
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

473 | P a g e

www.ijacsa.thesai.org

An Efficient Data Replication Technique with Fault

Tolerance Approach using BVAG with Checkpoint

and Rollback-Recovery

Sharifah Hafizah Sy Ahmad Ubaidillah
1
, A. Noraziah

2
, Basem Alkazemi

3

Faculty of Computing, University Malaysia Pahang, Pahang, Malaysia
1, 2

IBM Center of Excellence, University Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
2

College of Computer and Information System, Umm Al-Qura University, Saudi Arabia
3

Abstract—Data replication has been one of the pathways for

distributed database management as well as computational

intelligence scheme as it continues to improve data access and

reliability. The performance of data replication technique can be

crucial when it involves failure interruption. In order to develop

a more efficient data replication technique which can cope with

failure, a fault tolerance approach needs to be applied in the data

replication transaction. Fault tolerance approach is a core issue

for a transaction management as it preserves an operation mode

transaction prone to failure. In this study, a data replication

technique known as Binary Vote Assignment on Grid (BVAG)

has been combined with a fault tolerance approach named as

Checkpoint and Rollback-Recovery (CR) to evaluate the

effectiveness of applying fault tolerance approach in a data

replication transaction. Binary Vote Assignment on Grid with

Checkpoint and Rollback-Recovery Transaction Manager

(BVAGCRTM) is used to run the BVAGCR proposed method.

The performance of the proposed BVAGCR is compared to

standard BVAG in terms of total execution time for a single data

replication transaction. The experimental results reveal that

BVAGCR improves the BVAG total execution time in failure

environment of about 31.65% by using CR fault tolerance

approach. Besides improving the total execution time of BVAG,

BVAGCR also reduces the time taken to execute the most critical

phase in BVAGCRTM which is Update (U) phase by 98.82%.

Therefore, based on the benefits gained, BVAGCR is

recommended as a new and efficient technique to obtain a

reliable performance of data replication with failure condition in

distributed databases.

Keywords—Data replication; computational intelligence; fault

tolerance; binary vote assignment on grid; checkpoint and

rollback-recovery

I. INTRODUCTION

Data replication is a useful technique for a Distributed
Database System (DDS) as it can provide high availability and
efficient access to required data and can be applied in a grid
computation situation to improve the efficiency of the system
[1, 2]. Besides, data replication technique can be one of the
influential techniques that can expand the usefulness of
computational intelligence structure. Data replication involves
frequent, incremental copying of data from one database to
another database in a continuous manner which can increases
availability, provide low response times and allows fast local
access of the system [3, 4]. Despite the goodness of data

replication techniques in handling the distributed database,
still, it has some weakness when dealing with failure cases.

Handling data replication in the failure cases is very
crucial in order to preserve the effectiveness of the systems.
The main challenges of data replication are that the replica has
to be kept consistent when updates occur despite having any
failure during the transaction‟s running [4]. The only way to
solve these problems is by enabling fault tolerance. Fault
tolerance approach is a crucial issue in distributed computing;
it keeps the transaction in an operational condition in subject
to failure. The most important point of it is to keep the
transaction working even if any of its part goes off or faulty
[5]. Fault tolerance is the dynamic approach that‟s used to
keep the interrelated transaction together, put up with
reliability and availability in DDS. Efficient fault tolerance
approaches help in detecting of faults and if possible recovers
from it [6].

Based on previous studies, the combination of any data
replication technique with Checkpoint and Rollback-Recovery
(CR) fault tolerance approach in a distributed database is
infrequently analyzed irrespectively of its individual
promising potential to lessen the total execution time in
failure-prone situations [7]. As an example, research done by
[7] explored the performance of transaction process using CR
only, replication only and the combination of both techniques
in linear workflow with the presence of failure. The result
obtained reveals that the conditions in which each techniques
lead to improved performance. Besides that, paper done by [8]
concludes that the CR approach is essential for not only
transaction process replication but also for security issues.

