue	3.93	HPSE
Liet al., (2015)	MV tissue	-6.95	HPT

Li et al ., (2015)	MV tissue	6.79	HSD17
Li et al ., (2015)	MV tissue	-2.64	HSPB6
Liet al ., (2015)	MV tissue	3.17	ICAM1
Li et al ., (2015)	MV tissue	3.45	ICOSL
Li et al ., (2015)	MV tissue	2.59	IER3
Li et al ., (2015)	MV tissue	4.25	IGFBP
Liet al ., (2015)	MV tissue	2.95	IGFBP
Li et al ., (2015)	MV tissue	3.98	IL10R
Liet al ., (2015)	MV tissue	17.14	IL1RL1
Liet al., (2015)	MV tissue	14.89	IL6
Liet al., (2015)	MV tissue	18.31	IL8
Li et al ., (2015)	MV tissue	5.7	INHB
Li et al ., (2015)	MV tissue	-2.62	INHBE
Liet al., (2015)	MV tissue	2.75	INPP5
Liet al., (2015)	MV tissue	-26.71	IRK2
Li et al ., (2015)	MV tissue	-13.42	IRX3
Li et al ., (2015)	MV tissue	-137.71	IRX4
Liet al., (2015)	MV tissue	4.25	ITGA1
Liet al., (2015)	MV tissue	5.94	ITGA8
Li et al ., (2015)	MV tissue	-2.78	IVNS1A
Li et al ., (2015)	MV tissue	-3.34	KCNJ4
Liet al ., (2015)	MV tissue	-5.2	KCNK1
Li et al., (2015)	MV tissue	4.23	KCNMB
Liet al ., (2015)	MV tissue	-6.63	LAMB4
Liet al., (2015)	MV tissue	2.95	LAPTM
Liet al., (2015)	MV tissue	4.01	LCP1
Liet al., (2015)	MV tissue	-2.53	LRRC2
Liet al ., (2015)	MV tissue	-12.64	LRRC38
Liet al ., (2015)	MV tissue	-8.5	LRRC3
Liet al., (2015)	MV tissue	2.41	LRRC8
Liet al., (2015)	MV tissue	4.79	LYPD6
Liet al., (2015)	MV tissue	3.44	LYVE1
Liet al ., (2015)	MV tissue	-2.43	MACROD
Liet al., (2015)	MV tissue	2.96	MAFF
Li et al ., (2015)	MV tissue	-3.01	MAPK12
Li et al ., (2015)	MV tissue	-3.7	MAPT
Liet al., (2015)	MV tissue	3.12	MEGF6
Li et al ., (2015)	MV tissue	3.23	MESDC
Liet al ., (2015)	MV tissue	-3.26	MGST1
Liet al., (2015)	MV tissue	2.81	MMRN2
Liet al., (2015)	MV tissue	5.34	MPEG1
Li et al., (2015)	MV tissue	-2.62	MRPS6
Li et al ., (2015)	MV tissue	3.87	MT1
Liet al., (2015)	MV tissue	7.24	MT2
Liet al ., (2015)	MV tissue	2.38	MTHFD
Liet al., (2015)	MV tissue	90.16	MUC16
Liet al., (2015)	MV tissue	2.67	MYC
Liet al ., (2015)	MV tissue	-5.08	MYH8

Li et al ., (2015)	MV tissue	-36.45	MYL3
Li et al ., (2015)	MV tissue	-11.25	MYOT
Li et al ., (2015)	MV tissue	2.63	NID2
Li et al ., (2015)	MV tissue	4.62	NOS3
Liet al ., (2015)	MV tissue	2.74	ENSCAFG0000000049
			2
Liet al ., (2015)	MV tissue	3.39	ENSCAFG0000000438
			4
Li et al ., (2015)	MV tissue	4.15	ENSCAFG0000000449
			6
Liet al ., (2015)	MV tissue	4.43	ENSCAFG0000000557
			5
Liet al ., (2015)	MV tissue	3.93	ENSCAFG0000000585
			2
Li et al ., (2015)	MV tissue	5.84	ENSCAFG0000000715
			4
Liet al ., (2015)	MV tissue	14.56	ENSCAFG0000000719
			9
Li et al ., (2015)	MV tissue	3.38	ENSCAFG0000000874
			1
Liet al ., (2015)	MV tissue	5.62	ENSCAFG0000000901
			4
Li et al ., (2015)	MV tissue	3.91	ENSCAFG0000001301
			5
Liet al ., (2015)	MV tissue	27.07	ENSCAFG0000001378
			1
Liet al ., (2015)	MV tissue	2.75	ENSCAFG0000001732
			6
Liet al ., (2015)	MV tissue	-2.33	ENSCAFG0000001782
			4
Liet al ., (2015)	MV tissue	-6.4	ENSCAFG0000002271
			6
Liet al ., (2015)	MV tissue	-2.96	ENSCAFG0000002271
			9
Li et al ., (2015)	MV tissue	-3.01	ENSCAFG0000002272
			1
Liet al ., (2015)	MV tissue	-4.12	ENSCAFG0000002272
			7
Li et al ., (2015)	MV tissue	-3.01	PHYH
Liet al ., (2015)	MV tissue	17.68	ENSCAFG0000002340
			1
Li et al ., (2015)	MV tissue	53.64	ENSCAFG0000002520
Li et al ., (2015)	MV tissue	3.73	ENSCAFG0000002845
			3
Li et al ., (2015)	MV tissue	2.8	ENSCAFG0000002934
			6
Li et al ., (2015)	MV tissue	3.58	ENSCAFG0000002955
			3
Li et al ., (2015)	MV tissue	7.18	ENSCAFG0000003065
			5

Li et al ., (2015)	MV tissue	24.55	ENSCAFG0000003093
			5
Li et al ., (2015)	MV tissue	4.22	ENSCAFG0000003178
			6
Li et al ., (2015)	MV tissue	3.67	ENSCAFG0000003180
			6
Li et al ., (2015)	MV tissue	4.4	ENSCAFG0000003186
			9
Li et al ., (2015)	MV tissue	7.18	ENSCAFG0000003216
			3
Liet al ., (2015)	MV tissue	4.24	ENSCAFG0000003217
			3
Liet al ., (2015)	MV tissue	11.19	ENSCAFG0000003232
			8
Li et al ., (2015)	MV tissue	4.96	ENSCAFG0000003235
			8
Li et al ., (2015)	MV tissue	17.82	ENSCAFG0000003261
			5
Liet al ., (2015)	MV tissue	7.18	ENSCAFG0000003269
			6
Li et al ., (2015)	MV tissue	151.37	ENSCAFG0000003270
			6
Li et al ., (2015)	MV tissue	4.37	ENSCAFG0000003273
			1
Liet al ., (2015)	MV tissue	4.17	NPTX2
Li et al., (2015)	MV tissue	-9.27	O3FAR1
Li et al ., (2015)	MV tissue	2.56	09770
Li et al., (2015)	MV tissue	-2.54	OBSCN
Li et al., (2015)	MV tissue	4.24	OLFML
Li et al., (2015)	MV tissue	13.39	OLR1
Liet al ., (2015)	MV tissue	-2.5	OXCT1
Li et al ., (2015)	MV tissue	-19.27	PABPC1L
Li et al ., (2015)	MV tissue	-4.5	PAK6
Li et al., (2015)	MV tissue	-2.69	PDIA2
Liet al ., (2015)	MV tissue	4.12	PDPN
Li et al ., (2015)	MV tissue	3.76	PIK3R
Liet al ., (2015)	MV tissue	3.16	PKIB
Li et al ., (2015)	MV tissue	-3.91	PLA2G7
Liet al ., (2015)	MV tissue	4.68	PLEK
Liet al ., (2015)	MV tissue	-4.39	PLIN1
Liet al ., (2015)	MV tissue	10.49	PLSCR5
Li et al ., (2015)	MV tissue	2.49	PMEPA
Li et al., (2015)	MV tissue	6.06	PPBP
Li et al., (2015)	MV tissue	-3.4	PPP1R
Liet al., (2015)	MV tissue	-2.64	PPP1R3
Li et al ., (2015)	MV tissue	4.45	PROCR
Li et al., (2015)	MV tissue	2.86	PTGIS
Li et al ., (2015)	MV tissue	2.99	PTK2B
Li et al ., (2015)	MV tissue	3.68	PTPN6
Li et al ., (2015)	MV tissue	4.02	PTPRC

Li et al., (2015)	MV tissue	10.63	PTX3
Li et al., (2015)	MV tissue	20.95	Q1ERY9
Li et al., (2015)	MV tissue	4.78	Q3042
Li et al., (2015)	MV tissue	5.54	Q4ZHP
Li et al., (2015)	MV tissue	-4.5	Q8MIM
Li et al., (2015)	MV tissue	9.99	Q8SPQ
Li et al., (2015)	MV tissue	4.18	Q8SPY
Li et al., (2015)	MV tissue	-122.02	MYL2
Li et al., (2015)	MV tissue	4.24	Q9TTF
Li et al., (2015)	MV tissue	13.95	REG3A
Li et al., (2015)	MV tissue	19.76	REG3A
Li et al., (2015)	MV tissue	4.62	RELN
Li et al., (2015)	MV tissue	3.33	RGS1
Li et al., (2015)	MV tissue	-7.52	RPS11
Li et al., (2015)	MV tissue	-4.81	RSPO2
Li et al., (2015)	MV tissue	-3.84	RXRG
Li et al., (2015)	MV tissue	12.26	S100A9
Li et al., (2015)	MV tissue	2.74	S1PR1
Li et al., (2015)	MV tissue	12.74	SELP
Li et al., (2015)	MV tissue	5.38	SERPI
Li et al., (2015)	MV tissue	5.25	PAI-1
Li et al., (2015)	MV tissue	-2.31	SIR5
Li et al., (2015)	MV tissue	2.71	SKAP2
Li et al., (2015)	MV tissue	-2.94	SLC12A
Li et al., (2015)	MV tissue	4.52	SLC16
Li et al., (2015)	MV tissue	4.01	FATP6
Li et al., (2015)	MV tissue	7.49	GLUT3
Li et al., (2015)	MV tissue	6.87	SLCO2
Li et al., (2015)	MV tissue	11.29	SLCO4A
Li et al., (2015)	MV tissue	2.84	SMOC1
Li et al., (2015)	MV tissue	4.03	SMPDL
Li et al., (2015)	MV tissue	-3.58	SMYD2
Li et al., (2015)	MV tissue	2.98	SNAI1
Li et al., (2015)	MV tissue	8.44	SNORD
Lietal., (2015)	MV tissue	7.17	SNORD
Li et al., (2015)	MV tissue	5.23	SNORD
Li et al., (2015)	MV tissue	71.14	SNORD4
Li et al., (2015)	MV tissue	3.1	ST6G
Li et al., (2015)	MV tissue	4.13	ST8SI
Li et al., (2015)	MV tissue	3.1	STAB
Li et al., (2015)	MV tissue	4.44	STC1
Li et al., (2015)	MV tissue	7.23	STOX1
Li et al., (2015)	MV tissue	-5.97	SV2B
Li et al., (2015)	MV tissue	-12.53	TDRD1
Li et al., (2015)	MV tissue	2.61	TEK
Li et al., (2015)	MV tissue	4.81	TFPI2
Li et al., (2015)	MV tissue	5.05	THBD
Li et al., (2015)	MV tissue	2.87	THBS 1

Liet al ., (2015)	MV tissue	3.17	TNFRS
Liet al ., (2015)	MV tissue	-2.83	TNNT1
Liet al ., (2015)	MV tissue	40.42	UPK1B
Liet al ., (2015)	MV tissue	-4.54	VWCE
Liet al ., (2015)	MV tissue	4.4	WFDC
Liet al ., (2015)	MV tissue	3.17	WNT11
Liet al ., (2015)	MV tissue	5.76	WNT2
Liet al ., (2015)	MV tissue	22.14	WNT9B
Liet al ., (2015)	MV tissue	-4.72	XIRP2
Liet al ., (2015)	MV tissue	37.34	Y_RNA
Lietal ., (2015)	MV tissue	39.6	Y_RNA
Lietal ., (2015)	MV tissue	37.59	Y_RNA

Table S3. Final input parameters for the primaryand validation runs of homozygosity analyses.Determined to maximise genome coverage usingprocess decribed by Meyermans et al., (2020)
Initial Validation
homozygsnp 102 94
homozygdensity 15 18
homozyggap 500 720
homozyghet 1 1
homozygwindowsnp 102 94
homozygwindowhet 1 1
homozygwindowmissing 1 1
homozygwindowthreshold 0.05 0.05

Table S4. location and frequency of genomic markers within the CFA12 ROH hotspot

CHR	SNP	BP	A1	A2	MAF	Freq
	12 BICF2P1424C	33673559	G	C	0.001799	99.998201
	12 BICF2S23521	33676653	G	A	0	100
	12 BICF2P60322	33687831	G	A	0.007491	99.992509
	12 chr12_33690	33690693	G	A	0	100
	12 BICF2S23453	33702526	A	G	0.001792	99.998208
	12 TIGRP2P163:	33711198	G	A	0.001799	99.998201
	12 BICF2P22312	33722785		0 A	0	100
	12 BICF2S23423	33733595	G	A	0	100
	12 BICF2P1218S	33750613	A	T	0.001786	99.998214
	12 BICF2P90927	33756605	A	G	0	100
	12 TIGRP2P163:	33770958	A	C	0.001786	99.998214
	12 BICF2P14228	33787258	T	A	0.005357	99.994643
	12 BICF2P31531	33790732	C	A	0.007143	99.992857
	12 BICF2P3722E	33806410	A	G	0.007143	99.992857
	12 BICF2P2711E	33823270	C	A	0.01015	99.98985
	12 BICF2P21645	33827121	G	A	0.003623	99.996377
	12 BICF2S23131	33852536	A	G	0.003584	99.996416
	12 BICF2S2361S	33861688	G	A	0	100
	12 BICF2P1708S	33880377	C	A	0.001792	99.998208
	12 BICF2S23234	33909719	G	A	0.005376	99.994624
	12 BICF2P3645¢	33917041	G	A	0	100
	12 chr12_33928	33928877	A	G	0	100
	12 chr12_33940	33940008	G	A	0	100
	12 chr12_33947	33947104	A	C	0	100
	12 chr12_33958	33958989	A	G	0.002717	99.997283
	12 chr12_33967	33967036	A	G	0	100
	$12 \mathrm{G742f37S17t}$	33970263	A	C	0	100
	$12 \mathrm{G743f37S} 25$!	34013054	A	C	0.001792	99.998208
	12 BICF2P23321	34033916	C	A	0	100
	12 TIGRP2P163:	34057309	G	A	0.001799	99.998201
	12 BICF2P1304S	34079620	A	G	0.003571	99.996429
	12 TIGRP2P163:	34095587	T	A	0.001792	99.998208
	12 BICF2P21164	34100160	C	A	0.005415	99.994585
	12 BICF2P9795C	34119473	A	G	0.003571	99.996429
	12 BICF2P1617\%	34123601	C	A	0.003584	99.996416
	12 BICF2P8258C	34135038	C	A	0.001799	99.998201
	12 BICF2P39264	34152723	A	C	0.003584	99.996416
	12 BICF2S24411	34177615	G	A	0.001792	99.998208
	12 BICF2P82578	34181708	G	A	0.001805	99.998195
	12 BICF2P5980¢	34192767	G	A	0.001792	99.998208
	12 BICF2P83012	34216705	G	C	0.001799	99.998201
	12 BICF2P12087	34247982		0 A	0	100
	12 BICF2S24118	34255708	A	G	0	100
	12 TIGRP2P163:	34265433	A	G	0.001799	99.998201
	12 BICF2S23654	34274295	A	C	0.003584	99.996416
	12 BICF2S23675	34293219		A	0.003597	99.996403

12 BICF2P11027	34310132 A	G
12 BICF2P3212\&	34324308 C	A
12 BICF2P13455	34331512 C	A
12 BICF2P2623\&	34356834 A	G
12 BICF2P1230¢	34379906 C	A
12 BICF2P53494	34409595 C	A
12 BICF2S23522	34413811 G	
12 BICF2P8009€	34453457 G	
12 BICF2S23644	34474554 A	G
12 BICF2S23242	34481365 A	C
12 BICF2S2324C	34495251 G	A
12 BICF2P32038	34506664 T	A
12 BICF2P1435E	34529726 A	
12 BICF2P9674E	34537479 C	A
12 TIGRP2P163:	34557559 A	G
12 BICF2P1000C	34566189 A	C
12 BICF2P14835	34575510 G	A
12 BICF2P5568	34588382 A	G
12 BICF2P13992	34596593 A	
12 BICF2P1450¢	34607921 C	
12 BICF2S2311C	34632402 A	
12 BICF2S23631	34643172 A	G
12 BICF2S2353C	34677845 G	
12 BICF2S23331	34705441 A	
12 BICF2S23023	34710479 A	
12 BICF2S23043	34734003 G	
12 chr12_34743	34743193 C	
12 chr12_34754	34754272 G	
12 G744f31S91	34755669 A	C
12 chr12_34766	34766791 G	
12 chr12_34784	34784001 A	
12 BICF2P12511	34794096 G	
12 G745f34S15	34807019 A	G
12 BICF2P71772	34826720 C	
12 BICF2P11972	34847628 A	G
12 TIGRP2P163:	34859802 A	G
12 BICF2P2625き	34878649 G	A
12 BICF2S23632	34899565 G	A
12 BICF2S24578	34911197	0 A
12 BICF2P8637C	34922296 A	G
12 BICF2P1511C	34936264 A	C
12 TIGRP2P163:	34944473 G	A
12 BICF2P1304C	34959290 C	
12 BICF2P1349き	34964695 A	G
12 TIGRP2P163،	34981336 C	A
12 BICF2P47865	35003527 A	G
12 BICF2P3714C	35015908 G	A
12 BICF2P31931	35022785 A	C

