LUND UNIVERSITY

Understanding and Improving Continuous Experimentation
From A/B Testing to Continuous Software Optimization
Ros, Rasmus

2022

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Ros, R. (2022). Understanding and Improving Continuous Experimentation: From A/B Testing to Continuous
Software Optimization. Department of Computer Science, Lund University.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/ab3676cc-bb8a-41c6-98f0-8b5c8380b404

Understanding and Improving
Continuous Experimentation

From A/B Testing to Continuous Software Optimization

Rasmus Ros

Doctoral Dissertation, 2022
Department of Computer Science

LUND

UNIVERSITY

This thesis is submitted to the Research Education Board of the Faculty of Engineering
at Lund University, in partial fulfilment of the requirements for the degree of Doctor of
Philosophy in Engineering.

© Rasmus Ros 2022

Department of Computer Science
Faculty of Engineering
Lund University

Dissertation 68, 2022
LU-CS-DISS: 2022-02
ISSN: 1404-1219

ISBN: 978-91-8039-177-1 (print)
ISBN: 978-91-8039-178-8 (pdf)

Printed in Sweden by Tryckeriet i E-huset, Lund, 2022

Abstract

Controlled experiments (i.e. A/B tests) are used by many companies with user-intensive
products to improve their software with user data. Some companies adopt an experiment-
driven approach to software development with continuous experimentation (CE). With
CE, every user-affecting software change is evaluated in an experiment and specialized roles
seek out opportunities to experiment with functionality.

The goal of the thesis is to describe current practice and support CE in industry. The
main contributions are threefold. First, a review of the CE literature on: infrastructure and
processes, the problem-solution pairs applied in industry practice, and the benefits and
challenges of the practice. Second, a multi-case study with 12 companies to analyze how
experimentation is used and why some companies fail to fully realize the benefits of CE. A
theory for Factors Affecting Continuous Experimentation (FACE) is constructed to realize
this goal. Finally, a toolkit called Constraint Oriented Multi-variate Bandit Optimization
(COMBO) is developed for supporting automated experimentation with many variables
simultaneously, live in a production environment.

The research in the thesis is conducted under the design science paradigm using empirical
research methods, with simulation experiments of tool proposals and a multi-case study
on company usage of CE. Other research methods include systematic literature review and
theory building.

From FACE we derive three factors that explain CE utility: (1) investments in data infras-
tructure, (2) user problem complexity, and (3) incentive structures for experimentation.
Guidelines are provided on how to strive towards state-of-the-art CE based on company
factors. All three factors are relevant for companies wanting to use CE, in particular, for
those companies wanting to apply algorithms such as those in COMBO to support person-
alization of software to users’ context in a process of continuous optimization.

Popular Summary

Battre programvara med experiment

Rasmus Ros, Inst. fér Datavetenskap, Lunds Universitet

LLA har frustrerats av komplex och
ointuitiv programvara som ir svar
att anvinda. Samtidigt ir pro-
gramvaran pi t.ex. stora ehandelsbolag s
enkel att anvinda att man med ett enda
klick kan fa en vara hemlevererad. Skillna-
den ligger i att man inom ehandeln opti-
merar programvaran sé att den anpassas till
anvindares individuella behov genom kon-
tinuerliga experiment.

Programvara blir allt mer komplicerad att
utveckla och anvinda. Man ir dessutom allt
mer beroende av programvara i sin vardag
i takt med att fler industrier digitaliseras.
Pg.a. den stindigt 6kande mingden och
komplexiteten av programvara sa ar det litt
att anvindarvinlighet far stryka pa foten.
Om en programvara dr anvindarvinlig sa
hjilper den anvindaren att 16sa olika pro-
blem p4 ett smidigt sitt. For att uppnd det si
behéver programvaruutvecklarna ocksa job-
ba med kontinuerlig forbittring av anvin-
darvinlighet.

En metod for att utvirdera forbittringar i
programvara dr experiment dir man pro-
var att lansera en férindring i program-
varan for hilften av anvindarna samtidigt

som den andra hilften fortsitter anvinda
en gammal variant. Genom att mita an-
vindarménstren for de olika programvaru-
varianterna kan man utvirdera hur mycket
bittre—eller simre—indringen blev. Den
hir typen av experiment med tvéd varianter
kallas vanligen A/B-test.

Experimentering mojliggors av dagens upp-
kopplade virld dir programvaran fér olika
system och enheter kan uppdateras och dven
overvakas via nitet s att anvindardata sam-
las in. Tillimpningen p& programvara har
nyligen blivit populir for foretag som pro-
ducerar programvara f6r webb-uppkopplade
produkter och tjinster dir mycket anvin-
dardata samlas in. Dessa foretag anammar
kontinuerlig experimentering dir alla for-
indringar i programvara utvirderas, dven

2222

40% Conversion

AB Testing, Seobility, CC BY-SA 4.0

vildigt sma forindringar som anvindare
kanske inte ens mirker av. Industrijittar
som Google, Microsoft, och Facebook siger
att de alltid har 1000-tals experiment iging,
sd chansen ir stor att anvindare varje dag
deltar i flera experiment.

Vilka féretag kan dra nytta av kontinu-
erlig experimentering?

Vi ville underséka méjligheterna och for-
utsittningarna for olika féretag att anvin-
da sig av experimentering. Det ir inte ba-
ra ehandel som hiller pA med A/B-testning
och kontinuerlig experimentering. Foretag
inom andra branscher med stora mingder
anvindardata anvinder sig av det i hog
utstrickning. Till exampel anvinder Spo-
tify experimentering for att vidareutveck-
la sin musikstrdmningstjanst, och King an-
vinder den for att férbittra sina mobilspel
som CandyCrush. Fragan dr dd om konti-
nuerlig experimentering kan anvindas for
att forbéttra anvindarbarheten hos alla pro-
gramvarusystem, dven sidana med 6kinda
anvindningssvérigheter, si som system for
journalhantering eller tidrapportering. Vir
forskning visar att svaret tyvirr ir nej.

Baserat pé en studie med 12 foretag skapade
vi en teori som forklarar orsakerna till att £6-
retag lyckas med experiment. Det kan sam-
manfattas med tre faktorer som berér infra-
strukturen for anvindardata, komplexiteten
av problemomradet, och typen av affirsmo-
dell som anvinds. Alla tre faktorer behéver
beaktas for att framgangsrikt anvinda kon-
tinuerlig experimentering.

Forst, maste infrastrukcuren for data vara pa
plats, det krivs oerhort mycket arbete for att
samla in och analysera data frin alla delar
av en stor produkt. Om det saknas datain-
samling pa nigon del av en produkt kan den
delen av produktens funktionalitet inte for-
bittras med experimentering. Detta kan lik-
nas vid behovet av att digitalisera i andra in-
dustrier for att kunna dra fordel av datain-
samling. Saledes behéver dven programvara
digitaliseras.

For det andra, om problemet som program-
varan 16ser for anvindare dr komplext sa ir
det dven svart att mita och jimféra anvin-
darupplevelsen av olika programvaruvarian-
ter. Till exempel, om man tittar pa Kings
spel sd dr anvindningen uppdelad i smé
spelnivier som gor anvindarinteraktionen
mindre komplex och siledes litt att mita.

Slutligen spelar affirsmodeller ocksé en av-
gorande roll di de péaverkar vilka incita-
ment som finns for att férbittra program-
vara. Jamfor ett programvarusystem som ut-
vecklas for ett engangsbelopp mot en pre-
numerationsbaserad tjinst. For system som
det betalas en engingssumma for si finns
det ingen anledning att vidareutveckla det—
man har redan fatt betalt. Med en prenu-
merationsbaserad tjinst som Spotify sd kom-
mer anvindarna att avsluta sin prenumera-

vi

tion om anvindarupplevelsen ir dilig och
dirfor finns incitament till stindig forbitt-
ring. Aven att utvirdera programvaran blir
littare eftersom hur manga som bérjar eller
sluta prenumerera pa tjiansten kan mitas.

Frin segmentering till personalisering

En vilkind anekdot inom A/B testningsvirl-
den lyder s& hir: om man vill ta reda pé den
bista fyllningen pd en pizza si kan man in-
te friga en massa minniskor och vilja en
blandning av vad alla svarar, resultatet blir
en odnskad sorja. Risken ér alltsd paradoxalt
nog att man fir en pizza som ingen gillar—
trots att den 4r baserad pa en undersékning
av vad alla gillar. Detta ir en risk med A/B
testning om man tar ménga smé beslut i rad
baserat pa individuella experiment.

Detta ar ett argument f6r att anpassa pro-
gramvaran till olika minniskors individella
behov, fast man kan behéva dela upp an-
vindarbasen i delgrupper for att praktiske
kunna hantera detta. Att utveckla separata
programvaror for varje anvindare ir inte ef-
fektivt, istillet beskriver man anvindare med
gemensamma drag som kallas segment och
anpassar programvaran mot dem. T.ex. kan

en anvindare vara nyborjare eller erfaren an-
vindare, hen kan anvinda programvaran for
olika syften, eller vara en betalande- eller en
gratisanvindare. Tanken 4r dd att man i varje
experiment segmenterar resultaten efter des-
sa parametrar och ser dll att varje forind-
ring 4r anpassad for varje segment av an-
vindare. Med viss reservation for risker med
krinkning av minniskors dataintegritet gar
det dven att anpassa programvara efter alder,
konsidentitet, geografisk plats, o.s.v.

Om segmentering dras till sin spets si
kan man studera kombinationer av minga
segmenteringsparametrar. Med tillrickligt
ménga parametrar kan man siga att pro-
gramvaran personaliseras till individniva.
Det ricker faktiskt med 46 stycken slump-
missiga parametrar for att varje person i Sve-
rige ska kunna illdelas ett eget unike seg-
ment, om varje parameter enhetligt antar
virdet sant eller falskt. Det krivs betydligt
firre parametrar dn si for att det ska bli
omdjligt for en minniska att verblicka el-
ler ta beslut pé resultat frin experiment med
sidan omfattande segmentering. Dirfor be-
hévs verktyg for att stddja personalisering.

Vi har tagit fram ett sddant verktyg som kan
anvindas for att personalisera och optime-
ra programvara med algoritmstyrda experi-
ment. Féretag som vill applicera verktyget—
eller liknande—behover diremot vilutveck-
lad datainfrastrukeur och tillrickligt enkelt
problemomréide for att kunna mitas. Verk-
tyget dr utvecklat i samverkan med ett fore-
tag inom ehandel med avancerad datainfra-
struktur och hég anvindning av experimen-
tering. Det 4r slippt som 6ppen killkod s&
att andra foretag kan anvinda det for att for-
bittra sin experimentverksamhet.

vii

Acknowledgements

This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous
Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation.

I would like to extend my deep gratitude to my supervisors Prof. Dr. Per Runeson and
Dr. Elizabeth Bjarnason for their constant assistance and patient advice at every stage of
my Ph.D. journey. Their guidance helped me in my research and writing—but mainly to
shape me as an independent researcher.

An array of thanks goes to the rest of my colleagues in the Software Engineering Research
Group and the CS department at Lund University. Particularly, to Dr. Emelie Engstrom for
the design science course that helped me frame my thesis, to Prof. Dr. Krzysztof Kuchcinski
and Dr. Luigi Nardi for their patience in assisting me in technical discussions, and to Prof.
Dr. Martin Host and Dr. Alma Orucevic-Alagic for being a pleasure to co-teach under.
Special thanks goes also to co-authors elsewhere; Florian Auer and Dr. Markus Borg.

Thanks also to the WASP graduate school and its leadership for arranging high quality
courses and study trips; without which my thesis would be less inspired. Beyond that,
thanks for laying the foundations on which I met my fellow WASP Ph.D.’s.

This thesis relies on collaboration between industry and academia. Therefore, a thanks goes
out to all anonymous case companies who lent me your interviewees. I would also like to
thank my former colleagues at Apptus who inspired me to pursue a Ph.D. Particularly, Dr.
Mikael Hammar who helped me find my research interests.

Finally, I offer my sincere gratitude to all of my family, without their love and support
none of this could have happened. Heartfelt thanks to my wife for always believing in me.
Thanks also to my children for inspiring me, to my mother for encouraging me, to my
sister for pushing me, and to everyone else who motivated me by engaging in my research,
despite possibly understanding little.

Rasmus Ros

ix

List of Publications

In the introduction chapter of this thesis, the included and related publications listed below
are referred to by Roman numerals.

Papers Included in the Thesis

I Controlled Experimentation in Continuous Experimentation:
Knowledge and Challenges

Florian Auer, Rasmus Ros, Lukas Kaltenbrunner, Per Runeson, and
Michael Felderer

Information and Software Technology 134: 106551, 2021.

doi: 10.1016/j.infs0f.2021.106551.

II Continuous Experimentation Scenarios: A Case Study in e-Commerce

Rasmus Ros and Elizabeth Bjarnason

Proceedings of the 44th Euromicro Conference on Software Engineering and
Advanced Applications, SEAA, 2018. doi: 10.1109/SEAA.2018.00064.

Il 'The FACE Theory for Factors at Play in Continuous Experimentation

Rasmus Ros, Elizabeth Bjarnason and Per Runeson
To be submitted to a journal.

IV Data-driven Software Design with Constraint Oriented Multi-variate Bandit
Optimization (COMBO)

Rasmus Ros and Mikael Hammar
Empirical Software Engineering 25.5: 3841-3872, 2020.
doi: 10.1007/s10664-020-09856-1.

xi

https://doi.org/10.1016/j.infsof.2021.106551
https://doi.org/10.1109/SEAA.2018.00064
https://doi.org/10.1007/s10664-020-09856-1

Related Publications

These papers are referenced in the introduction chapter of this thesis.

V Continuous Experimentation and A/B testing: A Mapping Study

VII

VIII

Rasmus Ros, Per Runeson
Proceedings of the 4th International Workshop on Rapid Continuous Software
Engineering, RCoSE, 2018. doi: 10.1145/3194760.3194766.

Continuous Experimentation with Product-Led Business Models:
A Comparative Case Study

Rasmus Ros, Elizabeth Bjarnason and Per Runeson
Proceedings of the 12th International Conference on Software Business, ICSOB,
2020. doi: 10.1007/978-3-030-67292-8_11.

Automated Controlled Experimentation on Software by Evolutionary
Bandit Optimization
Rasmus Ros, Elizabeth Bjarnason and Per Runeson

Proceedings of the 9th International Symposium on Search Based Software
Engineering, SSBSE, 2017. doi: 10.1007/978-3-319-66299-2_18.

A Machine Learning Approach for Semi-Automated Search and Selection in
Literature Studies
Rasmus Ros, Elizabeth Bjarnason and Per Runeson

Proceedings of the 21st International Conference on Evaluation and Assessment
in Software Engineering, EASE, 2017. doi: 10.1145/3084226.3084243.

xii

https://doi.org/10.1145/3194760.3194766
https://doi.org/10.1007/978-3-030-67292-8_11
https://doi.org/10.1007/978-3-319-66299-2_18
https://doi.org/10.1145/3084226.3084243

Contribution Statement

All papers included in this thesis have been co-authored with other researchers. The authors’
individual contributions to Papers I-IV are as follows.

Paper I has shared main authorship between myself and the first author, and the research
was a combined continuation on papers where we each had main authorship. I conducted
half of the data collection and analysis independently and wrote the background, result
section, and most of the discussion in the paper (I). The supervisors had mainly a guiding
and reviewing role.

I am the main author of the included papers II-IV. As such, I carried out the main part of
study design, data collection, and analysis, with input and validation from co-authors. I
wrote most of the sections in papers Il and III and all of them in Paper IV. I was responsible
for dividing the work between co-authors, the supervisors were mainly involved with giving
feedback on my independent work and writing,.

Paper IV was co-authored with an industry partner. All the code in the toolkit presented
in Paper IV is written by me.

In addition, I have authored or co-authored four papers (V=VIII) which are related to but
not included in the thesis. These are listed in the previous section.

xiii

Contents

Introduction
1 Background L
2 ResearchOverview
3 ResearchApproach.
4 Results
5 Synthesis
6 Discussion e
7 Conclusions L

Included Papers

I Controlled Experimentation in Continuous Experimentation: Knowledge and
Challenges
1 Introduction
2 Background
3 ResearchMethod
4 Results o o o o
5 Discussion e e
6 Conclusions

I Continuous Experimentation Scenarios: A Case Study in e-Commerce
1 Introduction L.
2 Method and Case Company
3 Results: Experimentation Scenarios
4 Discussionand Conclusions L.

III The FACE Theory for Factors at Play in Continuous Experimentation
1 Introduction
2 Background and Related Work oo 0000
3 Method
4 Theory Formulationof FACE

XV

41

43
44
45
50
54
68
73

75
76
77
78
82

5 'Theory Explanations and Empirical Underpinning 112
6 Discussion 123
7 Guidelines to Practitioners for ConductingCE 126
8 Conclusions 129
A InterviewGuide Lo oo 131
B CodeBook. 134

IV Data-Driven Software Design with Constraint Oriented Multi-Variate Bandit

Optimization (COMBO) 139
1 Introduction 140
2 Background and Related Work on Continuous Experimentation 141
3 Theory on Bandit Optimization of Software 145
4 Research Contextand Methods 149
5 Tooling Support for Bandit Optimization 154
6 Validation 159
7 Discussion e 168
8 Conclusions v e 173
A Replication of simulations L oL 174
References 175

Introduction

Understanding what software to develop is a challenging problem. The traditional require-
ments engineering approach [232] is to collect customer requirements before software de-
velopment is started and build the software to the derived specifications. This approach is
motivated in, e.g., cyber-physical systems where software must conform to hardware spec-
ifications [307]. Though, for domains where changes in users’ needs and preferences are
frequent, the traditional requirements engineering approach is inapt [20]. The shortcom-
ings gave rise to user-centered agile software development [90], where the software is built
iteratively to embrace change with the aid of user feedback, which is collected early and
often [39]. However, much of the decision-making in agile software engineering (SE) prac-
tice is still done based only on opinions instead of facts derived from user data [171, 220].

Experimentation has been suggested as an effective and systematic method to gauge user
perception of software changes [106]. A change in software can be subjected to a controlled
experiment where the users receive either the software with the change or an old version.
User data is collected for both groups and the difference between the two user groups are
measured quantitatively to assess their impact. In this way, only changes that have a positive
impact are accepted and delivered to all users. This type of experiment is now widespread
in SE under the term A/B testing [11, V]. Experimentation is enabled by the rise of available
user data and the ability to deliver changes to users through efficient continuous integration
and continuous delivery tools.

Companies that use experiments to a high extent have an experiment-driven approach to
software development, where software engineers or specialized roles actively search for hy-
potheses to evaluate in experiments. The results of an experiment might beget further
questions, especially for negative results to figure out what went wrong. Thus, experiments
are usually executed in a sequence, why the practice of iterative experiments is coined con-
tinuous experimentation (CE) [203].

CE is lauded foremost by industry-leading web-based companies such as Microsoft [172],
Google [286], and Facebook [107], under the name of online controlled experiments. How-
ever, CE has been studied and been applied in industry in many different applications and
domains. Examples are published in experience reports on e-commerce web shops [237,
249], mobile games [290, 321], digital libraries [322], sales tools [177], etc. Attempts have
also been made to bring experimentation to less fitting domains, such as cyber-physical
systems [122] and to products with business-to-business customers [242].

The practice of CE is multi-disciplinary. It spans the entire SE process and requires in-
volvement from both software engineers—such as software developers, quality assurance
engineers, and release engineers—and from specialized roles closer to business—such as
business analysts, data scientists, or user experience designers. Also, experiments are driven
by roles with roots primarily in different academic traditions: data scientists with quantita-
tive methods and user experience researchers with qualitative methods. As such, studying
the practice requires a multi-disciplinary approach in the boundaries between SE and other

fields.

In this thesis, CE is studied and advanced from different perspectives. The main contribu-
tions of the Papers I-IV included in this thesis are:

Paper I is a systematic literature review of CE, with an analysis of the core constituents
of CE, the solutions utilized to solve problems within CE, and the benefits and
challenges faced when conducting CE. This paper contain an extensive overview of
the body of research on CE. Industry papers on challenges and solutions dominate
the field, which indicates high relevance to practitioners.

Paper II describes the scenarios that CE is used in at a case company and conceptualizes
their defining characteristics. This is an early indication that experimentation is done
for many reasons and that the context around experimentation matters.

Paper Il presents a theory of Factors Affecting Continuous Experimentation (FACE) which
can be used to explain companies’ ability to conduct CE. It is based on a multi-case
study with 12 case companies and 27 interviewees. Guidelines were derived from the
theory concerning how practitioners can adapt to the contextual factors that affect
them in order to strive towards state-of-the-art CE practice.

Paper IV introduces a toolkit called Constraint Oriented Multi-variate Bandit Optimiza-
tion (COMBO) for conducting advanced experiments of software, developed in an
industrial collaboration. The toolkit can be used to personalize and adapt software
to a degree that is not possible using manual experiments. The toolkit uses tech-
niques, such as, machine learning and variability management with combinatorial
optimization. The paper includes an analysis on the implications to SE processes
and infrastructure.

1 Background

Many web-facing companies use continuous experimentation (CE) [203] for gauging user
perception of software changes [9, V]. By getting continuous feedback from users, software
can evolve to meet market needs. Randomized controlled experiments in particular are
emphasized by high-profile companies such as Microsoft [164], Google [286], and Face-
book [107] as an evidence-based way of designing software. This section contains back-
ground information on CE in software engineering (SE) [105] and in related fields: data
science and business; through the lens of experiments for product improvement, which is
the topic of this thesis. CE is a multi-disciplinary practice, combining both tools and pro-
cesses from continuous SE and continuous innovation practice. Finally, the section ends
with tool-assisted automated experimentation for increased throughput and personalization
using optimization methods.

1.1 Continuous software engineering

The drive towards continuous software updates is enabled by three practices [28, 270], see
Figure 1. With (1) continuous integration, changes are automatically merged and integrated.
This includes building an artifact, often multiple times per day. (2) Continuous delivery is
the process by which software is ensured to be always in state to be ready to be deployed
to production through testing and release packaging. Finally, with (3) continuous deploy-
ment, the software changes that successfully make it through the continuous integration
and continuous delivery (CICD) pipeline can be deployed automatically or with minimal
human intervention. Once in production, the software can be operated and monitored
through automation tools that build on the CICD pipeline with continuous runtime moni-
toring. In case of failure, a rollback to an earlier version of the software can be performed.
The feedback from monitoring is used to plan further coding iterations.

Test || Operate

]

N \Jont[nuous
Runtime
Monitoring

Continuous 4
Delivery || Release || Continuous

- Deployment
Deploy

Figure 1: The eight phases of a continuous integration and continuous delivery pipeline, extended with continuous deploy-
ment and continuous runtime monitoring. The visualization is adapted from a commonly used image with unclear
source [227].

Continuous [
Integration

Monitor

Continuous deployment facilitates collection of user feedback through faster release cy-
cles [99, 318]. With faster release cycles comes the ability to release smaller changes; the
smaller the changes are, the easier it becomes to trace feedback to specific changes. This
has enabled several other derived continuous SE practices—beyond continuous runtime

R s a

~»~ Business <¢-BizDev-p- Development <¢-DevOps> Operations -4
Strategy

)

| Continuous Integration |

Cglntinuous [Continuous Deployment] Continuous Trust
anning ; : :

: | Continuous Delivery |
Continuous

Budgeting | Continuous Verification | Continuous Run-
time Monitoring

| Continuous Security |
Continuous Innovation and
Continuous Experimentation

Figure 2: Adaption of the continuous * research road map for continuous software engineering by Fitzgerald et al. [113], with
some practices omitted.

monitoring—as explained in the continuous * overview paper by Fitzgerald and Stol [113],
for example, continuous experimentation and continuous security. A visualization of con-
tinuous * is shown in Figure 2. The value of adopting the derived continuous SE practices is
perceived as high by practitioners, according to Johanssen et al. [152]. Continuous innova-
tion and continuous experimentation, in particular, creates opportunities for collaboration
by bridging all the departments involved with software engineering: business, development,
and operations.

1.2 DevOps and BizDev

Successful implementation of a CICD pipeline should join the incentives of development
and operations departments, such that developers can release often and operations get access
to powerful tools to monitor and manage software. This has introduced the DevOps [92]
concept in SE where numerous activities are automated and thereby able to be performed
continuously: continuous delivery, continuous monitoring, etc. DevOps is also a role or
title in some companies while at others it is used for naming the collaboration between the
departments. We are also starting to see the rise of the analogous BizDev [113, 115, 116, 212,
303] concept that combines the responsibilities of the sales & marketing and development
departments. The overlapping concept of growth hacking is a more pervasive term used by
practitioners (see Section 1.3.2).

Experimentation is part of both the DevOps and BizDev concepts although for different rea-
sons. DevOps generally do regression-oriented experiments to verify that software releases
contain no changes that degrade the performance [264]. BizDev instead conduct business-
oriented experiments to, e.g., increase the product’s ability to acquire customers [288].
Note that, business related metrics are usually not available in the CICD pipeline tools
(while software performance metrics are); thus the involvement of the software develop-
ment department might be necessary to conduct the wanted experiments in BizDev.

1.3 Continuous innovation

Many software companies make very incremental improvements or find niches of existing
technology. Continuous innovation is a suitable practice for business model innovation un-
der those circumstances [287]. Business related aspects of CE are included in Paper III.
Compared to CE, continuous innovation considers all aspects of a business model, includ-
ing product, processes, and organization, etc. Two concrete methodologies are popular in
industry under the continuous innovation umbrella: (1) lean startup and (2) growth hacking.

1.3.1 Lean startup

Lean startup is a methodology [240] for entrepreneurship and product development that
emphasises short development cycles to obtain feedback on whether a proposed business
model or product is viable as early as possible. Experimentation in lean startup is pre-
dominately on prototypes rather than on completed functionality, presumably due to the
immature products in startup companies. The goal of the experimentation is to find a
minimum viable product (MVP), which is the smallest set of features that solve the users’
problems. Pivoting is another method in the lean startup toolkit where the entrepreneur
should realize when the current MVP is failing and break from continuous innovation and
experimentation by abruptly changing direction in the business model or product.

1.3.2 Growth hacking

Products that have achieved initial success should move to a focus on growth, according
to the growth hacking movement [95]. The focus is on scalable business models, where
customers can be acquired rapidly once the business get going. Today, there are specialized
roles for growth [96]: growth marketers, growth engineers, or growth hackers. These roles
are hybrids between marketers and software engineers that work data-driven with experi-
mentation and analysis to drive a company’s user growth.

1.4 Continuous experimentation

Continuous experimentation is an overarching approach to SE [105] which considers the
whole software life-cycle, from prioritization, development, to operations. The RIGHT
model by Fagerholm et al. [106] describe the process and infrastructure model with in-
spiration from lean startup and places experimentation in a continuous SE context. The
researched topics on CE in SE are covered extensively in Paper I. CE has also been stud-
ied in the human-computer interaction and data science fields under the names of: wuser
experience research and online controlled experiments, respectively.

A randomized controlled experiment (or A/B test, bucket test, or split test) is a test of a
hypothesis, where one ore more variables are systematically changed to isolate the effects
of the changes from influencing factors. In SE, a controlled experiment is usually used
to tweak the user-facing parts of the software or to validate a new product feature with
user data [V]. The metric in the experiment can be anything from the user experience (e.g.
clicks), software stack (e.g. duration of a request), or sales process (e.g. conversion rate of
potential customers).

1.4.1 Experiments in user experience research

Experiments have been suggested as a helpful method in the user experience (UX) research
handbook [156, 257]. UX research is a methodology to systematically study how users
interact with products. UX aspects are touched on in Papers Il and IV but is not a major
topic of this thesis. However, a majority of the published examples of experiments in CE
literature make changes in the user interface [V], probably because changes in the user
interface are easy to experiment on. As such, involvement by the roles UX researcher and
designer is warranted in CE. Many methods for UX research are qualitative, since the focus
is on solving user problems that requires knowing why users struggle with specific designs.
For example, focus groups can be used on sketches or prototypes to gather detailed user
opinions. These opinions can serve as hypothesis in quantitative experimentation and thus
the quantitative and qualitative methods complement each other well.

1.4.2 Online controlled experiments

Controlled experiments have gained considerable interest in data science venues [I] and
large web-facing companies dominate the research in the field, such as Google [286] and
Facebook [128]. The seminal paper by Kohavi et al. [171] at Microsoft on CE with guide-
lines on controlled experiments is a recommended read. The research on online con-
trolled experiments is focused on increased scalability, efficiency, and utility. For exam-
ple, Google describes their experimentation platform for handling multiple overlapping
experiments [280].

1.5 Automated experimentation and optimization

Parameterizing a range of possible values for functionality in software and having the com-
puter pick the best value is an appealing alternative to manual experimentation. Such
automated experimentation is the motivation behind Paper IV. However, it places high de-
mands on data infrastructure and it needs a singular metric, without being able to take other
metrics or qualitative data into consideration. It has still been put into practice in industry
at Sentient [208] and Amazon [138]. These applications are both in the e-commerce do-
main. It was used for the purpose of optimizing user interfaces [208] and for personalizing
the user experience [138].

The automated experimentation builds on a technique, called multi-armed bandit optimiza-
tion. Multi-armed bandit is an experiment design suited for finding the best value of a range
of values in a single parameter. It dynamically adapts the allocation of users to values, based
on how well the value performs. In a classic experiment design, the allocation is statically
equal for all parameter values. Multi-armed bandit is well known in industry under the
term bandit testing [200]. The advantage is that it can obtain results faster by focusing
experimentation to promising values. However, there is an increased risk of false positives,
so the ability to obtain trustworthy knowledge from experimentation is lower. For multi-
ple parameters, more advanced techniques based on combining multi-armed bandit with
machine learning or a genetic algorithm can be used.

Within the last few years, advanced multi-armed bandit algorithms have been increasingly
popular for optimizing behavioral algorithms online in a production environment. They
can be used for tuning hyper-parameters and creating ensemble algorithms for, e.g., recom-
mender systems [49, 301], advertisement selection systems [50], and search engines [235].
The reason for their popularity in optimizing behavioral algorithms is probably due to that
these behavioral algorithms also need advanced data infrastructure; which overlaps with

the requirements from the automated experimentation. Thereby making it comparatively
cheaper to implement for than for optimization of general software parameters. Optimiz-
ing software configuration settings is another use of automated experimentation in SE and
has been applied to, viz., compiler flags [184] and cloud computer utilization [143].

2 Research Overview

The overall research goal of the thesis is to describe current practice and support continuous
experimentation (CE) in industry. The research goal is further divided into three parts:

* RGI Map and synthesize the currently published knowledge on CE.
* RG2 Understand current industry practice and state-of-the-art of CE.

* RG3 Support practitioners in analysing and improving their CE practices.

The contributions of the four papers [I-IV] in this thesis are the end results of three tracks
of research: literature, theory, and tool tracks. The (1) literature track comprised a system-
atic literature review (SLR) on the body of research on CE in Paper I. The investigated
topics were CE processes, infrastructure, solutions, challenges, and benefits. As part of the
(2) theory track, we identified four scenarios in which CE is used for in Paper II, and con-
structed a theory called FACE on factors that affect CE in Paper II1. Finally, in the (3) z00/
track we designed, implemented, and validated a toolkit called COMBO in Paper IV, for
supporting practitioners with automated experiments. COMBO allows experimenters to
specify software parameters that are optimized with machine learning algorithms. Each of
the three tracks was initiated by pilot studies, Papers V-VII, that was concluded with the
Papers I, III, and IV. Paper 1I is also an initial study, but does not overlap with the other
included papers. It provides additional context on how CE is used in practice.

Figure 3 shows an overview of the three tracks of research in the thesis and what research
goals each paper addresses. The research was started by the literature track with RG1 in mind
and to provide an overview of the previous research by investigating the published literature
in Papers V and 1. To address RG2, a series of interviews was conducted at case companies
involved with CE, which was published in Papers II, VII, and III. RG3 was initiated by
a tool proposition in Paper VII to investigate the feasibility of using bandit optimization
algorithms to automate experimentation. This work was later expanded through additional
development and validation in Paper IV through an industrial collaboration.

1. Literature track

.., VSMS || ISLR

2. Theory track I CE

o Scenarios
3 VI CE lIl FACE

Bus. Models [| Theory
A

3. Tool track : :
VII Bandit IV COMBO
Tool — Toolkit [¢

Figure 3: The three research tracks included in the thesis. Only the Papers |-V in white boxes are included in the thesis. The
literature track started with a mapping study and concluded with a systematic literature review. The theory track is
based on interview material from 12 case companies and is concluded in the FACE theory. The tool track was initiated
by a tool paper, later expanded into a toolkit through an industrial collaboration.

A

2.1 Literature track

The research presented in this thesis was started with the literature track of published re-
search to address RG1. The first paper [V] is a systematic mapping study (SMS). The find-
ings include which software sectors CE is used in, and the topics of the current research
on CE. This paper and another SMS [9], independently published by other authors, was
later deepened in a systematic literature review (SLR) [I], that expand the synthesis of the
mapping studies into the core constituents of CE. Also, this SLR categorize the published
solutions applied to CE, and derive the challenges and benefits of CE. Overall, the literature
track provides a basis for identifying gaps in the published research, gaps that are addressed
by the following two tracks.

2.2 'Theory track

The theory track was started with Paper II by investigating the scenarios that CE is used
in. We conducted a case study of a company that uses experiments in different parts of
the company for various purposes. In particular, this study provides insights into what tool
support that may be useful for what context. The automated experimentation that the tool
track concerns is one such scenario. In the following paper [VI], the single case is expanded
into five cases with an emphasis on comparing their business models in relation to their use
of CE. These initial studies were conducted for RG2.

The track was concluded with Paper III, in which a theory of Factors Affecting Continuous
Experimentation (FACE) was derived. FACE encompasses aspects of software engineering
processes and infrastructure, complexity of the software, and business model. FACE is
further expanded into guidelines for practitioners on how to adapt to the specific factors
that affect their companies’ CE. Thereby does Paper III contribute towards meeting both
RG2 and RG3. The multi-case study that FACE is based on included more empirical data

with 12 case companies in total.

2.3 Tool track

The final tool track was conducted to fulfill RG3. In both Papers V and 1I, it was found
that automated experiments are used to tune parameters in software in a production en-
vironment. In the mapping study [V], we found that automated experiments are applied
to optimize user interfaces. In Paper II, we observe that automated experiments are used
to optimize the settings of a recommender system to different contexts. The general ap-
proach of automated experimentation is to define a search space that maps to the software
parameters and apply an optimization algorithm, where each user is treated as a function
evaluation in the optimization problem. This requires that there is a singular metric for
evaluating each user session. Automated experiments were initially studied in Paper VII to
investigate the feasibility of the approach. The specific approach taken in Paper VII was
to combine genetic algorithms with multi-armed bandit algorithms. The same approach is
reported a year later by industrial authors [208].

Paper VII was followed by Paper IV, which contains the Constraint Oriented Multi-variate
Bandit Optimization (COMBO) toolkit. The toolkit was designed as part of an indus-
trial collaboration to suit their company infrastructure, although implemented as a general
toolkit. The algorithms in the toolkit are significantly improved and expanded from the
one used in Paper VII, by using machine learning based multi-variate bandit optimization
instead of genetic algorithms. A major contribution of the toolkit is the approach to spec-
ify configuration model parameters in an embedded domain-specific language. It supports
multiple types of variables and combinatorial constraints between the variables. In this
way, the toolkit expands the use cases of the technology to personalization of the software
to specific user needs.

10

3 Research Approach

The research goals span both understanding and improving a socio-technical industry prac-
tice; which calls for a flexible approach. Therefore, this thesis employs different types of
research methods. Design science (DS) has been proposed [255] as a suitable paradigm to
frame prescriptive papers by illuminating different facets of contributions in empirical SE
research. DS is used to frame the papers included in the thesis in Sections 4-6. The role
of empirical research in DS is to evaluate solution designs (e.g. with experiments) and to
study problem instances (e.g. case studies). Studies that aggregate and synthesize empirical
research—secondary studies in Section 3.3—are also placed in a DS frame and serve the
role to compile design knowledge or theory.

3.1 Design science

Design science is a paradigm with focus on the study of designed artifacts and the problem
that they are created to solve [135, 272]. In SE research, the problem is, e.g., the design,
construction, or maintenance of software and the solution artifact is usually a tool, process,
or method [98]. DS is often conducted in an industry context to improve the relevance
of the research. DS research is referred to as particularly suitable for prescriptive research
that introduces a designed solution to a problem [255]. Though, DS can as well be used to
frame studies focusing on problems only, as part of a research project that in whole studies
a solution. For example, theories on design knowledge play an important role in DS to
conceptualize problems such that they can be better matched with design constructs [181].
DS has also been described as as a methodology [306] for conducting prescriptive research.
This approach to DS is taken in Paper IV.

Cycles of problem-solving is a central concept in DS, see Figure 4. The process starts with
a problem observed in practice, then an attempt at a solution is designed to address the
problem based on new or existing knowledge and theories, and ending with an empirical
validation of the problem-solution pair. Runeson et al. [255] describe the cycle as a series
of knowledge creating activities between practice oriented problem-solution instances and
theory-oriented problem-design constructs. The cycle consist of five such activities:

o problem conceptualization abstracts a problem instance to a construct;

* solution design maps a pair of problem-solution constructs;

* instantiation implements a solution construct in the real world;

* abstraction generalizes a solution instance to a design construct;

* empirical validation evaluates the aptness of problem-solution instances.

1

Problem domain ! Solution domain
1

Technological rule(s)]

Problem Solution__ Design
construct(s) design construct(s)
1
Theory |
Problem : Abstraction
R B i - -
conceptualization ! Lo
_ | Instantiation
Practice I
: l i
Problem Emp'irical Solution
instance(s) (_valid_ation_) instance(s)

Figure 4: Design science cycle (Engstrom et al. [98]). The quadrants represent problem-solution pair instances/constructs and
the inner arrows are knowledge creating activities (in bold). The path that each research track has taken along the
cycle is shown in the outer arrows.

The contributions of an individual paper can address one or more of these activities. For
example, in Paper II, we describe the observed tool support for different scenarios of CE
usage. Hence the contribution is a problem conceptualization.

Using the concepts presented in Figure 4, contributions (i.e. design knowledge or solution
artifacts) of a DS paper can be described succinctly as follows. A rechnological rule [46]
is a short summary of a problem-solution pair with the template: 70 achieve <Effect> in
< Context> apply <Intervention>. Hence, the technological rule is the takeaway message of
prescriptive research. Storey et al. [282] further suggested a visual abstract template where
the technological rule is elaborated with a description of the problem-solution pair and the
approach to understanding or designing them, the relevance of the problem, the scientific
rigor of the empirical validation, and the novelty of the contributions. The contributions
of each included paper is discussed as such in Sections 4-6.

3.2 Empirical research

Empirical research [280] is centered around observations of phenomena which are pieces of
evidence in support of an answer to a research question or goal. This thesis uses two empiri-
cal research methods: case studies and experiments. Experiments test a hypothesis by study-
ing the effect of changing independent variables on measured dependent variables [310].

12

Experiments are used to evaluate tool proposals in Papers VII and IV with simulations. Ex-
periments are suited to evaluate tool performance in isolation from external factors. Case
studies are used to study a phenomenon in their real world context, with the scope limited
by a specific case or cases [253]. Case studies are used in Papers II, VI, and III, to investigate
CE practice at case companies. Case studies with interviews were used for their ability to
answer in-depth queries contrasted with different case companies.

Further prominent empirical research methods are listed in the guidelines to select empir-
ical research methods in SE by Easterbrook et al. [91]. In addition to case studies and
experiments, they list ethnographies, action research, and surveys. The methods have dif-
ferent strengths and weaknesses. For example, surveys can be used to make generalizations

of a larger population but lack depth and flexibility.

Observation data can be qualitative or quantitative and both types are used in this thesis
for case studies and experiments, respectively. Research with guantitative data is usually
designed to answer a more specific type of question, i.e., the relations between variables
or statistical distributions of real world phenomena. Sources of quantitative data can for
example be measurements of software tool performance or mining of software repositories.
Statistics are used to make inference between variables in quantitative research with statis-
tical tests in an experiment [310], regression analysis in data mining, etc. Research with
qualitative data is flexible in the type of question that can be answered and enables gaining
a deeper and broader understanding of phenomena in a context, e.g., identifying business-
related factors that affect CE practices. Qualitative data is text or transcribed audio or video
recordings. This data can be organized by coding pieces of text relevant to a research ques-
tion with a shorthand that can then be the basis of further analysis. The primary approach
to qualitative analysis taken in this thesis is to organize the codes into themes, which is
referred to as thematic analysis [68]. Codes are pre-defined in a code book in this thesis,
but can also be created on the fly in exploratory coding.

3.2.1 Experiments

An experiment is used to investigate the causal relation between variables with quantitative
data. This requires careful isolation from confounding effects in a regulated environment.
For example, to study whether a specific tool can improve the performance of software
developers with respect to a given metric, then the researchers can design an experiment
in which participants can solve a task with or without the tool. Controlled experiments
are often considered the golden standard of science [169], but they can only be used to
answer questions that can be controlled. Note that the experimentation process in science
is very similar to the engineering experimentation used in CE, as presented in Section 1.4.

13

The use of controlled experiments for research has a long history [112], and there are now
many variants of experiments [136], e.g., experiments with multiple variables (multi-variate
tests) or experiments where the experiment control is simplified by being done sequentially
(natural experiments).

Wohlin et al. [310] provide guidelines on how to conduct experiments in SE. They draw a
distinction between rechnology oriented and human oriented experiments, where the differ-
ence is the type of subjects. This thesis uses technology oriented experiments to evaluate
the computational performance and aptness of tools. The technology oriented experimen-
tation in Papers VII and IV are referred to as simulation experiments since they simulate the
usage of real users in a lab environment instead of a production environment.

3.2.2 Case studies

Case study methodology is suitable for studying real world phenomena in their original
context. The case studies in this thesis follow the guidelines by Runeson et al. [253] and are
based on practitioner interviews with thematic analysis [68]. Case studies and experiments
are on the opposite ends of the control versus realism spectra [279]. In a case study, the
context is embraced and studied as part of the phenomena rather than attempting to isolate
the context from the phenomena. A case is defined as the bounding box of the study, it
could be an organization, a team within an organization or a tool, a role etc. The unit
of analysis in a case study is the subject of the research. Using multiple sources of data,
referred to as triangulation, is encouraged to increase the ability to make generalizations
and to separate the context of the case from the unit of analysis. Triangulation can be
achieved by using multiple research methods or by studying multiple cases simultaneously
in a multi-case study, which is the approach taken in this thesis. Finally, in a comparative
case study the emphasis is on systematic differences between multiple cases using cross-case

analysis [69], which is done in Paper VI.

3.3 Secondary studies

Research can be performed through primary as well as secondary studies. While a primary
studly collects empirical data directly from the real world with empirical research, a secondary
study aggregates or synthesizes research from primary studies.

14

3.3.1 Systematic literature studies

A systematic literature review (SLR) is a secondary study with the goal of aggregating several
empirical research studies. The guidelines by Kitchenham et al. [169] are used in this thesis.
SLRs are conducted to answer a specific set of research questions. As such, they require
a sufficiently mature research field, so that there are multiple studies on the same narrow
topic. SLRs have an increasingly important role in SE research as the body of empirical
research grows [169]. An SLR is conducted with a rigid search and selection process to
find primary studies in a way that reduces bias and enables replication. The SLR process
also includes a quality evaluation of the search, selection, and analysis. Automation of SLR
search and selection is an active area of research in SE [291, VIII], but the practice still
involve a lot of manual work.

A systematic mapping study (SMS) is a simplified variant of systematic literature studies
with open-ended research questions. It is conducted to provide a map (or taxonomy) of the
conducted research, in terms of topics, companies, research groups, etc. A SMS is often
done as a pilot study of a more comprehensive SLR, as is the case in this thesis with Papers V
into IL.

3.3.2 'Theory building

Finally, theory building is a method to generalize and synthesize research into a more ma-
ture, condensed form. Theory building is viewed as a secondary study here, irregardless
of whether the data that the theory is based on is published separately or not. In theory-
oriented SE by Stol and Fitzgerald [278]—see Figure 5— they describe how theory and
empirical research interplay; observations are first abstracted into empirical generalizations
and then further processed with formal theory formation. According to Stol and Fitzger-
ald [278], the value of a theory is twofold: (1) to anchor the research by providing insights
that informs the study design of new studies, thereby forming a cycle of research and (2)
to use as a basis to derive practitioner guidelines from. Making guidelines from empirical
generalizations is seen as a shortcut, with the risk of them being too specific to observations.
In the theory track, Papers II and VI are on the level of empirical generalization. In Pa-
per 111, the conceptualization step to a formal theory formation is taken and used to derive
guidelines from.

There are many different definitions and meanings of theory in SE research and in other
fields, e.g., in social sciences [1]. Wieringa et al. [304] identify six strategies for building
theories in SE, the strategies also result in different types of theories. For example, theo-
ries built from quantitative experimentation data might be used for causal predictions but
might not be feasible to create for socio-technical phenomenon. Case-based strategies is

15

Informs,

Interpretation Study design Derivation
ey
Prediction
m
Theoretical Study &
Leve/ | executon / § | __ | Determination of
Empirical Conceptu- Rules, Guidelines
Level alization A
- Empirical I
Observation I
. Generalization
Generalization tzatl Shortcut
I v

Figure 5: Theory-oriented SE (Stol and Fitzgerald [278]), on the role of theories in SE. The Papers in the theory track, II, VI, and IIl,
are placed in small boxes to indicate their conceptualization level.

the approach used in this thesis, it is based around conceptualizing from multiple cases.
Grounded theory [124] is another prominent approach in SE [4, 281] which comprises
a full research process, where the researchers starts without preconceived notions about
previous theory or related work (at least in the classical variant).

We use the process guidelines by Sjeberg et al. [274] on how to generalize and structure
theory from cases with empirical data. Their process uses elements of grounded theory. A
theory as defined by them consists of concrete constructs that the theory makes statements
about in the form of propositions, which are relations between the constructs. In Paper III,
the analysis is a qualitative coding step from case study interview material. Codes and
themes were constructed and updated in parallel and as new theory concepts were discov-
ered they were compared to the existing ones in a process of constant comparisons [68]. A
theory is also only valid in a certain scope, based on the scope of the underlying empirical
data.

3.4 Classification of papers

Each paper in the research project is classified according to what main empirical research
method they used and what DS oriented contribution type they contain. The contribution
types use the category clusters introduced by Engstrom et al. [98] where each category
corresponds to a common path along the DS cycle (c.f. Figure 4), with one or more of the
knowledge creating activities [255]. The contribution types [98] are:

o problem-solution pairs complete a DS cycle from problem to validated solution;

* solution validations focus on empiric validation of a solution instance;

* solution designs are abstractions to a construct with an implicit problem;

16

Table 1: Classification of the papers in the research project based on Engstrém et al. [98]. Rows in gray indicate related pilot
studies not included in the thesis.

Paper Contribution type Methodology

Literature track

Paper V.~ Meta Systematic mapping study

Paper | Meta Systematic literature review
Theory track

Paper Il Descriptive Case study

Paper VI Descriptive Comparative case study

Paper Il Design theory Multi-case study, Theory building
Tool track

Paper VIl Solution design Simulation experiments

Paper IV Problem-solution pair Design science methodology,
Simulation experiments

* descriptive papers describe problem constructs with problem conceptualization;

* meta papers are aimed at researchers and can take any path along the DS cycle.

Paper III does not fit neatly into any of the contribution types of Engstrom et al. [98]. This
is not surprising as their contribution types are based on observations from a single research
venue (ICSE best papers). The theory in Paper III is a problem construct in the context of
a well known design construct (i.e. CE), it also contains guidelines which is another design
construct. However, the paper does not go into a full cycle by validating the solution in
industry. As such the following contribution type is added:

* design theories have extensive conceptualization of problem instances in relation to a
design construct and may also include recommendations or guidelines.

Table 1 presents an overview of the classifications. The papers in the literature track [V,]

are both meta studies from a DS perspective, but they both include the parallel activities of
problem conceptualization and solution abstractions (shown as separate arrows in Figure 4).
The three studies in the theory track [II, VI, III] are focused on describing problem instances
into more generalized problem constructs and are descriptive and design theory papers. In
the tool track, the pilot study [VII] contains a solution with limited problem context, hence
the contribution is a solution design. In the final paper [IV], the solution is anchored with
an industrial collaboration and considers the whole DS cycle with a problem-solution pair.

17

Table 2: DS abstract for Paper I:
Controlled Experimentation in Continuous Experimentation: Knowledge and Challenges.

TRs Technological rules for each solution theme are included in Paper |, Section 5.2.

Problems CE was reported to be in use at many large web-facing companies and the way these
companies have structured their processes and infrastructure is well documented
(RQ1). However, the challenges with CE is multi-faceted and range from business
and organizational challenges to statistical and technical challenges (RQ3).

Solutions The solution papers were focused on how to obtain more value from CE (RQ2), for
example, by obtaining additional insights, richer experiment feedback, higher through-
put of experiments, etc. Few papers were on overall benefits of CE (RQ4); which is
principally to increase product quality. Other benefits include, e.g., improved prioriti-
zation and reduced product scope.

Relevance There is a high degree of industry authors in CE, publishing primarily experience re-
ports and solution designs, which indicates a strong industrial interest in the area.

Rigor The research procedure follow established guidelines [169]. All steps of the literature
search and selection process were cross-validated by different co-authors.

Novelty The paper presents a systematic and comprehensive synthesis on CE use in industry.

4 Results

This section summarizes the papers included in the thesis. For each paper, the main contri-
butions are summarized as DS abstracts based on the concept of visual abstracts in design
science as described by Storey et al. [282]. The three parts of the DS abstracts are: (1) the
technological rule (TR) which is a summary of the paper; (2) the problem-solution pair the
paper presents, and (3) an overview on the research quality in terms of industrial relevance,
research rigour, and research novelty.

4.1 PaperI: CE SLR

The goal of Paper I was to synthesize the available research on CE. Four research questions
were posed: RQ1 Whar are the core constituents of CE? RQ2 What solutions are available
in CE? RQ3/4 What are the benefits and challenges of CE? To that end we conducted a
comprehensive systematic literature review (SLR) following an established procedure by
Kitchenham et al. [169]. An SLR is a secondary study since it combines multiple primary
studies. The DS abstract for the paper is provided in Table 2. The prescriptive parts (TRs
and problem-solution pairs) are summaries of the primary studies in relation to the research
questions.

18

The review is an extension of two independently conducted mapping studies. Both prior
mapping studies were done roughly at the same time and with a similar selection strategy
and inclusion criteria but by different researchers. We combined these prior studies into a
joint review by extending the sets of primary papers in both studies with an independently
conducted forward snowballing that ended up with 128 selected papers. The primary papers
were analyzed with thematic and narrative analysis. Figure 6 shows an overview of the
identified themes and sub-themes and is organized into the four research questions.

The main findings of the literature review per research question follows. RQ1 The required
CE framework includes experimentation process and infrastructure. There are numerous
experiment reports with real lessons learned caused by CE failures. For example, one re-
ported mistake is to conduct experiments with too large scopes which makes negative results
costly. For this reason, and others detailed in Paper I, it is important to follow a rigorous
experimentation process. The infrastructure needs to get started with CE are reported as
modest; the biggest hurdle seems to be organizational and business aspects. RQ2 The solu-
tions proposed in the primary papers are grouped and mapped to a technological rule with
a problem-solution pair to make it clear what the purpose of each solution is. The solu-
tions are also related to what stage of the CE process they are applied in, from ideation to
analysis. RQ3 The identified challenges were both many and spanning the entire software
engineering process and organization. RQ4 The benefits were mostly implicit or mentioned
in passing as improving software quality in a metric of choice. Also, the primary papers
include a large number of industry authors which indicates high relevance and that the
challenges might be worth to overcome.

Finally, the paper contain research directions for future work and gaps in the research.
Other researchers have filled one of the identified gaps in research by providing data sets
for CE [189]. Our efforts are in unifying proposed design constructs and models, in Paper
III by basing the theory building on related work and in Paper IV by combining techniques
for automated experimentation with variability management techniques.

4.2 Paper II: The CE Scenarios

Paper I is a case study with interviews at the Swedish business-to-business (B2B) company
Apptus. They have an e-commerce platform with data-driven algorithms that are in use at
client customers’ web shops. There, experimentation is used for different purposes, with
different tools, and in different parts of their software product. The research was thus con-
ducted to answer the following question: RQ 1 what scenarios are experiments used and what
tools exists to support those? Four scenarios were identified, named after the characteristics
that differentiate them and are illustrated in Figure 7. The scenarios for experimentation

19

9d02s 1onpoid

uoneziold

150D MO
Syyauaq 1d1|dxg

‘nosdul Ayiend —
sHyauaq 1l dw

syjousg YO

9DI3WWO0I-3
eIPSW |e1d0S
[ed1sAyd-1994>
o[1qOoIN

d1yDads urewoqg —

suJenied Mleqg
feaud eleq
[ea1y1g —

S1094J9 snouabopul
10949 snouabox3
[e21s11e)s —|

|0J3U0D |eIUSWIIRAXT

1uswiAoldap snonuiuod

AISAII9p snonuiuod
[eD1uyda] —

abexes| eleQ
SD113W 1URAD|Y

1pedwi MOT
ssauisng —

uonedIUNUWWOD
uondepy
JusWabeurWONIN
Buip|ing abpamouy

|euoneziueblQ —

[sebusjey> oy |

v_ump_omﬂméﬁ__mso
So1sels panosdu| M
Siskleuy —

BuLolUOW SNoONUILUOD) —
uoINJ9X3 —

‘Beuew AyljigeLiep
‘dxa perewoiny
uonejuswsa|duw] —

SyuswIRdxa 1send
SyueLIep
ubisap JuswWIRAXg —

uoiedI3ds dUBIN

Huluiw eleq
uonesp| —

([suonnjos zdy

saj0y
wJoped -dx3 M
2INONIISeIU|

S|9POW So5S920.4d

Tu uo y1s ;| Jaded wouy mmEm;L

ﬁ Jiomawelq LOY u

Figure 6: The resulting themes of the thematic analysis in Paper | organized per research question.