Despite good performances, there are only few researchers
who had interest in exploring the effectiveness of combining
data replication technique with CR fault tolerance approach. It
is a common practice to utilize a Checkpoint and Rollback-
Recovery (CR) to facilitate an adequate failure recovery for
improving transaction reliability [9]. Mainly, the checkpoint is
performed to save information linked with the completed
portion of a transaction. When a transaction failure occurs,
through rollback and information retrievals, the transaction
can be resumed from the last successful checkpoint. Instead,
without implementing the checkpoint technique, the
transaction has to repeat the execution of the entire transaction
from the very beginning [10]. Hence, the data replication

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

474 | P a g e

www.ijacsa.thesai.org

transaction might be time consuming without the CR approach
if any failure happened.

Therefore, in this study, a data replication technique called
as Binary Vote Assignment on Grid (BVAG) is combined
with CR with the proposed of evaluating the efficiency of
hybridizing data replication technique with fault tolerance
approach for a better performance of a single data replication
transaction in the presence of failure. The proposed method,
BVAGCR is implemented in Binary Vote Assignment on Grid
with Checkpoint and Rollback-Recovery Transaction Manager
(BVAGCRTM).

The paper is arranged as follows. In the next section,
Literature Review is detailing about BVAG data replication
technique and CR fault tolerance approach. In Section 3,
Methodology describes the procedure of BVAGCR technique
which is employed via BVAGCRTM. The Result and
Discussion section discussed the outcome obtained from
standard BVAG and BVAGCR. Also presented in this section
is the comparison of both techniques in terms of execution
time while managing data replication transaction with the
occurrence of failure. Finally, the conclusion of this research
and suggestion for future research are provided in Conclusion.

II. LITERATURE REVIEW

A. Binary Vote Assignment on Grid (BVAG)

The concept of Binary Vote Assignment on Grid (BVAG)
is replicating the data from the primary replica to the
neighbours‟ replica which is located at the adjacent sites of the
primary replica [11]. Full replication can result in a huge
waste of storage space and consume a lot of bandwidth [12].
By using this technique, the execution time of the replication
process in a distributed database can be reduced as it only
replicates data at the specified sites [12]. The query expansion
process involves augmenting initial user query with additional
terms that are related to user requirements [13], while BVAG
focus challenge to increase write query availability through
replication. BVAG is striding a new track in replication that
helps to maximize the write availability with little
communication cost as a result of minimum number of
quorum size needed. Furthermore, the replication is
interconnected with transaction procedure [14].

In BVAG, all sites are logically organized in the form of
two-dimensional grid structure. For example, if a BVAG
consists of nine sites, it will logically organize in the form of 3
x 3 grid structure (Fig. 1) as shown. As can be seen in Fig. 1,
site A is neighbours to site B and site D, if A is logically
located adjacent to B and D. Hence, four sites on the corners
of the grid have only two adjacent sites, other sites on the
boundaries have only three neighbours and the site located in
the middle of the grid formation has four neighbours [14].

Fig. 1. Binary Vote Assignment on Grid (BVAG).

Each site has a premier data file. Data will be replicated to
the neighbours sites from the primary site [11]. For simplicity,
the primary site of any data file and its neighbours are
assigned with vote one (1) or vote zero (0) otherwise. A
neighbour binary vote assignment on grid, B, is a function
such that B(i) ϵ {0,1},1 ≤i ≤d where B(i) is the vote assign to
site i. This assignment is treated as an allocation of replicated
copies and a vote assigned to the site results in a copy
allocated at the neighbour. Due to the data that will be
replicated to neighbours, the possible number of data
replication from each site, d, should then be:

d ≤ quorum (the number of neighbours + a data from the
primary site itself).

For example, primary data from the site A which is called
as „a‟ are replicated to site B and site D which are their
neighbours. Site E which holds the primary data „e‟ has four
neighbours, namely, sites B, D, F and H that will get the
replicated data of „e‟. As such, the site E has five replicas.
Meanwhile, primary data „f‟ from site F are replicated to site
C, E and I. The number of quorums used are based on the total
number of replicated data and the primary data, d, which can
be three, four or five [11,14].

