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ABSTRAK 

Elemen penting dalam sesebuah kenderaan ialah sistem suspensi atau lebih dikenali 

sebagai suspensi. Fungsi utama sistem suspensi adalah untuk mengawal struktur 

kenderaan ketika berlakunya sebarang gegu atau getaran disebabkan oleh struktur 

permukaan jalan yang tidak rata. Terdapat dua objektif utama yang ingin dicapai iaitu 

untuk mendapatkan perjalanan yang selesa serta mengendalikan kenderaan dengan baik. 

Pemanduaan yang selesa lazimnya berkadar songsang dengan kadar pecutan sesebuah 

kenderaan manakala pengendalian kenderaan pula berkait diantara kerangka sesebuah 

kenderaan dan tayar yang digunakan. Tesis ini adalah cuba untuk merealisasikan daya 

redaman di dalam tiub berkembar dan tiub tunggal memgunakan model matematik. 

Model-model ini menunjukkan corak yang sama, manakala kekuatan yang berlainan 

direkodkan, kerana tekanan dalam ruang pemampatan meningkat semasa pemulihan 

dalam peredam tiub berkembar dan dalam peredam tiub tunggal kebuk gas sentiasa 

bersambung ke kebuk mampatan. Ujian kejutan dyno dilaksanakan untuk menentusahkan 

model tiub berkembar melalui data percubaan. Satu bentuk prototaip berkeupayaan untuk 

menyerap separu aktif kejutan melalui laras elektronik dari tiub berkembar dibangunkan, 

ini dicapai dengan melampirkan motor stepper bagi setiap penyerap kejutan yang 

membantu dalam menyesuaikan orifis berdarah ke posisi tertentu yang menggantikan 

aliran minyak hidraulik dalam penyerap kejutan antara ruang omboh semasa proses 

pemampatan dan  pengembanyan. Seterusnya dalam usaha untuk menilai kesan 

penyerapan kejutan separu aktif terhadap pergerakan kenderaan yang dinamik maka 

beberapa ujian telah dilaksanakan terhadap beberapa jenis jalan seperti jalan yang 

bergelombang, jalan yang lurus dan di kawasan-kawasan bulatan jalan. Ujian ini 

digunakan untuk menilai kadar pecutan dan kualiti sesebuah kenderaan ketika melakukan 

perjalanan. Hasil tindak balas dari ujian ini satu nilai julat besar diperolehi, orifis berdarah 

menunjukkan pencapaian 35% diantara kadar kaku dan lembut penyerapan kejutan 

ini.Nilai asal untuk pecutan persegi (RMS) dikira dan dibandingkan dengan nilai piawa 

tubuh badan manusia terhadap getaran dan didapati terdapat perbezaan sebanyak 6%. 

Hasiln ini menunjukkan bahawa kesan penyerapan kejutan terkawal secara elektronik 

terhadap pergerakan yang dinamik sesebuah kenderaan. Kelebihan penyerapan secara 

elektronik ialah mampu meningkatkan prestasi keselesaan sesebuah perjalanan dan 

mengurangkan ketidakselesaan akibat daripada getaran yang tidak diinginkan. Untuk 

menilai daya yang dihasilkan oleh model pelarut monotube separu aktif pada tingkah laku 

dinamik kenderaan, model dianalisis dan dibandingkan dengan strategi kawalan langit-

pasif dan aktif pada kereta suku yang menggunakan dua jenis jalan (pengujaan rawak, 

bergelombang). Gerakan heteresis dengan set diameter orifis yang berbeza dihasilkan. 

Pendekatan reka bentuk pengawal PID telah diperiksa dengan CVD untuk menilai 

prestasi peredam separu aktif, di mana kombinasi menunjukkan pengurangan dalam 

kedua-dua pecutan badan dan anjakan menegak yang berbeza dengan pasif dan On / Off 

hook-hook 73.4% dan 53.8% masing-masing dan juga menjual masa sebanyak 79% dan 

59% untuk jalan bergelora. Ini menganggap peningkatan ke arah keselesaan perjalanan 

dan kestabilan kenderaan. 
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ABSTRACT 

The suspension of a car is considered as an essential element in the vehicle. The primary 

function of the suspension system is to isolate the vehicle structure from shocks and 

vibration due to the irregularities of the road surface. Two primary objectives need to be 

satisfied which are ride comfort and road handling. Ride comfort is inversely proportional 

to the absolute acceleration of the vehicle body, while the road handling is linked to the 

relative displacement between the vehicle body and the tires. The thesis attempted to 

realize the damping force in twin and monotube by developing a mathematical model. 

