
BALKAN JOURNAL 
OF APPLIED MATHEMATICS 

AND INFORMATICS

(BJAMI)

GOCE DELCEV UNIVERSITY - STIP 
FACULTY OF COMPUTER SCIENCE

ISSN 2545-4803 on line

YEAR 2021                                                                 VOLUME IV, Number 2



BALKAN JOURNAL 
OF APPLIED MATHEMATICS 

AND INFORMATICS

(BJAMI)

GOCE DELCEV UNIVERSITY - STIP 
FACULTY OF COMPUTER SCIENCE

ISSN 2545-4803 on line

YEAR 2021                                                                 VOLUME IV, Number 2



Managing  editor
Biljana Zlatanovska Ph.D.

Editor in chief
Zoran Zdravev Ph.D.

Lectoure
Snezana Kirova

Technical editor
Sanja Gacov

Address of the editorial office
Goce Delcev University – Stip
Faculty of philology
Krste Misirkov 10-A 
PO box 201, 2000 Štip, 
Republic of North Macedonia

AIMS AND SCOPE:
BJAMI publishes original research articles in the areas of applied mathematics and informatics.

Topics:
1. Computer science;
2. Computer and software engineering;
3. Information technology;
4. Computer security;
5. Electrical engineering;
6. Telecommunication;
7. Mathematics and its applications;
8. Articles of interdisciplinary of computer and information sciences with education,  

economics, environmental, health, and engineering.

BALKAN JOURNAL 
OF APPLIED MATHEMATICS AND INFORMATICS (BJAMI), Vol 3

ISSN 2545-4803 on line
Vol. 4, No. 1, Year 2021



EDITORIAL BOARD

Adelina Plamenova Aleksieva-Petrova, Technical University – Sofia, 
Faculty of Computer Systems and Control, Sofia, Bulgaria

Lyudmila Stoyanova, Technical University - Sofia , Faculty of computer systems and control, 
Department – Programming and computer technologies, Bulgaria 

Zlatko Georgiev Varbanov, Department of Mathematics and Informatics, 
Veliko Tarnovo University, Bulgaria 

Snezana Scepanovic, Faculty for Information Technology, 
University “Mediterranean”,  Podgorica, Montenegro

 Daniela Veleva Minkovska, Faculty of Computer Systems and Technologies, 
Technical University, Sofia, Bulgaria

 Stefka Hristova Bouyuklieva, Department of Algebra and Geometry, 
Faculty of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria

Vesselin Velichkov, University of Luxembourg, Faculty of Sciences, 
Technology and Communication (FSTC), Luxembourg

Isabel Maria Baltazar Simões de Carvalho, Instituto Superior Técnico, 
Technical University of Lisbon, Portugal 

Predrag S. Stanimirović, University of Niš, Faculty of Sciences and Mathematics, 
Department of Mathematics and Informatics, Niš, Serbia

Shcherbacov Victor, Institute of Mathematics and Computer Science, 
Academy of Sciences of Moldova, Moldova

Pedro Ricardo Morais Inácio, Department of Computer Science, 
Universidade da Beira Interior, Portugal

Georgi Tuparov, Technical University of Sofia Bulgaria 
Dijana Karuovic, Tehnical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia

Ivanka Georgieva, South-West University, Blagoevgrad, Bulgaria
Georgi Stojanov, Computer Science, Mathematics, and Environmental Science Department 

The American University of Paris, France
Iliya Guerguiev Bouyukliev, Institute of Mathematics and Informatics, 

Bulgarian Academy of Sciences, Bulgaria
 Riste Škrekovski, FAMNIT, University of Primorska, Koper, Slovenia
 Stela Zhelezova, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
 Katerina Taskova, Computational Biology and Data Mining Group, 