The transaction procedure in BVAG is called as Binary
Vote Assignment on Grid Transaction Manager (BVAGTM).
The BVAGTM is applied to control the transaction of each
data replication process. The primary site of any primary data
file and its replica are assigned with different votes depends
on their condition. There are two types of votes used in this
study as shown in Table I. Zero (0) specified that the site is
available (free). Meanwhile, one (1) displayed that the site is
unavailable (busy). The status of each site is statistically
independent of others. The status of each site is statistically
independent of others. When a site is available, the copy at the
site is available too; otherwise, it is unavailable [11,14].

TABLE I. TYPE OF STATUS

Type of Status Definition

0 Available (Site is free or not in used)

1 Unavailable (Site is busy or in used)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

475 | P a g e

www.ijacsa.thesai.org

There are seven main phases involve in BVATM; Initiate
Lock (IL), Propagate Lock (PL), Obtain Quorum(OQ),
Update(U), Commit (C), Unlock (UL) and Release Lock (RL)
[11,14]. IL phase involves locking the primary site if the
primary site is in available (0) status. If the primary site is
busy (status = 1), then the primary site will be release (RL).
After the primary site has been locked, the PL phase
determines the status of each neighbours site. All neighbours
sites are locked if they are in available (0) status. Otherwise,
the neighbours‟ sites will be release (RL). Then, OQ phase
declares that the quorum obtained is enough for the
transaction to be continued. Next, the primary data will be
updated in the U phase. Afterward, the updated primary data
which is also called as new primary data is replicated to the
neighbours‟ sites in C phase. Last but not least, the transaction
will unlock (UL) all the sites that are involved in the
transaction. The summary of BVAGTM is shown in Fig. 2.

B. Checkpoint and Rollback-Recovery (CR)

Checkpoint with Rollback-Recovery (CR) is a renowned
fault tolerance approach. Checkpoint is a process which stores
the recent state of a transaction in stable (non-volatile) storage

[9]. It is recognized through the normal execution of a
transaction occasionally. The information related to the
transaction is saved on a stable storage with the intention of
using it in case of site failures. The saved information
comprises of the transaction state, its environment, the value
of registers, etc. When an error is spotted, the transaction is
roll backed to the last saved state [15].

Fig. 3 shows the summary of CR approach. The
checkpoint mechanism takes a snapshot of the transaction
state and stores the information on some non-volatile storage
medium [16]. When failures occur, the restore mechanism
copies the last known check pointed state of transaction back
into memory and continue processing. The basic idea behind
CR is the saving and restoration of transaction state. By saving
the current state of the transaction occasionally or before
critical code sections, it delivers the baseline information
needed for the restoration of lost state in the event of a
transaction failure. CR is one of various time efficient fault
tolerant approaches [17]. Besides reducing the execution time,
CR can also lessen computing resources [18].

Fig. 2. Binary Vote Assignment on Grid Transaction Manager (BVATM).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

476 | P a g e

www.ijacsa.thesai.org

Fig. 3. Checkpoint and Rollback-Recovery (CR).

III. METHODOLOGY

In this section, the methodology of the proposed technique
called as BVAGCR is described. Fig. 4 illustrated the
algorithm of BVAGCR technique applied in Binary Vote
Assignment on Grid with Checkpoint and Rollback-recovery
Transaction Manager (BVAGCRTM) for a single data
replication transaction.

First, the following notations are defined as:

1) is transaction,

2) is checkpoint transaction,

3) λ represents different group of transaction T (before and

until get quorum). λ can be either α or β,

4) is transaction of group λ

5) is the data to be update

6) is the number of queue for transaction . i = 1,2,3, …

7)
 is transaction of λ for data χ in queue 1

8) is checkpoint transaction of λ for data χ in queue 1

9) is checkpoint file

10)
 is checkpoint file for transaction of λ for data χ in

queue 1

11) is the status of the required site

12) stands for Primary Replica site

13) stands for Neighbour Replica site

14) is status for

15) is status for

16) is the status of which hold data χ

17) is the status of which hold data χ

18) is the amount of quorum needed to continue the

transaction of

19) is database

20) is the database for

21) is the database for

22) is the database of that consists of data χ

23) is the database of that consists of data χ

A data replication transaction can request to update any
data file at any replica. The BVAGCRTM will firstly check

whether there is any checkpoint file, that has been

saved in BVAGCRTM. If there is none file,

BVAGCRTM will accept a new data replication transaction.