0.001792	99.998208
0.001799	99.998201
0.001805	99.998195
0	100
0.001799	99.998201
0	100
0.001792	99.998208
0.001792	99.998208
0.001786	99.998214
0.005376	99.994624
0.001984	99.998016
0.003663	99.996337
0.001786	99.998214
0.002174	99.997826
0	100
0.003571	99.996429
0.001805	99.998195
0.003953	99.996047
0.003597	99.996403
0.007722	99.992278
0	100
0.001786	99.998214
0	100
0.007326	99.992674
0.005396	99.994604
0.005396	99.994604
0	100
0	100
0	100
0	100
0	100
0	100
0.008929	99.991071
0.005376	99.994624
0.003597	99.996403
0.00722	99.99278
0.001792	99.998208
0.003597	99.996403
0	100
0.003597	99.996403
0.001805	99.998195
0.005357	99.994643
0.005357	99.994643
0.001786	99.998214
0.003597	99.996403
0.003571	99.996429
0.003584	99.996416
0.005396	99.994604

12 TIGRP2P163،	35032540 A	G	0.003584	99.996416
12 BICF2S22962	35043281 G	A	0.003584	99.996416
12 TIGRP2P163،	35050172 T	A	0.001792	99.998208
12 BICF2P46204	35064873 A	G	0.01661	99.98339
12 BICF2P13094	35073109 G	A	0.001792	99.998208
12 BICF2P11473	35080194 C	A	0.003623	99.996377
12 BICF2P2477E	35093467 C	A	0.003717	99.996283
12 BICF2S2418¢	35119760 A	G	0.001792	99.998208
12 BICF2P96547	35123671 C	A	0.003663	99.996337
12 BICF2S23543	35150380 A	G	0.00361	99.99639
12 TIGRP2P163،	35160151 A	G	0.001786	99.998214
12 BICF2P7885ミ	35178202 A	G	0.001786	99.998214
12 BICF2P1354¢	35183147 A	G	0.001792	99.998208
12 BICF2P3204¢	35203261 A	G	0.001786	99.998214
12 TIGRP2P163،	35205435 G	A	0.001799	99.998201
12 BICF2S2343C	35215025 G	A	0.001792	99.998208
12 BICF2P10897	35229941 A	T	0.001805	99.998195
12 BICF2P12754	35240215	0 A	0	100
12 BICF2P7119C	35250221 A	G	0	100
12 TIGRP2P163،	35264527 G	A	0.001799	99.998201
12 BICF2P13898	35273672 C	A	0.005357	99.994643
12 BICF2P2824¢	35296744 A	C	0.003584	99.996416

Table S5. Overlap of genes in ROH with MMVD GO terms identified in transcriptomic GO_term_ID GO_GO_term_def Nol Genes

ADCYAP1|CLUL1|CNTLN|COL11A
1|COLEC12|OLFM3|USP14|VCA

GO:0005615	CP	extracellular space	9 M 1 YEES1			
			GPR88\|KCNQ5	OLFM3	PLPPR4	
GO:0005887	CP	integral component of plasma n	6 PLPPR5\|VCAM1			
			NTNG1\|PARD3	ROCK1	S1PR1	V
GO:0007155	BP	cell adhesion	5 CAM1			
			NTNG1\|PARD3	ROCK1	S1PR1	V
GO:0022610	BP	biological adhesion	5 CAM1			
			AGL\|COLEC12	ROCK1	USP14	VC
GO:0006955	BP	immune response	5 AM1			
GO:0008284	BP	positive regulation of cell popula	4 ADCYAP1\|FGF4	S1PR1	VCAM1	
GO:0007267	BP	cell-cell signaling	4 ADCYAP1\|FGF4	RIMS1	USP14	
GO:0072359	BP	circulatory system development	4 COL11A1\|ROCK1	S1PR1	VCAM1	
GO:0000166	MF	nucleotide binding	4 ROCK1\|RTCA	TYMS	YES1	
GO:0051270	BP	regulation of cellular component	4 FGF4\|PHACTR1	ROCK1	S1PR1	
GO:2000145	BP	regulation of cell motility	4 FGF4\|PHACTR1	ROCK1	S1PR1	
GO:0045087	BP	innate immune response	3 COLEC12\|USP14	VCAM1		
GO:0006886	BP	intracellular protein transport	3 PARD3\|RIMS1	THOC1		
GO:0043066	BP	negative regulation of apoptotic	3 ADCYAP1\|FGF4	ROCK1		
GO:0043547	BP	positive regulation of GTPase ac	3 ADCYAP1\|S1PR1	TBC1D7		
GO:0002684	BP	positive regulation of immune s)	3 COLEC12\|VCAM1	YES1		
GO:0030334	BP	regulation of cell migration	3 FGF4\|PHACTR1	S1PR1		
GO:0003013	BP	circulatory system process	3 ADCYAP1\|ROCK1	YES1		
GO:0045785	BP	positive regulation of cell adhesi	3 ROCK1\|VCAM1	YES1		
GO:0060548	BP	negative regulation of cell death	3 ADCYAP1\|FGF4	ROCK1		
GO:0001775	BP	cell activation	3 AGL\|ROCK1	VCAM1		
GO:0009986	CP	cell surface	3 S1PR1\|USP14	VCAM1		
GO:0045321	BP	leukocyte activation	3 AGL\|ROCK1	VCAM1		
GO:0008201	MF	heparin binding	2 COL11A1\|FGF4			
GO:0051493	BP	regulation of cytoskeleton organ	2 ROCK1\|S1PR1			
GO:0030198	BP	extracellular matrix organizatior	2 COL11A1\|VCAM1			
GO:0043062	BP	extracellular structure organizati	2 Col11A1\|VCAM1			
GO:0031012	CP	extracellular matrix	2 COL11A1\|COLEC12			
GO:0009897	CP	external side of plasma membra	2 S1PR1\|VCAM1			
GO:0070374	BP	positive regulation of ERK1 and 1	2 ADCYAP1\|FGF4			
GO:0050867	BP	positive regulation of cell activat	2 VCAM1\|YES1			
GO:0009142	BP	nucleoside triphosphate biosyntr	2 ATP5PD\|TYMS			
GO:0005884	CP	actin filament	1 YES1			
GO:0016529	CP	sarcoplasmic reticulum	1 AGL			
GO:0051451	BP	myoblast migration	1 ROCK1			
GO:0007189	BP	adenylate cyclase-activating G p	1 ADCYAP1			

GO:0005509	MF	calcium ion binding	1 CETN1
GO:0055010	BP	ventricular cardiac muscle tissue	1 COL11A1
GO:0016525	BP	negative regulation of angiogent	1 ROCK1
GO:0001558	BP	regulation of cell growth	1 RIMS1
GO:0005044	MF	scavenger receptor activity	1 COLEC12
GO:0051272	BP	positive regulation of cellular co	1 S1PR1
GO:0032870	BP	cellular response to hormone sti	1 ADCYAP1
GO:0030016	CP	myofibril	1 LRRC39
GO:0008021	CP	synaptic vesicle	1 SH3GL2
GO:2000147	BP	positive regulation of cell motilit	1 S1PR1
GO:0050728	BP	negative regulation of inflamma	1 ADCYAP1
GO:0008528	MF	G protein-coupled peptide recep	1 OGFRL1
GO:0040017	BP	positive regulation of locomotior	1 S1PR1
GO:0006954	BP	inflammatory response	1 VCAM1
GO:0005178	MF	integrin binding	1 VCAM1
GO:0001666	BP	response to hypoxia	1 VCAM1
GO:0001503	BP	ossification	1 COL11A1
GO:0007160	BP	cell-matrix adhesion	1 VCAM1
GO:0070482	BP	response to oxygen levels	1 VCAM1
GO:0071356	BP	cellular response to tumor necro	1 VCAM1
GO:0007200	BP	phospholipase C-activating G prc	1 S1PR1
GO:0030335	BP	positive regulation of cell migrat	1 S1PR1
GO:0030175	CP	filopodium	1 VCAM1
GO:0043235	CP	receptor complex	1 OLFM3
GO:0048514	BP	blood vessel morphogenesis	1 S1PR1
GO:0001525	BP	angiogenesis	1 S1PR1
GO:0001568	BP	blood vessel development	1 S1PR1
GO:0072358	BP	cardiovascular system developm	1 S1PR1
GO:0060349	BP	bone morphogenesis	1 FGF4
GO:0001944	BP	vasculature development	1 S1PR1
GO:0001725	CP	stress fiber	0
GO:0051898	BP	negative regulation of protein kil	0
GO:0030193	BP	regulation of blood coagulation	0
GO:0008009	MF	chemokine activity	0
GO:0004222	MF	metalloendopeptidase activity	0
GO:0002548	BP	monocyte chemotaxis	0
GO:0009143	BP	nucleoside triphosphate cataboli	0
GO:0048701	BP	embryonic cranial skeleton morr	0
GO:0045056	BP	transcytosis	0
GO:0051607	BP	defense response to virus	0
GO:0016941	MF	natriuretic peptide receptor acti।	0
GO:0048703	BP	embryonic viscerocranium morp	0
GO:2000352	BP	negative regulation of endothelii	0
GO:2000721	BP	positive regulation of transcripti	0
GO:0030240	BP	skeletal muscle thin filament as:	0
GO:2000772		regulation of cellular senescence	0

GO:0014704	CP	in
GO:0060231	BP	mesenchymal to epithelial trans
GO:0030018	CP	Z disc
GO:0019915	BP	lipid storage
GO:0002687	BP	positive regulation of leukocyte r
GO:0071526	BP	semaphorin-plexin signaling pat
GO:0001658	BP	branching involved in ureteric bu
GO:0034383	BP	low-density lipoprotein particle (
GO:0001938	BP	positive regulation of endothelia
GO:0022625	CP	cytosolic large ribosomal subuni*
GO:0002027	BP	regulation of heart rate
GO:0048843	BP	negative regulation of axon exte
GO:0097120	BP	receptor localization to synapse
GO:0050729	BP	positive regulation of inflammat
GO:0016323	CP	basolateral plasma membrane
GO:0086091	BP	regulation of heart rate by cardic
GO:0033089	BP	positive regulation of T cell diffe
GO:0032868	BP	response to insulin
GO:0030593	BP	neutrophil chemotaxis
GO:0001837	BP	epithelial to mesenchymal trans
GO:0044319	BP	wound healing, spreading of cell
GO:0071222	BP	cellular response to lipopolysacc
GO:0060048	BP	cardiac muscle contraction
GO:0048245	BP	eosinophil chemotaxis
GO:0030308	BP	negative regulation of cell growt
GO:0070098	BP	chemokine-mediated signaling F
GO:0045669	BP	positive regulation of osteoblast
GO:0009611	BP	response to wounding
GO:0032963	BP	collagen metabolic process
GO:0006879	BP	cellular iron ion homeostasis
GO:0048247	BP	lymphocyte chemotaxis
GO:0048020	MF	CCR chemokine receptor binding
GO:0005003	MF	ephrin receptor activity
GO:0048863	BP	stem cell differentiation
GO:0005587	CP	collagen type IV trimer
GO:0098911	BP	regulation of ventricular cardiac
GO:0045926	BP	negative regulation of growth
GO:0002026	BP	regulation of the force of heart c
GO:0001755	BP	neural crest cell migration
GO:0071265	BP	L-methionine biosynthetic proce:
GO:0071456	BP	cellular response to hypoxia
GO:0045499	MF	chemorepellent activity
GO:0048285	BP	organelle fission
GO:0045766	BP	positive regulation of angiogene
GO:0003735	MF	structural constituent of ribosor
GO:0030215	MF	semaphorin receptor binding
GO:0050678	BP	regulation of epithelial cell proli
GO:0042593	BP	glucose homeostasis

GO:0033017 CP sarcoplasmic reticulum membra 0
GO:0090131 BP mesenchyme migration 0
GO:0051495 BP positive regulation of cytoskelet، 0
GO:0010881 BP regulation of cardiac muscle con
GO:0050795 BP regulation of behavior 0

Table S6. Genes in CKCS ROH hotspots that are differentially expressed in dogs with MMVD

Reference	Method	Model	$\sum_{\underline{\sim}}^{\substack{n}}$	$\sum_{\substack{\infty}}^{\stackrel{\circ}{\gtrless}}$	S	-	$\sum_{\substack{4}}^{\substack{\text { d }}}$
Markvy et al (2020)	Microarray	CKCS vs unaffected dogs	\downarrow		\uparrow		\uparrow
Markvy et al (2020)	Microarray	All diseased valves and normal valves	\downarrow				
Markvy et al (2020)	Microarray	CKCS vs NON-CKCS with MMVD					
Markby et al ., (2020b)	Microarray	Grade 2 with normal					
Markby et al ., (2020b)	Microarray	Grade 3 with normal	\downarrow		\uparrow	\downarrow	\uparrow
Markby et al ., (2020b)	Microarray	Grade 4 with normal	\downarrow	\downarrow			\uparrow
Markby et al ., (2020b)	Microarray	"disease" dissected with "normal" dissected					
Markby et al ., (2020b)	Microarray	"normal" dissected with whole valve normal					
Lu et al., (2015)	Microarray	MMVD in CKCS compared to normal dogs (non-CKCS)	\downarrow				
Li et al., (2015)	RNA-seq	LV tissue				\uparrow	
Li et al., (2015)	RNA-seq	MV tissue				\uparrow	

Table S7. summary of variants annotated across consensus ROH, before and after biallelic MAF-filtering

	ALL	AF>0.8
Variants processed	27274	21082
Novel variants [Number (\%)]	$15458(56.7)$	1317 (53.7)
Existing variants [Number (\%)]	$11816(43.3)$	$9765(46.3)$
Overlapping genes	69	66
Overlapping transcripts	164	159
Consequence		
intron_variant	29124	21148
intergenic_variant	18222	13521
intron_variant,non_coding_transcript_variant	2001	1229
synonymous_variant	86	85
3_prime_UTR_variant	76	45
5_prime_UTR_variant	68	44
non_coding_transcript_exon_variant	68	42
missense_variant	55	55
splice_region_variant,intron_variant	40	21
frameshift_variant	13	10
inframe_insertion	5	5
inframe_deletion	4	4
splice_acceptor_variant	3	0
splice_region_variant,synonymous_variant	2	2
splice_acceptor_variant,non_coding_transcript_variant	2	0
deleterious		9

Table S8. List of breeds and village dogs used for detection of rare CKCS variants within ROH

Name_ID
AfghanHound01
AfghanHound04
AfghanHound03
AiredaleTerrier02
TA001
AiredaleTerrier05
AiredaleTerrier01
AlaskanHusky01
AlaskanHusky02
AlaskanMalamute01
AM007
AlaskanMalamute02
Bern_AlpineDachsbrack
AustralianCattleDog01
AC023
AustralianCattleDog03
AustralianCattleDog02

CFA. 118003
Basenji03
Basenji02
Basenji01
BG064
Beagle01
Beagle02
CFA. 117995
Beagle04
BeardedCollie02
BeardedCollie01
BeardedCollie04
BeardedCollie03
MA142
MA0163
BelgianMalinois02
BelgianMalinois03
BelgianSheepdog01
BelgianSheepdog06
BelgianSheepdog03
BelgianSheepdog05
BelgianTervuren11
BelgianTervuren01
BelgianTervuren06
BelgianTervuren08
BergerBlancSuisse01
CFA. 109670
BergerPicard03
BergerPicard02

Breed/CommonName
BioProject
BioSample
Sex
<9kg (Y/N)

Afghan Hound	
	Afghan Hound
	Afghan Hound
	Airedale Terrier
	Alaskan Husky
	Alaskan Husky
	Alaskan Malamute
	Alaskan Malamute
	Alaskan Malamute
	Alpine Dachsbracke
	Australian Cattle Dog
	Basenji
	Basenji
	Basenji
	Basenji
Bavarian Hound (Bayerisch P	
	Beagle
	Beagle

PRJNA266585

PRJNA232497
PRJNA263947
PRJEB16012
PRJNA263947
PRJNA263947
PRJEB9590
PRJEB9591
n/a
PRJEB16012
PRJNA266585
PRJEB14840
PRJNA263947
PRJEB16012
PRJEB16012
PRJEB13468
PRJNA263947
PRJNA263947
PRJNA263947
PRJNA274504
n/a
PRJNA176193
PRJNA263947
n/a
PRJEB16012
PRJEB13468
PRJEB16012
PRJEB16012
PRJEB16012
PRJEB16012
PRJEB16012
PRJEB16012
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
PRJEB16012
PRJNA263947
PRJNA263947
PRJNA263947

SAMNO2194722	M	N
SAMN03168377	M	N
SAMN02485564	F	N
SAMN03580390	F	N
SAMEA4506896	M	N
SAMN04196850	M	N
SAMN03580381	M	N
SAMEA3449656	M	N
SAMEA3449657	M	N
n/a	F	N

