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Abstract. Diagonalization of covariance matrix through eigenvalue approach in 

extended Kalman Filter (EKF)-based simultaneous localization and mapping 

(SLAM) of mobile robot has been studied, as one of the possible approach in 

reducing complexity hence computational cost of the system. However, the es-

timation is seemed to be too optimistic, and further investigation need to be 

conducted. In this paper, the effect on addition of Pseudo elements in the 

diagonalization process is investigated. It is evaluated at the updated state co-

variance matrix of EKF-based SLAM. It is found that the additional of pseudo 

components in diagonal matrix can improve the covariance matrix and lower 

the computational complexity. This findings have been proved through simula-

tion. 

Keywords: Covariance, Diagonalization, Pseudo. 

1 Introduction 

Dealing with hazardous environment such as underwater is a challenging job for 

human. In this situation robot is applied to represent human for surveillance and navi-

gation purpose. Several issues are faced in order to apply the robotic system such as 

the environment, data association, mapping and localization. These factors cause more 

problems to be appeared and need more research works to work on. A situation where 

a mobile robot appoint to inspect a nameless environment and additively design a map 

of surroundings that it has identified is cater by Simultaneous Localization and Map-

ping (SLAM). It able to restrict itself on the constructed recursively until its task is 

achieved. However, this process is susceptible to errors that may be generated from 

various sources such as the sensors, modeling, system and algorithm[1]-[2]. 

 There are several of filtering method that used by researchers to deal with SLAM 

problem such as Extended Kalman Filter (EKF)[3], Unscented Kalman Filter (UKF),  
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∞H and Consistence Extended Kalman Filter (CEKF). Some of the filtering method 

may lead to disadvantage which can cause low optimization performance in SLAM. 

For example, the Fast-SLAM is said to be the greatest filtering as it tougher than any 

filtering. Nonetheless this approach needs greater complexity of computational.  

 In order to solve the problem in SLAM, Extended Kalman Filter is common-

ly used by researchers because of the simplicity of algorithm[4]. However, each mo-

ment when a new landmark is detected the entire covariance matrix in EKF-based 

SLAM should be updated. This procedure drags lots of mathematical works that may 

lead to computational cost. The more landmarks are detected; the dimension of covari-

ance matrix will gain twice the number of landmark. In traditional EKF-base SLAM 

algorithm is known that the cost of O(m2), a total number of landmarks of the map is 

m. In realizing the aspect of multiplication operation of landmarks, the used of EKF in 

big environment is finite. The full covariance structure which is responsive to the ef-

fects of linearization errors which build up through time will affected when the land-

marks increase. 

In search of solution to improve the SLAM performance researchers work very hard 

to propose various kinds of probabilistic techniques by giving attention on the simplifi-

cation of the covariance structure. A technique of decorrelation algorithm has been 

introduced by Guivant and Nebot[5] in order to make the covariance matrix easy. The 

weakly cross-correlation term in the matrix of covariance will be cancel when subset of 

the state that is weakly correlated will decorrelate. In order to reduce these couple ele-

ments in SLAM which is the storage costs and computational complexity a positive 

semi definite matrix is added to the covariance matrix. Another technique on reducing 

a computational cost where an algorithm, also to cancel the weekly cross-correlation 

has been presented[6]. The RLR (Relative Landmark Representation) has been used to 

produce a much closer to optimal result generation, using an appropriate map man-

agement strategies. The computational and memory requirement of algorithm has been 

reduced through this implementation. A method of adding a pseudo Positive Semi 

definite (PsD) namely covariance inflation has been implemented to reduce computa-

tional cost[6],[7]-[8]. In this method some minor changes on the covariance matrix has 

been done in order to decorrelate the system; which lead to low the computational cost.  

By the additional of Pseudo noise into the matrix that has been diagonalized using 

eigenvalue[9] on computational complexity of EKF SLAM the research is conducted 

to evaluate the performance effects of covariance state update. The performance of 

covariance is identified throughout the simulation results. 

 

 

2 Issue of Design 

2.1 SLAM in term of Modeling.  

 



3 

The equation of separate time dynamic system is pictured for SLAM are regarding 

process and consideration model. Whereas the observation model with regard to the 

mobile robot position represents the measuring of the map options that process model 

illustrate the movements of the mobile robot. (i.e. method and observation model) of 

SLAM shows on Fig.1 for each model. For equation that represent SLAM process 

model from time k to time k + 1 in linear system, is declared as 

k
w

k
U

k
G

k
X

k
F

k
X ++=+1

 

in which, Xk is expression of the condition of landmarks and mobile robot, Fk repre-

sent the state transition matrix, Gk defined the control matrix, Uk pictured the control 

inputs, and covariance Q characterized wk along the zero-mean Gaussian process noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. SLAM model. 