A new data replication transaction named as () which

request to update data () is in first queue () in
BVAGCRTM. The transaction will check the status of

primary replica () which hold data () whether it‟s status

is free (0), busy (1) or having a failure (-1). If the primary
replica is free to be used in the transaction, the status will be
lock as 1. Else, the primary replica will be released because it

is unavailable. The status of () and data () are save in

the checkpoint file named as () file. Next, the

transaction will request to lock all the neighbours‟ replicas,

() . If all ()is in free status, then it will be lock as 1.

However, if one or any () is busy, all of it will be

released for other transactions. The status of each () is

then saved in file.

Afterward, the total of is declared and saved in the

 file. After that, the Update and Commit () function is

executed. Data () will be update at () which is the

primary database that hold data(). () is then saved in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

477 | P a g e

www.ijacsa.thesai.org

 file. Next, () will commit the replication at all

neighbours database, () . All () is then saved in

() file. Lastly, () and all () will be unlock

(status set to 0).

Meanwhile, if there are any () that has been saved

in BVAGCRTM, then a transaction called as () will

retrieve any information saved in () The information

that has been saved in () are the status of () and

all () , data () , () () and () . () and

() is then set as 1 to declare that it is in used for the

transaction. Then, the Update and Commit () function is
executed based on the information that has been recover.

Finally, all the locks for () and () will be unlock

and are sets to 0. This algorithm can be implemented in the
case of either primary site or any neighbours‟ sites are having
a failure. The transaction can only be continued if the failed
site is back to normal status (0). This is because the proposed
algorithm is not constructed to repair the failure but somehow
to let the failed transaction to continue running not from the
very beginning after the failure is solved.

Main Algorithm

{

If exist file,

 Begin transaction ,

 Read ,

 Write = 1,

 Commit ,

 Write all = 1,

 Commit ,

 Update and Commit (x),

 Write = 0,

 Write = 0,

Else

 Begin transaction ,

 If = 0,

 Write = 1,

 Commit ,

 Save in file,

 Else

 Write = 0,

 End

 If all = 0,

 Write all = 1,

 Commit all ,

 Save all in file,

 Else

 Write all = 0,

 End

 = majority,

 Update and Commit (x),

 Write = 0,

 Write = 0,

End

}

Function Update and Commit (x)

{

Update x in ,

Commit x in ,

Save , in file,

Commit replication x in all ,

Save all , in file,

}

Fig. 4. Algorithm of BVAGCRTM.

In the next section, an experiment considering failure
condition has been conducted in order to evaluate the
performance of BVAG and BVAGCR. The results obtained
and the discussions about the results are also explained in the
next section.

IV. RESULT AND DISCUSSION

An experiment of a single transaction with failure
condition occurred at the primary replica was conducted in
this research using MATLAB simulation. The time between
failure and recovery is assumed as 10 seconds. The transaction
is continued after failure recovery. In this transaction, the site
E is considered as the primary replica holding primary data e.
Meanwhile, sites B, D, F, H are the neighbor‟s replica which
will be receiving the copy of data e from site E. In this case,

the transaction, () requests to update data () and

replicate the data into the neighbors‟ replica. A transaction
failure is considered to occur in the Update (U) phase seeing
that it is the critical phase in BVAG and BVAGCR.

Fig. 5 and Fig. 6 demonstrated the flow of the transaction,

() with failure condition for BVAG and BVAGCR. As

can be seen in Fig. 5 (BVAG), the information related to the
transaction in BVAGCRTM was not being saved in a
checkpoint file (). Thus, when a failure occur in T10 , the

transaction needs to be started all over again as there is no
information recovery can be done if failure occurs.

