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Hyperspectral imaging and robust statistics in
non-melanoma skin cancer analysis

LLOYD A. COURTENAY,1,* DIEGO GONZÁLEZ-AGUILERA,1

SUSANA LAGÜELA,1 SUSANA DEL POZO,1 CAMILO RUIZ-MENDEZ,2

INÉS BARBERO-GARCÍA,1 CONCEPCIÓN ROMÁN-CURTO,3,4 JAVIER
CAÑUETO,3,4,5 CARLOS SANTOS-DURÁN,3 MARÍA ESTHER
CARDEÑOSO-ÁLVAREZ,3 MÓNICA RONCERO-RIESCO,3 DAVID
HERNANDEZ-LOPEZ,6 DIEGO GUERRERO-SEVILLA,6 AND PABLO
RODRÍGUEZ-GONZALVEZ7

1Department of Cartographic and Terrain Engineering, Higher Polytechnic School of Ávila, University of
Salamanca, Hornos Caleros 50, 05003 Ávila, Spain
2Department of Didactics of Mathematics and Experimental Sciences, Faculty of Education, Paseo de
Canaleja 169, 37008, Salamanca, Spain
3Department of Dermatology, University Hospital of Spain, Paseo de San Vicente 58-182, 37007,
Salamanca, Spain
4Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007
Salamanca, Spain
5Instituto de Biología Molecular y Celular del Cáncer (IBMCC)/Centro de Investigación del Cáncer (lab
7). Campus Miguel de Unamuno s/n. 37007 Salamanca, Spain
6Institute for Regional Development, University of Castilla la Mancha, Campus Universitario s/n, 02071,
Albacete, Spain
7Department of Mining Technology, Topography and Structures, University of León, Ponferrada, Léon,
Spain
*ladc1995@gmail.com

Abstract: Non-Melanoma skin cancer is one of the most frequent types of cancer. Early
detection is encouraged so as to ensure the best treatment, Hyperspectral imaging is a promising
technique for non-invasive inspection of skin lesions, however, the optimal wavelengths for
these purposes are yet to be conclusively determined. A visible-near infrared hyperspectral
camera with an ad-hoc built platform was used for image acquisition in the present study. Robust
statistical techniques were used to conclude an optimal range between 573.45 and 779.88 nm to
distinguish between healthy and non-healthy skin. Wavelengths between 429.16 and 520.17 nm
were additionally found to be optimal for the differentiation between cancer types.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Skin cancer is the most common type of cancer in countries of predominantly light-skinned
populations [1–4]. Skin cancer is typically divided between Melanoma and Non-Melanoma Skin
Cancer (NMSC). NMSC is up to 20 times more common than malignant melanoma, representing
one-third of cancer cases in the US [5,6], while their incidence is still growing yearly [7, 8, ibid].
Similarly, high percentages of NMSC incidences have also been reported in other countries, such
as Germany [9], and Korea [10].

NMSCs can additionally be divided into different types, with the most common including Basal
Cell Carcinoma (BCC) and Squamous Cell Carcinoma (SCC). While SCCs are not necessarily
restricted to appearing on skin, throughout the present study SCC refers only to Cutaneous SCC,
sometimes referred to as cSCC. BCC represents approximately 80% of cases [11], with SCC
nearly the remaining 20% [12]. Other NSMCs, such as, Merkel-Cell Carcinomas, Adnexal
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Tumours, and other primary cutaneous neoplasms, are present in much lower frequencies [7].
Although SCC and BCC are sometimes pooled together, there are clear differences between their
characteristics, treatments and outcomes. BCCs are malignant lesions with low metastasis risk.
SCCs can both locally invade, metastasize, and cause death in a subset of patients [12]. There are
an estimated 15,000 deaths per year from SCC in the United States, which is twice the number of
deaths from melanoma. The most important environmental factor for NMSC is exposure to UV
radiation [7].

Early detection of skin cancer is vital in order to achieve successful treatments and the best
possible outcome. Early diagnosis has mainly relied upon clinical examination, nevertheless,
many visual biomarkers are often limited by subjectivity, with reports calculating a margin of
human-induced error of up to 15% among experts [13]. Similarly, five year survival rates for
SCC patients have been calculated to fall from 95-98% to 60-62% if not detected early [14,15].
In the case of BCC, early detection is fundamental for the prevention of metastasis [16]. BCC
metastasis rates are typically below 0.55%, when caught early. Nevertheless, when treatment is
delayed, lesions of > 3 cm in diameter present an increase in metastasis risk of up to a 1-2%,
while for tumors of < 10 cm this risk can increase up to 50% [16].

While visual inspection can also be facilitated by the use of a dermatoscope with polarized
filters (also known as a dermoscope), results have also been noted to be heavily influenced by
inter-observer variability [17,18], with a notable drop of up to 23% sensitivity product of analyst
experience [19]. Similarly, reports have shown that in the case of small melanomas, sensitivity
can be recorded as low as 39% [20]. In light of this, the highest current accuracy in skin lesion
diagnosis is through the biopsy and direct histopathological analysis of the lesion. Needless to
say, while accurate, these methods are invasive, costly and time-consuming [11]. Similarly, one
of the greatest issues with biopsies are frequently found when the procedure is unable to capture
the entirety of the lesion. While this does not necessarily effect their diagnostic accuracy, this
does condition their effectiveness [21].

