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The auditory evoked potential (AEP) has been considered a standard clinical instrument for hearing and 
neurological evaluation. Although several approaches for learning EEG signal characteristics have been 
established earlier, the hybridization concept has rarely been explored to produce novel representations of 
AEP features and achieve further performance enhancement for AEP signals. Moreover, the classification 
of auditory attention within a concise time interval is still facing some challenges. To address this 
concern, this study has proposed a hybridization scheme, represented as a hybrid convoluted k-nearest 
neighbour (CKNN) algorithm, consisting of concatenating the convolutional layer of CNN with k-nearest 
neighbour (k-NN) classifier. The proposed architecture helps in improving the accuracy of KNN from 
83.23% to 92.26% with a 3-second decision window. The effect of several concise decision windows 
is also investigated in this analysis. The proposed architecture is validated by a publicly benchmark 
AEP dataset, and the outcomes indicate that the CKNN significantly outperforms other state-of-the-art 
techniques with a concise decision window. The proposed framework shows superior performance in a 
concise decision window that can be effectively used for early hearing deficiency diagnosis. This paper 
also presents several discoveries that could be helpful to the neurological community.

© 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hearing deficiency is the most common sensation of impair-
ment nowadays, and over 5% of the world’s population (432 mil-
lion adults and 34 million children) require rehabilitation to ad-
dress this issue. Hearing loss becomes more prevalent as people 
age; about a quarter of persons over the age of 60 suffer from 
hearing loss. The world health organization (WHO) estimates that 
the hearing impairment issue will exceed 630 million by 2030 and 
more than 900 million by 2050 [1]. So, addressing this deficiency 
is one of the major concerns; thus, early and appropriate hearing 
screening tests could be an effective solution for the vast popula-
tion concern. Moreover, conventional hearing test techniques are 
time-consuming and require sufficient clinical time and expertise 
to interpret and maintain since it desires the person to respond 
directly.

Furthermore, in the application of hearing aid, the effect of 
hearing loss [2], the stimulus’s background noise and the stim-
ulus’s position [3][4]) is still an open question. Researchers have 

* Corresponding author.
E-mail address: MEG20002@stdmail.ump.edu.my (M.N. Islam).
https://doi.org/10.1016/j.neuri.2021.100037
2772-5286/© 2021 The Author(s). Published by Elsevier Masson SAS. This is an open acc
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
developed several approaches [5][6][7][8] to detect early hearing 
ability in recent years. Among the wide range of control signals of 
EEG (non-invasive and user-friendly), EEG-based AEP signals have 
become more popular and are widely used for hearing impairment 
diagnosis [9]. Indeed, the AEP signal is extensively used to de-
termine hearing capabilities, measure hearing ability, and detect 
neurological hearing impairments. The AEP signals elicited from 
the brain are acoustic stimuli and recorded from electrodes at-
tached to the scalp. However, neural activities produced by the 
brain through auditory stimuli are challenging in neuroscience.

Typically, the diagnosis of hearing deficiency involves four main 
stages: acquisition of data, data pre-processing, feature extraction, 
and classification. Traditionally, feature extraction has been ac-
complished through the analysis of time-domain [10], frequency-
domain [7], and time-frequency domain [5] approaches, whereas 
the classification has been conducted with different machine learn-
ing [11][12] and deep learning techniques [13]. Generally, sup-
port vector machine (SVM) [6], k-NN [12], artificial neural net-
work (ANN) [14], linear discriminant analysis (LDA) [15] and Naïve 
Bayesian (NB) [16] is widely used in neurological response classi-
fication. Convolutional neural networks (CNNs) have recently be-
come the most favourable technique for a wide variety of iden-
tification and detection applications, particularly in image classi-
ess article under the CC BY-NC-ND license 
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fication [17]. Recent research on CNNs has also yielded encour-
aging results in the categorization of EEG signals: in seizure de-
tection [18], depression detection [19], and sleep stage classifica-
tion [20]. Moreover, the CNN has been extensively utilized for the 
following purpose: Alzheimer’s disease diagnosis using MR imag-
ing [21], multiclass skin cancer classification [22], identification of 
coronavirus disease using X-ray images [23], detecting the char-
acter of the license plate to minimize the traffic problems [24], 
face mask detection [25], for recognizing the handwritten docu-
ments [26], brain tumors detection using MRI images [27], and 
secure Blockchain Security Module (BSM) for BCI with Multimedia 
Life Cycle Framework (MLCF) (BSM-BCIMLCF) that safely connects 
wearables while investigating the present-day BCI life cycle (BCILC) 
protection [28]. Besides, some other methods are also used for par-
ticular task classification, such as liver tumor detection using arti-
ficial intelligence-based K -means clustering (KMC) algorithm [29]
and recognition of Alzheimer’s patients using support vector ma-
chine (SVM) [30].

Deckers et al. [13] proposed an auditory attention detection 
(AAD) system where they used a neural network algorithm to de-
code the locus of interest for the competing speaker scenario. They 
achieved 76.1% accuracy on 1 s of the decision period in the ex-
periment. However, this CNN-based approach has a high degree of 
inter-subject variability and involves vast amounts of training data 
for each subject to form a subject-independent decoder. In [31], 
short window lengths during dynamic change are demonstrated to 
be beneficial, even if they have a low precision in the context of ro-
bust AAD-dependent gain controls. With a shorter decision-making 
window, particularly below 10 s, the AAD accurateness drops sig-
nificantly [32], [33]. In terms of EEG-based AAD, Ciccarelli et al. 
[34] recently showed that a (subject-dependent) CNN based classi-
fier could outperform the linear methods for the decision windows 
of 10 s. Zhang et al. [5] proposed an auditory brainstem response 
(ABRs) identification system. They used the proposed combined 
system using wavelet analysis and Bayesian networks for classifi-
cation purposes. Here, five-level discrete wavelet transforms (DWT) 
extract the features by thresholding and matching the wavelet co-
efficients. The classification accuracy (78.80% for the 64 averaged 
ABRs and 84.17% for the 128 averaged ABRs) is insufficient for the 
system implementation in a real-life application. Gronfors [35] de-
veloped an automatic peak detection system using the pedestal 
peak method. This study shows the affection of performance with 
different dB stimulation intensity. McCullagh et al. [14] reported a 
73.7% testing accuracy using the artificial neural network to clas-
sify 166 auditory brainstem responses (ABRs) with 2000 repeti-
tions which is insufficient to use the approach in real-time imple-
mentation. McKearney et al. [36] proposed a deep neural network 
approach to classify auditory brainstem responses. Although they 
achieved an excellent performance (92.9% testing accuracy), the 
testing set is too small (42 paired waveforms), and more dataset is 
required to test the robustness and applicability of their approach.