20

Table 3: DS abstract for Paper I:
Continuous Experimentation Scenarios: A Case Study in e-Commerce.

TR To achieve sufficient tool support for CE in companies with diverse experimentation
consider how experimentation is used and for what purpose.

Problem Experimentation was found to be used in four different scenarios at a case company
and four characteristics are derived that differentiate them: purpose (optimization
or validation), automation (automated or manual), contro/ (internal or external), and
recurrence (singleton or repeated). The tool support in the scenarios varies from none
to extensive.

Solution N/A

Relevance The case company employees are experts on CE; through experimenting on their prod-
uct and by consulting on their e-commerce clients’ experimentation. Experimentation
is widespread in e-commerce [V].
Rigor The scenarios were derived from material with five interviewees following guidelines
for case study research.

Novelty The scenarios are the initial step to a full taxonomy of CE.

are especially clear due to the case company’s B2B relation to their customers, since experi-
mentation crosses organizational barriers at the case company. The results in the paper are
not limited to B2B companies, the scenarios have all been observed at other companies in
Paper 1. See Table 3 for the DS abstract of the paper; the paper does not feature a solution.

The main contributions of the paper are twofold. First, the paper includes a description of
four observed scenarios of experimentation and a problem construct with the differentiating
attributes between the observed scenarios. Second, an analysis of the observed tool support
for the four scenarios. While the degree of tool support might not generalize to other
companies, it is an early indication that the more complexities there are in the context
surrounding an experiment, the harder it is to conduct experiments and the less insights can
be obtained from the experiment results. This line of inquiry form the basis for Paper III.

The scenarios also show that experimentation is conducted in all three of the sales & mar-
keting, software development, and operations departments. Though, these departments
have differing goals in their experimentation, the sales & marketing departments are in-
volved with optimization of the sales funnel, the software development and operations
departments do validations of new features or changes. The tool support for the scenarios
also differ, the support for optimization at the sales & marketing department is particularly
extensive and easy to use. While the tools for the software development department’s vali-
dation experiments are flexible to be able to support different types of development and in
different parts of the software. Finally, the tools for operations was lacking due to how rare
the Scenario ¢ was.

21

Case company| |Customer Consumers | Case company/ || Customer Consumers
Marketer
| A
T - 9
i fa . o A
(a) Manual optimization. (b) Automated optimization.

Competitor

Case company| || Customer Consumers | Case company (i Customer Consumers
DevOps IT engineer Developer IT engineer
A
N Liligel e] — 2
—>
(c) External validation. (d) Internal validation.

Figure 7: Experimentation scenarios at the case company in Paper Il. The large rectangles depict the companies and the roles
involved, arrows indicate the initiator of the experiments, the squares represent software components, with multiples
of them—marked A and B—indicate variations of the software and a grey box with N indicate no change.

From the scenarios (see Figure 7), we see the following four general attributes. First, the
purpose of the experiment is optimization or validation. In optimization experiments, the
goal is to fine-tune software and interface parameters towards a given metric. For the vali-
dation purpose, the experiment is conducted to validate a change in software, such as a new
software product or feature. Second, automation is whether the decision of the outcome is
taken with manual analysis or automated with tools. Automated optimization experiments
is the motivation for Papers VII and IV in the tool track, though automated validation
experiments are also advocated for in the discussion in Paper IV, Section 7.1. Third, con-
trol of the software can be external or internal from the perspective of the experimenter.
In an internal experiment the experimenter has full access to source code or the develop-
ment organization. Finally, experiments have a recurrence of repeated or singular. The case
company needed to repeat experiments for multiple customers.

In addition to optimization and validation, three further purposes of experimentation can
be derived from related work [187, 264, 323] and from the interview material of the the-
ory track. First, verification tests are used in software testing as a companion to validation
tests [299]. Verification is an evaluation of whether software complies with requirements
while validation is an assurance that the product meet the needs of stakeholders. Thus, ex-
periments that are performed as part of a CICD pipeline by DevOps to survey a software
release can be considered as verification experiments. The external validation scenario (c)
qualifies, and verification should probably have been included in Paper II. Schermann et
al. [264] refer to a similar concept as regression-oriented experimentation (compared to
business-oriented experimentation). Second, experiments can be conducted with the ex-
plicit purpose of learning about users or the product. Linden [187] at Amazon, give an
example of adding intentional delays to some of their queries to be able to quantify the
value of future performance improvements in revenue. These knowledge experiments were
not observed in the interview material of the theory track, and is likely a rare occurrence.

22

C1 CE Processes C2 Experiment C5 Business

and infrastructure effectiveness strategy
P1 efficient CE processes P4 high problem
and infrastructure increase complexity limits
experiment throughput experiment impact
P2 CE enables C3 Problem- P5 business model
increased solution fit pivots can lead to
problem-solution fit simplified target problem
P3 quantitative C4 Product- P6 product-market fit
experiments enable increased market fit improving experiments need
product-market fit incentive structures

Figure 8: A theory of Factors Affecting Continuous Experimentation (FACE) which can be used to explain companies’ ability
to conduct CE. The theory constructs, C1-C5, are shown in rectangles and propositions, P1-P6, as arrows between
constructs.

Finally, calibration experiments are conducted to verify the experimentation platform itself.
For example, an A/A test with no software change can be performed a number of times to
assess whether the false positive rate is acceptable [323]. These experiments were conducted
at the case companies with experienced experimentation in Paper III.

4.3 Paper III: The FACE Theory

In Paper III, we wanted to investigate what factors influence how well companies can con-
duct their CE. This inquiry resulted in a SE theory which is summarized in Figure 8. We
derive three factors from the theory: (1) investments in data infrastructure, (2) user problem
complexity, and (3) incentive structures for experimentation. Furthermore, guidelines were
derived to help practitioners to take action from the insights obtained from the theory. The
guidelines are summarized in the DS abstract in Table 4. Another finding of the paper is
how UX roles are involved with experimentation in SE, as described in Section 1.4.1.

The theory is based on data from a multi-case study of 12 companies and 27 interviewees.
The companies have varying degrees of experimentation expertise and extent of experimen-
tation in their organization. The company sizes range from small, with less than so em-
ployees, to huge multi-national corporations. The companies also differ regarding the type
of business model, type of users, type of marketing strategy, etc. The goal of the study was
to answer which of these differences that are the most relevant to a company’s success with

CE.

23

The theory is expressed as five constructs, C1-C5, and six propositions, P1-P6, which rep-
resent relations between the constructs (see Section 3.3.2). The constructs follow. C1 CE
processes and infrastructure include the experimentation procedure in use at the company
and the infrastructure for collecting data, deploying changes to software, and analysing
results of experiments. The entire SE process is included in the construct; since CE en-
compasses the whole SE processes. C2 experimentation effectiveness is a factor of the orga-
nization’s experimentation throughput and how much potential impact each experiment
has. C3 problem-solution fit is how well the software product solves the users problem. C4
product-market fit is how well the product satisfies market needs. Both problem-solution
fit and product-market fit is important, but product-market fit is what ultimately matter
for businesses with products [96]. Finally, C5 business strategy is how a company is orga-
nized to create and deliver value to customers. That includes how it reaches customers, the
revenue and licensing model, and more.

The propositions relate how the constructs affect experimentation in the following way.
The factors are derived from the propositions that hinder or enable problem-solution fit
or product-market fit and are denoted in italics. P1 infrastructure and process improves
experimentation effectiveness. In particular, data infrastructure is a hurdle for CE. P2 ex-
periments can improve either the problem-solution fit or P3 product-market fit. Many
companies are unable to affect product-market fit due to P4 and P6. P4 the user problem
complexity is the complexity of the problem the software solves for users and strongly limits
experiment applicability. High complexity can limit the ability to make desired changes
in the software or to quantify the user sessions. Following that, P5, pivots in the busi-
ness model is necessary to simplify the problem complexity, experiments on their own are
unlikely to succeed. Finally, P6 improving product-market fit needs the right incentive
structures, e.g., in the form of having metrics from the sales process.

We derived guidelines from the FACE theory on how state-of-the-art CE is structured in
processes and infrastructure. The companies with advanced processes use prioritization of
both software development and experimentation with user-data. They conduct analysis
before and after experiments, and make sure knowledge from experiments is shared in
the organization. They utilize mixed-methods experimentation with both qualitative and
quantitative methods. Their infrastructure is more mature too. Their data infrastructure
cover all parts of the software and with more types of user data. Their experimentation
platform can run experiments in parallel and supports segmentation of the results into
groups of users. The overall CE competence is higher too, both in form of available roles
and in knowledge of experimentation throughout the organization, such that all engineers
can partake in CE.

24

Table 4: DS abstract for Paper lll:
The FACE Theory for Factors at Play in Continuous Experimentation.

TR To strive for state-of-the-art CE in adverse contexts apply the FACE derived guidelines.

Problem Some companies are not able to conduct CE to the degree that they desire. Their ex-
perimentation might be lacking in, e.g., coverage of user groups or software features
or in how relevant metrics are for users or business.

Solution A theory of Factors Affecting Continuous Experimentation (FACE) is introduced to
explain why company efficacy and utility of CE differ. Twofold practitioners guidelines
are derived from FACE. First, a benchmark on how state-of-the-art experimentation
is structured. Then, how companies can move towards more advanced CE based on
the FACE factors affecting them.

Relevance 12 companies across domains and maturity of CE were involved in the study. Many
interviewees expressed interest in improving their CE practice.

Rigor The evidence chain from case study design [253], to theory construction [274], and
to guidelines [278] all follow established guidelines.

Novelty The FACE theory can explain factors for applicability or utility of CE.

Furthermore, we provide recommendations on how CE can be adapted and advanced at the
companies who do not fulfill some of the three factors, as follows. (1) Data infrastructure.
In the interviews it was said to be surprisingly technically easy to start with experimentation,
but scaling to high throughput is hard. So we recommend companies to build processes
and infrastructure gradually, such that the knowledge gained during practical experimen-
tation can be used when scaling the infrastructure to high levels demand. (2) User problem
complexity. Companies with high problem complexity should first of all seize all opportu-
nities to pivot towards a simplified problem. The companies in the study with very high
complexity are forced to rely on qualitative methods, which still enables them to work in a
data-driven fashion. (3) Incentive structures. Companies without apparently suitable met-
rics need to put effort into finding the right goal to experiment on. An ideal goal will be
good for both users and business value, so that either is not neglected when the goal is
optimized. Furthermore, once a goal is in place, teams could be motivated to start with
experimentation by improving the goal, since they are provided with the means to do so.
Finally, be mindful of ethics when the goal is capable of being intentionally manipulated
such that users suffer in favor of business value. To prevent this, goals should be set in
collaboration between the teams and the rest of the organization such that the goals are
scrutinized.

25

Table 5: DS abstract for Paper IV:
Data-driven Software Design with Constraint Oriented Multi-variate Bandit Optimization (COMBO).

TR To optimize, personalize, and adapt software to various usage in user-intensive and
potentially complex software apply COMBO for continuous software optimization.

Problem Data-driven optimization of software parameters can drastically increase experimenta-
tion throughput. However, current approaches are limited to software variables with
a flat hierarchy and few interactions or dependencies; which could be the reason for
the lack of adoption of algorithmic optimization.

Solution The toolkit Constraint-Oriented Multi-variate Bandit Optimization (COMBO) can
model hierarchical variables with constraints in a domain-specific language; personal-
ization is supported through the constraint system. The approach combines several
approaches from different fields: machine learning, bandit optimization, and combi-
natorial optimization.

Relevance The problem has been observed in industry [138, 208, Il]. The research was conducted
in an industrial collaboration to increase relevance.

Rigor Two feature prototypes were implemented and were subjected to simulation experi-
ments with user data. The research followed DS methodology [306].

Novelty Several techniques are combined in a novel way.

4.4 Paper IV: The COMBO Toolkit

Design of software entail many decisions to be made in both visual design of the user inter-
face and how the software is used in the user experience. There are also technical decisions
that can inadvertently affect the user experience, for example, by making the interface unre-
sponsive or by ranking things in a wrong order. Actually experimenting on all decisions in
a software system is daunting, especially when interactions between functionality is consid-
ered. This is the motivation behind automating the decision making in experiments online
in a production environment, with algorithms that can optimize the user experience based
on user data. For this reason we introduce the Constraint Oriented Multi-variate Bandit
Optimization (COMBO) toolkit, the research is summarized in Table 5.

The overall idea of COMBO is to parametrize multiple software variables with a range of
possible values in a search space and have a decision algorithm optimize the selection of
variable configurations for users. The algorithms in COMBO build on the multi-armed
bandit problem in statistics (see Section 1.5), the application of which is referred to as
bandit optimization. Figure 9 give an overview of the setting. When a new wuser arrives to
the software system, they receive a configuration adapted to their personal or usage context.
They use the configuration in the software system for some time and then a machine learning
algorithm is updated based on the configuration and some measure of the user experience—
referred to as a reward. An optimizer policy is tasked with optimizing the overall rewards over
time based on the learned model parameters by experimenting with users’ configurations.

26

Bandit optimization

model

Optimizer parameters Machine
Policy Learning

configuration update

user : —> 8 Software reward

context " System clicks, revenue, etc.
New user

Figure 9: Bandit optimization setting summary for handling automated experimentation.

Automated experimentation is one of the scenarios found in Paper II and was found in
Paper I to be used in industry in at least two more instances [138, 208]. These instances
were all in e-commerce, a domain in which experimentation is widespread, as shown in
Paper V. The purpose of the three uses are as follows. (1) To optimize the user experience for
different users’ needs (i.e. personalization) with multi-variate bandit optimization [138]. (2)
To optimize user interfaces with many variables in e-commerce using multi-armed bandits
and genetic algorithms [208]. Finally, (3) to tune parameters of a recommender system [41]
with multi-armed bandits (see Figure 7b). The problems that the solution is addressing in
these examples are all of low technical complexity which limits the applicability of the
solution designs.

Modern software is increasingly technically complex and much of software engineering
practice is about handling this complexity [17]. Structuring software with modularity and
hierarchical abstractions is an ubiquitous approach to dealing with the complexity [192].
The modules can be studied and developed independently from each other and the hier-
archical abstractions can hide implementation details such that the modules can be more
easily composed in an overall architecture. It follows then, that to be able to optimize tech-
nically complex software, these hierarchical abstractions must be able to be expressed in
the search space of the automated experimentation. This is not possible in the previous
research on automated experimentation [138, 208] and this is the main problem that the

COMBO toolkit addresses.

The search space in COMBO is specified in feature models [158], i.e., an approach to for-
mally model arbitrary abstraction hierarchies in SE research. It has been used to describe
the variability of software [24, 70] in software product lines [292]. The point is to express
constraints between features and to formally verify that the constraints hold under various
conditions corresponding to actual realizations of the software [21]. Feature models has
also been suggested to be useful to model experimentation by Cdmara and Kobsa [48].

27

The technical and algorithmic contributions of Paper IV is fourfold. First, the multi-variate
bandit optimization setting and its solution is introduced to the general SE audience, see
Figure 9. The setting is similar to Bayesian black-box optimization [142, 275] but more
suited to combinatorial variables with a low signal-to-noise ratio and to have the optimiza-
tion be performed in runtime. Second, we showed how to add explicit constraints to ban-
dit optimization using combinatorial optimization techniques. Third, we suggested how
to adapt popular online machine learning algorithms to handle bandit optimization with
constraints: VFDTs [84], random forests [110], generalized linear models [138], and neural
networks [241]. Finally, we showed how these ideas can be applied in practice to automated
experimentation by implementing an open source toolkit. The toolkit consists of an embed-
ded domain-specific language for specifying the search space with constraints and several
algorithms for machine learning and combinatorial constraint solvers and optimizers.

The research in Paper IV was validated by implementing prototype models that describe
the variability of two features at the case company: an auto-complete search widget and a
top-k category recommender system. We used simulation experiments for evaluating the
performance of the algorithms on the feature prototypes using a combination of real and
generated user data. The performance was measured on both computing times and reward
performance.

Finally, the paper contain an analysis of the implications of when companies embrace toolk-
its like COMBO. The CE process can then move from experimentation to a continuous op-
timization (CO) approach. The CO practice extends CE by giving developers the option to
use an optimization algorithm at low cost. Thereby enabling large parts of the software to
be optimized and personalized. Developers will continuously engage with the optimization
algorithm by, e.g., adding or removing variables from the search space as they learn more
about the usage domain. This means using an optimization algorithm for much more than
an isolated component of a product.

The suggested CO process can be structured in four steps. First, investigate and prioritize
the variability of a feature by user experience research methods, data mining, or prototype
experiments. Second, build a model of the variables in the search space and add constraints
to prune invalid configurations. Third, tune the algorithmic performance in offline sim-
ulations with historic or generated user data and formally verify the model using feature
model variability management techniques. Finally, validate the solution in a controlled
experiment in a production environment and restart the process.

28

Table 6: Synthesized DS abstract for papers V.

TR

To achieve problem-solution and product-market fit in user-intensive software use the
FACE guidelines to reach CE and the COMBO toolkit for reaching CO.

Problem

Solution

Decisions on what software features to build and deploy are not based on evidence
on what changes best benefit users. This can lead to software that does not solve the
users’ problems or that has no market. Some companies have adopted experimenta-
tion to increase problem-solution fit. However, not all companies are able to reach
experiment-driven software development with CE. Furthermore, even fewer compa-
nies can target product-market fit with experiments. For those that do, they might
not be able to keep up with the degree of optimization experiments they desire.

Companies can gauge their experimentation based on the state-of-the-art guidelines
presented in FACE and obtain a deeper understanding on how their CE is impacted
by the factors of FACE. Furthermore, COMBO can further elevate experimentation to
optimize, personalize, and adapt software to various usage. COMBO functions by au-
tomating the decision making with machine learning based constraint-oriented bandit
optimization. By fully adopting an optimization approach, companies can move from
CE to CO, where the optimization problem is continuously updated with new vari-
ables and constraints.

Relevance

Rigor

Novelty

The problem was derived from related work found in the systematic literature review
of Paper I and in the multi-case study of Paper Ill. Experimentation and optimization is
done at many software companies of different sizes, business strategies, and sectors;
with varying degree of success. The case companies in Paper Il cover a wide range of
these aspects.

The solutions are validated with real companies and CE is observed at 12 companies
that all express interest at improving their experimentation. The empirical research
methods include case studies, and simulation experiments based on real world data.
Guidelines were adhered to for all steps of the research where applicable.

The FACE theory and the COMBO toolkit for CO are novel contributions.

We surmise that the introduction of CO will improve software in two ways compared to

CE. First, many more variables can be searched for and co-optimized. This will improve

software because the search process is more likely to find well performing configurations due

to considering more options and more crucially it considers interactions between variables.

Second, software can either be personalized to suit individual needs or functionality that is

re-used can be adapted to different usage contexts.

5 Synthesis

This section contains an analysis of how the research goals are addressed by the papers in the

project. The combined DS abstract is presented in Table 6 which summarizes the coherent

contribution of the thesis.

29

5.1 RGI: Map and synthesize the currently published knowledge on CE

The research goal to map and synthesize the existing research has been addressed directly
by the papers [V, I] in the literature track. The published research was synthesized with
thematic analysis into the categories as presented in Figure 6 on page 20. It is clear that the
research has been focused on CE challenges and solutions with comparatively few concep-
tual contributions—which indicates an emerging field.

The results from Papers V and I also show that there are many industrial authors in CE re-
search, publishing experience reports and proposed solutions that address specific problems
at companies. The large web companies, such as Google [286], Microsoft [172], and Face-
book [107], are over-represented in the publications. However, there are several case studies
by software engineering researchers on all sorts of companies interested in CE [318, 242].
Together, this shows that the research is very relevant to industry.

Many of the solution contributions are also solution instantiations (see Figure 4 on page 12)
without any solution abstraction, where a solution instance is put into practice without an
analysis of generalized knowledge that can be obtained from it and how it can be applied
to other contexts. This is presumably a consequence of the industrial dominance in the
field, due to industrial authors’ rational focus on solving the specific problems that face
their company. As such, validating and abstracting solutions represents a research oppor-
tunity for academic researchers, which has also been done recently to some extent [10, IV].
Solution abstraction has been given attention to in the COMBO paper [IV] by combining
two of the solution types found in the literature.

5.2 RG2: Understand current industry practice and state-of-the-art of CE

The papers in the theory track [II, VI, III] show that CE practice is adopted in industry,
though irregularly. Some companies are able to conduct experimentation with a sophisti-
cation and extent that others cannot. The reason for this discrepancy can be summarized
in the three factors derived from the FACE theory [III]: (1) data infrastructure investments,
(2) user problem complexity, and (3) incentive structures. For example, a company with
insufficient infrastructure might not be able to experiment with relevant data or a company
with high user problem complexity might not be able quantify their user experience. The
FACE theory can be used to guide research by informing future studies, the factors can be
used by practitioners to understand their practice, and the guidelines show how to move
towards state-of-the-art practice.

30

improved
sales offering

J’ prioritized software
Sales & requests Software delivery Operations
Marketing Development

T
1 stakeholder
) ; software
requlremefk \Z barrier %wase and
| monitoring

| B2B customers

(a) Feature-driven organization.

Product-market fit Problem-solution fit

Sales & BizDev Software DevOps
Marketing Development

optimjzation validation verification
experiments experiments experiments

| B2X customers |

Operations

(b) Experiment-driven organization.

Figure 10: lllustration of how two archetypes of software-intensive organizations conduct software engineering projects with
involvement from the three customer-facing departments (adapted and extended from Paper V).

Figure 10 summarizes the implications of the FACE theory. Based on how the case com-
panies in the multi-case study [III] use CE, we see two main archetypes of software devel-
opment organizations: (a) feature-driven organizations and (b) experiment-driven organiza-
tions. These organizations interface with customers in very different ways as explained be-
low. While both organization types may have user-intensive software, the feature-driven or-
ganizations generally have business-to-business (B2B) customers, because the process does
not scale to individual users. The experiment-driven organizations can have both business-
to-business and business-to-consumer (B2X) customers. Other terms have been suggested
for similar concepts with different points of view: sales-led versus product-led growth [18,
V1], market-driven versus customer-driven business models [72], and requirements-driven
versus data-driven processes [36]. These dichotomies represent an idealized view, e.g., there
are organizations in-between and some feature-driven organizations may make heavy use
of experiments.

The overall software engineering process of the feature-driven organizations is focused on
fulfilling customer feature requests. Customers pose requirements in the form of feature re-
quests to the sales & marketing department. The customers’ feature requests are prioritized
along with feature ideas from the sales & marketing department, based on what features
would benefit the most important customers. The software development department then
implements and makes a software release, which is delivered to the operations department
and reported to the sales & marketing department; such that the delivered release fulfills
the customer requirements. Experiments can be used at these organizations too, to increase

31

the quality of the release with verification experiments. Note that the software development
department is far detached from customers in Figure 10a. In Paper VI, this observation is re-
ferred to as the stakeholder barrier because developers find it easier to go the first stakeholder
they have access to, which is the sales & marketing department instead of customers.

In an experiment-driven organization, the development process is continuous, and the three
departments in Figure 10a are integrated and draw mutual benefit from each other by mak-
ing software experiments; in accordance with the BizDev and DevOps concepts (see Sec-
tion 1.2). BizDev and DevOps have different goals for their collaboration, respectively, to
optimize product-market fit and problem-solution fit (see Section 4.3). In contrast to the
feature-driven organizations, the customers here are passive providers of feedback through
measurements on their usage of the product. The three departments are all able to conduct
experiments as in the scenarios of Paper II. The sales & marketing department can use ex-
perimentation tools to optimize the sales funnel, the software development department can
validate that software changes work as intended, and the operations department can verify
that changes do not break or degrade any of the continuous software releases.

The FACE theory implies that the reason why BizDev is not in place at many feature-driven
companies is that the software development and sales & marketing departments have dif-
fering incentives for improving the software product or sales offering, respectively; building
the thing versus selling the thing is synergistic but not the same. Incentive alignment for
DevOps is likely easier to achieve than for BizDev; several sources cite aligned incentives
or goals as the enabler of DevOps [145; 147, Chapter 5; 228]. Also, DevOps can clearly
exist also in feature-driven organizations and indeed there is an overlap between DevOps
and feature-driven organizations in the interview material of the theory track. However,
an experiment-driven organization is more likely to have a larger user base (see Paper III,
Section 5.5.3) with higher demands on infrastructure and thus will have a greater need of
DevOps principles and therefore also a higher degree of CE.

5.3 RG3: Support practitioners in analysing and improving their CE practices

The final research goal is addressed by both the theory track and the tool track. The FACE
theory [III] can support practitioners in analysing their ability to perform CE and what fac-
tors influence this. The guidelines derived from the theory describe what state-of-the-art
CE consist of and how companies can improve their experimentation based on their spe-
cific company context. The COMBO toolkit provides practitioners with the possibility to
personalize and adapt their software to different usage. However, not all companies can use
the toolkit. Most likely all three factors as described by the FACE theory must be fulfilled,
for this to be possible. In particular, applying the techniques places high demands on data
infrastructure and the software usage must be able to be expressed as a single unambiguous
metric that can be optimized for.

32

Feature-driven organizations that do A/B tests on selected new developments may want
to increase their degree of experimentation to correspond to a more continuous use of the
practice. In that case, the FACE theory guidelines can help guide their transition to CE.
The most straightforward (and challenging) option is to pivot the business model such
that the incentives between users and the company are aligned, i.e., by tying the customer
revenue stream to product usage. In this way the product-market fit can be targeted in
experiments by using sales metrics. This will in turn also align the incentives between
the sales & marketing and software development departments. As an example of this in
practice, consider selling software with subscriptions, the connection between whether users
start or stop the subscriptions can then be used in experiments. In contrast, software that
is sold upfront cannot take advantage of sales figures in experiments in this way. Thus,
the experimentation from the software development will be limited to increasing problem-
solution fit with behavior data only. As for the sales & marketing department, they will
have more incentives to experiment on marketing material than the product because it will
have a more direct impact on sales. Consequently, product-market fit will not be reached
through experiments for feature-driven organizations.

Of the three experiment types in Figure 10b, the optimization experiment type seems
like the least understood; both in SE literature due to being partly a marketing or UX
activity, and in SE practice due to being of a lesser priority than validity or verification
experimentation—because problem-solution fit should be reached before product-market
fic [201]. Also, this weak understanding might be as a consequence of that the concept (or
practice) of BizDev is less established than DevOps. Some of the larger companies investi-
gated in the theory track do however make use of optimization experiments and consider
these experiments as an important part of their daily work. Two of the case companies have
growth engineering or marketing departments that are responsible for experimenting to in-
crease product-market fit (and problem-solution fit to a lesser degree). These departments
make changes to the software directly and employ data scientist and software developers.
Albeit, many of the sales & marketing departments at the case companies perform opti-
mization experiments on marketing material, in isolation and with separate infrastructure.

Very large companies, like Google and Facebook, have the manpower to perform optimiza-
tion experiments continuously (i.e. CO) to a very high degree and this practice is spread
throughout the organization. They have presumably reached CO without broad optimiza-
tion algorithm tool support. The infamous experiment at Google to find which of 41 shades
of blue to use for clickable links is one example of their optimization [141]. The example is
reported to have increased yearly revenue with 200 million dollars at the time [229]. An-
other example, also from Google, explains how a software engineer was involved in a debate
about how many pixels wide a border should be, when pressed to settle the discussion with
an A/B test they decided it was the tipping point that made them quit Google [38].

33

The suggestion in Paper IV is to instead support CO through the use of algorithms that
optimize the assignment of users to configurations. CO needs support like what is suggested
in Paper IV for allowing easy specification of experiments so that the threshold to use tool
support is low. In this way, the debate in the example above could be avoided by specifying
a range of pixels to use as a border and have the system handle the rest; though COMBO
would need to be further integrated to support such easy development. Adoption of a
toolkit like COMBO would enable a CO approach at a lower manpower cost. Algorithms
for CO are in place at some companies, for narrow usages (see Section 1.5). However,
widespread adoption of CO likely requires that toolkits such as COMBO reach production
quality. There are advantages to CO beyond increased experimentation capacity. Namely,
for personalization and adaption of the software to different contexts, e.g., device type,
country markets, etc.

6 Discussion

The methodology and ethics of any research effort should be critically assessed. This section
contain the following analysis of the research: ethical considerations of CE, ethical consid-
erations of the research project, threats to validity, and remaining future work. Engstrém
et al. [98] argue that DS research should be judged on relevance, rigor, and novelty aspects,
which are described for each paper in the DS abstracts in Section 4 and for the combined
thesis in Section 5. The rigor aspect is further expanded on in this section with the threats

to validity.

6.1 Ethical considerations for the practice of CE

There are many ethical aspects to consider when conducting experiments with human partic-
ipants. For example, to what degree should users” data privacy be guaranteed, and whether
users should need to actively consent to be part of experiments. Ethical considerations for
conducting CE on real users are called out as a topic for further research in Paper I.

A study by Kramer et al. [179] from 2014 is an interesting case that illustrates the ethics
issues, causing concern in the research community at large and in news outlets. The re-
searchers conducted an experiment on Facebook to study the effect that posts on their
social media website with negative sentiment had on other users’ mood. The research was
conducted with good intentions in order to learn more about the psychological effect that
social media has on users (the contagion effect in the study was significant but small). How-
ever, the research could potentially cause harm to individuals. Benbunan-Fich [22] argues

34

that this type of subtle behavior-manipulating experimentation should be viewed differ-
ently from the type of product-improving experimentation which is the topic of this thesis.
Though, it is conducted with the same technology so the distinction can be hard to make
for legislators.

An external ethical review board was not consulted to approve the experiment at Face-
book [207]. The authors did so retrospectively after the backlash, and it was found to be
unnecessary due to the research being conducted by a company for internal reasons; that the
research was publicized seem to be a separate matter. According to the editorial expression
of concern [296], another issue is that the participants in the experiment on Facebook were
not asked whether they wanted to participate in the research (informed consent) and were
thus not given a chance to opt out. Also, only after four months of publication did Facebook
update their terms of service to mention that experimentation was conducted [139]. Now,
users of Facebook agree to participate in any testing, research, and data analysis through the
terms of service. This implicit consent also appears to be industry standard practice [172],
both at the time when Facebook conducted their experiment [179] and now.

Whether explicit consent should be required to be given by users to be included in a prod-
uct-improving experiment is up for debate. Whether users should even be informed of
each experiment that they are part of is also debatable. Yaman et al. [319] studied experi-
mentation consent from the perspective of different roles in a SE organization. They found
that developers are inclined to withhold information to users if the result depend on it. If
users are aware of the experiment they might modify their behavior which might impose
unwanted cognitive biases [211].

Another ethical consideration is whether experiments can be used to drive discrimination.
Jian et al. [150] showed how experimentation is used in actual practice to intentionally
discriminate against certain demographics, i.e., by increasing prices. However, Niculescu
et al. [216] showed how it can also be used to decrease discrimination by using it as a target
metric in experimentation. Hence, whether or not experimentation is a driver for or against
discrimination depends on the experimenter and the specifics of the experiment.

Data privacy issues are less of a problem since they are possible to address as part of the
data infrastructure and there is clear regulation with the General Data Protection Regu-
lation act (GDPR) [65, 297]. Standard controlled experiments do not need to store any
information about individuals beyond a user or session token of some sort [172] (a token
is a long random number used by websites to remember a user’s history without knowing
who they are). However, when experimenters segment data in order to get results for vari-
ous demographics or clusters of users then data about each user need to be analyzed, in a

35

GDPR-compliant way. Care must be taken since there is always a risk that data can acci-
dentally identify individuals. For example, in one of the cases of Paper III, the geographical
location of each user token was stored, and in order to be GDPR-compliant they needed
to add noise to the data to anonymize it.

6.2 Ethical considerations of the research project

The research in the thesis includes human participants at companies and there are risks
involved for both the interviewees and the companies with how interview data is handled
and reported. For example, risks that the interviewees reveal sensitive information about
company internals or that the interviewees can be identified and get in trouble with man-
agement for statements made during their interview. The following procedure for handling
the risks were adhered to as recommended in the guidelines for case studies by Runeson
et al. [253]. Interviewees were informed about the interview procedure (see Paper 111, Sec-
tion A) and consent was obtained from them about the following: that the interview is
recorded, that they are free to withdraw from the study at any time until publication (with
their interview data), and what the purpose of the study is. The original data from the
interviews are stored securely by the main author and not shared. Anonymized transcripts
were shared with co-authors for validation purposes. The descriptions of case companies
and interviewees are reported as general as possible while still retaining the information
relevant to the research, thereby minimizing the risk of identification.

6.3 'Threats to validity

The relevant validity and reliability threats are discussed here, for each research track and
lastly for the combined thesis. Validity deals with with how accurate the results are and
reliability relates to how reproducible the results are. There are multiple types of validity
threats and different types are judged to be more important for different steps along the
DS cycle (see Section 3.1). In Figure 11, a mapping is provided from threat types to the
DS knowledge creating activities. For research bridging between the problem-solution do-
mains, all three of external validity, internal validity, and reliability are important to ensure
that the solution design is suitable to multiple problem constructs and that the empirical
evaluation of problem-solution instances is trustworthy and repeatable, respectively. Con-
struct validity is crucial for theorizing practice, by ensuring that the conceptualized problem
or abstracted solution instances are correctly represented in the resulting constructs. Finally,
when putting theory into practice, instantiation validity is needed to ensure a design con-
struct fits and solves a specific problem instance. These validity types are standard in SE
research [91, 253], except for instantiation validity which is an addition specific to design
science [191].

36

Theory
1

External
valildity

Construct 1
----- validity - 4 {nstantiation - -
! validity
1
Internal
<validity and—
reliapility

__Problem
domain

Solution _
domain

1
Practice

Figure 11: Threats to validity and reliability mapped to the design science cycle in Figure 4 on page 12. The paths of the three
research tracks are shown in the outer arrows.

6.3.1 Literature track validity

Construct validity is the most important validity aspect for the literature track, though
internal validity and reliability are also crucial. The search, selection, and analysis process
was conducted in parallel by two authors and combined afterwards by analyzing conflicting
choices, this increased internal validity and highlighted the reliability of the research process.
Furthermore, the threat to external validity is minor due to being an aggregation of an
industry relevant field; hence the research is inherently transferable to CE research and
practice.

Construct validity is addressed in the three following ways. First, the process used guidelines
covering all parts of the SLR process from search and selection [169] to analysis [68, 144].
Second, the resulting themes have low levels of abstraction to limit the risks of misinterpret-
ing the primary research. Finally, coverage of the body of research is critical for construct
validity in literature studies, e.g., such that the synthesis of available solutions is complete.
The extensive search process ensured sufficient coverage in the included papers.

6.3.2 Theory track validity

In the theory track, the primary concerns are construct validity in the conceptualizations
and external validity of the guidelines such that they can describe and improve CE practice
for other case companies. Both Papers II and III in the track make use of guidelines for
case study methodology [253] and thematic analysis [68] in a systematic way to increase

37

construct validity. Paper III also uses the systematic theory building process by Sjeberg et
al. [274]. The threat to construct validity was further limited in the case selection by striving
to include a range of cases from companies with extensive usage of CE to those with next
to no CE usage.

Furthermore, external validity was considered by broad case selection, such that the likeli-
hood was increased of that the constructs and propositions are generalizable to other com-
panies. External validity is further supported by thoroughly describing the context of each
included case company, such that practitioners can judge the applicability of the theory in
relation to their context. In Paper II, the scenarios were derived in a company that served
multiple customers, hence the external validity is higher than what would be expected for
a single case. However, verification experiments were not included in the paper (see Sec-
tion 4.2) due to insuflicient coverage of the concept at the time.

6.3.3 Tool track validity

The tool track consists of a full DS cycle and thus all aspects of validity are important.
Construct validity is strengthened by following the design science methodology proposed
by Wieringa et al. [306] so that the abstractions proposed in the toolkit were made to
support specific use cases. External validity is addressed by disclosing the limitations of
COMBO and the intended setting. The use of the toolkit was motivated by related in-
dustrial work [138, 209] so the research is relevant. Instantiation validity is crucial to have
the toolkit be applicable for practitioners. The cost of instantiating the toolkit is substan-
tial, since it needs close integration with a production software system, hence limiting the
ability to academically validate the toolkit. However, the design decisions of COMBO
were described and the software is open sourced to increase instantiation validity. Also,
the solution is abstracted to a construct such that conceptual aspects of the contribution
in Paper IV can be used without relying on instantiating the whole toolkit. nternal valid-
ity is increased by using data from real users in a systematic way. Finally, reliability in the
form of repeatability of the validation is improved by providing source code and replication
instructions.

6.3.4 'Thesis validity

In summary, the overall thesis validity of the research is analyzed as follows. Construct valid-
ity is addressed by adhering to established research guidelines for all studies [169, 253, 274,
3006]. External validity is improved by having started the research project with a literature
study that included descriptions of CE at many companies and by including multiple case
companies in the research. Instantiation validity is increased in COMBO by abstracting
the solution such that the contribution does not rely on instantiation. Internal validity is

38

strengthened by the use of multiple types of contributions such that CE is studied from
multiple angles, i.e., triangulated. Finally, reliability is increased through theoretical re-
peatability by being transparent in making source code, code books, and interview guides
available.

6.4 Future work

There is still remaining research to address in future work. In the literature track, the research
contributions include several items of future work for the CE field as a whole. Since the
research field includes many industry authors, the overall recommendation for future work
is to synthesize and evaluate existing models or solutions. Several of the concrete suggestions
for future research are still unaddressed, in particular, a process model derived and validated
from more cases would be a valuable contribution. The interview material from the #heory
track includes several questions about processes and could be used for this purpose. In
the theory track, extending Paper II to a full taxonomy of attributes of experimentation
would be a valuable reference for both practitioners and academic researchers. Also, further
validation of the FACE theory in Paper III is called for, by comparing with CE practice. In
the rool track, further empirical validation of the COMBO toolkit is also needed, preferably
with an industrial case where the toolkit optimizes the user experience of real users.

7 Conclusions

The overall goal of the thesis is to describe current practice and support continuous experimenta-
tion (CE) in industry. The research was conducted with empirical methods and observations
of real world phenomena using a design science frame. The research goal has been addressed
with the following four papers, included in the thesis:

Paper I is a systematic literature review that gives an overview of the previous research within
the field that has been conducted with both a researcher and practitioner point of view in
mind. Many of the primary papers included in the review have industrial authors that
publish problem-solution instances or challenges they faced in their practice. However, it
is unknown how many of these observations are transferable to other companies’ contexts.
Thus, the field is industry relevant but could benefit from further research with industry-
academia bridging collaborations.

In Paper II, an initial case study was conducted at an e-commerce company to give a more
nuanced view on how CE is applied in industry, which resulted in four scenarios of ex-
perimentation. Primarily, the results highlight that experiments are either done for opti-
mization purposes or to validate new feature developments. The scenarios also show that

39

experimentation is conducted in all three of the sales & marketing, software development,
and operations departments; albeit with differing tools and goals. The tools for optimiza-
tion at the sales & marketing department are particularly extensive while the tools for the
software development department’s validation experiments are flexible.

The initial case study was followed by Paper III, with 11 additional case companies and
expanded theoretical scope. This resulted in a theory on the underlying factors that explain
the degree to which companies can expect to derive utility from CE. The identified factors
include CE processes and infrastructure, how complex the problem is that the software
solves for users, and the type of business model used to monetize the software. Empirically-
based guidelines on how companies with state-of-the-art practice structure their CE and
how companies can adapt their CE to their factors are provided. Companies with successful
CE integrate their experimentation as part of BizDev and DevOps.

Finally, in Paper IV, a toolkit for conducting automated experimentation is presented where
developers with limited data science knowledge can optimize software in a larger scale and
to a greater end result. The toolkit includes a domain-specific language for specifying what
variables to optimize on and how they interact with constraints. The constraint system
enables personalization support of the software to users’ context. The paper includes an
analysis of practical considerations for how a process of continuous optimization that extends
CE can be implemented at companies.

In conclusion:
* Companies gain different degrees of utility from continuous experimentation which

the FACE theory illustrates. The guidelines derived from the theory can help com-
panies reach state-of-the-art experimentation.

* The COMBO toolkit supports practitioners wanting to elevate their experimenta-
tion with an optimization approach to improve and personalize software to users’
contexts.

40

Included Papers

41

Paper I

Controlled Experimentation in Continuous

Experimentation: Knowledge and Challenges

Florian Auer Rasmus Ros Lukas Kaltenbrunner Per Runeson
Michael Felderer

Abstract

Context Continuous experimentation and A/B testing is an established industry practice
that has been researched for more than 10 years. Our aim is to synthesize the conducted
research.

Objective We wanted to find the core constituents of a framework for continuous experi-
mentation and the solutions that are applied within the field. Finally, we were interested
in the challenges and benefits reported of continuous experimentation.

Method We applied forward snowballing on a known set of papers and identified a total
of 128 relevant papers. Based on this set of papers we performed qualitative narrative and
thematic synthesis to answer the research questions.

Results The framework constituents for continuous experimentation include experimen-
tation processes as well as supportive technical and organizational infrastructure. The so-
lutions found in the literature were synthesized to nine themes, e.g., experiment design,
automated experiments, or metric specification. Concerning the challenges of continuous
experimentation, the analysis identified cultural, organizational, business, technical, statis-
tical, ethical, and domain-specific challenges. Further, the study concludes that the benefits
of experimentation are mostly implicit in the studies.

Conclusions The research on continuous experimentation has yielded a large body of
knowledge on experimentation. The synthesis of published research presented within in-
clude recommended infrastructure and experimentation process models, guidelines to mit-
igate the identified challenges, and what problems the various published solutions solve.

Keywords Continuous experimentation - Online controlled experiments - A/B testing -
Systematic literature review

43

1 Introduction

Deciding which feature to build is a difficult problem for software development organi-
zations. The effect of an idea and its return-on-investment might not be clear before its
launch. Moreover, the evaluation of an idea might be expensive. Thus, decisions are based
on experience or the opinion of the highest paid person [171]. Similarly difficult is the
assessment of technical changes on products. It can be difficult to predict the effect of
a change on software quality, as evidenced by the extensive research on, e.g., defect pre-
diction [109, 298] or software reliability estimation [244]. Moreover, there are cases in
which it is not feasible to test for all necessary conditions, e.g., for all relevant software and
hardware combinations.

Continuous experimentation (CE) addresses these problems. It provides a method to derive
information about the effect of a change by comparing different variants of the product
to the unmodified product (i.e. A/B testing). This is done by exposing different users
to different product variants and collecting data about their behavior on the individual
variants. Thereafter, the gathered information allows making data-driven decisions and
thereby reducing the amount of guesswork in the decision making.

In 2007, Kohavi et al. [171] published an experience report on experimentation at Mi-
crosoft and provided guidelines on how to conduct randomized controlled experiments in
software engineering practice. It is the seminal paper about continuous experimentation
and thus represents the start of the academic discussion on the topic. Three years later, a
talk from the Etsy engineer Dan McKinley [203] gained momentum in the discussion. In
the talk, the term continuous experimentation was coined to describe their experimentation
practices. Other large organizations, like Facebook [107] and Netflix [125], which adopted
data-driven decision making [174], shared their experiences [30] and lessons learned [176]
about experimentation over the years with the research community. In addition, researchers
from industry as well as academia developed methods, models and optimizations of tech-
niques that advanced the knowledge on experimentation.

After more than ten years of research, numerous work has been published in the field of
continuous experimentation, including work on problems like the definition of an experi-
mentation process [106], how to build infrastructure for large-scale experimentation [130],
how to select or develop metrics [193], or the considerations necessary for various specific
application domains [94]. The purpose of this systematic literature review is threefold. First,
to synthesize the models suggested by the research community to find characteristics of an
essential framework for experimentation. This framework can be used by practitioners to
identify elements in their experimentation framework. Second, to synthesize the various

44

technical solutions that have been applied. In this inquiry, we also include to what degree
the solutions are validated. Finally, to summarize and categorize the challenges and benefits
with continuous experimentation. Based on this the following four research questions are
addressed in this work:

RQ1 What are the core constituents of a CE framework?

RQ2 What technical solutions are applied in what phase within CE?

RQ3 What are the challenges with CE?

RQ4 What are the benefits with CE?

The research method of this study is based on two independently conducted mapping stud-
ies [9, 249]. We extended and validated the studies by cross-examining the included studies.
Thereafter, we applied qualitative narrative and thematic synthesis on the resulting set of
papers to answer the research questions.

In the following Section 2, an overview of continuous experimentation and related soft-
ware practices is given. Next, Section 3 describes the research method applied and Sec-
tion 4 presents the results of the research. In Section 5, the findings are discussed. Finally,
Section 6 summarizes the research.

2 Background

In this section we present an overview of continuous experimentation and related con-
tinuous software engineering practices. Further, we summarize our two previously pub-
lished mapping studies. For the novice reader, we recommend Fagerholm et al.’s descrip-
tive model of continuous experimentation [106], or Kohavi et al.’s tutorial on controlled
experiments [172], which is a more hands on introduction for continuous experimentation.

2.1 Continuous software engineering

In their seminal paper on controlled experiments on the web from 2007, Kohavi et al. [171]
explain how the ability to continuously release new software to users is crucial for efficient
and continuous experimentation, which is now known as continuous delivery and con-
tinuous deployment. Together with continuous integration, these are the three software
engineering practices that allow software companies to release software to users rapidly and
reliably [270] and are fundamental requirements for continuous experimentation.

45

Continuous integration entails automatically merging and integrating software from multi-
ple developers. This includes testing and building an artifact, often multiple times per day.
Continuous delivery is the process by which software is ensured to be always in a state to
be ready to be deployed to production. Successful implementation of continuous integra-
tion and delivery should join the incentives of development and operations teams, such
that developers can release often and operations get access to powerful tools. This has in-
troduced the DevOps [92] role (and concept) in software engineering with responsibility
for numerous activities: testing, delivery, maintenance, etc. Finally, with continuous de-
ployment, the software changes that successfully make it through continuous integration
and continuous delivery can be deployed automatically or with minimal human interven-
tion. Continuous deployment facilitates collection of user feedback through faster release
cycles [99, 318]. With faster release cycles comes the ability to release smaller changes, the
smaller the changes are the easier it becomes to trace feedback to specific changes.

Fitzgerald and Stol [113] describe many more continuous practices that encompass not only
development and operations, but also business strategy; among them continuous innova-
tion and continuous experimentation. Experiments are means to tie development, qual-
ity assurance, and business together, because experiments provide a causal link between
software development, software testing, and actual business value. Holmstrém Olsson et
al. [223] describe how “R&D as an experiment system” is the final step in a process that
moves through the continuous practices.

2.2 Continuous experimentation

The process of conducting experiments in a cycle is called continuous experimentation. The
reasoning is that the results of an experiment often begets further inquires. Whether the
original hypothesis was right or wrong, the experimenter learns something either way. This
learning can lead to a new hypothesis which is subject to a new experiment. This idea of
iterative improvement is known since long from the engineering cycle or from iterative
process improvements, as explained in the models Plan-Do-Check-Act [73] or quality pro-
cess improvement paradigm (QIP) [19]. The term “continuous experimentation” as used
by software engineering researchers refers to a holistic approach [113] which spans a whole
organization. It considers the entirety of the software life-cycle, from business strategy and
planning over development to operations.

Some authors have included many methods of gathering feedback in continuous experi-
mentation [106, 188], including qualitative methods and data mining. These methods are
not the focus of this work, though they are also valuable forms of feedback [37, 318]. For
example, qualitative focus groups in person with selected users can be used early in develop-
ment on sketches or early prototypes. The human-computer interaction research field has
studied this extensively—recently under the name of user experience research—and it has

46

also been the subject of software engineering literature reviews in combination with agile
development [156, 257]. In contrast to the qualitative methods, a controlled experiment
requires a completed feature before it can be conducted. It is focused on quantitative data,
thus cannot easily answer questions on the rationale behind the results, as qualitative meth-
ods can. As such, these methods compliment each other, but they are different in terms of
methodology, infrastructure, and process. We discuss the qualitative methods through the
lens of controlled experimentation in Section 4.2.9.

A randomized controlled experiment (or A/B test, bucket test, or split test) is a test of an idea
or a hypothesis in which variables are systematically changed to isolate the effects. Because
the outcome of an experiment is non-deterministic, the experiment is repeated with mul-
tiple subjects. Each subject is randomly assigned to some of the variable settings. The goal
of the experiment is to investigate whether changes in the variables have a causal effect on
some output value, usually in order to optimize it. In statistical terminology, the variable
that is manipulated is called the independent variable and the output value is called the
dependent variable. The effect that changing the independent variables has on the depen-
dent variable can be expressed with a statistical hyporhesis test. A significance test involves
calculating a p-value! and the hypothesis is validated if the p-value is below a given confi-
dence level, often 95%. In addition, properly conducting a controlled experiment requires
a power calculation? to decide experiment duration.

In software engineering, a controlled experiment is often used to validate a new product
feature, in that case the independent variable is whether a previous baseline feature or the
new feature should be used. These are sometimes called control and test group, or the A and
B group, in which case the experiment design is called an A/B test. In an A/B test, only one
variable is changed; other experiment designs are possible [112, 172] but rarely used [249].
To optimize software configuration settings is another use of controlled experiments in
software engineering [184]. The dependent variable of the experiment is some measurable
metric, designed with input from some business or customer needs. If there are multiple
metrics involved with the experiment, then an overall evaluation criteria (OEC) [252] can
be used, which is the most important metric for deciding on the outcome of the experiment.
The subjects of the experiments are usually users, that is, each user provides one or more
data points. In some cases the subjects are hardware or software parameters, for example,
when testing optimal compiler settings.

. X1—X
' T-test is often used to compare whether the mean of two groups are equal, based on the #-score # = 5‘/ \/ﬁz ,

where X is mean, s is the standard deviation, and 7 is the number of data points. The p-value is derived from
the #-score through the ¢-distribution.

%A simple approximate power calculation [171] for fixed 95% confidence level and 90% statistical power is
n = (4rs/A)?, where n is the number of users, 7 is the number of groups, s is the standard deviation, and A is
the effect to detect.

47

Refine / perservere

e Business analyst

e Product ownar (1) Prioritize hypotheses

1

¢ Software developer
¢ Quality assurance (2) Implement MVF

1
e Data scientist f .
e User researcher (3) Design ixperlment

¢ Release engineer

e Operations engineer (5) Analyze

(4) Execute experiment

Figure 1: Continuous experimentation process overview in five phases. A hypothesis is prioritized and implemented as a min-
imum viable product, then an experiment is designed and conducted that evaluates the software change, finally a
decision is made to continue or pivot to another feature. This simplified process is based on the RIGHT model. The
roles involved in each phase are shown to the left.

The process of continuous experimentation (see Figure 1) has similarities to the tradition
from science in software engineering research [310] and elsewhere [112]. However, we base
the following process on the RIGHT model by Fagerholm et al. [106]. There are five main
phases of the process. (1) In the ideation phase hypotheses are elicited and prioritized. (2)
Implementation of a minimum viable product or feature (MVF) that fulfill the hypothesis
follows. (3) Then, a suitable experiment design with an OEC is selected. (4) Execution in-
volves release engineers deploying the product into production and operations engineers
monitoring the experiment in case something goes wrong. Finally, (5) an analysis is con-
ducted with either statistical methods by data scientists or by qualitative methods by user
researchers. If the results are satisfactory the feature is included in the product and a new
hypothesis is selected so the product can be further refined. Otherwise, a decision must
be made if to persevere and continue the process or if a pivot should be made to some
other feature or hypothesis. Lastly, the results should be generalized into knowledge so
the experience gained can be used to inform future hypotheses and development on other
features.

48

Many of the papers included in this study are on improved analysis methods. One such
direction that need additional explanation is segmentation. It is used in marketing to create
differentiated products for different segments of the market. In the context of experiments
it is used to calculate metrics for various slices of the data in, e.g., gender, age groups, or
country. Experimentation tools usually perform automated segmentation [130] and can,
for example, send out alerts if a change affects a particular user group adversely.

2.3 Previous work

Prior to this literature review, two independent mapping studies [9, 247] were conducted
by the authors. Although both studies were in the context of continuous experimentation,
their objectives differed.

In their mapping study [247], Ros and Runeson provided a short thematic synthesis of
the topics in the published research and examined the context of the research in terms
of reported organizations and types of experiments that were conducted. They found that
there is a diverse spread of organizations of company size, sector, etc. Although, continuous
experimentation for software that does not require installation (e.g. websites) was more
frequently reported. Concerning the experimentation treatment types, the authors found
more reports about visual changes than algorithmic changes. In addition, the least common
type of treatment encountered in literature was new features. Finally, it was observed that
the standard A/B test was by far the most commonly used experiment design.

The following mapping study [9] by Auer and Felderer investigated the characteristics of
the state of research on continuous experimentation. They observed that the intensity of
research activities increased from year to year and that there is a high amount of collabo-
ration between industry and academia. In addition, the authors observed that industrial
and academic experts contributed equally to the field of continuous experimentation. Con-
cerning the most influential publications (in terms of citations), the authors found that the
most common research type among them is experience report. Another observation of
the authors was that in total ten different terms were used for the concept of continuous
experimentation.

To summarize, the two previous studies discussed continuous experimentation in terms
of its applicability in industry sectors, the treatment types and experimentation designs
reported, as well as the characteristics of the research in the field. In contrast to these
two mapping studies, this study has a far more comprehensive synthesis. Furthermore,
the two previous studies improved the rigor and completeness of the search and synthesis
procedures.

49

3 Research Method

Based on these two independently published systematic mapping studies [9, 249] we con-
ducted a joint systematic literature review. Thus, the presented sets of papers from these
two studies were used as starting sets. Forward snowballing was applied, by following the
assumption from Wohlin [309] that publications acknowledge previous research. Relevant
research publications were identified in the resulting sets. Next, the two sets were merged
and the resulting set was studied to answer the respective research questions. Therefore,
qualitative thematic synthesis [68] and additional narrative synthesis [144] was conducted
to answer the research questions based on the found literature.

In the following, the research objective and the forward snowballing procedures are pre-
sented. Thereafter, the syntheses used to answer the research questions are described. Fi-
nally, the threats to validity are discussed.