In response to these issues, multiple efforts have been made to reduce diagnostic error, screening
time, increase efficiency and reduce the invasiveness of these procedures using advanced computer
vision techniques. At the forefront of these advances, multimodal, multispectral and hyperspectral
images present promising results [22–26]. In particular, these techniques currently present
non-invasive alternatives for the detection of melanoma [22,24,26], as well as the distinction
between the different types of skin lesion [23]. From this perspective, hyperspectral images
provide a detailed spectral signature of each tissue type, composed of a high number of spectral
bands, usually beyond the visible range of the spectrum. These approaches thus allows for the
combination of spectral information derived from spectroscopy, and metric information provided
by image data.

Among the several types of hyperspectral cameras available, sensors can be classified either by
their spectral range, the means in which information is acquired, as well as imaging modality.
From the spectral perspective, the most common cameras are those that cover the Visible to
Near Infrared (VNIR: 400-1000 nm), Near Infrared (NIR: 1000-1700nm) and the Short-Wave
Infrared spectrum (SWIR: 1000-2500 nm). Imaging modality can be divided into pushbroom,
whiskbroom and frame cameras, among others. Pushbroom linear cameras are highly popular,
registering information through a vectorial array of pixels, also known as line-scanning. Moreover,
pushbroom linear cameras are more durable than whiskbroom cameras because they have fewer
moving parts, while their geometric resolution is higher than frame cameras. Finally, these linear
cameras are cheaper and require a much lower number of sensors [25,27].

Several studies have focused on the identification of NMSCs using sections of the NIR spectrum,
identifying higher percentages of water in non-melanoma tumours as opposed to healthy skin
[28,29]. Part of this success is product of the greater penetrating capabilities electromagnetic
frequencies with wavelengths longer than 700 nm have of biological tissues [30]. The use of
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VNIR spectroscopy has also proven useful for the detection of melanoma [31], while frequencies
between the wide window of 400 to 1700nm have proven useful in some studies for the detection
of SCC [32]. Although infrared light seems to be the most common spectral range for detection
of SCC and BCC, some studies have also achieved success detecting SCC tumours within the
450 to 900 nm range [33], or 500 to 900 nm for BCC [34].

Needless to say, however, hyperspectral imaging also has its disadvantages, seen in the high
complexity and large size of the images obtained. From this perspective, the processing of images
of this type can frequently be considered not only difficult, but also computationally expensive.
A frequent task in the preprocessing of any dataset, prior to more advanced applications such as
image classification or segmentation, consists in feature selection and extraction [35,36]. This
process entails the calculation of areas that are most informative, allowing for the removal of
redundant variables that may be hindering model performance. While many studies are able to
extract valuable information from hyperspectral images of NMSC skin lesions [22–26], most
perform these studies directly on entire datasets. In light of this, a preprocessing procedure
such as that of feature selection could be considered a valuable step towards optimizing these
approaches. While multiple approaches exist for the purpose of feature selection and extraction,
some of the most important tools available in the field of data science are those used in advanced
statistics. From this perspective, advanced statistical analyses of hyperspectral data can provide a
valuable insight into the precise nature of the data at hand, as well as any underlying patterns, thus
facilitating the selection of the most important wavelengths for subsequent classification tasks.

The present study develops this perspective for the analysis of NMSCs, using samples of
hyperspectral images obtained from both BCC and SCC patients. The present study employs the
use of a pushbroom hyperspectral linear camera registering wavelengths 398.08 to 995.20 nm
over 270 bands. Using robust statistical approaches, these analyses show a window between
573.45 and 779.88 nm to be particularly powerful for the detection of differences between healthy
skin and both types of NMSC lesions. This type of analysis can be considered a fundamental
basis upon which more complex computer vision and artificial intelligence-based studies can be
built upon.

2. Materials and methods

2.1. Hyperspectral image acquisition

A Headwall Nano-Hyperspec, Visible-Near InfraRed (VNIR) hyperspectral imaging sensor,
was used for the purpose of the present study (Table 1). This particular sensor is a pushbroom
linear camera, offering a vectorial array of pixels (1× 640 px per image). While pushbroom
sensors present the disadvantage of a longer measuring time than that of snapshot hyperspectral
cameras, pushbrooms offer higher spatial resolution than many other types of hyperspectral
sensors. Nevertheless, these sensors require that the Field-Of-View (FOV) be moved, or pushed,
along the x-axis in order to obtain an entire image of more than one column of pixels. For this
purpose, the present study built an ad-hoc platform.

The platform constructed for this study consists of a motorized structure, composed of an
80 cm long aluminium rail with a motorized base. Control of this base can be managed by
external hardware that can control the speed and modality of base displacement (single or
loop movements). On top of the base, a multifunctional structure was constructed to fit the
hyperspectral sensor, alongside a system of illumination, as well as a frame that controls the
distance between the object and the scanning window (Fig. 1(a) & 1b). The system of illumination
consisted of two 60 watt halogen light sources mounted on either side of the hyperspectral sensor,
with a distance of 14 cm between themselves, and 19 cm between the lens and the object to be
photographed (Fig. 1(a)).

In order to control the platform, an external electronic module device was designed (Fig. 1(c)),
synchronising the movement of the platform with the illumination system and the sensor’s shutter
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Table 1. Specifications for the hyperspectral pushbroom camera,
Headwall Nano-Hyperspec, used for the present study.