The proposed study aims to develop an intelligent system for 
early hearing disorder diagnosis in a short time interval. Although 
the concise decision window is considered one of the prerequi-
sites to developing real-time and real-life applications, relatively 
a few research studies have explored this concept [13]. The con-
cise decision window reduces the impact of additional features 
and computational complexity for the additional feature. More-
over, the shorter decision window makes the system faster, which 
will help to detect the hearing disorder earlier. Despite the several 
advantages of selecting the concise decision window, the hearing 
screening strategy is still very challenging [31]. The shorter de-
cision windows contain less information and sometimes provide 
inadequate accuracy [13] [31] [33].

For the hearing condition diagnosis, some recent studies [12]
[37] [38] [39] have widely used the K-NN algorithm. Despite some 
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key benefits of the k-NN algorithm in the neurological field, in-
cluding few parameters and a faster training process, several limi-
tations exist. Firstly, the k-NN algorithm does not work well with 
a high dimensional dataset since, in such a case, it becomes diffi-
cult for the algorithm to calculate the distance in each dimension. 
The cost of calculating the distance between the new and existing 
points is vast, degrading the algorithm’s performance. Moreover, 
feature scaling (standardization or normalization) is needed before 
applying the k-NN algorithm to any dataset; otherwise, k-NN may 
generate wrong predictions. To address the limitations of some 
single classifier, integrating two or more classifiers could be an ef-
fective alternative to perform error-free classification tasks rather 
than a single classifier. For this purpose, the researchers have de-
veloped several hybrid techniques where they combine more than 
one algorithm. In [40] [41] [42] [43], the researchers have de-
veloped the hybrid architectures and effectively concatenated two 
algorithms strength which provides a high performance than a sin-
gle classifier, and in some cases, it helps to overcome the single 
classifier limitations. This paper proposes a novel hybrid archi-
tecture with time-frequency images which can detect the hidden 
local information in neural activity to reflect this concept. To over-
come the mentioned issues of k-NN, the hybrid architecture is built 
with CNN’s convolutional blocks and the k-NN algorithm. This hy-
bridization’s objective is that several hidden layers of the blocks 
can select discriminatory representations from the higher dimen-
sional data. This process helps the k-NN algorithm to provide more 
precise predictions by reducing the mentioned issues of k-NN. The 
key contributions of the paper are summarized as below:

• In the proposed approach, we have designed a hybrid architec-
ture (CKNN) based on concatenating the convolutional layers 
of CNN with the k-NN algorithm, which help in improving the 
overall performance of the k-NN algorithm for the AEP dataset.

• To mitigate the impact of the additional features, this study 
has investigated concise decision windows (1 s, 2 s, and 3 s), 
which help in reducing the time consumption and show the 
robustness and applicability of the proposed system in real-
time implementation.

• Furthermore, the dataset has been tested with six popular 
transfer learning algorithms, including InceptionResNetV2 [44], 
MobileNet [45], ResNet50 [46], VGG16 [47], VGG19 [47] and 
Xception [48]), in which the proposed hybrid architecture 
shows superior performance to detect the early hearing ability 
than other existing approaches.

The rest of the manuscript is arranged as follows: Section 2
presents the detailed data description, data pre-processing, trans-
formation process of raw signals to time-frequency images, and 
the proposed hybrid architecture building procedure. The experi-
mental result to test the validation of the model is represented in 
Section 3. Section 4 exhibits a comprehensive discussion and com-
pares the proposed model with related studies. Section 5 describes 
the outcomes with the future directions of the proposed research.

2. Materials and methods

2.1. Data description

To verify the effectiveness of the proposed hybrid architecture 
for hearing condition classification, systematic experiments have 
been conducted on a publicly available online dataset (provided by 
ExpORL, Dept. Neurosciences, KULeuven, and Dept. Electrical Engi-
neering (ESAT), KULeuven) [49]. This signals acquisition technique 
used a 64-channel BioSemi Active Two system with a sampling 
rate of 8196 Hz. The dataset included 16 normal-hearing subjects, 
each with 20 repetitions in which every story lasted 12 minutes 
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Fig. 1. AEP raw data plotting in 2 s time window: (A) hear auditory stimulus with the left ear (B) hear auditory stimulus with the right ear.
and was divided into two segments of 6 minutes each. For pro-
viding the sound stimuli, an Etymotic ER3 insert earphone was 
provided where the sound intensity was 60 db. The entire data 
capturing procedure was conducted in a soundproof, electromag-
netically shielded space. Simulation software (APEX3) was used 
in this procedure [50]. Three male Flemish speakers had partic-
ipated where they narrated four Dutch stories as auditory stim-
ulation [51]. Each story lasted 12 minutes and was divided into 
two segments (six minutes each). The stimuli had identical root-
mean-square intensities and were assessed as equally loud. In each 
trial, two parts of two storylines had been provided for the sub-
jects where the left ear received one part of the storylines, and 
the right ear received the other part. The attended ear was alter-
nated over successive trials to ensure that each ear received an 
equal volume of stimuli, preventing the lateralization bias [4]. So, 
every subject received stimuli in the same order, either dichotically 
or after head-related transfer function (HRTF) filtering (simulating 
sound coming from ±90◦). The HRTF/dichotic condition was ran-
domized and equally distributed within and over participants as 
with the attended ear.