 

Landmarks mX  and robot rX  is a mixed state vector serve as 2D SLAM at time k 

as pursue by the state vector  
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where kx and ky  pictured the middle location of the mobile robot with allusion to 

global coordinate frame and the kθ  picture the guidance angle of the mobile robot. 

Where m is number of landmarks and  i= 1, 2,…, m  is correlate to the landmark model 

by the Cartesian coordinate ( ix , iy ),. A model of two-wheel mobile robot is enforced 

concluded this study. In this study occasionally we express it as robot posture con-

versely [ ]T

kkkr yxX θ= is practiced to imply the robot position. The kinematic 

(1) 

(2) 
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of mobile robot that depict the refine form pictured as

),,,( )()1( δυδωkkrkr uXfX =+
 and [ ]Tkkku υω= in which 

 

Tkkk )(1 δωωθθ ++=+  

)cos()(1 kkkk Txx θδυυ ++=+  

)sin()(1 kkkk Tyy θδυυ ++=+  

The mobile robot angular acceleration control inputs is pictured kω  and the mobile 

robot velocity with pertinent process noises, δω andδυ is produce by 
kυ . T picture 

as the time intermission of one evolution step. As landmarks are counterfeit to be stag-

nant, For i= 1, 2,…, m  is guileless with zero noise are the process model for the land-

marks [ ]T

ii yx ,    

)()1( kmkm XX =+  
Observation model are expressed applying State observation or measurement pro-

cess  
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Where kH  defined the measurement matrix and R  define the zero-mean Gaussian 

noise with covariance matrix 
iir

V φ
. The consideration of ith landmark is a range ir  and 

bearing iφ  which displays the connection distance is at time 1+k , and the attended 

landmarks is angle of the mobile robot. The sensor in the robot engage with a range 

sensor are it is counterfeit that and the consideration of the landmark in the situation as 

well as the conceal on the wheel for vehicle speed analysis is bearing that retain. The 

range and bearing are pictured as 
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where current robot position is ),,( 111 +++ kkk yx θ , ),( ii yx   is position of ob-

served landmark, 
irv and 

i
vθ

 are the noises on the analysis 

2.2 SLAM Situated on Extended Kalman Filter  

To rating the location of mobile robot and landmarks the extended Kalman filter 

(EKF) is practiced through this study. First, situated on the prior system advice, the 

state vector is anticipated. Subsequently that applying the measurement data earned 

(4) 

(5) 

(6) 

(7) 

(3) 
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from the sensors, the state vector will be predicted. The updated state vector 
kX̂   and 

the covariance matrix of the estimation kP  are the concern parameters related. The 

amplification of prediction and estimation of EKF are certain as pursue.  

 

A. (Update of time) is a Prediction  

The state vector at the current k for the estimation certain as 

[ ]Tmrk XXXXX ˆˆˆˆˆ
21 K=

 

and the estimation error is kP  for the covariance matrix. (Equations 1 to 4) is linear-

ized as an expension of the Taylor series about 
kX̂ for the mechanism model and the 

later predicted state vector −
+1

ˆ
kX  and error covariance matrix −

+1kP  is hence drive to  

),0,,(ˆ
1 kuXfX kkk =−

+  
T

wkw

T

XkXk FQFFPFP ∇∇+∇∇=−
+1  

spot the Jacobian of f   with consideration to kX   is characterized by XF∇  and 

the Jacobian with consideration to kω   is characterized by ωF∇  the Jacobian with 

consideration to kω . From the Eq. 3 at 
kX̂ these Jacobians are valued and have the 

consecutive interpretation: 
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mI  and m0  is the aspect and ineffective matrix independently with proper apprais-

al confide upon the capacity of points of landmark minded although the observe rate is

T . The landmarks as they are counterfeit to be stagnant steadily adjacent is no process 

noise.   

 

B. (Update estimation) is a Updated  

The Taylor series advancement about −
+1

ˆ
kX the equation of the state vector is line-

arization of the observation model (Eq. 5) and the update procedure is enclosed for the 

error covariance matrix. The mobile robot updates its current position proportionate by 

positioning the observed landmarks beside the convenience of estimation data advice
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The Jacobian is characterized by iH∇  in Eq. 5 with refer to kX  appraise at −
+1

ˆ
kX  

and assert as follows: 
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2.3 The Matrix of State Error Covariance  

The part of the correlation among two variables is frequently the covariance of two 

modifications. The correlation theory can be deliberate by the volume of linear de-

pendency among variables. In SLAM, the matrix arrangement between landmarks 

covariance matrices and the robot position, also not forget about the correlation among 

landmarks and robot is represent through the state estimate covariance matrix as fol-

lows: 
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For the robot position the covariance matrix related is RRP , while for landmark posi-

tion the covariance matrix that matches is MMP  and also for the cross-correlation 

among robot and landmarks having their covariance matrix depute by RMP . 