Headwall Nano-Hyperspec

Image Modality Pushbroom

Sensor Type CMOS

Number of Spectral Bands 270

Wavelength Range 398.08–995.20 nm

Space between Spectral Bands 2.2 nm

Number of Spatial Bands 640

Pixel Size 7.4 µm

Depth of Field 17.6 mm

Sensor Size 76× 76× 87 mm

Sensor Weight 523 g (+90 g lens)

Platform Push-speed 12 mm/s

Full-Width at Half Maximum 6 nm

Entrance Slit Width 20 µm

Bit-depth 12-bit

Fig. 1. The hyperspectral pushbroom platform (80× 25 cm) and system built for data
acquisition purposes in the present study. (a & b) Multifunctional structure, composed of the
sensor, halogen light illumination, and calibration marker board and frame. (c) Electronic
module controller. (d) Power supply connected to the controller.
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speed. This is also highly important so as to ensure a stable displacement speed and thus optimise
the generation of a final complete image. With a simple switch, this controller could manage
all three elements, as well as simultaneously managing the power source for the entire system
(motor, platform control, illumination and the camera; Fig. 1(d)).

For data acquisition, each image was calibrated using the same marker board and frame.
For this purpose, the present study used a known reflectance pattern (Spectralon) in order to
obtain reflectance values for all 270 bands of the camera (Fig. 2(a)), instead of digital values.
Reflectance values were calculated and radiometrically corrected (Eq. (1)). This consists in
taking raw uncorrected data (S) from images and calculating % reflectance values (X), taking into
consideration the dark current (B) and a “white” reflectance standard (W) [37]. Dark pixel offset
values were thus obtained by taking photographs with the lens cap covered [38]. Considering how
charge-coupled devices are never capable of measuring an absolute zero value (black), even in
cases where no light is available, the present study performed these calibrations so as to calculate
the presence of residuals prior to photographing each patient and thus removing dark noise across
all bands (Eq. (1), Fig. 2(b)). W values were obtained from a designated region on the Spectralon
(Fig. 2(b)).

X = 100(S − B)(W − B)−1. (1)

Fig. 2. The marker board used for the calibration and correction of the hyperspectral images.
(a) Spectralon reflectance pattern. (b) Region (marked in red) used to obtain reflectance
values for all 270 bands of the camera

Upon the Spectralon frame, circular elements were additionally used to calibrate the movement
and speed of the platform, whereby the known shape and size of these circles could be used to
correct displacement and ensure removal of image distortion (Fig. 2(b)).

In order to perform these calibrations, a software tool was designed to perform radiometric
corrections for both eliminating dark current as well as obtaining reflectance images.

Once the entire image had been generated, each image’s size was measured at 640× 1785 px,
consisting of up to ≈ 308.5 million digital values and occupying ≈ 1.2 Gb of memory. After
cropping images to remove the calibration marker board, final images were of size 431× 851 px.
The first and last five hyperspectral bands were also removed as a safe-measure prior to further
processing, as they were occasionally observed to present unusual anomalies. The final spectral
window was thus calculated to fall between 409.18 and 984.10 nm. After cropping, final images
could therefore be reduced to tensors of size 431× 851× 260 (rows, columns and bands) with ≈

95.4 million numeric values, occupying ≈ 0.3 Gb of memory.
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2.2. Sample

A total of 115 patients with observed skin lesions were selected and photographed using the
hyperspectral sensor. After images had been acquired, the presence and type of cancer was
confirmed after a histopathological analysis and final diagnosis. Of the 115 patients studied,
1 patient was diagnosed with melanoma, 1 patient with merkel-cell carcinoma, 5 with actinic
keratoses, 67 with BCC, and 22 with SCC. 19 patients were not diagnosed with malignant skin
cancer.

All patients agreed to participate in the study, however due to patient animosity, no further
details have been disclosed. All patients were registered and treated at the Institute for Biomedical
Research of Salamanca (IBSAL), University Hospital of Salamanca, Spain.

2.3. Hyperspectral signature analysis

Once images had been obtained, careful evaluation of the characteristics of each image was
performed. After careful visual inspection, some images were found to be out of focus due to
patient movement. Each image was therefore assess and discarded in cases where quality was
found to be insufficient (blurry of incomplete). After careful inspection, 3 SCC patients were
unfortunately discarded due to insufficient image quality, while 26 BCC patients were discarded.
Final medical samples, therefore, consisted of 60 patients presenting 41 confirmed cases of BCC
and 19 cases of SCC.

Once the best images had been obtained, Regions of Interest (ROI) were established to sample
pixels of Healthy (H) and pathological skin (BCC & SCC) (Fig. 3) on each of these patients.
SCC and BCC ROIs were established directly over the tumour, while H samples were taken from
skin farthest away from the tumour so as to avoid possible contamination. After defining ROIs
for each of the images, a Python algorithm randomly sampled pixels to extract hyperspectral
signatures with as little intervention by a human analyst as possible. Randomness was employed
so as to avoid subjective sampling. Sampling was additionally performed until a sufficiently
large sample size of pixels had been obtained for H, SCC and BCC. The final selection obtained
consisted of 504 hyperspectral signatures for BCC samples, 513 signatures for SCC samples, and
488 signatures for healthy (H) skin samples (total n= 1,505).

The statistical power for these sample sizes according to Cohen’s δ [39], with an α value of
0.05, were computed at 0.88 (δ = 0.2) and 1 (δ < 0.3), while an α value of 0.003 lowers power to
0.57 (δ = 0.2), 0.96 (δ = 0.3) and 1 (δ < 0.4). From this perspective, the current sample sizes of ≈
500 observations have a 96% probability of detecting an alternative hypothesis (Ha) when using
an α value of 0.003, even if the effect size (i.e. importance of differences) is small (δ= 0.3) [39].

In order to determine the best statistical means of characterising this data, signatures were
first subjected to normality testing. The concept of “normality” is a fundamental component
in statistics, considering how many statistical tests are conditioned by precise underlying
mathematical properties. From this perspective, and in order to select the most reliable statistical
tests for comparing samples, the analyst must be aware of the nature of the distributions being
studied.