3.1 Research objective

The aim of this research is to give an overview of the current state of knowledge about
specific aspects of continuous experimentation. The research questions as stated in the
introduction are on: (1) core constituents of a CE framework, (2) technical solutions in
CE, (3) challenges with CE, and (4) benefits with CE. Based on the prior mapping studies

we observed that there were many papers on these topics.

3.2 Forward snowballing

The two existing sets of papers emerging from the previous literature reviews [9, 249], were
used as starting sets for forward snowballing. They were selected as starting sets, because
both studies were in the field of continuous experimentation and they had similar research
directions. Moreover, both studies were conducted within a short time of each other and
had similar inclusion criteria. Hence, the authors are confident that the union of both
selected paper sets is a good representation of the field of continuous experimentation in
this context until 2017.

The forward snowballing was executed independently for each starting set. After having
elaborated a protocol to follow, half of the authors worked on Set A (based on [9], with 82
papers) and half of them on the other Set B (based on [249], with 62 papers). In total, the

starting sets contained 100 distinctive papers of which 44 papers were shared among both

50

starting sets. The citations were looked up on Google Scholar’. Since the two previous
mapping studies covered publications until 2017, the forward snowballing was conducted
by considering papers within the time span 2017—2019. The snowballing was executed until
no new publications were found.

In the process of snowballing, we used a joint set of inclusion and exclusion criteria. A
paper was included if any of the inclusion criteria applies, unless any of the exclusion criteria
applies. The decision was based primarily on the abstract of papers. If this was insufficient
to make a decision, the full paper was examined. In doubt, the selection of a paper was
discussed with at least one other author. The criteria were defined as such:

Inclusion criteria
* Any aspect of continuous experimentation (process, infrastructure, technical consid-
erations, etc.)
* Any aspect of controlled experiments (designs, statistics, guidelines, etc.)

* Techniques that complement controlled experiments

Exclusion criteria

* Not written in English

¢ Not accessible in full-text

* Not peer reviewed or not a full paper

* Not a research paper: track, tutorial, talk, keynote, poster, book

* Duplicated study (the latest version is included)

* Primary focus on business-side of experimentation, advertisement, user interface,

recommender system

The quality and validity of the included research publications were ensured through the in-
clusion and exclusion criteria. For instance, publications that did not go through a scientific
peer-reviewing process were not considered according to the exclusion criteria. Moreover,
to ensure that only mature work was included both vision papers with no evidence based
contribution and short papers with preliminary results were excluded.

*https://scholar.google.com/

51

https://scholar.google.com/

To summarize, the forward snowballing based on the starting Set A [9] resulted in 100
papers (Set A’) and the starting Set B [249] resulted in 88 papers (Set B). After merging the
two paper sets, a total of 128 distinctive papers represent the result of the applied forward
snowballing.

3.3 Synthesis

The collection of found papers was studied in more detail to answer each research question.
Therefore, a thematic synthesis was conducted for each research question and two of the re-
search questions were additionally answered with qualitative narrative syntheses [144]. The
thematic synthesis followed the steps and checklist proposed by Cruzes and Dyba [68] (see
Figure 2). Also, the examples of thematic and narrative syntheses given in Cruzes et al. [69]
were consulted. Furthermore, all papers were classified in terms of their research rype accord-
ing to Wieringa et al. [305] to identify whether they contained solutions (RQ2). Next, the
found results were summarized and identified patterns within them were reported. All text
segments and codes found in the results of the study are available online (see Section 3.4).

The procedure for the thematic synthesis was as follows. As an initial step, all 128 selected
papers were read in full and segments of text that relate to a research question were identified.
Next, each text segment was labeled with a code. These codes were loosely based on terms
that were identified in previous literature studies [9, 249] and evolved during the labeling
of the text segments. Thereafter, the codes that had overlapping themes were reduced into
themes. In the last step, these themes were arranged according to higher-order themes. The
results include 15 higher-order themes in total.

See Figure 2 for an example of the thematic synthesis process, with the data and results for
part of the challenges of CE (RQ3). The occurrences of each qualitative data is shown for
each step in Figure 2a. A total of 154 segments of text were identified, 84 codes were used,
which were reduced to 18 themes, and 6 higher-order themes. The higher-order themes are
visible in the structure of the subsections in Section 4. In Figure 2b, examples of each data
type is given. The example is based on the low impact theme, which was assigned to the
higher-order theme business challenges.

For the first two research questions, an additional narrative synthesis [69] was conducted
as a complement to the thematic synthesis. This type of synthesis aggregates qualitative
recurring narratives in text. The purpose with conducting the narrative synthesis was to
find rationales behind the introduction of infrastructure, processes, or solutions; such that
they could be grouped into what problems they were designed to address. This inquiry
went beyond the categorization of the thematic synthesis that we applied. In comparison
to the thematic synthesis, the analysis procedure was looser but considered the papers in
their entirety instead of isolated segments of text.

52

Initial reading Identify specific Label the Reduce overlap Create a model

of data/text segments of text segments and translate of higher-order
l of text codes into themes
l l themes
l l
12%5%%?2““ 154 gﬁgﬁnts 84 codes 18 themes 6 themes

(a) Occurrences of qualitative data for each step in the thematic synthesis, from text source to higher-order themes.

Initial reading Identify specific Label the Reduce overlap Create a model
of data/text segments of text segments and translate of higher-order
l of text codes into themes
l l themes
l J

Investigate benefits
of experimentation.

5 papers) Benefits

10.1016/1.J55.2016.03.034 Estimate loss budget Bud . .
10.1016/).J55.2017.07.009 for A/B tests. udget Low impact Business challenges
10.1109/BIGDATA.2015.7363863 Handle experiment Experiment

10.1109/FAS-W.2018.00032 budget. prioritization

10.1145/2901739.2901745 Prioritize projects for

A/B testing.

(b) Specific examples of the qualitative data for each step in the thematic synthesis, for the low impact theme.

Figure 2: Applied thematic synthesis process (adapted from Cruzes et al. [68, 69]), for RQ3.

3.4 'Threats to validity

In every step of this research, possible threats to its validity were considered and minimized
when possible. In the following, the potential threats are discussed to provide guidance
in the interpretation of this work. This section is structured by the four criteria construct

validity, internal validity, external validity and reliability by Easterbrook et al. [91].

3.4.1 Construct validity

This threat is about the validity of identification and selection of publications. A challenging
threat to overcome is the completeness of the literature search without a biased view of
the subject. To mitigate this threat, all papers from the start sets were used without any
further exclusion. The larger start set (in comparison to applying the exclusion criteria from
the start) was expected to lead to a broader coverage of the literature during the forward
snowballing. Furthermore, the process of forward snowballing was adapted in a way such
that the candidate selection was tolerant about which papers to include, thereby increasing

53

the coverage of the literature search. However, publications may have been falsely excluded
because of misjudgment. Nevertheless, we conducted two parallel forward snowballing
searches by different authors based on slightly different starting sets, which should mitigate
this threat.

3.4.2 Internal validity

Threats that are caused by faulty conclusions could happen because of authors bias at the
selection, synthesis of publications, and interpretation of the findings. To mitigate this
threat, a second author was consulted in case of any doubt. Nevertheless, activities like
paper inclusion or exclusion and thematic synthesis inevitably suffer from subjective deci-
sions.

3.4.3 External validity

Threats to external validity covers to which extent the generalization of the results is justified
to other companies, fields, etc. As the aim of this study is to give an overview of continu-
ous experimentation and to explore the future work items in continuous experimentation,
the results should not be generalized beyond continuous experimentation. Therefore, this
threat is negligible.

3.4.4 Reliability

This threat focuses on the reproducibility of the study and the results. To mitigate this
threat every step and decision of the study were recorded carefully and the most important
decisions are reported. The results of the study are available online [12]. This enables other
researchers to validate the decision made on the data. Furthermore, it increases transparency
and allows theoretical repeatability of the study.

4 Results

In this section the results of the literature review are presented according to the research
questions.

54

4.1 'What are the core constituents of a CE framework (RQI)?

To conduct continuous experimentation, an organization has to have some constituents
of a framework for experimentation. There is some process involved (implicit or explicit)
and some infrastructure is required, which includes a toolchain as well as organizational
processes. In the following, both aspects of an experiment are discussed in detail: the
process and its supporting infrastructure.

4.1.1 Experiment process

The experiment process can be described in a model that gives a holistic view of the phases
and environment around experimentation. Most studies on experiment processes present
models based on qualitative interview data. Two models describe the overall process of ex-
perimentation. First, the reference model RIGHT (Rapid Iterative value creation Gained
through High-frequency Testing) by Fagerholm et al. [106] contains both an infrastruc-
ture architecture and a process model for continuous experimentation. The process model
builds on the Build, Measure, Learn [240] cycle of Lean Startup. The process in Figure 1 is a
simplified view of RIGHT. Second, the HYPEX (Hypothesis Experiment Data-Driven De-
velopment) model is another earlier process model by Holmstrom Olsson and Bosch [220].
In comparison to the RIGHT model, it is less complete in scope, however it does go into
further details in hypothesis prioritization using a gap analysis.

Kevic et al. [164] present concrete numbers on the experiment process used at Microsoft
Bing through a source code analysis. They have three main findings: (1) code associated
with an experiment is larger in terms of files in a changeset, number of lines, and number
of contributors; (2) experiments are conducted in a sequence of experiments lasting on
average 42 days, where each experiment is on average conducted for one week; and (3) only
a third of such sequences are eventually shipped to users.

In addition to the general models described above, several models deal with a specific part
of the experiment cycle. The CTP (Customer Touchpoint) model by Sauvola et al. [259]
focuses on user collaboration and describes the various ways that user feedback can be in-
volved in the experimentation stages. Amatrian [5] and Gomez-Uribe and Hunt [125]
describe their process for experimentation on their recommendation system at Netflix, in
particular, how they use offline simulation studies with online controlled experiments. In
the ExG Model (Experimentation Growth), by Fabijan et al. [101, 103], organizations can
quantitatively gauge their experimentation on technical, organizational, and business as-
pects. In another model by Fabijan et al. [102] they describe the process of analyzing the

55

results of experiments and present a tool that can make the process more effective, by e.g.,
segmenting the participants automatically and highlighting the presence of outliers. Fi-
nally, Mattos et al. [198] present a model that discuss details on activities and metrics on
experiments.

4.1.2 Infrastructure

Depending on what type of experimentation is conducted, different infrastructure is re-
quired. For controlled experimentation, in particular, technical infrastructure in the form
of an experimentation platform is critical to increase the scale of experimentation. At the
bare minimum it needs to divide users into experiment groups and report statistics. Gupta
et al. [130] at Microsoft have detailed the additional functionality of their experimentation
platform. Also, Schermann et al. [265] have described attributes of system and software
architecture suitable for experimentation, namely, that micro-service-based architectures
seem to be favored. Some experimentation platforms are specialized to specific needs: au-
tomation [196], or describing deployment through formal models [263], or how experi-
mentation can be supported by non-software engineers [177, 111].

There are also non-technical infrastructure requirements, regardless of the type of experi-
mentation in use. The required roles are [113]: data scientists, release engineers, user re-
searchers, and the standard software engineering roles. Also, an organizational culture [176,
315] that is open towards experimentation is needed. For example, Kohavi et al. [176] ex-
plain that managers can hinder experimentation if they overrule results with their opinions.

They call the phenomenon the highest paid persons opinion (HiPPO).

While experimentation is typically associated with large companies, like Microsoft or Face-
book, there are three interview studies that discuss experimentation at startups specifi-
cally [27, 106, 131]. As argued by Gutbrod et al. [131], startup companies often guess
or estimate roughly about the problems and customers they are addressing. Thus, there is
a need for startup companies to be more involved with experimentation, even though they
have less infrastructure in place.

Finally, we would like to call attention to some of the few case studies and experience reports
on experimentation on “ordinary” software companies, which are neither multi-national
corporations nor startups; in e-commerce [247], customer relations [242], and game de-
velopment [321]. None of these papers are focused on infrastructure, but do mention that
infrastructure needs to be implemented. Though, Risannen et al. [242] mentions addi-
tional challenges when infrastructure must be implemented on top of a mature software
product. In summary, this indicates that infrastructure requirements are modest, unless
scaling up to multi-national corporation levels with millions of users.

56

Ideation
1. Data mining
2. Metric specification

Analysis Experiment design
8. Improved statistical 3. Variants of controlled
methods experiment design
9. Qualitative feedback 4. Quasi experiments
Execution Implementation
: L 5. Automated controlled
7. Continuous monitoring experimentation

6. Variability management

Figure 3: Solutions applied within continuous experimentation arranged by main phase of experimentation from Section 2.2.

4.2 'What technical solutions are applied in what phase within CE (RQ2)

The study of the selected publications revealed many different types of solutions that were
summarized by common themes. Figure 3 gives an overview of the identified solutions
organized in the phases of experimentation from Figure 1.

4.2.1 Data mining

Data from previous experiments can be used to make predictions or mine insights to either
improve the reliability of the experiment or for ideation. There were three specific solutions
for data mining in continuous experimentation. (1) Statistical tests can be improved by
calculating variance of metrics through bigger data sets than just one experiment; this is
in place at Netflix [312], Microsoft [74, 77], Google [140], and Oath [7]. (2) Mining for
invalid tests through automatic diagnosis rules is in place at LinkedIn [56] and Sevenval
Technologies [218]. Finally, (3) data mining is used to extract insights from segments of
the users, by detecting if a treatment is more suitable for those specific circumstances [89];
this technique is applied at Snap [313] and Microsoft [102].

4.2.2 Metric specification

Defining metrics for software is difficult. This has been studied primarily at Microsoft [76,
81, 193] and Yandex[45, 88, 167]. Some general guidelines for defining metrics follow. At
Microsoft, they have hundreds of metrics for each experiment (in addition to a few OEC).
Machmouchi and Buscher [193] from Microsoft describe how their metrics are interpreted
in a hierarchy in their tool (similar to Fabijan et al. [102] also at Microsoft). At the top of
the hierarchy are statistically robust metrics (meaning they tend not to give false positives)

57

and at the bottom are feature specific metrics that are allowed to be more sensitive. At
Yandex, they always pair OEC metrics with a statistical significance test to create an overall
acceptance criteria (OAC) instead [87]; thereby reducing the risk of incorrectly pairing
significance tests to metrics.

There are techniques for evaluating metrics, in how well they behave in experiments. Dmitriev
et al. [81] give an experience report on how metrics are continuously evaluated at Microsoft
system in practice. Deng et al. [76] define metrics for evaluating metrics: directionality and
sensitivity. They measure, respectively, whether a change in the metric aligns with good
user experience and how often it detects a change in user experience.

Usability metrics are hard to define since they are not directly measurable without special-
ized equipment, such as eye-tracking hardware or focus groups. The measurements that
are available, such as clicks or time spent on the site, do not directly inform on whether a
change is an improvement or degradation in user experience. In addition, good user expe-
rience does not necessarily correlate positively with business value, e.g., clickbait titles for
news articles are bad user experience but generate short term revenue. Researchers from
Yandex [45, 85, 86, 88, 167, 234] are active in this area, with the following methods fo-
cused on usability metrics: detecting whether a change in a metric is a positive or negative
user experience [85]; learning sensitive combinations of metrics [167]; quantifying and de-
tecting trends in user learning [88]; predicting future behavior to improve sensitivity [86];
applying machine learning for variance reduction [234]; and finally correcting misspecified
usability metrics [45]. Machmouchi et al. [194], at Microsoft, designed a rule-based classi-
fier where each user action is either a frustration or benefit signal; the tool then aggregates
all such user actions taken during a session into a single robust utility metric.

4.2.3 Variants of controlled experiments design

Most documented experiments conducted in industry are univariate A/B/n-tests [249],
where one or more treatments are tested against a control. Extensions to classical designs
include a two-staged approach to A/B/n tests [78] and a design to estimate causal effects
between variables in a multivariate test (MVT) [231]. MVTs are cautioned against [175]
because of their added complexity. In contrast, other researchers take an optimization ap-
proach using lots (see Section 4.2.5) of variables with multi-armed bandits [62, 138, 199,
247] or search-based methods [208, 250, 285]. Also, mixed methods research is used to
combine quantitative and qualitative data (see the solution theme on Qualitative feedback).

58

4.2.4 Quasi-experiments

A quasi-experiment (or natural experiment) is an experiment that is done sequentially in-
stead of in parallel; this definition is the same as in empirical research in general [310]. The
reason for doing it is that it has a lower technical complexity. In fact, any software deploy-
ment can have its impact measured by observing the effect before and after deployment.
The drawback of this is that analyzing the results can be difficult due to the high risk of
having external changes affect the result. That is, if anything extraordinary happens roughly
at the same time as the release it might not be possible to properly isolate the results. Since
the world of software is in constant change the use of quasi-experiments is challenging. The
research directions on quasi-experiments involve how to eliminate external sources of noise
to get more reliable results. This is studied at Amazon [137] and Linkedin [314], particu-
larly for environments were control in continuous deployment is hard (such as mobile app
development).

4.2.5 Automated controlled experimentation with optimization algorithms

With an optimization approach, the allocation of users to the treatment groups is dynam-
ically varied to optimize an OEC, such that treatments that perform well continuously
receive more and more traffic over time. With sufficient automation, these techniques
can be applied to lots of treatment variables simultaneously. This is not a replacement
for classical designs; in an interview study by Ros and Bjarnason [247], they explain that
such techniques are often validated themselves using A/B tests. In addition, based on the
studies included here, only certain parameters are eligible, such as the design and layout
of components in a GUI, or parameters to machine learning algorithms or recommender
systems. Some of these optimizations are black-box methods, where multiple variables are
changed simultaneously and with little opportunity to make statistical inferences from the
experiments.

Tamburelli and Margara [285] proposed search-based methods (i.e. genetic algorithms) for
optimization of software, and litsuka and Matsuo [148] demonstrated a local search method
with a proof of concept on web sites. Miikkulainen [208], at Sentient Technologies, have
a commercial genetic algorithm profiled for optimizing e-commerce web sites. Bandit op-
timization algorithms are also used in industry at Amazon [138] and AB Tasty [62], it is a
more rigorous formalism that requires the specification of a statistical model on how the
OEC behaves. Ros et al. [250] suggested a unified approach of genetic algorithms and ban-
dit optimization. Similar algorithms exist to handle continuous variables, as is needed for
hardware parameters [121, 199] and for optimizing machine learning and compiler param-
eters [184].

59

Two studies apply optimization [165, 262] to scheduling multiple standard A/B tests to
users, where only a single treatment is administered to each user. The idea is to optimize
an OEC without sacrificing statistical inference.

4.2.6 Variability management

Experimentation incurs increased variabilitcy—by design—in a software system. This topic
deals with solutions in the form of tools and techniques to manage said variability. In
terms of an experiment platform, this can be part of the experiment execution service or the
experimentation portal [130].

There have been attempts at imposing systematic constraints and structure in the configu-
ration of how the variables under experimentation interact with formal methods. Cdmara
and Kobsa [48] suggest using a feature model of the software parameters in all experiments.
This work has not advanced beyond a proof-of-concept stage.

Neither in our study, nor in the survey by Schermann et al. [265], is there any evidence of
formal methods in a dynamic and constantly changing experimentation environment. The
focus of the tools in actual use are rather on flexibility and robustness [15, 286]. Rahman
et al. [236] studied how feature toggles are used in industry. Feature toggles are ways of
enabling and disabling features after deployment, as such they can be used to implement
A/B testing. They were found to be efficient and easy to manage but adds technical debt.

A middle ground between formal methods and total flexibility has evolved in the tools
employed in practice. Google has proprietary tools in place to manage overlapping experi-
ments in large scale [286]. In their tools, each experiment can claim resources used during
experimentation and a scheduler ensures that experiments can run in parallel without inter-
ference. Facebook has published an open-source framework (PlanOut) specialized for con-
figuring and managing experiments [15], it features a namespace management system for
experiments running iteratively and in parallel. SAP has a domain-specific language [302]
for configuring experiments that aims at increasing automation. Finally, Microsoft has the
ExP platform, but none of the selected papers focus solely on the variability management
aspect of it.

4.2.7 Improved statistical methods

The challenges with experimentation motivate improved statistical techniques specialized
for A/B testing. There are many techniques for fixing specific biases, sources of noise, etc.
We found eight specific solutions for this theme: (1) a specialized test for count data at
SweetIM [30]; (2) fixing errors with dependent data at Facebook [16]; (3) improvements

60

from the capabilities of A/A testing on diagnosis (which tests control vs control expecting
no effect) at Yahoo [323] and Oath [57]; (4) better calculation of overall effect for features
with low coverage at Microsoft [75]; (5) fixing errors from personalization interference at
Yahoo [71]; (6) fixing tests under telemetry loss at Microsoft [129]; (7) correcting for selec-
tion bias at Airbnb [183]; and (8) algorithms for improved gradual ramp-up at Google [204]
and LinkedIn [316].

4.2.8 Continuous monitoring

Aborting controlled experiments pre-maturely in case of outstanding or poor results is a
hotly debated topic on the internet and in academia, under the name of continuous mon-
itoring, early stopping, or continuous testing. The reason for wanting to stop early is to
reduce opportunity costs and to increase development speed. It is studied by Microsoft [79],
Yandex [166], Optimizely [153], Walmart [2], and Etsy [155]. This concept is similar to the
continuous monitoring used by researchers in the DevOps community and continuous
software engineering [113] where it refers to the practice of monitoring a software system
and sending alerts in case of faults. The issue with continuous monitoring of experiments
is the increased chance of getting wrong results if carried out incorrectly. Traditionally, the
sample size of an experiment is defined beforehand through a power calculation. If the
experiment is continuously monitored with no adjustment, then the results will be skewed
with inflated false negative and positive error rates.

4.2.9 Qualitative feedback

While the search strategy in this work was focused on controlled experiments, research on
qualitative feedback was also included from experience reports on using many different
types of feedback collecting methods, for example at Intuit [31, 32] and Facebook [107].
The qualitative methods are used as complements to quantitative methods, either as a way
to better explain results or as a way to obtain feedback earlier in the process, before a full
implementation is built. That is, qualitative feedback can be collected on early user expe-
rience sketches or mock-ups. Another use of qualitative methods is to elicit hypotheses
that can be used as a starting point for an experiment. Examples of methods include focus
groups, interviews, and user observations.

In addition, at Unister [277] the authors explain how they collect qualitative user feedback
in parallel with A/B tests, such that the feedback is split by experiment group. According
to the authors, this seems to be a way to get the best of both quantitative and qualitative
worlds. It does require implementing a user interface for collecting the feedback in a non-
intrusive way in the product. Also, the qualitative feedback will not be of as high quality
as when it is done in person with, e.g., user observation or focus groups.

61

4.3 What are the challenges with continuous experimentation (RQ3)?

Continuous experimentation encompasses a lot of the software engineering process, it re-
quires both infrastructure support and a rigorous experimentation process that connects
the software product with business value. As such, many things can go wrong and the chal-
lenges presented here is an attempt at describing such instances. Most of the research on
challenges is evaluation research, with interviews or experience reports. The analysis of the
papers revealed five categories of challenges (see Table 1) that are discussed below in more
detail. Many of the challenges are severe, in that they present a hurdle that must be over-
come to conduct continuous experimentation. A failure in any of the respective category
of challenges will make an experiment: (1) not considered by unresponsive management,
(2) without a business case, (3) unfeasible due to technical reasons, (4) untrustworthy due
to faulty use of statistics, or (5) ethically questionable. In addition, we identified additional
challenges in four domain specific clusters.

4.3.1 Cultural, organizational, and managerial challenges

The challenges to organizations and management are broad in scope, with four specific
challenges: (1) knowledge building of experimentation skills among employees across the
whole organization [174, 320]; (2) leadership practicing micromanagement, who disregard
experiment results in favor of their own opinion [171, 176]; (3) difficulty in changing the
organizational culture to adopt experimentation among engineers [188]; and finally (4) com-
municating results and coordinating experiments in business to business, where there are
stakeholders involved across multiple organizations [242, 320].

The second challenge, micromanagement, is a fundamental challenge that has to be faced
by organizations adopting continuous experimentation. That is, the shift from the highest-
paid person’s opinion (HiPPO) [171, 176] to data-driven decision making. If managers are
used to making decisions about the product then they might not take account of experi-
mental results that might run counter to their intuition. Thus, decision-makers must be
open to have their opinions changed by data, else the whole endeavor with experimentation
is useless.

62

Table 1: Summary of challenges with CE per category with description and key references that focus on them.

Challenge

Description

References

1. Cultural, organizational, and managerial challenges

Knowledge building
Micromanagement
Lack of adaption

Lack of communication

2. Business challenges

Low impact
Relevant metrics

Data leakage

3. Technical challenges

Continuous delivery
Continuous deployment

Experimental control

4. Statistical challenges

Exogenous effects

Endogenous effects

5. Ethical challenges
Data privacy

Dark patterns

There are many roles and skills required, so staff need continuous
training.

Experimentation requires management to focus on the process
(c.f. HiPPO in Section 4.3.1).

Engineers need to be onboarded on the process as well as man-
agers.

Departments and teams should share their results to aid each
other.

Experimentation might focus efforts on incremental development
with insufficient impact.

The business model of a company might not facilitate easy mea-
surement.

Companies expose internal details about their product develop-
ment with experimentation.

The CI/CD pipeline should be efficient to obtain feedback fast.
Obstacles exists to putting deliveries in production, e.g. on-
premise installations in B2B.

Dividing users into experimental groups have many subtle failure
possibilities.

Changes in environment can impact experiment results, e.g.
trend effects in fashion.

Experimentation itself causes effects, such as carry-over or novelty
effects.

GDPR gives users extensive rights to their data which companies
must comply with.

A narrow focus on numbers only can lead to misleading user in-
terfaces.

6. Domain specific challenges

Mobile
Cyber-physical systems
Social media

E-commerce

The app marketplaces impose constraints on deployment and vari-
ability.

Making continuous deployments can be infeasible for cyber-
physical systems.

Users of social media influence each other which impacts the va-
lidity of experiments.

Experimentation needs to be able to differentiate effects from
products and software changes.

[174, 242, 320]
[176]
[188]

[242, 320]

[113, 224]
[83, 103, 188]

(66]

[103, 188, 265]
[242]

(67,82, 172]

[82,173]

[82, 190]

[319]

[150]

[185, 314, 321]
[34, 123, 197]
(13,14, 61]

[126, 300]

63

4.3.2 Business challenges

The premise behind continuous experimentation is to increase the business value of software
development efforts, which is challenging for three reasons. First, defining relevant metrics
that measure business value is the most frequent challenge in realizing business value [82,
83, 103, 188, 320]. In some instances the metric is only indirectly connected to business,
for example in a business-to-business (B2B) company with a revenue model that is not
affected by the software product, then improving product quality and user experience will
not have a direct business impact.

Second, the impact of experiments might not be sufficient in terms of actual effect [175,
224]. Fitzgerald and Stol [113] argue that continuous experimentation and innovation can
lead to incremental improvements only, at the expense of more innovative changes that
could have had a bigger impact.

Finally, data leakage was highlighted by Conti et al. [66]; they crawled web sites repeatedly
and tried to automatically detect a difference in server responses. Thereby they showed
how easily such data leakage can facilitate industrial espionage on what competitors are
developing.

4.3.3 Technical challenges

Efficient continuous deployment facilitates efficient experimentation. Faster deployment
speed shortens the delay between a hypothesis and the result of an experiment. The ability
to have an efficient continuous delivery cycle is cited as a challenge both for large [172] and
small companies [103, 188, 265]. In addition, continuous deployment is further complicated
in companies involved in business to business (B2B) [242], where deployment has multiple
stakeholders involved over multiple organizations.

In a laboratory experiment setting, it is possible to control variables such as ensuring homo-
geneous computer equipment for all groups and ensuring that all groups have equal distri-
bution in terms of gender, age, education, etc. For online experiments, such experimental
control is much harder due to subtle technical reasons. Examples of that is: users assigned
incorrectly to groups due to various bugs [172]; users changing groups because they delete
their browsing history or multiple persons share the same computer [64, 80, 82, 172]; and
web crawler robots from search engines cause abnormal traffic affecting the results [67, 170].

64

4.3.4 Statistical challenges

Classical experimental design as advocated by the early work on continuous experimen-
tation and A/B-testing [171] does not account for time series. Not only can it be hard to
detect the presence of effects related to trends, but they can also have an effect on the results.
Some of these trend effects occur due to outside influence, so-called exogenous effects, for ex-
ample, due to seasonality caused by fashion or other events which can affect traffic [82, 173].
With domain knowledge, these effects can be accounted for. For example in e-commerce,
experiment results obtained during the weeks before Christmas might not transfer to the
following weeks.

Other statistical challenges are caused by the experimentation itself, called endogenous effects,
such as the carryover effect [173, 190] where the result of an experiment can affect the result
of a following experiment. There are also endogenous effects caused intentionally, through
what is known as ramp up, where the traffic to the test group is initially low (such as
5%,95%) and incrementally increased to the full 50%,/50% split. This is done to minimize
the opportunity cost of a faulty experiment design. It can be difficult to analyze the results
of such experiments in a dynamic environment such as software engineering [67, 170].
Furthermore, learning and novelty effects where the users change their impression of the
feature after using it for a while are also challenging [82, 190].

Endogenous effects will be hard to foresee until experimentation is implemented in a com-
pany. As such, handling statistical challenges is an ongoing process that will require more
and more attention as experimentation is scaled up.

4.3.5 Ethical challenges

Whenever user data is involved there is a potential for ethical dilemmas. When Yaman
et al. [319] surveyed software engineering practitioners, the only question they agreed on
was that users should be notified if personal information is collected. Since GDPR went
into effect in 2018 the right to data privacy is now a requirement. Generally, users agree to
partake in experiments through accepting the terms of service, as stored in cookies. Jian
et al. [150] investigate how A/B testing tools are used in illegal discrimination for certain
demographics, e.g., by adjusting prices or filtering job ads. These are examples of what is
known as dark patterns in the user experience (UX) research community [127]. The study
by Jian etal. was limited to sites using front end Optimizely (a commercial experimentation
platform) metadata.

65

4.3.6 Domain specific challenges

Some software sectors have domain-specific challenges or techniques required for experi-
mentation, of which in the analysis of the papers four prominent domains were found: (1)
mobile apps, (2) cyber-physical systems, (3) social media, and (4) e-commerce. Whether or
not all of these concerns are domain-specific or not is debatable. However, these studies
were all clear on what domain their challenges occurred in and challenges were presented
as domain specific.

There is a bottleneck in continuous deployment to the proprietary application servers of
Android Play or Apple’s App Store, which imposes a bottleneck on experimentation for
mobile apps. Lettner et al. [185] and Adinata and Liem [3] have developed libraries that
load new user interfaces at run time, which would otherwise (at the time of writing in year
2013 and 2014, respectively) require a new deployment on Android Play. Xu et al. [314] at
LinkedIn instead advocate the use of quasi-experimental designs. Finally, Yaman et al. [321]
have done an interview study on continuous experimentation, where they emphasize user
feedback in the earlier stages of development (that do not require deployment).

Cyber-physical systems, embedded systems, and smart systems face similar challenges as mo-
bile apps, namely continuous deployment. None of the studied publications of this study
claims widespread adoption of experimentation at an organizational level. This suggests
that research of experimentation for embedded software is in an early stage. Mattos et
al. [197] and Bosch and Holmstrom Olsson [34] outline challenges and research oppor-
tunities in this domain, among them are: continuous deployment, metric definition, and
privacy concerns. Bosch and Eklund [33, 94] describe required architecture for experimen-
tation in this domain with a proof-of-concept on vehicle entertainment systems. Giaimo
et al. [123, 122] cite safety concerns and resource constraints for the lack of continuous
experimentation.

The cyber-physical systems domain also includes experimentation where the source of noise
is not human users, but rather hardware. The research on self-adaptive systems overlap
with continuous experimentation: Gerostathopoulos et al. [118] have described an archi-
tecture for how self-adaptive systems can perform experimentation, with optimization al-
gorithms [120] that can handle non-linear interactions between hardware parameters [119].
In addition, two pieces of work [44, 149] on distributed systems focus on experimentation,
with a survey and a tool on how distributed computing can support experimentation for
e.g. cloud providers.

66

Backstrom et al. [14] from Facebook describe that users of social media influence each other
across experiment groups (thus violating the independence assumption of statistical tests);
they call it the network effect. It is also present at Yahoo [161] and LinkedIn [128, 260, 315].
The research on the network effect includes: ways of detecting it [260], estimating its effect
on cliques in the graph [13, 61], and reducing the interference caused from it [93].

The final domain considerations come from e-commerce. At Walmart, Goswami et al. [126]
describe the challenges caused by seasonality effects during holidays and how they strive to
minimize the opportunity cost caused by experimentation. At Ebay, according to Wang et
al. [300], the challenges are caused by the large number of auctions that they need to group
with machine learning techniques for the purpose of experimental control.

4.4 What are the benefits with continuous experimentation (RQ4)?

The implicit benefits of CE is that the quality of the product is increased in relation to
the metric used in experiments. Many authors mention this implicit benefit of CE only
in passing as motivation for the research, only one paper explicitly focus on additional
benefits.

4.4.1 Implicit benefits

Bosch [31] mentions the reduced cost of collecting passive customer feedback with continu-
ous experimentation in comparison with active techniques like surveys. Also, Bosch claims
that customers have come to expect software services to continuously improve themselves
and that experimentation can provide the means to do that in a process that can be visible
to users. Kohavi et al. [176] claim that edge cases that are only relevant for a small subset
of users can take a disproportionate amount of the development time. Experimentation is
argued for as a way to focus development, by first ensuring that a feature solves a real need
with a small experiment and then optimizing the respective feature for the edge cases with
iterative improvement experiments. In this way, unnecessary development on edge cases
can be avoided if a feature is discarded early on.

4.4.2 Explicit benefits

Fabijan et al. [100] focus solely on additional benefits of CE, differentiated between three
levels as follows. (1) In the portfolio level, the impact of changes on the customer as well as
business value can be measured which is of great benefit to company-wide product portfolio
development. (2) In the product level, the product receives incrementally improvement
quality and reduced complexity by removing unnecessary features. Finally, (3) in the team

67

level of benefizs, the findings of experiments support the related teams to prioritize their
development activities given the lessons learned from the conducted experiments. Another
benefit for teams with continuous experimentation is that team goals can be expressed in
terms of metric changes and their progress is measurable.

5 Discussion

This study builds on two prior independent mapping studies to provide an overview of the
conducted research. This review has been conducted to answer four research questions that
can guide practitioners. In the following, the results of the study are discussed for each
research question, in the form of recommendations to practitioners and implications for
researchers.

5.1 Required frameworks (RQ1)

The first research question (RQ1) about the core constituents of a framework for continuous
experimentation revealed two integral parts of experimentation, the experimentation process
and the technical as well as organizational infrastructure.

5.1.1 Process for continuous experimentation

In the literature, several experimentation process models were found on the phases of con-
ducting online controlled experimentation. They describe the overall process [106], rep-
resent the established experiment process of organizations [164], or cover specific parts of
the experiment cycle [102]. Given that all models describe a process with the same overall
objective of experimentation, it can become difficult to decide between them. The refer-
ence models may be used as a basis for future standardization of the field [5, 106, 125, 220].
Future research is needed to give guidance in the selection between reference models and
variants [102, 198, 259].

Many of the experience reports [175, 170] warn about making experiments with too broad
scope, instead they recommend that all experiments should be done on a minimum viable
product or feature [106]. However, the warnings all come from real lessons learned caused
by having done such expensive experiments. We believe that the current process mod-
els do not put sufficient emphasis on conducting small experiments. For example, they
could make a distinction between prototype experiments and controlled experiments on
a completed project. That way, if the prototype reveals flaws in the design it avoids a full
implementation.

68

As such, our recommendation to practitioners in regards to process is to follow one of the
reference experimentation processes [106, 220] and in addition add the following two steps
to minimize the cost of experiments. First, to spend more time before experimentation
to ensure that experiments are really on a minimum viable feature by being diligent about
what requirements are strictly needed at the time. Second, that experiments should be pre-
validated with prototypes, data analysis, etc.

5.1.2 Infrastructure for continuous experimentation

The research on the infrastructure required to enable continuous experimentation was pri-
marily focused on large scale applications within mature organizations (e.g. Microsoft [130]).
The large number of industrial authors indicates a high practitioner interest in the topic.
However, it should not restrict the community’s focus on large scale applications only. The
application of continuous experimentation within smaller organizations has many open re-
search questions. These organizations have additional challenges to experiment, because of
their likely smaller existing user base and infrastructure. Also, the development of sophis-
ticated experimentation platforms may not be feasible in the extent to which it is for large
organizations. Thus, lightweight approaches to experimentation that do not require large
up-front investments could make experimentation more accessible to smaller organizations.

Technical infrastructure has not been reported as being a significant hurdle for any of the
organizations in which continuous experimentation was introduced in this study. The tech-
nical challenges seem to appear later on when the continuous experimentation process has
matured and the scale of experimentation needs to ramp up. Rather, the organizational
infrastructure seems to be what might cause an inability to conduct experimentation. The
challenges presented in Section 4.3 support this claim too, so the more severe infrastruc-
tural requirements appear to be organizational [113] and culture oriented [176, 315], at least
to get started with experimentation. The reason for this is that experimentation often in-
volves decision making that traditionally fall outside the software development department.
For example, deciding on what metric software should be optimized for might even need
to involve the company board of directors. Following that, the recommendation to practi-
tioners is to not treat continuous experimentation as a project that can be solved with only
software development. The whole organization needs to be involved, e.g., to find metrics
and to ensure that the user data to measure this can be acquired. Otherwise, if the soft-
ware development organization conducts experimentation in isolation, the soft aspects of
infrastructure might be lacking or the software might be optimized with the wrong goal in
mind.

69

5.2 Solutions applied (RQ2)

Concerning the solutions that are applied within continuous experimentation (RQ2), the-
mes were proposed for each of the solutions in literature. The literature analysis revealed
solutions about qualitative feedback, variants of controlled experiments design, quasi-ex-
periments, automated controlled experimentation with optimization algorithms, statistical
methods, continuous monitoring, data mining, variability management, and metric spec-
ification. One observation made was that the validation of solutions proposals could be
further improved by providing the used data sets and a context description or the necessary
steps that allow to reproduce the presented results. Also, many interesting solutions would
benefit from further applications that demonstrate their applicability in practice. Another
observation was that many solutions are driven by practical problems of the author’s as-
sociated organization (e.g., evaluation of mobile apps [137]). This has the advantage that
the problems are of relevance for practice and the provided solutions are assumed to be
applicable in similar contexts. Publications of this kind are guidelines for practitioners and
valuable research contributions.

There are a lot of solutions for practitioners to choose from, most of them solve a very spe-
cific problem that has been observed at a company. In Figure 3, the solutions are arranged
by phase of the experimentation process. What follows is additional help to practitioners
to know what solution to apply for a given problem encountered, which is in the design
science tradition known as technological rules [98]:

* to achieve additional insights in concluded experiments apply (1) data mining that
automatically segments results for users’ context;

* to achieve more relevant results in difficult to measure software systems apply (2) met-
ric specification techniques.

* to achieve richer experiment feedback in continuous experimentation apply (3) vari-
ants of controlled experiments design or (9) qualitative feedback.

* to achieve quantitative results in environments where parallel deployment is challeng-
ing apply (4) quasi-experiments;

* to achieve optimized user interfaces in software systems that can be evaluated on a
single metric apply (5) automated controlled experimentation with optimization algo-
rithms;

* to achieve higher throughput of experiments in experimentation platforms apply (6)
variability management techniques to specify overlapping experiments;

* to achieve trustworthy results in online controlled experiments apply (7) improved
statistical methods or (1) data mining to calibrate the statistical tests;

70

* to achieve faster results in online controlled experiments apply (8) continuous moni-
toring to help decide when experiments can be stopped early.

5.3 Challenges (RQ3)

Many authors of the studied literature mentioned challenges with continuous experimen-
tation in their papers. The thematic analysis of the challenges identified six fundamental
challenge themes. Here they are presented along with the recommendations to mitigate
the risks.

The cultural, organizational and managerial challenges seem to indicate that the multi-
disciplinary characteristic of continuous experimentation introduces new requirements to
the team. It requires amongst others the collaboration of cross-functional stakeholders
(i.e. business, design, and engineering). This can represent a fundamental cultural change
within an organization. Hence, the adaption of continuous experimentation involves tech-
nical as well as cultural changes. Challenges like the lack of adaption support this inter-
pretation. Mitigating these challenges involves taking a whole organizational approach to
continuous experimentation so that both engineers and managers are in agreement about
conducting experimentation.

Another theme among challenges is business. The challenges assigned to this theme high-
light that continuous experimentation has challenges in its economic application with re-
spect to the financial return on investment. The focus of experimentation needs to be
managed appropriately in order to prevent investing in incremental development with in-
sufficient impact. Also, that changes cannot be measured with a relevant metric is another
business challenge. One possible approach for further research on these challenges could be
the transfer from solutions in other disciplines to continuous experimentation. An example
therefore is the overall evaluation criteria [252] that was adapted to continuous experimen-
tation by Kohavi et al. [171]. As with the previous challenge theme, this theme of challenges
does not have an easy fix. It might be the case that experimentation is simply not applicable
for all software companies but further research is needed to determine this.

Concerning the rechnical challenges, the literature review showed that there are challenges
related to continuous deployment/delivery and experiment control. The delivery of changes
to production is challenging especially for environments that are used to none or infrequent
updates, like embedded devices. For such edge cases, new deployment strategies have to be
found that are suitable for continuous experimentation. Although solutions from continu-
ous deployment seem to be fitting, they need to be extended with mechanisms to control

71

the experiment at run-time (e.g. to stop an experiment). This can be challenging in envi-
ronments for which frequent updates are difficult. There is proof-of-concept research [94]
to handle these challenges so they do not seem to be impossible blockers to get started on
experimentation.

The statistical challenges mentioned in the studied literature indicate that there is a need
for solutions to cope with the various ways that the statistical assumptions done in a con-
trolled experiment are broken by changes in the real world. There are both changes in the
environment (exogenous) and changes caused by experimentation (endogenous). Changes
in the environment (e.g. the effect of an advertisement campaign run by the marketing de-
partment) can alter the initial situation of an experiment and thus may lead to wrong con-
clusions about the results. Therefore, the knowledge about an experiment’s environment
and possible influences needs to be systematically advanced and the experiments themselves
should be designed to be more robust. Mitigating these challenges involves identifying and
applying the correct solution for the specific problem. There is further research opportunity
to document and synthesize such problem-solution pairs.

Ethical aspects are not investigated by many studies. The experience reports and lessons
learned publications do not, for example, mention user consent or user’s awareness of par-
ticipation. Furthermore, ethical considerations about which experiments should be con-
ducted or not were seldom discussed in the papers. There were still two challenges iden-
tified in this study, involving data privacy and dark patterns. However, examples like the
Facebook emotional manipulation study, which changed the user’s news feed to determine
whether it affects the subsequent posts of a user, show the need for ethical considerations
in experimentation [114]. Although this was an experiment in the context of an academic
study in psychology, the case nevertheless shows that there are open challenges on the topic
of ethics and continuous experimentation. There is not enough research conducted for a
concrete recommendation other than raising awareness of the existence of ethical dilemmas
involving experimentation.

Continuous experimentation is applied in various domains that require domain specific solu-
tions. The challenges on continuous experimentation range from infrastructure challenges,
over measurement challenges, to social challenges. Examples are the challenge to deploy
changes in cyber-physical systems (technical challenge), to differentiate the effects of one
change from another (statistical challenge), and the influence of users on each other across
treatment groups (statistical challenge). Each challenge is probably only relevant for certain
domains, however the developed solutions may be adaptable to other domains. Thus, the
research on domain-specific challenges could take optimized solutions for specific domains
to other domains.

72

5.4 Benefits (RQ4)

In many publications about continuous experimentation the benefits of experimentation
are mentioned as motivation only; i.e., it increases the quality of the product based on the
chosen metrics. The two publications on explicit benefits [31, 100] mention improvements
not only on the product in business-related metrics and usability but also on the product
portfolio offering and generic benefits for the whole organization (better collaboration, pri-
oritization, etc.). More studies are needed to determine, e.g., if there are more benefits,
whether the benefits apply for all companies involved with experimentation, or whether
the benefits could be obtained through other means. Another benefit is the potential usage
of continuous experimentation for software quality assurance. Continuous experimenta-
tion could support or even change the way quality assurance is done for software. Software
change, for example, could only be deployed if key metrics are not degraded in the related
change experiment. Thus, quality degradation could become quantifiable and measurable.
Although some papers, like [100], mention the usage of continuous experimentation for
software quality assurance.

6 Conclusions

This paper presents a systematic literature review of the current state of controlled exper-
iments in continuous experimentation. Forward snowballing was applied on the selected
paper sets of two previous mapping studies in the field. The 128 papers that were finally
selected, were qualitatively analyzed using thematic and narrative synthesis.

The study found two constituents of a continuous experimentation framework (RQ1): an
experimentation process and a supportive infrastructure. Based on experience reports that
discuss failed experiments in the context of large-scale software development, the recom-
mendation to practitioners is to apply one of the published processes, but also expand it
by placing more emphasis on the ideation phase by making prototypes. As for the infras-
tructure, several studies discuss requirements for controlled experiments to ramp up the
scale and speed of experimentation. Our recommendation for infrastructure is to consider
the organizational aspects to ensure that, e.g., the necessary channels for communicating
results are in place.

Ten themes of solutions (RQ2) were found that were applied in the various phases of con-
trolled experimentation: data mining, metric specification, variants of controlled experi-
ment design, quasi-experiments, automated controlled experimentation, variability man-
agement, continuous monitoring, improved statistical methods, and qualitative feedback.
We have provided recommendations on what problem each solution theme solves for what
context in the discussion.

73

Finally, the analysis of challenges (RQ3) and benefits (RQ4) of continuous experimenta-
tion revealed that only two papers focused explicitly on the benefits of experimentation. In
contrast, multiple papers focused on challenges. The analysis identified six themes of chal-
lenges: cultural/organizational, business, technical, statistical, ethical, and domain-specific
challenges. While the papers on challenges do outnumber the papers on benefits, there is
no cause for concern, as the benefits to product quality are also mentioned in many papers
as motivation to conduct the research. The challenges to experimentation also come with
recommendations in the discussion on how to mitigate them.

As a final remark, we encourage practitioners to investigate the large body of highly industry-
relevant research that exists for controlled experimentation in continuous experimentation
and for researchers to follow the many remaining gaps in literature revealed within.

Acknowledgements
This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous

Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation
and the Austrian Science Fund (FWF): I 4701-N.

74

Paper 11

Continuous Experimentation Scenarios: A
Case Study in e-Commerce

Rasmus Ros Elizabeth Bjarnason

Abstract

Controlled experiments on software variants enable e-commerce companies to increase sales
by providing user-adapted functionality. Our goal is to understand how the context of
experimentation influences tool support. We performed a case study at Apptus that devel-
ops algorithms for e-commerce. We investigated how the case company uses experiments
through five semi-structured interviews. We identified four main scenarios of experimen-
tation and found that there are stark differences in tool support for them. The scenarios
illustrate that the aptness of tool support for experiments depend on four characteristics:
(1) what the goal of the experiment is; validate or optimize, (2) whether the experiment
is performed internally in the organization or externally, (3) whether decisions are taken
automatically or manually, and finally (4) whether the experiment should be repeated or
is a singleton. These insight can be used by practitioners with an interest in efficient ex-
perimentation and to form a basis for further research into a taxonomy of experiments for
software.

Keywords A/B-testing - Continuous experimentation - Tools - Automation - Optimiza-
tion - e-Commerce - Case study

75

1 Introduction

Web companies such as Microsoft [174] and Google [286] use continuous experimenta-
tion [106] to guide the development of new value-adding features according to user pref-
erences. Users are exposed to different software variants in a controlled experiment using,
e.g., A/B testing. Decisions are then made regarding which variant to release based on the
users’ responses to these variants. Based on this knowledge, new ideas are formed and ex-
perimented on. In this way, continuous experimentation can enable companies to meet the
needs and preferences of their users, and when done with speed this is a key competitive
factor [32]. E-commerce represents the frontier of continuous experimentation, based on
numerous experience reports at, e.g., Amazon [138] and Microsoft [174]. We believe that
there is much to learn about the state-of-the-art experimentation in e-commerce.

We performed a case study at a small business-to-business company called Apptus that devel-
ops a software product with algorithms for enabling automatic optimization of e-commerce
solutions. Apptus is well versed in experimentation. They support their customers, i.e., e-
commerce companies, in experimentation for their web shops and have access to data from
multiple web shops. Apptus applies a rigorous experimentation process and have developed
tools for automating experimentation. Our aim in studying Apptus is to learn more about
how continuous experimentation is automated successfully within e-commerce. In particu-
lar, whether every experiment should be automated. Therefore we qualitatively characterize
the contextual details around the experiments to see which roles and software products are
involved, and what the degree of automation is. We detailed this as a research question,
scoped within e-commerce: In which scenarios are experiments used and what tools exists to
support those?

It is necessary here to clarify what we mean by automating experiments and tool support.
We use the RIGHT model [106] to explain what parts of the continuous experimentation
process is automated. The process encompasses the whole development process from defin-
ing hypotheses, to executing and analysing experiments, and finally to decision making.
Some tools automate only the execution of experiments, e.g., PlanOut by Facebook [15]
and the tools in use by Google [2806] for running thousands of experiments in parallel. Re-
cently, some tools (all of them applied to e-commerce) use large scale optimization methods
that can experiment on hundreds of variables simultaneously. The tools are used to allow
the software to adapt to multiple contexts such as personalisation to users or to handle differ-
ent deployment settings. In this way, the decision making step of the process is automated.
The tools have employed optimization methods such as genetic algorithms [208, 250] or
multi-variate bandit optimization [138]. Bandit optimization is also in use at the case com-
pany [40].

76

2 Method and Case Company

We performed a case study to obtain insight into how continuous experimentation is ap-
plied within e-commerce, using guidelines by Runeson et al. [254]. We defined our re-
search question (see Section 1) based on previous studies of controlled experiments for
e-commerce [138, 174] and aided by our pre-knowledge. The first author’s prior industry
experience of e-commerce enabled us to design a focused investigation. We designed a
semi-structured interview guide [245] covering: (1) role and background, (2) experimenta-
tion process, (3) planning, (4) analysis and knowledge building, (5) infrastructure, and (6)
challenges.

We conducted our study at Apptus, a Swedish company which develops algorithms for
e-commerce: recommendation system, search engine, ads display algorithms, etc. These
software components are packaged as a single product that shares behavior data. The Apptus
software product provides web shops with intelligence and can be considered “the brain” of

these shops.

Apptus has a business-to-business relationship with their customers who operate e-commerce
web shops. These customers usually have a business-to-customer relationship with the con-
sumers. 'This study focuses primarily on Apptus’ use of experimentation. The consumers
are the source of hypotheses for these experiments. For Apptus, these hypotheses mainly
impact the algorithms used in their software product, and are elicited through exploratory
data analysis and experiments by developers and data scientists. Even though Apptus has
no direct relationship with the consumers they have access to consumer data for their cus-
tomers’ web shops.

Apptus has around 40 employees of which around 20 are software engineers split over five
cross-functional teams. Roles and their involvement in the experiment process are similar to
those defined in the RIGHT model [106]. Product owners define experiments and set goals.
The experiments and the connected metrics are designed by daza scientists, while software
developers and quality assurance implement and verify the functionality. This functionality
is put into production by the operations and release engineers, that also execute and monitor
the experiments. However, the case company does not have personnel with a dedicated
quality assurance or release engineer role, instead they share these roles among themselves.

We used snowball sampling for selecting interviewees and interviewed five people, namely
two data scientists, one software developer, one operations engineer, and one product owner.
The interviews were conducted in Swedish for about one hour each during in Spring and
Summer of 2017. The first author transcribed the audio recorded interviews word-for-word
(40 pages of text) and a summary was sent to each interviewee for validation. The transcripts
were analyzed using thematic coding in two steps, first using explorative descriptive codes
(by first author) that were then grouped into themes (by both authors).

77

3 Results: Experimentation Scenarios

We identified four main scenarios of experimentation, namely (a) manual and (b) auto-
mated optimization, and (c) external and (d) internal validation of a new feature or product,
see Figure 1. The scenarios were gathered from the interview material regarding experiments
conducted and the tools developed at the case company. We now outline the aim of and
roles involved in each scenario. For each scenario, we also present steps that the case com-
pany have taken to support automation for these, with the exception of external validation
(Scenario c) where no automation was mentioned by our interviewees. The differences be-
tween the scenarios were commented on by an interviewed data scientist (translated from
Swedish): “Optimization is done because you have a lot of different components that work in
different settings, and you do not have the time and ability to do that for all sites. [...] Use
A/B tests when you have a hypothesis and you want to know something about the world. That is
completely different. Both are really important.”

3.1 Manual optimization scenario

When manually optimizing a web shop for, e.g. increased product sales, this is performed
by marketers responsible for the web shop, see Figure 1a. In this scenario, we focus on the
experimentation that uses the case company’s software product, but experimentation was
said to be used elsewhere too, such as marketing experiments involving variations of e-mails
in campaigns to users. A marketer holds a crucial role in e-commerce. They organize the
day to day business of a web shop and perform activities such as creating sales campaigns
that push certain consumer products, perform social media advertising, write blog posts, or
also perform optimization experiments on the web store. As explained by the interviewees,
marketers are not software developers and must rely on content management systems and
tools for experiments. The case company provides experimentation functionality, but there
are also many partially competing content management systems (e.g. Magento, Shopify, or
EpiServer) and experimentation tools (e.g. Optimizely or Google Analytics).

Tool support: A/B testing for algorithms

The case company has developed a tool for aiding marketers in their experimentation sup-
porting the manual optimization scenario. This tool compares variations in algorithmic
functionality on a section of the web shop against each other. If the functionality of all
variants in the experiment should return the same type of content, then no changes need
to be done to the software used for the web shop. For example, comparing a rop sellers al-

78

N I

Case company Customer
A

Consumers

B

Marketer

J

(a) Manual optimization. Marketer sets up an experiment to optimize the web
shop using functionality in the case company’s product. No involvement
from the case company.

N

Case company Customers Consumers

Epk] 2
et | - S

J \ J

(b) Automated optimization. The software product is automatically optimized
for different customers. No human involvement is necessary once the soft-
ware product is deployed.

