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Abstract

Zinc oxide (ZnO) is a wide band gap material (~3.37 eV) which has small exciton Bohr radius
~2.34 nm. In dye-sensitized solar cell, ZnO thin film is used as photoelectrode. Light-sensitive
organic/ inorganic fluorophores could be adsorbed on the surface of the ZnO film, which later
will be sandwiched with electrolyte and a counter electrode. The aim of this paper is to study
the effect of number of evaporation cycle to the yielded morphology and size of ZnO building
blocks; deposited using one, two, and three cycles of vacuum thermal evaporation technique.
The ZnO thin films have been deposited on ITO glass substrate at vacuum pressure of 5 x 10
® Torr, 116 A, and 2.6 V. The morphology of the thin films has been examined under Field
Emission Scanning Electron Microscope (FESEM), which showed nanosphere morphology.
The morphological observation is supported by a simulation; which calculated based on the
crystallographic properties of the synthesized ZnO — characterized by X-ray diffractometer
(XRD). Three sets of the ZnO thin films consists of ZnO particles in the range of 8 — 20 nm,
11 - 37 nm, and 6 — 16 nm respectively. According to the optical properties characterized by
absorption spectrometer, it has been observed that the band gap of the thin films increased with
increasing number of evaporation cycles. The values of the optical bandgap, Eq evaluated from
Tauc’s plot, were found in the range between 2.40 eV to 2.60 eV.
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Introduction

Nanosized metal oxide semiconducting materials such as ZnO [1, 2], TiO2 [3], Fe203
[4], and Ga203 [5], have attracted much attention, due to their unique ability to form various
morphologies. Among them, ZnO was found to be a very promising candidate owing to its
wide band gap (3.37 eV), and high exciton binding energy (~60 meV) at room temperature [6].
ZnO has been widely investigated for its catalytic [7], electrical [8], optoelectronic [9] and
photochemical properties [10]. Low dimensional ZnO nanostructures such as nanospheres [11],
nanoneedles [12], nanobelts [13], nanoribbons [14], nanoplate [15], and nanosheets [16] have
attracted much attention for their potential applications in the fabrication of devices e.g.,
nanolaser [17], dye sensitized solar cells [18], photo catalyst [19], piezoelectric [20], and
transparent light power electronics [21]. Figure 1 shows increment of publications from 1970
to 2019; generated from ISI Web of Science using keywords ‘ZnO’.

Furthermore, ZnO shows high electron mobility [22], electrical conductivity [23], and
longer electron lifetime than that of the TiO2; which indicates a possible significant reduction
of unnecessary recombination of the injected excited state electrons from the main light
absorber [24]. The dire need to conserve the energy of the excited state electron motivates
researchers to explore the ZnO as photoelectrode, which would materialize a highly efficient
excitonic solar cell.
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Figure 1: Number of papers published from 1970 to 2019; generated from ISI Web of
Science using keywords ‘ZnO’.

Various techniques have been established to fabricate ZnO thin films, e.qg., sol-gel [25],
hydrothermal [26], spray deposition [27], thermal evaporation [28, 29], pulsed laser deposition
[30], and chemical laser deposition [31]. Nevertheless, some of them have pitfalls such as long
reaction time, toxic templates and poor crystallite quality of samples, which may affect the
quality and applications of ZnO nanostructures [7]. Based on the previous study, the sol-gel
method is commonly used due to low cost and simplicity [32-34]. However, the quality of the
ZnO films fabricated using solution-based technique suffers from surface defects which act as
trap states that favour unnecessary recombination of the excited state electrons [35, 36]. Herein,
a vacuum thermal-evaporation procedure is employed in this study to achieve a high quality
ZnO deposition, which has advantages of superior uniformity, smooth surface, thorough
surface coverage, and accurate control of thickness [37]. Figure 2 shows an increasing trend of
usage of vacuum thermal evaporator in various field from 2008 to 2020; indicates that this
technique is gaining attention from researchers.
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Figure 2: Number of papers published from 2008 to 2020; generated from ISI Web of
Science using keywords ‘ZnO’ and ‘thermal evaporator’.