The models show similar trends, while different forces are recorded, due to the pressure 

in the compression chamber increases during rebound in twin tube damper and a 

monotube damper the gas chamber is always connected to the compression chamber.  

Shock dyno testing is carried out to validate the model of twin tube with experiment data. 

A prototype of electronically adjustable semi-active shock absorber from available twin 

tube is developed, this achieved by attaching stepper motor for each shock absorber which 

helps in adjusting the bleed orifice to a particular position that alternates the hydraulic oil 

flow in the shock absorber between piston’s chamber during the process of compression 

and rebound. To evaluate the effect of the developed semi-active shock absorber on the 

dynamic behavior of the vehicle, several tests were carried out on different types of road 

condition (bumpy, straight-line and roundabout). These tests were used to evaluate the 

acceleration and ride quality. There is a great range in response when the bleed orifice is 

opened reached up to 35% between the stiff and soft setting. The value of root means 

square acceleration (RMS) was calculated and compared with the standard of human 

exposure to whole-body vibration, which shows an error of 6% slightly. The result shows 

the effect of the electronically controllable shock absorber on a vehicle’s dynamic 

behavior. The advantage of electronics to improve the performance of ride comfort and 

reduced the harms due to undesired vibration. To evaluate force generated by the 

developed model of the semi-active monotube damper on the dynamic behaviour of the 

vehicle, the model was analyzed and compared with the passive and On/Off sky-hook 

control strategy in the quarter car using two different types of road (random excitation, 

bumpy) as input to the quarter car model. Force hysteresis loop with different sets of 

orifice diameter was generated. PID controller design approach has been examined with 

CVD to evaluate semi active damper performance, where the combination shows a 

reduction in both body acceleration and vertical displacement contrasting with passive 

and On/Off sky-hook 73.4% and 53.8% respectively and also the selling time by 79% and 

59% for a bumpy road. This considered an improvement toward the ride comfort and 

vehicle stability. 
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APPENDIX A 

CAR SPECIFICATIONS 

Table 5.1  Test vehicle information 

Items  Specification Remarks  

Make/Model  

 

Proton Persona SE  

 

Year 2010 

Reg No WTY4720 

PL1CM6SRRAG269237 

Powertrain  1.3L Campro IAFM 5M/T  Continental torque-based ECU 

Suspension Type 

(Front)  

Front McPherson strut with 

direct acting anti-roll bar 

OE Damper supplier KYB 

Suspension Type 

(Rear)  

Rear Multilink with anti-roll 

bar  

OE Damper supplier KYB  

Tyre (Front)  

 

Dunlop 175/70R13 (RE 

Spec)  

Goodyear NCT5 175/70R13 

(OEM Spec)  

Tyre (Rear)  Dunlop 175/70R13 (RE 

Spec)  

Goodyear NCT5 175/70R13 

(OEM Spec)  

Tyre Pressure  FR: 2.1 bar RR: 1.9 bar  Standard spec  

Test Condition  

 

4-up, full fuel. Variable test 

speeds and manoeuvres.  

Test conditions to be adjusted 

accordingly.  
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Table 5.2 Center wheel to arc fender measurement 

 Trim Height (mm) Trim Height (mm)  Spring Seat (mm)  

 

Damper Kerb 
 

4-up 

 

Full 

Rebound 

Height 

 

 

Measureme

nt  

FL FR FL FR FL FR FL FR Remarks  

 

OEM  

RL RR RL RR RL RR RL RR  

375 370 355 345 435 435 204.3 204.5 Centre wheel 

to arc fender         

365 365 305 305 435 435 N/A N/A  

ProRide 

TAP 

370 365 355 355 430 430 204.4 204.3 Centre wheel 

to arc fender 

365 365 330 330 430 430 N/A N/A  

Tuning #1  370 365 355 355 430 430 204.4 204.3 Centre wheel 

to arc fender 

365 365 330 330 430 430 N/A N/A  

Tuning #2  370 365 355 355 430 430 204.4 204.4 Centre wheel 

to arc fender 

365 365 330 330 430 430 N/A N/A  

Tuning #3  370 365 355 355 430 430 204.4 204.3 Centre wheel 

to arc fender 

365 365 330 330 430 430 N/A N/A  

Tuning #4  370 365 355 355 430 430 204.4 204.3 Centre wheel 

to arc fender 

365 365 330 330 430 430 N/A N/A  

 