SAMN06159678	M	N
SAMN04196860	F	N

SAMN04196849 F N

BergerPicard01	Berger Picard	PRJNA263947	SAMN03580405	F	N
BerneseMountainDog02	Bernese Mountain Dog	n / a	n / a	F	N
BerneseMountainDog01	Bernese Mountain Dog	n / a	n / a	F	N
BerneseMountainDog11	Bernese Mountain Dog	n / a	n / a	M	N
BerneseMountainDog04	Bernese Mountain Dog	n / a	n/a	M	N
Coonhound01	Black and Tan Coonhound	PRJNA263947	SAMN04196853	F	N
BlackRussianTerrier01	Black Russian Terrier	PRJNA263947	SAMN03323668	F	N
Bloodhound01	Bloodhound	n / a	n/a	F	N
BC0480	Border Collie	PRJEB16012	SAMEA104091558	F	N
BorderCollie08	Border Collie	PRJEB12337	SAMEA3724571	F	N
BorderCollie03	Border Collie	n / a	n / a	M	N
Helsinki_BC1028	Border Collie	PRJNA319610	SAMN04908310	M	N
Borzoi01	Borzoi	n / a	n / a	F	N
BouvierDesFlandres01	Bouvier des Flandres	n / a	n/a	F	N
CFA. 107836	Bouvier des Flandres	PRJNA263947	SAMN06159671	M	N
BouvierDesFlandres02	Bouvier des Flandres	n / a	n / a	M	N
Boxer01	Boxer	PRJNA255370	SAMN02921305	F	N
BrittanySpaniel01	Brittany	n / a	n / a	M	N
Bullerrier06	Bull Terrier	n/a	n/a	F	N
Bullerrier05	Bull Terrier	n / a	n / a	M	N
Bullerrier03	Bull Terrier	n / a	n / a	M	N
Bullerrier01	Bull Terrier	n / a	n / a	F	N
Bulldog01	Bulldog	n / a	n/a	F	N
BU002	Bullmastiff	PRJEB16012	SAMEA103949042	M	N
CaneCorso01	Cane Corso	PRJNA263947	SAMN04196864	F	N
CarolinaDog01	Carolina Dog	n / a	n / a	F	N
CaucasianOvcharka01	Caucasian Ovcharka	PRJNA232497	SAMN02485585	F	N
CFA. 109671	Chesapeake Bay Retriever	PRJNA263947	SAMN06159679	M	N
NGSDOG025	Chinese Shar-Pei	PRJNA327712	SAMN05356427	M	N
NGSDOGO24	Chinese Shar-Pei	PRJNA327712	SAMN05356426	M	N
Chinook01	Chinook	PRJNA263947	SAMN03580382	F	N
ChongqingDog01	Chongqing Dog	PRJNA232497	SAMN02485578	M	N
ChowChow02	Chow Chow	n / a	n / a	F	N
CW011	Chow Chow	PRJEB16012	SAMEA104091566	F	N
ChowChow03	Chow Chow	PRJNA232497	SAMN02485574	M	N
ChowChow01	Chow Chow	n / a	n / a	F	N
ClumberSpaniel01	Clumber Spaniel	n / a	n / a	M	N
CockerSpanielAmerican06	Cocker Spaniel (American)		n/a	M	N
CockerSpanielAmerican04	Cocker Spaniel (American)		n/a	F	N
CockerSpanielAmerican01	Cocker Spaniel (American)	n / a	n / a	F	N
CockerSpanielAmerican03	Cocker Spaniel (American)	n / a	n / a	M	N
CR039	Curly-Coated Retriever	PRJEB16012	SAMEA104091556	F	N
Dalmatian01	Dalmatian	n / a	n / a	F	N
DAL162K1	Dalmatian	PRJNA360671	SAMN06214558	M	N
DO242	Doberman Pinscher	PRJEB16012	SAMEA4505489	F	N
Doberman01	Doberman Pinscher	n / a	n / a	F	N
Doberman02	Doberman Pinscher	PRJNA263947	SAMN03580409	M	N
Doberman04	Doberman Pinscher	PRJEB16012	SAMEA4509492	M	N

EastSiberianLaika01	East Siberian Laika	PRJNA266585	SAMN03168390	F	N
Elo01	Elo	PRJEB16012	SAMEA4506890	M	N
CockerSpanielEnglish05	English Cocker Spaniel	n / a	n / a	F	N
CP003	English Cocker Spaniel	PRJEB16012	SAMEA4506900	M	N
CockerSpanielEnglish01	English Cocker Spaniel	PRJEB2162	SAMEA1521941	M	N
CockerSpanielEnglish03	English Cocker Spaniel	PRJNA263947	SAMN03323673	F	N
CFA. 117996	English Setter	PRJNA263947	SAMN06159682	M	N
CFA. 105990	English Setter	PRJNA263947	SAMN06159667	F	N
EnglishSetter01	English Setter	PRJNA263947	SAMN04196858	M	N
EnglishSpringerSpaniel01	English Springer Spaniel	PRJNA263947	SAMN03580391	M	N
EnglishSpringerSpaniel03	English Springer Spaniel	PRJNA263947	SAMN04196857	M	N
EntlebucherSennenhundO:	Entlebucher Sennenhund	PRJEB16012	SAMEA4505501	M	N
EntlebucherSennenhund0	Entlebucher Sennenhund	PRJEB16012	SAMEA4505499	M	N
EntlebucherSennenhund0:	Entlebucher Sennenhund	PRJEB16012	SAMEA4504828	M	N
EntlebucherSennenhund0:	: Entlebucher Sennenhund	PRJEB16012	SAMEA4505497	M	N
Eurasier02	Eurasier	PRJEB16012	SAMEA4506889	M	N
Eurasier01	Eurasier	PRJEB6079	SAMEA2446720	F	N
CFA. 107833	Field Spaniel	PRJNA263947	SAMN06159668	M	N
FinnishLapphund01	Finnish Lapphund	PRJNA266585	SAMN03168391	M	N
FlatcoatedRetriever01	Flat-Coated Retriever	n / a	n / a	F	N
FlatcoatedRetriever02	Flat-Coated Retriever	n/a	n/a	F	N
FlatcoatedRetriever03	Flat-Coated Retriever	n / a	n / a	F	N
FonniDog01	Fonni's Dog	n / a	n/a	F	N
FrenchBulldog01	French Bulldog	PRJEB13468	SAMEA3928146	M	N
FB065	French Bulldog	PRJEB16012	SAMEA4504835	M	N
JT007	German Hunting Terrier	PRJEB16012	SAMEA104125120	M	N
DS043	German Shepherd Dog	PRJEB16012	SAMEA4506895	F	N
GermanShepherd12	German Shepherd Dog	PRJNA263947	SAMN03580392	M	N
DS051	German Shepherd Dog	PRJEB16012	SAMEA72802168	F	N
DS053	German Shepherd Dog	PRJEB16012	SAMEA72802918	M	N
GermanWirehairedPointer	German Wirehaired Pointe	PRJEB13468	SAMEA3928144	F	N
GoldenJackal01	Golden Jackal	PRJNA274504	SAMN03366713	F	N
GoldenRetriever11	Golden Retriever	PRJNA247491	SAMN03067876	M	N
GoldenRetriever04	Golden Retriever	PRJNA247491	SAMN03067893	M	N
173006_S10	Golden Retriever	n / a	n/a	F	N
172384_S14	Golden Retriever	n / a	n/a	F	N
CFA. 109672	Gordon Setter	PRJNA263947	SAMN06159680	F	N
GordonSetter01	Gordon Setter	PRJNA263947	SAMN04196859	F	N
GreatDane01	Great Dane	n / a	n/a	F	N
CFA. 117997	Great Dane	PRJNA263947	SAMN06159683	F	N
CFA. 107837	Great Dane	PRJNA263947	SAMN06159672	M	N
DD116	Great Dane	PRJEB16012	SAMEA104091557	M	N
GreatPyrenees01	Great Pyrenees	n/a	n/a	M	N
GreaterSwissMountainDo§	Greater Swiss Mountain Dı	n/a	n/a	M	N
CFA. 107841	Greater Swiss Mountain DI	PRJNA263947	SAMN06159674	M	N
GreenlandDog01	Greenland Dog	PRJNA266585	SAMN03168381	F	N
Greyhound06	Greyhound	PRJNA247491	SAMN03067874	M	N
Greyhound08	Greyhound	PRJNA247491	SAMN03068228	F	N

Greyhound03	Greyhound	PRJNA247491	SAMN03067873	M	N
Greyhound07	Greyhound	PRJNA247491	SAMN03067890	F	N
GS104	Grossspitz	PRJEB16012	SAMEA104105252	F	N
Heideterrier01	Heideterrier	PRJEB16012	SAMEA103135918	F	N
HW1706	Hovawart	PRJEB16012	SAMEA4506894	F	N
IrishSetter01	Irish Setter	n / a	n / a	F	N
CFA. 117998	Irish Terrier	PRJNA263947	SAMN06159684	M	N
IrishTerrier01	Irish Terrier	PRJEB13468	SAMEA3928141	M	N
IrishWaterSpaniel01	Irish Water Spaniel	n / a	n/a	F	N
IrishWaterSpaniel02	Irish Water Spaniel	n / a	n/a	M	N
IrishWaterSpaniel03	Irish Water Spaniel	n / a	n/a	F	N
IrishWolfhound01	Irish Wolfhound	n / a	n/a	F	N
IstrianShorthairedHound0:	Istrian Shorthaired Hound	PRJNA232497	SAMN02485584	F	N
Jamthund01	Jamthund	PRJNA266585	SAMN03168383	M	N
Jindo01	Jindo	PRJDB2266	SAMD00009664	M	N
Keeshond01	Keeshond	n / a	n/a	F	N
KerryBlueTerrier02	Kerry Blue Terrier	PRJNA263947	SAMN03580387	F	N
Komondor01	Komondor	n / a	n/a	M	N
Kromfohrlander01	Kromfohrländer	PRJEB6076	SAMEA2446055	M	N
VillDog_China16	Kunming Dog	PRJNA233638	SAMN02585197	M	N
VillDog_China11	Kunming Dog	PRJNA233638	SAMN02585192	F	N
VillDog_China13	Kunming Dog	PRJNA233638	SAMN02585194	F	N
VillDog_China15	Kunming Dog	PRJNA233638	SAMN02585196	M	N
LabradorRetriever01	Labrador Retriever	PRJEB5874	SAMEA2417015	M	N
LabradorRetriever06	Labrador Retriever	n / a	n / a	M	N
LabradorRetriever04	Labrador Retriever	n / a	n / a	F	N
LabradorRetriever07	Labrador Retriever	PRJNA263947	SAMN03580399	F	N
LagottoRomagnolo02	Lagotto Romagnolo	PRJEB16012	SAMEA4505491	M	N
LR1030	Lagotto Romagnolo	PRJEB16012	SAMEA4509490	M	N
LagottoRomagnolo03	Lagotto Romagnolo	PRJEB16012	SAMEA4505494	F	N
LagottoRomagnolo04	Lagotto Romagnolo	PRJEB16012	SAMEA4504833	M	N
Landseer01	Landseer	PRJEB7734	SAMEA3121328	M	N
LapponianHerder01	Lapponian Herder	PRJNA266585	SAMN03168384	M	N
Leonberger01	Leonberger	PRJEB16012	SAMEA103935360	F	N
EnglishMastiff01	Mastiff (English)	n / a	n/a	F	N
EnglishMastiff02	Mastiff (English)	PRJNA263947	SAMN03580412	M	N
BT007	Miniature Bull Terrier	PRJEB16012	SAMEA4506897	M	N
NewGuineaSingingDog01	New Guinea Singing Dog	n / a	n / a	M	N
NGSD2	New Guinea Singing Dog	PRJNA263947	SAMN06608434	M	N
NGSD1	New Guinea Singing Dog	PRJNA263947	SAMN06608432	M	N
NGSD3	New Guinea Singing Dog	PRJNA232497	SAMN06608444	M	N
NorwegianElkhound02	Norwegian Elkhound	n / a	n/a	F	N
NorwegianElkhound01	Norwegian Elkhound	PRJNA266585	SAMN03168382	M	N
NovaScotiaDuckTollingRetı	Nova Scotia Duck Tolling R	PRJNA263947	SAMN03323675	M	N
PembrokeWelshCorgi02	Pembroke Welsh Corgi	PRJNA263947	SAMN03145703	F	N
PembrokeWelshCorgi03	Pembroke Welsh Corgi	PRJNA263947	SAMN03145704	F	N
PembrokeWelshCorgi01	Pembroke Welsh Corgi	PRJNA263947	SAMN03145702	M	N
PeruvianHairless01	Peruvian Inca Orchid	PRJNA266585	SAMN03168386	M	N

PetitBassetGriffonVendeeı	ו Petit Basset Griffon Vende	PRJEB11835	SAMEA3723573	M	N
EnglishPointer01	Pointer (English)	n/a	n/a	M	N
EnglishPointer02	Pointer (English)	PRJNA263947	SAMN03580383	F	N
PL116	Poodle unspecified variety	PRJEB16012	SAMEA4506891	F	N
PortuguesePodengo01	Portuguese Podengo	PRJNA263947	SAMN03580388	M	N
PortugueseWaterDog02	Portuguese Water Dog	n/a	n/a	F	N
PortugueseWaterDog01	Portuguese Water Dog	n/a	n/a	F	N
PortugueseWaterDog09	Portuguese Water Dog	n/a	n/a	M	N
PortugueseWaterDog05	Portuguese Water Dog	n/a	n/a	M	N
RR098	Rhodesian Ridgeback	PRJEB16012	SAMEA104091554	F	N
RhodesianRidgeback04	Rhodesian Ridgeback	PRJNA357866	SAMN06161404	F	N
RhodesianRidgeback01	Rhodesian Ridgeback	n/a	n/a	F	N
RhodesianRidgeback02	Rhodesian Ridgeback	PRJEB16012	SAMEA4504822	F	N
Rottweiler04	Rottweiler	n / a	n/a	F	N
Rottweiler01	Rottweiler	n/a	n/a	F	N
168979_S18	Rottweiler	n/a	n/a	M	N
171515_S19	Rottweiler	n/a	n/a	M	N
SaintBernard01	Saint Bernard	n/a	n/a	F	N
SaintBernard02	Saint Bernard	PRJNA263947	SAMN03580386	M	N
Saluki01	Saluki	n/a	n/a	F	N
Saluki02	Saluki	n/a	n/a	M	N
Saluki03	Saluki	PRJEB16012	SAMEA4504825	M	N
Samoyed01	Samoyed	n/a	n/a	F	N
Samoyed02	Samoyed	PRJNA266585	SAMN03168388	F	N
ScottishDeerhound01	Scottish Deerhound	PRJNA263947	SAMN03580401	M	N
ScottishTerrier01	Scottish Terrier	n/a	n/a	F	N
ScottishTerrier02	Scottish Terrier	n/a	n/a	M	N
ScottishTerrier03	Scottish Terrier	PRJNA263947	SAMN03580394	F	N
ScottishTerrier04	Scottish Terrier	n/a	n/a	F	N
ShetlandSheepdog01	Shetland Sheepdog	n/a	n/a	F	N
SS004	Shetland Sheepdog	PRJEB16012	SAMEA104091573	F	N
ShetlandSheepdog02	Shetland Sheepdog	PRJNA263947	SAMN03580413	M	N
CFA. 107839	Shiba Inu	PRJNA263947	SAMN05770194	F	N
Shibalnu01	Shiba Inu	PRJNA263947	SAMN04196861	M	N
SiberianHusky01	Siberian Husky	n/a	n / a	F	N
SY046	Siberian Husky	PRJEB16012	SAMEA104091559	M	N
SiberianHusky02	Siberian Husky	PRJEB10823	SAMEA3539249	M	N
SiberianHusky04	Siberian Husky	PRJNA266585	SAMN03168389	M	N
Sloughi02	Sloughi	PRJEB16012	SAMEA4506885	M	N
Sloughi01	Sloughi	PRJEB13468	SAMEA3928143	F	N
Sloughi04	Sloughi	PRJNA266585	SAMN03168392	M	N
Sloughi03	Sloughi	PRJEB16012	SAMEA4506888	M	N
SoftCoatedWheatenTerrie	Soft Coated Wheaten Terr	PRJNA263947	SAMN03323670	F	N
SoftCoatedWheatenTerrie	Soft Coated Wheaten Terr	PRJNA263947	SAMN03580410	F	N
SoftCoatedWheatenTerrie	Soft Coated Wheaten Terr	PRJNA263947	SAMN03580411	F	N
SoftCoatedWheatenTerrie	Soft Coated Wheaten Terr	PRJNA263947	SAMN03323671	M	N
SpanishGalgo01	Spanish Galgo	PRJNA266585	SAMN03168380	F	N
SpanishWaterDog01	Spanish Water Dog	PRJEB7903	SAMEA3164479	M	N

