Thin chemisorbed polyaniline film on cobalt oxide as an electrode for hybrid energy storage devices

 Dr. Izan Izwan Misnon^a, Dr. Syam G. Krishnan^b, Prof. Rajan Jose^a
^a Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, 26300, Malaysia
^b Graphene and Advanced 2D Materials Research Group, School of Science and Technology, Sunway University, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia

ABSTRACT

Electrical charge storing electrodes and their surface modification are intensively investigated to improve the charge storability indicators in electrochemical energy storage devices. Here, the effects of a thin chemisorbed polyaniline (PANI) film on the charge storage behavior of rod-shaped spinal-type cobalt oxide (Co₃O₄) nanorods (PANI@Co₃O₄) are detailed for fabrication of battery–supercapacitor hybrid (BSH) devices. The PANI@Co₃O₄ showed larger surface area and optimum porosity properties, which contributed to \sim 50 % enhanced specific charge than that in the Co₃O₄. The deconvoluted total charge storage gain showed more contribution to the bulk-diffusion controlled process (battery-type), lower ion transport resistance and Warburg impedance in the PANI@Co₃O₄ electrode than that in the Co₃O₄. Two-sets of BSH devices are fabricated using PANI@Co₃O₄ as a positive electrode and mesoporous carbon (MC) and activated carbon (AC) negative electrodes in an aqueous electrolyte and benchmarked with symmetric supercapacitors fabricated using the two carbons. The PANI@Co₃O₄//MC device showed nearly two-fold higher specific energy (E_s) than that of PANI@Co₃O₄//AC. Interestingly, AC//AC symmetric supercapacitors showed twofold higher E_s than the MC//MC device. Origin of differences in the charge storage behavior of the two types of devices are systematically analyzed and reported.

KEYWORDS

Chemisorption; Electrochemical energy storage; Mesoporous materials; Polymernanocomposites; Pseudocapacitors

ACKNOWLEDGEMENT

This work was supported by the Malaysian Ministry of Education under the Fundamental Research Grant Scheme, FRGS/1/2018/STG07/UMP/02/3 (RDU190142).