2.2. Data pre-processing

The initial phase following data collecting is pre-processing the 
AEP data. Each trial was filtered with a high pass frequency (0.5 
Hz cut off) and downsampled from the sampling rate of 8192 Hz 
to 128 Hz in the pre-processing phase. In the experiment, we have 
studied sixteen participants, and each trial was divided into the 
same duration. To investigate the robustness of the proposed archi-
tecture, the dataset has been segmented into three different short 
decision windows (1 s, 2 s, and 3 s). The reason for selecting the 
shorter decision windows is to reduce the computational complex-
ity, minimize the use of additional features for a single decision, 
and make the system faster. In the experimental analysis, we have 
randomly picked 200 observations from each decision window, and 
a total of 3200 observations have been achieved from each win-
dow. Fig. 1 illustrates the filtered AEP data of subject-1, channel-1, 
in the 2 s decision window, whereas the subject hears auditory 
stimulus through headphones defined as left and right labels.

2.3. CWT for time-frequency analysis

CWT is a technique for extracting time-frequency features that 
enable multi-scale signal refining via scaling and translation pro-
cedures. After the pre-processing phase, the segmented dataset 
transforms from the time domain to the time-frequency domain 
using the CWT [52]. In this study, CWT has been utilized as a 
feature extraction method that converts the AEP raw signal into 
time-frequency images. The wavelet transforms execute an inter-
nal signal action and generate a series of wavelets. The mother 
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wavelet is scaled and translated to create the wavelet set, which is 
a family of wavelets ψ (t), shown as

ψS,τ (t) = 1√
S
ψ

(
t − τ

S

)
(1)

Here, S represents the scale parameter inversely related to fre-
quency, and τ represents the translation parameter. A CWT of a 
signal x (t) can be achieved by a complex conjugate convolution 
operation, mathematically defined as follows [53]:

W (s, τ ) = 〈
x (t) ,ψS,τ

〉 = 1√
s

∫
x (t)ψ∗

(
t − τ

S

)
dt (2)

Where �∗(·) denotes the complex conjugate of the above func-
tion �(·) and this operation decomposes the signal x (t) in a series 
of wavelet coefficients, in which the base function is the wavelet 
family. In the equation, the s and τ are two types of parameters in 
the family wavelets. The signal x(t) is transformed and projected 
to the time and scale dimensions of the family wavelets.

In this study, we used wavelet basis functions (Mother Wave-
lets). The time-frequency images are then used as the input of the 
proposed hybrid architecture. The transformation process of CWT 
is shown in Fig. 2.

Since the dataset was collected by 64-channel BioSemi Active 
Two system, we first segmented the dataset in different (1 s, 
2 s, and 2 s) and then converted the raw AEP signals into time-
frequency images. Finally, we have concatenated the 64 channels 
data in (M*M) square in a single image, where the value of M has 
been set to 8. So, each image provides the time-frequency infor-
mation of 64 channels. Fig. 3 shows the time-frequency image of 
64 channels.

2.4. The proposed hybrid CKNN scheme

The staggering growth of hearing impairment poses a signifi-
cant threat and creates a persuasive need for automatic classifica-
tion techniques. In this paper, we comprise two algorithms (con-
volutional layers and the k-NN) in an effective way to enhance 
the early hearing impairment detection ability. The proposed hy-
brid system overcomes the existing limitations of k-NN, including 
lower efficacy in high dimensions, need feature scaling, high sensi-
tivities to noisy data, missing values, and outliers. This study used 
two convolutional blocks with different kernel sizes to significantly 
deal with these issues before the features input at k-NN.

The proposed hybrid architecture is composed of two convolu-
tion layers and a k-NN algorithm. The convolutional layers consist 
of several types of kernels, pooling layers and one dropout layer. 
The convolution layer is the fundamental building element of the 
CNN, and it is responsible for preserving the connection between 
pixels by learning image features from tiny squares of input data. 
Convolution is a linear process in which weights are multiplied by 
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Fig. 2. The transformation process from time-domain signal to time-frequency domain image.
the input. This layer conducts a dot product on two matrices, one 
of which contains the set of learnable parameters referred to as the 
kernel, and the other includes the restricted portion of the recep-
tive field. Kernels are geographically smaller than images but have 
a greater in-depth. This implies that if the picture has three (RGB) 
channels, the kernel’s height and width will be smaller in compar-
ison to the depth, which will span all three channels. Two inputs 
are required for a mathematical action, such as an image matrix 
and a filter or kernel. The image matrix dimension is (h × w × d), 
and after applying the filter, the dimension is ( fh × f w × d). The 
output dimension of the matrix is (h − fh + 1) × (w − f w + 1) 
× 1.

Several fixed-size filters in the convolution layer allow the com-
plex functions to be used in the input image [54]. This is done by 
sliding the locally trained filters over the image. Each filter is ap-
plied to the entire image with the same weight and bias values. 
The process is called the weight-sharing mechanism, and it enables 
the representation of the whole image with the same characteris-
tic. Considering an l-layers CNN architecture, the l-layer convoluted 
feature maps can be expressed as:

yconv
l, j =

k∑
i

W l
i, j ∗ ypool

l−1,i + bl
j (3)

yReLU
l, j = f

(
yconv

l, j

)
= max

[
0, yconv

l−1, j

]
(4)

Where yconv
l, j represents the output of the l-th layer, and W l is 

the kernel of the l-th layer, k represents the number of kernels, 
bl is the bias and f (·) is the activation function which transforms 
the input to the output map to increase the nonlinear property. 
An activation function ReLU (Rectified Linear Unit) expressed as 
max (0, x) is usually used instead of a sigmoid. This study uti-
lized the ReLU function, and it proves far better outcomes in most 
of the classification tasks, accelerating convergence and alleviating 
the vanishing gradient problem [55].

The next stage is the application of the pooling layer to de-
crease the image stack. The straightforward reason for using this 
layer is to reduce the spatial size of the input image. By reduc-
ing the size and calculation of the input image feature, pooling 
regulates the overfitting issue. This study used the one dropout 
layer after the first pooling layer. The reason behind adding the 
dropout layer is to minimize the overfitting problem and reduce 
the model complexity. Mele et al. [56] reported that in the case 
of the CIFAT-10 dataset, the error rate was 16.6% when CNN had 
been employed. They improved the model’s performance with an 
error rate of 15.6% when the dropout layer was utilized in the 
last hidden layer. The neuron is temporarily dropped with the 
4

probability p at each iteration. Then, at every training step, the 
dropped-out neuron is resampled with the probability p, and a 
dropped-out neuron will be active at the next step. Here, the hy-
perparameter p is the dropout rate. Prior to KNN functionality, all 
the features are flattened, which is a suitable size for the k-NN 
algorithm.