CFA. 109669	Spinone Italiano	PRJNA263947	SAMN06159677	F	N
CFA. 107842	Standard Poodle	PRJNA263947	SAMN06159675	F	N
StandardPoodle02	Standard Poodle	PRJNA263947	SAMN03580380	M	N
StandardPoodle03	Standard Poodle	PRJNA263947	SAMN03580408	M	N
StandardPoodle01	Standard Poodle	n/a	n / a	F	N
CFA. 107834	Standard Schnauzer	PRJNA263947	SAMN06159669	M	N
CFA. 118002	Standard Schnauzer	PRJNA263947	SAMN06159688	F	N
CFA. 118001	Standard Schnauzer	PRJNA263947	SAMN06159687	M	N
StandardSchnauzer01	Standard Schnauzer	PRJNA263947	SAMN03323676	M	N
SwedishLapphund01	Swedish Lapphund	PRJNA266585	SAMN03168387	F	N
TibetanMastiff11	Tibetan Mastiff - China	PRJNA233638	SAMN02585160	F	N
TibetanMastiff10	Tibetan Mastiff - China	PRJNA233638	SAMN02585159	F	N
TibetanMastiff02	Tibetan Mastiff - China	PRJNA233638	SAMN02570458	M	N
TibetanMastiff07	Tibetan Mastiff - China	PRJNA233638	SAMN02585156	M	N
TibetanTerrier01	Tibetan Terrier	PRJNA263947	SAMN03580403	M	N
TibetanTerrier02	Tibetan Terrier	PRJNA263947	SAMN03580406	M	N
Tornjak01	Tornjak	PRJNA232497	SAMN02485567	M	N
Vizsla01	Vizsla	PRJEB12339	SAMEA3724570	F	N
WE006	Weimaraner	PRJEB16012	SAMEA4506902	F	N
Whippet01	Whippet	PRJEB16012	SAMEA4506886	M	N
XiasiDog01	Xiasi Dog	PRJNA232497	SAMN02485580	M	N
MexicanHairless01	Xoloitzcuintli	PRJNA266585	SAMN03168385	M	N
Xoloitzcuintlio1	Xoloitzcuintli	PRJNA232497	SAMN02485566	M	N
AmericanHairlessTerrier01	American Hairless Terrier	n / a	n / a	F	Y
AR001	Australian Terrier	PRJEB16012	SAMEA4504840	M	Y
CFA. 107838	Border Terrier	PRJNA263947	SAMN06159673	M	Y
BorderTerrier02	Border Terrier	PRJNA263947	SAMN04196855	F	Y
BorderTerrier03	Border Terrier	PRJNA263947	SAMN04196856	M	Y
BorderTerrier01	Border Terrier	PRJNA263947	SAMN03580407	F	Y
BostonTerrier01	Boston Terrier	n / a	n / a	F	Y
CE073	Cairn Terrier	PRJEB16012	SAMEA104091555	F	Y
Chihuahua01	Chihuahua	n / a	n / a	F	Y
Chihuahua05	Chihuahua	PRJEB13139	SAMEA3905753	M	Y
Chihuahua03	Chihuahua	PRJNA266585	SAMN03168379	M	Y
ChineseCrested01	Chinese Crested	PRJNA261736	SAMN03075611	M	Y
ChineseCrested05	Chinese Crested	PRJNA255370	SAMN02921308	M	Y
CFA. 107835	Dachshund	PRJNA263947	SAMN06159670	M	Y
CFA. 109668	Dachshund	PRJNA263947	SAMN06159676	M	Y
DH0117	Dachshund	PRJEB16012	SAMEA104091567	M	Y
DH126	Dachshund	PRJEB16012	SAMEA104125117	F	Y
Dachshund01	Dachshund	PRJEB7736	SAMEA3121338	M	Y
ItalianGreyhound02	Italian Greyhound	n / a	n / a	F	Y
ItalianGreyhound01	Italian Greyhound	n/a	n/a	M	Y
JackRussellTerrier03	Jack Russell Terrier	PRJNA263947	SAMN03580400	F	Y
JackRussellTerrier02	Jack Russell Terrier	PRJNA263947	SAMN03580384	M	Y
JackRussellTerrier05	Jack Russell Terrier	PRJNA263947	SAMN04196852	M	Y
JackRussellTerrier04	Jack Russell Terrier	PRJNA263947	SAMN03580404	F	Y
Lowchen01	Lowchen	PRJNA263947	SAMN04196863	M	Y

MiniaturePoodle01	Miniature Poodle	n / a	n / a	F	Y
BAN00024	Miniature Poodle	n / a	n/a	M	Y
MS04593	Miniature Schnauzer	n / a	n / a	F	Y
MS04563	Miniature Schnauzer	n / a	n/a	F	Y
MiniatureSchnauzer01	Miniature Schnauzer	PRJNA263947	SAMN04196847	F	Y
NorwegianLundehund01	Norwegian Lundehund	PRJNA186960	SAMN01893932	M	Y
NorwegianLundehund02	Norwegian Lundehund	PRJNA309755	SAMN04440505	F	Y
NorwegianLundehund03	Norwegian Lundehund	PRJNA309755	SAMN04440506	F	Y
NW062	Norwich Terrier	PRJEB16012	SAMEA104091550	F	Y
NW255	Norwich Terrier	PRJEB16012	SAMEA104091553	M	Y
NW152	Norwich Terrier	PRJEB16012	SAMEA104091551	F	Y
NW206	Norwich Terrier	PRJEB16012	SAMEA104091552	F	Y
Pekingese01	Pekingese	n / a	n / a	F	Y
Pomeranian01	Pomeranian	PRJEB16012	SAMEA4506892	M	Y
Pug05	Pug	n / a	n / a	M	Y
Pug03	Pug	n / a	n / a	M	Y
Pug04	Pug	n / a	n/a	F	Y
Pug02	Pug	n / a	n / a	M	Y
PER00751	Shih Tzu	n / a	n/a	M	Y
ToyPoodle01	Toy Poodle	n / a	n / a	F	Y
WestHighlandWhiteTerrO;	West Highland White Te	n / a	n/a	F	Y
WestHighlandWhiteTerro:	West Highland White Te	PRJNA263947	SAMN03580395	M	Y
WestHighlandWhiteTerrOt	West Highland White Te	PRJNA263947	SAMN03580398	F	Y
WW362	West Highland White Te	PRJEB16012	SAMEA4509489	M	Y
YorkshireTerrier02	Yorkshire Terrier	PRJNA299099	SAMN04195509	M	Y
PER00075	Yorkshire Terrier	n/a	n / a	F	Y
PER00204	Yorkshire Terrier	n / a	n/a	F	Y
BAN00041	Yorkshire Terrier	n / a	n / a	M	Y

Table S9. List of Haplotypes identified in homozygous dogs from 722 WGS catalogue. Haplotype block overlaps COL11a1. Haplotypes Alt1 and Alt 6 represent the overrepresented and rare haplotypes in the CKCS respectively. Highlighted in grey are haplotypes unique to nondomesticated canids.

Canid species and dog breeds With Samples homozygous for the observed haplotype

REF

Labrador Retriever ,Australian Cattle Dog ,UNKNOWN ,Australian Terrier ,Yorkshire Terrier Basenji ,Alpine Dachsbracke ,Brittany ,MIX: American Cocker Spaniel and Beagle ,English Setter ,Bouvier des Flandres ,Irish Terrier ,MIX: Dachsund ,Chihuahua ,Chinese Crested ,Chinese Indigenous Dog ,Cocker Spaniel (American) ,English Cocker Spaniel ,Dachshund ,Doberman Pinscher ,German Shepherd Dog ,Pointer (English) ,English Springer Spaniel ,Fonni's Dog German Wirehaired Pointer ,Golden Retriever ,Nigerian Indigenous Dog ,Irish Setter ,Irish Water Spaniel ,Istrian Shorthaired Hound ,Jack Russell Terrier ,Komondor ,Lapponian Herder Leonberger ,Rottweiler ,MIX: Kerry Blue Terrier and Beagle ,Chinese Shar-Pei ,Portuguese Water Dog ,Soft Coated Wheaten Terrier ,Tibetan Terrier ,Village Dog - China ,Village Dog India ,Village Dog - Namibia ,Village Dog - Qatar ,West Highland White Terrier ,American Hairless Terrier ,Belgian Sheepdog ,Belgian Tervuren ,Boxer ,Miniature Bull Terrier ,Bull Terrier ,Bullmastiff ,Mastiff (English) ,Flat-Coated Retriever ,Greyhound ,Irish Wolfhound ,Landseer ,Pembroke Welsh Corgi ,Pug ,Rhodesian Ridgeback ,Shetland Sheepdog ,Standard Poodle ,Swedish Lapphund ,Weimaraner ,Bloodhound ,Boston Terrier ,Cane Corso ,Great Dane ,Standard Schnauzer ,Curly-Coated Retriever ,Hovawart ,Kerry Blue Terrier

Cavalier King Charle Spaniel, Rottweiler, Border Collie, Belgian Malinois, Belgian Tervuren, Labrador Retriever, Jack Russell Terrier, Keeshond, Lagotto Romagnolo, Norwegian Lundehund, Yorkshire Terrier, Saluki, Samoyed, Soft Coated Wheaten Terrier, UNKNOWN, Village Dog China, Village Dog - India, Village Dog - Portugal, Village Dog - Papua New Guinea, Standard Poodle, Chinese Indigenous Dog
Coyote, Wolf
Bernese Mountain Dog, Entlebucher Sennenhund, Saint Bernard
Golden Retriever, Bull Terrier, Entlebucher Sennenhund, French Bulldog, German Hunting Terrier, Kromfohrländer, Labrador Retriever, Lagotto Romagnolo, Miniature Poodle, Norwich Terrier, Petit Basset Griffon Vendeen, Scottish Terrier, MIX: Miniature Schnauzer and Beagle Shiba Inu, Great Pyrenees, Greyhound, New Guinea Singing Dog, Standard Poodle

ALT6	T	T	G	G	A	A	C	A	T	C	Afghan Hound, Airedale Terrier, Yorkshire Terrier, Beagle, Bearded Collie, Bernese Mountain
ALT7	C	C	T	G	T	A	C	G	C	C	Grey Wolf, Grey Wolf (Canis Lupus chanco), Alaskan Husky, UNKNOWN
ALT8	T	T	G	G	A	T	A	G	C	T	Great Dane
ALT9	T	T	G	G	A	A	C	G	T	T	Standard Schnauzer
ALT10	C	C	T	G	A	A	C	G	T	T	Chinese Indigenous Dog, Chow Chow, MIX: Siberian Husky, Siberian Husky, Tibetan Mastiff,
ALT11	C	C	T	G	A	A	C	G	T	C	Qingchuan Dog, Village Dog - China, Village Dog - Borneo
ALT12	C	C	T	G	T	A	C	G	T	C	Grey Wolf, Wolf
ALT13	C	C	T	G	T	A	C	G	T	T	Grey Wolf, Grey Wolf (Canis Lupus chanco)
ALT14	C	C	T	T	T	A	C	G	T	C	Elo, Italian Greyhound, Village Dog - India
ALT15	C	C	T	T	T	A	C	G	T	T	Chongqing Dog
ALT16	C	C	T	G	T	A	C	G	C	C	Golden Jackal
ALT17	C	C	T	G	T	A	A	G	T	C	Andean Fox, Dhole

Table S10. Dogs from the $\mathbf{7 2 2}$ catalogue homozygous for the haplotype block overlapping COL11a1. Haplotypes Alt1 and Alt6 represent the frequent and rare CKCS haplotypes rspectively. Genomic coordinates for CANFAM3. Variants have been partitioned into Haplotype and splice variants.

		$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{\prime} \\ & \underset{N}{\mathrm{~N}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{+} \end{aligned}$	\ddagger 	ELSSOSLも	$\begin{aligned} & \underset{\sim}{-} \\ & \underset{-}{-} \\ & \underset{\sim}{\top} \end{aligned}$	$\begin{aligned} & N \\ & N \\ & \underset{\sim}{N} \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \underset{m}{m} \\ & \underset{\sim}{\oplus} \\ & \underset{\sim}{\dagger} \end{aligned}$	$\begin{aligned} & \bullet \\ & \underset{\sim}{-} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\top} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \infty \\ & \underset{\sim}{n} \\ & \underset{\sim}{N} \end{aligned}$	47573151	$\begin{aligned} & \infty \\ & n^{n} \\ & \underset{\sim}{n} \\ & \infty \\ & \stackrel{\infty}{N} \end{aligned}$		CFA6:g.47507204C>T		$\begin{aligned} & \text { 6:4750557 } \\ & 3 \text { tag for } \\ & \text { CFA6:g. } 47 \\ & 507204 C> \end{aligned}$
REF	REFERENCE	T T	T T	G G	G G	A A	A A	C C	G G	A A	T T	C C	T T	A A	G G	
REF	Labrador Retriel 152721_S5	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Labrador Retriel 172281_S2	T T	T T	G G	G G	A A	A A	CC	G G	00	T T	C C	T T	A A	G G	Y
REF	Labrador Retriel 87125_S1	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Labrador Retriel 91317_S7	T T	T T	G G	G G	A A	A A	CC	G G	00	T T	CC	T T	A A	G G	Y
REF	Australian Cattl AC023	T T	T T	G G	G G	A A	A A	CC	G G	00	T T	C C	T T	A A	G G	Y
REF	UNKNOWN AF14-297_S10	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	UNKNOWN AF15-074_S4	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	00	Y
REF	Australian Terri AR001	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Australian Cattl AustralianCattl	T T	T T	G G	G G	A A	A A	CC	G G	00	T T	C C	T T	A A	G G	Y
REF	Yorkshire Terrie BAN00127	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Yorkshire Terrie BAN00150	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	00	Y
REF	Basenji Basenji03	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Alpine Dachsbra Bern_AlpineDad	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Brittany BrittanySpaniel	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	MIX: American (C750	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	English Setter CFA. 105990	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Bouvier des Flar CFA. 107836	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	English Setter CFA. 117996	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Irish Terrier CFA. 117998	T T	T T	G G	G G	A A	A A	CC	G G	00	T T	C C	T T	A A	G G	Y
REF	MIX: Dachsund CFA. 118000	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Chihuahua Chihuahua03	T T	T T	G G	G G	A A	A A	CC	G G	00	T T	C C	T T	A A	G G	Y
REF	Chinese Crested ChineseCrested	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Chinese Crested ChineseCrested	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Chinese Indigenı ChineseIndigend	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	G A	G G	Y
REF	Cocker Spaniel (CockerSpanielA	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	English Cocker S CockerSpanielE	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Dachshund DH0117	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Doberman Pinsc DO242	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Doberman Pinsc Doberman02	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	German Shephe DS043	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	German Shephe DS051	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	German Shephe DS053	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y
REF	Pointer (English) EnglishPointer0	T T	T T	G G	G G	A A	A A	CC	G G	00	T T	C C	T T	A A	G G	Y
REF	English Setter EnglishSetter01	T T	T T	G G	G G	A A	A A	CC	G G	00	T T	C C	T T	A A	G G	Y
REF	English Springer EnglishSpringer	T T	T T	G G	G G	A A	A A	C C	G G	00	T T	C C	T T	A A	G G	Y

 \begin{tabular}{l|lllllllll}
Nigerian Indiger IndigenousDog \& T T \& TT \& G G G G \& A A \& A A \& C C \& G G \& 00

Nigerian Indiger IndigenousDog \& T T \& T T \& G G G G G \& A A \& A A \& C C \& G G \& 00

 Nigerian Indiger IndigenousDog \mid TT T T GG GG AA AA CC GG 00

Irish Setter IrishSetter01 \& TT T T GGGGGAA A A \& CC GG \& 00
\end{tabular} Irish Water SpaıIrishWaterSpan TT TT GG GG AA A A CC GG 00 Irish Water Spaı IrishWaterSpan TT T T GG GG AA AA CC GG 00 Irish Water Spaı IrishWaterSpan T T T T G G GG AA AA CC GG 00 Istrian Shorthaiı IstrianShorthain T T T T G G GG AA AA CC GG 00 Jack Russell Terı JackRussellTerr Komondor Komondor01 TT TTAGGGGAA A A CC G G 00 Labrador Retrie LabradorRetrie 1 T T T T GGGGGAA AA CC GG 00 Lapponian Herdı LapponianHerde Leonberger Leonberger01 Rottweiler LEW02122013_ MIX: Kerry Blue MIX_KerryBlueTTT TT GG GG AA AA CC GG 00 Chinese Shar-Pe NGSDOGO24 Yorkshire Terrie PER00204 Yorkshire Terrie PER00344 Yorkshire Terrie PER00361 Yorkshire Terrie PER00409 Yorkshire Terrie PER00462 Yorkshire Terrie PER00465 Yorkshire Terrie PER00484 Yorkshire Terrie PER00602 Yorkshire Terrie PER00606 Yorkshire Terrie PER00642 Yorkshire Terrie PER00806 Portuguese Wat PortugueseWat Rottweiler Rottweiler01 TT TT GG GG AA AA CC GG 00 Rottweiler Rottweiler02

Tibetan Terrier TibetanTerrierd T Village Dog-Ch VillDog_China2 TT TT GG GG AA AA CC GG 00 Village Dog - Ch VillDog_China3 TT TT GG GG AA AA CC GG 00 Village Dog - Ch VillDog_China5 TT TT GG GG AA AA CC GG 00 Village Dog-Inc VillDog_India04 T T TT GG GG AA A A CC GG 00 Village Dog-NaVillDog_Namibi TT TT GG GG AA A A CC GG 00

$A A G G$
TT CC

REF
Village Dog-Qa VillDog_QataroTT TT GG GG AA AA CC GG 00
West Highland \backslash WestHighlan
Golden Retrieve 164612_S9
F

- Australian Cattl AustralianCattl

Belgian Sheepdc BelgianSheepdd Belgian Tervure BelgianTervure Belgian Tervure BelgianTervure

Bouvier des Flar BouvierDesFlan

Miniature Bull T BT007

Village Dog - Qa VillDog_Qatar0 T T TT GG GG AA AA CC GG 00 West Highland \backslash WestHighlan
Golden Retrieve 164612_S9 TT TT GG GG AA AA CC GG 00

TT TT
GG GG AA AA CC GG 00 TT TT
TT TT
T
T
T
T
TT
T T T
T TT
TT T
TTGGGAAAA CC GG 00
TT TT GG GG AA AA CC GG 00
TT TT GG GG AA AA CC GG 00
TT TT GG GG AA AA CC GG 00

Bull Terrier BullTerrier03 Bull Terrier
Dachshund DH126
.