The error connected with the assumption of the state of the robot and the allusion 

point shows the covariance matrix points In SLAM. The errors and uncertainties of 

estimation can be monitoring either raise or decrease, in which they stand for the cer-

tainty and firmness of the appraisal through the covariance matrix information. As a 

result, it is extremely important to explore the behavior of the covariance matrix as it 

commits important issue in SLAM. 

Proposition 1: The amount of the uncertainty ellipsoid associated with the state es-

timate, which indicate the total uncertainty of that particular state estimation is measure 

of the determinant of the error covariance matrix[10]. 

In SLAM, the dimension of the state error covariance matrix is ( )2
23 m+ , 

where landmarks represented by m. While the robot identifies the latest landmark in 

its territory, the content of the state error covariance will be expended. The matrix of 

SLAM’s state error covariance produces in Eq.15. Through the matrix of state error 

covariance, the changing of the erroneous and the uncertainties could be attended in 

order to preserve the quality of estimation. Better estimation shows the smaller value 

(12) 
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of covariance. A situation where the covariance value of prediction is dramatically 

tiny than the real value the estimation illustrate a deception, but at the same time the 

covariance shows smaller value, this phenomena is called an optimistic estimation. In 

EKF-based SLAM this becomes one of important aspect to take attention for the es-

timation works. 
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3 Matrix Diagonalization 

Diagonal matrix is a matrix that during which the highest and bottom components 

area unit all null. The ingredients of diagonal components might replenish maybe with 

price or conjointly null. For a n×n matrix is alleged to be square matrix if it explicit as 

  Let the elements of ( )
jidD ,=   

( ) 0, =jid if }{ njiji ,...,2,1, ∈∀≠  

 

Wherever simply diagonal components area unit involved, the multiplication step of 

the matrix is simpler for a diagonal matrix and this need a lower computational cost 

and can create the operation faster if applied in SLAM. 

 n×n square matrix is A . It’s believed that there be gift variety and a column matrix 

B with dimension of specified 

BAB λ=  
λ is outline as an eigenvalue of A with the matching eigenvector B,. Then A is di-

agonalizable to a matrix D. For every n x n matrix there'll typically be n number of 

eigenvalues, during which the eigenvalues may be actual, complex or the be join of 

reciprocally numbers. 

Definition 1: Let A be a n x n square matrix and D is a diagonal matrix in which its 

diagonal elements are the eigenvalues of A, such as follows: 
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The subsequent relationship between matrix A and matrix D there exists accordingly : 

( ) ( )DA detdet =  

( ) ( )DnormAnorm =
 

The behavior of the diagonal matrix given by Eq.18 thus pertaining to Proposition 1, 

the diagonalisation over eigenvalues could also be one in every of the choice tech-

niques to minimize the computational cost of SLAM based on EKF is the chance exists 

that. The method was conjointly motivated by the sooner works of [5] and [11] that 

chiefly investigated and mentioned concerning the diagonalization of the modernize 

state covariance matrix. 

 

3.1 Covariance Matrix Diagonalization by means EKF-based SLAM 

Through simulation analysis, the investigation of diagonalization of covariance matrix 

on estimation performance is examined. In order to minimize the computational cost, 

the multiplication steps in the covariance calculation have to be simpler and it becomes 

the goal of this study. The diagonal elements involve in multiplication of a matrix with 

a diagonal matrix that it is much quicker and simpler. This has been approved through 

matrix diagonalization using eigenvalue [9]. However, through the simulation, the 

covariance behaves unusual, where the covariance matrix decrease quickly and it is too 

slightly compared to the normal covariance. It is said to be an optimistic estimation 

phenomenon as mentioned in Section 2.3. We then proposed a method of adding pseu-

do namely covariance inflation as an approach to overcome the phenomena and to 

reduce the computational cost. We believe that using this approach the optimistic esti-

mation can be escaped and immedietly actualizing the reduction of cost computational 

for EKF SLAM problem. 

 

3.2 Covariance expansion by methods for Decorrelation 

Additional pseudo noise approach in the system by covariance inflation is means of 

decorrelation. The mathematical description for the covariance inflation for conven-

ience to be express. For EKF, supplementary of pseudo noise P∆ to the EKF algo-

rithm result in  
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By referring covariance inflation, for 0>d  to 2-D realizations 
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To guide a lower value of the covariance matrix kP , kP∆ is select. Further details are 

explain in[11]. To unwrap commonly the analytical measure of P∆ , this paper is 
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presented precisely in[11]-[12]and can be spread in EKF. A PsD covariance matrix is 

inclined through for each update, 

kkk PPP ∆+=+1  

The covarience is combined by Pseudo noise kP∆ . It is presumed that for the later 

modernize 

112 +++ ∆+= kkk PPP
 

                              1)( +∆+∆+= kkk PPP  

                          1+∆+∆+= kkk PPP
 

                                                         kk PnP ∆+=
 

This study involves some modification on covariance matrix where the delta P is 

added in order to reduce the optimistic problem as stated in[13]. Based on two case 

studies, the study has been organized: 

(1) Diagonalization using eigenvalue [13] on estimated covariance for both (robot 

and landmarks). 