Faculty of Biology, Johannes Gutenberg-Universität Mainz (JGU), Mainz, Germany.
 Dragana Glušac, Tehnical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia 
 Cveta Martinovska-Bande, Faculty of Computer Science, UGD, Republic of North Macedonia
 Blagoj Delipetrov, Faculty of Computer Science, UGD, Republic of North Macedonia
 Zoran Zdravev, Faculty of Computer Science, UGD, Republic of North Macedonia
 Aleksandra Mileva, Faculty of Computer Science, UGD, Republic of North Macedonia
 Igor Stojanovik, Faculty of Computer Science, UGD, Republic of North Macedonia
 Saso Koceski, Faculty of Computer Science, UGD, Republic of North Macedonia
 Natasa Koceska, Faculty of Computer Science, UGD, Republic of North Macedonia
 Aleksandar Krstev, Faculty of Computer Science, UGD, Republic of North Macedonia
 Biljana Zlatanovska, Faculty of Computer Science, UGD, Republic of North Macedonia
 Natasa Stojkovik, Faculty of Computer Science, UGD, Republic of North Macedonia
 Done Stojanov, Faculty of Computer Science, UGD, Republic of North Macedonia
 Limonka Koceva Lazarova, Faculty of Computer Science, UGD, Republic of North Macedonia
 Tatjana Atanasova Pacemska, Faculty of Computer Science, UGD, Republic of North Macedonia





5

C O N T E N T

Savo Tomovicj
ON THE NUMBER OF CANDIDATES IN APRIORI LIKE 
ALGORITHMS FOR MINIG FREQUENT ITEMSETS  ..................................................................7

Biserka Simonovska, Natasa Koceska, Saso Koceski
REVIEW OF STRESS RECOGNITION TECHNIQUES AND MODALITIES  .............................21

Aleksandar Krstev and Angela Velkova Krstev
THE IMPACT OF AUGMENTED REALITY IN ARCHITECTURAL DESIGN  ...........................33

Mirjana Kocaleva and Saso Koceski
AN OVERVIEW OF IMAGE RECOGNITION AND 
REAL-TIME OBJECT DETECTION  ...............................................................................................41

Aleksandar Velinov, Igor Stojanovic and Vesna Dimitrova
STATE-OF-THE-ART SURVEY OF DATA HIDING IN ECG SIGNA  ...........................................51

The Appendix  .....................................................................................................................................70

Biljana Zlananovska and Boro Piperevski
DYNAMICAL ANALYSIS OF THE THORD-ORDER AND A 
FOURTH-ORDER SHORTNED LORENZ SYSTEMS  ..............................................................71

Slagjana Brsakoska, Aleksa Malcheski
SPACE OF SOLUTIONS OF A LINEAR DIFFERENTIAL EQUATION 
OF THE SECOND ORDER AS 2-NORMED SPACE ......................................................................83

Limonka Koceva Lazarova, Natasa Stojkovikj, Aleksandra Stojanova, Marija Miteva
APPLICATION OF DIFFERENTIAL EQUATIONS IN 
EPIDEMIOLOGICAL MODEL  ........................................................................................................91



6



70

The Appendix 

In honor of the first Doctor of Mathematical Sciences Acad. Blagoj Popov, a 
mathematician dedicated to differential equations, the idea of holding the "Day of Differential 
Equations" was born, prompted by Prof. Ph.D. Boro Piperevski, Prof. Ph.D. Borko Ilievski, 
and Prof. Ph.D. Lazo Dimov. Acad. Blagoj Popov presented his doctoral dissertation on 
05.05.1952 in the field of differential equations. This is the main reason for holding the " Day 
of Differential Equations" at the beginning of May. 

This year on May 7th, the "Day of Differential Equations" was held for the sixth time 
under the auspices of the Faculty of Computer Sciences at "Goce Delcev" University in Stip 
and Dean Prof. Ph.D. Cveta Martinovska - Bande, organized by Prof. Ph.D. Biljana 
Zlatanovska. The event was organized online via the platform Microsoft Teams and with the 
selfless help and support of Prof. Ph.D. Natasa Stojkovik, Ass. Prof. Ph.D. Limonka Koceva 
Lazarova, Ass. Prof. Ph.D. Marija Miteva, Ass. Prof. Ph.D. Mirjana Kocaleva, Ass. Prof. Ph.D. 
Aleksandra Stojanova. 