Meanwhile, in BVAGCR (refer Fig. 6), the information
related to the transaction is being saved in the checkpoint file

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

478 | P a g e

www.ijacsa.thesai.org

(highlighted with grey) for each phase of BVAGCRTM. Thus,

once the transaction () failed as in T13, the information

can be retrieved from the checkpoint file () and the

transaction can be resume from the Update phase (U) as the
failure occurred in that particular phase.

The execution times for each phase involved in BVAG and
BVAGCR methods are recorded before and after failure
occurred as shown in Table II and Table III. As presented in
Table II, the overall time taken to complete a transaction using
BVAG is 15.8574 seconds which include the estimation time
duration of failure (10 seconds). The transaction had run four
phases which are IL, PL, CQ, OQ that took 0.4931 seconds to
be executed before failure occurred. After failure recovery, the
transaction needs to be run again from the start due to no
checkpoint file, () found. The time taken to rerun the

transaction is 5.3643 seconds. For the critical phase U, the
time needed to finished it is 4.7809 seconds.

As displayed in Table III, BVAGCR need 10.8381 seconds
of time to finish a transaction before failure occurred and after
failure recovery which also takes account of the estimate time

duration of failure (10 seconds). The transaction had
performed four phases same as BVAG which are IL, PL, CQ,
and OQ that acquired 0.7443 seconds before failure happened.
Once the failure had been recovered, the transaction only
needs to rerun at U phase onwards because it had retrieved the
information about the transaction which is save in a
checkpoint file (). Based on the () file, the last saved

information of the current transaction is in phase U. The time
used to rerun the transaction from U phase until the data has
been replicated to all neighbors‟ sites is 0.0938 seconds. For
the critical phase (U), the time needed to finish it is 0.0516
seconds.

Fig. 7 shows the comparisons of time taken for total time,
update phase, execution time before failure and execution time
after failure between BVAG and BVAGCR. Based on Fig. 7,
the proposed method, BVAGCR used more time (0.7443
seconds) than BVAG (0.4931 seconds) in execution time
before failure because it took extra time to save the
information about the current transaction into a checkpoint
file. However, after failure recovery, BVAGCR spend less
time to complete the transaction than BVAG as it does not
have to rerun the transaction from the beginning.

REPLICA E B D F H

TIME

T1 unlock unlock unlock unlock unlock

T2 begin transaction

T3 initiate lock:

 T4 write lock = 1

T5 get lock

T6 propagate lock:

 ,

T7 write lock = 1 write lock = 1 write lock = 1 write lock = 1

T8 get lock :

 ,

T9 Obtain majority quorum
()

T10 update (e) in and

failure occurred

T11 unlock unlock unlock unlock unlock

T12 begin transaction

 T13 initiate lock:

T14 write lock = 1

T15 get lock

 quorum () = 1

T16 propagate lock:

 ,

T17 write lock = 1 write lock = 1 write lock = 1 write lock = 1

T18 get lock :

 ,

T19

T20 Obtain majority quorum
()

T21 update (e)

T22 Commit update in

T23 Commit

replication in
Commit replication

in
Commit

replication in
Commit replication

in

T24 write lock = 0 write lock = 0 write lock = 0 write lock = 0 write lock = 0

Fig. 5. BVAG Transaction‟s Flow (Failure Occurred While Updating Data).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

479 | P a g e

www.ijacsa.thesai.org

REPLICA E B D F H

TIME

T1 unlock unlock unlock unlock unlock

T2 begin transaction

T3 initiate lock:

T4 write lock = 1

T5 Save in
 file

T6 get lock

T7 propagate lock:

 ,

T8 write lock = 1 write lock = 1 write lock = 1 write lock = 1

T9 save

 , in
 file

T10 get lock

 ,

T11 obtain majority quorum

()

T12 Save in
 file

T13 update (e) in and

failure occurred

T14 begin transaction

T15 Retrieve information

from
 file

T16 write lock = 1 write lock = 1 write lock = 1 write lock = 1 write lock = 1

T17 update (e) in

T18 Commit update in

T19 Save , in file

T20 Commit

replication in

Commit

replication in

Commit replication

in

Commit

replication in

T21 Save , , ,

 in file

T22 write lock = 0 write lock = 0 write lock = 0 write lock = 0 write lock = 0

Fig. 6. BVAGCR Transaction‟s Flow (Failure Occurred While Updating Data).