Enormous amount of study has been already reported on structure, optical and electrical
properties of ZnO thin films. However, it still requires intensive research on fundamental
properties of ZnO thin films. Hence, the objectives of the present work i.e., to study the effect
of film thickness on; (i) crystal structure, (ii) morphology and (iii) optical properties of ZnO
thin films using deposited using one, two, and three cycles of vacuum thermal evaporation
technique. The thickness of the ZnO thin film would influence the photovoltaic conversion
efficiency of a solar cell [38, 39], however, to the best of our knowledge, this fundamental
study attracts less attention from researchers. Furthermore, the decrement of thickness of the
bulk photoelectrode could contribute to i.e., (i) reduction of resistances, (ii) increment of
electron lifetime, (iii) enhancement of electron separation, and (iv) enhancement of
transportation of the electron and hole [40]. Keis et al. [41], Huang et al. [42], Shin et al. [43],
Kao et al. [44], Xiao et al. [40], Bawvendi et al. [45], and Lan et al. [38] observed increment
of device efficiency upon reduction of the thickness of the ZnO layer in solar cells. The crystal
structure, morphological and optical properties of ZnO thin films were investigated by x-ray
diffractometer (XRD), field emission electron microscope (FESEM), and ultraviolet-visible
spectrophotometer.

Method and Materials

Preparation of materials

The ZnO thin films were deposited on ITO glass using thermal evaporator (Magna Value
Thermal Evaporator; Model: TE MSSLAB/200). The ITO glass was cleaned with ethanol and
distilled water before usage. The ZnO powder (0.040685 g) was carefully weighed and loaded
into a molybdenum boat. The distance between the source and the substrate is ca. 5 cm
(Figure 3). The pressure in the evaporator was maintained ca. 5 x 10 Torr, voltage of 2.6 V,
and current of 116 A. The thin films were deposited under three conditions: (i) one, (ii) two
and (iii) three evaporation cycles.

58



Fatin Farisha Alia Azmi et al. Malaysian Journal of Microscopy Vol. 17 No. 1 (2021), Page 56-68

(a) V% (b) Glass bell jar

f cumo @
“ glass into 2.5 |
cm x2.5cm /0

. b I «— 1 Substrate
\Ve:;ghf‘deDO 0000000000
pomdesiaf éllgass ® 06 N\ Deposition of
(0.0005 mol) 6] thin film
O
o
T'llerufally ()
evaporated
ZnO powder at 15 Vaporized ZnO
P=5x10" Torr, ®
V=6V‘l=116A ®
> ©
® o

Molybdenum boat

Voltage supply

Figure 3: (a) ZnO thin film preparation scheme, and (b) Schematic diagram of thermal
evaporator system

Material characterizations

The crystal structure of ZnO thin films was investigated using X-ray diffractometer (XRD)
with Cu Ko radiations (Rigaku Miniflex II). The surface morphology, and atomic fraction were
examined using FESEM (Jeol JSM-7800F), and Energy Dispersive X-ray (EDX) spectrometer
respectively. The ultraviolet-visible spectrophotometer (Shimadzu UV-2600) was used to
characterize the optical properties of the ZnO thin films.

Results and Discussion

Crystal structure studies

The elemental compositions of the thin films fabricated using (i) one, (ii) two, and (iii) three
evaporation cycles were examined using EDX spectroscopy; indicated in the insets of Figure

4 (a), (b) and (c); i.e., 29.72% (Zn) and 70.28% (O), 36.82% (Zn), and 63.18% (O), and 36.08%
(Zn), and 63.92% (O) respectively.
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Figure 4: The EDX spectra and elemental analyses (insets) of ZnO thin films fabricated
using (a) one, (b) two, and (c) three evaporation cycles

59



Fatin Farisha Alia Azmi et al. Malaysian Journal of Microscopy Vol. 17 No. 1 (2021), Page 56-68