The k-NN algorithm is a machine learning approach that clas-
sifies a data point based on the majority of its neighbours [57]. 
The k-NN method executes in two steps; first, it determines the 
value of the nearest neighbour, and then, using the value near-
est neighbour, it classifies the data point into a certain class. K is 
the number of nearest neighbours in k-NN. The k-NN algorithm is 
fundamentally determined by the number of neighbours (k). The k-
NN method has a disadvantage in terms of determining the value 
of k. Although several studies have been conducted on this issue, 
selecting the k value for the k-NN method remains difficult and 
challenging [58]. This study utilized the ‘Gridsearchcv’ function in 
Python to address this issue, where we set the value of k as [range 
(1-15)]. This strategy helps in finding the optimal value of k for 
our task. This method calculates the distance between them using 
distance measures such as Euclidean, Hamming, Manhattan, and 
Minkowski to determine the nearest comparable points. For se-
lecting the optimal distance metric, this approach used metric is 
[Euclidean, Manhattan] with the help of the ‘Gridsearchcv’ func-
tion. This study achieved the maximum performance with the K 
value of 10, Euclidean distance, and uniform weight.

The Euclidean distance is defined as the length of the line seg-
ment connecting the two instances. It is determined by squaring 
the difference between the points’ x and y coordinates. Suppose 
X = (X1, X2, . . . ., XN ) and Y = (Y1, Y2, . . . . . . ., Y N) are two points 
in Euclidean N-space, then the distance from X to Y is calculated 
by the following equation,

Euclidean distance : (X, Y ) =
√√√√ N∑

i=1

(Xi − Yi)
2 (5)

Fig. 4 illustrates the detailed diagram of the proposed hearing 
loss diagnosis system. First of all, the raw AEP data is transformed 
into the time-frequency image with the help of CWT.

Then, the images are resized into 224 × 224 × 3. In the first 
convolutional layer, the kernel size is 5 × 5, where we have used 
32 kernels. In the next step, this study has used the Max-pooling 
layer to reduce the size of the input. Max pooling is used to pass 
the window through a filtered image that is the output of a previ-
ous convolution layer, storing the window’s maximum value. The 
pooling layer reduces the image size from 224 × 224 × 32 to 74 



M.N. Islam, N. Sulaiman, B.S. Bari et al. Neuroscience Informatics 2 (2022) 100037

Fig. 3. The time-frequency image of 64 channels.

Table 1
The proposed hybrid architecture building procedure.

Step-1 Design some convolutional blocks with suitable parameters (used to filter the given time-frequency images). This study utilized the ‘Keras-Tuner’ library, which 
helps to select the most optimal set of parameters to build the blocks.

Step-2 Add the Flatten layer after the last convolutional block, which helps in preparing the suitable input size for the k-NN model (as shown in Fig. 4).

Step-3 Build a k-NN model with suitable hyperparameters for the task classification (this study used the auto hyperparameter tuning process with the help of the 
‘GridSearchCV’ library to figure out the suitable hyperparameter).

Step-4 Integrate the convolutional blocks with the k-NN model to build the proposed hybrid architecture (CKNN).

Step-5 Train the proposed hybrid architecture with the dataset.
× 74 × 32. Then one dropout layer is added after the pooling 
layer, where the value is set to 0.6. After that, another convolu-
tional layer with the kernel size 3 × 3× 64 is combined. Next, a 
3 × 3 Max pooling layers are added, where the output size is 24 
× 24 × 64. After flattening the features, those features are used 
as the input of k-NN. The proposed hybrid architecture building 
procedure is illustrated step-by-step in Table 1.
5

3. Results

This experimental analysis has been carried out in Python, with 
the help of Google Colab, Windows 10, Intel(R) Xeon(R) CPU @ 
2.30GHz, Tesla K80, and CUDA Version 10.1. The experiment is 
conducted on the publicly available reputed AEP dataset collected 
from 16 subjects (S) to verify the proposed architecture’s effective-
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Fig. 4. Schematic diagram of proposed hybrid Classification System.
ness. This study examines three distinct decision windows (1 s, 
2 s, and 3 s), which is considered as the shortest time window 
among the state-of-art methods. This term refers to the amount of 
information necessary to make a single left/right choice. The prac-
tical reason for selecting the concise decision windows (DW) is 
to decrease computing complexity and speed up the system that 
aids to detect early hearing disorders. We randomly selected 200 
observations from each subject with each decision window and fi-
nally achieved 3200 observations to conduct the experiment. Then, 
the entire dataset is randomly split, and 70% dataset has been 
used to train the architecture. In contrast, the rest 30% dataset 
has been used to test the robustness of the proposed architecture 
for hearing impairment diagnosis. A total of 2240 observations has 
been used for training the model and 960 observations for testing 
the performance. Then, the observations have been converted into 
time-frequency images using CWT. Finally, the extracted features 
have been classified by the k-NN and the CKNN architectures.

3.1. Performance of this experiment over the decision windows

To evaluate the performance of AEP for hearing condition clas-
sification, this study has been conducted with three different con-
cise decision windows. The performance of the proposed system 
for hearing condition diagnosis is shown in Table 2, which illus-
trates the effect of decision windows on the overall performance. 
To demonstrate the proficiency and robustness of our system, we 
evaluate several types of performance measurement techniques 
(accuracy, precision, recall, f1 score, and Cohen’s kappa score) 
[59][60] for each subject (S). To check the performance of our ar-
chitecture, the performance reported in Table 2 is based on ten 
different runs of the architecture.

Among the different decision windows, the 1 s decision win-
dow’s performance is lower. In the decision windows (2 s and 
3 s), the proposed architecture shows higher average accuracy and 
larger inter-subject variability. In all decision windows, two sub-
jects (subjects 9 and 14) performed poorer than the others (there-
fore not considered in the subsequent analysis). As reported in 
Table 2, our proposed architecture outperforms the k-NN algorithm 
in all decision windows (10% improvement in 1 s decision window, 
6% improvement in 2 s decision window, and 6.87% improvement 
in 3 s decision window). Therefore, further analysis has not dis-
cussed the performance of the k-NN algorithms.