Competitor
Case company b Customer Consumers
8 N Q Eﬂ 8
Operations — IT 8 8

J \

(c) External validation. A customer’s IT engineer initiates an experiment to
validate the case company’s offering against another offer. The software
of the web shop is changed. The case company’s operations are involved
as observers.

Consumers

2
2K

(d) Internal validation. A Developer from the case company initiate an exper-
iment to validate a changed feature using several customers’ web shops.
The case company’s software product changes. The affected customers’ IT
departments monitor the experiment.

Case company Customers

S [

Developer

Figure 1: Experimentation scenarios. The large rectangles depict the companies and the roles involved, arrows indicate the
initiator of the experiments, the squares represent software components, with multiples of them—marked A and B—
indicate variations of the software and a grey box with N indicate no change.

gorithm to a recently viewed algorithm; they both display a list of consumer products. This
can also be applied to tuning algorithm parameters (e.g., search ranking settings), product
filters (such as removing adult content from recommendations), and to promote certain
products in recommendations.

The developer mentioned that this tool in principle could be fully automated, so that the
marketers were relieved of this work. However, the operations department from the case
company has frequent contact with marketers and explained that the marketers appreciated
the control and input to the algorithms it gave them. This was said to increase the trust
that the marketers put into the case company’s algorithms.

79

3.2 Automated optimization scenario

In this scenario, the software product automatically optimize a web shop towards a given
metric, see Figure 1b. The case company’s developers and/or data scientists develop the
algorithms. The developers also specify the variations in the parameters involved with the
automated experiments. Once set up, it does not require additional intervention. The
product owner described that optimization is the core business of the case company; i.e.,
they support their customers in optimizing their web shops for increased sales, revenue, or
profit. Since each web shop is different, the case company cannot directly apply results
from experiments on one web shop to another web shop since these findings may not be
generalizable. Also, the case company cannot themselves manually optimize every web
shop due to the manpower this would require. Subsequently, the automated optimization
scenario plays an important role for the case company.

From the interviews there were several examples of automated optimization that did not
use an experimental methodology, i.c., they do not have different variants of the software
product. As an example, ordering search results based on how relevant products are to the
search query is a form of mathematical optimization, but it is not an experiment. Both
kinds of algorithms improve by observing more data. The differentiator is that algorithms
performing automated experiments internalise knowledge about the performance of vari-
ants through statistical inference. This is crucial, because it means that valid inference from
the results can still be made in order to guide future software development.

Tool support: Interleaved recommendations with fully automated experimentation
through bandit testing

The recommendation system in use at the case company [40] uses automated experimen-
tation to optimize the product recommendations of web shops. The system aggregates
recommendations from multiple sources and resolve which source works best depending
on the circumstances it is used in. It is a large-scale bandit test that combines several prod-
uct recommendations from various sources and presents them together in an interleaved
fashion. Interleaving can be used to A/B test functionality that returns several results (such
as recommender systems or search engines) by mixing recommendations evenly from either

source.

80

3.3 External validation scenario

In this scenario, a customer’s I'T engineer evaluates and compares a new product offering
from the case company with a previous or alternative implementation of the web shop, see
Figure lc. The IT engineer sets up the experiment and an operations engineer from the
case company might be involved to ensure that the comparison is fair. The experiment is
conducted on a small portion of the functionality, such as consumer product recommen-
dations, but could in theory be a whole-site experiment. This type of experiment is usually
only performed when new customers are acquired or lost to a competitor. The experiment
can be done either on the initiative of the customers or by the case company. The per-
formance of the algorithms is very crucial for the case company, and presumably for their
competitors. As a consequence, the sales/marketing department of the case company is
often eager to have such experiments performed, since this can provide evidence of their
offering compared to their competitors. In some cases the case company is not notified
about the experiment until after it has been conducted. This provides a strong incentive
for the case company to have a product that is easily configured and integrated without
mistakes.

Tool support

No tools were mentioned for this scenario.

3.4 Internal validation scenario

In this scenario, a developer and/or data scientist from the case company implement an
improvement to an existing feature in their software product and conduct an experiment
to validate this new software product variant, see Figure 1d. In this case, a previous version
of the same feature typically serves as a control variant. Only the software product from
the case company changes, but the IT department running the web shop is also involved
in monitoring, and in the case of on-premise installations, deploying the software product.
These experiments are fairly common. However, each development team within the case
company usually conducts only one such experiment at a time. Overlapping experiments
for internal validation [286] are not necessary for the case company due to having access
to multiple web shops.

81

Tool support: Internal A/B test tools

The case company has several tools supporting the internal validation scenario. The devel-
oper mentioned that compared to the tools for manual optimization (Scenario a), the inter-
nal tools are more complex and highly configurable, and they are under constant change to
suit their changing needs. These tools also support a much broader set of metrics compared
to those that are used by their customers. For example, metrics that relate to the internal
health of the software system.

4 Discussion and Conclusions

We have conducted a case study to understand tool support for continuous experimentation
within e-commerce by investigating Apptus, a small company that develops algorithms for
web shops. We found four scenarios of experimentation with varying tool support (see
Figure 1), ranging from no tools for external validation (Scenario ¢) to fully automated
decision-making for automated optimization (Scenario b).

We discern four main characteristics for the experimentation scenarios identified in our
case study, namely (1) experiments are conducted to optimize settings or to validate a new
feature; (2) experiments are internal or external, defined as whether the experimenter have
access to and knowledge about the code base; (3) decision making based on experiments
can be automated or manual; and (4) some experiments are repeated in multiple contexts
or are singletons and run only once. Following this, the scenarios in Figure 1 can be further
categorised. For example, in the manual optimization scenario (Scenario a) the experiment
is singleton and both internal and external as it involves multiple software products where
the marketer has deep knowledge of only one product, i.e. the web shop. Furthermore,
both validation scenarios (scenarios ¢ and d) contain manual experiments. The observed
scenarios do not cover all possible combinations of characteristics. For example, we did not
find any evidence of automated validation.

The different characteristics have varying need and feasibility of tool support. In the op-
timization scenarios, experiments are used to optimize software by tweaking algorithmic
hyper-parameters and cosmetic user interface changes [138, 208]. The end goal of the
validation scenarios can also be optimization, but the method to achieve this is not an ex-
periment per se. For example, when introducing a new feature, the end goal can be to
improve the user experience and an A/B test is conducted to validate this hypothesis. We
conclude that the difference in the type of change and focus is the reason that automation
of decisions is not needed for validation. We also observe different levels of tool support for
the internal and external characteristics. Internal validation (Scenario d) has tool support

82

for configuring and deploying experiments. This is the case at the case company and in
companies such as Google [286] and Microsoft [174]. For external validation (Scenario c)
there was no tool support for automation. Our interpretation is that this is due to technical
reasons, such as the lack of ability to directly change the software.

We have identified the following three threats to the validity of this study. (1) Reliabilizy.
The first author was previously employed at the case company, which poses a risk of bias. We
mitigated this by the co-author’s involvement and by letting another researcher review the
study protocol. We also asked the interviewees to comment on coding transcript summaries
and on this paper. (2) External validity. The extent to which the results of our case study
are transferable beyond our specific case needs to be assessed by theoretical generalisation
and comparing case characteristics. (3) Construct validity. In interview studies there is a
risk that the questions are misunderstood. We mitigated this risk by selecting interviewees
that were were familiar with the subject of our study through their daily engagement in
practically performing experiments. In addition, the first author’s pre-knowledge of the
company was used to design the interview questions thereby mitigating the risk of using
misaligned terminology.

Through our study, we report on real world use of tool support for experiments and con-
clude that it is possible to improve the scale and speed of experimentation through au-
tomation. However, the tools are not general and the specifics depend on multi-faceted
factors such as the business model and the software ecosystem. Future work include the
use of tools for experiments in other domains. With sufficient empirical data a taxonomy
of experiments can be constructed.

Acknowledgements

We want to thank the interviewees at Apptus. We also thank Professor Serge Demeyer
and Professor Per Runeson for helpful reviews of our manuscript. This work was partially
supported by the Wallenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation.

83

Paper I1I
'The FACE Theory for Factors at Play

in Continuous Experimentation

Rasmus Ros Elizabeth Bjarnason Per Runeson

Abstract

Context Continuous experimentation (CE) is used by many companies with user-inten-
sive products to improve their software with user data. Some companies deliberately adopt
an experiment-driven approach to software development while some companies use experi-
mentation in a more ad-hoc fashion.

Objective The goal of the study is to find factors that explain the variations in experiment
utility and efficacy between different companies.

Method We conducted a multi-case study of 12 case companies and 27 interviewees at
companies involved with experimentation and built a theory on CE based on that data.

Results We introduce a theory of Factors Affecting Continuous Experimentation (FACE)
theory, which includes the three factors: (1) investments in data infrastructure, (2) user
problem complexity, and (3) incentive structures for experimentation.

Conclusions We also provide guidelines and recommendations on how to achieve state-of-
the-art CE. These guidelines are based on FACE and can support practitioners in improving
CE even for companies with contextual factors that have a negative effect on their ability
to experiment.

Keywords Continuous experimentation - Data-driven development - A/B testing - User
experience research - Theory building - Multi-case study - Empirical research

85

1 Introduction

Continuous experimentation (CE) is an experiment-driven software engineering approach,
where assumptions about product features and requirements are continuously tested with
experiments, to reduce the risk of wasting development resources on requirements of little
or no value to the users. In CE, software changes are compared to an old version in an
experiment (such as an A/B test) with real users and only changes with a positive effect
on usage are permanently released. Initially, this approach was primarily applied by large
internet-facing software engineering companies such as Microsoft [176, 172], Google [286],
and Facebook [107] that apply an agile and continuous approach to software engineer-
ing. Lately, also more traditional software engineering organizations such as companies
in the business-to-business domain [242] are recognising the value of moving towards an
experiment-driven development model that provides the ability to evaluate product assump-
tions through continuous user feedback [106].

Performing CE is not an easy task and one that requires companies to adapt their processes,
structures, technical infrastructures, and culture [105, 320]. Several researchers report on
the benefits of adopting CE and a high-level model on how CE is structured (the RIGHT
model) has been proposed [106]. Despite this, not all companies are able to adopt CE,
even though they might have sufficient user data available. We pose that this is due to the
complex nature of software engineering and that many different factors and processes are
at play. Some of these factors have been identified in previous research, such as having a
service-oriented offering [265] or one with cyber-physical systems [33, 122] and whether
the target users are consumers (B2C) or other businesses (B2B) [242, 317]. Also, only some
companies are able to conduct experiments that affect business value [265]. However, there
is a lack of overarching theory that can explain what factors explain the different eflicacy
of CE. For this reason, we wanted to investigate if there are any common patterns that can
explain the varying utility, challenges, and benefits [11] experienced by companies when
applying CE.

We have performed a multi-case study on 12 companies to explore CE practices and con-
texts [63, 230] for a range of companies, and constructed an empirically-based theory
through iterative and systematic analysis of this data. Our empirical data consists of 27
semi-structured interviews with various roles relevant to experimentation, such as software
developers, quality assurance, data scientists, and product owners. We have previously
published two initial findings based on part of the interview material. First, a paper about
scenarios in which experiments are used [247] which give an indication that experimen-
tation context matters. Second, a paper on the role of business models with product-led
growth [246]. These findings are synthesized into a small part of the contribution of this
paper, and seven additional case companies are added.

86

In this paper, we present a theory of Factors Affecting Continuous Experimentation (FACE)
based on empirical data from the 12 companies. FACE considers socio-technical factors in
organizational contexts surrounding CE and observed relationships between factors. Ac-
cording to FACE, there are three main factors that influence how well an organization can
expect to conduct CE. (1) There are requirements on CE processes and infrastructure, in par-
ticular, the data infrastructure that companies have for conducting telemetry and analysis
of results. (2) The complexity of the problem that the software solves for its users limit
experiment applicability. For example, a software system that integrates many other sys-
tems is highly complex and difficult to make changes in, thereby hindering CE. (3) FACE
also highlights the role of business models in both providing incentives towards product
improvement and for making relevant metrics available for experimentation or not.

Finally, we derive guidelines [278] from FACE that show what state-of-the-art experimen-
tation is like and provide recommendations on how to strive towards it. In summary, com-
panies with state-of-the-art CE utilize user data to prioritize what to experiment on, have
dedicated teams for supporting experimentation, and apply experimentation throughout
the organization. Though, our results show that getting started with experimentation is
technically easy, increasing experimentation throughput is very hard. So companies in the
process of starting with CE should focus on gaining practical knowledge of experiments
which will be useful when scaling up experimentation.

The rest of this paper is structured as follows. The background and related work on CE
and theory building are presented in Section 2, and our research method is outlined in Sec-
tion 3. FACE is presented in Section 4 and the empirical underpinnings and explanations
are provided in Section 5. The findings are discussed in Section 6. In Section 7, guide-
lines are derived from FACE on how to adapt the CE practice at a particular organization.
Finally, we conclude the study in Section 8.

2 Background and Related Work

Companies in many different sectors have adopted Continuous Experimentation (CE) [9,
249], where features are evaluated through user feedback. Prototypes of a feature or product
can be quickly validated with users before a costly implementation is finalized and released
to all users. After implementation, the change in software can be subjected to a controlled
experiment (such as an A/B test) where a comparison can be made with and without the
new change. Only changes that have a positive impact on user feedback are accepted. The
results of an experiment might beget further questions, especially for negative results to
figure out what went wrong. Thus, experiments are usually executed in a sequence, which

87

is why the practice is coined continuous experimentation. Both prototyping pre-deployment
experiments and controlled post-deployment experiments are of interest in this study. The
topics covered in this section include software business model and how it relates to CE, an
overview and related work of CE, and theory building in software engineering.

2.1 Software business models

CE provides a way to measure the value that software development brings to users and
business. As such, studying CE entails understanding how that value is delivered. In this
study, we use business models and business strategy as a lens to structure our analysis of
that value delivery. A business strategy in the management field is a long-term vision for a
company [154]. A business model is a concrete plan to execute that vision. The term business
model is narrowly used in industry to refer to how a company collects revenue [293]. In
this paper, the broader definition by Osterwalder [226] is used: “A business model describes
the rationale of how an organization creates, delivers, and captures value”.

Recently, in the business model innovation field, prototype experiments have been studied
as a method to find a combination of a working business model and product [43, 276,
311]. 'This contrasts with the way experimentation is viewed in CE research, where the
focus is more on product improvement [106], and changing the business model might
be considered out of scope for daily software engineering work. In addition, successfully
implementing changes in an established business model is notoriously hard and risky [59,
60]. As such, business models are mainly used to describe the context of companies in this
study, not as a subject of experimentation.

There have been several attempts to describe commonalities in software engineering busi-
ness models with frameworks [238, 266]. For example, Rajala et al. [238] include aspects
of product strategy, revenue logic, distribution model, and service and implementation
model. The business model canvas [225] is probably the most popular framework to de-
scribe business models succinctly. We use an adaption of this framework as described in
the next subsection.

88

2.11 Lean startup

Lean startup is a methodology, originating in industry from Ries [240], that applies lean
manufacturing principles [178] to entrepreneurship in general. Lean startup has also been
studied in a software engineering context [26, 35, 106]. The idea is to conduct product
development in short cycles to obtain feedback on whether a proposed business model
is viable as early as possible. Ries calls it the build-measure-learn cycle, where each cycle
consist of a business hypothesis and an experiment to verify the hypothesis. As such, CE
and lean startup has a clear connection.

The experimentation that lean startup calls for is done through prototyping a solution and
testing it on a limited set of customers [26, 132, 294]. The goal of this experimentation
is to find a minimum viable product (MVP), which is the smallest set of features that
solve the users’ problems. It cannot give accurate numbers that can be used to compare
different solutions, as is the case with A/B testing. As such, the prototyping experiments
have low fidelity but have a low cost compared to A/B tests that must be executed on
finalized software in a production environment.

Maurya proposes an adaptation of the business model canvas to suit lean startup needs,
called the lean canvas [201]. The lean canvas is divided into a product and a market part.
The product part contains: the problem-solution pair that the product addresses, what key
metrics are measured, and what the cost structure is for acquiring customers, developing
code, operations, etc. The market part contains what the unfair advantage is, such that
the product cannot be easily copied, what the channels to customers are, what the target
customers are, and the revenue streams. The two parts are tied together with a value propo-
sition message.

Maurya [201] also describes the three phases of a startup that (1) start with finding a working
problem-solution pair, (2) then the product should have a market fit, and finally (3) once
this is validated can growth be the focus. Experiments are used differently at these stages
where the initial focus is prototyping and later on controlled experiments can tune the
product for product-market fit and growth.

2.1.2 Product-led growth and growth engineering

A specific archetype of business models has recently been popularized in industry, under
the name of product-led growth [18]. A business model that has a product-led growth relies
on the product itself to acquire new end-users rather than on the direct sales & marketing
activities (e.g. advertisement or cold calling) of the sales-led business models. The purpose
is to have an offering that can scale to high levels of demand. Furthermore, a new role
has also been introduced to business with product-led growth [162, 288], called growth

89

marketers, growth engineers, or growth hackers. These roles are hybrids between marketers
and software engineers that work data-driven with experimentation and analysis to propel a
company’s customer acquisition growth. Two of the companies in our study have employees
with such titles.

A more precise definition of product-led growth—as the term is used in industry—has not
been found. Instead the following characteristics are derived from Bartlett [18]:

* the software development organization elicits requirements in order to meet market
needs;

* there is no customer specific development in order to ensure software development
is directed towards improving the product for all users;

* the channels to acquire customers are scalable to many customers and are often or-
ganic (i.e. word of mouth instead of direct sales);

* the primary source of revenue is through product sales or subscriptions.

The last of the above characteristic, regarding the source of revenue, has to do with the
licensing model that software is sold under. According to Bartlett [18], product-led growth
is associated with freemium. A freemium product [217] is available both for free and as a
paid premium version. The premium version might, for example, have more features or
offer improved customer support. As such, freemium encourages growth by allowing more
customers to use the product and spread the word.

2.2 Continuous experimentation

CE has been studied from many different perspectives [247]. In software engineering
venues, the topics have been varied, e.g., designs of specialized tools for optimizing experi-
ments [248, 262] and descriptions of the CE process in use at various companies [31, 106].
Although software engineering is the focus of this study, there has also been considerable
practitioner focused research on CE in data science and user experience research venues. In
the data science field, the seminal paper by Kohavi et al. [172] provides a practical guide
to starting with controlled experiments on software in a production environment. In user
experience research [258, 267], experimentation has a less prominent role among other
competing methods such as user observations, card sorting, or interviews.

90

2.2.1 Process and infrastructure models

The infrastructure and process of how several different companies conduct CE have been
described with reference models and experience reports [31, 107, 176]. The models are con-
ceptual generalizations based on observations of CE in industry, thus they cannot be used
to explain organization eflicacy of CE which is the purpose of FACE. The RIGHT model
by Fagerholm et al. [106] contains a description of the process and infrastructure needs for
conducting continuous experimentation based on a multi-case study. The earlier HYPEX
model by Holmstrom Olsson and Bosch [221] has similar goal but is less comprehensive.
These reports and models served as a starting point for the questions in the interview guide

in this study, in particular the RIGHT model.

The process model in RIGHT is inspired by the build-measure-learn cycle of lean start-
up [240]. Fagerholm et al. use the concepts of a minimum viable feature (MVF) to bridge
the theoretical gap between prototyping experiments and controlled experiments, and so
the model considers both types of experiments. There are five main phases of the CE
process in RIGHT. (1) In the ideation phase hypotheses are elicited and prioritized and a
change to the software is proposed. (2) Implementation of the minimum change that tests
the hypothesis follows. (3) Then, a suitable experiment design and a criterion for success is
selected (a metric in the case of a controlled experiment). (4) Execution involves deploying
the product into production and monitoring the experiment. Finally, (5) an analysis and
decision is made whether the results are satisfactory, if not the process restarts.

The technical infrastructure needs in RIGHT include tools for managing experiments and
analytics, instrumentation in the product, and a continuous delivery pipeline. These tools
are often referred to as an experimentation platform when considered as a whole [130, 172].
The organizational infrastructure includes roles involved with experimentation, of which
there are many, since the experimentation phases cover the whole software engineering
process. The necessary roles are according to Fagerholm et al. [106]: Business Analysts and
Product Owners elicit hypotheses and maintain an experimentation road map; Data Scien-
tists design, execute, and analyze experiments; Software Developers and Quality Assurance
develop and verify the software; and Operations Engineers and Release Engineers deploy
and deliver the software.

91

2.2.2 Factors affecting continuous experimentation

We are aware of one other attempt at analysis of how effective experimentation is for various
companies, albeit from a startup perspective, by Melagati et al. [206]. They studied factors
affecting CE in terms of enablers and inhibitors of experimentation at early-stage startups.
Many of the identified inhibitors point to a lack of resources to conduct experiments, which
is more pressing for startups due to a general lack of resources. Also, the research only con-
siders pre-deployment prototype experiments, which is much less technically demanding.

There are also many studies that describe or report experiences about conducting CE for
various circumstances. We have identified five such clusters of papers with domain spe-
cific challenges in a systematic literature review [11]. Two of the clusters relate to factors
that might influence the gains with CE: business-to-business (B2B) and cyber-physical
systems. The challenges in the remaining three clusters are either overlapping (mobile and
cyber-physical systems) or potentially solved by statistical solutions (e-commerce and social
media).

The challenges with CE in the business-to-business (B2B) cluster are many [242, 247, 317].
B2B companies are usually involved with their customers’ software engineering or I'T de-
partments, which causes issues with control of software deployment or with access to end-
user data. Both of these are necessary and require constant collaboration efforts to resolve.
Furthermore, the incentives to improve the software product in terms of end-user experi-
ence might not be there. For example, if the company in question generates revenue per
project instead of through the value delivered to users. These issues might not be faced to the
same degree by companies with a business-to-consumer (B2C) business model. Whether
a company is B2B or B2C is not an explicit part of FACE; these challenges are instead
explained by other constructs in FACE (business model and problem complexity).

As for the cyber-physical systems [33, 122, 197, 222] cluster, the focus of the research is on
suggesting and describing the required infrastructure to enable continuous experimentation,
such as continuous delivery of software and how telemetry can be implemented. Without
this, experimentation is not possible. The body of work on these domains is still in the
early stages and no such companies are included in this study.

2.2.3 Previous work

We have two prior publications from a research project started in year 2018 that uses five
of the 12 cases that this study is based on [247, 246]. The findings from these papers are
synthesized and expanded in FACE.

92

The first paper [247] was a single case study on a B2B company that develops behavior
algorithms and used experimentation in four different scenarios. (1) To verify that changes
in their algorithms are beneficial. (2) To help their customers use their algorithms correctly.
(3) To prove that their algorithms outperform their competitors’. Finally, (4) as a black
box optimization method to tune the algorithms automatically [41]. The degree of tool
support was different between the scenarios, ranging from fully automated to no support.
The scenarios give an early indication on how experimentation differs depending on their
purpose.

The second paper [246] used five of the 12 cases in a comparative case study. The study
was about the role that a company’s business model plays in relation to CE. The differences
attributed to business models were sufficiently explained by whether the business model had
product-led growth or not (corresponding to one of the three factors derived from FACE).
Four drivers of a product-led growth focus were identified as affecting experimentation. (1)
Development and sales & marketing worked more closely together at the product-led cases,
with mutual benefits. (2) The prioritization process used data to a higher degree to inform
development. (3) What features were included were based on market needs rather than by
customer requests, thereby decreasing excessive feature bloat. Finally, (4) the availability of
metrics relevant to business was higher in the product-led cases.

2.3 Theory building

Theories provide a means of structuring and conveying knowledge in a condensed form.
Theories can be of different types, some can provide explanations of phenomena or predict
the outcome, e.g., of applying a certain practice. Theories that describe a particular aspect
of software engineering are gaining traction (see, e.g., Rodriguez et al. [243] or Munir et
al. [213]), presumably due to their usefulness in supporting research design and on improv-
ing software engineering practice. According to Stol and Fitzgerald [278], it is preferable
to base practitioner guidelines on theories such that they are underpinned with theoretical
knowledge on why they hold.

We used the guidelines by Sjeberg et al. [274] to build FACE. In Sjeberg et al., the theory
is constructed based on a generalization of multiple cases observed in real world. There
are other theory building approaches [304], such as basing them on existing theory from
other fields or grounded theory [124, 281], which is used when the researchers want no
preconceived notions about how the data should be interpreted. A theory, as defined by
Sjoberg et al. [274], consists of constructs that the theory makes statements about in the
form of propositions, which are relations between the constructs. The theory also contains
explanations about why the propositions hold and a scope that the theory is valid under.

93

Objectives mi m
Knowledge, theory | Previous research 1ist iteration Coding booké Theory of CE
Methodology | Case stugy Theory formulation
- unit of analysis 5 case companies 12 case companies l
- data collection 12 interviews 27 interviews
- data analysis “Initial coding Thematic cocéling

- Pilot study [247] ! Multiple case study ' Theory building g

- Ist iteration study [246]

Figure 1: An overview of the research method through which FACE was constructed based on a multi-case study. Two previous
studies (to the left) were used as a starting point for the multi-case study.

3 Method

This paper presents a multi-case study of companies applying CE and a theory building pro-
cess aimed at providing a generalized description of factors affecting a company’s ability to
obtain gains from CE. The resulting theory was inducted through iterative analysis of the
interview data. An overview of our research method is provided in Figure 1. The empirical
data in our study is from case companies and we use the guidelines by Runeson et al. [253]
for case study research, covering the interview process and thematic coding. The theory
was then created through the codes and themes, using the process for building theories by
Sjoberg et al. [274], and guidelines were derived as motivated by Stol and Fitzgerald [278].
The theory is based on data from 12 case companies, denoted A-L, see Section 3.3.

3.1 Multi-case study with interviews

We performed semi-structured interviews in order to gain insights into what and how con-
textual factors affect an organization’s ability to perform CE, and thereby provide a rich
empirical basis for our theory building process. We designed an interview guide based on
previous related research [106, 172, 221], sampled and recruited companies and practitioners
to include in our study, performed the interviews of these using an interview guide, and
analyzed the interview data using a code book. The first author led the interview study, in-
cluding the design of the interview guide and the code book, recruiting of the interviewees,
performing and analysing all of the interviews. The second and third authors reviewed
and provided feedback on the research design and the research artefacts, provided feedback
on the interview guide, participated in two interviews each, and performed independent
coding of one interview to improve the coding process.

94

This study is part of a three year research project with two previous publications (see Sec-
tion 2.2.3). The project was started with an exploratory pilot case study on a company
with established experimentation. Some of the findings from that pilot study has been
previously published [247]. An initial version of the interview guide and code book used
in this study was created for this pilot study. The pilot study was followed up with a first
iteration of this study, on the role of business models in CE [246]. The first iteration study
was conducted after all interviews were conducted, but included only five of the 12 cases.

An interview guide was used to support the interviews and to ensure that all relevant aspects
were covered in each interview. We designed the guide based on our knowledge of the area
and of previous research on CE, in order to cover as many relevant aspects as possible, and
thereby further enhance the richness of the resulting empirical data. The descriptive models
by Fagerholm et al. [106] and Holmstrom and Bosch [221] were used as the theoretical
basis to derive the interview questions. Additional descriptions of experimentation from
experience reports [176, 31] were used to ensure that the questions covered all aspects of
the experimentation process and infrastructure, and the context around experimentation
in terms of the organization and business. The interview guide was designed iteratively by
the authors with small updates after each initial interview. The last 15 interviews used the
final version of the interview guide, which version is provided in Appendix A. The interview
guide consists of five parts: interviewee information, case context, experimentation process,
experiment details, and holistic experimentation view. The guide was designed with probes
such that it could be adapted to the interviewee’s background and role.

We sampled and selected case companies through a mix of convenience sampling and snow-
balling guided by the aim of our study. We selected companies that either apply CE or
have plans to start applying CE. In three of the cases we selected a branch of the company
as the case (cases D, I and G). Candidate companies were identified through searching
on LinkedIn and Google for job listings for data scientists where A/B testing was men-
tioned, through personal contacts, and through asking the interviewees (i.e. snowballing)
for other companies involved with continuous experimentation. As such, the cases were not
restricted by geographical location. Our aim was to interview practitioners with insights
and experience of applying CE, and primarily in the roles with heavy experimentation in-
volvement: software developers, product owners, and data scientist. We applied snowball
sampling within the companies by asking for additional interviewees within the companies
during the initial interviews. The managers closest to experimentation were contacted via
e-mail with information about the study and a request to perform interviews. In total 35
companies were contacted of which 12 were included in our study. Of the remaining, 11
did not respond and 13 were not applicable. A description of each included case company
is provided in Section 3.3.

95

The semi-structured interviews were held during an initial 3 month period for the pilot study,
which was then continued a year and a half later for another year. Interviewees were selected
from the case until a complete picture of how and why the case used experimentation was
achieved. Albeit in some cases (B and E) the process was cut short due to the subsequent in-
terview prospects not wanting to be interviewed. Each interview was approximately 60-120
minutes long and was held as an open conversation in-line with the interview guide. The
interviews were audio recorded after permission for this was granted by the interviewees.
The majority of the interviews were performed at the companies’ premises. For six com-
panies, this was not feasible due to their location, in which case the interview were held
on-line via Zoom or Skype. After the interviews, the audio recordings were transcribed
word-by-word into 231 pages. Some of the interviews were done in Swedish and quotes
from those interviews were translated to English.

Thematic coding was performed on the interview transcripts using the pre-defined codes
of our code book. The code book was defined based on previous knowledge and insights
into CE, from primarily three core publications [31, 106, 172]. It was iteratively refined
throughout the coding process by discussing these codes within the group of authors. The
codes were added per paragraph of transcribed text, and each paragraph could have multiple
codes. The codes were clustered into 11 themes according to thematic analysis. The codes
cover areas such as the company context, management of data, the business model, product,
and experimentation process for the company, see Appendix B. After having coded the full
set of transcripts, cross-case analysis was performed to identify factors and patterns common
to several cases. The theory was gradually inducted as this cross-case analysis matured, see
below.

3.2 'Theory building

We have built the theory by analysing our empirical data and gradually defining constructs,
propositions, the scope and explanations for the theory, based on guidelines provided by
Sjoberg et al. [274]. The final step of theory building, namely testing our theory, remains as
future work. In this article, we provide an initial validation of our theory by characterizing
each of our case companies based on the theory. In this way, we illustrate that the theory
is useful for categorising and explaining an organization’s ability to perform continuous
experimentation.

The constructs and propositions of FACE represent the factors that affect CE and the relation-
ships between these factors, relevant to CE. The constructs were identified through analysis
of the thematically coded interview data. The themes from thematic analysis formed the
first iteration of the constructs of the theory. An orthogonal coding step was carried out
afterwards to find relations between constructs, which formed the propositions; using each
theme-pair as a code. The constructs and the propositions were then gradually refined and

96

adjusted through discussion within the team of authors, to provide a clear and concise de-
scription of the factors that affect a company’s ability to draw benefits from CE. Describing
the relationships between the constructs through visualisation (see Figure 2) and written
definitions (see Sections 4.2 and 4.3) facilitated this inter-author discussion. The support-
ing evidence in the material was used as a basis for the discussion. In total, 10 iterations of
the theory were discussed in this way.

The scope and explanations of FACE were identified based on our empirical data. The scope
of our theory was defined through considering the common characteristics of our case com-
panies, and thus the type of organizations that our theory may be applicable to. Explana-
tions for our theory are provided as part of the definition and description of each construct
and proposition.

The empirical underpinning of FACE provides a motivation for the concepts of our the-
ory grounded in the empirical data, thereby illustrating the empirical foundation for the
constructs and propositions. In Section 5, for each proposition in the theory supporting
evidence in the material is laid out along with expanded explanations. The empirical under-
pinning in terms of the constructs and propositions provides an initial validation of FACE,
and illustrates its utility and explanatory power. As such, the empirical data is used both as
a source and validation, by having the data used at the detailed level to construct the theory
and then at the holistic level to describe our set of companies.

The guidelines were derived from the theory after its construction, as recommended by Stol
and Fitzgerald [278]. The guidelines consist of two parts. First, a description of state-of-
the-art practice which are sourced from the interview material either by direct statements or
inferred observations. Second, actions that companies can take on how to adapt to specific
factors which was done by systematically matching recommendations from the interview
materials to the factors in the theory. The guidelines are aimed at practitioners for them to
take action from the insights the theory provides. The guidelines are presented in Section 7.

3.3 Case companies

The twelve case companies in the study differ on many attributes such as size, product
domain, business model and CE practices. Our case companies range from small to huge
multi-national companies. Some of the companies work extensively with experimentation
while some do next to no experimentation at all.

Table 1 contains an overview of the business models and states of experimentation practices
for the 12 case companies. Each case company is ranked according to how much exper-
tise they have with experimentation and the extent that they conduct experiments (both
frequency of experimentation and on what parts of a product or service they can do experi-

97

ment on). The business model is given a brief summary, primarily describing their offering
and what customers it targets. Under the business model column, direct sales refer to having
a business model where licenses to the product or service are sold by contacting customers
directly.

The 27 interviewees at the case companies are described in Table 2, which show their code
corresponding to the case company and role name. Two additional roles have been observed
in the interviews in extension to the ones presented in RIGHT [106] (see Section 2.2),
namely, the User Researcher and UX Designer, They have similar responsibilities as data sci-
entist and software engineers have, respectively, when it comes to experimentation. That
is, a UX designer or software engineer comes up with a change in user experience or soft-
ware, and a user researcher or data scientist analyzes the results. The user researchers in
the interviews used primarily prototyping qualitative experiments. The actual titles differ
significantly from their assigned role and the titles in use include, e.g., head of growth,
software engineer, head of customer success, growth engineer, head of research, etc.

3.3.1 Case A: E-commerce algorithms

This case company offers an e-commerce platform that is sold to companies (B2B). The plat-
form consists of various algorithms for ranking products and an administration interface.
While the algorithms target end-consumers, the administration interface targets managers
at the e-commerce companies. The algorithms provide value for the end-consumers by in-
creasing the relevance of the product they see on the web shops. The case company is fairly
small with about 5o employees and was established 20 years ago. The company’s business
model is to sell usage licenses to other companies, they have salespersons working with di-
rect sales as their only source of revenue. They have experienced several periods of growth
after which they have had to scale down when a big sale fails. They conduct a medium
amount of experimentation but only on the software that targets their end-user consumers,
not on the administrative interface. They only do quantitative experiments since the soft-
ware they experiment on does not have a graphical interface. They also assist their business
customers in their experimentation.

3.3.2 Case B: Local search service

Case B offers a search engine service for search within a local region, a.k.a., yellow pages.
The search engine is free to use and the major source of revenue is companies buying pro-
motion in the search result rankings and visual presentation. The case company has a large
sales team that work with direct sales by calling potential business customers. The com-
pany is about 20 years old and has stayed stable for some years at about so employees. The

98

Table 1: Overview of our 12 case companies, containing business model, size and age (rounded to nearest 5 year), and state of
experimentation. Small companies have less than 50 employees, medium have less than 250, large companies have
less than 1000 employees, and huge more than 1000 employees. Experimentation expertise and extent is estimated
based on our interviews using the ordinal scale: low, medium, and high.

Business Model

Experimentation

Case Summary Type Size Age Expertise Extent
A E-commerce Product with direct sales B2B Small 20 High Medium
algorithms
B Local search Service selling placement to B2X Small 15 Medium Low
B2B customers and serving ads
to B2C
C E-commerce Consulting on a per project ba- B2B Medium 20 Low Low
consultants Sis
D Video Freemium service with pre- B2C Medium 10 High Full
streaming mium features
E Web shop Web shop for subscription to B2C Huge 10 Medium Medium
physical goods
F Customerre- Product and service with direct B2B Small 30 Low Low
lations sales
G Engineering Freemium service with pre- B2B Huge 20 High Full
tools mium for larger teams
H Web shop Retailer with small web shop B2B Large 20 Low Low
I Web shop Web shop and retail B2C Huge 20 High Medium
J Product Service selling customer infor- B2B Medium 10 Medium Low
information ~ mation and leads to B2B and
free for B2C
K Business Product with direct sales B2X Large 30 Medium Low
intelligence
L Employee Service with direct sales B2B Small 20 Low Medium
management

company was recently acquired by a larger business group and additional products were

integrated with the local search service, such as a ticket booking service. Experimentation

is not frequent at the case company and is only used to verify large changes to the search

engine ranking algorithm with quantitative data.

3.3.3 Case C: E-commerce consultants

Case company C is a consultancy firm that develops and maintains web shops for other

companies with relatively large demands on traffic volume and/or product catalogue. The

work includes a lot of integrating various software systems, e.g., product information man-

agement (PIM), content management systems (CMS), payment gateway systems, search or

929

Table 2: Overview of the 27 interviewees at the case companies. The codes of the interviewees correspond to the case they
belong to. The role is assigned by the authors to best describe their primary role(s) in experimentation—not their title.

Code Role(s) Code Role(s) Code Role(s)

A1 Software Developer D2 User Researcher and 12 Product Owner
and Data Scientist Software Developer

A2 Product Owner and E1 Data Scientist and I3 Data Scientist
Data Scientist Software Developer

A3 Software Developer F1 Product Owner and 14 Business Analyst
and Release Engineer Business Analyst

A4 Product Owner and F2 Product Owner and J1 Product Owner
Business Analyst Software Developer

A5 Operations Engineer G1 Quality Assurance J2 Software Developer

and Data Scientist

B1 Software Developer G2 Product Owner K1 Product Owner and
and Data Scientist UX Designer

C1 Software Developer G3 Data Scientist K2 User Researcher

C2 Software Developer H1 Software Developer L1 UX Designer
and Quality Assurance

D1 Data Scientist and I1 Software Developer L2 User Researcher

Business Analyst

recommendation engines, etc. These software systems each come with their own adminis-
trative tools and the case company helps their customers to use these tools. They have built
their own software to optimize and support the process of building the web shops, but the
business model is to sell consulting hours in a per project basis. The company has existed
for more than 20 years and currently have about 100 employees. They are experiencing
steady growth in number of employees. The company does not conduct any experimen-
tation on their own software but have assisted their customers in conducting quantitative
experiments on their web shops.

3.3.4 Case D: Video sharing

Case company D develop and sell a video sharing platform where users can record and
edit videos for marketing purposes. The company has been operating for 10 years, and has
about 200 employees of which about 30 people are in the software development department,
distributed over four teams. They recently pivoted in the business model by adding a new
product that is targeted at individuals; aimed at consumers and smaller companies that wish
to market themselves. This new product is the defining boundary of case D. Prior to the
pivot their customers have mainly been other businesses (B2B), which they have reached
through a fairly big sales department with direct sales. The new product has an entirely
separate development department and no sales persons involvement. The pivot enabled

100

the use of experimentation at the company. The new B2C product is offered under a
freemium license, where the free version is offered with limited video uploading capacity,
and the paid version offers additional features. At the B2B part of the company they do
no experimentation. In the B2C team they conduct extensive experimentation and have
various specialized roles for supporting experimentation and related activities, viz., data
scientists and data engineers for quantitative experiments and user researchers for qualitative
experiments.

3.3.5 Case E: Web shop

This case company offers a web shop with a subscription service to physical goods. The web
shop drives sales through their online presence only and does not have any retail stores. The
company was founded less than 10 years ago and has experienced rapid growth in revenue
and number of employees. They were about 3 0oo employees at the time of the interview,
most of them work with delivering the physical goods. The company’s IT department
accounted for about 250 employees. In addition to the web shop, the IT department also
operates inhouse software systems for handling logistics, marketing, etc. The interviewee
at the company was involved with optimizing multiple of these products at the company.
There is a drive from the management to be data-driven and experimentation is encouraged
on a strategic level. However, this is hindered in practice by chaotic management, caused
by the rapid expansion.

3.3.6 Case F: Customer relations product

The next case sells a customer relations product (and service) to other businesses. The prod-
uct is highly customizable and each new customer gives rise to a new integration project.
The integration includes adapting to another company’s data model and internal software
systems, e.g., for human resources. The company is 30 years old and has 200 employees, 35
of which are in software development, divided in three teams. Sales is a large part of the
company, and all sales are done through direct sales. Half of the company is committed to
pre-sales and operations that support customers before and after sales due to the complex
integration. No free version or trial of the product is available. They have conducted a few
prototyping qualitative experiments on recent new features, but not on all developments.
The company is aware of quantitative experimentation but has not conducted any, with
no concrete plans to get started with experimentation soon. However, they have some
of the technological pre-requisites to conduct post-deployment experimentation in place
already—they make use of feature flags to verify new developments at specific customers,
but not in a systematic way.

101

3.3.7 Case G: Software engineering tools

Case G is a huge international company with multiple products that focus on supporting
the software engineering process. The main products are a project tracker, issue tracker, and
a team collaboration platform. The company has existed for roughly two decades and today
have more than 4 0oo employees. The majority of these employees are within IT. Each of
the company’s products has its own development organization. The company advocates
agile software development. Notably the company has no large sales department and do
not use direct sales at all, despite their focus on business to business (B2B). The company
conducts huge amounts of experiments on all aspects of their products—both on new and
old products. They make use of both quantitative and qualitative experiments. A specialised
team supports product teams in applying an experimentation approach. Since there are
multiple teams involved with experimentation on multiple products, the company has an
extensive experimentation platform. The company also has a formal process for conducting
experimentation developed by the experimentation team.

3.3.8 Case H: Web shop

This case company offers a web shop for business customers only. The company has over
2000 employees, of which most are employed at retail stores. The company used case
company C to develop their web shop and also has their own small IT department that
manages and improves the web shop. The company has conducted ad hoc experiments on
occasion, they use off-the-shelf experimentation tools (Google Analytics) for supporting
their experimentation. The biggest limiting factor of their experimentation is the lack of
human resources at the I'T department.

3.3.9 Case I: Web shop

The next case is a huge international conglomerate. The company has a long and rich
history in retail and have operated a web shop for over 20 years. The web shop is becoming
increasingly important to the company. The company has about 200 0oo employees of
which about § 000 are employed in the IT organization. The company have many products
for managing their logistics, etc., but in this study we focus on their web shop product only.
Several cross-functional development teams are responsible for various parts of the web shop
(such as the recommender engine). Not all parts of the web shop are experimented on, but
the trend is moving towards more experimentation work. There are multiple teams involved
with experimentation at the company, some of them have their specialized experimentation
infrastructure but most teams use a centralized experimentation platform and contacta data
science team for help with experimentation.

102

3.3.10 Case J: Product information platform

Case] offers a service for product information within the building industry that is free to
use. The company was established less than 10 years ago. The source of revenue come from
customers that want to know who accessed their product’s information in order to obtain
sales leads. The case company describes their business model as being a middle man that
sells information. They have a sales department that works with direct sales and also relies
on organic growth based on their free users. There are about 200 employees at the case com-
pany, half of which work within the I'T organization. Quantitative experiments are new at
the company and they have a small and dedicated team with two employees for conducting
such experiments. They do not make use any of qualitative methods. The company expect
that the other software engineering teams will also start with experimentation soon, but for
now they do not experiment on all parts of their software.

3.3.11 Case K: Business intelligence

This company offers several advanced business intelligence products for different needs.
The products are used to make graphs, tables, and other visualizations from various data
sources. The products are advanced to use and the flagship product even has a proprietary
domain-specific programming language for data manipulation. Since the company is more
than 20 years old, the products are in different stages of the life cycle, albeit all of them are
still offered. The company is a large enterprise with about 3000 employees and 500 of
them in the development department. The company has grown rapidly during the latest
years with an increase in the number of employees. The sales department is very large
and uses primarily direct sales to other businesses. The company has a team specialized in
user experience research that gathers qualitative feedback on a regular basis. The company
conducts qualitative experiments to evaluate both prototypes and completed functionality
with users. However, not all development teams are on board with this yet so not all features
are evaluated in this way. The user experience research team is aware of and interested in
quantitative experiments but getting such systems in place has not been a company priority.

3.3.12 Case L: Employee management product

The final case company develops a product for employee management. The product is
intended to be embedded in the customers’ intranet and has both administrative and end-
users within each customer organization. The company was founded 20 years ago and has
about 250 employees of which about a third in the IT department. The company relies on
direct sales with a sales force and most of the revenue comes from projects that integrate

103

their product at customer sites. The company pays close attention to user experience and has
a team involved with user research that conducts qualitative experiments with prototypes.
Since the product is still considered to be early in development this experimentation is
somewhat frequent.

4 Theory Formulation of FACE

FACE describes factors that affect continuous experimentation and how these factors con-
tribute to an organization’s ability to gain value through continuous experimentation. An
overview of FACE is provided in Figure 2. In essence, the theory states that to achieve gains
from continuous experimentation, there should be sufficient processes and tools for CE to
conduct experiments (P1), the problem the software solves needs to be sufficiently simple to
be measurable (P4), simplifying said problem complexity requires business model changes
(P5), and the business model should be such that it provides incentives to conduct experi-
mentation (P6). The gains are achieved through conducting experiments that improve the
problem-solution fit (P2) and product-market fit (P3). In this section, the theory is defined
by describing its constructs, propositions, scope, and its validity is discussed. Empirically-
based explanations and expanded explanations of the theory are provided in the succeeding
Section 5 from our 12 case companies.

C1 CE Processes C2 Experiment C5 Business
and infrastructure effectiveness strategy
P1 efficient CE processes P4 high problem
and infrastructure increase complexity limits
experiment throughput experiment impact
P2 CE enables C3 Problem- P5 business model
increased solution fit pivots can lead to
problem-solution fit simplified target problem
_ P3 quantitative C4 Product- P6 product-market fit
experiments enable increased market fit improving experiments need
product-market fit incentive structures

Figure 2: The constructs and propositions of the Factors Affecting Continuous Experimentation (FACE) theory. Experiments (C2)
can make improvements in problem-solution fit (C3) and/or product-market fit (C4). CE processes and infrastructure
(C1) increases the amount of experiments that can be done. Business strategy (C5) is crucial for having incentives to
improve the product.

4.1 Definitions

The following terms are used to describe the constructs and propositions of FACE:

104

Experiment is an activity that introduces a change in an offering with the goal of learning
or improving the offering based on feedback with user data. The experiment should
ideally be carried out in a production environment with real users to get high fidelity
results. The term covers various types of experiments such as quantitative controlled
experiments (A/B tests) and quasi-experiments, and includes less rigorous prototype
experiments where the users’ ability to use a specific feature or willingness to pay for
a feature is evaluated qualitatively. There must always be a way to decide if the goal/
of the experiment is met or not. In the case of a controlled experiment this goal is
quantitative and assessed using metrics derived from user data.

Quantitative and qualitative experiments are different types of experiments. Qualitative
pre-deployment experiments are done by implementing a fast prototype and evalu-
ating it on users. The fidelity of the prototype can be anything from a hand-drawn
sketch to almost completed functionality. It is hard to get sufficient numbers of users
to evaluate a prototype quantitatively in a controlled experiments, so pre-deployment
experiments are usually evaluated with qualitative data. Quantitative post-deploy-
ment experiments are executed live in a production environment with real users. As
such, post-deployment experiments usually have higher infrastructure needs.

Continuous experimentation is the holistic process, encompassing the whole software en-
gineering process and involving multiple experiments conducted in iterative cycles.
Based on observations from the interview material, we deduce that experiments are
described as continuous for two reasons. First, an initial experiment is not always de-
cisive, and many experiments in a row might be needed to refine a change. Second,
the experiment result might uncover new knowledge about the offering, users, or
business that begets further related inquires or even new features.

Experimenter is the person initiating and or being in charge of the experiment. It is not
a role per se, as there are multiple roles involved in various stages of an experiment
(see Section 2.2).

Change refers to a modification to an offéring. In traditional statistics or medicine literature
this is called a treatment. It can be a new functionality in the software (i.e. a feature)
or a modification to an existing one. The change can be in any part of the software,
it does not have to involve changes visible to users such as on a user interface. The
scope of the changes we have observed in the interview material varies, from a small
tweak of the font-size on a button to rebuilding a large part of the product. For some
companies it corresponds to a commit to a version control system [164]. Though, it
is recommended that the change should be as small as possible while still potentially
achieving the goal in order to minimize risks [106, 172].

105

Goal is what the experimenter wants to achieve with the experiment. In a quantitative
experiment, the goal can be described with an improvement in a metric. The term
goal is preferred in this work, since the more specific term Aypothesis implies a deeper
thought behind an experiment, which is not always the case. For example, when
Google tested 41 shades of blue for their links [141], the goal was to find the colour
that got the most clicks, but the learning obtained is limited.

Offering is a catch-all phrase referring to what software a company is developing, such as
a product, service, web shop, etc. This term is used when the distinction between
these are not important.

User data refers to data obtained from actual users in a production environment. User
data could also be obtained through other means, such as questionnaires, interviews,
or by eye-tracking. There are three categories of user data: (1) user experience data,
such as clicks or session durations; (2) sales figures from the sales process, such as
whether users purchase a license to the product; and (3) computing performance data,
such as CPU usage.

User experience metrics are derived from wuser experience data that measure the user expe-
rience, such as degree of users that engage with the software under experimentation,
time spent on parts of the software, rate of users that complete a certain goal etc. All
software with users have potential access to this data.

Sales metrics are derived from user data originating from the sales process of the offering.
The sales metrics include revenue from sales or subscriptions, churn of subscribed
users, conversion rate of users to paying users, etc. We draw a distinction between
sales figures and other user data due to their direct impact on business. However, not
all companies can use sales metrics in experiments.

Proxy metric is a metric that substitutes for another more relevant metric that cannot
be used directly in an experiment for some reason. For example, consider an e-
commerce web shop with insufficient traffic to obrtain statistical significance on con-
version rate or other sales figures. They could use clicks as a proxy metric for pur-
chases since far more users click on products than buy them. However, the signal-
to-noise ratio would be much lower and an increase in clicks could even lead to a
decrease in conversion rate if the user experience becomes more complicated as a
result of the change (requiring more clicks). As such, the assumptions made when
choosing a proxy metric should be continuously verified.

Business model is the way a company has structured their activities, offering, revenue
streams, costs, etc., to obtain and give value to users inline with a business strategy,
see Section 2.1.

106

Pivot is a major change in the business model done in order to better realize the business
strategy [53, 168]. The distinction we draw between changes and pivots is that pivots
have a larger scope and are not based on evidence to the same degree as a change that
is part of an experiment. A pivot can be done for various reasons, such as to find a
different user base or to overhaul the offering in a major way.

4.2 Constructs

FACE identifies that both CE processes and infrastructure (Cl) and the complexity of the
problem that the offering solves for users (C3) have an effect on an organization’s ability
to experiment effectively (C2), in a way that affects product-market fit (C4). Furthermore,
FACE states that an organization’s business strategy (C5) plays an important role in facili-
tating experimentation directly through incentives and indirectly through simplifying the
offering.

Cl1 CE processes and infrastructure are software engineering practices enabling software ex-
perimentation primarily through an experimentation platform and a process for
conducting experiments. Since experimentation involves implementing software
changes, this construct also encompasses standard practices for efficient software en-
gineering, such as software testing and quality assurance, while it is not the focus of
this study.

The technical infrastructure includes a continuous integration and continuous de-
ployment (CICD) pipeline that enables experiments to be executed without much
delay, infrastructure to store and extract data, and an experiment platform to manage
and orchestrate experiments running in parallel. The organizational infrastructure
involves having access to all required experimentation roles. The processes entail
designing and conducting experiments, and also setting experiments in the overall
context of a company. For example, how hand-over is handled between experiments
initiated by data scientists or marketers to the software development department.
Conducting experiments requires some rigor in the processes, such that experiment
results are accurate and trustworthy. The processes do not have to be explicitly doc-
umented to be rigorous, as long as they are followed.

C2 Experiment effectiveness is the degree of effective experimentation conducted in an or-
ganization. It is a function of the throughput of experiments, the impact the experi-
ments have on users or business, and the ability to measure it accurately. Throughput
is also further divided into speed and capacity, where speed is the time it takes for
an experiment from design to decision and capacity is how many experiments can
be handled simultaneously. Throughput is a function of both the organizations’ ca-
pabilities and user data availability.

107

C3 Problem-solution fit is the degree to which the offering solves users’ problems. Problem

and solution is part of the lean canvas business model [201, 240]. There can be
multiple problem-solution pairs in the same offering and the solution can address
multiple problems. Whether the problem-solution fit can be measured depends on
the specific offering but is usually measured (or at least measured with proxy metrics)
through wuser experience metrics. The problem-solution concept is identical to the one
in design science [306, 255], which is a research paradigm for prescriptive research
such as tool designs.

C4 Product-market fit is “[a] measure of how well a product satisfies the market.” [219, p. 7].

This construct describes the offerings ability to generate economic value (usually
revenue from sales), i.e., that there is a market for it. Product-market fit is advocated
in lean startup as the ultimate target to strive to improve in for all companies [201],
not just startups. It might not be easy to measure product-market fit directly in an
experiment, but it can be obtained through customer surveys [240]. Sales figures in
the form of user retention, user growth, etc., serve as proxy metrics for product-market
fit. As such, growth is included in the construct.

C5 Business strategy is defined as follows: “strategy is the direction and scope of an organiza-

4.3

tion over the long-term.” [154]. A business model is a concrete plan for how to realize
the goal of the business strategy. As such, the choices made in the business strategy
will have effects on the whole company. This includes, for example, the licensing and
revenue model under which the software is sold, how the software development or-
ganization is structured, and what channels are used to reach and acquire customers.

Propositions

The propositions describe how an organization’s circumstances affect their ability to per-
form continuous experimentation (P1 and P2) and in turn indirectly (P3) or directly (P4)
affect their product-market fit through continuous experimentation (P5).

P1: C1>C2 Efficient CE processes and infrastructure increase experiment throughput. The

existence of processes and infrastructure (Cl) that support CE increases an organi-
zation’s experiment effectiveness (C2). For example, a continuous experimentation
platform could enable performing parallel experiments, thus increasing the number
of experiments, or an efficient continuous integration and continuous deployment
pipeline could ensure that deployments happen without delay, thus increasing the
speed of experiments. Additionally, the degree to which an organization has prepared
their data infrastructure for collecting and analyzing data in their software offering
and sales process determine the extent to which they can experiment on those parts.