The participants of this event were:   

1. Prof. Ph.D. Boro Piperevski, Prof. Ph.D. Sanja Atanasova and Stefan Boshkovski 
(student) from the Faculty of Electrical Engineering and Information Technology 
at  Ss. Cyril and Methodius, University in Skopje; 

2. Prof. Ph.D. Aleksa Malcheski from the Faculty of Mechanical engineering at  Ss. 
Cyril and Methodius, University in Skopje; 

3. Prof. Ph.D. Slagjana Brsakoska from the Faculty of Natural Sciences and 
Mathematics at  Ss. Cyril and Methodius, University in Skopje; 

4. Prof. Ph.D. Natasa Stojkovik, Prof. Ph.D. Martin Lukarevski, Ass. Prof. Ph.D. 
Limonka Koceva Lazarova, Ass. Prof. Ph.D. Marija Miteva, Ass. Prof. Ph.D. 
Mirjana Kocaleva, Ass. Prof. Ph.D. Aleksandra Stojanova, Ass. Prof. Ph.D. 
Jasmina Buralieva Veta, Ass. Prof. Ph.D. Elena Karamazova, Prof. Ph.D. Biljana 
Zlatanovska from the Faculty of Computer Sciences at "Goce Delcev" University 
in Stip. 

Acknowledgments to Prof. Ph.D. Boro Piperevski, Prof. Ph.D. Borko Ilievski and Prof. 
Ph.D. Lazo Dimov for the wonderful idea and the successful realization of the event this year 
and in previous years. 

Acknowledgments to the Dean of the Faculty of Computer Sciences, Prof. Ph.D. Cveta 
Martinovska - Bande for her overall support of the organization and implementation of the 
"Day of Differential Equations". 

The papers that emerged from the "Day of Differential Equations" are in the appendix 
to this issue of BJAMI. 



91

Balkan Journal of Applied Mathematics and Informatics Print ISSN ??? 
Volume 4 Number 2 
Year 2021 

Online ISSN ??? 
UDK: ??? 

 

1 
 

APPLICATION OF DIFFERENTIAL EQUATIONS IN  
EPIDEMIOLOGICAL MODELS 

L. K. LAZAROVA, N. STOJKOVIKJ, A. STOJANOVA, M. MITEVA 

Abstract. Mathematical modelling is a tool for presenting objects and processes with 
mathematical language and mathematical rules. Mathematical models can be used for 
research in public health and epidemiology. Nowadays, during the COVID19 outbreak, 
mathematical modelling is playing a central role in controlling the spread of infection, 
making predictions that can help monitoring the epidemic and making adequate 
responses, in order to lower the number of new infections. In this paper, several models 
commonly used to control the spreading of infections are considered. These models can 
also help controlling the COVID 19 infections. 

1. Introduction 

Mathematical modelling describes processes and objects by using mathematical 
language, and computer simulation, on the other hand, presents a natural continuation 
of mathematical modelling. Computer simulation can be considered a kind of a 
computer experiment which corresponds to an experiment in the real world. When a 
mathematical model is made, mathematical analysis, combined with computer 
simulations, is used to investigate the global behavior of the model, thus obtaining the 
consequences of the assumptions [1-2]. 

Mathematical models can help to synthesize information from different sources into 
one consistent framework that allows an integrated analysis of complex problems. 
Mathematical models, also, can be used as a useful tool in research in the field of 
public health, especially epidemiology. These models in the field of public health can 
be used to simulate the impact of different interventions or strategies, and to provide 
quantitative predictions of how interventions can affect the population’s health in the 
future, [2-3]. 

The idea that the transmission and spread of infectious diseases can follow laws that 
can be presented and formulated in a mathematical language is not new. Nowadays, 
living in the COVID 19 pandemic, finding some mathematical models for 
epidemiology uses is a key tool for guiding public health measures, [2]. The main idea 
in transmission epidemiology models is opposed to statistical models. Epidemiology 
models present a mechanistic description of infection transmission among individuals. 
This mechanistic description can describe the time evolution of an epidemic in 
mathematical terms, and, in this way, it can connect the individual level process of 
transmission with the population level of incidence and prevalence of an infectious 
disease. For obtaining a mathematical formulation of these dependencies it is 
necessary to analyze all dynamic processes that contribute to disease transmission. 