Figure 5 shows the XRD pattern (in the range of 10°- 80°) of the ZnO thin films;
revealed a hexagonal (wurtzite) crystal structure. Broad peaks were presented in thin films
fabricated using one evaporation cycle (at 26 = 35.74°, 40.14°, 41.05°, 53.06°, 69.26°, 71.98°,
and 74.98° (Figure 5 a)), and two evaporation cycles (at 20 = 30.12°, 34.57°, 35.71°, 47.41°,
54.76°,62.52°, 66.45°, and 72.68° (Figure 5 b)), correspond to the (i) [002], [100], [101], [102],
[103], [110], [004], and (ii) [100], [002], [101], [102], [110], [103], [201], and [004] crystal
planes respectively. Slight difference could be observed at higher angles in the crystal planes
of the ZnO thin film deposited using three evaporation cycles i.e., 20 = 36.71°, 39.09°, 43.26°,
54.53°, 62.70°, 69.92°, and 70.77° [43]; correspond to the [002], [100], [101], [102], [103],
[201], [110] crystal planes respectively (Figure 5 c).

The increment of intensity of the diffraction of the crystal planes with increasing
number of cycles is clearly observed. The angles of the measured diffraction peaks are
consistent; however, the intensity of the peaks increases. The three evaporation cycles-based
ZnO thin film is dominated by the ZnO crystals arranged in the direction of [100] crystal plane,
as indicated by the highest diffraction intensity; hypothesized would exhibit higher electron
mobility than that of the one and two evaporation cycles [46, 47]. This observation could be
due to the improvement of crystallinity and small grain size which might facilitate electron
transfer in the ZnO and suppress the recombination of electrons [48, 49]. A similar behaviour
was observed by Oztas et al. [50, 51]. Moreover, the cause of difference in the crystal plane of
one and two evaporation cycles could be due to intrinsic defect in the ZnO thin film i.e., zinc
vacancy [52]. Intrinsic defects are generated due to the presence of impurity in the materials
and exposure of samples at higher temperature [52]. The defect could be resulted from the
variation of the intrinsic defects in ZnO film, such as (i) zinc vacancy Vzn, (ii) oxygen vacancy
Vo, (iii) interstitial zinc Znj, (iv) interstitial oxygen Oj, and (v) antisite oxygen Ozn. This
observation could be due to the presence of interstitial Zn and oxygen vacancies in the film as
confirmed by the results of EDX spectroscopy. In addition, poor crystallinity in thinner ZnO
thin films could be due to incomplete crystallization, as only a few atomic layers of disordered
atoms constitute the bulk of the film [53]. The results in Figure 5 indicated that the crystallinity
and degree of orientation of the ZnO thin films were closely related to the film thickness.
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Figure 5: (a) The XRD pattern of ZnO thin films fabricated using (a) one, (b) two, and
(c) three evaporation cycles

Morphological Analysis
The morphology of the ZnO thin films was simulated using Shape V7.4 software based

on their crystal properties — showed a spherical shape as shown in the inset of Figure 6 a(i),
b(i), and c(i); confirmed by FESEM. The diameter of the nanosphere distributions on the
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surface of the deposited ZnO thin film using one, two, and three evaporation cycles i.e., ca. 8
—20 nm, ca. 11 — 37 nm, and ca. 6 — 16 nm respectively (Figure 6). The thickness of the thin
films is 92 nm (one evaporation cycle), 411 nm (two evaporation cycles), and 508 nm (three
evaporation cycles) respectively (Figure 6 a(ii), b(ii), and c(ii)). It is noticeable from the
FESEM images that size distribution decreases from 20 to 16 nm (Figure 7) with an increment
of the thickness from 92.12 to 508 nm. The FESEM images of the films with higher thickness
indicate that the films are composed of a dense packing of grains without any cracks, indicating
good quality of the thin films. It has also been confirmed from the XRD analysis that the
intensity of peaks increases with the increase in the thin film thickness which shows the
improved crystallinity. The size reduction of the ZnO below its exciton Bohr radius (ca.1.8 nm)
would increase the bandgap due to quantum confinement effect [54].
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Figure 6: The FESEM micrographs reveal that the ZnO thin films deposited using (a)(i)
one, (b)(i) two, and (c)(i) three-evaporation cycles technique consist of small spherical
particles. The cross section thin films showed the thickness of (a)(ii) one (92 nm), (b)(ii)
two (411 nm), and (c)(ii) three (508 nm) evaporation cycles.
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Figure 7. The diameter of the nanosphere distributions of ZnO thin films deposited
using (a) one, (b) two, and (c) three-evaporation cycles technique