108

As for processes, correct prioritization of experimentation ensures that the changes
with the highest potential impact on problem-solution fit (C3) or product-market
fit (C4) are selected, that the experimenter can trust the results, that the metrics
are relevant, etc. Experimentation is an activity that encompasses most aspects of
software engineering, from prioritization of features to post-deployment, and any
delay to any of those activities will cause delays in experimentation too. Hence, there
are many opportunities for improving the effective experimentation throughput (C2)
with processes and tools or other infrastructure.

P2: C2—C3 CE enables increased problem-solution fir. Experiments (C2) that target prob-
lem-solution (C3) improves the user experience, i.e. the ability of users to solve
problems with the product. Either pre-deployment prototyping experiments and
post-deployment controlled experiments can be used for this purpose.

The process of conducting experiments (C2) over time to optimize the product with
a defined goal will lead to improvements in the product based on that goal. This is
the main benefit of CE. The impact of each individual change might not be great.
However, since changes in an experiment are only finalized if they have a positive
impact, then the accumulated experiments conducted over time will have a positive
effect. There are diminishing business value returns to how well the problem-solution
can be fit. Even if the solution perfectly solves the users” problem, it does not mean
that the problem is important and that users are willing to pay for it.

P3: C2—P4 Quantitative experiments enable increased product-market fit. 'The product-
market fit (C4) measures how well the product can meet market needs and generate
revenue, hence it is the ultimate goal of for-profit products or services. The compa-
nies that are able to affect product-market fit can use CE to great advantage. How-
ever, product-market fit is more difficult to target than problem-solution fit due to
having to affect customers” purchasing intent. The effect of software changes on
product-market fit is usually subtle and so requires precise measurements that only
quantitative data can serve, e.g., with controlled experiments (C2). Not all compa-
nies are able to affect product-market fit with experiments (see P4 and P6).

P4: C5—C2. High problem complexity limits experiment impact. The change being ex-
perimented with should have a direct link to the actual user or business value, en-
abling assessment of the impact of the experiment (C2). Establishing that link can
be harder for products solving complex problems (C5) because the product can be
hard to modify or the impact of the change cannot be accurately measured. Thus,
in order to perform experiments under those circumstances, the possible changes are
limited or the impact of the changes will be uncertain, respectively. Post-deployment
experiments are more challenging and are thus affected by high problem complexity
to a higher degree.

109

Reasons for the product being hard to modify could be due to not wanting to disrupt
users because they need stability, rigid customer requirements and contracts, complex
deployment and delivery with on-premise installations to other organizations, or lack
of access to software that the product is integrated with. The product can be hard to
measure if the usage is hard to quantify, the product is configurable with variants that
the proposed change affects differently, or there is no meaningful metric to use. These
examples are all aspects of problem complexity of the problem-solution pair from the
business model, either directly or indirectly through the ways that the product is built
to deal with problem complexity (i.e. configurability).

P5: C5—C3. Business model pivots can lead to simplified target problem. CE is primarily
suitable to making changes to address the solution part of the problem-solution pair
(C3). However, making changes to address the problem is a big endeavour because
it changes the business model (C5) and will likely require involvement of the whole
company (i.e. software engineering, sales & marketing, and management). There
are practical limits to experimentation, such as, when the proposed change is too
costly to reverse in case of failure. In addition, according to P4, the presence of high
problem complexity itself limits experimentation. Consequently, experimentation
might not be useful for making changes to address the problem complexity. Instead,
a pivot, i.e., a change of direction in the business model that affects the value proposi-
tion and thus the product can be required to realize changes to problem complexity.

An example of a pivot would be to shift from targeting a broad market to addressing
a narrower customer segment consisting of a niche market with a more specific value
proposition. This would hopefully reduce the set of required features and thereby
reduce the problem complexity and the user experience could be simpler.

P6: C5—C4 Product-market fit improving experiments need incentive structures. Problem-
solution experiments can be done by finding user problems and designing solutions
for them. Software engineers used to an agile user-centered process will be familiar
with this [39]. Having experiments target product-market fit (C4) is more challeng-
ing, since market considerations are outside traditional software engineering respon-
sibilities. Also, sales metrics might not be available for experimentation depending
on the licensing and revenue model. As such, targeting product-market fit requires
incentive structures to be in place with a link between business value, user value, and
software engineering activities. This can, for example, take the form of an explicit
team goal on a target metric that can affect product-market fit and be measured in
experiments.

Note that a focus on product-market fit does not come with a degradation in user
experience or the users’ obtained value of the software. Indeed, if there is a direct
connection between the users’ satisfaction with the software and their inclination to
pay for it, then sales figures can be used to simultaneously optimize user 2nd business

110

value. This is the case for software provided as freemium (where the user can use a
free or a paid version of the software), as a demo/trial versions, as a subscription,
with in-app purchases, etc. This is not the case for business models where the user
pays once upfront for the product without first using it.

The following consequences on product-market fit experiments happen when the
incentive structures are in place:

* The software engineering and sales & marketing departments will have the
same incentives and can thus work more easily together. This is also evident
from the rise of growth marketing/engineering in industry [162, 288].

* The prioritization process can use metrics from the sales process to inform de-
velopment and can chose to develop features they believe will best benefit users
and business.

* Focusing on acquiring new users will lead to having more user data which will
increase the ability to do experiments further.

4.4 Scope

The scope within which FACE is applicable is user-intensive software companies with a
user-facing offering. For example, media content services (Case D), e-commerce web shops
(cases E, H, and I), and application software products (Case K). Not all companies in the
study have software development as their primary activity, but software is a central part of
their business model. The theory is derived from empirical observations on those companies
and it is unknown whether the theory is applicable or useful outside this context of soft-
ware intensive companies, for example, non-profit organizations developing open-source
software, companies developing embedded systems, companies that are involved with ex-
perimentation from a marketing perspective but that do very little software development,
such as a news website or web shops without IT departments.

4.5 'Theory validity

We evaluate FACE using the criteria proposed by Sjeberg et al. [274], namely testability,
empirical support, explanatory power, parsimony, generality, and utility.

Testability. FACE makes high level claims about company processes, organization, etc. As
such, the ability to use experiments to test the theory is low due to the large scope
that would be required of such an experiment. However, the theory makes claims
about real world phenomena and those claims can be validated by using it to analyze
and explain CE practice at other companies.

111

Empirical support. The theory is based on an extensive multi-case study with 12 cases of
various contexts and 27 interviewees with various backgrounds and roles. The cross-
section of empirical underpinning per case and proposition is shown in Table 3. Each
proposition is supported by evidence from multiple cases.

Explanatory power. While there is no ability to make quantitative predictions from FACE,
the theory can be used to differentiate CE in real companies and can explain why
some companies derive more value from experimentation than others. The context
of all case companies that the theory is based on is also available (see Section 3.3)
and can be used by practitioners to compare with their own organization’s context,
and thus judge the applicability of the theory for that context using theoretical gen-
eralisation. The theory also uses terms and concepts from established pre-validated
knowledge, such as lean canvas from lean-startup [201, 240].

Parsimony. The number of constructs and propositions have been continuously reduced
and combined during the theory building process. The remaining constituents of
FACE are needed to explain the data from the cases.

Generality. The scope of the theory is user-intensive companies which limits the generality
of the theory to such companies. The case companies on which the theory is based
are quite different in terms of size, age, and domains (though e-commerce is over-
represented) so the breadth of the scope is wide.

Utility. FACE can be used by software organizations to understand their ability to perform
CE and the factors that influence this. The interviewees in the study were generally
very interested in learning more about CE which hints at the overall industry rel-
evance, in addition to the large number of industry authors active in the research
about CE [9, 247]. The guidelines that are derived from the theory show what state-
of-the-art CE is and how companies can elevate their experimentation based on their
context.

5 'Theory Explanations and Empirical Underpinning

In this section, the supporting evidence from each of the 12 cases, for each of the six propo-
sition in FACE is presented in order, along with an expanded explanation of the meaning
and impact of each proposition. We refer to theory constructs as C1-C5, and propositions
as P1-P6. Note that, only the salient evidence is discussed in the text. See Table 3 for a
complete picture of the supporting evidence per case and proposition. The strength of the
evidence is judged qualitatively based on how much and how direct the propositions are
discussed at the interviews. As such, it does not reflect, e.g., how good or bad the cases are
at conducting experiments (P1).

112

Table 3: Cross-section of empirical underpinning per case and proposition in FACE. Cells are marked X for proposition-case
pairs with strong evidence and \ for pairs with only some evidence.

Case

Proposition

P1 P2 P3 P4 P5 P6

A E-commerce algorithms
B Local search

C E-commerce consultants
D Video Streaming

E Web shop

F Customer relations

G Engineering tools

H Web shop

| Web shop

J Product information

K Business intelligence

X N\ X

X
X

X

S XS
vl

SX X XS
/S X X

S XX XX/
XXX/ XSS XS XK
X X

SX S XXX

L Employee management

5.1 CE processes and infrastructure at the case companies (P1)

Companies in the study conduct and depend on CE to different degrees (see Table 1).
The case companies also have matching degrees of processes and infrastructure support to
match their level of experimentation (with some exceptions discussed in this section). All
interviewees at companies with frequent experimentation mentioned efficient process and
infrastructure (Cl) as crucial for efficient experimentation (C2). The analysis on P1 is di-
vided into three parts: (1) impact of efficient processes, (2) impact of efficient infrastructure,

and (3) the impact of low throughput.

The four companies with High experimentation expertise in Table 1, cases A, D, G, and I,
also have efficient processes and infrastructure to support their experimentation. These cases
have a data infrastructure, experimentation platforms built in-house, all relevant roles, and
have established processes for CE. Case A has low demand on experiment throughput and
instead focuse their efforts on advanced statistical techniques and speed of experimentation.
Cases D and G do experiments on all their parts of their software products and have both
advanced techniques and a streamlined processes for CE. Case I has similar advanced ex-
perimentation at some teams in the company. As expressed by interviewee 14 who's team
conducts large amounts of experimentation: “If you have a team that has [experimentation]
in its soul, then you want a streamlined process for how to conduct experiments.” Developers

113

in case I should be able to put an idea under test within hours of its inception and have
experiment results a few days later. They struggled initially with their commercial-off-the-
shelf experimentation platform because the data volume overwhelmed it, until they built
their own.

Two case companies in the study in particular struggled with implementing the processes and
infrastructure efficiency they desired, cases E and I. Case E has an ad-hoc software engineer-
ing process which causes issues for their experimentation. According to interviewee El,
there is a constant change of direction from management in prioritization and what met-
rics to optimize for, incorrect experimentation execution such as stopping experiments too
soon or not using statistical tests, and management not taking account of experimentation
results. 'This made many experiments ineffective (C2). Some of these issues could also
be attributed to organizational culture, but the way the issues manifest is through lack of
adhering to process. Case I had two of the teams (responsible for search engine and rec-
ommendation engine, respectively) working efliciently by having their own purpose built
experimentation platform for their part of the product, as described above. The other soft-
ware engineering teams at case I, about 50, used a central support team with a data science
focus that conducted the experimentation independently. This was described as ‘tozally
unreasonable” by 13 due to the low experimentation throughput, caused by both technical
limitations in the commercial cloud-based experimentation platform and the overhead of
having to involve another team.

The amount and quality of available user data was a frequent topic of discussion that was
discussed to some degree at all cases. User data is not an explicit part of FACE, but there are
processes for adapting experimentation to low availability of users data. Both the amount
and quality of user data has a direct impact on the experimentation throughput (C2). A
certain pre-determined number of data points needs to be collected to get some degree of
certainty in the results. Low quality on user data lowers the information that can be learned
from each data point, thereby also lowering experimentation throughput. User data is a
limitation at companies with vast amounts of user data too, since some experiments only
target certain users (e.g., that has a certain feature enabled or belongs to a certain user
segment).

5.1.1 Impact of efficient processes

Experimentation requires following a rigid processes to ensure trustworthy results. This is
important for both qualitative pre-deployment experiments and quantitative post-deploy-
ment experiments. In qualitative experiments there is much manual and subjective work
that must be conducted consistently across users and experimenters. For quantitative ex-
periments the tools must be used correctly to get accurate numbers. In addition, there are
many methods and techniques that can be used to get more eflicient experimentation:

114

* Having data-driven prioritization ensures that the most important experiments are
done first (done at cases A, D, G, I, and J). This could be done by analysing historic
user data to see where users have issues, by surveying users, or by properly splitting
developments into the smallest possible implementation (such that it can be aborted
early in case of failure).

* Using data mining after experiment results can be used to get more information out
of experiment results, such as dividing the users into segments and analyzing whether
the results differ in the segments (done at cases A and G).

* Making power calculations to figure out how many data points are needed in an exper-
iment is a recommended step to do before the experiment is started [172]. However,
all interviewees except the ones at case G admitted to never doing it or using the
same calculation for all experiments.

* Using both qualitative and quantitative experiments is recommended. Many compa-
nies only have infrastructure for one type of experiment, but cases D and I have both
and are able to use the experiments that best suit the situation at hand.

* Optimizing the statistical test to a more precise version that suits the given situation
increases chances of obtaining statistically significant results (done at cases G and I).
However, G3 also warned about spending too much time on this since it requires
specialized knowledge and is technically challenging.

* Using experiment designs with multiple variables achieves more nuanced results, such
as multi-variate tests or multi-armed bandits (done at cases A and G). This also re-
quires specialized knowledge and is technically challenging.

5.1.2 Impact of efficient infrastructure

Getting started with CE was not described as technically hard by any of the interviewees.
As phrased by interviewee G3, “The original experimentation system was like 15 lines of Scala,
it was just really really simple. Its interesting how you can start up really easy.” Also, the
requirements for pre-deployment experiments is even lower because the qualitative methods
do not rely on technical infrastructure. However, as post-deployment experimentation is
scaled up the demands on infrastructure (Cl) increase to keep up with having efhicient
experimentation (C2).

115

When the case companies discovered the value of CE they steadily increased their frequency
of experimentation to cover more of their new developments and also on old features that
has never been subjected to experiments. The infrastructure is a bottleneck to enable in-
creased experimentation but all cases except H were able to keep up with increased infras-
tructure demands due to CE being prioritized in the organizations. Case H is lacking in
resources to increase their infrastructure.

The overall infrastructure was similar at all cases albeit at different levels of maturity. The
infrastructure includes three parts. (1) Data infrastructure to store and provide query sup-
port for user data. This includes telemetry of user data and product data in all parts of
the software, collecting various information about users for segmentation, and a system for
storing and accessing this data (i.e., a data warehouse). In addition, all data needs to be
stored securely and in compliance with legislation (i.e., GDPR). (2) An experimentation
platform with support for starting and stopping experiments, configuring which metrics to
target and what additional metrics will be monitored, support for segmentation and arrang-
ing metrics in hierarchies if there are too many, alerting in case things go wrong, ways of
running experiments in parallel (non-overlapping in case their changes are conflicting), etc.
Finally, (3) competences to develop and support infrastructure and to conduct experiments
(see Section 2.2.1). Also, the developers need to be educated in CE if they are to take part
in it, which was a challenge for the cases it happened at (D, G, and I).

Of the three infrastructure parts, data infrastructure is the most demanding to develop,
according to interviewees at D, G, and I, because data infrastructure must be implemented
in the entire software offering, rather than as a standalone development. Investment in data
infrastructure is one of the reasons that case A is able to conduct experimentation with High
expertise despite their small company and software department size. Their product relies on
user data for algorithms, such as recommender systems that needs the same infrastructure,
and they were able to use it for conducting advanced experiments (multi-variate tests and
multi-armed bandit variants, see [249]) even though experimentation is not widespread at
the company.

5.1.3 Impact of low throughput on experimentation efficiency

There are additional consequences of low throughput to the impact of experiments (C2),
caused by either low capacity or low speed as follows, besides that companies fail to get as
much experimentation done as they would like.

A low capacity to run experiments increases the risk of releasing features with user-related
issues, since only a subset of the desired experiments can be conducted. It is not always
obvious what changes will have an impact on users or not. This was something all case
companies experienced except the most advanced ones (cases G and I). As phrased by Al:

116

“A/B tests are always unpredictable, that has been proven. Again and again by us. We do release
some non A/B tested functionality and I can’t be totally sure it is all good, but it is what it is.
[...] We always focus on what customers need as much as possible and do our A/B tests on that.”
Low capacity is primarily caused by lack of user data or developer resources.

Low speed of experimentation can be frustrating, as E1 put it when queried about challenges
of CE: “long lead times makes the whole being data-driven thing almost impossible”. We
identified the following two additional consequences of low speed of experimentation. (1)
Low experiment speed can result in other changes in the product or market to invalidate
the result. Due to, for example, changes in company priorities (mentioned by E1 and
J1), the experimenter forgetting details about the change (mentioned by A3 and D1), or
conflicting software changes that make the change incompatible (mentioned by A3, A4,
and K2). In addition, (2) it will be hard to use the insights to form hypothesis in the
follow-up projects if they are started before the previous projects’ experiment is completed.
Thus, experimentation is not really continuous when experiments are slow (mentioned by

B1).

The issues with lack of speed were primarily observed at Case A due to challenges with
continuous delivery, at Case B due to having experiments with very large scope, at cases D
and J due to their recent start with CE thereby having lots of various inefficiencies in their
process, at cases C and H due to low user data volumes, and at cases K and L due to using
primarily qualitative methods with much manual work.

5.2 Experimentation impact at the case companies (P2 and P3)

All cases have experiences with CE for increasing problem-solution fit (P2). However, not
all companies are able to affect product-market fit. Only cases D, G, and I experiment
with product-market fit regularly. Cases B, E, and] target product-market fit only to some
extent, cases B and] have multiple user groups of which they are only able to target one
with experiments, and case E have issues with CE processes. The remaining cases do not
target product-market fit due to propositions P4 and P6.

Sales metrics (revenue, conversion rates, churn rate, etc.) were mentioned often in the in-
terviews as an appealing metric to use for experimentation. As explained by D1, it is both
directly relevant to business, and users presumably only pay for software that they think
fulfills a need for them. As such, when an experiment can use sales metrics, it can optimize
the product for both business needs and user needs simultaneously, thereby increasing ex-
periment impact (C2) on product-market fit (C4).

117

According to P3, only quantitative experiments can target product-market fit, while both
pre-deployment prototyping experiments and post-deployment can target problem-solu-
tion fit. None of the cases were able to target product-market fit with anything other than
controlled experiments with sales metrics. Presumably due to that it is harder to measure
product-market fit in a way that cannot be done with only a prototype since it requires
users to actually pay for something, hence sales metrics.

5.3 Problem complexity at the case companies (P4)

When the problem (C5) that the product or service solves is complex, it is challenging to
experiment efficiently on it (C2). The problem complexity of the offerings at the case com-
panies span a wide range, from low complexity (cases D and G), medium (cases A and K),
to high (C and L). By problem complexity, we mean that there are various challenges in
the way the offering delivers value to users. We identified three issues with how problem
complexity affects experimentation: (1) problem complexity makes changes hard, (2) com-
plex user experience makes measurements hard, and (3) configurability addresses problem
complexity but splits experimentation effort.

Some degree of complexity in the user problem can be overcome by using qualitative meth-
ods, e.g., user interviews, observations, focus groups, etc. User observations are regularly
used at cases K and L and can be used even when the user experience cannot be quantified
into meaningful sessions nor specified as an adequate metric. The experimentation process
with user observations at case K and L is slightly different than for a quantitative controlled
experiment. There is usually no control group, instead the experimenter selects a small
group of users and observe their interaction with the change in the product and compares
with earlier results (as in a natural or quasi-experiments). As such, qualitative methods can
evaluate a change and is considered to be a valid experiment. However, the efficiency of
qualitative experiments in terms of reliability per work hour is low due to the cost of in-
terviewing, recording, coding, etc., compared to the cost and scalability of a quantitative
experiment once the infrastructure is in place. The ability to be precise in exactly which
change has what effect is also lower compared to quantitative experiments. Qualitative
methods do have advantages with richer data that can be used to explain why changes fail
or succeed. But as a method for conducting an experiment with realistic circumstances
they are limited.

118

5.3.1 Impact of problem complexity on making changes

Some software offerings can be hard to implement changes on, due to having to be inte-
grated with other software, causing communication barriers with their developers, or that
there are requirements or expectations from customers that the software should not change.
In such cases, the experimentation process becomes hard due the the complexity of im-
plementing the change in the experiment. This affects the ability to conduct controlled
experiments (C2).

When experimenting with software with integration needs, the experimenter has to interface
with software that is external to the organization. The experimenter cannot make changes
incompatible to it, or they have to communicate with the software engineering organization
responsible for the integrated system, which would cause delays in experimentation. At Case
C their business is centered around integrating different systems to build web shops, C2
mentions this regarding their customers ability to A/B test on their site: “What customers
can change is actually only content [text and images]. [...] Supposedly, at best, the customers can
A/B what it looks like [user interface].” Case H is one of their customers that did do their
own A/B testing with involvement from interviewee Cl. At Case A, where their product is
used in other companies’ software, the interviewees complain that they cannot change how
their product is being used (sometimes incorrectly) and that deploying the changes takes
considerable time for some customers.

Finally, user or customer expectations or requirements can hinder CE because some users might
not want changes. At most of the case companies, the users are able to overcome changes
easily, so this aspect of problem complexity was only discussed by interviewees at case D,
K, and L. At Case D they mention how their B2B product has customer requirements that
mandate the behavior of certain features. It is not possible for them to make changes to
these features even if it would be beneficial to their other customers. Of the other B2B
companies in the study, only cases D and F accept customer requirements to their product
in this way. At cases K and L, the interviewees mentioned that their users do not want
frequent changes due to their software being used in a corporate setting where users do not
want changes to disrupt their work flow.

5.3.2 Impact of product complexity on defining measurements for controlled experi-
ments

The user experience of software with a complex and open-ended work flow cannot be neatly
quantified into chunks or summarized with a single metric. Sales metrics can sidestep the
issue of defining a user experience metric, but not all companies can use it for experiments
directly and it might not be a suitable target for all experiments. Cases F, K, and L cannot
use sales metrics at all due to their business model (see P6) and they also have complex

119

and open-ended user experiences. All of the other case companies mention using metrics
that are related to the user experience as a target metric to improve problem-solution fit.
User experience metrics are also monitored on experiments that target product-market fit
to ensure that business value does not come at the expense of users at all cases able to target
product-market fit.

The cases E K, and L have similar underlying reasons for having a complex and open-ended
user experience as explained in the interviews. The software is used throughout the day, such
that it cannot be neatly quantified. The goal that users have when they use the software
is hard for the software engineers to extract and measure, and the number of features are
large such that there might not be enough user data on some features to measure it.

While it is always possible to find something to measure in the user experience of all software,
such as number of clicks or other user interactions, it is far from certain that optimizing
those metrics will transfer to concrete gains. According to L2, good user experience metrics
should measure whether the user is able to accomplish their goals with using the software
or not. Clicks was specifically mentioned as often being a “terrible metric” by A4 and G3
due to being able to be too easily influenced by experiments without having a real impact
on more relevant measures. Intuitively, the number of clicks should be kept low to have
an efficient user experience. But if the program is something users enjoy spending time
on (and revenue is earned through that), then the number of clicks will be beneficial to
increase instead.

5.3.3 Impact of configurability on experimentation

When software is built to be configured into multiple unique variants (as in software prod-
uct line development [233]) the problem of having enough user data for each feature is
exasperated. In such cases, the amount of users for each such unique configuration is lower
than for the total set of users, which leads to experiments taking longer to complete due to
having less amounts of user data per time period. Having software be capable of configura-
tion is viewed here as a consequence of dealing with high problem complexity. Case A has
a product with some degree of configuration. They do experiments at different customers
and analyze them independently. However, they have a limited number of customers so
it is not described by the interviewees as very challenging for them to handle. Case F has
a product with a very high degree of configuration and they are not able to conduct ex-
perimentation partially because of that. They have a lot of features in their product and
the features exist in multiple variants and experiments would have to be repeated for the
different variants, which is not efficient or might not be feasible.

120

5.4 Business model pivots at the case companies (P5)

According to P4, there are limits to what can be done with CE when the problem com-
plexity is high. Companies can simplify what problem the software solves by pivoting their
business model (C5) to solve another problem that can lead to a higher problem-solution
fit (C3). CE is not suitable for all development tasks [36, 205] and is unlikely to help
reduce problem complexity significantly; we see two reasons for that. First, while CE can
improve problem-solution fit, actually changing what problem the software solves is a large
change that goes beyond the scope of experimentation. Changes in an experiment need to
be sufficiently small such that the change can be reversed in case of bad results. Second,
high complexity reduces the ability to experiment (P4), which is a catch-22 scenario; experi-
mentation requires a goal to target but no goal can be specified due to the high complexity.

Case company D pivoted recently by changing their target users from business customers
to private individuals. After the pivot their prioritization was data-driven to meet market
needs and they had less customer requirements on their user experience, thus they were able
to simplify the user experience. They also increased their experimentation significantly as
a result of the pivot. Note that, the pivot that case D conducted was not done specifically
to enable experimentation. Rather, the goal was to reach a larger market which needed
a simplified product, and enabling experimentation was a side-effect of simplifying the
problem complexity. No other company in the study has gone through a similar pivot, but
A5, C2, and F1 mentioned pivoting (though not necessarily with that term) in regards to
what changes they would have to implement to enable experimentation in their company.

5.5 Experimentation incentive structures at case companies (P6)

Some companies in the study have business models (C5) that are suitable to experimen-
tation (C2) targeting product-market fit (C4). These business models provide incentive
structures that enables experimentation, e.g., by having metrics available that software en-
gineers can use to directly affect the product sales and user growth. Part of the differences
in incentive structures is explainable with the sales-led and product-led growth dichotomy,
see Section 2.1.2. Companies with a business model with product-led growth rely on the
product to obtain customers, while the companies with a sales-led growth rely on a sales de-
partment to obtain customers. Incentive structures impact experimentation in three ways
as explained below: (1) user-business alignment, (2) sales & marketing interplay, and (3)
increased user-data.

Not all companies’ offering revolve around a product or service, e.g. e-commerce compa-
nies, and those companies cannot be placed in either category of growth. From a software
engineering perspective, the web shop cases E, H, and I, are somewhat in between product-
led and sales-led because while they can use sales figures in experiments, changes in the

121

software have a limited ability to affect the web shop sales. Cases B and], have multiple
user groups with different sales and growth strategies for either role, placing them also in
between sales-led and product-led. As such, cases A, C, E K, and L have a sales-led growth,
cases B, E, H, I, and] have neither, and cases D and G have product-led growth.

5.5.1 Impact of user-business alignment

According to P3, affecting product-market fit (C4) relies on quantitative experiments (C2)
that target sales metrics. While the availability of sales metrics is necessary to experiment on
product-market fit, incentive structures are also necessary. Cases A and C are examples that
have sales metrics from their B2B customers, but cannot target product-market fit with
those figures since an increase in their customers sales figures does not come with direct
business value to them. As such, experimentation to improve the sales figures is only done
for product-solution fit purposes at Case A and not at all at Case C.

In contrast, cases D and G uses various sales metrics extensively in experiments, presumably
due to their user-business alignment. At both cases, the sales metrics come from software
sales and they also both have a subscription-based license model where the user pays contin-
uously to use their service. G3 phrased it as such: “Our incentives are mostly aligned with our
customers’ because it wouldn’t mean anything if somebody purchases [our flagship product] and
then decide that they hate it and a week later they cancel the subscription.”. D2 also expressed
the importance of user-business alignment: “So the way you build things for freemium is that
it has to solve a user problem, thats part of the product breed, that’s part of why you do the thing,
all your metrics align to that.” Freemium is a license variant where the product has a free
and a paid premium version, see Section 2.1.2.

Cases D and G both also uses metrics from the sales funnel to find and prioritize issues with
their product. As explained by D2: “Theres industry standard metrics, like the AARRR model
Acquisition, Activation, Retention, Revenue, and Referral. We use them to kind of analyze our
platform and our product and see where we are missing things.”. The AARRR Pirate Metrics
Framework was proposed by McClure [202] and covers multiple business model aspects.

122

5.5.2 Impact of development and sales & marketing interplay

Companies with product-led growth models will have the same incentives on the software
engineering department and the sales & marketing department: to increase the sales fig-
ures. This makes it easier for them to cooperate. At Case D they had a few individuals
with the hybrid role of growth engineer that worked as an intermediary between the two
departments. At Case G they included growth marketers in their specialized team that con-
ducted experiments. The growth engineers/marketers were primarily tasked with finding
and analyzing hypotheses about the product to experiment on.

5.5.3 Impact of increased user-data

The cases with a strategy (C5) of finding many customers and growing rapidly will get access
to more data from their increased user base. User-data volume is critical for experimentation
throughput to affect problem-solution fit and product-market fit. The interviewees at cases
with sales-led growth (A, C, F, K, and L) all mentioned a focus on large important business
customers that can pay more instead of many customers, which gives a higher return on
the manual work that the sales force put in. Another difference lie in that the product-led
growth cases (D and G) both have a freemium license model that further increases user-data,
since the users that use the software for free contribute with user-data.

6 Discussion

We have presented a theory of Factors Affecting Continuous Experimentation (FACE) on
what contextual factors in a company’s business model and software organization affects
continuous experimentation (CE) and how. The theory is based on empirical observa-
tions in 12 case companies through semi-structured interviews and subsequent theory build-
ing. In summary, the theory states that processes and infrastructure increase experiment
throughput (P1) and experiments can increase problem-solution fit (P2) and quantitative
experiments can increase product-market fit (P3). However, experimentation is limited by
how complex of a problem the software solves for users (P4), the problem complexity can be
reduced by pivots in the business model (P5). Finally, experimentation on product-market
fit requires business models with the right incentive structures that connect business and
user value (P6).

There are two discussion points: (1) what the limitations of CE as a method for software
engineering are and (2) which factors affect a company’s ability to conduct CE.

123

6.1 What are the limitations of CE?

There are limitations to what can be achieved with CE. According to best practice in contin-
uous experimentation (see Section 2.2) each experiment should be split into the smallest
constituent to avoid having to do unnecessary implementation work in case the change
is bad. As such, continuous experimentation entails incremental work. In the road-map
for continuous software engineering, Fitzgerald and Stol [113] argue that sometimes abrupt
changes are needed when creativity and innovation is involved, because incremental work
constraints the creativity to similar solutions to what currently exists.

Furthermore, in CE, experiments are ultimately used as a method for optimizing software
towards a given goal by taking small steps in the right direction. However, there is a risk
of getting stuck in a local optima where no individual small change can improve the cur-
rent software design, but there might be a better solution to be found if a larger change
is introduced. Larger changes are pivots, the impact of which in FACE are described by
the proposition P5. When a pivot is introduced to a product that has been polished with
experimentation, it is quite likely that the new version of the product performs worse be-
cause it is less polished. There could be minor problems that over time could be improved
with experimentation to find a better solution. Whether or not it is worth the effort of
maintaining multiple versions of the software product during this period is ultimately a
business decision that cannot be settled within the confinements of CE.

The value provided by experimentation diminishes over time. When experimentation is
first introduced at a company there are low-hanging fruits to experiment on. At the case
companies, A, D, E, G, I, and], there were long held assumptions about the product and
customers that were finally able to be tested and this led to some surprises. However, over
time experimentation becomes established at the company and more parts of the product
are stabilized. Also, the size of experiments will become smaller since the experimenters
become more adept at reducing the scope of the experiments, which has also been reported
previously [174]. Hence the utility of each individual experiment tends to decrease unless
a pivot happens.

Finally, FACE cannot make claims about applicability of CE to companies outside the
defined scope. However, we argue that an experiment-driven approach to software devel-
opment is unsuitable for much of the software outside the scope. That is, software that
is not user-intensive (e.g., company intranet websites) or not user-facing (e.g., low level
software libraries). Other requirements elicitation techniques or software performance op-
timization methods might be better suited for these examples, such as using profiling tools
to pinpoint performance bottlenecks with low lead time.

124

In summary, CE can increase problem-solution fit and product-market fit. However, CE
should not be the only strategy for improving software at companies due to the limitations
of incremental work. Pivots also play an important role in enabling the product to be

optimized with CE.

6.2 What factors are at play in CE?

In this study, we show that CE is used for different purposes: problem-solution fit or
product-market fit. Similar observations has been done before. Schermann et al. [265] and
Ros and Bjarnason [247] describe that experiments are either regression-based to verify or
validate features or business-based to optimize. Our results highlight that most companies
are only able to experiment with improving problem-solution fit and few are able to af-
fect product-market fit. However, according to the entrepreneur Andreessen [6]: “The only
thing that matters is getting to product-market fir”. Our main research goal in constructing
the theory is to find the factors that explain differences in why companies can apply CE to
different effect. For example, why some companies are able to experiment with product-
market fit and others cannot.

From previous research, we know that the availability of user data is the main limita-
tion [172] and that offering software-as-a-service (SaaS) [176] facilitates easier experimenta-
tion. Also, there is substantial work conducted on the challenges of applying experimenta-
tion in a B2B setting [242, 247, 317] and in cyber-physical systems [33, 122, 197]. FACE
synthesizes these findings; in fact most of these studies are all on aspects of complexity in
the problem the product solves for users; corresponding to P4. FACE highlights additional
factors as follows.

Three of the propositions (P1, P4, and P6) affect companies’ ability to use CE to increase
problem-solution fit or product-market fit and those form the factors. The first (P1), on
CE processes and infrastructure, covers many aspects and not all are regarded by us as very
impactful on whether a company can apply experimentation or not. While the throughput
would be lower without sufficient processes and infrastructure, it is unlikely to be a com-
plete blocker to experimentation. In addition, several of the companies (see Section 5.1)
have described how they gradually improved their experimentation support in parallel with
ramping up experimentation. Data infrastructure is an exception that requires significant
investment. The final three derived factors are thus:

1. Data infrastructure is needed to be able to use the metrics that are desired and to
cover telemetry of all parts of the software. Companies that rely on user data for
other parts of their products, such as recommendation systems, will get a head start
on experimentation by reusing data infrastructure.

125

2. User problem complexity is the complexity of the problem that the software solves for
users. High problem complexity makes quantifying the user experience hard and
making changes in the software hard, which severely impacts the ability to experi-
ment. Modifying the user problem is challenging but possible with pivots in the
business model.

3. Incentive structures are required to provide a measurable link between business value,
user value, and software engineering activities such that experiments can affect prod-
uct-market fit. Companies that do not have access to sales metrics in experiments
will derive less benefits from experiments since user experience metrics are hard to
define in a way that they can be used for optimization.

7 Guidelines to Practitioners for Conducting CE

Based on FACE, we have derived guidelines for practitioners. The guidelines are given as
a list of recommendations on state-of-the-art CE processes and infrastructure and on how
to strive towards it. According to Stol and Fizgerald [278], theories are suited as a starting
point to derive practitioner guidelines from.

7.1 State-of-the-art CE practice

Industry leading companies have published information on their state-of-the-art CE pro-
cesses or infrastructure, such as Microsoft [130], Google [286] and Facebook [107]. Com-
pared to those, two of the cases in our study have achieved equally high levels of experimen-
tation, cases D and G. They conduct experiments frequently, on all parts of their software,
on most software changes, and on business relevant metrics. CE is an important part of
their software development process, they have shifted from a mindset of shipping features
to an experiment-driven approach where only functionality that are proven to solve user
and or business needs are delivered. They are able to affect both problem-solution fit and
product-market fit with their experimentation.

The RIGHT process and infrastructure model by Fagerholm et al. [106] serves as a recom-
mended starting point for practitioners. RIGHT contain no conflicting information to
the ones reported here but it does not reflect mature CE. We have observed the following
additional aspects of mature processes and infrastructure:

* Prioritization should be based on user data. Companies use scoring methods to
quantitatively prioritize expected impact and difficulty of implementation. Both
cases D and G use the Impact, Confidence, Ease (ICE) scoring model [96] and use
user data to base the numbers on; when possible.

126

o Feasibility analysis of experiments should be done before experiments are conducted.
Only companies with High experimentation expertise (cases A, D, I, and G) conduct
this step. It could be as simple as checking how many users use a feature or it could
be a power analysis to control false discovery rates [172]. There are similar methods
for qualitative research as well [295].

* Rigorous analysis should be conducted after quantitative experiments are completed.
The cases with High expertise in CE monitor statistical significance on multiple met-
rics of different types: sales metrics, user experience metrics, and computation per-
formance metrics. The calculations are simple [172], so there is no reason to ignore
statistical significance (or effect sizes, or Bayesian alternatives). Proper qualitative
analysis is performed at Case K only, with a transcription and coding process.

* Mixed-methods experiments are in use at cases D and G, since quantitative and quali-
tative data complement each other well. Other companies use one or the other. Pro-
totyping pre-deployment experiments can be evaluated qualitatively to pre-validate
ideas and to find hypotheses on what to experiment on. Following up with post-
deployment experiments give definitive proof. Though, it does require additional
roles in the form of both user experience researchers and data scientists to conduct
proper analysis of the results.

* Knowledge sharing is encouraged at companies with Medium or High CE expertise
and is especially important when the experimenters are in a stand-alone team. Know-
ledge can be shared, for example, in workshops, mails, or internal wiki. One of the
strengths of an experiment-driven development method is the opportunity to create
domain knowledge through rigorous research. That effort could go to waste if the
knowledge obtained from experiments is not curated.

o Infrastructure is extensively expanded at the cases with High CE expertise. The daza
infrastructure should support telemetry on all parts of the software and on multiple
types of user data and it should be stored in a way that it can be tracked to experiment
groups. The experimentation platform should support managing parallel experiments,
making inquiries into results for different user segments or metrics, and segmentation
of users in order to obtain high throughput of experiments. The competences should
cover the necessary roles of experimentation. In addition, all software engineers need
to be trained in experimentation so that they can partake in CE.

127

7.2 Reaching state-of-the-art CE

The theory identified three factors at play in experimentation, data infrastructure, user prob-
lem complexity, and incentive structures. These factors represent hurdles that companies
need to overcome to reach experiment-driven development. What follows is the strategies
the companies in the study used to achieve efficient and effective CE, also in unfavorable
company contexts.

* Build processes and infrastructure gradually. While some companies were able to get
started and ramp up experimentation (cases A and to some degree B) due to prior
investments in data infrastructure, we recommend starting with experimentation
practice instead of infrastructure processes. Starting with experimentation is easy,
but scaling to high frequency and extent of experimentation is very challenging. The
knowledge obtained from continuous experimentation will be useful for continu-
ously scaling up infrastructure too.

o Seize opportunities to pivot to simplify what problem the software solves for users.
Problem complexity severely limits the ability for experiment-driven development.
Case D was able to pivot successfully and was able to change to an experiment-driven
process. However, pivoting is likely a challenging endeavor. Failed examples of piv-
oting might go unnoticed because a likely outcome of a failed pivot is bankruptcy.

» Use qualitative methods to experiment in contexts with high problem complexity.
Qualitative experiments are much easier to implement since they do not require
high numbers of users and hence no deployment and they do not require specifying
a quantitative metric. Cases K and L are able to conduct CE by validating software
changes using qualitative experiments.

o Find the right goal to experiment on that is relevant for both business and users. Met-
rics are hard to specify since they should stand up to abuse from unintentional at-
tempts to game it, i.e., an improvement in the metric should always result in positive
business and user value. For example, clicks are easy to get more of by adding addi-
tional steps users must complete, but that results in a worse user experience. Many
case companies are only able to use user experience metrics (such as clicks) that can
improve problem-solution fit. However, by targeting product-market fit both users’
and business’ value can be optimized for simultaneously. Companies should put ef-
fort into finding the right goal for them, for example by carefully using proxy metrics
(see Section 4.1), using qualitative methods, or by providing team goals.

* Provide incentives with team goal metrics so that all software engineers are encour-
aged to start with experimentation and to allow them to take responsibility of the
experimentation process. This is easy to implement when working with quantitative
experiments since the developers are provided with the necessary tools for achieving

128

the goals. Cases A, D, I, and G all use team goals. For the companies that do not
have the right incentive structures in place they can compromise with process ori-
ented goals, such as goals with how many of new features they are able to evaluate
with qualitative experiments, etc.

* Be mindful of ethics when providing strong incentives to individuals. Team goals
should be set with collaboration between the teams and management to ensure it is
good for business and users. For example, one of the experiments mentioned by El
was to hide the pause subscription button in a menu which drastically improved the
churn rate and revenue. This also highlights the need for knowledge sharing since
other developers pointed out the questionable experiment.

8 Conclusions

We conducted a multi-case study with 12 companies and built a theory called Factors Affect-
ing Continuous Experimentation (FACE) based on the empirical material for understand-
ing what factors are at play for companies conducting continuous experimentation. Six
propositions are included in FACE. (1) Efficient infrastructure and process improves experi-
mentation effectiveness. Starting with experiments is easy, but companies can put endless
effort into: scaling up experiments, obtaining more insights from experiments, and im-
proving the speed of experiments. (2) Experiments can affect either the problem-solution fit
or (3) product-market fit. Targeting product-market fit is far more challenging, but prefer-
able, since it can improve business and user value simultaneously. Many companies are
restricted to only improve the user experience and thereby problem-solution fit. (4) 7he
complexity of the problem the software solves for users strongly limits experiment applicability.
High complexity can limit the ability to make desired changes in the software or to quantify
the user sessions. Following that, (5) pivots in the business model is necessary to simplify the
problem complexity, experiments on their own are unlikely to succeed. Finally, (6) improving
product-market fit needs incentive structures in the form of metrics from the sales process.

FACE can be used to evaluate company contexts to gauge experimentation applicability at
their companies. There is still future work to further validate the theory by using it in this
way to evaluate companies.

Finally, we present guidelines derived from FACE based on the empirical data from the
cases and in relation to related work. The guidelines illustrate state-of-the-art processes and
infrastructure and recommendations for practitioners on how to reach towards that when
their company has unfavorable factors that affect their ability to experiment.

129

Acknowledgements

We want to thank all the participating anonymous companies and interviewees for their
contribution to this project. This work was partially supported by the Wallenberg Artificial

Intelligence, Autonomous Systems and Software Program (WASP) funded by Knut and
Alice Wallenberg Foundation.

130

Appendix

A Interview Guide

The following questions should be adapted to suit the interviewees background and role.
The nested bullet lists indicate probes that are only asked when the answer to the main
question requires clarification.

A.l Introduction

¢ Inform about consent

— Interview will be recorded
— Free to withdraw at any time (including afterwards)

— Data will be treated confidentially and anonymized
* Explain purpose of study

— Investigating context and process of experimentation and data use

A.2 Case context

1. What does your company do?
2. What is the overall business strategy?
3. What is the business model?

(a) What user problem does your offering solve?

(b) Solution: Product? Service? Consultancy? Other?

(c) Who are the customers? B2B? B2C? B2X?

(d) What are the key metrics and how is it measured (channels)?

(e) Costs and revenue?
4. How stable is the business model?
(a) How do you know when to pivot (change direction)?
5. How many employees are there in: Total? Dev? Sales & marketing? Ops?

6. Could you describe your own role(s)?

131

10.

A3

(a) What is your background?

What does your team do within the company?
(a) Is it cross-functional?

In what ways does your company use user data?

(a) Is there a specialized data science or engineering team?

(b) Could you shortly describe your overall infrastructure for data?
How does your SE team prioritize what to build?

How does user data help with prioritization?

Experimentation process

How was experimentation introduced at the company?

(a) In what department was it started?

(b) In what departments is it done now?

. Why do you do experiments?

(a) Knowledge? Prioritization? Optimization? Regression? Validation?

Could you break down the steps that are taken by you and your team when conduct-
ing an experiment?

(a) Duration? Roles? MVF? Analysis? Power?

(b) Are you aware of any missing steps?

What do you experiment on?

. To what extent do you experiment?

(a) Duration? Frequency? Coverage?
Is there overlapping experimentation?

(a) From different teams?

(b) Coordinated?

132

A4

1.

Experimentation details

Could you describe your infrastructure for experimentation?

(a) CI/CD pipeline? Reporting? Reliability? Scalability?
(b) Do you use blue/green deployment or feature flags?

(c) What would you like to improve in your infrastructure?

. What type of experiment designs do you use?

(a) A/A experiments? MVTs? Bandit testing?

(b) Do you have decision algorithms taking causal decisions?

. Do you use any qualitative methods?

(a) Focus groups? User studies?
(b) Do you have specialized teams or individuals for it?

(c) How does it interplay with quantitative experimentation?

. What types of metrics do you use?

(a) What metrics would you want to use?

(b) How does your metric translate to company or team success?

. Are experiments analyzed or executed in different segments?

(a) Explicit segments: Verticals? Products? B2B customers? Web pages?
(b) Implicit through data mining?

(c) How do you handle diverging results?

Do you ever do experiments involving external code bases?
(a) How did it affect experimentation?

How do you share knowledge from experiments?
(a) Mail? Meetings? Documentation?

Do you do any long term follow ups on experiments?

(a) Repetitions? Long-running experiments?

133

A5

Holistic experimentation view

What are the main challenges with experimentation?

. What are the main benefits with experimentation?

Do you face any ethical dilemmas involving your use of user data or experimentation?

How do you strive to improve your experimentation?

Final remarks

. Do you have any final comments, anything that should have been asked?

Could you recommend us any additional interviewee (or organization?)?

We will get back to you within 1—2 weeks about a summary of what was said here.

B Code Book

All paragraphs of the text were coded, multiple codes can be used on the same paragraph.
Some codes are marked with an X to indicate that they can vary, for example Scenario X

should be used as Scenario optimization or Scenario validation, these were expanded freely

during coding. The division of detail codes into sections are intended only for improved

readability, they are not themes or categories. The first two sections indicate context around

experimentation, and the last two are on experimentation process and evidence of actual

use.

B.1

Software development and infrastructure

Testing (any testing aspects discussed)
Prioritization (any prioritization aspects discussed)

System architecture X (description of type of architecture e.g. embedded or micro ser-
vices)

Data infrastructure (description of e.g. data warehouses, query engines, data science
teams, data engineering teams)

Data availability (whether data is capable to be used for experiments)

134

B.2

Data governance (cleaning, data provenance, data)

Experimentation platform (description of an experimentation platform in use at com-

pany)
Infrastructure improvements

Infrastructure challenges

Organizational structure (How departments are structured and how much of e.g. sales
and development there is at a company with relevance to experimentation)

Company culture (descriptions of culture that influences experimentation)
Knowledge sharing (how knowledge is shared between departments)
Technical infrastructure

Software stack technology

CICD pipeline

Infrastructure maturity

Business model and strategy

Pivoting (change in business model according to strategy)

Product customization (general or tailored ro different market segments)

Product complexity (description of a complex product in e.g. size or user experience)
Problem-solution pair (what problem the product solves for users)

Key metrics

Market constraints (ezhics, legislation)

Cost structure

Revenue stream (pricing model)

Growth model (how new customers are acquired, channels, customer segments, number
users, etc.)

Channels (path to customers)

Unique value proposition

135

* Target customers

* Unfair advantage

B.3 Experimentation process

These codes describe strategies for various stages in the process and why experimentation is con-
ducted.
* Ideation (how ideas/hypotheses are elicited and prototyping is performed at the company)
* Experiment design (how design are decided, pros and cons of designs)
* Metrics (which are used, what specific metrics mean, how they are derived)
* Analysis (how analysis is conducted)

o Scenario X (different experiment archetypes e.g. optimization, validation, verification,
learning)

* Dark patterns (a dark pattern is an unethical anti-pattern in UX for tricking users)
* Experimenter X (used to indicate what role initiates and owns an experiment)
* Role X (used to indicate experimentation involvement)

* Experiment handover (description of how experimentation is conducted by some special-
ist and then hand over to product team after completion)

* Experiment inhibitor (something hinders experimentation, use in combination with an-
other context giving code)

* Experiment enabler (something enables experimentation, use in combination with an-
other context giving code)

* Experimentation frequency
B.4 Experimentation usage

These codes are used to gauge how much experimentation is done at a particular company, the
first three should be mutually exclusive at a company unless there is some conflicting reports by
different interviewees.

136

* Experimentation awareness (awareness of experimentation at a company but no intent
to start)

* Experimentation intent (aware of experimentation at a company and want to start
experimentation but have not done so yet)

* Experimentation adoption (in the process of adopting experimentation and/or increasing

scale of exp)
* Experiment duration

* Experiment goal
These codes are used when a technique is mentioned as being used at the case.
o Sprint experiment (experiment is conducted as part of ordinary development and is pri-

oritized with other software development)

* Stand-alone experiment (experiment that is conducted outside of the development orga-
nization)

* Controlled experiment usage (A/B test, quasi experiment)

* Optimization usage (multi-armed bandits, A/Bn tests, MVT, simulations)
* Qualitative methods usage (focus groups, observations)

* Survey usage (questionnaires)

* Data mining usage

* Feature flag experiments (considerations for running experiments through feature flags
in the same deployment environment)

* Blue-green deployment experiments (considerations for running experiments through

parallel deployments)

* Repeating experiments (same hypothesis repeated for some reason e.g. disbelief, bugs,
etc.)

* Experimentation cycles (describes an actual cycle of experimentation where one experi-
ment lead to a new hypotheses and so on)

* Overlapping experiments (considerations for running many experiments in parallel)

137

Paper IV

Data-Driven Software Design with
Constraint Oriented Multi-Variate Bandit
Optimization (COMBO)

Rasmus Ros Mikael Hammar

Abstract

Context Software design in e-commerce can be improved with user data through con-
trolled experiments (i.e. A/B tests) to better meet user needs. Machine learning-based
algorithmic optimization techniques extends the approach to large number of variables to
personalize software to different user needs. So far the optimization techniques have only
been applied to optimize software of low complexity, such as colors and wordings of text.

Objective In this paper, we introduce the COMBO toolkit with capability to model opti-
mization variables and their relationship using constraints specified through an embedded
domain-specific language. The toolkit generates personalized software configurations for
users as they arrive in the system, and the configurations improve over time in relation to
some given metric. COMBO has several implementations of machine learning algorithms
and constraint solvers to optimize the model with user data by software developers without
deep optimization knowledge.

Method The toolkit was validated in a proof-of-concept by implementing two features
in collaboration with Apptus, an e-commerce company that develops algorithms for web
shops. The algorithmic performance was evaluated in simulations with historic user data.

Results The validation shows that the toolkit approach can model and improve relatively
complex features with many types of variables and constraints, without causing noticeable
delays for users.

Conclusions We show that modeling software hierarchies in a formal model facilitates al-
gorithmic optimization of more complex software. In this way, using COMBO, developers
can make data-driven and personalized software products.

Keywords Continuous experimentation - A/B testing - Machine learning - Multi-armed
bandits - Combinatorial optimization

139

1 Introduction

Design of user-facing software involve many decisions that can be optimized with user data.
The decision variables—called the search space—can include both product aspects that are
directly or indirectly visible to the user. For example, what wordings to use in headings or
how items should be ranked in recommender systems [5] or search engines [286]. Tradition-
ally, randomized controlled experiments (i.e., A/B tests or split tests) are used to iteratively
validate the design choices based on user data [172]. Recently, data-driven optimization al-
gorithms have been proposed to perform automated experimentation on software in larger
scale on bigger search spaces simultaneously, at e.g., Amazon [138] and Sentient [208].
Personalization in particular is touted [138] as an opportunity to apply optimization algo-
rithms to improve the user experience for different circumstances in, e.g., device types or
countries.

The benefits of using optimization algorithms need to be balanced against the cost of imple-
menting it. If the implementation cannot be broadly applied to many parts of the software
product, then this investment might not pay dividends. Previously, data-driven optimiza-
tion algorithms have only been applied to simple software [138, 209] with a flat structure in
the decision variables, such as colors, layouts, texts, and so on. Software with more complex
behaviors cannot be directly optimized with these techniques. We hypothesize that to han-
dle more types of software the algorithms must understand the hierarchies that software is
build with. For example, a software feature can have dependencies between variables such
that one variable can only enabled if another one is, and so on.

We suggest modeling the search space and the relationships between variables—called con-
straints [25, 251]—in a formal language that can describe the software hierarchy. Develop-
ers can use constraints to exclude certain combinations from the optimization search space
that would otherwise generate undesirable or infeasible variants. For example, the color of
a button should not be the same as the background. Feature models [55, 159] from soft-
ware product lines have been suggested by Cdmara and Kobsa [48] as a suitable modeling
representation to handle the variability of experimentation. With feature models, software
variable dependencies are described in a tree hierarchy. Feature models also usually support
a limited set of more complex constraints.

To this end we introduce the open-source toolkit called Constraint Oriented Multi-variate
Bandit Optimization (COMBO) targeted at software engineers without deep optimization
expertise. The toolkit consists of a domain-specific language for specifying a hierarchical
model of the optimization search space with many types of constraints and multiple bandit-
based machine learning algorithms (see Section 3) that can be applied to optimize a software
product. To the best of our knowledge, this is the first attempt at combining bandit-based

140

optimization algorithms with constraints. We validate the toolkit’s capabilities in a proof-
of-concept by implementing two feature cases relevant to the validation company Apptus,
in e-commerce. The algorithmic performance is evaluated in simulations with realistic data
for the feature cases.

Finally, we discuss the implications of using toolkits such as COMBO in the context of
a data-driven software development process, which we define as the practice of continuous
optimization. The current barriers to applying continuous optimization need to be lowered
in order to encourage and enable developers to shift towards a higher degree of experimen-
tation. For example, since modern software products are in a state of constant change,
the optimization search space will have underperforming variables removed and new vari-
ables added. The algorithms need to gracefully handle such continuous updates of the
search space model without restarting the optimization. We also call attention to several
remaining barriers such as: handling concept drift [160] and ramifications on software
testing [195]. We also provide considerations for what metrics could be optimized for and
what the toolkit could be applied to.

The rest of this paper is structured as follows. Section 2 contains background and related
work on continuous experimentation. Section 3 introduces theory on bandit optimization.
In Section 4, the research context and methods are described along with threats to validity
of the validation and limitations of the solution. In Section 5 the COMBO toolkit is
presented. In Section 6, the toolkit is validated and the algorithms are evaluated. Finally,
sections 7 and 8 discuss continuous optimization, metrics, future directions, and conclude

the paper.