LIMONKA KOCEVA LAZAROVA, NATASA STOJKOVIKJ, ALEKSANDRA STOJANOVA, MARIJA MITEVA

UDC: 517.932:{616.98:578.834]-036.21
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Mathematical modelling, for this purpose, can be integrated with knowledge from 
different disciplines like social sciences, clinical sciences, or microbiology. [4-6] 

In the last several decades, mathematical modelling used in public health and 
infectious disease control has been proven to be a standard practice and a useful tool 
in decision-making. During the outbreak of the influenza pandemic in 2009, 
mathematical modelling helped researchers to make decisions in order to obtain an 
adequate national response to control outbreak in the early phase of the pandemic. The 
mathematical model also helped to adopt vaccination strategies in the later phase of 
pandemic. These models were also used for estimating the key parameters for outbreak 
control during the Ebola Epidemic [6-9]. 

During the pandemic of Covid 19, mathematical modelling, according to previous 
experiences, can also be used and has been used for taking outbreak control, and taking 
appropriate measures such as lock down, case isolation, contact-tracing with 
quarantine, and sanitary funeral practices in order to lower the numbers of new 
infections. As vaccines have become available, mathematical models can be used for 
adopting vaccination strategies and thus monitor and predict the impact of vaccination 
on the epidemic [5-6, 10].    

In this paper, we are considering the mathematical models that are commonly used for 
the spread of infectious diseases. These models are SI, SIS, SIR, SIRS, and SEIR 
model without vital dynamics.  These models can be used for prediction, control, and 
treatment of infectious diseases. 

 

2. Mathematical models  

 

For all models that are considered in this paper, it is assumed that the initial population 
is N individuals. The susceptible group is formed from the total population that is at 
risk of a disease. Over time, out of this population some susceptible individuals will 
become infected. All infected people are forming the infectious group. The member of 
the infected group will contribute to onwards transmission.  

The infected individuals may recover and acquire life immunity or transient 
immunity. the recovered people will form the recovered group. On the other side, some 
of the infected persons die. Those who die will form the death group, [11-14]. 
 
2.1. SI model – without vital dynamics  
 
The simplest model for the spread of an infection is the SI model, which tracks the 
fraction of a population in each of two groups: susceptible and infected. The sizes of 
these groups are functions of time t. They we will be denoted with S(t) – susceptible 
group and I(t) – infected group.  

Limonka Koceva Lazarova, Natasa Stojkovikj, Aleksandra Stojanova, Marija Miteva
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In the SI model without vital dynamics, any change (births and deaths) in the 
population is ignored. Because of that, this model is also called “closed epidemic 
model” with a fixed size of population, N = S + I.  
In Figure 1 the SI model is represented. 

 
     Figure 1. SI Model 
 
From Figure 1 we can conclude that susceptible individuals become infected with rate 
β. A pair of ordinary differential equations describes this model: 
 

                                          (2.1) 

β is the transmission (infection) rate, i.e. the rate of the virus spread that represents the 

probability for disease transmission between a susceptible individual and an infected 

individual. 

The expressions denote the change in the susceptible and infected 
groups during time, respectively.  

Because the total population , it follows that

. 

The differential equation is known as the logistic growth equation, proposed by 

Verhulst (1845) for population growth. 

. 

For the solution of the differential equation the logistic curve is obtained 

. 

     Figure 2 represents the number of suspectable and infected individuals. When 
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Figure 2.  Suspectable and infected individuals in the SI model 

 

2.2. SIS model 

An infected individual can recover from infection and return unprotected to the 

suscectible group. After that, these individuals can be infected again. These cases can 

be modelled by using the SIS model that is presented in Figure 3. 

  
Figure 3. SIS Model 

For a fixed population, where there are no births or deaths and persons recover from 

the disease with a recovery rate ξ, the simplest form of the model in Figure 3 is given 

with the following differential equations: 

                                                    (2.2) 

where , and  (immunization time) represents the duration of the 

temporal immune response of the recovered population. After this period, the persons 
return unprotected to the suscectible group. 
The basic reproduction number  is the average number of infected contacts from 

an infected individual. is a very important parameter in the model because it allows 
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us to find out the secondary cases produced by one person in a field. If , the 
pandemic will disappear spontaneously, while with   it will continue spreading. 