For 1 s decision window, the average (AVG) performance of the 
system, including accuracy, precision, recall, f1 score, and Cohen’s 
6

kappa score are 88.21%, 92.98%, 84.10%, 87.05%, 76.56%, respec-
tively (avoid two subjects that performed poorer). The performance 
achieved with this decision window is not enough to use this 
system in real-time applications. Before we move on to the next 
decision window, the possible reason for the unsatisfactory perfor-
mance with this concise decision window has been investigated. 
Firstly, the shorter decision window contains less information, and 
sometimes this few information is not enough to make the deci-
sion. Secondly, if the algorithms do not get enough information, it 
provides unsatisfactory outcomes. For this reason and to enhance 
the performance, we move on to the 2 s decision windows.

For the 2 s decision window, we have achieved the average 
value of accuracy, precision, recall, f1 score, Cohen’s kappa score is 
91.95%, 93.30%, 91.27%, 92.12%, 84.56%, respectively where 3.74%, 
0.32%, 7.17%, 5.07%, and 8% improvement has been achieved, re-
spectively, compared to the 1 s decision window length. Despite 
the impressive performance of the proposed system with a 2 s 
decision window, some subject’s analysis shows unsatisfactory per-
formance, such as comparatively lower classification accuracy has 
been noticed by Subjects-3 (86.67%), Subject-10 (88.33%), Subject-
12 (85%), Subject-16 (88.33%). However, the classification accuracy 
of other subjects is more than or equal to 90%. Some impres-
sive performance has been noticed by Subject-6 (100%), Subject-7 
(95%), Subject-8 (95%) and Subject-15 (95%). To study the window 
effect more, the 3 s decision window has also been investigated 
with the proposed system; however, the emphasis of our study is 
on a concise decision window.

For the 3 s decision window, in the average of all the subjects, 
the proposed CKNN has achieved an accuracy, precision, recall 
score, f1 score and Cohen’s kappa score of 92.26%, 92.57%, 92.86%, 
92.51%, and 84.50% respectively. Firstly, in this case, we have im-
proved 4.05% accuracy, 0.41% precision, 8.76% recall, 5.46% f1 score 
and 7.94% Cohen’s kappa score than 1 s decision window.

Secondly, the improvement has been achieved compared to the 
2 s decision window with 0.31% accuracy, 0.73% precision, 1.59% 
recall, 0.39% f1 score, and 0.06% Cohen’s kappa score. From this 
comparison, it is clear that we have achieved a significant improve-
ment with the 3 s decision window compared to the 1 s decision 
window. On the other hand, compared to the 2 s decision window, 
the improvement is not so high. For this reason, further analysis 
is not conducted with more decision window; however, the main 
goal of this experiment is early hearing condition diagnosis. The 
concise decision window with high-performance help to meet this 
achievement.
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S13 S14 S15 S16 AVG

7 75 65 86.67 55 74.90

3 80.77 77.78 79.49 83.33 80.88

2 67.74 45.16 100 16.13 67.94

0 73.68 57.14 88.57 27.03 71.90

3 50.22 30.92 73.06 12.34 50.11

3 81.67 73.33 91.67 65 85.73

8 88.46 80 86.11 100 91.36

74.19 64.52 100 32.26 80.04

1 80.70 71.43 92.54 48.78 83.90

6 63.50 46.96 83.22 31.52 71.66

7 83.34 80 95 76.66 85

2 76.93 88 91.18 81.48 87

2 96.77 70.97 100 70.97 83

8 85.71 78.57 95.38 75.86 85

8 66.33 60.22 89.96 53.49 69

90.67 85 95 88.33 91

7 90.67 100 91.18 85.29 93

7 90.67 70.97 100 93.55 90

5 90.67 83.02 95.38 89.23 91

90.67 70.26 89.96 76.56 83

78.33 71.67 86.67 66.67 83.23

3 87.50 85 89.66 72 87.68

9 67.74 54.84 83.87 58.06 78.63

4 76.36 66.67 86.67 64.29 82.38

0 56.95 43.96 73.36 33.70 66.59

3 91.67 81.67 90 86.67 90.10

1 90.62 91.67 90.32 96 91.56

7 93.55 70.97 90.32 77.42 89.11

5 92.06 80 90.32 85.71 89.95

2 83.30 63.58 79.98 73.48 80.24
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Table 2
The effect of decision windows on the overall performance.

DW Method Performance (%) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

1 s KNN Accuracy 76.67 88.33 65 91.67 80 65 88.33 75 51.67 73.33 70 91.6

Precision 79.31 96.15 65.62 90.62 88 65.62 85.29 86.36 54.17 94.12 74.07 93.3

Recall 74.19 80.65 67.74 93.55 70.97 67.74 93.55 61.29 41.94 51.61 64.52 90.3

F1 Score 76.67 87.72 66.67 92.06 78.57 66.67 89.23 71.70 47.27 66.67 68.97 91.8

Cohen Kappa 53.39 76.77 29.84 83.30 60.22 29.84 76.56 50.44 3.970 47.43 40.20 83.3

1 s CKNN Accuracy 95 96.67 86.67 96.67 93.33 70 98.33 93.33 63.33 88.33 80 98.3

Precision 96.67 100 89.66 96.77 96.55 70.97 96.88 100 80 100 82.76 96.8

Recall 93.55 93.55 83.87 96.77 90.32 70.97 100 87.10 38.71 77.42 77.42 100

F1 Score 95.08 96.67 86.67 96.77 93.33 70.97 98.41 93.10 52.17 87.27 80 98.4

Cohen Kappa 90 93.34 73.36 93.33 86.68 39.93 96.66 86.71 27.87 76.82 60.04 96.6

2 s KNN Accuracy 88.33 83.34 78.33 91.67 78.33 96.67 93.33 93.33 78.33 78.33 88.33 71.6