For these purposes, Shapiro-Wilk tests were first passed over each band for each of the samples
[40]. Shapiro-Wilk testing was additionally complemented with a visual inspection of each
distribution using density plots and quantile-quantile plot calculations [41]. From a similar
perspective, mean residual counts from a linear Gaussian model were calculated for each band to
visualize areas of greatest deviations from the mean. Residual calculations were performed so
as to assess areas where a simple linear model is less likely to capture the general trend of the
distribution in question. Calculations for sample skewness and kurtosis were also performed,
so as to better define the nature of each distribution. With regards to skewness, in cases where
samples are normally distributed, sample skewness would be expected to be close or equal
to 0, indicating a symmetric distribution. As for kurtosis calculations, distributions that are
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Fig. 3. Examples of sampled hyperspectral curves from different patients. (a) A graphical
description of the image acquisition workflow. (b) An example of (upper) Basal Cell
Carcinoma, found under the hairline of the frontal portion of a male patient’s head, and (lower)
a Squamous Cell Carcinoma found on the back of a female patient’s hand. (c) Examples of
the hyperspectral signatures obtained for (upper) the Basal Cell Carcinoma patient (a-upper)
and the Squamous Cell Carcinoma patient (a-lower).ç. Faces and distinguishing features
have been excluded from these figures to ensure patient confidentiality.

normally distributed typically present kurtosis values close to 0, indicating neither an excessive
concentration of information (kurtosis > 0), nor a wide spread of values (kurtosis < 0).

Upon accepting or rejecting the null hypothesis, H0, of normally distributed data, different
statistical approaches were used to define the hyperspectral “signature” of each sample.

For descriptive statistics, central tendency was calculated using either the mean or median
for Gaussian and non-Gaussian distributed data respectively [41–46]. Likewise, calculations
for sample variance were either calculated using the standard deviation or the Square Root of
the Biweight Midvariance (

√
BWMV) (Eq. (2)-5) [45–47].

√
BWMV values are calculated

in accordance with the Median Absolute Deviation (MAD, Eq. (2)), which takes the absolute
difference of each value (x) to the sample median (x-tilde). When non-symmetric measures
of variance were required, robust quantile calculations were performed using 95% confidence
intervals [41].

MAD = x̃(|xi − x̃x |), (2)

BWMV =
nΣn

i=1ai(xi − x̃)2(1 − U2
i )

4(︂
Σn

i=1ai(1 − U2
i )(1 − 5U2

i )
)︂2 , (3)

ai =

⎧⎪⎪⎨⎪⎪⎩
1, if |Ui |<1

0, if |Ui | ≥ 1
, (4)
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U =
xi − x̃
9MAD

. (5)

For hypothesis testing, tests were performed to analyse homoscedasticity and thus determine
areas of important differences in variance. For parametric testing of homoscedasticity, the
Bartlett’s test was used [48], while non-parametric tests employed Levene’s test [49]. Both
the Bartlett and Levene test assume H0 to infer samples have equal variance. For multivariate
analyses, a Multivariate Analysis of Variance (MANOVA) was performed, using either the
Hotelling-Lawley test statistic for parametric approaches [50], while in cases where distributions
proved to be non-homogeneous, a pairwise Wilcoxon test was performed [51]. In each of these
tests, H0 assumes samples to be similar.

In addition to hypothesis testing, and as a means of comparing differences and similarities
between probability distributions, the Jensen-Shannon Distance (JSD) was computed using the
Kullback Leibler divergence [52,53]. This method was used to measure the similarity between
different distributions across the spectrum, thus finding areas of greatest separations between
samples in accordance with mutual information theory. Samples that are considered similar
would thus produce distance calculations closer to 1, while values closer to 0 indicate greater
differences between sample distributions.

All statistical applications were performed in the R programming language (v.4.0.4) [54]. The
Python programming language (v.3.7.4) was also employed for hyperspectral image processing
and signature extraction.

2.4. Evaluation of hypothesis test results

Recent years have seen a rise of criticism on the “blind” use of p-values for withdrawing scientific
conclusions, especially with regards to the use of p< 0.05 for hypothesis testing [55,56]. In light
of this, the present study has made a particular effort to avoid the misuse of p-values, so as to
ensure the highest possible validity of the presented conclusions.

In accordance with the most recent recommendations set forth by the American Statistician
[55,56], p-values were not evaluated using the more traditional p< 0.05 as a threshold for defining
statistical significance. Likewise, the term “significant” has been avoided throughout the present
study. Instead, frequentist p-values were evaluated in accordance with calibrated Bayesian
statistical approaches, converting each p-value into Bayesian Factor Bound values, following
the suggestions by Benjamin and Berger [57]. In each of these cases, the upper bound on the
posterior probability of the alternative hypothesis, Ha, were calculated (PU(Ha |p); Eq. (6) & (7));

BF ≤ BFB ≡
1

−e p log(p)
, (6)

PU(Ha |p) =
BFB(p)

1 + BFB(p)
. (7)

Similarly, where necessary, the Bayes Factor Bound (BFB) derived from Eq. (6) was used to
determine posterior odds of Ha to H0 for each of the tests. For the majority of tests, each calibration
was performed using prior probabilities indicative of complete randomness (prior= 0.5), as
suggested by Colquhoun [58]. Nevertheless, for the construction of confidence intervals around
these calculations, prior probabilities of 0.8 and 0.2 were also considered and reported.