TABLE II. EXECUTION TIME TAKEN FOR BVAG DATA REPLICATION

TRANSACTION (A) BEFORE FAILURE OCCUR, (B) AFTER FAILURE OCCUR

PHASES TIME(SECONDS)

INITIATE LOCKA 0.2320

PROPAGATE LOCKA 0.2408

OBTAIN QUORUMA 0.0203

UPDATE AND FAILURE OCCUR 10.0000

INITIATE LOCKB 0.2331

PROPAGATE LOCKB 0.2354

OBTAIN QUORUMB 0.0300

UPDATEB 4.7809

COMMITB 0.0602

UNLOCKB 0.0247

TOTAL 15.8574

TABLE III. EXECUTION TIMES TAKEN FOR BVAGCR DATA REPLICATION

TRANSACTION (A) BEFORE FAILURE OCCUR. (B) AFTER FAILURE OCCUR

PHASES TIME(SECONDS)

INITIATE LOCKA 0.2390

PROPAGATE LOCKA 0.4795

OBTAIN QUORUMA 0.0258

UPDATE AND FAILURE OCCUR 10.0000

UPDATEB 0.0516

COMMITB 0.0149

UNLOCKB 0.0273

TOTAL 10.8381

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

480 | P a g e

www.ijacsa.thesai.org

Fig. 7. Time Comparison between Standard BVAG and BVAGCR.

Meanwhile, the total time taken for a single transaction of
BVAGCR (10.8381 seconds) is shorter than BVAG (15.8574
seconds). BVAGCR has improved the standard BVAG
method by 31.65 % in terms of total execution time. Besides
that, the efficiency of BVAGCR can also be seen when it
successfully improved the performance of standard BVAG in
critical phase which is the Update (U) phase by 98.82%. Thus,
based on the results obtained, it can be said that the objective
of this study which is to improve the efficiency of standard
BVAG by proposing a new data replication technique with
fault tolerance approach (BVAGCR) has been successfully
achieved.

V. CONCLUSION

This study has explored a new combination of data
replication and fault tolerance approach called as BVAGCR.
The performance of BVAGCR is tested using a simulation of
MATLAB. A comparison between standard BVAG and
BVAGCR has been done in order to evaluate the effectiveness
of implying the CR fault tolerance approach in BVAG data
replication technique. The result gained from this study shows
that the proposed BVAGCR has outperformed standard
BVAG in terms of total execution time, time taken to execute
the U phase and time taken to rerun the transaction after
failure recovery.

Therefore, BVAGCR can be proposed as an alternative
technique which is efficient and reliable to replicate data in
failure condition. To test the robustness of the proposed
BVAGCR, future work should explore the application of this
proposed method on big data. Besides that, BVAGCR can also
be implemented with data mining method in order to get more
competent performance of the data replication technique.

ACKNOWLEDGMENT

This study is supported by the Fundamental Research
Grant Scheme (RDU190185) with Reference no:
FRGS/1/2018/ICT03/UMP/02/3 that sponsored by Ministry of
Higher Education Malaysia (MOHE). In addition, this study is
also supported by Grant Code: (20UQU0074DSR) under the
Deanship of Scientific Research at Umm Al-Qura University.
Appreciation is also conveyed to University Malaysia Pahang
for project financing under UMP Short Term Grant
RDU1903122 and UMP PGRS RDU170329.

REFERENCES

[1] N. Dogra and S. A. Singh, “A survey of dynamic replication strategies in
distributed systems,” International Journal of Computer Applications.,
vol. 110, no. 11, Jan 2015.