 

Figure A.1 Diagram shows the centre wheel to arch fender measurement 
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APPENDIX B 

RIDE ROUTE/TEST TRACK 

Straight-line: 

 

Figure B.2 Jalan Permata 2 to Jln Laman Kenanga 3/1, Nilai Impian, 71800 Nilai, 

Negeri Sembilan. 

Roundabout: 

 

Figure B.3 12, Jalan 7/5, 43650 Bandar Baru Bangi, Selangor to Jalan 7/5, 43650 

Bandar Baru Bangi, Selangor. 
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Bumpy: 

 

Figure B.4 12, Jalan 7/5, 43650 Bandar Baru Bangi, Selangor to Jalan 7/5, 43650 

Bandar Baru Bangi, Selangor. 
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APPENDIX B 

PUBLICATIONS 

APPENDIX C1: 3rd International Conference on Automotive Innovative and Green 

Energy Vehicle (AIGEV, 2018). 

 

 

 

 

Adjustable Valve Semi Active Suspension System for 

Passenger Car 
 

M.  R.  Ahmed1, F.  R.  M. Romlay1, A.  R. Yusoff 2 

 

1) Faculty of Manufacturing Engineering, University Malaysia Pahang 26600, Pekan, Pahang, Malaysia 

2) Faculty of Mechanical Engineering, University Malaysia Pahang 26600, Pekan, Pahang, Malaysia 

 
*Email: razlan@ump.edu.my 

 

Abstract. The suspension of the car plays a very important role in the safety and the 

comfort of the vehicle and for absorbing the shock waves and give comfort for the driver 

and passenger. This paper improves the performance of automobile suspension system, 

by developing electronically adjustable semi active shock absorber. This achieved by 

attaching stepper motor for each shock absorber which helps in adjusting the bleed 

orifice to certain position that   alternates the hydraulic oil flow in the shock absorber 

between piston’s chamber during the process of compression and rebound. To evaluate 

the effect of developed semi active shock absorber on dynamic behavior of the vehicle, 

several tests were carried out on different types of road condition (bumpy, straight-line 

and roundabout). These tests were used to evaluate the acceleration and ride quality. 

There is great range in response when bleed orifice is opened reached up to 35% between 

the stiff and soft setting. The value of root means square acceleration (RMS) was 

calculated and compared with the standard of human exposure to whole body vibration, 

which shows slightly error of 6%. The result shows effect of electronically controllable 

shock absorber on vehicle’s dynamic behavior. The advantage of electronics to improve 

performance of ride comfort and reduced the harms due to undesired vibration. 

Keywords: Suspension; comfort; controllable; absorbers; softness. 
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Abstract. The suspension of the car is considered an important element in the vehicle. 

The primary function of the suspension system is to isolate the vehicle structure from 

shocks and vibration due to irregularities of the road surface. There are two main 

objectives need to be satisfied which are: ride comfort and road handling. Ride comfort 

is inversely proportional to the absolute acceleration of the vehicle body, while the road 

handling is linked to the relative displacement between the vehicle body and the tires. 

This paper presented an attempted to enhance the performance of the shock absorber by 

developing a model of continuously variable damping (CVD). To evaluate the effect of 

the developed semi-active shock absorber on the dynamic behaviour of the vehicle, the 

model was analyzed and compared with the passive and On/Off sky-hook control strategy 

in the quarter car using two different types of road (random excitation, bumpy) as input 

to the quarter car model. Force hysteresis loop with different sets of orifice diameter was 

generated. The result indicates the CVD shows a reduction in both body acceleration and 

vertical displacement contrasting with passive and On/Off sky-hook 73.4% and 53.8% 

respectively and also the selling time by 79% and 59% for a bumpy road. This considered 

an improvement toward the ride comfort and vehicle stability. The simulated results for 

the quarter car model are shows similar trends and within range when compared with 

reference.research.paper.                                                                                                                                                      
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