Precision 85.29 100 80 88.24 80 93.94 100 100 78.13 84.62 90 76.9

Recall 93.55 67.75 77.42 96.77 77.42 100 87.10 87.10 80.65 70.97 87.10 64.5

F1 Score 89.23 80.77 78.69 92.31 78.69 96.88 93.10 93.10 79.37 77.19 88.52 70.1

Cohen Kappa 76.56 67 56.67 83.26 56.67 93.31 86.71 86.71 56.57 56.86 76.67 43.5

2 s CKNN Accuracy 93.33 91.67 86.67 96.67 90 100 95 95 86.67 88.33 91.67 85

Precision 100 100 84.85 93.94 90.32 100 100 100 82.86 90 93.33 86.6

Recall 87.10 83.87 90.32 100 90.32 100 90.32 90.32 93.55 87.10 90.32 83.8

F1 Score 93.10 91.23 87.50 96.88 90.32 100 94.92 94.92 87.88 88.52 91.80 85.2

Cohen Kappa 86.71 83.41 73.24 93.31 79.98 100 90.02 90.02 73.18 76.67 83.34 70

3 s KNN Accuracy 91.67 91.67 86.67 95 85 86.67 91.67 83.33 66.67 81.67 83.33 85

Precision 90.62 100 84.85 96.67 84.38 81.08 100 81.82 76.19 88.46 88.89 95.8

Recall 93.55 83.87 90.32 93.55 87.10 96.77 83.87 87.10 51.61 74.19 77.42 74.1

F1 Score 92.06 91.23 87.50 95.08 85.71 88.24 91.23 84.38 61.54 80.70 82.76 83.6

Cohen Kappa 83.30 83.41 73.24 90 69.93 73.12 83.41 66.56 33.99 63.50 66.78 70.2

3 s CKNN Accuracy 100 96.67 88.33 98.33 95 90 95 86.67 68.33 95 85 93.3

Precision 100 100 85.29 100 91.18 83.78 100 84.85 77.27 93.75 89.29 90.9

Recall 100 93.55 93.55 96.77 100 100 90.32 90.32 54.84 96.77 80.65 96.7

F1 Score 100 96.67 89.23 98.36 95.38 91.18 94.92 87.50 64.15 95.24 84.75 93.7

Cohen Kappa 100 93.34 76.56 96.67 89.96 79.84 90.02 73.24 37.22 89.98 70.07 86.6
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Fig. 5. The effect of decision windows over the proposed architecture.
Despite the significant performance of our system, some sub-
jects’ analysis provides unsatisfactory performance. There are sev-
eral possible reasons for the poorer performance. For example, 
EEG-based AEP signals come from the brain area, and the signals 
are non-linear, non-stationary and have artifact prone character-
istics. So, it is challenging to achieve high performance with the 
dataset. Sometimes, the brain produces unwanted noisy signals 
due to the lack of the subject’s attention or muscle movement. 
Since the signal acquisition procedure (publicly available dataset) 
was conducted in a soundproof place, there is a low chance of 
external artifacts. Another factor that was selecting a concise de-
cision window contains less information may decrease the overall 
performance [13] [31] [33]. However, a concise decision window 
is one of the prerequisites factors for developing the real-time ap-
plication, but a few studies have been conducted with a shorter 
decision window [13]. It reduces the computational complexity for 
the additional features and makes the system faster, but it is still 
very challenging to achieve adequate performance [31]. These phe-
nomena could be responsible for the lower performance in some 
cases.

However, the proposed system achieved an impressive perfor-
mance with a shorter decision window. The experimental out-
comes show that it is possible to decode the hearing condition 
with concise decision windows. This study has presented a com-
parison to analyze the effect of different decision windows on 
overall performance. Fig. 5 visualizes the average performance of 
our system with different decision windows.

3.2. Confusion matrix

When the classifier deals with multiple classes of similar fea-
tures, it can be confused in some cases. A confusion matrix can 
be used to estimate the classification accuracy of a model visu-
ally. Based on the auditory stimuli in the ear, two types of AEP 
data have been used to conduct this experiment. When the sub-
ject hears auditory stimuli in the left ear is denoted Class1, and 
when the subject hears auditory stimuli in the right ear is indi-
cated Class2, as shown in Fig. 6. Since the AEP signals are produced 
from the brain area and are very unstable, sometimes it produces 
noisy signals due to the artifacts or muscle movement, making the 
classifier confused in some cases. Fig. 6 illustrates the confusion 
matrix of our proposed architecture with the AEP dataset in the 
3 s decision window.
8

All correct predictions are on the diagonal, and all incorrect 
predictions are off the diagonal; hence, the classes that have con-
fused the system. Based on these results, the classifier’s perfor-
mance can be visually evaluated. According to the analysis, the 
KNN algorithm correctly predicts 813 observations out of 960 ob-
servations, whilst the proposed CKNN algorithm correctly predicts 
872 observations out of the same number of observations. So, the 
confusion matrix also indicates that the proposed CKNN architec-
ture is more accurate than the k-NN and helps to overcome the 
limitations of k-NN algorithms.

3.3. Comparison of pre-network recognition accuracy

Furthermore, to study the robustness and applicability of the 
proposed architecture, this experiment is conducted with six pop-
ular widely used transfer learning (TL) architectures, namely, In-
ceptionResNetV2 [44], MobileNet [45], ResNet50 [46], VGG16 [47], 
VGG19 [47] and Xception [48]). In the comparison, we only con-
sider the 3 s decision windows (provide the best performance 
among other decision windows). For the fair comparison, the in-
put sizes are the same (height-224 * width-224 * depth-3) as the 
proposed architecture input so that these architectures get the ex-
act dimension features illustrated in Table 3. During the training 
procedure, a popular ‘Adam’ optimizer is used to determine the 
set of weights and biases of the neural network that reduce the 
loss function. In this study, we set the batch size of 64, and the 
learning rate is 0.0001, which is small in size but help to achieve 
more precise results. We replace the input and output layer in all 
the transfer learning architectures based on the targeted class. The 
results reported here are based on 100 epochs, and accuracy is 
reported on the best outcomes of five different runs of all the 
TL architecture. The TL architecture used pre-trained ‘ImageNet’ 
weights for the hearing condition diagnosis. As seen in Fig. 7, the 
accuracy curve is presented along the X-axis with the number of 
epochs and the associated testing accuracy on the Y-axis.