To assess and account for possible Type I statistical errors among hypothesis tests [58], each of
these p and PU(Ha |p) values were also accompanied by calculations of the False Positive Risk
(FPR; Eq. (8) & (9));

L10 =
P(x|Ha)

P(x|H0)
, (8)

FPR =
1

1 + L10
P(Ha)

1−P(Ha)

. (9)
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While a number of different formulae have been proposed as a means of defining the likelihood
ratio of H0 against Ha, in other words L10 in Eq. (8) [58,59], the present study employs the
Sellke-Berger approach [57,60], which is the equivalent of using Eq. (6) for the calculation of FPR
(Eq. (9)). Additionally, considering observations by Courtenay et al. [61], where necessary, a
complementary calculation of FPR for deriving the probability of H0 (P(H0)) was also performed
(Eq. (10) & (11));

IFPR =
1

1 + L10

(︂
1 −

(︂
P(Ha)

1−P(Ha)

)︂)︂ , (10)

P(H0) =

⎧⎪⎪⎨⎪⎪⎩
FPR(p), if p ≤ 0.3681

1 − IFPR(p), if p>0.3681
. (11)

P(H0) is used as a means of calibrating p-values above p= 0.3681, considering how observations
by Courtenay et al. [61] found this value as a point of maximal curvature in p-value calibration
curves using equations 7 & 9. From this perspective, the inverse of FPR (Eq. (10)) can be used to
ensure each p-value between 0 and 1 have their own unique calibration values [61].

For the interpretation of these calibrated metrics, BFB values indicate the data-based odds of
Ha being true to H0, whereby high values of BFB support Ha. So as to facilitate the interpretation
of these odds, the PU(Ha |p) calculation ensures this number is reported as a percentile falling
between 0.5 and 1. The posterior odds of Ha to H0 are interpreted the same as BFB, where high
values support Ha. FPR, on the other hand, returns a decimal value between 0 and 0.5, with
0.5 indicating a high chance of the concluding hypothesis to be a Type I statistical error. The
P(H0) thus ensures that FPR values are returned between 0 and 1, with 1.00 indicating a 100%
probability of incorrectly concluding Ha to be true.

In light of these calibrations, p-values were evaluated in accordance not only with their
corresponding PU(Ha |p), FPR and P(H0), but also using a more robust and conservative p values
< 3σ from the mean (0.003) as a threshold for more conclusive results. For ease of comparison
and calibration, Table 2 presents different p-values calibrated using metrics BFB, PU(Ha |p), FPR
and Ha to H0 ratios. Table 3 presents different p-values calibrated using P(H0). As can be seen,
the traditional p< 0.05 (2σ) presents a very low BFB value of 2.5 to 1, with a 28.9% probability
of being a Type I statistical error using prior probabilities of 0.5 in support of the alternative
hypothesis. This indicates that p< 0.05 is not a reliable threshold to define conclusive evidence.
p< 0.003 (3σ), on the other hand, results in BFB values of 21 to 1, with only a 4.5% chance of
being a Type I statistical error using the same prior probabilities.

Table 2. Bayes Factor Bounds (BFB, eq. (6)), Posterior Probability of Ha values (PU (Ha |p), eq. (7)),
Posterior Odds of Ha to H0 values (Ha:H0), and False Positive Risk (FPR, eq. (9)) values, for a

number of their corresponding p-values with different prior odds.

prior p 0.368 0.100 0.050 0.010 0.005 0.003 0.001 0.0001

BFB 1.000 1.598 2.456 7.988 13.89 21.11 53.26 399.4

PU(Ha |p) 0.500 0.615 0.710 0.889 0.933 0.955 0.982 0.998

0.2 Ha:H0 0.200 0.320 0.491 1.600 2.778 4.222 10.65 79.88

0.2 FPR 0.800 0.715 0.715 0.334 0.224 0.159 0.070 0.010

0.5 Ha:H0 0.500 0.799 1.220 3.994 6.943 10.55 26.63 199.7

0.5 FPR 0.500 0.385 0.289 0.111 0.067 0.045 0.018 0.002

0.8 Ha:H0 0.800 1.278 1.964 6.391 11.11 16.89 42.60 319.5

0.8 FPR 0.200 0.135 0.092 0.030 0.177 0.012 0.005 0.001
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Table 3. P(H0) values (eq. (11)) for a number of their corresponding p-values using different priors.

p 0.99 0.8 0.5 0.368 0.1 0.050 0.010 0.005 0.003

0.2 Prior 0.993 0.892 0.809 0.800 0.715 0.620 0.334 0.224 0.159

0.5 Prior 0.974 0.673 0.515 0.500 0.385 0.289 0.111 0.067 0.045

0.8 Prior 0.902 0.340 0.210 0.200 0.135 0.092 0.030 0.018 0.012

3. Results

3.1. Descriptive statistics

Hyperspectral curves for all three samples (H, BCC & SCC) presented highly inhomogeneous
distributions across most of the spectrum (Fig. 4 & 5). This was especially evident for frequencies
below 699.97 nm (Fig. 5). While frequencies above this threshold presented increasingly more
Gaussian-like distributions in the case of BCC and H samples (central w= 0.99, p= 0.03,
PU(Ha |p)= 0.77), SCC samples were found to be highly inhomogeneous throughout the entire
spectrum (central w= 0.98, p= 1.8e-06, PU(Ha |p)= 0.99). Furthermore, in the case of SCC, the
probability of this observation being a Type I statistical error was calculated at 0.006 ∈ [0.0016,
0.026]% (Fig. 5).

Fig. 4. Graphs presenting the logarithm of Shapiro-Wilks p-values as well as test statistics
(w) for each of the samples across each of the bands. The solid horizontal line in each of the
left-hand panels mark the p= log(0.003) threshold, that is, all log(p) values that fall below
this line have less than a 5% chance of being false positives, and can thus be considered
strong deviations from the normal distribution.

