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Abstract. The processing of crude oil in the onshore platform often results in the generation of 

produce water containing harmful organic pollutants such as phenol. If the produce water is not 

properly treated to get rid of the organic pollutants, human exposure when discharged could be 

detrimental to health. Photocatalytic degradation of the organic pollutant has been a proven, 

non-expensive techniques of removing these harmful organic compounds from the produce 

water. However, the detail experimentation is often tedious and costly. One way to investigate 

the non-linear relationship between the parameters for effective performance of the 

photodegradation is by artificial neural network modelling. This study investigates the 
predictive modelling of photocatalytic phenol degradation from crude oil wastewater using 

Bayesian regularization-trained multilayer perceptron neural network (MLPNN). The 

ZnO/Fe2O3 photocatalyst used for the photodegradation was prepared using sol-gel method and 

employed for the phenol degradation study in a batch reactor under solar irradiation. Twenty-

six datasets generated by Box-Behken experimental design was used for the training of the 

MLPNN with input variables as irradiation time, initial phenol concentration, photocatalyst 

dosage and the pH of the solution while the output layer consist of phenol degradation. Several 

MLPNN architecture was tested to obtain an optimized 4 5 1 configuration with the least mean 
standard error (MSE) of 1.27. The MLPNN with the 4 5 1 architecture resulted in robust 

prediction of phenol degradation from the wastewater with coefficient of determination (R) of 

0.999. 

   

Keywords: Bayesian regularization; multilayer perceptron; Artificial Neural Network; Phenol; 

Photocatalyst 

1.  Introduction 

The upstream petroleum processing often contains mixture of chemicals that if not properly treated are 

very harmful to human health [1]. One of such harmful organic substance is phenol which is a very 
toxic substance that can cause serious health damages [2,3]. One way to remove this recalcitrant 

organic substance is to degrade them from wastewater under solar irradiation using photocatalysts 

[3,4]. This method is environmentally friendly and cost-effective compare to other chemical methods. 
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However, understanding the non-linear effect of the process parameters in the photocatalytic reaction 

has been a bone of contention. One way to study the effect of the process parameter on the 

photodegradation of the phenol for predictive modeling is using artificial neural network [5,6]. 
Artificial Neural Network is one of the machine learning technique that mimic the human nervous 

system [6]. The artificial neural network is made up of interconnectivities of hidden neurons intended 

to address a specific task. It has been widely applied in chemical processes [7]. Ayodele et al. [8] used 
artificial neural network for the prediction of CO-rich hydrogen production rate from methane dry 

reforming process. Schmitt et al [9]. employed artificial neural network to develop a predictive model 

for membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater. The 
study revealed that the ANN model was effective in predicting the membrane fouling with R2 of 

0.850. Antwi et al. [10] utilized feed forward neural network model for estimating pollutant removal in 

an industrial starch processing wastewater. The ANN model was found to be efficient in predicting the 
removal of the pollutant from the wastewater with R

2
 value of 0.87. To the best of the authors’ 

knowledge, the use of ANN for predictive modeling of photocatalytic phenol degradation over 

ZnO/Fe2O3 photocatalyst has not been reported in literature. This aim of this study is to investigate the 
predictive modeling of phenol degradation in an upstream wastewater using Bayesian regularization-

trained multilayer artificial neural network.  

2.   Data acquisition and experimental runs 
Box-Behken experimental design was employed to generate the dataset used for the MLP predictive 

modeling [11]. The experimental design consists of 26 datasets comprise of the combinations of the 

input parameters (irradiation time, initial phenol concentration, pH, and the photocatalyst dosage) and 
the target (phenol degradation). Sol-gel method was employed for the synthesis of the ZnO/Fe2O3 

photocatalyst [12]. A 120 ml cylindrical batch reactor was used for the photodegradation experiment 

under solar irradiation. Stipulated dosage of the ZnO/Fe2O3 photocatalyst was added to the oil field 
produced water and continuously stirred under dark for 60 minutes.  

2.1 Multilayer Perceptron Neural Network Architecture 

The multilayer perceptron is typical of a feed forward artificial neural network that has the capability 
to approximate a non-linear function [13]. The MLP architecture comprises an input layer where the 

signals are received, the hidden layer with capability to approximate continuous function and the outer 

layer. In MLP, the set of input-output pairs are often trained for the purpose of developing a learning 
model to determine the relationship between the inputs and the outputs [14]. During the training, the 

parameters of the MLP model which include the weight and bias are adjusted to minimize the 

predictive error. One way to measure the error is to use mean square error (MSE) [15]. The MSE 
measures the average of the squares of the errors between the predicted and the actual values. 

Algorithms such as Levenberg-Marquardt, Scale Conjugate Gradient, and Bayesian regularization can 

be employed for training the network [13,16]. The Bayesian regularization has the advantage of 
converting non-linear data by minimizing the combined errors together with the network weights in 

order to determine the appropriate combinations that could result be well-generalized [17]. The MLP 

architecture is depicted in Figure 1. It is made of the input layer (irradiation time, initial phenol 
concentration, pH, and the photocatalyst dosage), the hidden layer which is made of five units and the 

output layer (phenol degradation). Prior to the MLP configuration, the hidden layer was optimized 

using different numbers of neuron ranging from 1-20. The MLP architecture with the smallest hidden 
neuron was selected as the optimized architecture.  
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Figure 1. Optimized Multilayer Neural Network Architecture 

3.  Results and Discussion 

3.1 The network architecture 

Twenty-six dataset were employed for the training of the network using Bayesian regularization 

algorithm. Of the 26 datasets, 70% was used for training, 15% was used for validation while the 
remaining 15% was used for testing. The optimization of the MLP architecture is depicted in Figure 2. 