Furthermore, the testing accuracies of various pre-trained net-
works with our proposed architecture are represented in Fig. 8, 
whereas Table 3 demonstrated the recognition accuracy along with 
the suitable input size of all architectures. During the transfor-
mation procedure (1D signals to 2D time-frequency images) using 
CWT, we resized all the images into 224 * 224 * 3 which is the 
suitable input size of all the TL architecture. As illustrates in Fig. 8, 
the height testing accuracy of 60.25% is achieved with the Mo-
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Fig. 6. Confusion matrix A) KNN approach B) CKNN approach.
Fig. 7. The accuracy curve of six pre-trained architectures.

Table 3
The performance comparison with six pre-trained models.

Algorithm Input size Recognition accuracy

InceptionResNetV2 224 × 224 × 3 54%

MobileNet 224 × 224 × 3 60.25%

ResNet50 224 × 224 × 3 54.88%

VGG16 224 × 224 × 3 57.38%

VGG19 224 × 224 × 3 56.63%

Xception 224 × 224 × 3 57.63%

Proposed approach (CKNN) 224 × 224 × 3 92.26%

bileNet architecture. The rest of the architecture provides less than 
60% accuracy, whereas our hybrid network provides 92.26% recog-
nition accuracy; improved more than 30% accuracy compared to 
the other TL architectures. The most straightforward reason behind 
the poorer accuracy of these TL architectures is that the TL ar-
chitecture trains with the natural images, and our time-frequency 
images are not the same, whereas the proposed architecture trains 
from scratch (train with time-frequency images). On the other 
hand, this study has efficiently developed an integrated technique 
to integrate the convolutions block with a k-NN algorithm. Some 
researchers reported that the integration of two algorithms can 
empower the recognition performance for the specific task clas-
sification [40][41][42][43] and can overcome the limitations of 
the single classifier. For this reason, our architecture has achieved 
state-of-the-art performance for hearing condition detection.

4. Discussion

In this paper, a hearing condition diagnosis system based on 
time-frequency images and hybrid architecture (CKNN) is pro-
posed. The experimental outcomes show that it is possible to de-
code the hearing condition within 2 s to 3 s, with an average 
accuracy of 92.26%. This section represents the impact of differ-
ent parameters of the proposed hybrid architecture, making the 
parameter’s selecting procedure clearer. Finally, related work of 
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hearing disorder diagnosis has been included in this section which 
helps to verify the applicability and effectiveness of the proposed 
architecture.

4.1. Parameter’s selection

This study has used two convolutional layers, consisting of 32 
kernels with the size of (5 × 5) and another one is 64 kernels with 
the size of (3 × 3). The convolution layer ensures the spatial re-
lationship between pixels by learning image features using small 
squares of input data. After every convolutional layer, we adopt 
two (3 × 3) max-pooling layers, which is a down-sampling strat-
egy and help to reduce the size of the extracted feature maps. The 
straightforward reason behind adding the max-pooling is to reduce 
the number of parameters and computational cost in the network. 
Max-pooling provides fundamental translation invariance to the in-
ternal representation and reduces the massive amount of time for 
training. To reduce the model’s complexity dropout regularization 
technique has been added where randomly selected neurons are 
ignored during training. In [56], the error rate was improved to 
15.6% from 16.6%, while the dropout layer was added in the last 
hidden layer. Basically, the dropout resolved the overfitting issue 
in large networks. Dropout compels a neural network to acquire 
more robust characteristics, which are beneficial when combined 
with a large number of distinct random subsets of the other neu-
rons. The major benefit of this approach is that it prevents all 
neurons in a layer from improving their weights simultaneously. 
This adaptation, which is carried out in random groupings, pre-
vents all neurons from converging on the same objective, therefore 
decorating the weights [56]. This study has been used the dropout 
rate at p = 0.6. This strategy helps in reducing the model’s com-
plexity, computational time and prove a more robust architecture 
to identify the hearing deficiency diagnosis. Another key contri-
bution of this study is to tune the hyperparameters. Hilde J.P. 
et al. [61] experimented with 59 datasets, and in this analysis, 
they showed the importance of tuning hyperparameters of ma-
chine learning algorithms. To classify the finally extracted features 
from convolutional architecture, we have used the KNN algorithm. 
Most machine learning algorithms’ performance highly depends on 
the hyperparameters setting. Manually selecting hyperparameters 
is very time consuming for the analysis, and any wrong selec-
tion may hamper the architecture’s performance. So, to obtain the 
optimal hyperparameters for the hearing deficiency task classifi-
cation, this study has used the hyperparameters tuning strategy 
with the help of the ‘Gridsearchcv’ function. In this study, we have 
passed the predefined values for the hyperparameters to the ‘Grid-
searchcv’ function, and this function tries all the combinations of 
the values. Then, the function evaluates the model for each combi-
nation and provides the most optimal hyperparameters which help 
in improving the model’s performance for the task classification. 
In the k-NN algorithm, selecting the most optimal k value is still 
challenging [58].
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Fig. 8. The accuracy comparison with other popular models.
For this reason, this study optimizes the k value (1 to 15). An-
other hyperparameter of k-NN is choosing the distance metric. This 
study has been conducted with two widely used distance matric 
from the several types of distance matric (Euclidean, Manhattan). 
The maximum accuracy for all the subjects has been achieved with 
the K value of 10, Euclidean distance, and uniform weight. Finally, 
the convolutional blocks have been integrated with the KNN al-
gorithm for building the proposed architecture (CKNN). So, the 
following strategies mentioned above help to achieve the optimal 
parameters for this task classification and enhance the overall per-
formance of the proposed architecture.

4.2. Related work

In recent years, through the development of computer tech-
nology, machine learning has been widely utilized to train and 
diagnosis early hearing deficiency and has become a satisfactory 
alternative for the detection of hearing deficiency. Previous efforts 
have been made to detect early hearing disorders using several 
machine learning or deep learning approaches.