Doberman Pinsc Doberman04
Mastiff (English) EnglishMastiff0
Mastiff (English) EnglishMastiffo T
Flat-Coated Retı FlatcoatedRetri
Golden Retrieve GoldenRetrieve
Golden Retrieve GR0892
Greyhound Greyhound02
Irish Wolfhound IrishWolfhoundd
Landseer Landseer01
Pembroke Welsl PembrokeWelst

Labrador Retriel PERO Yorkshire Terrie PER00321 Yorkshire Terrie PER00408

Yorkshire Terrie PER00605

Yorkshire Terrie PER00626

 Yorkshire Terrie PER00777Portuguese Wat PortugueseWat
Pug Pug02 T
Pug Pug05
Rhodesian Ridge RR098
Shetland Sheepı ShetlandSheep
Standard Poodle StandardPoodle
Swedish Lapphu SwedishLapphu
Tibetan Terrier TibetanTerrierd
Village Dog - Qa VillDog_Qatar0
Weimaraner WE006

West Highland IWestHighlandW T T T T GG G G A A A A CC G G 00 West Highland IWestHighlandW T T TT GG GG AA AA CC GG 00 Labrador Retrie 149323_S6

Rottweiler 165414_S20

Golden Retrieve 173006_S10

Yorkshire Terrie BAN00032 UNKNOWN BAN0014 Yorkshire Terrie BAN00183 Yorkshire Terrie BAN00235 Yorkshire Terrie BAN00315 Belgian Sheepdc BelgianSheepdd T

Bouvier des Flar BouvierDesFlan
Cane Corso CaneCorso01

Dachshund CFA. 109668

Great Dane

CFA. 117997

Cocker Spaniel (CockerSpanielA

Curly-Coated Re CRO39

Doberman Pinsc Doberman01
Doberman Pinsc Doberman03

German Shephe GermanShephe
Golden Retrieve GoldenRetrieve

Golden Retrieve GoldenRetrieve

Kerry Blue Terri KerryBlueTerrie T
Labrador Retriel PER00177 Yorkshire Terrie PER00226 Yorkshire Terrie PER00324

Yorkshire Terrie PER00438

Yorkshire Terrie PER00622

 Yorkshire Terrie PER00650 Portuguese Wat PortugueseWat| REF | Nigerian Indiger IndigenousDog | T T | T T | 00 | G G | A A | A A | CC | G G | 00 | T T | C C | T | A A | G G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALT1 | Rottweiler 171515_ | C C | CC | T T | T T | T T | T T | A A | G G | 00 | CC | T T | CC | G G | A A |
| ALT1 | Border Collie BC485 | CC | CC | T | T T | T T | T T | A A | G G | 00 | CC | T T | CC | G G | A A |
| ALT1 | Border Collie BC518 | C C | CC | T T | T T | T T | T T | A A | G G | 00 | CC | T T | CC | G G | A A |
| ALT1 | Borde | C C | CC | T T | T T | T T | T T | A A | G G | 00 | CC | T T | CC | G G | A A |
| ALT1 | Be | C C | C C | T T | T T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT1 | Belgian Tervure B | C C | CC | T T | T T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT1 | Be | C C | CC | T T | T T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT1 | Border Collie BorderCollie02 | C C | CC | T T | T T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT1 | Border Collie BorderCollie03 | C C | CC | T T | T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| T1 | Bo | C C | CC | T T | T T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT1 | Border | C C | CC | T | T T | T T | T T | A A | G G | 00 | C C | T T | C C | G G | A A |
| AL | La | C C | CC | T T | T T | T T | T T | A A | G G | 00 | CC | T | C C | G G | A A |
| AL | B | C C | CC | T T | T T | T T | T T | A | G G | 00 | CC | T | C C | G G | A A |
| AL | B | C C | CC | T T | T T | T T | T T | A | G G | 00 | CC | T T | C C | G G | A A |
| ALT1 | Jack Russell Terı Jac | CC | CC | T T | T | T T | T T | A | G G | 00 | CC | T T | C C | G G | A A |
| AL | Keeshond Keesh | C C | CC | T | T T | T T | T T | A | G G | 00 | CC | T T | C C | G G | A A |
| T1 | Labrador Retrie L | C C | CC | T T | T T | T T | T T | A | G G | 00 | CC | T T | C C | G G | A A |
| ALT1 | La | C C | CC | T | T T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT1 | N | C C | CC | T T | T | | T T | A A | G G | 00 | CC | T T | C | G G | A A |
| ALT | N | C C | C | T T | T T | TT | T T | A A | G G | 0 | CC | T T | C C | G G | A A |
| ALT | N | C C | CC | T | T | T T | T T | A | G G | 00 | CC | T T | C C | G G | A A |
| AL | Yo | C C | C | T | T | T T | T T | A | G | 00 | CC | T T | C C | G G | A A |
| AL | Sa | C C | CC | T | T T | T T | T | A | G G | 00 | CC | T T | C C | G G | A A |
| AL | Sa | C C | CC | T T | T T | T T | T | A | G | 00 | CC | T | C C | G G | A A |
| ALT1 | Sa | CC | CC | T T | T T | T T | T T | A | G | 00 | CC | T T | C C | G G | A A |
| ALT1 | Sa | C C | C C | T T | T T | T T | T | A A | G G | 00 | C C | T T | C C | G G | A A |
| ALT1 | Soft Coated Whi So | C C | CC | T T | T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT1 | UNKNOWN | C C | CC | T | T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| AL | Villag | C C | 00 | T T | T | T T | T T | 00 | G G | 00 | CC | T T | C C | 00 | A A |
| AL | Vi | C C | CC | T T | T | T T | T T | A | G G | 00 | C | T | C C | G G | A A |
| AL | | C C | CC | T | T | T T | T T | A | G G | 00 | C | T | C C | G G | A A |
| ALT1 | Vi | C C | C C | T T | T T | T T | T T | A | G G | 00 | CC | T T | C C | G G | A A |
| ALT1 | Villag | C C | CC | T T | T T | | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT1 | Villag | C C | CC | T T | T | T T | T T | A A | G G | 00 | C C | T T | C C | G G | A A |
| ALT1 | Village Dog - Po VillDog_Portug | CC | CC | T | T T | T T | T T | A A | G G | 00 | C C | T T | C C | G G | A A |
| ALT1 | Villag | C C | CC | T T | T T | T T | T T | A A | G G | 00 | C C | T T | C C | G G | A A |
| ALT1 | Stand | C C | C C | T T | T T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT1 | Chinese | C C | 00 | T T | T T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT2 | Coyote Co | C C | CC | T T | G G | T T | A | A A | G G | 00 | CC | T T | C C | G G | G G |
| ALT2 | Wolf Wolf | C C | CC | T T | G G | T T | A A | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT3 | Bernese Mountć Bernese | T T | C C | T T | T T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT3 | Bernese Mount ${ }^{\text {B BerneseMounta }}$ | T T | CC | TT | T T | T T | TT | A A | G G | 00 | CC | T T | CC | G G | A A |
| ALT3 | Bernese Mountc BerneseMounta | T T | CC | T T | TT | TT | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT3 | Bernese Mounta BerneseMou | T T | CC | TT | T T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |
| ALT3 | Bernese Mounta BerneseMounta | T T | CC | TT | TT | TT | T T | A A | G G | 00 | C C | T T | C C | G G | A A |
| ALT3 | Bernese Mountc BerneseMounta | T T | CC | T T | T T | T T | T T | A A | G G | 00 | C C | T T | C C | G G | A A |
| ALT3 | Bernese Mountá BerneseMounta | T T | CC | T T | T T | T T | T T | A A | G G | 00 | CC | T T | C C | G G | A A |

ALT3	Bernese Mountç BerneseMounta	T T	CC	T T	T T	T T	T T	A A	G G	00	C C	T T	C C	G G	A
AlT3	Bernese Mountç BerneseMounta	T T	CC	TT	T T	T T	T T	A A	G G	00	CC	TT	C	G G	A A
ALT3	Bernese Mountç BerneseMounta	T	C C	T T	T T	T T	T T	A A	G G	00	C C	T T	C C	G G	A A
ALT3	Bernese Mountç BerneseMounta	T	CC	T T	T T	T T	T T	A A	G G	00	C C	T T	C C	G G	A A
ALT3	Entlebucher Sen EntlebucherSen	T	CC	T T	T T	T T	T T	A A	G G	00	C C	T T	C C	G G	A A
ALT3	lebucher Sen EntlebucherSen	T	C C	T T	T T	TT	T T	A A	G G	00	CC	T T	C C	G G	A A
ALT3	Saint Bernard SaintBernard02	T T	CC	T T	T	T T	T T	A A	G G	00	C C	T T	C C	G G	A A
ALT4	Golden Retrieve GoldenRetrieve	T T	CC	TT	T T	T T	T T	A A	G G	00	T T	C C	C C	G A	A G
ALT4	Bull Terrier BullTerrier04	T T	CC	T	T T	T T	T T	A A	G G	00	T T	CC	C C	G G	A A
ALT4	Bull Terrier BullTerrier05	T T	CC	T	T T	T T	T T	A A	G G	00	T T	C C	C	G G	A A
ALT4	Entlebucher Sen EntlebucherSen	T	CC	T T	T T	T T	T T	A A	G G	00	T T	C C	C	A A	G G
ALT4	French Bulldog FB065	T	C C	TT	T T	T T	T T	A A	G G	00	T T	CC	C C	G G	A
ALT4	Golden Retrieve GoldenRetrieve	T	CC	T T	T T	T T	T T	A A	G G	00	T T	C C	C	G G	A A
ALT4	German Huntin§ JT007	T T	CC	T T	T T	T T	T T	A A	G G	00	T T	CC	C C	G G	A A
ALT4	Kromfohrländer Kromfohrlander	T T	CC	T T	T T	T T	T T	A A	G G	00	T T	C C	C C	G G	A A
ALT4	Labrador Retrie LabradorRetrie	T T	CC	T T	T T	T T	T T	A A	G G	00	T T	C C	CC	G G	A A
ALT4	Lagotto Romagn LagottoRomagn	T T	C C	T T	T T	T T	T T	A A	G G	00	T T	C C	C C	G G	A A
ALT4	Miniature Poodl MiniaturePoodl	T T	CC	T T	TT	TT	T T	A A	G G	00	T T	CC	C C	G G	A A
ALT4	Norwich Terrier NW062	T	CC	T	T T	T T	T T	A A	G G	00	T T	CC	CC	A A	G G
ALT4	Norwich Terrier NW152	T T	CC	T	T T	T T	T T	A A	G G	00	T T	CC	C	A A	G G
ALT4	Norwich Terrier NW255	T T	C C	T	T T	T T	T T	A A	G G	00	T T	C C	C C	A A	G G
ALT4	Pe	T T	C C	T	T T	T T	T T	A A	G G	00	T T	C C	C C	G G	A A
ALT4	Scottish Terrier ScottishTerrierd	T T	CC	T T	T T	T T	T T	A A	G G	00	T T	C C	C C	A A	G G
ALT4	Scottish Terrier ScottishTerrierd	T T	CC	T	T T	T T	T T	A A	G G	00	T T	C C	C C	A A	G G
T4	Scottish Terrier ScottishTerrierd	T T	C C	T	T T	T T	T T	A A	G G	00	T T	C C	C C	A A	G G
ALT4	MIX: Miniature A168	T	CC	T	T T	T T	T T	A A	G G	00	T T	CC	C C	A A	G G
ALT5	Shiba Inu CFA. 107839	C C	CC	T T	T T	T	T T	A A	G G	00	T T	C C	CC	G G	A A
ALT5	Great Pyrenees GreatPyrenees	C C	CC	T T	T T	T T	T T	A A	G G	00	T T	CC	C C	A A	G G
ALT5	Greyhound Grey	C C	CC	T T	T T	T T	T T	A A	G G	00	T T	CC	C C	G G	A A
ALT5	Greyhound	C C	CC	T	T T	T T	T T	A A	G G	00	T T	CC	C C	G G	A A
ALT5	N	C C	CC	T T	T T	T	T	A A	G G	00	T T	CC	C C	G G	A A
A	Standard Poodle StandardPoodle	C C	C	T T	T T	T T	T T	A A	G G	00	T T	CC	C C	G G	A A
ALT5	Village Dog - Ch VillDog_China3	C C	CC	T T	T T	T T	T T	A A	G G	00	T T	C C	C C	G G	A A
ALT6	Afghan Hound AfghanHound01	T T	T T	G G	G G	A	A A	CC	A A	00	T T	C C	T T	A A	G G
ALT6	Aireda	T T	T T	G G	G G	A A	A A	CC	A A	00	T T	CC	T T	A A	G G
ALT6	Airedale Terrier AiredaleTerrier	T T	TT	G G	G G	A A	A A	CC	A A	00	T T	CC	T T	A A	G G
ALT6	Yorkshire Terrie BAN00368	T T	TT	G G	G G	A A	A A	CC	A A	00	T T	CC	T T	A A	G G
Alt6	Yorkshire Terrie BAN00437	T T	T T	G G	G G	A A	A A	C C	A A	00	T T	CC	T T	A A	G G
ALT6	Beagle Beagle02	T T	T T	G G	G G	A A	A A	C C	A A	00	T T	CC	T T	A A	G G
ALT6	Bearded Collie BeardedCollieOf	T T	T T	G G	G G	A A	A A	CC	A A	00	T T	CC	T T	A A	G G
AlT6	Bearded Collie BeardedCollie0	T T	T T	G G	G G	A A	A A	C C	A A	00	T T	CC	T T	A A	G G
ALT6	Bernese Mountá Bern	T T	T T	G G	G G	A A	A A	C C	A A	00	T T	CC	T T	A A	G G
ALT6	Border Terrier BorderTerrierO2	T T	T T	G G	G G	A A	A A	CC	A A	00	T T	CC	T T	A A	G G
ALT6	Spinone Italianc CFA. 109669	T T	T T	G G	G G	A A	A A	CC	A A	00	T T	CC	T T	A A	G G
ALT6	Chinook Chinook01	T T	TT	G G	G G	A A	A A	CC	A A	00	T T	CC	T T	A A	G G
ALT6	Clumber Spaniel ClumberSpaniel	T T	T T	G G	G G	A A	A A	C C	A A	00	T T	C C	T T	A A	G G
ALT6	Yorkshire Terrie PER00138	T T	T T	G G	G G	A A	A A	C C	A A	00	T T	CC	T T	G A	G G
ALT6	Yorkshire Terrie PER00738	T T	T T	G G	G G	A A	A A	CC	A A	00	T T	CC	T T	A A	G G