(2) Diagonalization using eigenvalue with additional of delta P on Estimated co-

variance for both (robot and landmarks). 

 

Using the function stated as follows for the case study 1, the eigenvalue of estimat-

ed covariance is first calculated: 

)( 1

+

+= kn Peigλ
 

Where the estimated covariance is represented )( 1

+
+kP  and the eigenvalue is repre-

sented nλ . Using the next function the diagonal matrix will be build stated as follows: 

)(1),( nkD diagP λ=+
+

 
 

where )(1),( nkD diagP λ=+
+

 is a diagonal matrix that built from eigenvalue. 

For the case study 2 the equation of (23) and (24) is applied again but for this time 

the pseudo elements added after the diagonal matrix is build. The function involve as 

follows: 

PPP kDknewD ∆+= +
+

+
+ 1),(1),,(

 

where +
+1),,( knewDP   is the new diagonal matrix after adding pseudo and P∆  is a pseu-

do noise.  

 

The performances of the proposed method are analyzed using the two cases men-

tioned above. 
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4 Results of Simulation and discussions 

In Section 3, the simulation analysis for two cases of contrasting diagonalization 

technique as defined and the pattern of the estimation and covariance matrix of EKF-

based SLAM are presented to examine.  

The estimation of the mobile robot position and landmarks under normal con-

dition depicted in Fig.2. With constant speed, the simulation time for the mobile robot 

is 300s and the landmarks for every cycle of motion continuously detects. The covari-

ance ellipses represent the uncertainties of the estimation. The smaller ellipse size, 

show the better estimation.  

 
Fig. 2. Under normal condition for position estimation and covariance. 

 

By applying the same parameters, the simulation for two case studies as stated 

in Section 3 are conducted. Fig.3 shows the behavior of covariance through estimation 

for the first case, while the result of second case study is depicted in Fig.4. The estima-

tion of landmark and mobile robot position is available when the entire covariance is 

diagonalized through the technique define in previous section. However,the estimation 

regulate some decent errors.  

The covariance behaves uncommon for case 1, where the covariance decrease sud-

denly and it is too small compared the the normal covariance as shown in Fig.2. This 

illustrates the optimistic estimation as describe in Section 2.3 of this paper. However 

for case 2, after adding the pseudo elements in the estimation, the covariance ellipses 

shows some value and it can be seen in Fig4. It shows that the robot able to do estima-

tion where the robot is not lost within its environment. This shows that by adding the 

pseudo elements into diagonalization through finding eigenvalue, the optimistic value 

of covariance matrix can be corrected. 

   

Table 1 depicts the comparison of processing time of all cases. Eigenvalue (case 1) 

was begin to be quickest amid all cases regarding 8.82% quicker than normal condi-

tion when diagonalization of cavarience matrix through finding. Also concluded re-

garding 7.69% for case 2 then the regular condition, eventhough the covariance matrix 
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diagonalizing process need extra procedure. Moreover, case 2 produce better covari-

ance ellipse where the optimistic estimation as explain in Section 2.3 can be corrected. 

 

Table 1. Time processing for cases involved. 

Covari-

ance type 

Simulation 

time (s) 

Total processing 

time (s) 

Percentage of 

processing time 

reduction (%) 

Normal 300 91.7468  

Case 1 300 83.6527 8.82 

Case 2 300 84.6911 7.69 

  

 

 

 

 

 

 

 

 

 

 

 

              

 

 

  

 

 

  

Fig. 3. Estimation of the state and covariance 

behavior of case one. 

Fig. 4. Estimation of the state and covariance 

behavior of case two. 
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5 Conclusion 

The investigation of EKF based SLAM achievements in the environment of 

diagonalized covariance are produced through this paper. Through eigenvalue the 

covariance matrix have been diagonalized in Case 1, whereas just in case 2, a pseudo 

parts is added into the technique mention just in case 1. Based on simulation result 

Case 1 complete the quickest estimation compared to the normal condition and Case 

2. Additionally, it absolutely was identified that Case 2 produces better estimation 

than Case 1 wherever the errorneous seems to be less and the covariance ellipse ap-

peared and might correct the optimistic estimation that mention in Section 2.3.  
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