2 Background and Related Work on Continuous Experimentation

Many web-facing companies use continuous experimentation [106] for gauging user per-
ception of software changes [9, 249]. By getting continuous feedback from users, software
can evolve to meet market needs. Randomized controlled experiments (i.e. A/B tests, split
tests, etc.) in particular are emphasized by high-profile companies such as Microsoft [164],
Google [286], and Facebook [107] as an evidence-based way of designing software. The
section below provides background on continuous experimentation through the lens of
randomized controlled experiments for software optimization. This gives context to the
main topic of our work on applying data-driven software optimization algorithms.

141

Experiments can be executed either on unreleased prototypes or after deployment to real
users. Bosch-Sijtsema and Bosch [37] and Yaman et al. [318] explain how qualitative exper-
iments on prototypes are used early in development to validate overarching assumptions
about user experience and the business model. While post-deployment experiments, such
as randomized controlled experiments, are used to measure small differences between soft-
ware variants for optimizing a business related or user experience (UX) metric.

Prototype experiments are advocated for both in the lean startup framework by Ries [240]
and in user experience research [52, 308]. Lean startup is about finding a viable business
model and product through experimentation, for example, a pricing strategy suitable for
the market. Lean startup has been brought to software product development in the RIGHT
model by Fagerholm et al. [106]. Experiments based on design sketches are used within user
experience to validate user interaction design, e.g., through user observations.

In both lean startup and user experience research there is a need to get feedback on proto-
types early in the process. Though, as the product or feature design matures and settles, the
shift can move towards optimization with randomized controlled experiments to fine tune
the user experience. This can exist simultaneously with prototype experiments as different
features in a product can have different levels of design maturity.

2.1 Randomized controlled experiments

In a randomized controlled experiment, variables are systematically changed to isolate the
effect that each setting of the variable has on a certain metric. The variable settings are
mapped to software configurations and each unique software configuration is assigned a
user experiment group. When the experiment is deployed to a product environment each
user of the system is randomly assigned to a user experiment group. Usually there are
thousands of users per group to obtain statistical significance.

Randomized controlled experiments have been studied in data science as online controlled
experiments. The tutorial by Kohavi etal. [172] from Microsoft provides a good introduction
to the statistics and technicalities of it. The research includes studies on, e.g., increasing
the efficiency [102] and trustworthiness of results [173].

The structure of the controlled experiment is referred to as the experiment design. In an A/B
test there are two user experiment groups and in an A/B/n test there can be any number, but
still with one variable changed. Thus, they are univariate. In a multi-variate test (MVT)
there are also multiple variables that each can have multiple values. There are different
strategies for creating experiment groups in an MVT. For example, in the full factorial
design all interaction terms are considered so if there are 7 binary variables there would be
2" groups. In a fractional factorial design only some interactions are considered.

142

Infrastructure is a prerequisite for controlled experiments on software [106]. The bare min-
imum is an experimentation platform that handle the randomized assignments of users
and statistics calculations of the experiment groups. Microsoft have described their experi-
mentation platform (ExP) for conducting experiments in large scale [130]. It has some
additional optional features such as segmentation of users with stratified sampling for co-
hort analysis, integration with deployment and rollback of software, sophisticated alerting
of suspected errors, and so on.

2.2 Personalization

MVTs are the current standard experiment design for having personalized experiment re-
sults [138, 172]. By personalization [108, 268] we mean that there are contextual variables
that describe aspects of a user, such as device type or age, and that the point of person-
alization is to find different solutions for the different combinations of contextual vari-
ables. Having many personalization variables will result in needing many more experiment
groups.

In the classical experiment designs of A/B/n tests and MVTs, users are allocated into exper-
iment groups uniformly at random. That is, each experiment group will have equally many
users. When the number of groups is large this can be inefhicient. In any optimization
algorithm, the allocation of users to experiment groups changes based on how well it per-
forms in relation to some metric. Thus, they can concentrate users to the most promising
configurations.

2.3 Experimentation implementation strategies

There are two distinct implementation strategies for randomized controlled experiments
of software: using feature flags or multiple deployment environments. Firstly, feature
flags [2306] are essentially an if/else construct that toggle a feature at run time. This can
be extended to do A/B testing. Secondly, having multiple software releases deployed to
different environments, ideally done through containerized blue-green deployment [239].
The advantage of this approach is that the software variants can be organized in different
code branches.

The number of experiment groups can be huge, especially with personalization and opti-
mization. For the algorithmic optimization advocated in this work, having deployment
environments for each combination of variable settings is infeasible. Thus, the feature
flag strategy is presumed. However, there are scheduling tools that optimize the efhciency
of experimentation in different deployment environments by Schermann et al. [262] and
Kharitonov et al. [165].

143

2.4 Model-based experimentation and variability management

Experimentation introduces additional variability in software by design. Cdmara and Kobsa
(48] suggested modeling the variables through a feature model from software product lines
research [159]. Feature models allow for the specification of hierarchies and other relations
between feature flags and have been used to capture variability in many software prod-
ucts [55]. With feature models one can perform formal verification on the internal consis-
tency of the model and perform standard transformations. This approach does not seem to
have gained traction for continuous experimentation. Our approach of adding constraints
and hierarchies (see Section 5) is not new per se, but the use of this in combination with
optimization is novel to the best of our knowledge.

In practice, less formal methods are used for configuring many overlapping experiments
at Google [286] and Facebook [15]. Facebook has open sourced parts of their infrastruc-
ture for this in the form of a tool [15] (PlanOut) that can be used to specify experiment
designs. The tool also contains a namespace system for configuring overlapping experi-
ments. In both companies’ approaches, they have mutual exclusivity constraints where
each experiment claims resources, for example, a specific button on a page. A scheduler
or other mechanism ensures that experiments can run in parallel without interfering with
each others’ resources.

2.5 Automated experimentation with optimization algorithms

There is an abundance of tools that optimize parameters in software engineering and re-
lated fields, e.g., tweaking machine learning hyper-parameters [29, 275], finding optimal
configurations for performance and efficiency [146, 142, 214], tweaking search-based soft-
ware engineering parameters [8], and the topic of this work with software parameters for
business metrics. In the various optimization applications, the assumptions are different
on how the optimization problem is structured and what the technical priorities are. For
example, when optimizing machine learning hyper-parameters for deep learning it is impor-
tant to minimize the number of costly experiments. Bayesian optimization with Gaussian
processes [275] is often used there, but the approach does not scale beyond a few thousand
data points [241], because the computational cost depends on the number of data points
for Gaussian processes.

One notable related research field is autonomic computing [163] that includes self-opti-
mization of performance and eficiency related parameters, such as the loading factor of a
hash table or what implementation to use for an abstract data structure. Such performance
factors have relatively high signal-to-noise ratio in comparison to metrics involving users
and the factors also exhibit strong interactions in terms of memory and CPU trade-offs.
Many of these optimization tools (e.g. in [142, 214]) assume that the optimization is done

144

before deployment during compilation in a controlled environment. Some recent work
has moved the optimization to run time and studied the required software architecture
and infrastructure for cyber-physical systems [151, 121] and implications [196, 121] of this
change.

We have also found several optimization approaches similar to our work, viz., they target
large search spaces, with metrics based on many users, and are applied at run time in a
dynamic production environment. The most similar work to ours is by Hill et al. [138]
at Amazon where the problem formulation of multi-variate multi-armed bandits (see next
section) is first formulated and addressed with a solution. There is also related work on
search-based methods [148, 208, 285] and hybrids between search-based and bandit opti-
mization [209, 250].

Search-based tools was first suggested by Tamburrelli and Margara [285] for automated A/B
testing using genetic algorithms, and then independently by litsuka and Matsuo [148] for
website optimization using local search. Ros et al. [250] suggested improving the genetic
algorithms with bandit optimization and a steady state population replacement strategy. At
Sentient they have implemented some of these ideas [250, 285] in a commercial tool with
both genetic algorithms [208] and genetic algorithms with bandit optimization [209].

A genetic algorithm maintain a population of configurations and evaluate them in batches.
The configurations are ranked by a selection procedure, and those that perform well are
recombined with each other with some probability of additional mutation. This is imple-
mented in our toolkit. However, they were not investigated further because we are not
aware of an elegant way of supporting personalization with genetic algorithms. Maintain-
ing a separate population for each combination of context variables is not feasible, because
each separate population would have too few users. What we implemented in the toolkit
was that when a user arrives with a given context, try to match it with a configuration in
the algorithm’s population, if there is no match then generate a new configuration with the
selection procedure that is coerced to match the context and add it the population. This
procedure scales better to more context variables due to concentrating effort on popular
contexts. Though, it does not scale sufhciently to support the cases in Section 6.

3 'Theory on Bandit Optimization of Software

Bandit optimization is a class of flexible optimization methods, see Figure 1 for a sum-
mary. Univariate bandit optimization is formalized in the multi-armed bandit problem
(MAB) [47]. The name come from the colloquial term one-armed bandit which means
slot machine. In MAB, a gambler is faced with a number of slot machines with unknown

145

Bandit optimization
model
Optimizer 0: Machine
Policy Learning
* | configuration update
(Xt,Ct.yt)
: X¢
context 8 Software reward
ct System _yt
User at t

Figure 1: Bandit optimization setting summary. A user at time t of the system provides context ¢; and receives personalized
configuration x¢. The user provides the reward y; by using the software system. An optimizer policy selects configu-
rations which maximizes rewards based on a machine learning algorithm model 8;. The model can predict rewards
based on configurations and contexts and is continuously updated.

reward distributions. The gambler should maximize the rewards by iteratively pulling the
arm of one machine. Applying MAB to A/B/n testing is sufficiently common to have its
own name: bandit testing (such as in Google Optimize). The choice of arm is sometimes
called an action but is referred to as configuration in this work.

An optimizer policy solves the MAB problem. Some of the policies are very simple, such
as the popular e-greedy. It selects a random configuration with probability €, otherwise
the configuration with the highest mean reward. A policy that performs well must explore
the optimization search space sufficiently to find the best configuration. Policies must also
exploit the best configurations that it has found to get high rewards. This is known as
the exploration-exploitation trade-off dilemma [284] in reinforcement learning. In e-greedy
this trade off is expressed explicitly in the € parameter. A high € results in very random
exploration, and a low € results in almost pure exploitation of the best configuration, so it
has a high risk of getting stuck with a local optima.

In the multi-variate case, the MAB setting is extended by a machine learning algorithm
that attributes each reward to the variables in the multi-variate arm. This is known as multi-
variate MAB [138] or more generalized as combinatorial MAB [58]. Contextual MAB is
another more well known extension used for, e.g., recommender systems [186] which does
personalization in the univariate case. In this work, we refer to all of these settings as bandit
optimization, but the focus is on multi-variate MAB.

Herein lies the crucial difference between the multi-variate MAB setting and other forms
of black-box optimization (where the objective function is unknown). Namely, that the
algorithm learns a representation in the form of an online machine learning model and
optimizes it with respect to its inputs. Some black-box optimization algorithms [8, 142,
214] find and keep track of the best performing data points and iteratively replaces them

146

with better performing ones. That is not the case in our work because of the assumption
that the signal-to-noise ratio is so low that estimating the performance of a specific data
point is inefficient. Other black-box optimization algorithms [146, 241, 275] have offline
machine learning models that need to keep track of all data points and retrain the machine
learning model at intervals, that does not scale well to very large data sets.

To summarize so far, a more precise definition of bandit optimization follows. A user arrives
in the system at time step . A software configuration x, # € X, x,; € R, i =1,...,1, is
chosen for the user with context variables ¢; € (, ¢;; € R, j = 1,...,m, where 7 is the
number of configuration variables, 7 the number of context variables, <X is the search
space of decision variables, and (" is the context space. When the user is no longer using
the software system, a reward y, € R in some metric is obtained from the user. A policy is
tasked with selecting x, such that the rewards are maximized over an infinite time horizon.

3.1 Practical implications on software systems
When applying bandit optimization in practice there are multiple assumptions:

¢ The number of users are at least measured in the thousands. Depending on how
many variables are included in the search space and the signal-to-noise, the required
number of users will be more or less.

* The value incurred by a user must be quantified to a single value at a discrete time.
This will be a simplification because users continuously use software.

* The optimization is done online at run time with continuous updates. A user’s con-
figuration must be generated quickly, so that users do not suffer noticeable delays.
For software with an installation procedure (desktop or mobile) the optimization can
be done during this installation.

* The rewards are assumed to be identically and independently distributed for all users.
The algorithms are not guaranteed to perform well when the reward distributions
change over time, though they still might perform well.

Additionally, in comparison to A/B testing, bandit optimization requires storing the con-
figuration per user. Standard procedures for controlled experimentation assign experiment
groups with a pseudo-random allocation with a random seed based on something that is
static and unique for the user, e.g., a user’s id. As such, a user will have the same experi-
ment group even if their session expires. With bandit optimization, they might be assigned
to another group unless the group assignment is stored persistently, until the user’s ses-
sion is completed. Persistent storage of user group assignment has implications on data

privacy [133].

147

©
vl
]

°
©
E Thompson sampling
& e-greedy (e = 0.2)
§ Random (A/B test)
O J
0 Time step 10000

Figure 2: Example simulation of different bandit policies with binary rewards. There are five available arms, four with mean
reward 0.1 and one with reward 0.15. The simulation is repeated 100 times and the plot shows the average result.
The figure illustrates that Thompson sampling eventually converges to the optimal reward while e-greedy converges
t0 0.7e+ 0.15(1 — €) = 0.14.

Mattos et al. [200] conducted an empirical investigation into bandit testing for software.
They found that while the technique performs better at finding good configurations, it can
lead to statistical issues such as inflated false positive error rates. They advice to apply bandit
testing only when the consequences of false positives are low, as it is with optimization.

3.2 Thompson sampling

The optimizer policy of choice in our work is Thompson sampling since it often performs
better than e-greedy in general [54, 256]. The idea is to match the probability of selecting
an arm with the probability of it being optimal. The procedure is as follows for standard
MAB. A Bayesian posterior distribution is placed on the expected reward of each arm. In
cach step #, a sample 6, is drawn from each posterior distribution P(6;] y4), where £ is
an arm index, 6, is the prior reward parameter of the respective arm, and y; its previous
rewards. The arm 4, at step ¢ with the highest sample is selected, that is 2, = arg max;0,,.
The posterior distribution is updated continuously.

For example, if the rewards are whether users click on something or not. Then, a suit-
able posterior distribution family for binary rewards is the Beta-distribution, parameterized
by the number of clicks and non-clicks. Figure 2 shows a simulation of this, comparing
Thompson sampling, e-greedy with € = 0.2, and random (as in standard A/B/n testing).
Thompson sampling and e-greedy initially behave like the random policy, but improve
quickly. Thompson sampling finds the optimal arm, while e-greedy is stuck with a random
arm with probability o.2.

148

1. Problem identification 2. Solution design 3. Validation

. |Theory Feature cases
Literature study [249]——{ - Assumptions :
. |- Optimization formulation| : _{»| Proof-of-concept
T / - Model specification
: TooIkic;c design Pre———— i
|- DSL design : imulation
Case study [247] |- Optimization algorithms / - Surrogate user model

- Constraint solvers - Performance evaluation

Figure 3: Research methods overview divided in three stages. Based on previous studies (gray boxes), the theory was identified
and the design of the toolkit was designed to support the validation company’s product. The toolkit was evaluated
with two feature cases, that were first implemented in the toolkit and then subject to simulations.

For multi-varate MAB the posterior distribution is a probabilistic machine learning method
denoted 4 parameterized by the machine learning model 6. A single joint sample , is
drawn from the multi-variate distribution P(6| y) each step. The configuration x; is then
chosen as such: x; = arg max___ cXEqé [y:|x; = x, ¢;]. Depending on the machine learning
method g this optimization problem is set up differently and it will be significantly harder
to solve than in the univariate case. In MAB, the computational complexity at each step is
linear in the number of arms, the arg max calculation can be a for-loop over each sample.
While for multi-variate MAB, the computational complexity at each step is NP-hard. Sec-
tion 5.2 contains the specifics for how we did the setup of the optimization for different

machine learning methods in the toolkit.

4 Research Context and Methods

Our research was an on-site collaboration with the e-commerce company Apptus spanning
20 weeks, and was part of a long term research project. The research was conducted with a
design science methodology, following the guidelines by Wieringa [306] and Runeson et
al. [255]. As such, the toolkit was designed as a solution that addresses an industrially rele-
vant problem, and the validation of the solution is done with sufficient rigor (see Figure 3
for an overview). This section ends with discussing the limitations of the solution design
and threats to validity of the validation.

4.1 Validation company and e-commerce

The validation company Apptus is a small Swedish company which develops a platform
for e-commerce. Their product platform provides web shops with various data-driven algo-
rithms. It includes a recommender system, product search engine, ads display algorithms,
etc. Apptus deploy their software to other companies” web shops, so they have a business-

149

to-business relationship (B2B) with their customers. Apptus has no direct relationship with
the end-users of the software (consumers), but have access to consumer data through their
customers’ web shops. Operating multiple web shops incur a greater need for personaliza-
tion (see Section 2.2) to optimize their software for different circumstances.

Experimentation is well established in e-commerce for a number of reasons; we believe this
is the case for four reasons. First, the consumers often have a clear goal in mind to purchase
a product. Second, this goal is aligned with the goals of the web shop companies. Third,
there is an industry standard for quantifying this joint goal through the sales funnel of:
clicks, add-to-carts, and purchases. Finally, consumers tolerate some degree of change in
the interface, especially in what ads and products are displayed.

A prior case study by Ros and Bjarnason [247] outlines how Apptus uses continuous ex-
perimentation to improve their product in several scenarios: validating that a change has
the intended outcome, manual optimization, and algorithmic optimization. Thus, Apptus
is experienced with using optimization in various forms to optimize the web shops. They
also use bandit optimization in their product recommendation system [40] and as part of
a customer facing experimentation platform (targeted at marketers and software engineers)
that optimizes which algorithm should be active in which parts of the web shop.

4.2 Research stages

The design and validation of the COMBO toolkit was done in three stages (see Figure 3):
(1) identifying a problem with industrial relevance through a literature study [249] and a case
study with interviews [247], (2) designing a solution to solve the problem, and (3) validating
that the solution works.

4.2.1 Problem identification

Prior to this study, two studies were performed for problem identification. First, @ system-
atic mapping study [249] on continuous experimentation identified suitable algorithms to
the problem domain and the assumptions in the optimization formulation as stated in Sec-
tion 3. Second, an interview study with five participants from the validation company was
conducted on scenarios that experiments are used in [247], and automated optimization
was one such scenario. One prominent challenge with optimization, was that the algo-
rithms are specific to a certain circumstance (e.g., product recommendations) and are hard
to apply outside these circumstances. This challenge was also present in related work in
their narrow application to visual design and layout.

150

4.2.2 Solution design

The design of the toolkit was done in iterations with subsequent validation, to ensure that
the toolkit had the necessary functionality to support the validation. The decisions taken
in the design include what optimization algorithms to implement, what constraints to sup-
port, and how the search space should be specified. The design choices were anchored in
two workshops with employees at the validation company. The approach was to be in-
clusive in terms of optimization algorithms by using available optimization libraries. The
constraints supported were simply added as needed. The search space and constraints spec-
ification was a choice between meta-programming with annotations as featured in some
related work [142, 285] and declarative code with a domain-specific language, where the
latter was chosen because it is more flexible for users of the toolkit.

4.2.3 Validation

The toolkit was validated on-site at the validation company by two feature cases. Each fea-
ture case include a validation proof-of-concept demonstration and evaluation simulations.
Technical details on the simulation set up is given in Section 6 alongside the presentation
of the feature cases. The first feature case, an auto complete widget, was identified in a
brainstorming workshop with three employees from the validation company. It was cho-
sen because it has both a graphical interface and is a data-driven component, while still
being a well isolated part of the site. The second feature case, a top-4 categories listing,
was selected in a discussion with an employee to push the boundaries of what is technically
feasible with the toolkit and because it was an existing feature that had real historic user
data.

The proof-of-concept validation was conducted to demonstrate the toolkit’s soundness. It
included a step to ensure that all necessary variability of the feature case was captured and
then demonstrating that it could be implemented in the toolkit. For the auto complete
feature we found a listing of top so fashion sites and filtered it down to 37 fashion web
shops that had an auto complete widget. We analyzed how the widgets varied and then
implemented variables and constraints to sufficiently capture the variability. In addition,
there was a brainstorming workshop with a user experience designer to validate the choices.
For top-k we chose a client web shop that had a sufficient number of users and a complex
category tree and re-implemented the functionality of the original top-# categories.

Simulations of the feature cases were performed to show that the optimization algorithms
can navigate the search space in ideal circumstances, within a reasonable data and execu-
tion time budget. The use of simulation avoids the complexities of a deployment and the
evaluation can be repeated and reproduced as many times as needed. Also, it enables bench-
marking the different algorithms. In the simulation, the optimization algorithm iteratively

151

chooses a configuration from the search space and a reward from the user is simulated to
update the algorithm. However, the historic user data could not be used directly to sim-
ulate users, because all combinations of the variables in the model are not present in the
data. Instead we used the historic data to train a supervised machine learning model that
can predict the expected reward of each configuration. This prediction can be used to sim-
ulate user rewards from any configuration. The machine learning model is an instance of
a surrogate model [117], which is a general engineering technique used as a replacement for
something that cannot be directly measured, which are users in this case.

4.3 Data collection

Both qualitative research notes and quantitative data sets for evaluation were collected. De-
cisions taken during solution design and implementation of the feature cases were recorded
as notes, as recommended by Singer et al. [273]. The notes were consulted during the write
up. The notes were of two types. First, in the form of 20 weekly diaries when on-site at
the validation company. They contained notes on decisions taken and considered during
solution design, and implementation of the feature cases. Second, notes were taken after
the three workshops outlined above, (1) when identifying the first feature case, (2) when
presenting the toolkit design choices, and (3) when brainstorming the variability of the first
feature case.

The data sets used to train the surrogate user model were collected at the validation com-
pany. The second feature case (the top-# categories) had historic data that was used. For
the first feature case (the auto complete widget) we collected data through a questionnaire
at the validation company. There, we collected screenshots from the 37 fashion web sites
with an auto complete widget. Then, 16 employees were asked to rate 20 randomly chosen
screenshots on a 10 point Likert scale to rate the user experience of the auto auto complete
widget. Many of them mentioned that it was hard and somewhat arbitrary. However,
the data set was only used to get a somewhat realistic benchmark with actual interactions
between variables, in comparison to a completely synthetic benchmark with randomly gen-
erated data.

4.4 Limitations

There are technical and statistical limitations to what is possible with the toolkit. The
number of variables that can be solved for within a given millisecond budget is limited by
the number of constraints, how sparse the configuration is (i.e. how many variables are, on
average, zero valued), and the complexity of the underlying machine learning model. The

152

ability to make inference from the learned model will also depend on the machine learning
model complexity, for example, inference from neural networks is notoriously difficult.
This limitation is a fundamental trade-off between algorithmic performance and inference

ability.

There are also limitations on the impact that can be obtained from applying the optimiza-
tion. In e-commerce, much of the interface can be measured directly in terms of its impact
on revenue, thus the ability to have an effect is promising. We believe the toolkit can
be of use also outside of e-commerce, although there must be a way to quantify the user
experience or business value of a given feature.

Finally, we are not claiming that all experiments in software engineering should be replaced
by optimization. For instance, when adding optimization capabilities to a software fea-
ture, it would be prudent to validate that the optimization actually works with an ordinary
controlled experiment.

4.5 'Threats to validity

Here threats to validity that threaten the validation are identified along with the steps taken
to mitigate them.

The external validity of the feature cases are threatened by that the evaluation is performed
with only one company. This is mitigated by that the validation company has multiple
clients that operate web shops. Thus, the feature case implementations are relevant to
multiple company contexts, though still within the e-commerce domain.

The internal validity of the validation is dependent on the quality of the data sets and the
resulting surrogate user models. If the surrogate user models are too easily optimized by
an algorithm, then the simulations will be unrealistic. For example, if there are regions
in the optimization search space with low data support the surrogate user model might
respond with a high reward there. To mitigate this threat we evaluated the performance
with a baseline random algorithm and an oracle algorithm with access to the surrogate user
model. In this way, an upper and lower bound of reasonable performance is clearly visible.

Also, both the external and internal validity of the evaluation would be increased if the
toolkit was evaluated in a production environment in a controlled experiment. A deploy-
ment to a production environment would uncover potential problems that cannot be seen
through simulations. Thus, an actual deployment to real users is a priority in future work.
However, the approach with surrogate user models for simulations is sufficient to demon-
strate the toolkit’s technical capabilities. The use of the surrogate user models also increases
replicability, since at least the simulations are fully repeatable (see Section A).

153

5 Tooling Support for Bandit Optimization

The open source toolkit Constrained Online Multi-variate Bandit Optimization (COMBO)!
is a collection of bandit optimization algorithms, constraint solvers, and utilities. This sec-
tion will first present concepts in the toolkit and then specifics of the included algorithms.

COMBO is written in Kotlin and can be used from any JVM language or Node.js. Kotlin

is primarily a JDK language but can transcompile to JavaScript and native with LLVM.

To use the toolkit one must first specify a search space of variables and constraints in an
embedded domain-specific language (DSL) and map them to software configuration pa-
rameters. Variables can be of different types: boolean, nominal, finite-domain integers, etc.
Though COMBO is optimized for categorical data rather than numeric data. For example,
the internal data representation is by default backed by sparse bit fields. Constraints can be
of types: first-order logic, linear inequalities, etc. For example, if one boolean variable &
requires another variable # the constraint 4 = z can be added.

As mentioned in Section 3, some use cases of the toolkit require context variables for per-
sonalization. There is no explicit difference between decision variables and context variables
in COMBO-—any variable can be set to a fixed value when generating a configuration and
have the rest of the variables chosen by the algorithm.

Variables and constraints are always specified within a model. There can be any number
of nested models in a tree hierarchy. The hierarchy is inspired from the formal variability
management language of feature models [48]. The hierarchy fulfills two additional purposes.
First, having a mechanism for the case when a variable has sub-settings but the variable
itself is disabled; then the sub-settings should not be updated. It is counted as a missing
value by the bandit optimization algorithm. A variable can also be declared as optional in
which case it has an internal indicator variable that specifies whether it is missing. Second,
the hierarchy supports lexical scope to enable composability. That is, models can be built
separately in isolation and then joined together in a joint superordinate model without
namespace collisions, because they have different variable scopes.

Each model has a proposition that governs if the variables below it are toggled. The con-
straint & = a can also be expressed implicitly through the tree hierarchy if # is the root
variable and 4 is a child variable, as such:

model("a") { bool("b") }

The example shows a basic model of a search space with a variable 4 and the root variable
a. It has the implicit constraints & = 2 and a with two solutions: (2,6) and (2,—6). Note
that the root variable is always a boolean which is also added as a unit constraint.

"The source code is available at https: //github.com/rasros/combo.

154

https://github.com/rasros/combo

model ("Auto complete") {

val width = nominal("Width", "s", "M", "L")
optionalNominal("Search suggestions", 1, 3, 5, 10)
val cards = optionalNominal("Product cards", 1, 3, 5)

model (cards) {

bool("Two-column")

val hz = bool("Horizontal")

impose { width["S"] equivalent !cards }

impose { width["L"] equivalent (hz and !cards[11) }
3

impose { "Search suggestions" or "Product cards" }

Figure 4: Partial model specification for the auto complete search widget (see Section 6.1). The example illustrates: the hierarchy
with a child model, different types of variables: bool or nominal, optional variables, and imposed logic constraints.

Figure 4 shows a more advanced example, there are five variables and three of them are
defined in the root model. The variable Product cards is the root of a sub model and is the
parent to the variables Two-column and Horizontal, so there are implicit constraints Zwo-
column = Product cards and Horizontal = Product cards. Conceptually, in the application
that uses COMBO, the variables 7wo-column and Horizontal modify the behavior of the
Product cards so the first two variables can only be true when Product cards are enabled.

Further details of the DSL illustrated by the example in Figure 4 are summarized below:
* Non-root models do not need to declare new variables, they can use any proposition
(constraint or variable) as its toggle.

* Explicit constraints are added using an impose block. They can be first-order logic,
linear inequalities, cardinality constraints, and reified constraints.

* In constraints, variables are referred to by their name as a string within their lexical
scope or through an ordinary object reference.

* 'The indicator variable of optional variables and the specific values of a variable can
be used in constraints, as is seen in the usages of the variable Product cards.

5.1 Constraint solvers

The model specifies a constraint satisfaction problem which is solved with, e.g., finite-
domain combinatorial constraint programming solvers [251] or boolean satisfiability (SAT)
solvers [25], depending on what type of constraints and variables are used. The primary use
of the constraint solvers is to perform the arg max calculation of multi-variate Thompson
sampling, as part of the Optimizer Policy box in Figure 1.

155

We see three more uses for constraint solvers for experimentation that are enabled by the
toolkit. First, a constraint solver can be used to formally verify the model, which is the
main point of Cdmara and Kobsa [48]. For example, by verifying that each variable can be
both enabled and disabled. Second, randomly ordered permutations of configurations can
be used to sample the search space for integration testing purposes. Third, in a large scale
MVT with a fractional factorial design (see Section 2.1) and constraints between variables,
being able to generate random solutions is required. The problem of generating random
solutions uniformly is known as a witness [51].

The toolkit includes the SAT solver Sat4j [23] and constraint programming solver Jacop
[180]. It also features two search-based optimization algorithms: genetic algorithms and lo-
cal search with tabu search, annealing random walk, and unit constraint propagation [157].
The extensions to local search are crucial because there are mutual exclusivity constraints
created through nominal variables that would be otherwise hard to optimize with.

When used in combination with the bandit optimization algorithms listed below the solvers
should optimize some function rather than just deciding satisfiability. The specifics of how
this is done depends on the bandit algorithm. In general, both the black-box search-based
methods and the constraint programming solvers can be applied to any function, while the

SAT solvers can be applied to optimize linear functions with integer weights if they support
MAX-SAT.

5.2 Bandit optimization algorithms

The sections below give some intuition behind how the multi-variate bandit optimization
algorithms included in the toolkit function. They include decision tree bandit [62, 97],
random forest bandit [110], generalized linear model bandit [54, 138, 186], and neural net-
work bandit [241]. All of them have fully custom implementations in COMBO, except
the neural network bandit which is partially implemented using the Deeplearning4;j frame-
work.

5.2.1 Decision tree and random forest bandit.

Decision trees recursively partition the search space into homogeneous regions. It has been
formulated as a contextual MAB algorithm with Thompson sampling [97] and used for A/B
testing in practice [62]. The algorithm has a tree for each arm that partition the contextual
variables. The trees are updated iteratively using the VFDT [84] procedure where each tree
initializes with a root node and adds splits greedily. When selecting an arm the statistics of
the leaf node corresponding to the user context is used by an optimizer policy.

156

Figure 5: Example of random forest bandit with three trees. The square leaf nodes show the bootstrapped statistics for binary
success/failure. Statistics for potential splits are also kept at each leaf node but not shown here.

When adapting this to multi-variate bandit optimization we use only one tree that splits
both decision variables and context variables. Due to the partitioning of the search space
the posterior distributions used for Thompson sampling can be defined separately.

The policy of selecting a software configuration from a given tree with Thompson sampling
can proceed as follows in three steps. First, sample a value from the posterior distribution of
all leaf nodes and select the leaf node with the maximum sampled value. Second, calculate
the configuration from the leaf node by following the leaf node to the root node and set all
parameters according to the splits taken in the path. Third, any z-value unset in the selected
leaf node can be chosen at random. For example, consider the middle tree in Figure 5 with
root split on x3, and then further split on x; for x3 = 1, with x € {0,1}3. If the leaf node
where x3 = 1 and either x; = 0 or x; = 1 is selected, then x, can be randomly selected.
For the leaf node where x3 = 0, both x] and x; is randomly selected while satisfying the
constraints.

Random forest is an ensemble learning version of multiple decision trees that often perform
better than an individual tree. Each tree sees a random subset of variables and data points.
Random forest also has a contextual MAB formulation [110], although the derivation of
this work to multi-variate MAB is unclear. Instead, we did a monte carlo tree search [42]
over time by augmenting each decision tree in the ensemble with statistics at each split node
that aggregates the data of all children below it.

When selecting a configuration from the random forest the following procedure is applied
iteratively. Aggregate all split nodes at the top level of each decision tree by their decision
variable. Sample a value from each decision’s pooled statistics and select the best split. Then
update the top level node of each tree by following along the split decision. Continue until
all trees are exhausted.

Consider the example random forest in Figure 5. The posterior distributions for the top
level decisions are: x1 = {0,1} with Beta(8,12) versus Beta(4,14) and x5 ={0,1} with Beta(3.5,14)
versus Beta(8,12.5). Note here that the statistics for the middle tree’s x; node is not counted
in the x; decision since that node is for x; conditioned on x3 = 1, i.e., P(01| 31, x3 = 1).
Then, four samples are drawn from the distributions and the decision corresponding to the

157

highest sample is selected. Suppose x3 = 1 is selected, then the left tree is unchanged, the
middle tree will have a new top node x; and the right tree is exhausted. The next decision
is only on x; with distributions Beta(3.5,10) versus Beta(7,9.5), after that decision all trees
are exhausted.

5.2.2 Generalized linear model and neural network bandit.

Bandit optimization with linear models for contextual MAB have seen lots of use for recom-
mender systems [54, 186] and have been adapted to multi-variate bandit optimization at
Amazon [138] with Thompson sampling. Any type of regression that fits in the generalized
linear model (GLM) framework can be used, such as logistic regression for binary rewards
or linear regression for normal distributed rewards.

Each variable in the search space and context space has an estimated weight 6. The predicted
value is a linear combination of the weights 6 and the concatenation of variables x; and
context ¢;. For measuring the uncertainty of a prediction we also need a continuously
updated error variance-covariance matrix X of the weights. For ordinary linear regression
models, ¥ is 02 (XTX)™!, where o is the standard error and X is a matrix where each row
is a user’s configuration. As more data points are added the values in the covariance matrix
will shrink. For generalized linear models, the Laplace approximation [54, 256] yields a
similar calculation.

The linear model is updated continuously with second-order stochastic gradient descent
using the covariance matrix updates as such?:

E;l = E;l_l + Vzgt(é,_l),

ét = ét—l - Ztvgt(ét—l)7

where Vg is the gradient of the prediction error of a specific input vector (representing a
software configuration) at time step

With this setup Thompson sampling can be used as a policy as follows. Generate a sampled
weight vector 0, from the multi-variate normal distribution 7((0;, ,), where , are the
model weights and 3, is the error variance covariance matrix of the weights. Subsequently,
the action x, chosen at step ¢ is the one which maximizes the expected rewards from the
sampled weights using the linear prediction, i.e., x, = arg max, ¢ . 07(x c,), subject to the
constraints.

*Russo et al. [256] present a tutorial on how to make the calculations online efficiently with quadratic
complexity to the number of variables. A simplified diagonalized covariance is often used instead for its linear
complexity and ability to exploit sparseness in the decision variables [54, 138, 186].

158

This objective function can be solved efficiently with many approaches. Including search-
based methods which Hill et al. [138] used, constraint-programming, or either of MAX-
SAT and mixed integer linear programming solvers if the constraints are limited to first-
order logic and linear inequalities respectively.

Neural networks has been applied to bandit optimization as well. Riquelme et al. [241] did
a simulation evaluation of various deep learning and linear bandits for contextual MAB.
The linear model bandit mentioned previously and a version called neural linear were the
winners of most experiments. In neural linear, a neural network is fed into a linear bandit
where the uncertainty is estimated in the linear model and the network is used for improved
representation of the structure of the search space.

Having a neural network be continuously updated can be done in many different ways. In
COMBO, the linear model in neural linear is updated continuously on every step but the
network is updated in batches. The batch update is kept for some configurable time and
used to train the neural network in multiple epochs, after which it is discarded.

The objective function is significantly harder for the neural networks than for GLM. Con-
straint-programming is possible but it will be very slow due to poor constraint propagation
through the network. The only appealing option in the toolkit is the search-based methods.

6 Validation

The COMBO toolkit was validated by implementing two feature cases and then evaluated
by simulating their usage as realistically as possible using data from the validation company.
One of the cases modifies an existing feature to make it data-driven and the other improves
and generalizes an existing algorithm. As detailed in the Section 4.2.3, the procedure was
done in four steps as follows. First, the variability of the feature case was analyzed. Second,
the variability was implemented in the toolkit as a proof-of-concept validation. Third, a
data set was collected with configurations and reward measurement pairs and a surrogate
user model was trained using the data set. Finally, the surrogate user model was used to re-
peatedly simulate users in a controlled environment. The simulation results are summarized
jointly in Section 6.3 and replication instructions are available in Section A.

6.1 Feature Case 1: Auto complete widget for product search

The validation company has recently expanded to provide graphical interfaces to their algo-
rithms, targeted at fashion web shops. One of the algorithms with a new graphical interface
that they provide is the auto complete search that pops down when a user starts typing a
search query. The case was chosen in a workshop session for two reasons. First, there is

159

shi| Q shil Qx shil
Products Suggestions SUGGESTIONS Suggestions
shirt SHIRT shirt 195
shirt in Men T-SHIRT t-shirt 140
shirt in Ladies SHIFT DRESS shift dress 3
t-shirt shirt dress 15
@ sweatshirt nkids| |CATEGORIES hirts & blouses 18
sweatshirt in Men MEN > SHIRTS
shirt dress LADIES > SHIRTS Categories
ﬁ shift dress MEN > SHIRTS > CA ... Men > Shirts 30
cushions Ladies > Shirts 59
shirts & blouses BRANDS Men > Shirts > Casual 7
Fashion24
Categories Joe’s Shirts
Men > Shirts Shirt Corp. @
@ Lgdies > Shirts . Fas_hipnistas United Tt Sweatshirt Tshrt
Kids > Sweatshirts Shimis $14.99 $19.99 $9.99 51490

Figure 6: Visualization of different auto complete widgets. To the left are two randomly generated designs and to the right is one
with a high score. The scores of the surrogate user model are in increasing order from left to right, with scores: —0.02,
0.01, and 0.31, where higher scores indicate better perceived user experience. All were generated with constrained
equal height for illustration purposes.

no industry consensus on how an auto complete widget is supposed to look. There is not
even an agreement on what type of items the widget should show: suggested search terms,
brands, product categories, or products. It also might be the case that different web shops
require different configurations depending on available product data and how big and di-
verse the product catalogue is. Second, it is an isolated component with low risk that does
not affect the rest of the site appearance.

6.1.1 Model variability

There were three inputs to the decisions taken for modeling the auto complete feature.
First, a brainstorm session with a user experience designer was conducted. During the
session, several existing auto complete widgets were investigated. The optimization target
was decided to be usability, such as whether or not the suggestions saw use or not. It
was decided to include only user experience variables and exclude visual design parameters
from the model. This was because the validation company preferred if the visual design was
consistent with the web shops’ general style. Examples of user experience variables are: the
types of data to use, whether to have two columns, whether prices and/or sales indicator
should be shown with images, etc. Example design parameters are: colors of highlight and
borders, font selection and size, etc.

160

Second, we used guidelines produced from a company specialized in user experience (UX)
research for e-commerce: Baymard Institute. They have conducted user tracking sessions
and synthesized advice for auto complete and more. The guidelines are not free and the
specifics cannot be disclosed, other than that as a requirement from the validation company
the guidelines should be adhered to in the designs, either as a decision variable in the
optimization or as a constraint. It included things like the maximum number of items to
display, how to keep the different data types separate, and some common specific pitfalls.

Third, screenshots from 37 fashion web sites were analyzed to serve as test cases such that
the model captures all the salient variability on the sites. Only variables with five or more
occurrences were included in the model.

6.1.2 Model implementation

The resulting model of the auto complete in the COMBO DSL can be seen in a much sim-
plified form in Figure 4. Some visualizations renditions of the model are given in Figure 6.
The full model has 32 variables (or 53 binary variables), with 28 explicit constraints and 43
implicit constraints from hierarchy or variable specification. Some relevant parameters not
visible in Figure 6 are: underlined highlight, strict search matching, images with fashion
models, etc. Among others, there are constraints to calculate the total discretized width
and height of the widget (which can be used to generate widgets of specific dimensions),
constraints for exclusive variables (e.g., in Figure 6 the inlined categories that say iz Men to
the left and the counts to the right occupy the same space), and that there must be at least
either search term suggestions, product cards, or category suggestions.

After the data was collected it took 10 hours to construct the model by the first author.
Having test cases available made the process of eliminating invalid variants much easier,
such that some valid combinations were not accidentally removed. Also the ability to do
formal validation was useful, by querying the system for whether a specific combination
was valid or not.

6.1.3 Surrogate user model implementation

Since the functionality of the auto complete widget was new at the time, there was no data
to base the surrogate user model on for the simulations. Instead a questionnaire on the 37
collected sites were constructed; for each web shop a search on the ambiguous search term
shi’ was conducted. Then participants were asked to score the usability of 20 randomly
chosen web shops on a 1-10 scale. In total 16 participants completed the questionnaire
which resulted in 320 data points.

161

A data set was then constructed by describing each web site in terms of the model. The score
was z-normalized to mean o and variance 1, as such, the left most widget in Figure 6 is below
average while the middle is slightly above. The data set was used to train the surrogate user
model. Linear regression was chosen since there was not enough data points for anything
more sophisticated. Generating a simulated reward for bandit feedback was then done by
making a prediction with the surrogate user model and adding noise estimated from the
standard error of the fitted model.

Variables were added to handle the following confounding factors: persons scoring the web
site, whether suggested terms and images were relevant to search, whether there were du-
plicated suggestions, what genders the search results were targeted to (male, female, mixed,
and unisex). In addition, some pairwise interaction terms were added. These extra variables
were not part of the search space but they improved the predictive power of the surrogate
user model. The final surrogate user model size was 141 binary variables and 141 constraints
(coincidentally equal).

6.2 Feature Case 2: Top-k categories

Many web shops have organized their product catalogue as a category tree (c.f., Figure 6
under the Categories headings). The validation company provides many algorithms related
to the category tree; one example is displaying a subset of the top-4 most relevant categories.
Where £ is the number of categories to display in a given listing. A naive algorithm would
be to simply display the most clicked categories, this might then not sufficiently cover all
users’ interests. They have more advanced versions in-place already in Hammar et al. [134].
The purpose with this feature case is to show that a generic implementation of the feature
is possible using the toolkit. Another goal was to evaluate the algorithms with a more
challenging optimization problem than the previous feature case. The search space is much
larger and since the data is from real usage the signal-to-noise ratio is lower.

6.2.1 Model variability

Since the top-# feature is a re-implementation of an existing feature we could select a real
web shop and use their category tree. The chosen web shop had sufficient data volumes and
a category tree of medium size. The category tree has 938 nodes, with a maximum depth of
4. The web shop that the data came from operates in three different countries. The country
that a user comes from was added as a nominal variable to the model. In the simulations
the country variable was used for personalization and was generated randomly.

162

model ("Category tree") {
model ("Ladies") {
bool("Top level")
model ("Jeans") {
bool("Top level™)
bool("Skinny")
bool("Loose")
impose { "Jeans" equivalent or(scope.variables) }
3
model ("Shirts") { /* More categories follows */ }
impose { "Ladies" equivalent or(scope.variables) }
3
val k = int("Top-k", min = 1, max = 100)
impose { cardinality(k, LE, leafCategories()) 1}

Figure 7: Partial model specification in COMBO for the top-k categories feature. The function leafCategories has its implemen-
taiton omitted, it should return each variable that does not have any sub variables.

6.2.2 Model implementation

The model corresponds directly to the category tree, see a simplification in Figure 7, the
actual model is programmatically built different for each specific web shop. A constraint is
added to the bottom of each sub model to enforce that one of the sub models’ variables are
active. In addition to the constraints from the hierarchy, there is also a numeric variable
k that control how many categories there can be. A cardinality constraint ensures that the
number of categories are less than or equal to 4. The 4-variable can be set for each user or
chosen by the decision algorithm. The total model size is 1 093 variables with 1101 binary
values and 1245 constraints.

6.2.3 Surrogate user model implementation

The data set for the surrogate user model was collected with 2737 568 configurations and
reward pairs. Each data point was constructed by observing what categories were clicked on
for each consumer and a reward of 1 was received if the consumer converted their session
to a purchase and o otherwise. Only data points with at least one click on a categories
listing were eligible. In this case, the parameter 4 is derived from historic user data in the
training set for the surrogate user model. This means that the data set was collected for a
slightly different scenario than what it is used for. One artifact of this is that the learned

163

surrogate user model is maximized by having # = 100, since that correlates with users that
spend more time on the site and are likely to convert to customers. However, this effect
would not be present in the actual use case. To counteract this, the # parameter is fixed to
a specific value (4 = 100) during simulation.

Since there were lots of data and the point was to make a challenging problem, a neural net-
work was chosen to be the surrogate user model. A standard feed-forward neural network
was trained with PyTorch for 30 minutes with desktop hardware. The network topology
is: first a dropout layer; then two hidden layers with 15 nodes each, ReLU activation, and
batch normalization; and finally a softmax output.

6.3 Simulation evaluation results

All bandit optimization algorithms from Section 5.2 and two baselines were evaluated on
both surrogate user models, see an overview of the results in Table 1. Again, these results
do not provide strong evidence in favor of one algorithm or another, but they show the
feasibility of the approach and highlight important choices in algorithm design. Local
search was used as optimizer by all the algorithms with the same configuration, except
neural linear which was tuned to improve the speed at the expense of performance. The
simulations were done on the JVM with desktop hardware with an 8-core computer.

All simulations in the table and figures were repeated for multiple repetition runs: 1000
runs for auto complete and 200 runs for top-4 categories. In each repetition, each algo-
rithm start from a blank slate with no learned behavior. The algorithm iteratively chooses
a configuration and updates the underlying machine learning model at each time step, for
time horizon T" = 10 000 steps. As such, all numbers in Table 1 are means of means.

Each algorithms have several hyper-parameters which are algorithmic parameters that are
tweaked before the simulation begins. They were specified with a meta-model in COMBO
and optimized with a random forest bandit. The following summary contain the most
important hyper-parameters of the respective algorithms:

Random Baseline for comparison. The configurations are generated uniformly at random
with the only criteria that they should satisty the constraints.

Oracle Baseline for comparison. This uses the local search optimizer to maximize the sur-
rogate user model directly, which the other bandits do not have direct access to. The
global maximum for auto complete is 0.3953 and for top-4 categories it is 0.1031. The
numbers for Oracle in Table 1 show how far from optimal the local search optimizer
is on average. Since the surrogate user model has additional interaction terms the
optimization problem is harder for Oracle than for some algorithms.

164

Table 1: Simulation results of bandit optimization algorithms evaluated on both feature cases: auto complete search (AC) and
top-k categories for k = 5. Mean rewards is the maximization target. Choose and update is how long time the
algorithm takes to choose a configuration and update it, respectively.

Choose (ms) Update (ms) Mean rewards (SD)

Algorithm AC Top-k AC Top-k AC Top-k

Random 0.10 0.81 - - 0.0136 (9e—4) 0.0879 (1e-5)
Oracle 3.91 81.86 - - 0.3658 (9e—4) 0.0970 (9e—b5)
DT 0.16 2.10 0.03 0.03 0.2131 (0.05) 0.0888 (4e—4)
RF 0.99 43.58 0.13 2.61 0.2501 (0.04) 0.0895 (8e—4)
GLMgiag 1.52 25.12 0.01 0.01 0.1635 (0.05) 0.0891 (2e—5)
GLM¢y 1.64 25.35 0.10 8.39 0.2335 (0.04) 0.0891 (2e—5)
NL 8.08 32.68 7.41 12.54 0.0435 (0.06) 0.0881 (6e—2)

DT Decision tree bandit. The hyper-parameters were related to how significant a split

should be (6 and 7-parameter of VEDT [84]).

RF Random forest bandit with 200 decision tree bandits (as in the DT above). The number
of trees in the forest does have an impact on performance but has diminishing payoft
after 100. The hyper-parameters were both the parameters from the decision tree
bandit and parameters for the bootstrapping procedure of standard random forest,
i.e., how many variables and data points each tree should have.

GLM_;,, Generalized linear model bandit with a simplified diagonalized covariance vector.
The hyper-parameters were the prior on the weights, regularization factor, and an
exploration factor.

GLMp;; The same as the above GLM,, but with a full covariance matrix. The hyper-

parameters were the also same.

NL Neural linear bandit with logit output, ReLU activation on the hidden layers, and
weight-decay regularization. The neural network optimizer was RMSProp running
on a CPU. Since neural linear combines the representation power of a neural network
with a GLMg,; bandit, it inherits the hyper-parameters of the GLM bandit. It also
has hyper-parameters in the number of hidden layers and their widths, mini-batch
size of updates to the network, learning rate of the optimizer, number of epochs to
repeat data points, and initialization noise of the weights.

Table 1 summarizes the results of all algorithms for the feature cases, with both mean cal-
culation time and mean rewards. The dimensions are as follows. Mean rewards is the
maximization target and is the average expected reward per repetition. The numbers in
parentheses are standard deviations between repetition runs for mean rewards. Algorithms
with high standard deviation tend to get stuck in local optima for some runs of the simula-

165

03
° RF
g 021 DT
o GLMyy
qcf‘j GLMgiag
S 01} NL
O J
0 Time step 10000

Figure 8: Mean rewards per repetition over time on the auto complete feature for the bandit optimization algorithms. The
maximization target is the area under the curve.

tions. Choose measures how long the bandit algorithm takes to generate a software configu-
ration in milliseconds and #pdate time how long it takes to update the bandit optimization
algorithm. The choose time is critical to keep low in order to not degrade user experience,
the update times are not as critical as long as they are not too excessive since they cannot

be fully parallelized.

The figures 8 and 9 further illustrate the differences in performance of the algorithms. Fig-
ure 8 shows the performance over each time step averaged over the simulation repetitions.
The figure illustrates that the specific choice of time horizon to 7" = 10 000 does have an
impact on performance, if the simulation would continue for 10 or 100 times as long the
ranking of the algorithms might very well have been different, i.e. it might be the case that
the neural linear (NL) bandit eventually improves. Figure 9 show the overall variation in
mean rewards between repetitions with boxplots on the quartiles and outliers outside the
quartile range.

The results show that the random forest (RF) bandit perform well in terms of rewards for
both auto complete and top-k and the neural linear (NL) bandit has poor performance.
Clearly, the NL bandit needs more data to converge. As evident from Figure 9, the per-
formance difference between the algorithms is more pronounced in the top-4 categories
feature. Here it is clear that the random forest bandit is needed for its improved representa-
tional power in comparison to the simpler models. However, as can be seen in Figure 8, the
generalized linear model bandit with full covariance matrix (GLMg,;) converges quicker in
the auto complete feature.

It should be noted that some algorithms are favored over others in the simulation due to
the choices in the surrogate user model. That is, the machine learning model in the top-
k categories’ surrogate user model is the same as the one used by the neural linear (NL)
bandit. Also, we did not add any interaction terms to the linear bandits, which could have

166

o
~
)
[]

0.092 -

©
w
T

0.091
0.090 |- H
0.089

— -
0.088 |- @
0.087 ‘ : : :

o
N
T

Mean reward
o
o —_
T T
T
L
T

-0.1 | | | |
S & Q ® VN\B\\ ¢ Q& & @é@g @’&\\ Nl
> O >
(a) Auto complete feature. (b) Top-k categories feature.

Figure 9: Mean rewards obtained per repetition in the simulations for each bandit optimization algorithm.

been done. We reasoned that there will almost always be unmodeled interaction terms in
real world applications. Since the surrogate user model for auto complete had pairwise
interaction terms only, the linear models would have no interaction terms. In the top-/
categories feature the performance would probably improve as well with interaction terms.

Initially, before adding hyper-parameter search, the GLM and NL bandits performed much
worse than their final performance. Thus, they derived higher benefit from tuned hyper-
parameters. As such, the applicability for GLM and NL are dependent on having a simula-
tion environment in which to search for hyper-parameters. In addition, NL is very hard to
tune correctly in comparison to the other methods, as evident from the wide performance
spread and the large number of hyper-parameters. The outcome of network architecture is
also hard to predict. Adding more network nodes or layers increases the representational
power of the algorithm, but increases convergence time which also affects performance.

Regarding the time estimates in Table 1, all bandit algorithms are usable within reasonable
time; with a choose time below soms. The clear winner in both choose and update times is
the decision tree (DT) bandit algorithm. The effect of scaling to more variables on choose
and update times can also be seen in the table. The choose time for the RF bandit (see
Section 5.2.1) scales poorly, though it can be controlled by limiting the number of trees
and the number of nodes and variables per tree. The simulations for the neural linear (NL)
bandit are slowest since they are dominated by the non-parallelizable updates.

All the bandit optimization algorithms presented here have trade-offs between performance
and choose and update time efficiency. For example, the maximium number of nodes in
decision tree (DT) bandit, the number of trees in random forest (RF) bandit, the number
of hidden layers in neural linear (NL) bandit, or the number of interaction terms in the

167

generalized linear model (GLM) bandit. We have not fully explored this trade-off, other
than stating the specific choices we made. We suggest that when deciding on an actual
algorithm, developers should start with the threshold on choose time that is acceptable and
then find the best algorithm that stays below the threshold.

In summary, the random forest (RF) bandit is the clear winner in the simulations and
should serve well as a good default choice. It achieves highest performance for both feature
cases and had few outliers with runs of poor performance (c.f., Figure 9).

7 Discussion

We introduced the Constraint Oriented Multi-variate Bandit Optimization (COMBO)
toolkit, used for designing software that improves over time. Using the toolkit, each user
receives its own configuration and the toolkit optimizes the overall user experience or busi-
ness value. It contains machine learning algorithms and constraint solvers, that can be
applied to optimize a search space that is specified in a domain specific language. We used
the toolkit to model the variability of two features in collaboration with an e-commerce
company called Apptus. Thereby we demonstrated that the toolkit can be applied in in-
dustry relevant settings. In this section, the implications of when this is put into practice
is discussed.

7.1 From continuous experimentation to continuous optimization

We define continuous optimization as a practice that extends continuous experimentation
further by having an algorithm optimize software for better product user experience and
business value. The practice entails having a decision algorithm jointly co-optimize the
variables in a production environment with user data. As with continuous experimentation,
the variables in the optimization can be anything, e.g., details in the visual design and layout,
user experience flow, or algorithmic parameters on a web server that impact user experience.