Calculations regarding residuals when fitting linear models onto the data additionally reveal a
notable decrease in residuals towards the NIR regions (>702.19 nm) of the spectrum (Fig. 6).
Combined with observations regarding sample skewness, it can be seen how regions of lower
frequencies present great positive skewness (skewness > 0, Fig. 7), contributing to the lack of
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Fig. 5. Graphs presenting p(H0) calibrations for each of the Shapiro-Wilks p-values in Fig. 4.
Central values were calculated using 1:2 prior probabilities while confidence intervals mark
upper bound 3:10 prior probabilities in favour of H0 and lower bound 7:10 prior probabilities
in favour of H0.

sample normality, while skewness values drop for most samples. In the case of kurtosis, SCC
samples are seen to have a very wide spread (kurtosis < 0), while H and BCC have very high
concentrations of information in the shorter wavelength frequencies of the visible light spectrum
(kurtosis > 0, Fig. 7). Nevertheless, as noted by the lack of normality in SCC samples, positive
skew remains high throughout.

Fig. 6. Calculated residuals for fitted linear models across the entire spectrum analysed.

In light of each of these observations, it can be seen how SCC is strongly characterised by
a highly inhomogeneous and skewed distribution throughout the spectrum, while BCC and H
hold a more Gaussian-like nature towards the end of the visual light spectrum. Upon plotting
central tendency and variance curves, it can be seen how BCC samples reflect the least amount
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Fig. 7. Sample skewness and kurtosis calculations across the entire spectrum analysed.

of light across all frequencies, while SCC reflects the most light, especially between the ranges
of 606.74 and 862.02 nm. Healthy skin samples, on the other hand, appear to have signatures
midway between the two samples, appearing more similar to SCC samples. Nevertheless,
great overlapping is observed across most samples (Fig. 8), especially between H and SCC
samples below 600 nm. This is especially evident when observing central tendency calculations.
The greatest differences are observed when considering the variability of sample distributions
(
√

BWMV), highlighting the importance of robust statistical approaches in this type of analysis.
In either case, the notable peaks in reflectance between ca. 600 nm and 850 nm indicate all

three samples to be strongly characterised by greater reflectance of orange, red, and the lower
frequencies of NIR light (Fig. 8), than any other part of the visible spectrum.

3.2. Univariate hypothesis testing

From a more analytical perspective, Levene tests reveal most samples to reject the terms of
homoscedasticity, especially when comparing H and BCC, as well as between SCC and BCC
(Fig. 9). Nevertheless, comparisons reveal high similarities in the variances between SCC and
BCC (minimum F = 4.5e-09, p= 0.17, PU(Ha |p)= 0.55), with posterior odds of at most 1 to 0.61
∈ [0.24, 0.85] in favour of the alternative hypothesis.

In the case of comparing H with BCC, Levene’s test reveals important divergences in the range
571.23 to 651.14 nm (Fig. 9; central F = 11.4, p= 0.0007, PU(Ha |p)= 0.987), with posterior
odds of at most 1 to 36.7 ∈ [14.7, 58.7] in favour of the alternative hypothesis, and a 1.3 ∈ [0.4,
5.2]% chance of this observation being a false positive. When comparing both types of cancer,
deviation also occurs beyond 571.23 nm (Fig. 9), however, in this case divergences are prolonged
throughout the spectrum until 691.09 nm, with the exception of 7 bands within this 54-band
range. Furthermore, while divergences between SCC and BCC are slightly less marked than
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Fig. 8. Hyperspectral signatures for each of the samples. (a) Robust signature marking the
central tendency as well as 5% and 95% quantile confidence intervals (lower lines and upper
lines respectively). (b)

√
BWMV calculations representing robust sample variance.

Fig. 9. Univariate hypotheses test results comparing each of the samples across each of
the hyperspectral bands using the Levene test for homoscedasticity. (a) Probability of Null
Hypotheses (P(H0)) values, calibrated for each p-value using priors of 1:2 to mark the central
tendency, while confidence intervals mark upper bounds using 3:10 prior probabilities in
favour of H0 and lower bounds using 7:10 prior probabilities in favour of H0. (b) Test
statistic calculations for each of the corresponding hypothesis tests.
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those observed between H and BCC, they are still of substantial importance (central F = 11.0,
p= 0.0009, PU(Ha |p)= 0.982), with posterior odds of at most 1 to 29.1 ∈ [11.7, 46.6] in favour
of the alternative hypothesis, and a 1.8 ∈ [0.5, 6.9]% chance of this observation being a false
positive.

In addition to these windows, BCC and SCC were also found to differ in an additional window
towards the violet, blue and cyan regions of the visible spectrum. From this perspective, Levene’s
test found notable divergences between 440.25 and 502.41 nm (Fig. 9; central F = 11.2, p= 0.0009,
PU(Ha |p)= 0.984). In this case, only 2 bands proved an exception to this rule in the 28 band
window. This window is additionally associated with posterior odds of at most 1 to 30.4 ∈ [12.1,
48.6] in favour of Ha. FPR values were calculated at 1.6 ∈ [0.4, 6.2]%.

Table 4 presents a summary of these results and the windows where the greatest differences
have been found.

Table 4. Description of the hyperspectral frequency ranges where univariate hypotheses testing
found notable differences between samples. FPR values have been calculated using the worst-case

scenario with prior odds of 2:10 against the alternative hypothesis.