Gronfors [35] developed an automatic peak detection system 
and advanced pattern recognition using the pedestal peak method. 
They used 212 ABRs recorded from 32 anonymous subjects and 
achieved a maximum of 86% testing accuracy. Hoppe et al. [62]
performed an automatic sequential recognition method for corti-
cal auditory evoked potentials signals. They used several mother 
wavelets functions, whilst they did not find any significance in 
the recognition accuracy. Effern et al. [63] conducted a single-trial 
analysis of event-related potentials. Their study did not specify 
which mother wavelet was used in their experiment. McCullagh 
et al. [14] reported 73.7% accuracy using the ANN algorithm to 
classify 166 auditory brainstem responses (ABRs) with 2000 repe-
titions. Habraken et al. [64] also used an ANN-based system with 
a feature extraction algorithm and achieved an accuracy of about 
80%. Alpsan and Ozdamar [65] reported accuracy of around 76% for 
the ABR classification by using an ANN-based classifier for thresh-
old determination. However, in [66] and [67], authors employed a 
CNN-based classification approach. They achieved a very encourag-
ing performance with a maximum of 94.1% testing accuracy with 
the raw AEP dataset and 90.74% testing accuracy with time and 
frequency domain features. Although these studies used different 
AEP datasets, very few observations were utilized to validate their 
system. To test the performance of their approach, only 671 ob-
servations were used [66], whereas 280 observations were used 
10
[67]. More observations should be used to validate any model due 
to the non-stationery and artifact-prone characteristics of the AEP 
dataset. Considering this matter, our study has been validated with 
3200 observations. Table 3 lists the summary of some related stud-
ies to compare the performance of the proposed study. In [68][6]
[69] [7], the SVM classifier was used to classify the AEP dataset. 
These studies achieved 78.80%, 85.71, 87%, and 78.7% accuracy. The 
obtained overall performance is not enough to apply the models 
in real-life applications. Tang et al. [70] proposed a TS-PSO hybrid 
model to classify the two-class AEP dataset. They used Wavelet en-
tropy as a feature extraction method and achieved 86.17% testing 
accuracy. Zhang et al. [5] proposed an auditory brainstem response 
(ABR) signals classification technique where they used wavelet 
analysis and Bayesian networks and achieved an overall accuracy 
of 78.80%. The ANN-based system for ABR detection was utilized in 
[14][64][65], and the maximum recognition accuracies were 73.7%, 
80%, and 76%, respectively. These accuracies still need significant 
improvement to apply in real-life hearing disorder identification 
systems.

Further looking at Table 4, the proposed architecture signif-
icantly improves hearing disorder diagnosis compared to other 
studies. Moreover, the proposed system (CWT+CKNN) acquires a 
significant improvement (10% in 1 s, 6% in 2 s, and 6.87% in 
3 s DW) with the concise decision window over the KNN algo-
rithm. Furthermore, compared to the six popular transfer learning 
algorithms described in Table 3, our proposed architecture has im-
proved more than 30% for hearing disorder identification with the 
AEP dataset. The experimental outcomes clearly explain the ef-
fectiveness and applicability of our proposed hybrid architecture. 
Thus, our architecture has achieved an impressive performance 
than the other related studies for hearing deficiency diagnosis re-
ported in the literature.

Despite the impressive performance with a short decision win-
dow, some difficulties have been faced during the experimental 
analysis. For example, a wide range of similar datasets is required
to check the validity and prove the feasibility of our proposed hy-
brid architecture, but during the experiment, we have not found 
any similar dataset for further validation. Next, several types of 
EEG headsets were used to perform the analysis, which contains 
the different number of electrodes between (1-256). So, the num-
ber of electrodes and electrodes that can acquire more quality 
signals for hearting disorder detection is also an open question and 
should be determined [71][72].
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Table 4
The performance comparison with related previous studies.

Reference Data Feature 
extraction

Classification 
method

Classification 
accuracy

Subject Class

[70] 180 2 WE TS-PSO 86.17%

[6] 32 2 Global and nodal graph SVM 85.71%

[14] 166 ABRs with 2000 repetitions 2 BAEP waveforms. ANN 73.7%

[64] 366 ABRs with 1000 repetitions Multi decision neural network ANN 80%.

[68] 200 3 WPT SVM 74.7%

[5] 8 2 DWT Bayesian network classification 78.80%

[69] 39 2 SIFT SVM 87%

[7] Observation: 2 FFT SVM 78.7%

671

[66] Observation:671 2 Raw AEP CNN 94.1%

[67] Observation: 280 2 latency, FFT and DWT A feed-forward multilayer perceptron 90.74%

Subjects: 151

Proposed Observations: 2 CWT CKNN 92.26%
Work 3200
For hearing conditions diagnosis, most of the studies are carried 
out with ordinary machine learning algorithms [6] [7] and deep 
learning algorithms [55] [73] [74]. Despite some successful appli-
cations of hybrid architecture for task classification [40] [41] [42]
[43], hybrid architectures are rarely investigated [70] for hearing 
condition detection. However, the recognition performance of most 
of the studies is insufficient to utilize the system in real-life ap-
plications. To reduce the computational complexity and make the 
system faster, experiment with a concise decision can provide the 
alternative solution; however limited studies [13] have been ex-
plored this issue. A more accurate and faster approach could be 
an effective tool for future hearing devices and provide a great ap-
plication in real-life uses. The proposed hybrid architecture shows 
superior performance with time-frequency distribution for early 
hearing condition diagnosis, which would provide potential clini-
cal utility in aiding clinicians to interpret the auditory response.

5. Conclusion

This paper presents a novel hearing ability detection system 
based on CWT and a hybrid CKNN approach. The CWT is used 
to transform the time-series data into time-frequency images, 
whereas the proposed CKNN architecture is used to classify the 
extracted features. The proposed system has been evaluated on a 
reputed publicly available AEP dataset recorded from 16 subjects. 
Our experimental outcomes demonstrated that the proposed archi-
tecture achieved an accuracy of 92.26%, precision of 92.57%, recall 
score of 92.86%, f1 score of 92.51%, and Cohen’s kappa score of 
84.50% with a 3 s decision window. This improvement with a con-
cise decision window indicates the effectiveness and acceptability 
of the proposed hybrid architecture and helps in the faster anal-
ysis and reducing the computational complexity of the additional 
feature. To sum up, these satisfactory results within a short time 
interval may provide an outstanding reference for auditory loss di-
agnosis in clinical applications. Further study will be conducted 
with more data variance to test the proposed architecture’s ro-
bustness to make the system more effective in real-time medical 
applications.
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