Because , it follows  

                                                (2.3) 

By solving of the equation (2.3), with the initial condition I(0) = I0, the following 

solution is obtained: 

   .                       (2.4) 

The long-term behaviour of the system can be estimated considering the possible 

values of . 

If ,  as , then the following equilibrium state is 

obtained: 

 

When ,  as ,  and then . 

There are two equilibrium states for the SIS model. The equilibrium points for I which 

can be obtained by setting . The first is I*=0 (disease free 

state) and for . The second equilibrium point can be obtained from 

 From this, the second fixed 

point is and  
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represents the case when R0 ≤ 1 and the system is in a disease-free steady state.  Figure 

4 b) represents the case when R0 >1 and the infected individual leads to more than one 

infection, thus spreading the pathogen in the population, ξ. 

 
       a) R0 = 0.78, β = 0.7, ξ = 0.9.                                 b) R0 = 2.5, β = 0.5, ξ = 0.2. 

Figure 4. Density versus time for the SIS model without vital dynamics where N = 1, 

S(0) = 0.9, and I(0) = 0.1, [12]. 

 

2.3. The General Epidemic Model – SIR Model  

 
The SIR model was proposed by Kermack and McKendrick in 1927. The 
KermackMcKendrick model is based on several assumptions: there are no births and 
deaths in the population, the population is closed, all recovered individuals have 
complete immunity and cannot be infected again. In the SIR model, the population is 
divided into three groups: susceptible individuals - S(t), infective individuals - I(t) and 
recovered individuals R(t).   
The number of individuals in each class changes during time, since S(t), I(t), and R(t) 
are functions of time t. The total population size N is the sum of the sizes of these three 
classes: , where is the total population.  
First, the SIR model without vital dynamics is considered. This model is not a dynamic 
model, i.e., the rate of birth and the death rate are not included in the model. The SIR 
without dynamics model is represented in Figure 5.  

 
Figure 5. SIR model without vital dynamics. 

The SIR model is described by the system of the following differential equations: 

( ) ( ) ( )S t I t R t N+ + = N

Limonka Koceva Lazarova, Natasa Stojkovikj, Aleksandra Stojanova, Marija Miteva
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                                      (2.5) 

 
and I(0) = I0, S(0) = S0 and R(0) = R0 are the initial conditions.  
 
The parameter β is the transmissions rate, and the parameter γ is the recovery rate. The 

recovery time is . 

Because  , the number of susceptible individuals is always decrementing, 

independently of the initial condition S(0). Since S(t) is monotonous and positive t, 
 The number of recovered R(t) is monotone and bounded by N, and 

 for all t (the number of recovered individuals always incrementing), 

  

On the other side, the number of infected individuals can be either monotonically 
decreasing to zero or it may have non-monotone behaviour by first increasing to some 
maximum value, and after this decreasing to zero. The number will firstly be 

increasing if . So, the number of infected individuals will 

be increasing initially if  from where    

 
To determine  S∞ and R∞, the first equation is divided by the third equitation from (2.5): 
 

                                                         (2.6) 

which is a separable equation, and its solution is: 

.                        (2.7) 

So, it follows that S∞ > 0 and this variable is called the final size of the epidemic. 

The epidemic will be finished, if  then  The last can be obtained 

by integrating the first equation in (2.5). 
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On the beginning of an epidemic, it is assumed that the number of infected individuals 

I(0) is from  and , the number of infected individuals is 

  

With integrating of the equation (2.6) the total number of infected people from the 

beginning of the epidemic up to its end is obtained: 

                   (2.8) 

where c is a constant and S(¥) is the number of susceptible individuals at the end of 

the pandemic. Since the number of the initially infected individuals is small, the 

following is obtained: 

                                    (2.9) 

where c’ is a constant.  