ALT6	Yorkshire Terrie	PER00750	T T	T T	G G	G G	A A	A A	CC	A A	00	T T	C C	T T	A A	G G
ALT6	Spanish Galgo	SpanishGalgo01	T T	TT	G G	G G	A A	A A	CC	A A	00	T T	C C	T T	G A	A G
ALT6	Kunming Dog	VillDog_China1	T T	T T	G G	G G	A A	A A	CC	A A	00	T T	C C	T T	A A	G G
ALT6	Kunming Dog	VillDog_China1	T T	T T	G G	G G	A A	A A	CC	A A	00	T T	C C	T T	A A	G G
ALT7	Grey Wolf	Wolf01	C C	CC	T T	G G	TT	A A	CC	G G	00	CC	C C	00	A A	G G
ALT7	Grey Wolf	Wolf06	C C	C C	T T	G G	T T	A A	CC	G G	00	CC	C C	C C	A A	G G
ALT7	Grey Wolf (Cani؛	WolfTibetan05	C C	CC	T T	G G	TT	A A	CC	G G	00	C C	C C	C C	G G	A A
ALT7	Alaskan Husk	AlaskanHusky0	C C	CC	T T	G G	A A	A A	CC	G G	00	T T	C C	C C	G G	A A
ALT7	UNKNOWN	BH003	C C	CC	T T	G G	A A	A A	CC	G G	00	T T	C C	C C	G G	A A
ALT8	Great Dane	CFA. 107837	T T	T T	G G	G G	A A	TT	A A	G G	00	CC	T T	C C	G G	A A
ALT8	Great Dane	DD116	TT	T T	G G	G G	A A	TT	A A	G G	00	CC	T T	C C	G G	A A
ALT8	Great Dane	GreatDane01	TT	T T	G G	G G	A A	T T	A A	G G	00	CC	T T	C C	G G	A A
ALT8	Great Dane	GreatDane02	T T	T T	G G	G G	A A	TT	A A	G G	00	C C	T T	C C	G G	A A
ALT9	Standard Schnaı	ICFA. 118001	T T	T T	G G	G G	A A	A A	CC	G G	00	T T	T T	T T	A A	G G
ALT10	Chinese Indigenı	ChineseIndigend	C C	CC	T T	G G	A A	A A	CC	G G	00	T T	T T	C C	00	G G
ALT10	Chow Chow	CW011	CC	CC	T T	G G	A A	A A	CC	G G	00	T T	T T	CC	A A	G G
ALT10	MIX: Siberian HI	MixedBreed07	C C	CC	T T	G G	A A	A A	CC	G G	00	T T	T T	C C	A A	G G
ALT10	Siberian Husk	SY046	CC	CC	T T	G G	A A	A A	CC	G G	00	T T	T T	C C	A A	G G
ALT10	Tibetan Mast	etanMastiffd	C C	CC	T T	G G	A A	A A	CC	G G	00	T T	T T	C C	A A	G G
ALT10	Tibetan Mast	Mastiffd	CC	CC	T T	G G	A A	A A	CC	G G	00	T T	T T	CC	A A	G G
ALT10	Village Dog - Ch	VillDog_China4	C C	CC	T T	G G	A A	A A	CC	G G	00	T T	T T	C C	A A	G G
ALT11	Qingchuan Dog	QingchuanDog0	C C	C C	T T	G G	A A	A A	CC	G G	00	T T	C C	C C	G G	A A
ALT11	Village Dog - Ch	VillDog_China4	C C	CC	T T	G G	A A	A A	CC	G G	00	T T	CC	C C	G A	A G
ALT11	Village Dog - Ch	VillDog_China0	C C	00	T T	G G	A A	A A	CC	G G	00	T T	C C	C C	G G	A A
ALT11	Village Dog	VillDog_Borneo	C C	00	T T	G G	A A	A A	C C	G G	00	T T	C C	C C	00	G G
ALT12	Grey Wolf	Wolf23	CC	CC	T T	G G	T T	A A	CC	G G	00	T T	C C	CC	G G	A A
ALT12	Wolf	W0002_732	C C	CC	T T	G G	T T	A A	CC	G G	00	T T	C C	C C	G G	A A
ALT12	Grey Wolf	Wolf05	CC	CC	T T	G G	T T	A A	CC	G G	00	T T	C C	C C	G A	A G
ALT12	Grey Wolf	Wolf22	C C	CC	TT	G G	T T	A A	CC	G G	00	T T	C C	C C	G G	A A
ALT12	Red Wolf	Wolf25	C C	CC	T T	G G	T T	A A	CC	G G	00	T T	C C	C C	G G	A A
ALT13	Grey Wolf	Wolf08	C C	CC	T T	G G	T T	A A	CC	G G	00	T T	T T	C C	A A	G G
ALT13	Grey Wolf (Cani؛	Wolftibetan01	C C	CC	T T	G G	T T	A A	CC	G G	00	T T	T T	C C	A A	G G
ALT13	Grey Wolf (Cani:	: WolfTibetan02	C C	CC	T T	G G	T T	A A	CC	G G	00	T T	T T	C C	A A	G G
ALT14	Elo	Elo01	C C	CC	T T	T T	T T	A A	CC	G G	00	T T	C C	C C	G G	A A
ALT14	Italian Greyhour	ItalianGrey hour	CC	CC	T T	T T	T T	A A	CC	G G	00	T T	C C	T T	A A	G G
ALT14	Village Dog - Inc	V VillDog_India02	C C	00	T T	TT	TT	A A	CC	G G	00	T T	C C	C C	G G	A A
ALT15	Chongqing Dog	ChongqingDog0	C C	CC	TT	T T	TT	A A	CC	G G	00	T T	T T	T T	A A	G G
ALT16	Golden Jackal	GoldenJackal01	C C	CC	TT	G G	T T	A A	CC	G G	00	CC	CC	CC	A A	G G
ALT17	Andean Fox	AndeanFox01	CC	CC	TT	G G	T T	A A	A A	G G	00	T T	C C	C C	A A	A A
ALT17	Dhole	Dhole01	CC	CC	T T	G G	T T	A A	A A	G G	00	T T	C C	C C	A A	A A

CFA12:33,710,170 bp

Figure S1. Insertion of FGF4-retrogene identified on CFA12. Screenshot of Integrative Genomics Viewer (IGV- Broad Institute). IGV uses colour coding to flag reads that have an atypical alignment such as insertions, deletions and inter-chromosomal rearrangements. Here IGV shows Cavalier King Charles Spaniel whole genome sequence data (WGS; paired-end reads) aligned to CanFam3.1 centred at CFA12:33,710,170 (red dashed line). Black boarder divides the reads from five CKCS WGS samples. Reads coloured in green support insertion of an FGF4-retrogene, with read mates mapping to the original location of the FGF4 gene at CFA18:48.4Mb. Read mates in blue map to CFA7:68.3. PCR investigation of blue reads suggest a genome assembly error (Brown et al., 2017).

A large deletion on CFA28 omitting ACSL5 gene is associated with intestinal lipid malabsorption in the Australian Kelpie dog breed

Abstract

Mitchell J. O’Brien ${ }^{1 \boxtimes}$, Niek J. Beijerink ${ }^{2,3}$, Mandy Sansom ${ }^{5}$, Sarah W. Thornton ${ }^{2,6}$, Tracy Chew ${ }^{4}$ \& Claire M. Wade ${ }^{1 \boxtimes}$

Inborn errors of metabolism are genetic conditions that can disrupt intermediary metabolic pathways and cause defective absorption and metabolism of dietary nutrients. In an Australian Kelpie breeding population, 17 puppies presented with intestinal lipid malabsorption. Juvenile dogs exhibited stunted postnatal growth, steatorrhea, abdominal distension and a wiry coat. Using genome-wide association analysis, an associated locus on CFA28 ($\mathrm{P}_{\mathrm{raw}}=2.87 \mathrm{E}^{-06}$) was discovered and validated in a closely related population ($\mathrm{P}_{\mathrm{raw}}=1.75 \mathrm{E}^{-45}$). A 103.3 kb deletion NC_006610.3CFA28:g.23380074_2 3483377del, containing genes Acyl-CoA Synthetase Long Chain Family Member 5 (ACSL5) and Zinc Finger DHHC-Type Containing 6 (ZDHHC6), was characterised using whole transcriptomic data. Whole transcriptomic sequencing revealed no expression of ACSL5 and disrupted splicing of ZDHHC6 in jejunal tissue of affected Kelpies. The ACSL5 gene plays a key role in long chain fatty acid absorption, a phenotype similar to that of our affected Kelpies has been observed in a knockout mouse model. A PCR-based diagnostic test was developed and confirmed fully penetrant autosomal recessive mode of inheritance. We conclude the structural variant causing a deletion of the ACSL5 gene is the most likely cause for intestinal lipid malabsorption in the Australian Kelpie.

[^6]

Figure 1. Simplified pedigree of an AK family showing links among affected individuals with hereditary intestinal lipid malabsorption. Females and males are indicated by circles and squares, respectively. Filled symbols indicate affected samples, half-filled symbols represent carriers of the disease allele based on autosomal recessive inheritance. Offspring from a single litter are represented by a line descending from a horizontal connection between parent symbols. A triangle has been used to designate multiple samples (N) from a single litter that are not affected or suspected to be carriers based on recessive inheritance. Litters that included zero affected samples have not been included. Affected samples highlighted in blue were included in the study. Diagnostic testing found all samples to be homozygous for the disease-associated variant.
is a fully penetrant autosomal recessive inherited metabolic disorder. The aim of the current study is to provide insight into the molecular genetic aetiology of intestinal lipid malabsorption in the AK.

Materials and methods

Ethics. The research described conforms to the recommendations from the Australian Code for the Care and Use of Animals for Scientific Purposes. Animal ethics approval was granted by the Animal Ethics Committee at the University of Sydney (approval numbers 2015/902 and 2018/1449).

Animal selection and phenotype selection. Related juvenile AK dogs were observed to exhibit stunted postnatal growth and intestinal lipid malabsorption. Affected individuals remain a third to one half the size of their littermates during development and mature so that adult dogs are smaller in stature and exhibit persistent intolerance to a fatty diet. Starting in 2011, 17 of 319 puppies, from 45 litters, were born at one Australian kennel presenting with identical clinical features (Fig. 1). As neonates, affected puppies are indistinguishable from their littermates, but rapidly show clinical signs of polyphagia, failure to thrive, stunted growth (around one-third to one-half of the size of their siblings-Fig. 2a), yellowish poorly digested loose and pulpy faeces (Fig. 2b), increased faecal volume, and frequent defecation. Once affected puppies are transferred to a solid diet with digestive enzyme supplementation, faecal consistency normalises. From around six months of age, most affected

Figure 2. Side by side comparisons of affected Kelpie and unaffected littermate size and faecal matter. (a) Affected Kelpie at 10 weeks (right) with his littermate. Size and musculature of the affected pup is in stark contrast. (b) Pale poorly digested faeces from an affected Kelpie (right) in comparison with an unaffected littermate (left). There is a significant difference in colour and consistency between the two samples.

Kelpies appear to outgrow the characteristic clinical presentation. However, the dogs remain smaller in stature than their siblings, consistently produce more voluminous faeces than age-matched dogs, and their intolerance to high-fat foods persists throughout their lives.

This study involved 265 Kelpies. Samples were made up of 35 AK (10 cases and 25 controls), 225 AWK (225 controls), and 5 international Kelpies (one case and four controls). Cases in this study represent dogs that adhered to the described clinical presentation. Cases were easily recognised through signs of ill thrift, faecal appearance (steatorrhea), and stunted growth when compared to littermates. Seven cases from the originally described kennel have been included in this study. Two samples from separate kennels were reported as dams of affected pups. They were included as control samples and treated as obligate carriers when observing results.

Biological samples were collected as whole blood in EDTA tubes or buccal cells using cheek swabs. Genomic DNA was extracted using the PureLink Genomic DNA Mini Kit (Invitrogen, Carlsbad, CA, USA) or submitted as EDTA blood to the genotyping service provider on Whatman Flinders Technology Associates (FTA) cards, supplied by the genotyping service. Genotyping array data for 255 samples was obtained from the CanineHD BeadChip (Illumina, San Diego, CA, USA) by Neogen (Lincoln, NE, USA).

A full post-mortem was conducted at the Veterinary Pathology Diagnostic Services (University of Sydney, Camperdown, NSW, Australia) on a 17 -week-old affected AK pup that was euthanized with approval by the owner on welfare grounds. A thorough examination was conducted on tissue of the lung, spleen, liver, heart, major cardiac vessels, lymph nodes, thyroid gland, kidney, bone marrow, pancreas, small intestine (duodenum, jejunum and ileum), brain and spinal cord.

Genome-wide association study (GWAS). To detect and validate signals associated with malabsorption in the Kelpie population two case-control GWAS were performed using Plink 1.9 (--assoc) ${ }^{12}$. Quality control of genotypic data was conducted on 25 AK, five internationally bred Kelpies, and 225 AWK. Single Nucleotide variants (SNVs) were excluded if they exhibited a call rate of less than 90% (--geno) or a low minor allele frequency $<10 \%$ (--maf). Pairwise identity by decent was calculated (--genome) to detect and remove duplicated or highly related individuals. Population stratification was visualised using a multidimensional scaling (MDS) plot with two dimensions (--mds). One sample from each pair with a pairwise identity by decent >0.7 was excluded. This was done to control for inflation resulting from cryptic relatedness and population stratification. Population stratification in the preliminary GWAS was determined by the genomic inflation factor based on the median Chi-squared statistic. The primary GWAS was conducted using 30 Kelpies, including 25 AK and five internationally bred Kelpies. Both groups show evidence of carrying the studied trait; reflected in our dataset. To control for the testing of multiple hypotheses, genome-wide significant and suggestive thresholds were Bon-ferroni-corrected, 5×10^{-7} (Bonferroni cut-off of $\alpha=0.05, \mathrm{n}=99,326$) and 1×10^{-5} (Bonferroni cut-off of $\alpha=1.0$, $\mathrm{n}=99,326$), respectively. Reported P-values are chi-square allelic test P-values as calculated in Plink. The 200 most associated markers from the unstratified preliminary GWAS were taken forward to a second analysis that added 225 control dogs from the closely related population of AWK.

Confirmation of deletion by polymerase chain reaction (PCR). A large segment of consecutive uncalled array markers was observed only in cases suggesting the presence of a large deletion in these animals. Primers designed using primer 3^{13-15} were used to detect the presence of the deletion. The novel deletion was confirmed through amplification of the last coding exons in impacted genes by PCR. Where no amplification was observed, to gauge the size of the deletion, further primers were designed to amplify the preceding exon. Alternatively, where amplification was witnessed, we designed primers in the gene's untranslated region (UTR). A total of seven primers were designed (Table S1). PCR was carried out in total volume of $20 \mu \mathrm{l}$ using AmpliTaq

Gold 360 Master Mix (Applied Biosystems, Foster City, CA, USA) according to the manufacturer's protocol. Fragments were evaluated on a 1.5% agarose gel. Briefly, the PCR conditions were heat activation for 10 min (mins) at 95 degrees Celsius (${ }^{\circ} \mathrm{C}$); and 30 cycles of $30 \mathrm{~s}(\mathrm{~s})$ at $95^{\circ} \mathrm{C}, 58^{\circ} \mathrm{C}$ and $72^{\circ} \mathrm{C}$ for denaturation, annealing and extension respectively. The process concluded with a final elongation step at $72^{\circ} \mathrm{C}$ for 10 min .

RNA sequencing, alignment and variant detection. In order to gauge if mapped candidate genes were influencing the observed phenotype, whole transcriptomic sequencing was conducted on whole tissue of the jejunum collected during post-mortem. Using Invitrogen TRIzol Reagent, RNA was extracted according to the manufacturer's protocol. Total RNA sequencing (RNAseq) was performed on Illumina NovaSeq S1 using the TrueSeq Stranded RNA RiboZero Gold ($\mathrm{h} / \mathrm{m} / \mathrm{r}$) kit at the Ramaciotti Centre for Genomics (University of New South Wales, Kensington, NSW, Australia). A total of 142,658,896, 100 base pair (bp) paired end reads were generated. Tissue matched transcriptomic sequence data for the Labrador retriever JEJUNUM_LABR (Accession identifier: SRR3727723) were obtained from the Sequence Read Archive (SRA) in Genbank (https://www. ncbi.nlm.nih.gov/sra/).

Quality control for the raw paired-end reads was performed with FastQC v0.11.8 (https://www.bioinforma tics.babraham.ac.uk/projects/fastqc/) and visualised using MultiQC ${ }^{16}$. Raw RNAseq reads were mapped to the canine reference genome (CanFam3.1) using STAR aligner v2.7.0e basic options ${ }^{17}$. Reads surrounding the candidate region were visualised and extracted for a genome-guided de novo transcriptome assembly using Trinity $\mathrm{v} 2.8 .3^{18}$. The distribution of read data was calculated across known gene features using RSeQC v3.0.1 ${ }^{19}$.

STAR aligned bam files and Trinity constructed fasta sequences were visualised in Integrative Genomics Viewer v2.8.2 ${ }^{20}$. Variants in the affected Kelpie transcript were compared with those of the tissue matched Labrador retriever. Alternate transcript splicing was visualised using a sashimi plot created using ggsashimi ${ }^{21}$. The minimum read coverage at splice junctions was set to 15 reads to reduce background hybridisation signals.

Multiplex PCR assay design for deletion. Custom primers were designed to capture a disease-associated variant identified in the sequenced AK using primer3. A three-primer multiplex PCR was designed to detect the structural variant (Table S1). The multiplex PCR includes a forward primer, 37 bp upstream of the disease-associated variant, and two reverse primers, one 140 bp downstream from the start of the variant and another $\sim 103.7 \mathrm{~kb}$ downstream of the forward primer. PCR was carried out in total volume of $20 \mu \mathrm{l}$ as previously described. A total of 19 Kelpie samples from affected populations were assessed using this method, including nine cases and ten controls. This encompassed two cases and eight controls also utilised in the GWAS analysis. Six of the controls were known to come from families that have produced affected puppies.

Equipment and settings. All images have been formatted for publishing using Adobe Photoshop 2020 (v21.1.1). Images that have been cropped have been done so to improve clarity and conciseness. As such, all images correctly represent the original data. If an electrophoretic gel images has been cropped, it is stated in the figure legend and an original image has been provided in "Supplementary materials".

Results

Post-mortem results. Post-mortem was conducted on a young, 17 -week old, female Kelpie. The dog was received in excellent post-mortem condition immediately following euthanasia. The affected Kelpie pup showed signs of malnutrition including decreased body condition (body condition score $2 / 5$), atrophied musculature and depleted subcutaneous adipose tissue stores. Histological examination of the small intestine showed evidence of mild non-specific chronic enteritis including focal ileal ulceration, rare crypt abscesses in the ileum and colon, and possible crypt fusion in the jejunum.