Twenty different MLP model architecture were tested in order to obtain the optimized model with 

minimized mean standard error. The architecture with 5 hidden neurons resulted in the least MSE 
values of 1.27 as shown in Table 1.  

 

 

Figure 2. Optimization of the hidden neuron 

 

 

 

 

 

 

 

 

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
SE

 

Hidden neurons 

Hidden Neutron MSE

Irradiation 

time (min) 

Initial phenol 

concentration 

(mg/L) 

pH 

Photocatalyst 

dosage 

Phenol 

degradation 

(%) 



JICETS 2019

Journal of Physics: Conference Series 1529 (2020) 052058

IOP Publishing

doi:10.1088/1742-6596/1529/5/052058

4

 

 
 

 

 
 

Table 1. Summary of the different MLP architectures together with their MSE 

MLP 

Architecture 
Hidden 

Neutrons 

Training Validating Testing 

MSE R MSE R MSE R 

4 1 1 1 8.59 0.993 0.00 0.000 706.42 0.886 

4 2 1 2 14.44 0.998 0.00 0.000 670.35 0.685 

4 3 1 3 69.85 0.949 0.00 0.000 95.08 0.783 

4 4 1 4 10.86 0.989 192.70 0.920 739.78 0.586 

4 5 1 5 1.27 0.999 19.62 0.983 19.84 0.999 

4 6 1  6 71.48 0.948 0.00 0.000 86.01 0.913 

4 7 1 7 73.49 0.947 0.00 0.000 84.08 0.948 

4 8 1 8 104.84 0.936 106.74 -0.982 283.38 0.974 

4 9 1 9 1.31 0.999 0.00 0.000 316.65 0.945 

4 10 1 10 1.45 0.998 0.00 0.000 597.98 0.725 

4 11 1 11 54.41 0.947 0.00 0.000 5.03 0.998 

4 12 1 12 48.10 0.963 0.00 0.000 64.00 0.992 

4 13 1  13 42.24 0.968 0.00 0.000 96.47 0.794 

4 14 1  14 71.61 0.928 0.00 0.000 72.60 0.958 

4 15 1 15 74.87 0.945 0.00 0.000 13.39 0.916 

4 16 1 16 29.86 0.979 0.00 0.000 213.90 0.625 

4 17 1 17 1.53 0.998 0.00 0.000 814.32 0.448 

4 18 1 18 638.09 0.941 0.00 0.000 268.85 0.945 

4 19 1 19 70.36 0.946 0.00 0.000 45.48 0.889 

4 20 1 20 74.76 0.941 0.00 0.000 23.43 0.982 

3.2 MLP model performance 

The MLP model performance is depicted in Figure 3 (a). It can be seen that the Bayesian 
regularization trained network has a robust predictive ability as shown in Figure 3. In each of the 

experimental runs, the predictive values of the phenol degradation are in proximity with the actual 

values. This is reflected in the parity plot shown in Figure 3 (b) with R values of 0.999. This implies 
that the predicted values are strongly correlated with the actual values. The performance of the 

Bayesian regularization-trained neural network can be attributed to its robustness in generalizing a 

non-linear function [18]. The level of importance of the input parameters based on sensitivity analysis 
is depicted in Figure 4. It can be seen that the irradiation time has the highest influence on the 

prediction of the phenol degradation. The level of importance can be ranked as irradiation time>initial 

phenol concentration>photocatalyst dosage>pH. The robustness of the Bayesian regularization-trained 
neural network has been reported for modeling explosion risk analysis of fixed offshore platform [17]. 

The developed Bayesian regularization-trained neural network was efficient in predicting the 

explosion risk analysis in the fixed offshore platform. Furthermore, Bayesian regularization trained 
neural network has been applied in modeling to quantify trace gas species in an oil and gas production 

[19]. The Bayesian regularization trained neural network was found to have a superior predictability 

compare to linear models.  
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Figure 3. (a) Model Performance of the MLP (b) Parity plot showing the comparing between 

the predicted phenol degradation and the actual values  

 

 
Figure 4. Level of importance of the input parameters on the phenol degradation. 

4.  Conclusion 

In this study the application of Bayesian regularization-trained multilayer perceptron neural network 
has been demonstrated. Twenty-six dataset obtained from Box-Behken design of photocatalytic 

degradation experiment using ZnO/Fe2O3 photocatalyst was tested in the MLPNN architectures. An 

optimized architecture of 4 5 1 representing the input layer, hidden layer and the output layer were 
employed for the predictive modeling. The MLPNN model accurately predicted the phenol 

degradation from the wastewater. The actual phenol degradation is in proximity with the predicted 

values as confirmed by the R values of 0.999.   
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