We see two main reasons for that continuous optimization will improve products. First,
very large search spaces can be explored by an algorithm. This means that the optimization
algorithm might find solutions that developers might otherwise overlook. Mikkulainen et
al. [208] mention this as a common occurrence in their commercial tool for visual design.
Second, according to Hill et al. [138], it enables personalization of software to users by
having variables that describe users in the optimization (e.g., device type and location). As
many parameters as needed can be added to the search space in order to finely segment
users so that the algorithm can find different solutions for different users.

168

According to Fitzgerald et al. [113], discontinuous development is more important than
continuous, meaning that product innovation is more important than refinement. We
believe that the introduction of a toolkit like COMBO to a development process is not a
to contradiction to this. Following the reasoning by Mikkulainen et al. [208], continuous
optimization can de-emphasize narrow incrementalism by offloading parts of the decision
making process so that developers can focus on the more important parts. Thus, continuous
optimization offers a complementary approach to software design, by loosely specifying
implementation details and letting the algorithm decide instead.

Based on the procedure used to build the feature cases in Section 6, we propose a process for
how continuous optimization should be conducted in industry with continuous software
development. The validation of the process is preliminary. The four steps of the process are:
(1) investigate and prioritize the variability of the feature by user experience (UX) research
methods, data mining, or prototype experiments, (2) formulate a model of the variables in
the optimization search space and add constraints to prune invalid configurations, (3) tweak
the algorithmic performance in offline simulations, and finally (4) validate the solution in
a controlled experiment with real users. The process can then restart from step 1.

This process is similar to one that is reportedly used for developing recommender systems
at Netflix [5] and Apptus [247]. Simulations are also used at both companies to evaluate
changes to their recommender system in fast feedback cycles. If the effect of a change is
evaluated to be positive in the simulation, then the change is deployed and subjected to a
controlled environment (i.e. an A/B test) in a production environment on real users.

7.2 Considerations for what metric and changes to optimize for

Experimentation and optimization is done with respect to a given metric. Though, quan-
tifying business value in metrics is a well documented challenge for many software compa-
nies [104, 188, 224, 320]. Having many metrics in an experiment is one coping strategy, in
the hope that together they point in the right direction. Hundreds of metrics are reportedly
used for a single experiment at Microsoft [164, 193]. For optimization, multi-objective op-
timization [215, 283] can be applied offline at compile time, where someone can manually
make a trade-off between metrics from a Pareto front. However, for the online bandit op-
timization algorithms, a single metric is required to serve as rewards (though that metric
can be a scalar index).

As mentioned in Section 4.1, there are established metrics in e-commerce that measure
business value. Optimizing for revenue or profit is possible but only few users convert to
paying customers. Updates to the algorithm will also be delayed due to having to wait
until a session expires to determine that they did not convert. In addition, e-commerce
companies will have different business models that can result in needing other metrics.

169

For example, they might want to push a certain product since they are overstocked or
they might want as many consumers as possible to sign up to their loyalty club to have a
recurring source of revenue. All of these volatile factors make optimizing for business value

challenging.

In e-commerce, it is unlikely that a change in the user interface will instill a purchasing
need in consumers. The way that an optimization algorithm can affect business value is
rather by removing hurdles in the user experience that would otherwise make a consumer
turn to a competitor. For example, a web shop can be judged to be untrustworthy due
to the impression it gives from its design, then customers would not want to buy from
there. Consequently, it might be better to optimize with user experience metrics, since all
users can contribute data to a user experience metric even if they do not convert to paying
customers. Therefore we argue that, under these circumstances, user experience metrics
should be the default choice for algorithmic optimization before business value metrics.

User experience metrics come with their own set of challenges. For instance, optimizing
the number of clicks on one area of the user interface will probably lead to a local improve-
ment, but possibly at the expense of other areas of the site. This effect where changes shift
clicks around between areas is known as cannibalization (81, 175]. If the area that gets can-
nibalized has higher business value than the cannibalizing area the optimization can even
be detrimental. This has been researched at Apptus [40] for their recommender system in
particular. If the recommender system is optimized for clicks, it can distract consumers
with interesting products, rather than products that they might buy.

Ultimately, different parts of the user interface can be optimized for different metrics. Each
interface component is designed to fulfill a goal and that is the goal to be quantified. Re-
turning to the feature cases from Section 6, in the auto complete feature the goal was to aid
users in the discovery of products through the search. Thus, whether they used the aid or
not—measured in click-through-rate—is a reasonably risk free optimization metric. In the
top-# categories, using clicks seems riskier since some categories can distract users or might
lead them to believe that the store does not sell certain products that they do sell. For that
reason, business value metrics seem fitting, even though it will lead to a slower optimization
due to less available data. Whether the reasoning behind choosing a given metric is correct
or not is something that can be validated in an A/B test once the optimization system is
put into production.

170

7.3 Future directions

Future work is required to strengthen the evaluation of COMBO to make a stronger claim
about the applicability and suitability of the toolkit. A more thorough continuous opti-
mization process would be useful as well. Below we present remaining technical barriers
for wide-spread adoption of tools like COMBO that require further study, in no particular
order.

7.3.1 Ramifications on software quality and testing

The continuous optimization practice that we advocate for is not without risks. Both the
need to maintain machine learning models and the increased variability of software, caused
by optimization, are challenging to handle on their own. Sculley et al. [269] from Google
describe how maintaining machine learning models is a source of technical debrt, this has
also been studied extensively by software quality researchers [195]. Regarding software
testing, the model-based approach [55, 159] to experimentation [48] and optimization can
be used both for formal verification and software testing (see Section 5.1). Much has been
published on model-based testing [289], also for user interfaces specifically [271]. Since
a model is built regardless for the optimization problem, focusing more on integrating
support for the model-based testing techniques in the toolkit would be fruitful.

7.3.2 Concept drift for bandit optimization

In machine learning, concept drift occurs when the environment that the machine learn-
ing model has been trained in changes over time, i.c., if users change their behavior. There
are general approaches to detect and be more robust against concept drift, such as Minku
and Yao [210], and specific solutions to software engineering related applications [160, 182].
Those approaches cannot be directly applied to this work since detection of concept drift is
not enough. For univariate multi-armed bandits, the solution is usually to apply a moving
window to the arms’ descriptive statistics [40, 47]. This adds more complexity to the solu-
tion since another hyper-parameter needs to be estimated, i.e., how long the window should
be. Also, unlearning specific data points for multi-variate multi-armed bandit is harder than
unlearning for descriptive statistics, due to the learned machine learning model. If possible,
the approach should avoid complete re-training since that implies needing to store user data
permanently. Thus, more work is required to study the impact and approaches for concept
drift in this domain.

171

7.3.3 Continuous model updates

Adding or removing variables to the optimization search space must be done without restart-
ing the optimization. For generalized linear models, decision trees, and random forests,
model updates are straightforward to both implement and make inference about. For neu-
ral networks the effect of a change will be unpredictable, the algorithm might not even
converge to a new solution so it could be better to restart the model. This is further dis-
cussed in the technical debt for machine learning paper [269]. Furthermore, for all bandit
algorithms, users will have their existing configurations be invalidated when the underlying
model is updated. Their configuration in the new model’s search space should preferably
not be drastically different from their old one to avoid user confusion. We plan to add
support to the toolkit for generating configurations that minimize the distance between a
configuration of an old search space to a new one; while at the same time maximizing the
expected reward of the new configuration.

7.3.4 Bandit optimization algorithms

Several bandit optimization algorithms are included in the COMBO toolkit. Still, we have
only begun to explore all the design options for algorithms, especially for neural networks
and deep learning. Additionally, ensembles of several bandit optimization algorithms could
be applied to improve performance by initially using algorithms that learn quickly and then
gradually switching to slower algorithms with better representational power that eventually
outperform simpler methods.

7.3.5 Algorithm tuning and cold start

Based on the simulation evaluation in Section 6.3 we advice against just using default set-
tings on a bandit optimization algorithm. The performance can improve drastically by
tuning hyper-parameters in simulations, though we refrain from giving numbers on the
improvement since the default parameters are somewhat arbitrarily set in the first place.
However, this will be hard when implementing a new feature with no data. This was the
case for the auto complete feature in Section 6.1 where data was manually collected. This
might be too expensive for regular software development. Regardless, the constraint ori-
ented approach in the COMBO toolkit can be used here to exclude incompatible design
choices observed during feature development (possibly in conjunction with informative
Bayesian priors). The situation is analogous to the co/d start problem in recommender sys-
tems [261]. That occurs when new products are added that do not have any associated
behavioral data. Thus, connections could be drawn to this research field.

172

8 Conclusions

In e-commerce, continuous experimentation is widespread to optimize web shops; high-
profile companies have recently adopted online machine learning based optimization meth-
ods to both increase scale of the optimizations, and to have personalized software to differ-
ent user’s needs. This technology is readily available but can be hard to implement on
anything other than superficial details in the user interface. In this work, the open-source
toolkit COMBO is introduced to support the algorithmic optimization at a validation com-
pany in e-commerce. The toolkit can be used for building data-driven software features that
learn from user behavior in terms of user experience or business value. We have shown that
modeling software hierarchies in a formal model enables algorithmic optimization of com-
plex software. Thus, the toolkit extends optimization to more use cases. There are still
many further opportunities for future work in this domain to enable adoption in other
fields than e-commerce. However, we insist that the toolkit can be used today to improve
the user experience and business value of software.

Acknowledgements

Thanks to Per Runeson, Elizabeth Bjarnason, Luigi Nardi, and the three anonymous re-
viewers for providing useful feedback to this manuscript.

This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous
Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation.

173

Appendix

A Replication of simulations

To replicate the simulations in Section 6.3, run the following commands on a Unix terminal

with a JDK and git:

git clone https://github.com/rasros/combo.git

cd combo

./gradlew assemble

runs the random forest bandit on the auto complete data set:
./jvm-demo/simulation.sh RF AC

view a list of options, algorithms, and data sets:
./jvm-demo/simulation.sh -h

B A B A B P

174

References

[1]

(2]

(8]

Gabriel Abend. The meaning of ‘theory’. Sociological Theory, 26(2):173-199, 2008.
doi:l().llll/j.1467—9558.2008.00324.)(.

Vineet Abhishek and Shie Mannor. A nonparametric sequential test for online ran-
domized experiments. In Proceedings of the 26th International Conference on World
Wide Web Companion, WWW, pages 610-616, 2017. doi:10.1145/3041021.3054196.

Muhammad Adinata and Inggriani Liem. A/B test tools of native mobile applica-
tion. In Proceedings of the International Conference on Data and Software Engineering,
ICODSE, pages 1-6, 2014. doi:10.1109/icodse.2014.7062683.

Steve Adolph, Wendy Hall, and Philippe Kruchten. Using grounded theory to study
the experience of software development. Empirical Software Engineering, 16(4):487—
513, 2011. doi:10.1007/s10664-010-9152-6.

Xavier Amatriain. Beyond data: From user information to business value through
personalized recommendations and consumer science. In Proceedings of the 22nd
International Conference on Information and Knowledge Management, CIKM, pages
2201-2208, 2013. doi:10.1145/2505515.2514701.

Marc Andreessen. Part 4: The only thing that matters. Accessed: 2021-12-10, 2007.

pmarchive.com/guide_to_startups_part4.html.

Nirupama Appiktala, Miao Chen, Michael Natkovich, and Joshua Walters. De-
mystifying dark matter for online experimentation. In Proceedings of the
Sth International Conference on Big Data, BigData, pages 1620-1626, 2017.
doi:10.1109/bigdata.2017.8258096.

Andrea Arcuri and Gordon Fraser. On parameter tuning in search based software en-
gineering. In Proceedings of the 3rd International Symposium on Search Based Software
Engineering, SSBSE, pages 33—47, 2011. doi:10.1007/978-3-642-23716-4_6.

175

https://doi.org/10.1111/j.1467-9558.2008.00324.x
https://doi.org/10.1145/3041021.3054196
https://doi.org/10.1109/icodse.2014.7062683
https://doi.org/10.1007/s10664-010-9152-6
https://doi.org/10.1145/2505515.2514701
https://pmarchive.com/guide_to_startups_part4.html
https://doi.org/10.1109/bigdata.2017.8258096
https://doi.org/10.1007/978-3-642-23716-4_6

[9]

18]

Florian Auer and Michael Felderer. Current state of research on continuous experi-
mentation: A systematic mapping study. In Proceedings of the 44th Euromicro Con-
ference on Software Engineering and Advanced Applications, SEAA, pages 335-344,
2018. doi:10.1109/SEAA.2018.00062.

Florian Auer and Michael Felderer. An infrastructure for platform-independent ex-
perimentation of software changes. In Proceedings of the 47th International Conference
on Current Trends in Theory and Practice of Informatics, SOFSEM, pages 445—457,
2021. doi:10.1007/978-3-030-65854-0_11.

Florian Auer, Rasmus Ros, Lukas Kaltenbrunner, Per Runeson, and Michael
Felderer. ~ Controlled experimentation in continuous experimentation: Know-
ledge and challenges. Information and Software Technology, 134:106551, 2021.
doi:10.1016/j.infsof.2021.106551.

Florian Auer, Rasmus Ros, Lukas Kaltenbrunner, Per Runeson, and Michael Felderer.
Dataset of controlled experimentation in continuous experimentation: Knowledge

and challenges. figshare, 2021. doi:10.6084/m9.figshare.13712329.

Francisco Galuppo Azevedo, Bruno Demattos Nogueira, Fabricio Murai, and Ana
Paula C. Silva. Estimation errors in network A/B testing due to sample variance and
model misspecification. In Proceedings of the 8th International Conference on Web
Intelligence, W1, pages 540—545, 2018. doi:10.1109/wi.2018.00-40.

Lars Backstrom and Jon Kleinberg. Network bucket testing. In Proceedings of
the 20th international conference on World Wide Web, W'W, pages 615—624, 2011.
doi:10.1145/1963405.1963492.

E. Bakshy, D. Eckles, and M. S. Bernstein. Designing and deploying online field
experiments. In Proceedings of the 23rd International Conference on World Wide Web,
W\, pages 283-292, 2014. doi:10.1145/2566486.2567967.

Eytan Bakshy and Dean Eckles. Uncertainty in online experiments with dependent
data: An evaluation of bootstrap methods. In Proceedings of the 19th International
Conference on Knowledge Discovery and Data Mining, KDD, pages 1303-1311, 2013.
doi:10.1145/2487575.2488218.

Rajiv D. Banker, Srikant M. Datar, Chris E Kemerer, and Dani Zweig. Software
complexity and maintenance costs. Communications of the ACM, 36(11):81-95, 1993.
doi:10.1145/163359.163375.

Blake Bartlett. What is product led growth? how to build a software company in
the end user era. Accessed: 2021-01-15, 2020. openviewpartners.com/blog/what-is-
product-led-growth.

176

https://doi.org/10.1109/SEAA.2018.00062
https://doi.org/10.1007/978-3-030-65854-0_11
https://doi.org/10.1016/j.infsof.2021.106551
https://doi.org/10.6084/m9.figshare.13712329
https://doi.org/10.1109/wi.2018.00-40
https://doi.org/10.1145/1963405.1963492
https://doi.org/10.1145/2566486.2567967
https://doi.org/10.1145/2487575.2488218
https://doi.org/10.1145/163359.163375
https://openviewpartners.com/blog/what-is-product-led-growth
https://openviewpartners.com/blog/what-is-product-led-growth

[19]

(20]

[21]

[24]

Victor R. Basili. Quantitative evaluation of software methodology. In Proceedings of
the Ist Pan Pacific Computer Conference, volume 1, pages 379-398, 1985.

Kent Beck. Embracing change with extreme programming. Computer, 32(10):70—
77,1999. doi:10.1109/2.796139.

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of
feature models 20 years later: A literature review. Information Systems, 35(6):615—
6306, 2010. doi:10.1016/j.is.2010.01.001.

Raquel Benbunan-Fich. The ethics of online research with unsuspecting users:
From A/B testing to C/D experimentation. Research Ethics, 13(3-4):200-218, 2017.
doi:10.1177/1747016116680664.

Daniel Le Berre and Anne Parrain. The SAT4] library, release 2.2, system description.
Journal on Satisfiability, Boolean Modeling and Computation, 7(2-3):59-64, 2010.
doi:10.3233/SAT190075.

Danilo Beuche, Holger Papajewski, and Wolfgang Schréder-Preikschat. Variability
management with feature models. Science of Computer Programming, 53(3):333-352,
2004. doi:10.1016/j.scico.2003.04.005.

Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiabilizy. 10S
Press, 2009.

Elizabeth Bjarnason. Prototyping practices in software startups: Initial case study
results. In Proceedings of the 29th International Requirements Engineering Conference
\Vor/z&hops, REW, pages 206-211, 2021. doi:10.1109/REW53955.2021.00038.

Jens Bjorklund, Jens Ljungblad, and Jan Bosch. Lean product development in early
stage startups. In Proceedings of the Ist International Workshop on From Start-ups to
SaaS Conglomerate: Life Cycles of Software Products Workshop, IN-LCSP, pages 19-32,
2013.

Grady Booch. Object oriented design: with applications. Benjamin-Cummings, 1991.

Markus Borg. TuneR: a framework for tuning software engineering tools with hands-
on instructions in R. Journal of Software: Evolution and Process, 28(6):427-459, 2016.
doi:10.1002/smr.1784.

Slava Borodovsky and Saharon Rosset. A/B testing at SweetIM: The importance of
proper statistical analysis. In Proceedings of the 11th International Conference on Data
Mining Workshops, ICDMW, pages 733-740, 2011. doi:10.1109/ICDMW.2011.19.

177

https://doi.org/10.1109/2.796139
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1177/1747016116680664
https://doi.org/10.3233/SAT190075
https://doi.org/10.1016/j.scico.2003.04.005
https://doi.org/10.1109/REW53955.2021.00038
https://doi.org/10.1002/smr.1784
https://doi.org/10.1109/ICDMW.2011.19

(31]

(35]

(37]

Jan Bosch. Building products as innovation experiment systems. In Proceedings of
the 3rd International Conference on Software Business, ICSOB, pages 27-39, 2012.
doi:10.1007/978-3-642-30746-1_3.

Jan Bosch. Speed, data, and ecosystems: The future of software engineering. /EEE
Software, 33(1):82—88, 2016. doi:10.1109/MS.2016.14.

Jan Bosch and Ulrik Eklund. Eternal embedded software: Towards innovation ex-
periment systems. In Prodeedings of the 5th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation. Technologies for Mastering
Change, ISoLA, pages 19-31, 2012. doi:10.1007/978-3-642-34026-0_3.

Jan Bosch and Helena Holmstrom Olsson. Data-driven continuous evolution
of smart systems. In Proceedings of the 11th International Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS, pages 28-34, 2016.
doi:10.1145/2897053.2897066.

Jan Bosch, Helena Holmstrém Olsson, Jens Bjork, and Jens Ljungblad. The early
stage software startup development model: a framework for operationalizing lean
principles in software startups. In Brian Fitzgerald, Kieran Conboy, Ken Power, Ri-
cardo Valerdi, Lorraine Morgan, and Klaas-Jan Stol, editors, Lean Enterprise Software
and Systems, pages 1-15. Springer Publishing Company, 2013. doi:10.1007/978-3-
642-44930-7_1.

Jan Bosch, Helena Holmstrom Olsson, and Ivica Crnkovic. It takes three to tango:
Requirement, outcome/data, and Al driven development. In Proceedings of the Ist
International Workshop on Software-intensive Business: Start-ups, Ecosystems and Plat-
forms, SIBW, pages 177-192, 2018.

Petra Bosch-Sijtsema and Jan Bosch. User involvement throughout the innovation
process in high-tech industries. Journal of Product Innovation Management, 32(5):
793-807, 2015. doi:10.1111/jpim.12233.

Douglas Bowman. Goodbye, Google. Accessed: 2022-01-24, 2009. stopdesign.
com/archive/2009/03/20/goodbye-google.html.

Manuel Brhel, Hendrik Meth, Alexander Maedche, and Karl Werder. Exploring
principles of user-centered agile software development: A literature review. Informa-
tion and Software Technology, 61:163-181, 2015. doi:10.1016/j.infsof.2015.01.004.

Bjorn Brodén, Mikael Hammar, Bengt J. Nilsson, and Dimitris Paraschakis. Bandit
algorithms for e-Commerce recommender systems. In Proceedings of the 11th Confer-
ence on Recommender Systems, pages 349-349, 2017. doi:10.1145/3109859.3109930.

178

https://doi.org/10.1007/978-3-642-30746-1_3
https://doi.org/10.1109/MS.2016.14
https://doi.org/10.1007/978-3-642-34026-0_3
https://doi.org/10.1145/2897053.2897066
https://doi.org/10.1007/978-3-642-44930-7_1
https://doi.org/10.1007/978-3-642-44930-7_1
https://doi.org/10.1111/jpim.12233
https://stopdesign.com/archive/2009/03/20/goodbye-google.html
https://stopdesign.com/archive/2009/03/20/goodbye-google.html
https://doi.org/10.1016/j.infsof.2015.01.004
https://doi.org/10.1145/3109859.3109930

[41]

[44]

Bjorn Brodén, Mikael Hammar, Bengt J. Nilsson, and Dimitris Paraschakis. A
bandit-based ensemble framework for exploration/exploitation of diverse recom-
mendation components: An experimental study within e-commerce. ACM Transac-
tions on Interactive Intelligent Systems (T7iS), 10(1):1-32, 2019. doi:10.1145/3237187.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Pe-
ter 1. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon
Samothrakis, and Simon Colton. A survey of Monte Carlo tree search methods.
IEEE Transactions on Computational Intelligence and Al in games, 4(1):1-43, 2012.
doi:10.1109/TCIAIG.2012.2186810.

Sabine Brunswicker, Cara Wrigley, and Sam Bucolo. Business model experimenta-
tion: What is the role of design-led prototyping in developing novel business models?
In Martin Curley and Piero Formica, editors, 7he experimental nature of new venture
creation: capitalizing on Open Innovation 2.0, pages 139-151. Springer Publishing
Company, 2013. doi:10.1007/978-3-319-00179-1_13.

Tomasz Buchert, Cristian Ruiz, Lucas Nussbaum, and Olivier Richard. A survey
of general-purpose experiment management tools for distributed systems. Fuzure
Generation Computer Systems, 45:1-12, 2015. doi:10.1016/j.future.2014.10.007.

Roman Budylin, Alexey Drutsa, Ilya Katsev, and Valeriya Tsoy. Consistent transfor-
mation of ratio metrics for efficient online controlled experiments. In Proceedings
of the 11th International Conference on Web Search and Data Mining, WSDM, pages
55-63, 2018. doi:10.1145/3159652.3159699.

Mario Bunge. Philosophy of science: volume 2, from explanation to justification. Rout-
ledge, 1998.

Giuseppe Burtini, Jason Loeppky, and Ramon Lawrence. A survey of online experi-
ment design with the stochastic multi-armed bandit. a7Xiv:1510.00757v4, [stat. ML],
2015.

(48] Javier Cdmara and Alfred Kobsa. Facilitating controlled tests of website design

changes: A systematic approach. In Proceedings of the 9th International Conference
on Web Engineering, ICWE, pages 370-378, 2009. doi:10.1007/978-3-642-02818-
2_30.

Rocio Cafiamares, Marcos Redondo, and Pablo Castells. Multi-armed recommender
system bandit ensembles. In Proceedings of the 13th Conference on Recommender Sys-
tems, RecSys, pages 432436, 2019. doi:10.1145/3298689.3346984.

Deepayan Chakrabarti, Ravi Kumar, Filip Radlinski, and Eli Upfal. Mortal multi-
armed bandits. In Proceedings of the 21st International Conference on Neural Informa-
tion Processing Systems, NIPS, pages 273-280, 2008.

179

https://doi.org/10.1145/3237187
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1007/978-3-319-00179-1_13
https://doi.org/10.1016/j.future.2014.10.007
https://doi.org/10.1145/3159652.3159699
https://arxiv.org/abs/1510.00757v4
https://doi.org/10.1007/978-3-642-02818-2_30
https://doi.org/10.1007/978-3-642-02818-2_30
https://doi.org/10.1145/3298689.3346984

(51]

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A scalable and nearly
uniform generator of SAT witnesses. In Proceedings of the 25th International Confer-
ence on Computer Aided Verification, CAV, pages 608-623, 2013. doi:10.1007/978-
3-642-39799-8_40.

Stephanie Chamberlain, Helen Sharp, and Neil Maiden. Towards a framework for
integrating agile development and user-centred design. In Proceedings of the 7th
International Conference on Extreme Programming and Agile Processes in Software En-
gineering, XP, pages 143-153, 2006. doi:10.1007/11774129_15.

Ximena Alejandra Flechas Chaparro and Leonardo Augusto de Vasconcelos Gomes.
Pivot decisions in startups: a systematic literature review. International Journal of

Entrepreneurial Behavior & Research, 27(4), 2021. doi:10.1108/I]JEBR-12-2019-0699.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling.
In Proceedings of the 24th International Conference on Neural Information Processing
Systems, NIPS, pages 2249-2257, 2011.

Lianping Chen, Muhammad Ali Babar, and Nour Ali. Variability management in
software product lines: a systematic review. In Proceedings of the 13th International
Software Product Line Conference, SPLC, pages 81-90, 2009.

Nanyu Chen, Min Liu, and Ya Xu. How A/B tests could go wrong: Auto-
matic diagnosis of invalid online experiments. In Proceedings of the 12th Interna-
tional Conference on Web Search and Data Mining, WSDM, pages 501-509, 2019.
doi:10.1145/3289600.3291000.

Russell Chen, Miao Chen, Mahendrasinh Ramsinh Jadav, Joonsuk Bae, and Don
Matheson. Faster online experimentation by eliminating traditional A/A validation.
In Proceedings of the 5th International Conference on Big Data, BigData, pages 1635—
1641, 2017. doi:10.1109/bigdata.2017.8258098.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: Gen-
eral framework and applications. In Proceedings of the 30th International Conference
on Machine Learning, PMLR, pages 151-159, 2013.

Henry Chesbrough. Business model innovation: it’s not just about technology any-
more. Strategy & Leadership, 35(6):12-17, 2007. doi:10.1108/10878570710833714.

Henry Chesbrough and Richard S. Rosenbloom. The role of the business model
in capturing value from innovation: evidence from Xerox Corporation’s technol-
ogy spin-off companies. Industrial and Corporate Change, 11(3):529-555, 2002.
doi:10.1093/icc/11.3.529.

180

https://doi.org/10.1007/978-3-642-39799-8_40
https://doi.org/10.1007/978-3-642-39799-8_40
https://doi.org/10.1007/11774129_15
https://doi.org/10.1108/IJEBR-12-2019-0699
https://doi.org/10.1145/3289600.3291000
https://doi.org/10.1109/bigdata.2017.8258098
https://doi.org/10.1108/10878570710833714
https://doi.org/10.1093/icc/11.3.529

[61]

[62]

[64]

David Choi. Estimation of monotone treatment effects in network experi-
ments. Journal of the American Statistical Association, 112(519):1147-1155, 2017.
doi:10.1080/01621459.2016.1194845.

Emmanuelle Claeys, Pierre Gangarski, Myriam Maumy-Bertrand, and Hubert Wass-
ner. Regression tree for bandits models in A/B testing. In Proceedings of the 16th
International Symposium on Advances in Intelligent Data Analysis, IDA, pages 5262,
2017. doi:10.1007/978-3-319-68765-0_5.

Paul Clarke and Rory V. O’Connor. The situational factors that affect the software
development process: Towards a comprehensive reference framework. Information

and Software Technology, 54(5):433—447, 2012. doi:10.1016/j.infsof.2011.12.003.

Dominic Coey and Michael Bailey. People and cookies: Imperfect treatment assign-
ment in online experiments. In Proceedings of the 25th International Conference on
World Wide Web, W, pages 1103—1111, 2016. doi:10.1145/2872427.2882984.

European Commission. Regulation (EU) 2016/679 of the European Parliament and
of the Council of 27 april 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
directive 95/46/ec (General Data Protection Regulation), 2016. eli:reg/2016/679/
2016-05-04.

Mauro Conti, Ankit Gangwal, Sarada Prasad Gochhayat, and Gabriele Tolomei.
Spot the difference: Your bucket is leaking: A novel methodology to expose A/B
testing effortlessly. In Proceedings of the 6th Conference on Communications and Net-
work Security, CNS, pages 1-7, 2018. doi:10.1109/cns.2018.8433122.

Thomas Crook, Brian Frasca, Ron Kohavi, and Roger Longbotham. Seven pitfalls
to avoid when running controlled experiments on the web. In Proceedings of the
I5th International Conference on Knowledge Discovery and Data Mining, KDD, pages
1105-1114, 2009. doi:10.1145/1557019.15571309.

Daniela S. Cruzes and Tore Dybd. Recommended steps for thematic synthe-
sis in software engineering. In Proceedings of the 5th International Symposium on
Empirical Software Engineering and Measurement, ESEM, pages 275-284, 2011.
doi:10.1109/ESEM.2011.36.

Daniela S. Cruzes, Tore Dyb4, Per Runeson, and Martin Host. Case studies syn-
thesis: A thematic, cross-case, and narrative synthesis worked example. Empirical

Software Engineering, 20(6):1634-1665, 2015. doi:10.1007/s10664-014-9326-8.

Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration
using feature models. In Robert L. Nord, editor, Software Product Lines, pages 266—
283. Springer Publishing Company, 2004. doi:10.1007/978-3-540-28630-1_17.

181

https://doi.org/10.1080/01621459.2016.1194845
https://doi.org/10.1007/978-3-319-68765-0_5
https://doi.org/10.1016/j.infsof.2011.12.003
https://doi.org/10.1145/2872427.2882984
http://data.europa.eu/eli/reg/2016/679/2016-05-04
http://data.europa.eu/eli/reg/2016/679/2016-05-04
https://doi.org/10.1109/cns.2018.8433122
https://doi.org/10.1145/1557019.1557139
https://doi.org/10.1109/ESEM.2011.36
https://doi.org/10.1007/s10664-014-9326-8
https://doi.org/10.1007/978-3-540-28630-1_17

[71]

[76]

(80]

Ariyam Das and Harish Ranganath. When web personalization misleads bucket
testing. In Proceedings of the Ist Workshop on User Engagement Optimization, UEO,
pages 1720, 2013. doi:10.1145/2512875.2512879.

George S. Day. The capabilities of market-driven organizations. Journal of Marketing,
58(4):37-52,1994. doi:10.1177/002224299405800404.

William Edwards Deming. Outz of the Crisis. MIT Press, 1986.

Alex Deng. Objective bayesian two sample hypothesis testing for online controlled
experiments. In Proceedings of the 24th International Conference on World Wide Web,
WWW, pages 923-928, 2015. doi:10.1145/2740908.2742563.

Alex Deng and Victor Hu. Diluted treatment effect estimation for trigger anal-
ysis in online controlled experiments. In Proceedings of the 8th International
Conference on Web Search and Data Mining, WSDM, pages 349-358, 2015.
doi:10.1145/2684822.2685307.

Alex Deng and Xiaolin Shi. Data-driven metric development for online con-
trolled experiments: Seven lessons learned. In Proceedings of the 22nd International
Conference on Knowledge Discovery and Data Mining, KDD, pages 77-86, 2016.
doi:10.1145/2939672.2939700.

Alex Deng, Ya Xu, Ron Kohavi, and Toby Walker. Improving the sensitivity of
online controlled experiments by utilizing pre-experiment data. In Proceedings of
the 6th International Conference on Web Search and Data Mining, WSDM, pages
123-132, 2013. doi:10.1145/2433396.2433413.

Alex Deng, Tianxi Li, and Yu Guo. Statistical inference in two-stage online con-
trolled experiments with treatment selection and validation. In Proceedings of the
23rd International Conference on World Wide Web, \WW'W, pages 609-618, 2014.
doi:10.1145/2566486.2568028.

Alex Deng, Jiannan Lu, and Shouyuan Chen. Continuous monitoring of A/B tests
without pain: Optional stopping in bayesian testing. In Proceedings of the 3rd Inter-
national Conference on Data Science and Advanced Analytics, DSAA, pages 243-252,
2016. doi:10.1109/dsaa.2016.33.

Alex Deng, Jiannan Lu, and Jonthan Litz. Trustworthy analysis of online
A/B tests: Pitfalls, challenges and solutions. In Proceedings of the 10th Interna-
tional Conference on Web Search and Data Mining, WSDM, pages 641-649, 2017.
doi:10.1145/3018661.3018677.

182

https://doi.org/10.1145/2512875.2512879
https://doi.org/10.1177/002224299405800404
https://doi.org/10.1145/2740908.2742563
https://doi.org/10.1145/2684822.2685307
https://doi.org/10.1145/2939672.2939700
https://doi.org/10.1145/2433396.2433413
https://doi.org/10.1145/2566486.2568028
https://doi.org/10.1109/dsaa.2016.33
https://doi.org/10.1145/3018661.3018677

(81]

[82]

(83]

Pavel Dmitriev and Xian Wu. Measuring metrics. In Proceedings of the 25th Inter-
national on Conference on Information and Knowledge Management, CIKM, pages

429-437, 2016. doi:10.1145/2983323.2983356.

Pavel Dmitriev, Brian Frasca, Somit Gupta, Ron Kohavi, and Garnet Vaz.
Pitfalls of long-term online controlled experiments. In Proceedings of the
4th International Conference on Big Data, BigData, pages 1367-1376, 2016.
doi:10.1109/bigdata.2016.7840744.

Pavel Dmitriev, Somit Gupta, Dong Woo Kim, and Garnet Vaz. A dirty dozen:
Twelve common metric interpretation pitfalls in online controlled experiments. In
Proceedings of the 23rd International Conference on Knowledge Discovery and Data
Mining, KDD, pages 1427-1436, 2017. doi:10.1145/3097983.3098024.

Pedro Domingos and Geoft Hulten. Mining high-speed data streams. In Proceedings
of the 6th International Conference on Knowledge Discovery and Data Mining, pages
71-80, 2000. doi:10.1145/347090.347107.

Alexey Drutsa. Sign-aware periodicity metrics of user engagement for online
search quality evaluation. In Proceedings of the 38th International Conference on
Research and Development in Information Retrieval, SIGIR, pages 845-854, 2015.
doi:10.1145/2766462.2767814.

Alexey Drutsa, Gleb Gusev, and Pavel Serdyukov. Future user engagement predic-
tion and its application to improve the sensitivity of online experiments. In Proceed-
ings of the 24th International Conference on World Wide Web, W\, pages 2562606,
2015. doi:10.1145/2736277.2741116.

Alexey Drutsa, Anna Ufliand, and Gleb Gusev. Practical aspects of sensitivity in
online experimentation with user engagement metrics. In Proceedings of the 24th In-
ternational on Conference on Information and Knowledge Management, CIKM, pages
763772, 2015. doi:10.1145/2806416.2806496.

Alexey Drutsa, Gleb Gusev, and Pavel Serdyukov. Using the delay in a treatment
effect to improve sensitivity and preserve directionality of engagement metrics in
A/B experiments. In Proceedings of the 26th International Conference on World Wide
Web, W, pages 1301-1310, 2017. doi:10.1145/3038912.3052664.

Wouter Duivesteijn, Tara Farzami, Thijs Putman, Evertjan Peer, Hilde J. P. Weerts,
Jasper N. Adegeest, Gerson Foks, and Mykola Pechenizkiy. Have it both ways: From
A/B testing to A&B testing with exceptional model mining. In Proceedings of the
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
ECML/PKDD, pages 114-126, 2017. doi:10.1007/978-3-319-71273-4_10.

183

https://doi.org/10.1145/2983323.2983356
https://doi.org/10.1109/bigdata.2016.7840744
https://doi.org/10.1145/3097983.3098024
https://doi.org/10.1145/347090.347107
https://doi.org/10.1145/2766462.2767814
https://doi.org/10.1145/2736277.2741116
https://doi.org/10.1145/2806416.2806496
https://doi.org/10.1145/3038912.3052664
https://doi.org/10.1007/978-3-319-71273-4_10

[90] Tore Dyba and Torgeir Dingseyr. What do we know about agile software develop-
ment? [EEE Software, 26(5):6-9, 2009. doi:10.1109/MS.2009.145.

[91] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Se-
lecting empirical methods for software engineering research. In Forrest Shull, Janice
Singer, and Dag 1. K. Sjeberg, editors, Guide to Advanced Empirical Software Engi-
neering, pages 285-311. Springer Publishing Company, 2008. doi:10.1007/978-1-
84800-044-5_11.

[92] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. DevOps.
IEEE Software, 33(3):94-100, 2016. doi:10.1109/MS.2016.68.

[93] Dean Eckles, Brian Karrer, and Johan Ugander. Design and analysis of experiments
in networks: Reducing bias from interference. Journal of Causal Inference, 5(1), 2016.
doi:lO.1515/jci—2015—0021.

[94] Ulrik Eklund and Jan Bosch. Architecture for large-scale innovation experiment
systems. In Proceedings of the Joint Working Conference on Software Architecture and
European Conference on Software Architecture, WICSA/ECSA, pages 244248, 2012.
doi:10.1109/wicsa-ecsa.212.38.

[95] Sean Ellis. Find a growth hacker for your startup. Accessed: 2022-01-21, 2010.

startup-marketing.com/where-are-all-the-growth-hackers.

[96] Sean Ellis and Morgan Brown. Hacking growth: how todays fastest-growing companies
drive breakout success. Currency, 2017.

[97] Adam N. Elmachtoub, Ryan McNellis, Sechan Oh, and Marek Petrik. A practi-
cal method for solving contextual bandit problems using decision trees. In Pro-
ceedings of the 33rd Conference on Uncertainty in Artificial Intelligence, UAI, 2017.
arXiv:1706.04687.

[98] Emelie Engstrom, Margaret-Anne Storey, Per Runeson, Martin Hést, and
Maria Teresa Baldassarre. How software engineering research aligns with de-
sign science: a review. Empirical Software Engineering, 25(4):2630-2660, 2020.
doi:10.1007/s10664-020-09818-7.

[99] Aleksander Fabijan, Helena Holmstrom Olsson Olsson, and Jan Bosch. Customer
feedback and data collection techniques in software R&D: A literature review. In
Proceedings of the 6th International Conference on Software Business, ICSOB, pages
139-153, 2015. doi:10.1007/978-3-319-19593-3_12.

[100] Aleksander Fabijan, Pavel Dmitriev, Helena Holmstrom Olsson, and Jan Bosch. The
benefits of controlled experimentation at scale. In Proceedings of the 43rd Euromicro
Conference on Software Engineering and Advanced Applications, SEAA, pages 18-26,
2017. doi:10.1109/SEAA.2017.47.

184

https://doi.org/10.1109/MS.2009.145
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1515/jci-2015-0021
https://doi.org/10.1109/wicsa-ecsa.212.38
https://www.startup-marketing.com/where-are-all-the-growth-hackers/
https://arxiv.org/abs/1706.04687
https://doi.org/10.1007/s10664-020-09818-7
https://doi.org/10.1007/978-3-319-19593-3_12
https://doi.org/10.1109/SEAA.2017.47

[101]

[102]

(103]

[104]

(105]

[1006]

[107]

[108]

(109]

[110]

Aleksander Fabijan, Pavel Dmitriev, Helena Holmstrém Olsson, and Jan Bosch.
The evolution of continuous experimentation in software product development:
from data to a data-driven organization at scale. In Proceedings of the 39th
International Conference on Software Engineering, 1CSE, pages 770-780, 2017.
doi:10.1109/1CSE.2017.76.

Aleksander Fabijan, Pavel Dmitriev, Helena Holmstrom Olsson, and Jan Bosch. Ef-
fective online controlled experiment analysis at large scale. In Proceedings of the
44th Euromicro Conference on Software Engineering and Advanced Applications, SEAA,
pages 64—67, 2018. doi:10.1109/seaa.2018.00020.

Aleksander Fabijan, Pavel Dmitriev, Helena Holmstrém Olsson, and Jan Bosch. On-
line controlled experimentation at scale: An empirical survey on the current state of
A/B testing. In Proceedings of the 44th Euromicro Conference on Software Engineering
and Advanced Applications, SEAA, pages 68—72, 2018. doi:10.1109/seaa.2018.00021.

Aleksander Fabijan, Pavel Dmitriev, Helena Holmstrom Olsson, and Jan Bosch.
The online controlled experiment lifecycle. IEEE Software, 37:60-67, 2020.
d0i:10.1109/ms.2018.2875842.

Fabian Fagerholm, Alejandro Sanchez Guinea, Hanna Mienpi, and Jiirgen Miinch.
Building blocks for continuous experimentation. In Proceedings of the Ist Inter-
national Workshop on Rapid Continuous Software Engineering, pages 26-35, 2014.
doi:10.1145/2593812.2593816.

Fabian Fagerholm, Alejandro Sanchez Guinea, Hanna Mienpii, and Jiirgen Miinch.
The RIGHT model for continuous experimentation. Journal of Systems and Software,
123:292-305, 2017. doi:10.1016/j.jss.2016.03.034.

Dror G. Feitelson, Eitan Frachtenberg, and Kent L. Beck. Development
and deployment at Facebook. [EEE Internet Computing, 17(4):8-17, 2013.
doi:10.1109/mic.2013.25.

Alexander Felfernig, Monika Mandl, Juha Tiihonen, Monika Schubert, and Gerhard
Leitner. Personalized user interfaces for product configuration. In Proceedings of
the 15th International Conference on Intelligent User Interfaces, pages 317-320, 2010.
doi:10.1145/1719970.1720020.

Norman E. Fenton and Martin Neil. A critique of software defect predic-
tion models. /EEE Transactions on software engineering, 25(5):675-689, 1999.
doi:10.1109/32.815326.

Raphaél Féraud, Robin Allesiardo, Tanguy Urvoy, and Fabrice Clérot. Random
forest for the contextual bandit problem. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, PMLR, pages 93-101, 2016.

185

https://doi.org/10.1109/ICSE.2017.76
https://doi.org/10.1109/seaa.2018.00020
https://doi.org/10.1109/seaa.2018.00021
https://doi.org/10.1109/ms.2018.2875842
https://doi.org/10.1145/2593812.2593816
https://doi.org/10.1016/j.jss.2016.03.034
https://doi.org/10.1109/mic.2013.25
https://doi.org/10.1145/1719970.1720020
https://doi.org/10.1109/32.815326

[111]

[112]

[113]

[114]

[115]

[116]

(117]

[118]

[119]

[120]

[121]

Sergio Firmenich, Alejandra Garrido, Julidn Grigera, José Matias Rivero, and Gus-
tavo Rossi. Usability improvement through A/B testing and refactoring. Soffware
Quality Journal, 27(1):203-240, 2018. doi:10.1007/s11219-018-9413-y.

Ronald Aylmer Fisher. 7he Design of Experiments. Oliver and Boyd, 10th edition,
1937.

Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering: A
roadmap and agenda. Jowrnal of Systems and Software, 123:176-189, 2017.
doi:10.1016/}.js5.2015.06.063.

Catherine Flick. Informed consent and the Facebook emotional manipulation study.
Research Ethics, 12(1):14—28, 2016. doi:10.1177/1747016115599568.

Peter Forbrig. Use cases, user stories and BizDevOps. In Proceedings of the 4th
Workshop on Continuous Requirements Engineering, CRE, 2018.

Peter Forbrig and Anke Dittmar. Integrating HCD into BizDevOps by using
the subject-oriented approach. In Proceedings of the International Working Con-
ference on Human-Centred Software Engineering, HCSE, pages 327-334, 2019.
doi:10.1007/978-3-030-05909-5_21.

Alexander Forrester, Andras Sobester, and Andy Keane. Engineering design via sur-
rogate modelling: a practical guide. John Wiley & Sons, 2008.

Ilias Gerostathopoulos, Dominik Skoda, Frantisek Plasil, Tomas Bures, and Alessia
Knauss. Architectural homeostasis in self-adaptive software-intensive cyber-physical
systems. In Proceedings of the 10th European Conference on Software Architecture,
ECSA, pages 113-128, 2016. doi:10.1007/978-3-319-48992-6_8.

Ilias Gerostathopoulos, Christian Prehofer, Lubomir Bulej, Tomds Bures, Vojtech
Horky, and Petr Tuma. Cost-aware stage-based experimentation: challenges and
emerging results. In Proceedings of the 15th International Conference on Software Ar-
chitecture Companion, ICSA-C, 2018. doi:10.1109/ICSA-C.2018.00027.

Ilias Gerostathopoulos, Christian Prehofer, and Tomas Bures. Adapting a system
with noisy outputs with statistical guarantees. In Proceedings of the 13th International
Conference on Software Engineering for Adaptive and Self-Managing Systems, SEAMS,
pages 998-1001, 2018. doi:10.1145/3194133.3194152.

Ilias Gerostathopoulos, Ali Naci Uysal, Christian Prehofer, and Tomas Bures. A
tool for online experiment-driven adaptation. In Proceedings of the 3rd International
Workshops on Foundations and Applications of Self* Systems, FAS*W, pages 100-105,
2018. doi:10.1109/FAS-W.2018.00032.

186

https://doi.org/10.1007/s11219-018-9413-y
https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1177/1747016115599568
https://doi.org/10.1007/978-3-030-05909-5_21
https://doi.org/10.1007/978-3-319-48992-6_8
https://doi.org/10.1109/ICSA-C.2018.00027
https://doi.org/10.1145/3194133.3194152
https://doi.org/10.1109/FAS-W.2018.00032

[122]

(123]

[124]

[125]

[126]

(127]

[128]

(129]

(130]

Federico Giaimo, Hang Yin, Christian Berger, and Ivica Crnkovic. = Con-
tinuous experimentation on cyber-physical systems: Challenges and opportu-
nities. In Proceedings of the Scientific Workshops of XP, pages 1-2, 2016.
doi:10.1145/2962695.2962709.

Federico Giaimo, Christian Berger, and Crispin Kirchner. Considerations about
continuous experimentation for resource-constrained platforms in self-driving vehi-
cles. In Proceedings of the 11th European Conference on Software Architecture, ECSA,
pages 84-91, 2017. doi:10.1007/978-3-319-65831-5_6.

Barney Glaser and Anselm Strauss. 7he Discovery of Grounded Theory: Strategies for
Qualitative Research. AldineTransaction, 1967.

Carlos A. Gomez-Uribe and Neil Hunt. The netflix recommender system.
ACM Transactions on Management Information Systems (TOSEM), 6(4):1-19, 2015.
doi:10.1145/2843948.

Anjan Goswami, Wei Han, Zhenrui Wang, and Angela Jiang. Controlled ex-
periments for decision-making in e-commerce search. In Proceedings of the
3rd International Conference on Big Data, BigData, pages 1094-1102, 2015.
doi:10.1109/bigdata.2015.7363863.

Colin M. Gray, Yubo Kou, Bryan Battles, Joseph Hoggatt, and Austin L.
Toombs. The dark (patterns) side of UX design. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, pages 1-14, 2018.
doi:10.1145/3173574.3174108.

Huan Gui, Ya Xu, Anmol Bhasin, and Jiawei Han. Network A/B testing. In Proceed-
ings of the 24th International Conference on World Wide Web, W\, page 399-409,
2015. doi:10.1145/2736277.2741081.

Jayant Gupchup, Yasaman Hosseinkashi, Pavel Dmitriev, Daniel Schneider,
Ross Cutler, Andrei Jefremov, and Martin Ellis. Trustworthy experimenta-
tion under telemetry loss. In Proceedings of the 27th International Confer-
ence on Information and Knowledge Management, CIKM, pages 387-396, 2018.
doi:10.1145/3269206.3271747.

Somit Gupta, Lucy Ulanova, Sumit Bhardwaj, Pavel Dmitriev, Paul Raff, and Alek-
sander Fabijan. The anatomy of a large-scale experimentation platform. In Proceed-
ings of the 15th International Conference on Software Architecture, ICSA, pages 1-109,
2018. do0i:10.1109/icsa.2018.00009.

187

https://doi.org/10.1145/2962695.2962709
https://doi.org/10.1007/978-3-319-65831-5_6
https://doi.org/10.1145/2843948
https://doi.org/10.1109/bigdata.2015.7363863
https://doi.org/10.1145/3173574.3174108
https://doi.org/10.1145/2736277.2741081
https://doi.org/10.1145/3269206.3271747
https://doi.org/10.1109/icsa.2018.00009

(131]

(132]

(133]

[134]

[135]

(136]

[137]

(138]

(139]

Matthias Gutbrod, Jiirgen Miinch, and Matthias Tichy. How do software startups
approach experimentation? empirical results from a qualitative interview study. In
Proceedings of the 18th International Conference on Product-Focused Software Process
Improvement, PROFES, pages 297-304, 2017. doi:10.1007/978-3-319-69926-4_21.

Matthias Gutbrod, Jiirgen Miinch, and Matthias Tichy. How do software startups
approach experimentation? empirical results from a qualitative interview study. In
Proceedings of the 18th International Conference on Product-Focused Software Process
Improvement, PROFES, pages 297-304, 2017. doi:10.1007/978-3-319-69926-4_21.

Irit Hadar, Tomer Hasson, Oshrat Ayalon, Eran Toch, Michael Birnhack, Sofia Sher-
man, and Arod Balissa. Privacy by designers: software developers’ privacy mindset.
Empirical Software Engineering, 23(1):259-289, 2018. doi:10.1007/s10664-017-9517-
1.

Mikael Hammar, Robin Karlsson, and Bengt J. Nilsson. Using maximum
coverage to optimize recommendation systems in e-commerce. In Proceedings
of the 7th Conference on Recommender Systems, RecSys, pages 265-272, 2013.
doi:10.1145/2507157.2507169.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science research in information systems. MIS Quarterly, 28(1):75-105, 2004.
doi:10.2307/25148625.

Charles Robert Hicks. Fundamental concepts in the design of experiments. Holt, Rine-
hart and Winston, 5th edition, 1964.

Daniel N. Hill, Robert Moakler, Alan E. Hubbard, Vadim Tsemekhman, Foster
Provost, and Kiril Tsemekhman. Measuring causal impact of online actions via natu-
ral experiments: Application to display advertising. In Proceedings of the 21th Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD, pages 1839-1847,
2015. doi:10.1145/2783258.2788622.

Daniel N. Hill, Houssam Nassif, Yi Liu, Anand Iyer, and S.V.N. Vishwanathan. An
efficient bandit algorithm for realtime multivariate optimization. In Proceedings of
the 23rd International Conference on Knowledge Discovery and Data Mining, KDD,
pages 1813-1821, 2017. doi:10.1145/3097983.3098184.

Kashmir Hill. Facebook added ‘research’ to user agreement 4 months after emo-
tion manipulation study. Forbes, 2014. www.forbes.com/sites/kashmirhill/2014/
06/30/facebook - only - got-permission-to-do-research-on-users-after-emotion-
manipulation-study.

188

https://doi.org/10.1007/978-3-319-69926-4_21
https://doi.org/10.1007/978-3-319-69926-4_21
https://doi.org/10.1007/s10664-017-9517-1
https://doi.org/10.1007/s10664-017-9517-1
https://doi.org/10.1145/2507157.2507169
https://doi.org/10.2307/25148625
https://doi.org/10.1145/2783258.2788622
https://doi.org/10.1145/3097983.3098184
https://www.forbes.com/sites/kashmirhill/2014/06/30/facebook-only-got-permission-to-do-research-on-users-after-emotion-manipulation-study
https://www.forbes.com/sites/kashmirhill/2014/06/30/facebook-only-got-permission-to-do-research-on-users-after-emotion-manipulation-study
https://www.forbes.com/sites/kashmirhill/2014/06/30/facebook-only-got-permission-to-do-research-on-users-after-emotion-manipulation-study

[140]

[141]

[142]

(143]

[144]

(145]

[146]

(147]
(148]

(149]

[150]

Henning Hohnhold, Deirdre O’Brien, and Diane Tang. Focusing on the long-
term: It’s good for users and business. In Proceedings of the 21th International Con-
ference on Knowledge Discovery and Data Mining, KDD, pages 1849-1858, 2015.
doi:10.1145/2783258.2788583.

Laura M. Holson. Putting a bolder face on Google. New York Times, 1, 2009.

www.nytimes.com/2009/03/01/business/@1marissa.html.

Holger H. Hoos. Programming by optimization. Communications of the ACM, 55
(2):70-80, 2012. doi:10.1145/2076450.2076469.

Chin-Jung Hsu, Vivek Nair, Tim Menzies, and Vincent Freeh. Micky: A
cheaper alternative for selecting cloud instances. In Proceedings of the I1lth
International Conference on Cloud Computing, CLOUD, pages 409-416, 2018.
doi:10.1109/CLOUD.2018.00058.

Xin Huang, He Zhang, Xin Zhou, Muhammad Ali Babar, and Song Yang. Synthe-
sizing qualitative research in software engineering: A critical review. In Proceedings of
the 40th International Conference on Software Engineering, ICSE, pages 1207—1218,
2018. doi:10.1145/3180155.3180235.

Jez Humble and Joanne Molesky. Why enterprises must adopt DevOps to enable
continuous delivery. Cutter IT Journal, 24(8):6, 2011.

Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algorithm run-
time prediction: Methods & evaluation. Artificial Intelligence, 206:79-111, 2014.
doi:10.1016/j.artint.2013.10.003.

Michael Hiittermann. DevOps for developers. Apress, 2012.

Shuhei litsuka and Yutaka Matsuo. Website optimization problem and its solutions.
In Proceedings of the 21th International Conference on Knowledge Discovery and Data
Mining, KDD, pages 447-456, 2015. doi:10.1145/2783258.2783351.

Deepal Jayasinghe, Josh Kimball, Siddharth Choudhary, Tao Zhu, and Calton Pu.
An automated approach to create, store, and analyze large-scale experimental data in
clouds. In Proceedings of the 14th International Conference on Information Reuse and
Integration, IR1, pages 357-364, 2013. doi:10.1109/iri.2013.6642493.

Shan Jiang, John Martin, and Christo Wilson. Who’s the guinea pig? in-
vestigating online A/B/n tests in-the-wild. In Proceedings of the Confer-
ence on Fairness, Accountability, and Transparency, FAT*, pages 201-210, 2019.
doi:10.1145/3287560.3287565.