Comparison Frequency Range (nm) N° Bands Included Test Used Test Statistic PU(Ha |p) FPR

H vs BCC 571.23 - 651.14 36 Levene 11.4 0.987 5.2%

SCC vs BCC 571.23 - 691.09 54 Levene 11.0 0.982 6.9%

SCC vs BCC 440.25 - 502.41 28 Levene 11.2 0.984 6.2%

3.3. Jensen-Shannon distances

Similarity measures in accordance with JSD ranged from highly similar probability distributions
(JSD= 0.62) to areas of notable divergences (JSD= 0.001). Nevertheless, the only window
presenting convergence of differences across all samples was found to be located approximately
between 582.32 to 748.81 nm (JSD median= 0.011, range= [0.004. 0.041]). When considering
differences between cancer samples and healthy skin, the greatest divergence of BCC from H
was found at 735.49 nm (JSD= 0.006), while SCC from H was found at this frequency as well
(JSD= 0.004). In the case of separating between different types of cancer, the greatest differences
for BCC and SCC were found at 673.33 nm (JSD= 0.006).

Interestingly SCC and H are clearly differentiable from most points beyond 580.10 nm, with
only 3 peaks in similarity in the NIR spectrum at ca. 890.87, 943.04 and 948.59 nm (Fig. 10).

Fig. 10. Comparisons of samples using calculations of distribution similarities via Jensen-
Shannon distance metricss.
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3.4. Multivariate testing

When comparing all the different results obtained throughout this study, a final window where
most major differences seem to be located can be established between 573.45 and 779.88 nm,
occupying a substantial proportion of the visible light spectrum, including the spectral colours
yellow, orange and red, as well as the beginning of the NIR light spectrum (Fig. 11).

Fig. 11. Optimally defined windows as established by multiple methods within the present
study. Area delimited by dotted vertical lines marks the final window of interest between
573.45 and 779.88 nm.

Performing multivariate statistical analyses using the Wilcox test across this region reveals
important differences between H and SCC (p< 2.0e-16, PU(Ha |p) ≈ 1), as well as between H
and BCC (p= 1.5e-12, PU(Ha |p) ≈ 1). In the case of H vs SCC, this corresponds to a posterior
probability of at most 1 to 2.5e+13 with prior odds of 1:2, and thus a worst case scenario of a
posterior probability of at most 1 to 1.0e+13 when considering prior odds of 2:10. In the case of
H vs BCC, a worst case scenario’s posterior probability can thus be calculated at 1 to 1.8e+09.
Needless to say, on both accounts, the probability that this observation is a Type I statistical error
is 1.1e-08%.

For the case of BCC and SCC, multivariate testing unfortunately reveals these samples to be
indistinguishable within this region (p= 0.17, PU(Ha |p)= 0.55). Nevertheless, when taking into

Fig. 12. Visualisation of different skin lesions via single bands (611.18 nm and 735.49 nm)
of hyperspectral images, as well as their corresponding RGB images. Channel bandwidths
have been measured at 2.2 nm.
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consideration the region of 429.16 to 520.17 nm, as defined by the Levene test, Wilcox results
reveal great differences between BCC and SCC (p= 6.4e-10, PU(Ha |p) ≈ 1), with posterior
probability Ha to H0 ratios of 1.3e+7 ∈ [5.4e+6, 2.2e+7] using prior odds of 1:2 (FPR= 3.7e-06
∈ [1.5e-05, 9.2e-07]%).

Needless to say, when processing the entire spectrum, all 270 bands present important
multivariate differences between H and both cancer samples. Nevertheless, p-values are slightly
higher (p< 4.5e-12), while BCC and SCC are still indistinguishable (p= 0.3, PU(Ha |p)= 0.5).

Finally, when these bands are used to visualise skin lesions, it can clearly be seen how
certain frequencies have greater potential of isolating cancerous skin cells over others, helping in
determining areas of subclinical invasion, which may be a valuable tool for future classification
tasks as well as for applications in surgical removal of these types of lesions (Fig. 12).

4. Discussion

While cancer is often perceived to be a disease of modernity, studies have shown neoplasms to
have great antiquity [62–64], having an effect on most living things at least 255 million years ago
(Mya) in mammals [65], and 1.7 Mya in humans [66]. Nevertheless, the severity and increase in
malignancy in these pathological phenomena is of increasing concern to modern-day society, a
fact that is strongly conditioned by our way of life. NMSC is the most frequent type of cancer in
humans [67], representing a major health problem in fair skinned elderly people, while being
associated with elevated health costs [68]. Moreover, beyond this, cancer is known to have a
significant emotional impact on not only the patient but their families too [69].

Timely detection of skin cancer is fundamental for suitable treatment and improving patient
survival rates. The present study has revealed important statistical differences between the
multiple samples analysed within the VNIR spectrum using a linear hyperspectral camera. Robust
statistical techniques, as well as feature selection algorithms, have been able to highlight these
differences particularly within the range of 573.45 and 779.88 nm; occupying a considerable
portion of yellow, orange and red visible light, as well as a more reduced proportion of the NIR
spectrum. Moreover, the probability that observations separating healthy skin from cancer are a
false positive has been calculated at less than 1% based on the present data. While differences
between both cancer types were limited within these frequencies, a secondary window was found
to be important for these samples between 429.16 to 520.17 nm; occupying portions of violet,
blue, cyan and green visible light.