The basic reproduction number   is an average number of secondary infections 

caused by a single infectious individual. This notation is a general notation in literature 
for the basic reproduction number, and it is different from the initial number of 
recovered individuals . The importance of the basic reproduction number 
can be seen if second equation in (2.5) is rewritten in the following way: 
 

                                        (2.10) 

If (2.10) is not positive, then  the epidemic will be avoided. Otherwise, if 

(2.10) is positive the epidemic will occur. 

Figure 6 represents the limiting values of the S, I, and R groups for different values of 

R0 where N is normalized to 1. 
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Figure 6. Density versus time for the SIR model without vital dynamics where N = 1, 

S(0) = 0.99, I(0) = 0.01 and R(0) = 0, [12]. 

If in the SIR model the birth and death rates are included, then the SIR model is with 

vital dynamics. 

 
2.4. SIRS model          

 
 The SIRS model is obtained from the basic SIR model, but in this model the 

infected individuals can recover from infection and return unprotected to the 

suscpectible group. After that, these persons can be infected again. The SIRS model is 

represented in Figure 7. 

 
Figure 7. SIRS model 

 
The model is described by the following system of differential equations: 
 

 , ,dS SI dI SI dRR I I R
dt N dt N dt
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Where the parameter  is the rate by which the recovered people return to the 

susceptible group due the loss of immunity and  is the time of 

immunization. 

This system has two equilibrium points DFE,  and EE 

equilibrium point  

 
Figure 8 a) represents the case when R0 ≤ 1 and the system is in a disease-free steady 

state.  Figure 8 b) represents the case when R0  > 1. 

 

      a) R0 = 0.95, β = 0.95, g = 1, ξ= 0.5.                b) R0 = 3, β = 0.6, g= 0.2, ξ = 0.85 

Figure 8. Density versus time for the SIR model without vital dynamics where N = 1, 

S(0) = 0.9, I(0) = 0.1 and R(0) = 0,  [12]. 

If in the SIRS model the birth and death rates are included, then the SIRS model is 

with vital dynamics. 

 

2.5. SEIR Epidemic Model 

The total population is divided into four groups: susceptible individuals - S(t), exposed 

individuals - E(t), infective individuals - I(t) and recovered individuals - R(t). 

In the SEIR model, a new group of individuals – the exposed group is added. Exposed 

individuals are the people who are infected, but they are not yet able to transmit the 

disease to other individuals.  

x
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( ) ( ) ( )* * *
0 0

0 0 0

, , , 1 , 1 .N N NS I R R R
R R R

x g
g x g x

æ ö
= - -ç ÷+ +è ø

Limonka Koceva Lazarova, Natasa Stojkovikj, Aleksandra Stojanova, Marija Miteva



101

                APPLICATION OF DIFFERENTIAL EQUATIONS IN EPIDEMIOLOGICAL MODELS
  11 
 

 
 

 

Figure 9. SEIR model 

The size of population is constant and . For this model, 

the ordinary differential equations are: 

 

where  is the incubation rate, i.e., the rate by which the latent patients 

become infectious and  is the time of incubation. 

Since latency delays the start of the individual’s infectious period, the secondary 

spread from an infected individual will occur at a later time compared to an SIR model, 

which has no latency. Therefore, including a longer latency period will result in a 

slower initial growth of the outbreak. However, since the model does not include 

mortality, the basic reproductive number, , does not change. 

3. Conclusion 

SI, SIS, SIR, SIRS, and SEIR are mathematical models that can be used for spreading 

of different infectious diseases. The advantages of using mathematical models in 

epidemiology are in the fact that mathematical representation of biological processes 

enables transparency and accuracy regarding the epidemiological assumptions. This 

allows researchers to test understanding of the disease epidemiology by comparing 

model results and results obtained from observation. Also, mathematical models can 

help predict outcomes of taking measures for stopping the spread of infections, as well 

as taking new appropriate measures. 

 

( ) ( ) ( ) ( )N I t S t R t E t= + + +

, , ,dS SI dE SI dI dRE E I I
dt N dt N dt dt

b b a a g g= - = - = - =

1

incubation

a
t

=

incubationt

0R
b
g

=
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