[2] S. H. S. A. Ubaidillah and N. Ahmad, "Fragmentation Techniques for
Ideal Performance in Distributed Database–A Survey." International
Journal of Software Engineering and Computer Systems., vol. 6, no. 1,
pp. 18-24, May 2020.

[3] Kumar, Nirmal, and Girish V. Mattur. "Data replication in a database
environment." U.S. Patent Application No. 15/813,828.

[4] B. Kemme, “Data Replication,” In: Liu L., Özsu M. (eds) Encyclopedia
of Database Systems. Springer, New York, NY, 2017.

[5] A. Sarı and E. Çağlar, “Performance Simulation of Gossip Relay
Protocol in Multi-Hop Wireless Networks,” Owner: Girne American
University Editor: Asst. Prof. Dr. İbrahim Erşan Advisory Board: Prof.
Dr. Sadık Ülker Assoc. Prof. Dr. Zafer Ağdelen Cover Graphic Design:
Asst. Prof. Dr. İbrahim Erşan., pp. 145, 2015.

[6] A. Sari and M. Akkaya, “Fault tolerance mechanisms in distributed
systems,” International Journal of Communications, Network and
System Sciences., vol. 8, no. 12, pp. 471, Dec 2015.

[7] A. Benoit, A. Cavelan, F. M. Ciorba, V. Le Fevre and Y. Robert,
“Combining checkpointing and replication for reliable execution of
linear workflows,” in IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2018, pp. 793-802.

[8] S. Desai, N. Pendharkar and Veritas Technologies LLC, “Data
replication techniques using incremental checkpoints,” United States
patent US 9,495,264. 15 Nov 2016.

[9] Y. Mo, L. Xing, Y. K. Lin and W. Guo, “Efficient Analysis of
Repairable Com-puting Systems Subject to Scheduled Checkpointing,”
IEEE Transactions on Dependable and Secure Computing., Sep 2018.

[10] R. Garg and A. K. Singh, “Fault tolerance in grid computing: state of the
art and open issues,” International Journal of Computer Science &
Engineering Survey (IJCSES)., vol. 2, no. 1, pp. 88-97, Feb 2011.

[11] A. Noraziah, A. A. Fauzi, S. H. Ubaidillah, Z. Abdullah, R. M. Sidek,
M. A. Fakhreldin, “Managing Database Replication Using Binary Vote
Assignment on Grid Quorum with Association Rule,” Advanced Science
Letters., vol. 24, no. 10, pp. 7834-7837, Oct 2018.

[12] J. P. Yang, “Elastic load balancing using self-adaptive replication
management,” IEEE Access., vol. 22, no. 5, pp. 7495-7504, Nov 2016.

[13] Muhammad Ahsan Raza, M. Rahmah, A. Noraziah, Mahmood Ashraf,
“Sensual Semantic Analysis for Effective Query Expansion “,
International Journal of Advanced Computer Science and Applications,
vol. 9, no. 12, pp. 55-60, 2018.

[14] A. A. Fauzi, A. Noraziah, T. Herawan, Z. Abdullah, R. Gupta,
“Managing Fragmented Database Using BVAGQ-AR Replication
Model,” Advanced Science Letters., vol. 23, no. 11, pp. 11088-11091,
Nov 2017.

[15] S. Veerapandi, S. Gavaskar and A. Sumithra, “A Hybrid Fault Tolerance
System for Distributed Environment using Check Point Mechanism and
Replication,” International Journal of Computer Applications., vol. 975,
pp. 8887, 2017.

[16] J. Wu. “Checkpointing and recovery in distributed and database
systems,” 2011.

[17] D. Poola, M. A. Salehi, K. Ramamohanarao and R. Buyya, “A
taxonomy and survey of fault-tolerant workflow management systems in
cloud and distributed computing environments,” in Software
Architecture for Big Data and the Cloud., pp. 285-320, Jan 2017.

[18] T. Sterling, M. Anderson and M. Brodowicz, “High performance
computing: modern systems and practices,” Morgan Kaufmann., Dec
2017.