189

https://doi.org/10.1145/2783258.2788583
https://www.nytimes.com/2009/03/01/business/01marissa.html
https://doi.org/10.1145/2076450.2076469
https://doi.org/10.1109/CLOUD.2018.00058
https://doi.org/10.1145/3180155.3180235
https://doi.org/10.1016/j.artint.2013.10.003
https://doi.org/10.1145/2783258.2783351
https://doi.org/10.1109/iri.2013.6642493
https://doi.org/10.1145/3287560.3287565

(151]

(152]

(153]

(154]

[155]

[156]

[157]

[158]

[159]

[160]

Miguel Jiménez, Luis E Rivera, Norha M. Villegas, Gabriel Tamura, Hausi A.
Miiller, and Nelly Bencomo. An architectural framework for quality-driven adap-
tive continuous experimentation. In Proceedings of the Joint 4th International Work-
shop on Rapid Continuous Software Engineering and Ist International Workshop on
Data-Driven Decisions, Experimentation and Evolution, RCoSE/DDIEE, pages 20—
23, 2019. doi:10.1109/RCoSE/DDrEE.2019.00012.

Jan Ole Johanssen, Anja Kleebaum, Barbara Paech, and Bernd Bruegge. Continuous
software engineering and its support by usage and decision knowledge: An interview
study with practitioners. Journal of Software: Evolution and Process, 31(5):2169,
2019. doi:10.1002/smr.2169.

Ramesh Johari, Pete Koomen, Leonid Pekelis, and David Walsh. Pecking at A/B
tests: Why it matters, and what to do about it. In Proceedings of the 23rd International
Conference on Knowledge Discovery and Data Mining, KDD, pages 1517-1525, 2017.
doi:10.1145/3097983.3097992.

Gerry Johnson, Kevan Scholes, and Richard Whittington. Exploring corporate strat-
egy: Text and cases. Pearson Education, 2008.

Niangiao Ju, Diane Hu, Adam Henderson, and Liangjie Hong. A sequential test for
selecting the better variant: Online A/B testing, adaptive allocation, and continuous
monitoring. In Proceedings of the 12th International Conference on Web Search and
Data Mining, WSDM, pages 492-500, 2019. doi:10.1145/3289600.3291025.

Gabriela Jurca, Theodore D. Hellmann, and Frank Maurer. Integrating agile and
user-centered design: a systematic mapping and review of evaluation and valida-
tion studies of agile-ux. In Proceedings of the Agile Conference, pages 24-32, 2014.
doi:10.1109/AGILE.2014.17.

Narendra Jussien and Olivier Lhomme. Local search with constraint propa-
gation and conflict-based heuristics. Artificial Intelligence, 139(1):21-45, 2002.
doi:10.1016/S0004-3702(02)00221-7.

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-oriented domain analysis (FODA) feasibility study. Technical
report, Carnegie-Mellon University Software Engineering Institute, 1990.

Kyo C. Kang, Jacjoon Lee, and Patrick Donohoe. Feature-oriented product line
engineering. /EEFE Software, 19(4):58-65, 2002. doi:10.1109/MS.2002.1020288.

Karim Kanoun and Mihaela van der Schaar. Big-data streaming applications schedul-
ing with online learning and concept drift detection. In Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition, DATE, pages 1547-1550, 2015.
doi:10.7873/DATE.2015.0786.

190

https://doi.org/10.1109/RCoSE/DDrEE.2019.00012
https://doi.org/10.1002/smr.2169
https://doi.org/10.1145/3097983.3097992
https://doi.org/10.1145/3289600.3291025
https://doi.org/10.1109/AGILE.2014.17
https://doi.org/10.1016/S0004-3702(02)00221-7
https://doi.org/10.1109/MS.2002.1020288
https://doi.org/10.7873/DATE.2015.0786

[161]

[162]

(163]

[164]

(165]

[166]

(167]

[168]

(169]

Liran Katzir, Edo Liberty, and Oren Somekh. Framework and algorithms for net-
work bucket testing. In Proceedings of the 215t International Conference on World Wide
Web, WWW, pages 1029-1036, 2012. doi:10.1145/2187836.2187974.

Kai-Kristian Kemell, Polina Feshchenko, Joonas Himmanen, Abrar Hossain, Furqan
Jameel, Raffacle Luigi Puca, Teemu Vitikainen, Joni Kultanen, Juhani Risku,
Johannes Impio, et al. Software startup education: gamifying growth hack-
ing. In Proceedings of the 2nd International Workshop on Software-Intensive
Business: Start-ups, Platforms, and Ecosystems, TWSiB, pages 25-30, 2019.
doi:10.1145/3340481.3342734.

Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Com-
puter, 36(1):41-50, 2003. doi:10.1109/MC.2003.1160055.

Katja Kevic, Brendan Murphy, Laurie Williams, and Jennifer Beckmann. Char-
acterizing experimentation in continuous deployment: a case study on Bing. In
Proceedings of the 39th International Conference on Software Engineering: Software
Engineering in Practice Track, ICSE-SEID, pages 123132, 2017. doi:10.1109/ICSE-
SEIP.2017.19.

Eugene Kharitonov, Craig Macdonald, Pavel Serdyukov, and Iadh Ounis. Optimised
scheduling of online experiments. In Proceedings of the 38th International Conference
on Research and Development in Information Retrieval, SIGIR, pages 453-462, 2015.
doi:10.1145/2766462.2767706.

Eugene Kharitonov, Aleksandr Vorobev, Craig Macdonald, Pavel Serdyukov, and
Iadh Ounis. Sequential testing for early stopping of online experiments. In Proceed-
ings of the 38th International Conference on Research and Development in Information
Retrieval, SIGIR, pages 473—482, 2015. doi:10.1145/2766462.2767729.

Eugene Kharitonov, Alexey Drutsa, and Pavel Serdyukov. Learning sensitive
combinations of A/B test metrics. In Proceedings of the 10th International
Conference on Web Search and Data Mining, WSDM, pages 651-659, 2017.
doi:10.1145/3018661.3018708.

Jacqueline Kirtley and Siobhan O’Mahony. What is a pivot? explaining when and
how entrepreneurial firms decide to make strategic change and pivot. Strategic Man-
agement Journal, Special Issue, 2020. doi:10.1002/smj.3131.

Barbara Ann Kitchenham, Tore Dyba, and Magne Jorgensen. Evidence-based soft-
ware engineering. In Proceedings of the 26th International Conference on Software
Engineering, ICSE, pages 273-281, 2004. doi:10.1109/ICSE.2004.1317449.

191

https://doi.org/10.1145/2187836.2187974
https://doi.org/10.1145/3340481.3342734
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/ICSE-SEIP.2017.19
https://doi.org/10.1109/ICSE-SEIP.2017.19
https://doi.org/10.1145/2766462.2767706
https://doi.org/10.1145/2766462.2767729
https://doi.org/10.1145/3018661.3018708
https://doi.org/10.1002/smj.3131
https://doi.org/10.1109/ICSE.2004.1317449

(170]

(171]

[172]

(173]

(174]

[175]

(176]

(177]

[178]

(179]

Ron Kohavi and Roger Longbotham. Unexpected results in online con-
trolled experiments. ACM SIGKDD Explorations Newsletter, 12(2):31, 2011.
doi:10.1145/1964897.1964905.

Ron Kohavi, Randal M. Henne, and Dan Sommerfield. Practical guide to controlled
experiments on the web: Listen to your customers not to the HiPPO. In Proceedings
of the 13th International Conference on Knowledge Discovery and Data Mining, KDD,
pages 959-967, 2007. doi:10.1145/1281192.1281295.

Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M. Henne. Con-
trolled experiments on the web: Survey and practical guide. Dara Mining and Know-
ledge Discovery, 18(1):140-181, 2009. doi:10.1007/s10618-008-0114-1.

Ron Kohavi, Alex Deng, Brian Frasca, Roger Longbotham, Toby Walker, and Ya Xu.
Trustworthy online controlled experiments: Five puzzling outcomes explained. In

Proceedings of the 18th International Conference on Knowledge Discovery and Data Min-
ing, KDD, pages 786-794, 2012. doi:10.1145/2339530.2339653.

Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils Pohlmann.
Online controlled experiments at large scale. In Proceedings of the 19th International
Conference on Knowledge Discovery and Data Mining, KDD, pages 11681176, 2013.
doi:10.1145/2487575.2488217.

Ron Kohavi, Alex Deng, Roger Longbotham, and Ya Xu. Seven rules of thumb
for web site experimenters. In Proceedings of the 20th International Confer-
ence on Knowledge Discovery and Data Mining, KDD, pages 1857-1866, 2014.
doi:10.1145/2623330.2623341.

Ronny Kohavi, Thomas Crook, Roger Longbotham, Brian Frasca, Randy Henne,
Juan Lavista Ferres, and Tamir Melamed. Online experimentation at Microsoft.
Proceedings of the 3rd International Workshop on Data Mining Case Studies, 11, 2009.

Kostantinos Koukouvis, Roberto Alcafiz Cubero, and Patrizio Pelliccione. A/B
testing in e-commerce sales processes. In Proceedings of the 8th International Work-
shop on Software Engineering for Resilient Systems, SERENE, pages 133-148, 2016.
doi:10.1007/978-3-319-45892-2_10.

John E Krafcik. Triumph of the lean production system. Sloan Management Review,
30(1):41-52, 1988.

Adam D. I. Kramer, Jamie E. Guillory, and Jeffrey T. Hancock. Experimental ev-
idence of massive-scale emotional contagion through social networks. Proceedings
of the National Academy of Sciences of the United States of America (PNAS), 111(24):
8788-8790, 2014. doi:10.1073/pnas.1320040111.

192

https://doi.org/10.1145/1964897.1964905
https://doi.org/10.1145/1281192.1281295
https://doi.org/10.1007/s10618-008-0114-1
https://doi.org/10.1145/2339530.2339653
https://doi.org/10.1145/2487575.2488217
https://doi.org/10.1145/2623330.2623341
https://doi.org/10.1007/978-3-319-45892-2_10
https://doi.org/10.1073/pnas.1320040111

[180]

[181]

[182]

(183]

[184]

(185]

[186]

(187]

[188]

(189]

Krzysztof Kuchcinski. Constraints-driven scheduling and resource assignment.
ACM Transactions on Design Automation of Electronic Systems (TODAES), 8(3):355—
383, 2003. doi:10.1145/785411.785416.

Bill Kuechler and Vijay Vaishnavi. On theory development in design science re-
search: anatomy of a research project. European Journal of Information Systems, 17
(5):489-504, 2008. doi:10.1057/ejis.2008.40.

Terran Lane and Carla E. Brodley. Approaches to online learning and concept drift
for user identification in computer security. In Proceedings of the 4th International

Conference on Knowledge Discovery and Data Mining, KDD, pages 259-263, 1998.

Minyong R. Lee and Milan Shen. Winner’s curse: Bias estimation for total effects
of features in online controlled experiments. In Proceedings of the 24th International
Conference on Knowledge Discovery and Data Mining, KDD, pages 491-499, 2018.
doi:10.1145/3219819.3219905.

Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. Constrained
bayesian optimization with noisy experiments. Bayesian Analysis, 14(2):495-519,
2019. doi:10.1214/18-ball10.

Florian Lettner, Clemens Holzmann, and Patrick Hutflesz. Enabling A/B testing of
native mobile applications by remote user interface exchange. In Proceedings of the
14th International Conference on Computer Aided Systems Theory, EUROCAST, pages
458-4606, 2013. doi:10.1007/978-3-642-53862-9_58.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-
bandit approach to personalized news article recommendation. In Proceedings of
the 19th International Conference on World Wide Web, \WW'W, pages 661-670, 2010.
doi:10.1145/1772690.1772758.

Greg Linden. Marissa Mayer at web 2.0. Accessed: 2022-01-24, 2006. glinden.
blogspot.com/2006/11/marissa-mayer-at-web-20.html.

Eveliina Lindgren and Jiirgen Miinch. Raising the odds of success: The current state
of experimentation in product development. Information and Software Technology,
77:80-91, 2016. doi:10.1016/j.infs0f.2016.04.008.

C. H. Liu, Angelo Cardoso, Paul Couturier, and Emma J. McCoy. Datasets for
online controlled experiments. In Proceedings of the 35th International Conference
on Neural Information Processing Systems: Datasets and Benchmarks Track, NeurIPS,
2021. arXiv:2111.10198.

193

https://doi.org/10.1145/785411.785416
https://doi.org/10.1057/ejis.2008.40
https://doi.org/10.1145/3219819.3219905
https://doi.org/10.1214/18-ba1110
https://doi.org/10.1007/978-3-642-53862-9_58
https://doi.org/10.1145/1772690.1772758
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://doi.org/10.1016/j.infsof.2016.04.008
https://arxiv.org/abs/2111.10198

[190]

(191]

[192]

[193]

[194]

(195]

[196]

(197]

[198]

Luo Lu and Chuang Liu. Separation strategies for three pitfalls in A/B testing. In
Proceedings of the 2nd KDD Workshop on User Engagement Optimization, UEO, pages
1-7, 2014.

Roman Lukyanenko, Joerg Evermann, and Jeffrey Parsons. Instantiation validity in
IS design research. In Proceedings of the 9th International Conference on Design Science
Research in Information Systems, DESRIST, pages 321-328, 2014.

Alan MacCormack, John Rusnak, and Carliss Y. Baldwin. Exploring the structure of
complex software designs: An empirical study of open source and proprietary code.
Management Science, 52(7):1015-1030, 2006. doi:10.1287/mnsc.1060.0552.

Widad Machmouchi and Georg Buscher. Principles for the design of on-
line A/B metrics. In Proceedings of the 39th International Conference on Re-
search and Development in Information Retrieval, SIGIR, pages 589-590, 2016.
doi:10.1145/2911451.2926731.

Widad Machmouchi, Ahmed Hassan Awadallah, Imed Zitouni, and Georg Buscher.
Beyond success rate: Utility as a search quality metric for online experiments. In
Proceedings of the 26th on Conference on Information and Knowledge Management,
CIKM, pages 757-765, 2017. doi:10.1145/3132847.3132850.

Satoshi Masuda, Kohichi Ono, Toshiaki Yasue, and Nobuhiro Hosokawa. A sur-
vey of software quality for machine learning applications. In Proceedings of the 11th
International Conference on Software Testing, Verification and Validation Workshops,
ICSTW, pages 279-284, 2018. doi:10.1109/ICSTW.2018.00061.

David Issa Mattos, Jan Bosch, and Helena Holmstrom Olsson. Your system gets
better every day you use it: Towards automated continuous experimentation. In
Proceedings of the 43rd Euromicro Conference on Software Engineering and Advanced
Applications, SEAA, pages 256265, 2017. doi:10.1109/SEAA.2017.15.

David Issa Mattos, Jan Bosch, and Helena Holmstrom Olsson. Challenges and
strategies for undertaking continuous experimentation to embedded systems: In-
dustry and research perspectives. In Proceedings of the 19th International Conference
on Agile Processes in Software Engineering and Extreme Programming, XP, pages 277—
292, 2018. doi:10.1007/978-3-319-91602-6_20.

David Issa Mattos, Pavel Dmitriev, Aleksander Fabijan, Jan Bosch, and He-
lena Holmstrém Olsson. An activity and metric model for online controlled ex-
periments. In Proceedings of the 19th International Conference on Product-Focused
Software Process Improvement, PROFES, pages 182198, 2018. doi:10.1007/978-3-
030-03673-7_14.

194

https://doi.org/10.1287/mnsc.1060.0552
https://doi.org/10.1145/2911451.2926731
https://doi.org/10.1145/3132847.3132850
https://doi.org/10.1109/ICSTW.2018.00061
https://doi.org/10.1109/SEAA.2017.15
https://doi.org/10.1007/978-3-319-91602-6_20
https://doi.org/10.1007/978-3-030-03673-7_14
https://doi.org/10.1007/978-3-030-03673-7_14

[199]

[200]

David Issa Mattos, Erling Martensson, Jan Bosch, and Helena Holmstrém Olsson.
Optimization experiments in the continuous space. In Proceedings of the 10th Inter-
national Symposium on Search-Based Software Engineering, SSBSE, pages 293-308,
2018. doi:10.1007/978-3-319-99241-9_16.

David Issa Mattos, Jan Bosch, and Helena Holmstrém Olsson. Multi-armed bandits
in the wild: Pitfalls and strategies in online experiments. Information and Software
Technology, 113:68-81, 2019. doi:10.1016/j.infs0f.2019.05.004.

[201] Ash Maurya. Running lean: iterate from plan A to a plan that works. O’Reilly Media,

[202]

(203]

[204]

[205]

[206]

[207]

[208]

2012.

Dave McClure. Startup metrics for pirates: AARRR! Accessed: 2022-01-15, 2007.
500hats. typepad.com/500blogs/2007/09/startup-metrics.html.

Dan McKinley. Design for continuous experimentation: Talk and slides. Accessed:
2019-08-01, 2012. mcfunley.com/design-for-continuous-experimentation.

Andrés Munoz Medina, Sergei Vassilvitskii, and Dong Yin. Online learning
for non-stationary A/B tests. In Proceedings of the 27th International Confer-
ence on Information and Knowledge Management, CIKM, pages 317-326, 2018.
doi:10.1145/3269206.3271718.

Jorge Melegati, Xiaofeng Wang, and Pekka Abrahamsson. Hypotheses engineering:
first essential steps of experiment-driven software development. In Proceedings of
the Joint 4th International Workshop on Rapid Continuous Software Engineering and
Ist International Workshop on Data-Driven Decisions, Experimentation and Evolution,
RCoSE/DDrtEE, pages 16-19, 2019. doi:10.1109/RCoSE/DDrEE.2019.00011.

Jorge Melegati, Henry Edison, and Xiaofeng Wang. XPro: a model to
explain the limited adoption and implementation of experimentation in soft-
ware startups. [EEE Transactions on Software Engineering, Early Access, 2020.
doi:10.1109/TSE.2020.3042610.

Robinson Meyer. Everything we know about FacebooK’s secret mood-manipulation
experiment. The Atlantic, 28, 2014. www. theatlantic.com/technology/archive/2014/
06/everything - we - know - about - facebooks - secret - mood - manipulation-experiment/
373648.

Risto Miikkulainen, Gurmeet Lamba, Neil Iscoe, Aaron Shagrin, Ron Cordell, Sam
Nazari, Cory Schoolland, Myles Brundage, Jonathan Epstein, and Randy Dean.
Conversion rate optimization through evolutionary computation. In Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO, pages 1193-1199,
2017. doi:10.1145/3071178.3071312.

195

https://doi.org/10.1007/978-3-319-99241-9_16
https://doi.org/10.1016/j.infsof.2019.05.004
https://500hats.typepad.com/500blogs/2007/09/startup-metrics.html
http://mcfunley.com/design-for-continuous-experimentation
https://doi.org/10.1145/3269206.3271718
https://doi.org/10.1109/RCoSE/DDrEE.2019.00011
https://doi.org/10.1109/TSE.2020.3042610
https://www.theatlantic.com/technology/archive/2014/06/everything-we-know-about-facebooks-secret-mood-manipulation-experiment/373648/
https://www.theatlantic.com/technology/archive/2014/06/everything-we-know-about-facebooks-secret-mood-manipulation-experiment/373648/
https://www.theatlantic.com/technology/archive/2014/06/everything-we-know-about-facebooks-secret-mood-manipulation-experiment/373648/
https://doi.org/10.1145/3071178.3071312

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

Risto Miikkulainen, Neil Iscoe, Aaron Shagrin, Ryan Rapp, Sam Nazari, Patrick
McGrath, Cory Schoolland, Elyas Achkar, Myles Brundage, Jeremy Miller, et al.
Sentient Ascend: Al-based massively multivariate conversion rate optimization. In

Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.

Leandro L. Minku and Xin Yao. DDD: A new ensemble approach for dealing with
concept drift. /EEE Transactions on Knowledge and Data Engineering, 24(4):619—633,
2011. doi:10.1109/TKDE.2011.58.

Rahul Mohanani, Iflaah Salman, Burak Turhan, Pilar Rodriguez, and Paul
Ralph. Cognitive biases in software engineering: a systematic mapping
study. [EEE Transactions on Software Engineering, 46(12):1318-1339, 2018.
doi:10.1109/TSE.2018.2877759.

Caique Moreira and Breno de Franga. Towards a healthier collaboration at the
business-development interface. In Proceedings of the 10th Ibero-American Confer-
ence on Software Engineering, CIbSE, pages 86-99, 2019.

Hussan Munir, Per Runeson, and Krzysztof Wnuk. A theory of openness for software
engineering tools in software organizations. Information and Software Technology, 97:
26-45, 2018. doi:10.1016/j.infsof.2017.12.008.

Vivek Nair, Zhe Yu, Tim Menzies, Norbert Siegmund, and Sven Apel. Finding faster
configurations using FLASH. [EEE Transactions on Software Engineering, 46, 2018.
doi:10.1109/TSE.2018.2870895.

Luigi Nardi, David Koeplinger, and Kunle Olukotun. Practical design space explo-
ration. In Proceedings of the 27th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, MASCOTS, pages 347358,
2019. doi:10.1109/MASCOTS.2019.00045.

Irina Niculescu, Huibin Mary Hu, Christina Gee, Chewy Chong, Shivam Dubey,
and Paul Luo Li. Towards inclusive software engineering through A/B testing: A case-
study at Windows. In Proceedings of the 43rd International Conference on Software
Engineering: Software Engineering in Practice Track, ICSE-SEIP, pages 180-187, 2021.
doi:10.1109/ICSE-SEIP52600.2021.00027.

Marius Florin Niculescu and Dong Jun Wu. Economics of free under perpetual
licensing: Implications for the software industry. Information Systems Research, 25

(1):173-199, 2014. doi:10.2139/ssrn.1853603.

Michael Nolting and Jan Eike von Seggern. Context-based A/B test validation.
In Proceedings of the 25th International Conference Companion on World Wide Web,
W\WW, pages 277-278, 2016. doi:10.1145/2872518.2889306.

196

https://doi.org/10.1109/TKDE.2011.58
https://doi.org/10.1109/TSE.2018.2877759
https://doi.org/10.1016/j.infsof.2017.12.008
https://doi.org/10.1109/TSE.2018.2870895
https://doi.org/10.1109/MASCOTS.2019.00045
https://doi.org/10.1109/ICSE-SEIP52600.2021.00027
https://doi.org/10.2139/ssrn.1853603
https://doi.org/10.1145/2872518.2889306

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

Dan Olsen. 7he lean product playbook: How to innovate with minimum viable products
and rapid customer feedback. John Wiley & Sons, 2015.

Helena Holmstrém Olsson and Jan Bosch. From opinions to data-driven software
R&D: A multi-case study on how to close the ‘open loop’ problem. In Proceedings
of the 40th Euromicro Conference on Software Engineering and Advanced Applications,
SEAA, pages 9-16, 2014. doi:10.1109/seaa.2014.75.

Helena Holmstrdm Olsson and Jan Bosch. The HYPEX model: from opinions
to data-driven software development. In Jan Bosch, editor, Continuous Software
Engineering, pages 155-164. Springer Publishing Company, 2014. doi:10.1007/978-
3-319-11283-1_13.

Helena Holmstrom Olsson and Jan Bosch. Data driven development: Challenges in
online, embedded and on-premise software. In Proceedings of the 20th International
Conference on Product-Focused Software Process Improvement, PROFES, pages 515—
527, 2019.

Helena Holmstrém Olsson, Hiva Alahyari, and Jan Bosch. Climbing the “stair-
way to heaven”: A mulitiple-case study exploring barriers in the transition from
agile development towards continuous deployment of software. In Proceedings of
the 38th Euromicro Conference on Software Engineering and Advanced Applications,
SEAA, pages 392-399, 2012. doi:10.1109/SEAA.2012.54.

Helena Holmstrom Olsson, Jan Bosch, and Aleksander Fabijan. Experimentation
that matters: A multi-case study on the challenges with A/B testing. In Proceedings of
the 8th International Conference on Software Business, ICSOB, pages 179-185, 2017.
doi:10.1007/978-3-319-69191-6_12.

Alexander Osterwalder. 7he business model ontology a proposition in a design science
approach. PhD thesis, Faculty of Business and Economics of the University of Lau-
sanne, 2004.

Alexander Osterwalder and Yves Pigneur. Business model generation: A handbook for
visionaries, game changers, and challengers, volume 1. John Wiley & Sons, 2010.

Jakob Pennington. The eight phases of a DevOps pipeline: Introduction to DevOps
part 2. Accessed: 2022-01-15, 2019. https://medium.com/taptuit/the-eight-phases-
of-a-devops-pipeline-fda53ec9bba.

Pulasthi Perera, Roshali Silva, and Indika Perera. Improve software qual-
ity through practicing DevOps. In Proceedings of the 17th International Con-
ference on Advances in ICT for Emerging Regions, 1CTer, pages 1-6, 2017.
doi:10.1109/ICTER.2017.8257807.

197

https://doi.org/10.1109/seaa.2014.75
https://doi.org/10.1007/978-3-319-11283-1_13
https://doi.org/10.1007/978-3-319-11283-1_13
https://doi.org/10.1109/SEAA.2012.54
https://doi.org/10.1007/978-3-319-69191-6_12
https://doi.org/10.1109/ICTER.2017.8257807

[229]

[230]

[231]

[232]

[233]

(234]

[235]

[236]

(237]

[238]

Tekla S. Perry. Marissa mayer: Google’s chic geek: This self-proclaimed “girly girl”
runs one of google’s fastest-growing services. [EEE Spectrum, 49(4):32-64, 2012.
doi:10.1109/MSPEC.2012.6172806.

Kai Petersen and Claes Wohlin. Context in industrial software engineering research.
In Proceedings of the 3rd International Symposium on Empirical Software Engineering
and Measurement, ESEM, pages 401-404, 2009. doi:10.1109/ESEM.2009.5316010.

Alexander Peysakhovich and Dean Eckles. Learning causal effects from many ran-
domized experiments using regularized instrumental variables. In Proceedings of the
2018 World Wide Web Conference on World Wide Web, W, pages 699—707, 2018.
doi:10.1145/3178876.3186151.

Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and Techniques.
Springer Publishing Company, 2010.

Klaus Pohl, Giinter Bockle, and Frank van Der Linden. Software product line en-
gineering: foundations, principles, and techniques. Springer Publishing Company,
2005.

Alexey Poyarkov, Alexey Drutsa, Andrey Khalyavin, Gleb Gusev, and Pavel
Serdyukov. Boosted decision tree regression adjustment for variance reduction
in online controlled experiments. In Proceedings of the 22nd International Con-
ference on Knowledge Discovery and Data Mining, KDD, pages 235-244, 2016.
doi:10.1145/2939672.2939688.

Juan Qin, Wei Qi, and Baojian Zhou. Research on optimal selection strategy of
search engine keywords based on multi-armed bandit. In Proceedings of the 49th
Hawaii International Conference on System Sciences, HICSS, pages 726—734, 2016.

Md Tajmilur Rahman, Louis-Philippe Querel, Peter C. Rigby, and Bram Adams.
Feature toggles: practitioner practices and a case study. In Proceedings of the 13th
International Workshop on Mining Software Repositories, MSR, pages 201-211, 2016.
doi:10.1145/2901739.2901745.

Reza Rahutomo, Yulius Lie, Anzaludin Samsinga Perbangsa, and Bens Pardamean.
Improving conversion rates for fashion e-commerce with A/B testing. In Proceed-
ings of the 2020 International Conference on Information Management and Technology,
ICIMTech, pages 266-270, 2020. doi:10.1109/ICIMTech50083.2020.9210947.

Risto Rajala, Matti Rossi, and Virpi Kristiina Tuunainen. A framework for ana-
lyzing software business models. In Proceedings of the 11th European Conference on
Information Systems, ECIS, pages 1614-1627, 2003.

198

https://doi.org/10.1109/MSPEC.2012.6172806
https://doi.org/10.1109/ESEM.2009.5316010
https://doi.org/10.1145/3178876.3186151
https://doi.org/10.1145/2939672.2939688
https://doi.org/10.1145/2901739.2901745
https://doi.org/10.1109/ICIMTech50083.2020.9210947

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

A Révész and Norbert Pataki. Containerized A/B testing. In Proceedings of the 6th
Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications,
SQAMIA, page 14, 2017.

Eric Ries. 7he Lean Startup: How Todays Entrepreneurs Use Continuous Innovation
to Create Radically Successful Businesses. Crown Business, 2011.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits show-
down: An empirical comparison of Bayesian deep networks for Thompson sampling.
In Proceedings of the 6th International Conference on Learning Representations, ICLR,
2018. arXiv:1802.09127.

Olli Rissanen and Jiirgen Miinch. Continuous experimentation in the B2B domain:
a case study. In Proceedings of the 2nd International Workshop on Rapid Continuous
Software Engineering, RCoSE, pages 1218, 2015. doi:10.1109/RCoSE.2015.10.

Pilar Rodriguez, Cathy Urquhart, and Emilia Mendes. A theory of value for value-
based feature selection in software engineering. /EEE Transactions on Software Engi-
neering, Early Access, 2020. doi:10.1109/TSE.2020.2989666.

Elisabetta Ronchieri and M. Canaparo. Metrics for software reliability: a systematic
mapping study. Journal of Integrated Design and Process Science, 22(2):5-25, 2018.
doi:10.3233/jid-2018-0008.

Rasmus Ros. Continuous experimentation interview instrument, 2017. serg.cs.

1th.se/fileadmin/serg/Continuous_Experimentation_Instrument.pdf.

Rasmus Ros. Continuous experimentation with product-led business models: A

comparative case study. In Proceedings of the 11th International Conference on Software
Business, ICSOB, pages 143-158, 2020. doi:10.1007/978-3-030-67292-8_11.

Rasmus Ros and Elizabeth Bjarnason. Continuous experimentation scenarios:
A case study in e-commerce. In Proceedings of the 44th Euromicro Conference
on Software Engineering and Advanced Applications, SEAA, pages 353356, 2018.
doi:10.1109/seaa.2018.00064.

Rasmus Ros and Mikael Hammar. Data-driven software design with constraint ori-
ented multi-variate bandit optimization (COMBO). Empirical Software Engineering,
25(5):3841-3872, 2020. doi:10.1007/s10664-020-09856-1.

Rasmus Ros and Per Runeson. Continuous experimentation and A/B testing: A
mapping study. In Proceedings of the 4th International Workshop on Rapid Continuous
Software Engineering, RCoSE, pages 3541, 2018. doi:10.1145/3194760.3194766.

199

https://arxiv.org/abs/1802.09127
https://doi.org/10.1109/RCoSE.2015.10
https://doi.org/10.1109/TSE.2020.2989666
https://doi.org/10.3233/jid-2018-0008
http://serg.cs.lth.se/fileadmin/serg/Continuous_Experimentation_Instrument.pdf
http://serg.cs.lth.se/fileadmin/serg/Continuous_Experimentation_Instrument.pdf
https://doi.org/10.1007/978-3-030-67292-8_11
https://doi.org/10.1109/seaa.2018.00064
https://doi.org/10.1007/s10664-020-09856-1
https://doi.org/10.1145/3194760.3194766

[250]

[251]

[252]

(253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

Rasmus Ros, Elizabeth Bjarnason, and Per Runeson. Automated controlled experi-
mentation on software by evolutionary bandit optimization. In Proceedings of the
9th International Symposium on Search Based Software Engineering, SSBSE, pages
190-196, 2017. doi:10.1007/978-3-319-66299-2_18.

Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of constraint program-
ming. Elsevier, 2000.

Ranjit K. Roy. Design of Experiments Using the Taguchi Approach: 16 Steps to Product
and Process Improvement. John Wiley & Sons, 2001.

Per Runeson and Martin Hést. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131-164,
2009. doi:10.1007/s10664-008-9102-8.

Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case study research in
software engineering: Guidelines and examples. John Wiley & Sons, 2012.

Per Runeson, Emelie Engstrom, and Margaret-Anne Storey. The design science
paradigm as a frame for empirical software engineering. In Michael Felderer and
Guilherme Horta Travassos, editors, Contemporary Empirical Methods in Software
Engineering, pages 127-147. Springer Publishing Company, 2020. doi:10.1007/978-
3-030-32489-6_5.

Daniel J. Russo, Benjamin van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen.
A tutorial on thompson sampling. Foundations and Trends in Machine Learning, 11
(1):1-96, 2017. doi:10.1561/2200000070.

Dina Salah, Richard E Paige, and Paul Cairns. A systematic literature review for agile
development processes and user centred design integration. In Proceedings of the 18th

International Conference on Evaluation and Assessment in Software Engineering, EASE,
pages 1-10, 2014. doi:10.1145/2601248.2601276.

Jeft Sauro and James R. Lewis. Quantifying the user experience: Practical statistics for
user research. Morgan Kaufmann Publishers, 2016. doi:10.1016/C2010-0-65192-3.

Tanja Sauvola, Markus Kelanti, Jarkko Hyysalo, Pasi Kuvaja, and Kari Liukkunen.
Continuous improvement and validation with customer touchpoint model in soft-
ware development. In Proceedings of the 13th International Conference on Software
Engineering Advances, ICSEA, pages 5260, 2018.

Martin Saveski, Jean Pouget-Abadie, Guillaume Saint-Jacques, Weitao Duan, Sou-
vik Ghosh, Ya Xu, and Edoardo M. Airoldi. Detecting network effects. In Proceedings
of the 23rd International Conference on Knowledge Discovery and Data Mining, KDD,
pages 1027-1035, 2017. doi:10.1145/3097983.3098192.

200

https://doi.org/10.1007/978-3-319-66299-2_18
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/978-3-030-32489-6_5
https://doi.org/10.1007/978-3-030-32489-6_5
https://doi.org/10.1561/2200000070
https://doi.org/10.1145/2601248.2601276
https://doi.org/10.1016/C2010-0-65192-3
https://doi.org/10.1145/3097983.3098192

[261]

[262]

[263]

[264]

[265]

[260]

[267]

[268]

[269]

(270]

Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock.
Methods and metrics for cold-start recommendations. In Proceedings of the 25th
International Conference on Research and Development in Information Retrieval, pages

253-260, 2002. doi:10.1145/564376.564421.

Gerald Schermann and Philipp Leitner. Search-based scheduling of experi-
ments in continuous deployment. In Proceedings of the 34th International Con-
Serence on Software Maintenance and Evolution, ICSME, pages 485-495, 2018.
d0i:10.1109/icsme.2018.00059.

Gerald Schermann, Dominik Schoni, Philipp Leitner, and Harald C. Gall. Bifrost —
supporting continuous deployment with automated enactment of multi-phase live
testing strategies. In Proceedings of the 17th International Conference on Middleware,
Middleware, pages 1-14, 2016. doi:10.1145/2988336.2988348.

Gerald Schermann, Jiirgen Cito, and Philipp Leitner. Continuous experimentation:
challenges, implementation techniques, and current research. /EEE Software, 35(2):
26-31, 2018. doi:10.1109/MS.2018.111094748.

Gerald Schermann, Jiirgen Cito, Philipp Leitner, Uwe Zdun, and Harald C.
Gall. Were doing it livee A multi-method empirical study on continu-
ous experimentation. Information and Software Technology, 99:41-57, 2018.
doi:10.1016/j.infs0£.2018.02.010.

Markus Schief and Peter Buxmann. Business models in the software industry. In
Proceedings of the 45th Hawaii International Conference on System Sciences, HICSS,
pages 3328-3337, 2012. doi:10.1109/HICSS.2012.140.

Robert Schumacher. 7he handbook of global user research. Morgan Kaufmann Pub-
lishers, 2009.

Daniel Schwabe, R. Mattos Guimaraes, and Gustavo Rossi. Cohesive design
of personalized web applications. IEEE Internet Computing, 6(2):34—43, 2002.
doi:10.1109/4236.991441.

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, and Michael Young. Machine learning: The high interest
credit card of technical debt. In Proceedings of the Ist NIPS Workshop on Software
Engineering for Machine Learning, SEAML, 2014.

Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous integration,
delivery and deployment: A systematic review on approaches, tools, challenges and
practices. [EEE Access, 5:3909-3943, 2017. doi:10.1109/ACCESS.2017.2685629.

201

https://doi.org/10.1145/564376.564421
https://doi.org/10.1109/icsme.2018.00059
https://doi.org/10.1145/2988336.2988348
https://doi.org/10.1109/MS.2018.111094748
https://doi.org/10.1016/j.infsof.2018.02.010
https://doi.org/10.1109/HICSS.2012.140
https://doi.org/10.1109/4236.991441
https://doi.org/10.1109/ACCESS.2017.2685629

[271]

(272]
[273]

[274]

[275]

[276]

[277]

[278]

[279]

[280]

[281]

José L. Silva, José Creissac Campos, and Ana C. R. Paiva. Model-based user inter-
face testing with spec explorer and ConcurTaskTrees. Electronic Notes in Theoretical
Computer Science, 208:77-93, 2008. doi:10.1016/j.entcs.2008.03.108.

Herbert A. Simon. 7he Sciences of the Artificial. MIT Press, 1969.

Janice Singer, Susan E. Sim, and Timothy C. Lethbridge. Software engineering data
collection for field studies. In Forrest Shull, Janice Singer, and Dag I. K. Sjeberg,
editors, Guide to Advanced Empirical Software Engineering, pages 9-34. Springer Pub-
lishing Company, 2008. doi:10.1007/978-1-84800-044-5_1.

Dag I. K. Sjoberg, Tore Dyb4, Bente C. D. Anda, and Jo E. Hannay. Building the-
ories in software engineering. In Forrest Shull, Janice Singer, and Dag I. K. Sjoberg,
editors, Guide to Advanced Empirical Software Engineering, pages 312-336. Springer
Publishing Company, 2008. doi:10.1007/978-1-84800-044-5_12.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization
of machine learning algorithms. In Proceedings of the 26th International Conference
on Advances in Neural Information Processing Systems, NIPS, pages 2951-2959, 2012.

Alina Sorescu. Data-driven business model innovation. jJournal of Product Innovation
Management, 34(5):691-696, 2017. doi:10.1111/jpim.12398.

Maximilian Speicher, Andreas Both, and Martin Gaedke. Ensuring web interface
quality through usability-based split testing. In Proceedings of the 14th International
Conference on Web Engineering, ICWE, pages 93-110, 2014. doi:10.1007/978-3-319-
08245-5_6.

Klaas-Jan Stol and Brian Fitzgerald. Theory-oriented software engineering. Science
of Computer Programming, 101:79-98, 2015. doi:10.1016/j.scico.2014.11.010.

Klaas-Jan Stol and Brian Fitzgerald. The ABC of software engineering research. ACM
Transactions on Software Engineering and Methodology (TOSEM), 27(3):1-51, 2018.
doi:doi.org/10.1145/3241743.

Klaas-Jan Stol and Brian Fitzgerald. Guidelines for conducting software engineering
research. In Michael Felderer and Guilherme Horta Travassos, editors, Contempo-
rary Empirical Methods in Software Engineering, pages 27—62. Springer Publishing
Company, 2020. doi:10.1007/978-3-030-32489-6_2.

Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. = Grounded theory in soft-
ware engineering research: a critical review and guidelines. In Proceedings of
the 38th International Conference on Software Engineering, pages 120131, 2016.
doi:10.1145/2884781.2884833.

202

https://doi.org/10.1016/j.entcs.2008.03.108
https://doi.org/10.1007/978-1-84800-044-5_1
https://doi.org/10.1007/978-1-84800-044-5_12
https://doi.org/10.1111/jpim.12398
https://doi.org/10.1007/978-3-319-08245-5_6
https://doi.org/10.1007/978-3-319-08245-5_6
https://doi.org/10.1016/j.scico.2014.11.010
https://doi.org/doi.org/10.1145/3241743
https://doi.org/10.1007/978-3-030-32489-6_2
https://doi.org/10.1145/2884781.2884833

[282]

[283]

[284]

[285]

[2806]

[287]

[288]

[289]

[290]

[291]

Margaret-Anne Storey, Emelie Engstrom, Martin Host, Per Runeson, and Elizabeth
Bjarnason. Using a visual abstract as a lens for communicating and promoting design
science research in software engineering. In Proceedings of the 11th International Sym-
posium on Empirical Software Engineering and Measurement, ESEM, pages 181-186,
2017. doi:10.1109/ESEM.2017.28.

Jianyong Sun, Hu Zhang, Aimin Zhou, Qingfu Zhang, Ke Zhang, Zhenbiao Tu,
and Kai Ye. Learning from a stream of nonstationary and dependent data in multiob-
jective evolutionary optimization. IEEE Transactions on Ez/o/utz'onary Computation,

23(4):541-555, 2018. doi:10.1109/TEVC.2018.2865495.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, 2nd edition, 1998.

Giordano Tamburrelli and Alessandro Margara. Towards automated A/B testing. In
Proceedings of the 6th International Symposium on Search-Based Software Engineering,
SSBSE, pages 184-198, 2014. doi:10.1007/978-3-319-09940-8_13.

Diane Tang, Ashish Agarwal, Deirdre O’Brien, and Mike Meyer. Overlapping ex-
periment infrastructure: More, better, faster experimentation. In Proceedings of the
16th International Conference on Knowledge Discovery and Data Mining, KDD, pages
17-26, 2010. doi:10.1145/1835804.1835810.

Silvana Trimi and Jasmina Berbegal-Mirabent. Business model innovation in en-
trepreneurship. International Entrepreneurship and Management Journal, 8(4):449—
465, 2012. doi:10.1007/s11365-012-0234-3.

Orlando Troisi, Gennaro Maione, Mara Grimaldi, and Francesca Loia. Growth
hacking: Insights on data-driven decision-making from three firms. Industrial Mar-
keting Management: the international journal for industrial and high-tech firms., 90:
538-557, 2020. doi:10.1016/j.indmarman.2019.08.005.

Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-
based testing approaches. Software Testing, Verification and Reliability, 22(5):297—
312, 2012. doi:10.1002/stvr.456.

Arturo Valdivia. Customer lifetime value in mobile games: a note on stylized facts
and statistical challenges. In Proceedings of the 3rd Conference on Games, CoG, pages
1-5, 2021. do0i:10.1109/C0G52621.2021.9619092.

Raymon van Dinter, Bedir Tekinerdogan, and Cagatay Catal. Automation of sys-
tematic literature reviews: A systematic literature review. Information and Software

Technology, 136(106589), 2021. doi:10.1016/j.infsof.2021.106589.

203

https://doi.org/10.1109/ESEM.2017.28
https://doi.org/10.1109/TEVC.2018.2865495
https://doi.org/10.1007/978-3-319-09940-8_13
https://doi.org/10.1145/1835804.1835810
https://doi.org/10.1007/s11365-012-0234-3
https://doi.org/10.1016/j.indmarman.2019.08.005
https://doi.org/10.1002/stvr.456
https://doi.org/10.1109/CoG52621.2021.9619092
https://doi.org/10.1016/j.infsof.2021.106589

[292]

[293]

[294]

[295]

[296]

(297]

(298]

[299]

[300]

(301]

Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of variability in
software product lines. In Proceedings of the Working Conference on Software Archi-
tecture, WICSA, pages 45-54, 2001. doi:10.1109/WICSA.2001.948406.

Erno Vanhala and Kari Smolander. What do we know about business models in

software companies?: systematic mapping study. IADIS International Journal on
WWW/lnternet, 11(3):89-102, 2013.

Bruna Prauchner Vargas, Ingrid Signoretti, Maximilian Zorzetti, Sabrina Marczak,
and Ricardo Bastos. On the understanding of experimentation usage in light of lean
startup in software development context. In Proceedings of the 24th International
Conference on Evaluation and Assessment in Software Engineering, EASE, pages 330—
335, 2020. doi:10.1145/3383219.3383257.

Konstantina Vasileiou, Julie Barnett, Susan Thorpe, and Terry Young. Character-
ising and justifying sample size sufficiency in interview-based studies: systematic
analysis of qualitative health research over a 15-year period. BMC Medical Research
Methodo[ogy, 18(1):1-18, 2018. doi:10.1186/s12874-018-0594-7.

Inder M. Verma. Editorial expression of concern: Experimental evidence of mas-
sivescale emotional contagion through social networks. Proceedings of the National
Academy of Sciences of the United States of America (PNAS), 111(29):10779, 2014.
doi:10.1073/pnas.1412469111.

Paul Voigt and Axel von dem Bussche. 7he EU general data protection regulation
(GDPR): A practical guide. Springer, 2017.

Romi Satria Wahono. A systematic literature review of software defect prediction.
Journal of Software Engineering, 1(1):1-16, 2015.

Dolores R. Wallace and Roger U. Fujii. Software verification and validation: an
overview. /EEE Software, 6(3):10-17, 1989. doi:10.1109/52.28119.

Jason Wang, David Goldberg, Pauline Burke, and Dave Bhoite. Designing and
analyzing A/B tests in an online marketplace. In Proceedings of the 18th Interna-
tional Conference on Data Mining Workshops, ICDMW, pages 1447-1452, 2018.
d0i:10.1109/icdmw.2018.00206.

Qing Wang, Chunqiu Zeng, Wubai Zhou, Tao Li, S. Sitharama Iyengar, Larisa
Shwartz, and Genady Ya Grabarnik. Online interactive collaborative filtering using
multi-armed bandit with dependent arms. JEEE Transactions on Knowledge and Data
Engineering, 31(8):1569-1580, 2018. doi:10.1109/TKDE.2018.2866041.

204

https://doi.org/10.1109/WICSA.2001.948406
https://doi.org/10.1145/3383219.3383257
https://doi.org/10.1186/s12874-018-0594-7
https://doi.org/10.1073/pnas.1412469111
https://doi.org/10.1109/52.28119
https://doi.org/10.1109/icdmw.2018.00206
https://doi.org/10.1109/TKDE.2018.2866041

[302]

(303]

[304]

[305]

[306]

[307]

[308]

[309]

(310]

[311]

Dennis Westermann, Jens Happe, and Roozbeh Farahbod. An experiment specifi-
cation language for goal-driven, automated performance evaluations. In Proceedings
of the 28th Annual Symposium on Applied Computing, SAC, pages 1043-1048, 2013.
doi:10.1145/2480362.2480561.

Anna Wiedemann, Manuel Wiesche, Heiko Gewald, and Helmut Krcmar. Imple-
menting the planning process within DevOps teams to achieve continuous innova-

tion. In Proceedings of the 52nd Hawaii International Conference on System Sciences,
HICSS, 2019. doi:10.24251/HICSS.2019.841.

Roel Wieringa and Maya Daneva. Six strategies for generalizing software
engineering theories. Science of Computer Programming, 101:136-152, 2015.
doi:10.1016/j.scico.2014.11.013.

Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Requirements

engineering paper classification and evaluation criteria: a proposal and a discussion.
Requirements Engineering, 11(1):102-107, 2005. doi:10.1007/s00766-005-0021-6.

Roel J. Wieringa. Design Science Methodology for Information Systems and Software
Engineering. Springer Publishing Company, 2014. doi:10.1007/978-3-662-43839-8.

Stefan Wiesner, Christian Gorldt, Mathias Soeken, Klaus-Dieter Thoben, and Rolf
Drechsler. Requirements engineering for cyber-physical systems: Challenges in the
context of “industrie 4.0”. In Proceedings of the 2014 International Conference on
Advances in Production Management Systems: Innovative and Knowledge-Based Pro-
duction Management in a Global-Local World, volume 438 of APMS, pages 281288,
2014. doi:10.1007/978-3-662-44739-0_35.

Ashley Williams. User-centered design, activity-centered design, and goal-directed
design: a review of three methods for designing web applications. In Proceedings
of the 27th International Conference on Design of Communication, pages 1-8, 2009.
doi:10.1145/1621995.1621997.

Claes Wohlin. Second-generation systematic literature studies using snowballing.
In Proceedings of the 20th International Conference on Evaluation and Assessment in
Software Engineering, EASE, pages 1-6, 2016. doi:10.1145/2915970.2916006.

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, and
Anders Wesslén. Experimentation in software engineering. Springer Publishing Com-
pany, 2012.

Cara Wrigley and Karla Straker. Designing innovative business models with a
framework that promotes experimentation. Strategy & Leadership, 44(1), 2016.
doi:10.1108/SL-06-2015-0048.

205

https://doi.org/10.1145/2480362.2480561
https://doi.org/10.24251/HICSS.2019.841
https://doi.org/10.1016/j.scico.2014.11.013
https://doi.org/10.1007/s00766-005-0021-6
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-44739-0_35
https://doi.org/10.1145/1621995.1621997
https://doi.org/10.1145/2915970.2916006
https://doi.org/10.1108/SL-06-2015-0048

[312]

(313]

[314]

(315]

[3106]

(317]

(318]

(319]

Huizhi Xie and Juliette Aurisset. Improving the sensitivity of online controlled exper-
iments. In Proceedings of the 22nd International Conference on Knowledge Discovery
and Data Mining, pages 645-654, 2016. doi:10.1145/2939672.2939733.

Yuxiang Xie, Nanyu Chen, and Xiaolin Shi. False discovery rate controlled hetero-
geneous treatment effect detection for online controlled experiments. In Proceedings
of the 24th International Conference on Knowledge Discovery and Data Mining, KDD,
pages 876—885, 2018. doi:10.1145/3219819.3219860.

Ya Xu and Nanyu Chen. Evaluating mobile apps with A/B and quasi A/B tests. In
Proceedings of the 22nd International Conference on Knowledge Discovery and Data
Mining, KDD, pages 313-322, 2016. doi:10.1145/2939672.2939703.

Ya Xu, Nanyu Chen, Addrian Fernandez, Omar Sinno, and Anmol Bhasin. From
infrastructure to culture: A/B testing challenges in large scale social networks. In Pro-
ceedings of the 21th International Conference on Knowledge Discovery and Data Mining,
KDD, pages 2227-2236, 2015. doi:10.1145/2783258.2788602.

Ya Xu, Weitao Duan, and Shaochen Huang. SQR: Balancing speed, quality
and risk in online experiments. In Proceedings of the 24th International Con-
ference on Knowledge Discovery and Data Mining, KDD, pages 895-904, 2018.
doi:10.1145/3219819.3219875.

Sezin Gizem Yaman, Fabian Fagerholm, Myriam Munezero, Jiirgen Miinch, Mika
Aaltola, Christina Palmu, and Tomi Minnistd. Transitioning towards continuous
experimentation in a large software product and service development organisation: a
case study. In Proceedings of the 17th International Conference on Product-Focused Soft-
ware Process Improvement, PROFES, pages 344-359, 2016. doi:978-3-319-49094-
6_22.

Sezin Gizem Yaman, Tanja Sauvola, Leah Riungu-Kalliosaari, Laura Hokkanen, Pasi
Kuvaja, Markku Oivo, and Tomi Minnisté. Customer involvement in continuous
deployment: A systematic literature review. In Proceedings of the 22nd International
Working Conference on Requirements Engineering: Foundation for Software Quality,
REFSQ), pages 249-265, 2016. doi:10.1007/978-3-319-30282-9_18.

Sezin Gizem Yaman, Fabian Fagerholm, Myriam Munezero, Hanna Maenpaa, and
Tomi Mannisto. Notifying and involving users in experimentation: Ethical percep-
tions of software practitioners. In Proceedings of the 1ith International Symposium
on Empirical Software Engineering and Measurement, ESEM, pages 199-204, 2017.
doi:10.1109/esem.2017.31.

206

https://doi.org/10.1145/2939672.2939733
https://doi.org/10.1145/3219819.3219860
https://doi.org/10.1145/2939672.2939703
https://doi.org/10.1145/2783258.2788602
https://doi.org/10.1145/3219819.3219875
https://doi.org/978-3-319-49094-6_22
https://doi.org/978-3-319-49094-6_22
https://doi.org/10.1007/978-3-319-30282-9_18
https://doi.org/10.1109/esem.2017.31

[320] Sezin Gizem Yaman, Myriam Munezero, Jiirgen Miinch, Fabian Fagerholm, Ossi
Syd, Mika Aaltola, Chritsina Palmu, and Tomi Minnistd. Introducing continuous

experimentation in large software-intensive product and service organisations. Jour-
nal of Systems and Software, 133:195-211, 2017. doi:10.1016/j.jss.2017.07.009.

[321] Sezin Gizem Yaman, Tommi Mikkonen, and Riku Suomela. Continuous experi-
mentation in mobile game development. In Proceedings of the 44th Euromicro Con-
ference on Software Engineering and Advanced Applications, SEAA, pages 345-352,
2018. doi:10.1109/seaa.2018.00063.

[322] Scott W. H. Young. Improving library user experience with A/B testing: Prin-
ciples and process. Weave: Journal of Library User Experience, 1(1), 2014.
doi:10.3998/weave.12535642.0001.101.

[323] Zhenyu Zhao, Miao Chen, Don Matheson, and Maria Stone. Online experimen-
tation diagnosis and troubleshooting beyond AA validation. In Proceedings of the
3rd International Conference on Data Science and Advanced Analytics, DSAA, pages
498-507, 2016. doi:10.1109/dsaa.2016.61.

207

https://doi.org/10.1016/j.jss.2017.07.009
https://doi.org/10.1109/seaa.2018.00063
https://doi.org/10.3998/weave.12535642.0001.101
https://doi.org/10.1109/dsaa.2016.61

	Introduction
	Background
	Research Overview
	Research Approach
	Results
	Synthesis
	Discussion
	Conclusions

	Included Papers
	Controlled Experimentation in Continuous Experimentation: Knowledge and Challenges
	Introduction
	Background
	Research Method
	Results
	Discussion
	Conclusions

	Continuous Experimentation Scenarios: A Case Study in e-Commerce
	Introduction
	Method and Case Company
	Results: Experimentation Scenarios
	Discussion and Conclusions

	The FACE Theory for Factors at Play in Continuous Experimentation
	Introduction
	Background and Related Work
	Method
	Theory Formulation of FACE
	Theory Explanations and Empirical Underpinning
	Discussion
	Guidelines to Practitioners for Conducting CE
	Conclusions
	Interview Guide
	Code Book

	Data-Driven Software Design with Constraint Oriented Multi-Variate Bandit Optimization (COMBO)
	Introduction
	Background and Related Work on Continuous Experimentation
	Theory on Bandit Optimization of Software
	Research Context and Methods
	Tooling Support for Bandit Optimization
	Validation
	Discussion
	Conclusions
	Replication of simulations

	References