Genome-wide association study (GWAS). After frequency and genotype pruning, 99,326 SNVs remained in the analysis. Three cases and 27 control Kelpies were available for the primary analysis. Of these, four controls and one case were bred outside Australia. By MDS the AK and International populations clustered closely and so were treated analytically as one population (Fig. S1a). When AWK were included in the MDS the principal Kelpie population and AWK clustered separately (Fig. S1b).

A preliminary GWAS was performed in the closely clustered Kelpie populations with affected samples (AK and internationally bred Kelpies). The quantile-quantile plot shows limited inflation and the genomic inflation factor was 1.23 (Fig. 3a). GWAS revealed a suggestive association with intestinal lipid malabsorption on canine chromosome 28 (CFA28) (best $\mathrm{P}_{\text {raw }}=2.87 \mathrm{E}^{-6}$) (Fig. 3b). Six SNVs within a three megabase (Mb) region ($28: 24,521,377-26,556,336 ; 2.03 \mathrm{Mb}$) passed the suggestive genome-wide significance threshold and were in strong linkage with the index SNV ($\mathrm{r}^{2}>0.93$). In the validation analysis, 225 AWK controls were added to the leading dataset. When analysing the top 200 associated SNVs in the primary GWAS in the extended cohort, 52 SNVs passed genome-wide significance (Fig. 3c). Of these SNVs, 21 (40.3\%) were located on CFA28: 20 that clustered within a four Mb region ($28: 24,030,090-27,194,500 ; 3.16 \mathrm{Mb}$) including $16(30.7 \%)$ that matched the expected GT frequency for a recessively inherited trait (Table S2). The top SNV from the preliminary analysis remained the strongest in the validation set (best $\mathrm{P}_{\text {raw }}=1.75 \mathrm{E}^{-45}$).

Confirmation of deletion by PCR. Within the associated locus, we identified a region of nine consecutive SNVs spanning marker CFA28:23,370,822 (BICF2P674000) to CFA28:23,493,334 (BICF2P338375) 122.5 kb , where all but two SNVs were consistently uncalled in cases but not controls (Table S3), suggesting the presence of a deleted segment. Within the putatively deleted segment, three genes and one pseudogene were identified,
b

Figure 3. QQ-plot and Manhattan plots from intestinal lipid malabsorption case-control GWAS. (a) QQ-plot of Data shown in the Manhattan plot. The observed distribution of the test statistic closely follows the expected. (b) Manhattan plot showing the negative \log P-value between individual markers. 6 SNVs highlighted in red on CFA28 passed a suggestive threshold (1×10^{-5}, dashed line). No SNVs achieved a Genome wide significant score (5×10^{-7}, solid line). The top 200 SNVs from this association were were taken forward to a second analysis. (c) Manhattan plot demonstrating genotype association to intestinal lipid malabsorption. 52 SNVs highlighted in red pass the significance threshold of $\mathrm{P}<5 \times 10^{-7}$ (solid line), while 13 SNV in yellow passed a suggestive threshold of $\mathrm{P}<1 \times 10^{-5}$ (dashed line). The most significant region of interest is noted on CFA28, where the strongest SNV from the preliminary analysis persisted in the validation set ($28: 24521377$ best $\mathrm{P}_{\text {raw }}=1.75 \mathrm{E}^{-45}$).
being Tectorin beta (TECTB), Acyl-CoA Synthetase Long Chain Family Member 5 (ACSL5), Zinc Finger DHHC Domain-Containing Protein 6 (ZDHHC6) and pseudogene Guanylate Cyclase 2G (GUCY2GP). The gene ACSL5 represented a strong regional candidate for disease. The orientation of the genes within the region of uncalled markers were positioned so that the last coding exon of each gene aligned with the edges of the putative deletion (Fig. S2a). Using seven primer pairs, we confirmed the presence of a deletion in the affected Kelpies between 101.6 kb and 105.2 kb (Fig. S2b). The PCR confirmed a complete loss of GUCY2GP and ACSL5 and partial loss of ZDHHC6. RNAseq data was used to validate this result.

Variant detection and RNA expression. RNAseq data were inspected in Integrative Genomics Viewer. Read distributions indicated RNAseq data had underlying DNA contamination with an equal portion of reads aligning to introns or intergenic regions compared to exons, 34.9% and 38.1% respectively. DNA from the AK with intestinal lipid malabsorption harboured a 103.3 kb deletion, NC_006610.3CFA28:g.23380074_234 83377del (CanFam 3.1; Fig. S3), involving the complete loss of ACSL5, pseudogene GUCY2GP and omitting exons 7-10 of ZDHHC6 (Fig. 4). RNAseq data demonstrated no detectable expression of GUCY2GP, ACSL5 and ZDHHC6 exons beyond the breakpoint of the observed deletion. A further gene, TECTB, located outside the deleted region had no observable expression compared with that of the Labrador retriever jejunum. Gene expression of ZDHHC6 and ACSL5 in the control jejunum was consistent with the reference transcript. GUCY2GP and TECTB were not expressed in either case or control. In the AK, expression of novel exons as a result of cryptic splicing were observed 148.4 kb downstream from the $Z D H H C 6$ gene. The alternate splicing event was captured by 152 reads. A consensus sequence was produced using a genome guided de-novo assembly with Trinity (Data S1).

Multiplex PCR assay for deletion. A multiplex PCR test was customised to implicate the associated variant in affected individuals as well as detect carriers of the variant through allele specific amplification. Primer 1 and 3 were designed to amplify the region spanning the disease-associated variant. The variant removes $103,303 \mathrm{bp}$ between the primers and results in a 414 bp fragment in carrier and affected individuals. Primer 2 anneals shortly downstream from the start of the deleted region so that wild type dogs produce a 177 bp fragment while dogs homozygous for the variant show no amplification. Animals that are heterozygous for the dis-

Figure 4. Sashimi plot of RNAseq data for CanFam3 genomic coordinates CFA28:23320000-23500000. The coverage for each alignment track is plotted as a bar graph, the Y axis represents read counts. Arcs are supported exon junctions and reads split across the junction (junction depth). Below the plots are the gene annotations for corresponding genomic coordinates. The figure illustrates RNAseq data from the jejunum of two samples; A case sample (AK Australian Kelpie) and control (LR Labrador retriever). Underlying DNA contamination can be seen in the AK highlighted by the low read count across the genomic region. A 103.3 kb deletion is seen in the AK, illustrated with a transparent box. The gap in the AK includes GUCY2GP, ACSL5, ZDHHC6 and a Long non-coding RNA (lncRNA). In the AK, expression of novel exons can be seen 148.4 kb downstream from the ZDHHC6 gene, the junction is supported by 152 reads. A consensus sequence produced using a genome guided de-novo assembly with Trinity is included in the gene track as ZDHHC6_AK_DEL.
ease-associated variant produce both fragments. Of 19 samples tested, nine were homozygous for the deletion, all of which exhibited signs of disease (Fig. S4). In the controls, six samples were homozygous wild type and four were heterozygous for the variant. Dogs heterozygous for the variant were asymptomatic but came from families known to produce offspring with the disease phenotype.

Discussion

Inborn errors of metabolism (IEM) are genetic disorders resulting from defects in biochemical pathways that can have a profound effect on an animal's overall health ${ }^{22,23}$. IEM affecting intermediary metabolic pathways are often recognised through clinical signs such as failure to thrive, hypotonia and functional decompensation ${ }^{22,23}$. Increased prevalence of IEM among specific breeds has previously been observed ${ }^{22-24}$. Frequently reported metabolic disorders clinically similar to intestinal lipid malabsorption are hereditary selective ileal cobalamin malabsorption and exocrine pancreatic insufficiency. Both are IEM that present with failure to thrive and persistent diarrhea ${ }^{11,25,26}$, however the AK presents earlier (before six weeks of age), show no signs of lethargy and have clear evidence of fat in faeces (steatorrhea). Here we present an IEM affecting lipid absorption in the AK resulting from the deletion of ACSL5 and partial loss of ZDHHC6.

Characterisation of the genetic factors associated with IEM is of strong interest for improving canine welfare and improving our understanding of the genomic control of metabolism. Genes influencing the phenotype described in this study, ACSL5 and ZDHHC6, have not been previously implicated in naturally occurring disease models. Long chain acyl-CoA synthetases are major enzymes in fatty acid metabolism ${ }^{27-32}$. In human and rodent studies, variation in the ACSL gene family are often associated with diet induced metabolic and body composition phenotypes ${ }^{27,31,33-38}$. ACSL5, essential for lipid metabolism and fat deposition in carnivores ${ }^{39}$, is a principal candidate for the observed phenotype in the AK. ACSL genes have already been implicated in canine body composition phenotypes, with variation in ACSL4 associated with heavy weight dogs ${ }^{40}$.

The clinical phenotype associated with absent expression of ACSL5 in the jejunal tissue of affected AK puppy is consistent with a knockout (KO) mouse model, including delayed fat absorption and a reduced fat mass ${ }^{27}$. KO mice exhibited additional increased lean mass and energy expenditure, as well as improved insulin sensitivity; traits not observed or tested in our cases. The results of the mouse KO study contradicted an earlier ACSL5 knockout study, which showed little effect on long-term dietary LCFA absorption and weight gain, likely
compensated by residual ACSL activity ${ }^{41}$. Long chain fatty acid absorption occurs largely through the jejunum where LCFA are absorbed across the brush border of jejunal enterocytes. ACSL5 is expressed in brown adipose tissue, small intestine, liver ${ }^{27,28,42-44}$ and is the primary activator of dietary LCFA in the jejunum ${ }^{41}$. Expression, synthesis and activity of ACSL5 is connected to the state of villus architecture, epithelial homeostasis and enterocyte apoptosis ${ }^{45-47}$. The relatively improved health status of affected AK at maturity may imply an important role of ACSL5 during early development. The extreme effects identified in immature AK may be partially offset by other ACSL genes as they reach full size or may be linked with a transition to a solid diet.

Following absorption of LCFA in enterocytes, they undergo re-esterification before transportation and storage is possible. Previous research in rodent studies has implicated ACSL5 in fat absorption during the re-esterification of dietary fats ${ }^{3,27,28,48}$. In the present study it has been noted that once affected Kelpies are on a solid diet with enzyme supplementation, dogs continue to present with a low body condition score. While AK display ongoing sensitivity to dietary lipids into adulthood it remains unconfirmed if their smaller size is a result of persistent intestinal lipid malabsorption or stunted early development.

Further to the complete loss of ACSL5, the genomic deletion resulted in the partial deletion and cryptic splicing event downstream of the last translated exon of ZDHHC6. ZDHHC6 plays a role in posttranslational modification (palmitoylation) of proteins, which can contribute to protein function and regulation beyond underlying genomic architecture. Differences in the palmitoylation of proteins involved in fat and carbohydrate transport and signalling may compromise digestion. Articles reviewing the biological effects of protein palmitoylation have anticipated a functional role in lipid and glucose metabolism ${ }^{49,50}$, though ZDHHC6 is not currently implicated. ZDHHC6 localises in the endoplasmic reticulum and is reported to be involved in the palmitoylation of five protein targets ${ }^{51-56}$. Within the context of existing research neither ZDHHC6 nor proteins palmitoylated by ZDHHC6 are expected to play a major role in lipid digestion. However, novel roles and targets of palmitoylation are frequently reported and the list of proteins that undergo palmitoylation is constantly growing ${ }^{57}$ (https:// swisspalm.epfl.ch/). It is possible that other key substrates influencing the observed phenotype in the AK are not yet reported and AK harbouring the disease-associated variant may be a unique tool in furthering our current understanding of post-translational modification.

TECTB and GUCY2GP were not expressed in either the case or control RNAseq samples. The genomic region containing the TECTB transcript falls outside the observed variant. It is unlikely that gene expression is altered in appropriate tissue samples. Mice studies indicated that GUCY2G plays a role in jejunal integrity ${ }^{58}$. However, GUCY2G is a known pseudogene in humans and was suggested to be under purifying selection in the dog ${ }^{59}$. Conversely, Ensembl genebuild predicts the transcript is non-protein coding (Gene identifier: ENSCAFG00000010908), and recent canine gene catalogue observing ten tissue types reported no expression across all samples and replicates ${ }^{60}$. The gastrointestinal tract was not reported in the catalogue but a lack of expression in the Labrador retriever control supports the concept of GUCY2GP as a pseudogene, indicating no involvement in the observed phenotype.

Therapies to overcome deficit in ACSL5 function are currently unknown and were not assessed in this research. In humans, therapies for disorders disrupting lipid digestion and absorption, involve removing lipids from the diet or replacing them with those that bypass the genetic block ${ }^{61,62}$. The disorder described in this study chiefly impacts the metabolism of LCFA. Some human studies have demonstrated positive effects of mediumchain triglyceride formulation (MCT) on individuals suffering from long chain fatty acid disorders ${ }^{63-65}$, however the use of MCT in canine research is restricted ${ }^{66-69}$. Auxiliary research into therapeutic options especially during early development is necessary.

Results of the multiplex-PCR were consistent with a fully-penetrant autosomal recessive disorder. Results reported here are not indicative of breed-wide prevalence rates as dogs included in this study originated from a small group of Australian kennels. However, the presence of the deletion in international samples suggests that the variant allele is globally dispersed. To obtain comprehensive prevalence parameters, randomised and wide scale testing is required.

In conclusion we presented a novel deletion of ACSL5, causing hereditary intestinal lipid malabsorption in the Australian Kelpie dog breed. ACSL5 plays an important role in long chain fatty acid storage and metabolism. The improved health of affected individuals with age implies that genetic compensation of this gene beyond neonatal development is possible. This research identifies the first spontaneous animal model to validate key mouse knockout model findings previously reported. The AK model presents a unique opportunity to improve gaps in our understanding of ACSL5. A simple genetic test has been developed and validated to identify dogs harbouring the described variant. International testing of Australian Kelpies is warranted to obtain better estimates of global prevalence. At this time the disorder is presumed to be restricted to a single breed.

Data availability

The dataset used in the current study is available at Figshare https://doi.org/10.6084/m9.figshare.12380564.
Received: 12 June 2020; Accepted: 6 October 2020
Published online: 26 October 2020