Optical characterization

The effect of film thickness on the optical properties such as band gap of ZnO thin films
was investigated. Absorption spectra of (a) one, (b) two and (c) three evaporation cycles of
ZnO are shown in the insets of Figure 8. The spectra were fitted to four Gaussian peaks,
revealed four excitonic transitions (in the sequence of first, second, third, and fourth transition)
for the ZnO thin films fabricated using one, two, and three evaporation cycles viz., (a) (i)
658.90 nm, (ii) 524.60 nm, (iii) 401.92 nm, and (iv) 274.64 nm, (b) (i) 705.85 nm, (ii) 591.58
nm, (iii) 481.86 nm, and (iv) 346.78 nm, and (c) (i) 715.83 nm, (ii) 593.05 nm, (iii) 458.95 nm,
and (iv) 325.89 nm respectively. The position of the first excitonic peak shifted to longer
wavelength with increment of evaporation cycles. The observation could be attributed to the
small size and narrow size distributions of ZnO fabricated using the three evaporation cycles
[55, 56].

The optical bandgap of the films was estimated using Tauc’s plot (Figure 8); using the
following equations (1, 2)
A

loge

1
a=?( ) 1)

ahv = A(hv —Eg)*? (2)

where t is the thickness of quartz cell, A is the absorbance of the samples, e is the charge of an
electron, h is Planck's constant, /4o is the energy of photon, and Eg is the bandgap [57-59]. The
Eg of the ZnO thin films deposited using one, two, and three evaporation cycles was estimated
as 2.40eV, 2.54 eV, and 2.60 eV respectively.

The increment of the Eg with increasing thickness of the film is accompanied by an
enhancement of crystallinity; which could be attributed to decrement of strain in the film [60]
and partial reduction of oxygen-ion vacancy [52, 61]. Furthermore, defects i.e., zinc vacancy
in the thin films deposited using low number of evaporation cycle would contribute to
decrement of crystallinity [62]. In addition, the blue shift of the Eq could be also due to several
factors such as grain size, structural parameters and lattice strain, carrier concentration,
presence of impurities (or other defects), or even deviation from stoichiometry [63]. Similar
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blue shift in Eg values for the films with smaller grain sizes have been reported for
electrochemical deposited nanosized ZnO [64].
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Figure 8: Tauc’s plot of the ZnO thin films fabricated using (a) one, (b) two, and (c)
three evaporation cycles

Conclusions

In conclusion, a simple approach in deposition of ZnO thin film via thermal evaporation
method were successfully demonstrated with different number of evaporation cycle. The ZnO
thin films were characterized using EDX, XRD, FESEM and UV-Visible-NIR absorption
spectrometer. The results from the EDX and XRD indicate that intrinsic defect which exists in
the ZnO thin films deposited using one, and two evaporation cycles technique would exhibit
low electron mobility, in comparison with that of the three evaporation cycles.

The absorption spectra show a clear correlation between number of evaporation cycle,
thickness of thin film and the Eg. The film thickness would affect the crystallinity due to (i)
defect (zinc vacancy), and (ii) strain in the film. Moreover, the morphology analysis revealed
that the decrement of range of the size distribution of the nanospheres would also increase the
Eg. This observation could be originated from the increment of number of ZnO crystals which
are smaller than their exciton Bohr radius (ca. 2.34 nm — non observable by the FESEM) which
in the range of strong quantum confinement regime.
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