Multiple studies have shown how substances such as melanosomes, collagen, blood and water,
affect the spectral signatures of skin and other biological tissues [70]. Similarly, the content of
these substances varies among different parts of the body, causing great natural variability within
healthy skin hyperspectral signatures. Most studies concur that one of the greatest conditioning
factors in the morphology of skin spectral signatures is product of melanin’s red light absorption
rate, explaining the large peaks and variances in the range of 600 to 800 nm [22,24,26,33,70].
While this is evidently a greater biomarker for the study of melanoma, the present study also
highlights portions of this range for the detection of NMSCs as well. Likewise, substances such
as haemoglobin have been noted to condition reflectance within the range 530 to 600 nm, while
pagetoid growth is known to affect the lower end of the visible spectrum, between 400 and
500 nm.

Halicek et al. [33] describe these phenomena in a study of SCC patients, noting haemoglobin
to reflect less light in SCC than healthy skin. While the signatures between 530 and 600 nm
are relatively similar in the present study, SCC is indeed seen to reflect 0.65% less light than
H samples, while BCC presents a difference of 0.16% less light reflected. While the present
study has a smaller number of SCC patients, each of these differences have been reported here as
minute, revealing no statistical data that supports using this region of the spectrum as a diagnostic
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biomarker. Moreover, a similar lack of statistical differences was noted by Gareau et al. [71] and
Hosking et al. [26] in the case of melanoma.

Halicek et al. [33] also describe SCC samples to reflect more light from 600 to 900 nm than
healthy skin, concurring with observations by Pardo et al. [24]’s study of melanoma patients.
These observations were additionally attributed to melanin’s greater absorption rates of light.
Via robust statistical techniques, Pardo et al. [24] additionally prove this a valuable biomarker.
The present study confirms both these observations, concluding SCC to have a slightly higher
absorption rate than healthy skin (0.53% less reflected light), while BCC is strongly characterised
by a greater absorption of this type of light (0.85%), much similar to melanoma.

Observing the differences found within the present study for SCC and BCC between 429.16
and 520.17 nm, in a study on melanoma, Hosking et al. [26] note blue light to be particularly
susceptible to differences in the dermoepidermal junction. From this perspective, it can be
argued that this region of the spectrum is useful for containing information regarding the specific
variability of skin cancer types. Considering how SCC and BCCs affect different types of cells,
particular atypia and possible variances in pagetoid spread may be contained within this region of
the spectra, proving a possible starting point for future investigation in hyperspectral diagnostics.

Nevertheless, the present study still has some limitations. From one perspective, the character-
istics of the platform designed, while proving useful, present room for improvement. Considering
most patients were of elderly age, the patient’s ability to stay still during the 15 s exposition time
was greatly reduced. In cases where skin lesions were found on patient’s hands, possible tremors
meant many images presented a “wavy” pattern or appearance. Similarly, when lesions were
found on the face or top of the head, many patients commented on a lack of comfort trying to
hold their heads in position. As a consequence, a number of images were unfortunately discarded.
In order to overcome this, future efforts should consider the use of a more ergonomic platform,
designed with a resting pad where the patient can place their arm or head in a more comfortable
position during image acquisition processes.

From a similar perspective, considering the natural variability most lesions presented, due to
within-group typological variances among NMSCs, a larger sample of different types of SCC and
BCC tumours should be obtained. Moreover, a large number of the patients sampled here were at
advanced stages of both tumour growth and spread, especially in the case of SCC patients. From
this standpoint, research into earlier stages of carcinoma development and metastasis would be a
valuable step towards ensuring, not only efficient diagnoses, but also early detection. It is also
strongly recommendable that research goes into premalignant lesions -such as actinic keratosis-,
as well as non-malignant nevi, so as to provide a better diagnostic tool.

Similarly, although the present study concurs with data provided by other authors, here
artificial skin pigmentation prior to hyperspectral image acquisition was avoided, making some
comparisons with other studies that did use pigmentation difficult. Likewise, the natural variability
of human skin pigmentation is likely to be an important factor when performing future studies.
From this perspective, it can be predicted that healthy skin signatures for fairer-skinned patients
will present greater differences than those observed here, with trends towards more reflected light
in the 530 to 600 nm range, while less light would theoretically be reflected between 600 and
800 nm.

Needless to say, the application of robust statistical measurements was still able to reveal
important features of SCC and BCC signatures, presenting promising possibilities for applications
with larger patient sample sizes. Similarly, the differentiation between H, SCC and BCC samples,
in specific regions of the spectrum, allows for efficient feature selection. The most recent advances
in the integration of hyperspectral imagery to medical applications have shown these tools to
greatly increase the accuracy when delimiting skin lesions as opposed to human analysts [24,34].
While the present study has not taken this step, a detailed statistical analysis and characterisation
of these types of skin lesions is fundamental for more advanced applications. In sum, and based
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on the present data, it can clearly be seen how robust statistical analyses of this nature provide a
basis upon which more complex computational learning applications can be built from, especially
using artificial intelligence.

5. Conclusion

In this study, robust statistical tests were employed on hyperspectral data in the VNIR spectrum
in order to identify the hyperspectral differences between carcinomas (SCC & BCC) and healthy
skin (H). The optimal spectral ranges for discrimination between SCC, BCC, and H, as well as
between BCC and SCC, have been defined using robust statistics. The results are especially
promising for the discrimination between cancerous and non-cancerous areas, paving the way for
future research in NMSC diagnostics using hyperspectral images.

A study with larger patient samples should be carried out in the future, allowing for a wider
representation of lesion variability (including different stages of growth and stage). The same
can be said considering the variability of healthy skin (including features such as non-cancerous-
lesions). Similarly, while the presented ad-hoc platform has been designed for its implementation
in clinical practice, especially as a tool to support medical practitioners, further improvements
in the image acquisition platform should also be made in order to make it more ergonomic
and facilitate data acquisition. This can be considered of great importance for more practical
scenarios, especially for elderly patients.
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