References

1. Watkins, P. A. \& Ellis, J. M. Peroxisomal acyl-CoA synthetases. Biochim. Biophys. Acta BBA Mol. Basis Disease 1822, 1411-1420. https://doi.org/10.1016/j.bbadis.2012.02.010 (2012).
2. Watkins, P. A., Maiguel, D., Jia, Z. \& Pevsner, J. Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J. Lipid Res. 48, 2736-2750. https://doi.org/10.1194/jlr.M700378-JLR200 (2007).
3. Mashek, D. G., Li, L. O. \& Coleman, R. A. Long-chain acyl-CoA synthetases and fatty acid channeling. Future Lipidol. 2, $465-476$. https://doi.org/10.2217/17460875.2.4.465 (2007).
4. Arnott, E. R. et al. Strong selection for behavioural resilience in Australian stock working dogs identified by selective sweep analysis. Canine Genet. Epidemiol. 2, 6. https://doi.org/10.1186/s40575-015-0017-6 (2015).
5. Chew, T., Willet, C. E., Haase, B. \& Wade, C. M. Genomic characterization of external morphology traits in kelpies does not support common ancestry with the Australian Dingo. Genes. https://doi.org/10.3390/genes10050337 (2019).
6. Fyfe, J. C. et al. Inherited selective cobalamin malabsorption in Komondor dogs associated with a CUBN splice site variant. BMC Vet. Res. 14, 418. https://doi.org/10.1186/s12917-018-1752-1 (2018).
7. Fyfe, J. C. et al. An exon 53 frameshift mutation in CUBN abrogates cubam function and causes Imerslund-Gräsbeck syndrome in dogs. Mol. Genet. Metab. 109, 390-396. https://doi.org/10.1016/j.ymgme.2013.05.006 (2013).
8. Fyfe, J. C., Hemker, S. L., Venta, P. J., Stebbing, B. \& Giger, U. Selective intestinal cobalamin malabsorption with proteinuria (Imerslund-Gräsbeck syndrome) in juvenile Beagles. J. Vet. Intern. Med. 28, 356-362. https://doi.org/10.1111/jvim. 12284 (2014).
9. Gold, A. J., Scott, M. A. \& Fyfe, J. C. Failure to thrive and life-threatening complications due to inherited selective cobalamin malabsorption effectively managed in a juvenile Australian shepherd dog. Can. Vet. J. 56, 1029-1034 (2015).
10. He, Q. et al. Amnionless function is required for cubilin brush-border expression and intrinsic factor-cobalamin (vitamin B12) absorption in vivo. Blood 106, 1447-1453. https://doi.org/10.1182/blood-2005-03-1197 (2005).
11. Kather, S., Grützner, N., Kook, P. H., Dengler, F. \& Heilmann, R. M. Review of cobalamin status and disorders of cobalamin metabolism in dogs. J. Vet. Intern. Med. 34, 13-28. https://doi.org/10.1111/jvim. 15638 (2020).
12. Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience. https://doi. org/10.1186/s13742-015-0047-8 (2015).
13. Kõressaar, T. et al. Primer3_masker: Integrating masking of template sequence with primer design software. Bioinformatics 34, 1937-1938. https://doi.org/10.1093/bioinformatics/bty036 (2018).
14. Koressaar, T. \& Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289-1291. https://doi.org/10.1093/bioinformatics/btm091 (2007).
15. Untergasser, A. et al. Primer3-New capabilities and interfaces. Nucleic Acids Res. 40, el15-el15. https://doi.org/10.1093/nar/ gks596 (2012).
16. Ewels, P., Magnusson, M., Lundin, S. \& Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047-3048. https://doi.org/10.1093/bioinformatics/btw354 (2016).
17. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21. https://doi.org/10.1093/bioinformatics/bts63 5 (2013).
18. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652. https://doi.org/10.1038/nbt. 1883 (2011).
19. Wang, L., Wang, S. \& Li, W. RSeQC: Quality control of RNA-seq experiments. Bioinformatics 28, 2184-2185. https://doi. org/10.1093/bioinformatics/bts356 (2012).
20. Thorvaldsdóttir, H., Robinson, J. T. \& Mesirov, J. P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178-192. https://doi.org/10.1093/bib/bbs017 (2012).
21. Garrido-Martín, D., Palumbo, E., Guigó, R. \& Breschi, A. ggsashimi: Sashimi plot revised for browser- and annotation-independent splicing visualization. PLoS Comput. Biol. 14, e1006360. https://doi.org/10.1371/journal.pcbi. 1006360 (2018).
22. Sewell, A. C., Haskins, M. E. \& Giger, U. Inherited metabolic disease in companion animals: Searching for nature's mistakes. Vet. J. 174, 252-259. https://doi.org/10.1016/j.tvjl.2006.08.017 (2007).
23. Koeberl, D. D., Pinto, C., Brown, T. \& Chen, Y. T. Gene therapy for inherited metabolic disorders in companion animals. ILAR J. 50, 122-127. https://doi.org/10.1093/ilar.50.2.122 (2009).
24. Dandrieux, J. R. S., Noble, P. J. M., Halladay, L. J., McLean, L. \& German, A. J. Canine breed predispositions for marked hypocobalaminaemia or decreased folate concentration assessed by a laboratory survey. J. Small Anim. Pract. 54, 143-148. https://doi. org/10.1111/jsap. 12039 (2013).
25. German, A. J. Exocrine pancreatic insufficiency in the dog: Breed associations, nutritional considerations, and long-term outcome. Topics Companion Animal Med. 27, 104-108. https://doi.org/10.1053/j.tcam.2012.04.004 (2012).
26. Jergens, A. E. \& Simpson, K. W. Inflammatory bowel disease in veterinary medicine. Front. Biosci. (Elite Edition). 4, 1404 (2012).
27. Bowman, T. A. et al. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption. Mol. Metab. 5, 210-220. https://doi.org/10.1016/j.molmet.2016.01.001 (2016).
28. Mashek, D. G., Li, L. O. \& Coleman, R. A. Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet. J. Lipid Res. 47, 2004-2010. https://doi.org/10.1194/jlr.M600150-JLR200 (2006).
29. Mashek, D. G., McKenzie, M. A., Van Horn, C. G. \& Coleman, R. A. Rat long chain Acyl-CoA synthetase 5 increases fatty acid uptake and partitioning to cellular triacylglycerol in McArdle-RH7777 cells. J. Biol. Chem. 281, 945-950. https://doi.org/10.1074/ jbc.M507646200 (2006).
30. Poppelreuther, M. et al. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. J. Lipid Res. 53, 888-900. https://doi.org/10.1194/jlr.M024562 (2012).
31. Teodoro, B. G. et al. Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle. J. Physiol. 595, 677-693. https://doi.org/10.1113/JP272962 (2017).
32. Wu, M., Cao, A., Dong, B. \& Liu, J. Reduction of serum free fatty acids and triglycerides by liver-targeted expression of long chain acyl-CoA synthetase 3. Int. J. Mol. Med. 27, 655-662. https://doi.org/10.3892/ijmm.2011.624 (2011).
33. Adamo, K. B. et al. Peroxisome proliferator-activated receptor $\gamma 2$ and Acyl-CoA synthetase 5 polymorphisms influence diet response. Obesity 15, 1068-1075. https://doi.org/10.1038/oby.2007.630 (2007).
34. Ellis, J. M. et al. Adipose acyl-CoA synthetase-1 directs fatty acids toward beta-oxidation and is required for cold thermogenesis. Cell Metab. 12, 53-64. https://doi.org/10.1016/j.cmet.2010.05.012 (2010).
35. Killion, E. A. et al. A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesityassociated adipocyte dysfunction. Mol. Metab. 9, 43-56. https://doi.org/10.1016/j.molmet.2018.01.012 (2018).
36. Privette, J. D., Hickner, R. C., MacDonald, K. G., Pories, W. J. \& Barakat, H. A. Fatty acid oxidation by skeletal muscle homogenates from morbidly obese black and white American women. Metabolism 52, 735-738. https://doi.org/10.1016/S0026-0495(03)00034 -9 (2003).
37. Rajkumar, A. et al. Acyl-CoA synthetase long-chain 5 genotype is associated with body composition changes in response to lifestyle interventions in postmenopausal women with overweight and obesity: A genetic association study on cohorts Montréal-Ottawa New Emerging Team, and Complications Associated with Obesity. BMC Med. Genet. 17, 56. https://doi.org/10.1186/s12881-016-0320-4 (2016).
38. Rajkumar, A. et al. ACSL5 genotype influence on fatty acid metabolism: A cellular, tissue, and whole-body study. Metabolism 83, 271-279. https://doi.org/10.1016/j.metabol.2018.03.019 (2018).
39. Zhao, C. et al. Adaptive evolution of the ACSL gene family in Carnivora. Genetica 147, 141-148. https://doi.org/10.1007/s1070 9-019-00057-3 (2019).
40. Plassais, J. et al. Analysis of large versus small dogs reveals three genes on the canine X chromosome associated with body weight, muscling and back fat thickness. PLoS Genet. 13, e1006661. https://doi.org/10.1371/journal.pgen. 1006661 (2017).
41. Meller, N., Morgan, M. E., Wong, W. P., Altemus, J. B. \& Sehayek, E. Targeting of Acyl-CoA synthetase 5 decreases jejunal fatty acid activation with no effect on dietary long-chain fatty acid absorption. Lipids Health Dis. 12, 88-88. https://doi.org/10.1186/1476-511X-12-88 (2013).
42. Glick, B. S. \& Rothman, J. E. Possible role for fatty acyl-coenzyme A in intracellular protein transport. Nature 326, 309-312. https ://doi.org/10.1038/326309a0 (1987).
43. Kang, M.-J. et al. A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc. Natl. Acad. Sci. 94, 2880. https://doi.org/10.1073/pnas.94.7.2880 (1997).
44. Oikawa, E. et al. A novel Acyl-CoA synthetase, ACS5, expressed in intestinal epithelial cells and proliferating preadipocytes1. J. Biochem. 124, 679-685. https://doi.org/10.1093/oxfordjournals.jbchem.a022165 (1998).
45. Gassler, N. et al. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine. J. Pathol. 202, 188-196. https://doi.org/10.1002/path. 1504 (2004).
46. Gassler, N. et al. Regulation of enterocyte apoptosis by Acyl-CoA synthetase 5 splicing. Gastroenterology 133, 587-598. https:// doi.org/10.1053/j.gastro.2007.06.005 (2007).
47. Gassler, N. et al. Molecular characterisation of non-absorptive and absorptive enterocytes in human small intestine. Gut 55, 1084-1089. https://doi.org/10.1136/gut.2005.073262 (2006).
48. Bu, S. Y. \& Mashek, D. G. Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J. Lipid Res. 51, 3270-3280. https://doi.org/10.1194/jlr.M009407 (2010).
49. Blaskovic, S., Blanc, M. \& van der Goot, F. G. What does S-palmitoylation do to membrane proteins?. FEBS J. 280, 2766-2774. https://doi.org/10.1111/febs. 12263 (2013).
50. Spinelli, M., Fusco, S. \& Grassi, C. Nutrient-dependent changes of protein palmitoylation: Impact on nuclear enzymes and regulation of gene expression. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19123820 (2018).
51. Sandoz, P. A. et al. The architecture of the endoplasmic reticulum is regulated by the reversible lipid modification of the shaping protein CLIMP-63. bioRxiv. https://doi.org/10.1101/431106 (2018).
52. Abrami, L. et al. Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade. Elife 6, e27826. https:// doi.org/10.7554/eLife. 27826 (2017).
53. Fairbank, M., Huang, K., El-Husseini, A. \& Nabi, I. R. RING finger palmitoylation of the endoplasmic reticulum Gp78 E3 ubiquitin ligase. FEBS Lett. 586, 2488-2493. https://doi.org/10.1016/j.febslet.2012.06.011 (2012).
54. Fredericks, G. J. et al. Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. Proc. Natl. Acad. Sci. 111, 16478. https://doi.org/10.1073/pnas.1417176111 (2014).
55. Lakkaraju, A. K. K. et al. Palmitoylated calnexin is a key component of the ribosome-translocon complex. EMBO J. 31, 1823-1835. https://doi.org/10.1038/emboj.2012.15 (2012).
56. Senyilmaz, D. et al. Regulation of mitochondrial morphology and function by stearoylation of TFR1. Nature 525, 124. 10.1038/ nature14601. https://www.nature.com/articles/nature14601\#supplementary-information (2015).
57. Blanc, M. et al. SwissPalm: Protein palmitoylation database. F1000Res 4, 261-261. https://doi.org/10.12688/f1000research.6464.1 (2015).
58. Lo, H.-C., Yang, R.-B. \& Lee, C.-H. Guanylyl cyclase-G modulates Jejunal apoptosis and inflammation in mice with intestinal ischemia and reperfusion. PLoS ONE 9, e101314. https://doi.org/10.1371/journal.pone. 0101314 (2014).
59. Young, J. M., Waters, H., Dong, C., Fülle, H.-J. \& Liman, E. R. Degeneration of the olfactory guanylyl cyclase D Gene during PRIMATE evolution. PLoS ONE 2, e884. https://doi.org/10.1371/journal.pone. 0000884 (2007).
60. Hoeppner, M. P. et al. An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts. PLoS ONE 9, e91172. https://doi.org/10.1371/journal.pone. 0091172 (2014).
61. Goetzman, E. S. Advances in the understanding and treatment of mitochondrial fatty acid oxidation disorders. Curr. Genet. Med. Rep. 5, 132-142. https://doi.org/10.1007/s40142-017-0125-6 (2017).
62. Spiekerkoetter, U. et al. Current issues regarding treatment of mitochondrial fatty acid oxidation disorders. J. Inherit. Metab. Dis. 33, 555-561. https://doi.org/10.1007/s10545-010-9188-1 (2010).
63. Behrend, A. M. et al. Substrate oxidation and cardiac performance during exercise in disorders of long chain fatty acid oxidation. Mol. Genet. Metab. 105, 110-115. https://doi.org/10.1016/j.ymgme.2011.09.030 (2012).
64. Gillingham, M. B., Scott, B., Elliott, D. \& Harding, C. O. Metabolic control during exercise with and without medium-chain triglycerides (MCT) in children with long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency. Mol. Genet. Metab. 89, 58-63. https://doi.org/10.1016/j.ymgme.2006.06.004 (2006).
65. van Eerd, D. C. D. et al. Management of an LCHADD patient during pregnancy and high intensity exercise. In JIMD Reports, Vol. 32, 95-100. https://doi.org/10.1007/8904_2016_561 (Springer, Berlin, Heidelberg, 2017).
66. Beynen, A. C., Kappert, H. J., Lemmens, A. G. \& Van Dongen, A. M. Plasma lipid concentrations, macronutrient digestibility and mineral absorption in dogs fed a dry food containing medium-chain triglycerides. J. Animal Physiol. Animal Nutr. 86, 306-312. https://doi.org/10.1046/j.1439-0396.2002.00387.x (2002).
67. Matulka, R. A., Thompson, D. V. M. L. \& Burdock, G. A. Lack of toxicity by medium chain triglycerides (MCT) in canines during a 90-day feeding study. Food Chem. Toxicol. 47, 35-39. https://doi.org/10.1016/j.fct.2008.06.080 (2009).
68. Rutz, G. M., Steiner, J. M., Bauer, J. E. \& Williams, D. A. Effects of exchange of dietary medium chain triglycerides for long-chain triglycerides on serum biochemical variables and subjectively assessed well-being of dogs with exocrine pancreatic insufficiency. Am. J. Vet. Res. 65, 1293. https://doi.org/10.2460/ajvr.2004.65.1293 (2004).
69. Cotter, R., Taylor, C. A., Johnson, R. \& Rowe, W. B. A metabolic comparison of a pure long-chain triglyceride lipid emulsion (LCT) and various medium-chain triglyceride (MCT)-LCT combination emulsions in dogs. Am. J. Clin. Nutr. 45, 927-939. https://doi. org/10.1093/ajen/45.5.927 (1987).

Acknowledgements

The authors acknowledge the Sydney Informatics Hub, a Core Research Facility, of the University of Sydney for access to the High Performance Computing cluster 'Artemis' as well as University of Sydney Veterinary Pathology Diagnostic Services for their assistance with conducting a full post-mortem and histological study for use within this research. The PRJ-010413 Grant was received by corresponding author C. M. Wade from AgriFutures Australia (https://www.agrifutures.com.au/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions

All authors contributed to the conceptualisation of the research and progression of the overall aims. The primary investigation, including experimental work, data analysis, validation and visualisation, was conducted by M.J.O. under the supervision of C.M.W. and N.J.B. T.C. provided valuable advice on the data analysis. C.M.W., N.J.B. and M.S. were involved in the provision of resources. M.J.O. drafted the original manuscript. All authors were involved in editing and refining the manuscript. The final product has been approved by all authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-75243-x.
Correspondence and requests for materials should be addressed to M.J.O. or C.M.W.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2020

[^0]: Address for correspondence
 M. J. O'Brien, The University of Sydney, RMC Gunn Building, Regimental Dr., Sydney, NSW 2006, Australia.
 E-mail: Mitchell.obrien@sydney.edu.au
 Accepted for publication 03 May 2021

[^1]: ${ }^{\text {a }}$ American College of Veterinary Internal Medicine
 ${ }^{\text {b }}$ Left atrium to aortic root ratio
 ${ }^{c}$ Weight normalised left ventricular end diastolic diameter

[^2]: ${ }^{a}$ Left atrium to aortic root ratio
 ${ }^{b}$ Weight normalised left ventricular end diastolic diameter

[^3]: E Ensembl
 ${ }^{\mathrm{N}}$ National Center for Biotechnology Information (NCBI)

 - UCSC

[^4]: ${ }^{\text {a }}$ Echocardiographic
 ${ }^{\text {b }}$ Weight normalised left ventricular end diastolic diameter
 c Left atrium to aortic root ratio

[^5]: ${ }^{\text {E Ensembl }}$
 ${ }^{\text {n N National Center for Biotechnology Information (NCBI) }}$
 U UCSC

[^6]: Long chain fatty acids (LCFA) are the most abundant fats in mammals and play a key role in the canine (Canis lupus familiaris) diet. Pancreatic lipases are largely responsible for the hydrolysis of triglycerides into glycerol and fatty acids, which are absorbed across the brush border of jejunal enterocytes. Activation of fatty acids is the first step in intracellular metabolism of LCFA. The process involves the conjugation of fatty acids with coenzyme-A (CoA) and is catalysed by a group of enzymes called Acyl-CoA synthetases (ACS) ${ }^{1-3}$. Thirteen homologous ACS genes that activate LCFA have been annotated in mammals and cluster in three different gene families: acylCoA synthetase long chain (ACSL), acyl-CoA synthetase bubblegum (ACSBG) and fatty acid transport proteins (FATP) ${ }^{1-3}$. The full extent of each gene on normal intestinal absorption of LCFA is unknown. Animal models with heritable phenotypes of intestinal lipid malabsorption provide an opportunity to elucidate this.

 The Kelpie is an iconic dog (Canis lupus familiaris) breed established in the late nineteenth century for its natural working ability and resilience in the extreme weather conditions of Australia ${ }^{4}$. Since inception, the breed has become divided into two separate breeding populations maintained by different pedigree registries ${ }^{5}$. Dogs selected primarily for strong working ability are known as the Australian Working Kelpie (AWK). The Australian Kelpie (AK) is selected according to a conformation breed standard and is registered by the Australian National Kennel Council. The Federation Cytological International recognizes both breed varieties enabling the populations to co-mingle but, in Australia, the two are maintained as separate breeding populations and are genetically distinct; most notably in genes influencing morphology and behaviour ${ }^{4,5}$.

 We describe an inherited intestinal lipid malabsorption (OMIA 002226-9615) in the AK. Unlike cases of similar disorder hereditary selective ileal cobalamin malabsorption ${ }^{6-11}$, AK show no signs of lethargy and have clear evidence of fat in faeces (steatorrhea). Based on the observed familial segregation the observed phenotype
 ${ }^{1}$ School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camperdown, NSW 2006, Australia. ${ }^{2}$ Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW 2006, Australia. ${ }^{3}$ Veterinaire Specialisten Vught, Reutsedijk 8a, 5264 PC Vught, The Netherlands. ${ }^{4}$ Sydney Informatic Hub, University of Sydney, Camperdown, NSW 2006, Australia. ${ }^{5}$ Present address: Callicoma Kelpies, Grafton, NSW 2460, Australia. ${ }^{6}$ Present address: Unaffiliated, Los Altos, USA. ${ }^{\boxtimes}$ email: Mitchell.obrien@sydney.edu.au; Claire.Wade@sydney.edu.au

